WorldWideScience

Sample records for based ternary compounds

  1. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  2. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barua, Radhika, E-mail: barua.r@husky.neu.edu; Jiménez-Villacorta, Félix; Lewis, L. H. [Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07

    In this work, we demonstrate that the magnetocaloric response of FeRh-based compounds may be tailored for potential magnetic refrigeration applications by chemical modification of the FeRh lattice. Alloys of composition Fe(Rh{sub 1−x}A{sub x}) or (Fe{sub 1−x}B{sub x})Rh (A = Cu, Pd; B = Ni; 0 < x < 0.06) were synthesized via arc-melting and subsequent annealing in vacuum at 1000 °C for 48 h. The magnetocaloric properties of the FeRh-based systems were determined using isothermal M(H) curves measured in the vicinity of the magnetostructural temperature (T{sub t}). It is found that the FeRh working temperature range (δT{sub FWHM}) may be chemically tuned over a wide temperature range, 100 K ≤ T ≤ 400 K. While elemental substitution consistently decreases the magnetic entropy change (ΔS{sub mag}) of the FeRh-based ternary alloys from that of the parent FeRh compound (ΔS{sub mag},{sub FeRh} ∼ 17 J/kg K; ΔS{sub mag,FeRh-ternary =} 7–14 J/kg K at H{sub app} = 2 T), the net refrigeration capacity (RC), defined as the amount of heat that can be transferred during one magnetic refrigeration cycle, of the modified systems is significantly higher (RC{sub FeRh} ∼ 150 J/kg; RC{sub FeRh-ternary =} 170–210 J/kg at H{sub app} = 2 T). These results are attributed to stoichiometry-induced changes in the FeRh electronic band structure and beneficial broadening of the magnetostructural transition due to local chemical disorder.

  3. An approach to determine enthalpies of formation for ternary compounds

    Directory of Open Access Journals (Sweden)

    Du Y.

    2010-01-01

    Full Text Available An integrated approach of experiment and theoretical computation to acquire enthalpies of formation for ternary compounds is described. The enthalpies of formation (DHf for Al71Fe19Si10 and Al31Mn6Ni2 are measured via a calorimeter. Miedema model, CALPHAD and first-principles method are employed to calculate DHf for the above compounds and several Al-based ternary compounds. It is found that first-principles generated data yield good agreements with experimental values and thus can be used as key 'experimental data', which are needed for CALPHAD approach.

  4. Magnetic Properties of Cr-based Ternary Compound CrAlGe

    Science.gov (United States)

    Yoshinaga, Soshi; Mitsui, Yoshifuru; Umetsu, Rie Y.; Koyama, Keiichi

    Structural and magnetic properties of Cr-based compound CrAlGe were investigated. The crystal structure was found to be an orthorhombic TiSi2-type with lattice parameters a = 0.4770 nm, b = 0.8254 nm and c = 0.8725 nm at room temperature. Magnetization curve of CrAlGe showed the ferromagnetic behavior. The saturation magnetic moment, spontaneous magnetic moment and Curie temperature of CrAlGe were determined to be 0.45 μB/f.u., 0.41 μB/f.u. and TC = 80 K, respectively. For the temperature T below 30 K, the decrease in the square of the spontaneous magnetization M0(T)2 was proportional to T2. However, for 30

  5. Ternary compound thin film solar cells

    Science.gov (United States)

    Kazmerski, L. L.

    1975-01-01

    A group of ternary compound semiconductor (I-III-VI2) thin films for future applications in photovoltaic devices is proposed. The consideration of these materials (CuInSe2, CuInTe2 and especially CuInS2) for long range device development is emphasized. Much of the activity to date has been concerned with the growth and properties of CuInX2 films. X-ray and electron diffraction analyses, Hall mobility and coefficient, resistivity and carrier concentration variations with substrate and film temperature as well as grain size data have been determined. Both p- and n-type films of CuInS2 and CuInSe2 have been produced. Single and double source deposition techniques have been utilized. Some data have been recorded for annealed films.

  6. Ternary compounds and isothermal section in Lu-Fe-Ga ternary system at 773 K

    Science.gov (United States)

    Liu, Fusheng; Ao, Weiqin; Pan, Laicai; Wang, Qibao; Yan, Jialing; Li, Junqin

    2013-06-01

    The isothermal section of the Lu-Fe-Ga ternary system at 773 K was investigated and constructed based on X-ray powder diffraction analysis. Thirteen binary compounds, Lu2Fe17, Lu6Fe23, LuFe2, LuGa3, LuGa2, Lu3Ga5, LuGa, Lu3Ga2, Lu5Ga3, Fe3Ga, Fe6Ga5, Fe3Ga4, FeGa3, nine ternary solid solutions, T1-LuFe2-1.43Ga0-0.57, T2-LuFe1.34-0.92Ga0.68-1.08, T3-LuFe0.52-0.26Ga1.48-1.74, T5-LuFe2.04-1.72Ga0.96-1.28, T6-Lu6Fe23-21.4Ga0-1.6, T7-Lu2Fe17-14.5Ga0-3.5, T8-Lu2Fe12.9-8.1Ga4.1-8.9, T9-LuFe6.8-5.5Ga5.2-6.5, T10-LuFe5.2-4.5Ga6.8-7.5, and two ternary compounds, T4-LuFe2.35Ga0.65 and T11-Lu2FeGa8 have been confirmed. The structures of the five new ternary compounds or solid solution T2, T3, T4, T5 and T8 are determined by Rietveld refinement method.

  7. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  8. Regularities of Formation of Ternary Intermetallic Compound between Transition Elements

    Institute of Scientific and Technical Information of China (English)

    Lixiu YAO; Jie YANG; Chenzhou YE; Nianyi CHEN

    2001-01-01

    Four parameters, φ (electronegativity), nws1/3 (valence electron density in Wagner-Seitz cell),R (Pauling's metallic radius) and Z (number of valence electrons in atom), and the pattern recognition methods were used to investigate the regularities of formation of ternary intermetallic compounds between three transition elements. The obtained mathematical model expressed by some inequalities can be used as a criterion of ternary compound formation in "unknown" phase diagrams of alloy systems.

  9. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.

    2012-01-01

    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  10. A comparison between HfO2/Al2O3 nano-laminates and ternary HfxAlyO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors

    Science.gov (United States)

    Krylov, Igor; Pokroy, Boaz; Eizenberg, Moshe; Ritter, Dan

    2016-09-01

    We compare the electrical properties of HfO2/Al2O3 nano-laminates with those of the ternary HfxAlyO compound in metal oxide semiconductor (MOS) capacitors. The dielectrics were deposited by atomic layer deposition on InGaAs. Water, ozone, and oxygen plasma were tested as oxygen precursors, and best results were obtained using water. The total dielectric thickness was kept constant in our experiments. It was found that the effective dielectric constant increased and the leakage current decreased with the number of periods. Best results were obtained for the ternary compound. The effect of the sublayer thicknesses on the electrical properties of the interface was carefully investigated, as well as the role of post-metallization annealing. Possible explanations for the observed trends are provided. We conclude that the ternary HfxAlyO compound is more favorable than the nano-laminates approach for InGaAs based MOS transistor applications.

  11. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  12. Cathodic Deposition of Components in BiSbTe Ternary Compounds as Thermoelectric Films Using Choline-Chloride-Based Ionic Liquids

    Science.gov (United States)

    Golgovici, Florentina; Cojocaru, Anca; Nedelcu, Marin; Visan, Teodor

    2010-09-01

    This paper reports electrodeposition of BiTe, SbTe, and BiSbTe films using ionic liquids based on choline chloride (ChCl) and malonic acid mixtures (1:1 moles) at 80°C to 85°C. The electrolyte contained bismuth and/or antinomy species and tellurium species with 1.5 mM to 50 mM concentrations; Pt sheet, Pt mesh, and Pt wire were used for working, auxiliary, and quasireference electrodes, respectively. Cyclic voltammograms revealed the beginning and cathodic peak of pure Te deposition; at more negative potentials simultaneous codeposition of binary or ternary compounds as limiting currents or a series of peaks were observed. Correspondingly, two or three dissolution (stripping) anodic peaks were observed. Nyquist and Bode impedance spectra show differences in Pt behavior due to its polarization at various cathodic potentials. Equivalent-circuit components providing the best fit to the data were calculated. Deposition of BiSbTe films on copper plates was also performed by electrolysis at controlled potentials or current pulses. Some measurements of Seebeck coefficients of the obtained films were carried out.

  13. Hardness and Microstructure of Binary and Ternary Nitinol Compounds

    Science.gov (United States)

    Stanford, Malcolm K.

    2016-01-01

    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  14. Thermoelectric materials: ternary penta telluride and selenide compounds

    Science.gov (United States)

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  15. Thermoelectric materials ternary penta telluride and selenide compounds

    Science.gov (United States)

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  16. A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model

    Science.gov (United States)

    Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid

    2016-07-01

    A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.

  17. Decision tree method applied to computerized prediction of ternary intermetallic compounds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Decision tree method and atomic parameters were used to find the regularities of the formation of ternary intermetallic compounds in alloy systems. The criteria of formation can be expressed by a group of inequalities with two kinds of atomic parameters Zl (number of valence electrons in the atom of constituent element) and Ri/Rj (ratio of the atomic radius of constituent element i and j) as independent variables. The data of 2238 known ternary alloy systems were used to extract the empirical rules governing the formation of ternary intermetallic compounds, and the facts of ternary compound formation of other 1334 alloy systems were used as samples to test the reliability of the empirical criteria found. The rate of correctness of prediction was found to be nearly 95%. An expert system for ternary intermetallic compound formation was built and some prediction results of the expert system were confirmed.

  18. Regularities of Formation of Ternary Intermetallic Compounds between One Transition Element and Two Non-transition Elements

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The pattern recognition methods and a four-parameter model, based on extension of Miedema's cellular model of alloy phases, are used to study the regularities of formation of ternary compounds between one transition element (T) and two non-transition elements (N, N') (T-N-N'system). The influences of φ (electronegativity), 1/3(nws (valence electron density in Wagner-Seitz cell), R(Pauling's metallic radii) and Z (number of valence electrons in atom) on the formation of the ternary intermetallic compounds were investigated.

  19. Solid-State Phase Equilibria and Intermetallic Compounds of the Si-V-Zr Ternary System

    Science.gov (United States)

    Pan, Yanfang; Ye, Haimei; Chen, Xiaoxian; Jiang, Wenping; Yang, Wenchao; Zhan, Yongzhong

    2016-12-01

    Phase relations in the Si-V-Zr ternary system at 973 K (700 °C) were experimentally investigated using X-ray powder diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The isothermal section at 973 K (700 °C) is governed by seventeen three-phase regions, thirty-two two-phase regions, and sixteen single-phase regions. Ten binary compounds and one ternary compound (SiVZr) were confirmed. There are two new ternary compounds found in this work for the first time. One of them (Si4V3Zr2) was found in the stoichiometric composition around V 38 pct, Si 50 pct, and Zr 12 pct. The existence of another one (V17Si12Zr3) was observed while analyzing the XRD results of large quantities of equilibrated samples in the region around 54 at. pct V, 33 at. pct Si, and 13 at. pct Zr.

  20. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John

    2016-09-22

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ³11 wt% and ³80 g/L that can deliver hydrogen and be recharged at moderate temperatures (£100 °C) and pressures (£100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement. For the first approach, possible pairs of ternary borides and mixed-metal borohydrides based on Mg with various first row transition metals were investigated both experimentally and theoretically. In particular, the Mg/Mn ternary boride and mixed-metal borohydride were found to be a suitable pair and

  1. Spectral responses in near-infrared of the mixed compounds III-V ternary and quaternary, based on GaSb

    Science.gov (United States)

    Mbow, B.; Rezzoug, N.; Peremarti, C.; Mezerreg, A.; Llinares, C.

    1993-09-01

    From the simulation of the spectral response of the different photodetector devices elaborated in our laboratory (C.E.M.), we determine the influence of geometrical and physical parameters in order to achieve the best photodetector operating at the wavelength 2.55 μm. In this paper we present: Gao{0.6}In{0.4}Sbn/Ga{0.6}In{0.4}Sbp homojunctions matched on GaSbp substrate, Ga{0.75}In{0.25}As{0.23}Sbp/GaSbn ternary heterojunction and GaSbp/Ga{0.74}In{0.26}As{0.23}Sb0.77p/GaSbn quaternary heterojunction. The GaSbp layer with an energy band gap greater than Ga{0.74}In{0.26}As{0.23}Sb0.77p optical gap will act as a window, reducing the effect of surface recombinaison. Results of the simulation are compared to experimental curves to determine the values of photoelectrical parameters (diffusion length, recombination velocity at the surface ...). Les mesures de réponse spectrale dans la gamme [0,4 eV à 2 eV] ont été effectuées sur des homojonctions, Ga{0,6}In{0,4}Sbn/Ga{0,6}In{0,4}Sbp déposées sur un substrat de GaSb et des hétérostructures ternaires Ga{0,75}In{0,25}Sbp/GaSbn et quaternaires GaSbp/Ga{0,74}In{0,26}As{0,23}Sb0,77p/GaSbn. La couche de GaSbp avec un gap plus grand que celui de Ga{0,74}In{0,26}As{0,23}Sb0,77p joue le rôle d'effet fenêtre. En s'appuyant sur les résultats de la simulation et en accordant les spectres expérimentaux aux spectres théoriques, on détermine les valeurs des paramètres photoélectriques (longueurs de diffusion, les vitesses de recombinaison en surface ... ) intervenant dans le rendement quantique.

  2. An efficient ternary serial adder based on carbon nanotube FETs

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Moaiyeri

    2016-03-01

    Full Text Available This paper presents an efficient ternary serial adder for nanotechnology employing negative, positive and standard ternary logics. Multiple-valued logic results in chips with more density, less complexity and high-bandwidth data transfer. The unique properties of CNTFETs such as the capability of adapting the desired threshold voltage by changing the diameters of the nanotubes and same carrier mobility for the n-type and p-type devices play an important role in designing this circuit. The proposed design method considerably reduces the number of required devices of a ternary serial adder. In addition, the results of the simulations conducted using HSPICE with the Stanford comprehensive 32 nm CNTFET model, demonstrate improvements in terms of speed and power-delay product as compared to the cutting-edge CNTFET-based ternary designs.

  3. Rietveld Refinement of New Ternary Compound Al14Dy5Si

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new ternary compound Al14Dy5Si was discovered and studied by means of X-ray powder diffraction technique. The ternary compound Al14Dy5Si has a hexagonal BaPb3-type structure, space group R3m(No.166), the lattice parameters a=0.61482(1) nm, c=2.09780(2) nm. The crystal structure of the compound Al14Dy5Si was successfully refined by using Rietveld method from X-ray diffraction data. The R-factors of Rietveld refinement are Rp=0.091 and Rwp=0.120, respectively. The thermal dependence of the magnetization (M-T curves) for the compound was measured by a vibrating sample magnetometer. The experimentally determined magnetic effective paramagnetic moment is μeff=23.22 μB per formula unit (10.36 μB per Dy atom).

  4. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  5. Structure and properties of intermetallic ternary rare earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Casper, Frederick

    2008-12-17

    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  6. Ternary jitter-based true random number generator

    Science.gov (United States)

    Latypov, Rustam; Stolov, Evgeni

    2017-01-01

    In this paper a novel family of generators producing true uniform random numbers in ternary logic is presented. The generator consists of a number of identical ternary logic combinational units connected into a ring. All the units are provided to have a random delay time, and this time is supposed to be distributed in accordance with an exponential distribution. All delays are supposed to be independent events. The theory of the generator is based on Erlang equations. The generator can be used for test production in various systems. Features of multidimensional random vectors, produced by the generator, are discussed.

  7. Heusler compounds as ternary intermetallic nanoparticles: Co{sub 2}FeGa

    Energy Technology Data Exchange (ETDEWEB)

    Basit, Lubna; Wang Changhai; Jenkins, Catherine A; Balke, Benjamin; Ksenofontov, Vadim; Fecher, Gerhard H; Felser, Claudia [Johannes Gutenberg - Universitaet, Institut fuer analytische und anorganische Chemie, 55099 Mainz (Germany); Mugnaioli, Enrico; Kolb, Ute [Johannes Gutenberg - Universitaet, Institut fuer Physikalische Chemie, Elektronenmikroskopie-Zentrum Mainz (EMZM), 55099 Mainz (Germany); Nepijko, Sergej A; Schoenhense, Gerd [Johannes Gutenberg - Universitaet, Institut fuer Physik, 55099 Mainz (Germany); Klimenkov, Michael, E-mail: felser@uni-mainz.d [Institut fuer Materialforschung I, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe (Germany)

    2009-04-21

    This work describes the preparation of ternary nanoparticles based on the Heusler compound Co{sub 2}FeGa. Nanoparticles with sizes of about 20 nm were synthesized by reducing a methanol impregnated mixture of CoCl{sub 2} {center_dot} 6H{sub 2}O, Fe(NO{sub 3}){sub 3} {center_dot} 9H{sub 2}O and Ga(NO{sub 3}){sub 3} {center_dot} xH{sub 2}O after loading on fumed silica. The dried samples were heated under pure H{sub 2} gas at 900 {sup 0}C. The obtained nanoparticles-embedded in silica-were investigated by means of x-ray diffraction (XRD), transmission electron microscopy, temperature dependent magnetometry and Moessbauer spectroscopy. All methods clearly revealed the Heusler-type L2{sub 1} structure of the nanoparticles. In particular, anomalous XRD data demonstrate the correct composition in addition to the occurrence of the L2{sub 1} structure. The magnetic moment of the particles is about 5{mu}{sub B} at low temperature in good agreement with the value of bulk material. This suggests that the half-metallic properties are conserved even in particles on the 10 nm scale.

  8. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  9. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  10. Thermodynamic description of the ternary compounds in the Cu-In-Se system

    Institute of Scientific and Technical Information of China (English)

    SHEN Jianyun; W.K. Kim; SHANG Shunli; CHU Maoyou; CAO Song; T.J. Anderson

    2006-01-01

    A set of thermodynamic descriptions of the ternary compounds (mainly α-CuInSe2, δ-CuInSe2, CuIn3Se5 and CuIn5Se8) in the Cu-In-Se system was established by adopting sub-lattice model. The model parameters are carefully evaluated by integrating the experimental data of thermodynamic properties, phase equilibrium and theoretical calculation of formation energies of different point defects. The evaluated Gibbs energies of the compounds reasonably agree with that estimated from EMF experiment and ab initio calculation. The calculated phase relationships in the Cu-In-Se system are in accord with the experimental phase diagrams. The obtained standard enthalpy of formation of CuInSe2 is close to that reported in the literatures.

  11. Theoretical investigations of the ternary compound LaUN{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Potzel, Oliver, E-mail: oliver.potzel@uni-ulm.de

    2016-01-15

    We perform first-principles density functional calculations on the yet unknown ternary compound lanthanum uranium trinitride LaUN{sub 3}. Therefore, we evaluate the physical properties of the basic binary compounds LaN and UN{sub 2} such as total energies, elastic constants and band structures. These results were compared to those of the predicted structure of LaUN{sub 3}. We used the USPEX code in order to find the structure of LaUN{sub 3} with the lowest total energy. We furthermore discuss the structure and the properties of LaUN{sub 3} and predict its thermodynamic stability. - Highlights: • We compared a variety of data of LaUN{sub 3} to those of LaN and UN{sub 2.} • The reaction of LaN and UN2 to LaUN{sub 3} is exothermic. • A possible rhombohedral structure of LaN was found.

  12. Phase evolution and correlation between tolerance factor and electromechanical properties in BNT-based ternary perovskite compounds with calculated end-member Bi(Me0.5Ti0.5)O3 (Me = Zn, Mg, Ni, Co).

    Science.gov (United States)

    Bai, Wangfeng; Shen, Bo; Zhai, Jiwei; Liu, Feng; Li, Peng; Liu, Baihui; Zhang, Yang

    2016-09-28

    In this work, the structure of end-member Bi(Me0.5Ti0.5)O3 (Me = Zn, Ni, Mg, Co) was calculated through a first-principles method and lead-free piezoelectric ternary systems (0.94 -x)(Bi0.5Na0.5)TiO3-0.06BaTiO3-xBi(Me0.5Ti0.5)O3 (Me = Zn, Ni, Mg, Co) (BNT-BT-Bi(Me0.5Ti0.5)O3) were designed to achieve a large strain response for actuator applications. Composition-driven phase transition characteristics and the resulting associated piezoelectric and electromechanical properties were systematically investigated, and schematic phase diagrams were constructed. XRD measurements, Raman spectra analysis and temperature-dependent polarization and strain hysteresis loops indicate that Bi(Me0.5Ti0.5)O3 substitution induces a phase transformation from a ferroelectric rhombohedral to an ergodic relaxor pseudo-cubic phase, accounting for the large strain response (>0.3%) with a high normalized strain Smax/Emax (≥550 pm V(-1)) at around the corresponding critical composition in the vicinity of room temperature. In addition, correlations between the tolerance factor t of the added end-member, the calculated tetragonality and the morphotropic phase boundary (MPB) composition were sought. In comparison to other reported BNT-based systems, there is a noticeable correlation between the MPB composition and the calculated tetragonality of the end-member Bi(Me0.5Ti0.5)O3, and the t value corresponding to the formation of the MPB composition is approximately 0.981 in the present ternary system with low tolerance factor end-members. As a result, we believe that the general correlations and design principles obtained from the present comprehensive research will be effective to predict the approximate MPB region quickly in BNT-based ceramics with an excellent actuating performance.

  13. Binary and ternary ionic compounds in the outer crust of a cold nonaccreting neutron star

    Science.gov (United States)

    Chamel, N.; Fantina, A. F.

    2016-12-01

    The outer crust of a cold nonaccreting neutron star has been generally assumed to be stratified into different layers, each of which consists of a pure body-centered cubic ionic crystal in a charge compensating background of highly degenerate electrons. The validity of this assumption is examined by analyzing the stability of multinary ionic compounds in dense stellar matter. It is thus shown that their stability against phase separation is uniquely determined by their structure and their composition irrespective of the stellar conditions. However, equilibrium with respect to weak and strong nuclear processes imposes very stringent constraints on the composition of multinary compounds, and thereby on their formation. By examining different cubic and noncubic lattices, it is found that substitutional compounds having the same structure as cesium chloride are the most likely to exist in the outer crust of a nonaccreting neutron star. The presence of ternary compounds is also investigated. Very accurate analytical expressions are obtained for the threshold pressure, as well as for the densities of the different phases irrespective of the degree of relativity of the electron gas. Finally, numerical calculations of the ground-state structure and of the equation of state of the outer crust of a cold nonaccreting neutron star are carried out using recent experimental and microscopic nuclear mass tables.

  14. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    Science.gov (United States)

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.

  15. Infrared target recognition based on improved joint local ternary pattern

    Science.gov (United States)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  16. DESIGN OF TERNARY COUNTER BASED ON ADIABATIC DOMINO CIRCUIT

    Institute of Scientific and Technical Information of China (English)

    Yang Qiankun; Wang Pengjun; Zheng Xuesong

    2013-01-01

    By researching the ternary counter and low power circuit design method,a novel design of low power ternary Domino counter on switch-level is proposed.Firstly,the switch-level structure expression of ternary loop operation circuit with enable pin is derived according to the switch-signal theory,and the one bit ternary counter is obtained combining the ternary adiabatic Domino literal operation circuit and buffer.Then the switch-level structure expression of enable signal circuit is derived,and the four bits ternary counter is obtained by cascade connection.Finally,the circuit is simulated by Spice tool and the output waveforms transform in proper order indicating that the logic function is correct.The energy consumption of the four bits ternary adiabatic Domino counter is 63% less than the conventional Domino counterpart.

  17. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  18. Electron paramagnetic resonance study of ternary CuII compounds with glycine and phenanthroline

    Indian Academy of Sciences (India)

    Ricardo C Santana; Anderson B C Araújo; Jesiel F Carvalho; Rafael Calvo

    2014-01-01

    We report here electron paramagnetic resonance (EPR) measurements at 9 and 34 GHz, and room temperature (), in powder and single crystal samples of the ternary compounds of copper nitrate or copper chloride with glycine and 1,10-phenanthroline [Cu(Gly)(phen)(H2O)]·NO3·1.5H2O (1) and [Cu(Gly)(phen)Cl]2·7H2O (2). In compound 1, the copper ions are arranged in 1-D chains along one of the crystal axes connected by syn-anti carboxylate ligands, while in 2 the array is nearly 3-D and the connections involve -bonds and stacking interactions. The angular variation of the squared g-factor and the line width were measured as a function of orientation of the magnetic field (0) in three orthogonal crystal planes. In both compounds we observed one resonance without hyperfine structure for any magnetic field orientation which we attribute to the collapse of the hyperfine coupling and of the resonances of two chemically identical but rotated coppers in the unit cell, produced by exchange interactions. We analyse the results in terms of the structures of the compounds and chemical paths connecting neighbour copper ions which support the exchange interactions between neighbour spins in the lattice. Considering the collapse of the EPR signals of rotated sites in the lattices we are able to set lower limits to the exchange interactions, which are supported by weak equatorial-apical carboxylate bridges in 1, and by paths containing hydrogen bonds and aromatic - interactions in 2. Broadening due to dipole-dipole couplings and hyperfine interactions are strongly reduced by these exchange couplings and their role in the EPR line width is more difficult to recognize.

  19. Study on the oscillatory behaviour of the lattice parameter in ternary iron-nitrogen compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gil Rebaza, A.V.; Desimoni, J. [Departamento de Fisica, Facultad de Ciencias Exactas, UNLP, CC No 67, 1900 La Plata (Argentina); Peltzer y Blanca, E.L., E-mail: eitelpyb@ing.unlp.edu.ar [Grupo de Estudio de Materiales y Dispositivos Electronicos (GEMyDE), Facultad de Ingenieria, UNLP, IFLYSIB-CONICET, CC No. 565, 1900 La Plata (Argentina)

    2012-08-15

    The structural properties of the XFe{sub 3}N (X=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) cubic ternary iron based nitrides as well as the preferential occupation site of X in the structure were studied using Full Potential Linearized Augmented Plane Wave method, within the Density Functional Theory formalism, Wien2k code, the exchange-correlation potential described with the Perdew-Burke-Ernzerhof expression, based in the Local Spin Density Approximation and Generalized Gradient Approximation. According the calculations, the Sc, Co, Ni, Cu and Zn, atoms preferred the corner sites of the cubes, while Ti, V, Cr and Mn occupy the centre of the faces of the equilibrium structures. The equilibrium structure lattice parameters have an oscillatory behaviour with the atomic number of X, with decreasing amplitude as the atomic number of X increases. This trend do not correlated with the atomic radii of X.

  20. New family of Dirac and Weyl semimetals in XAuTe (X = Na, K, Rb) ternary honeycomb compounds

    Science.gov (United States)

    Sun, Hao; Zhao, Jin

    2016-10-01

    We propose a new family of 3D Dirac semimetals based on XAuTe (X = K, Na, Rb) ternary honeycomb compounds, determined based on first-principles calculations, which are shown to be topological Dirac semimetals in which the Dirac points are induced by band inversion. Dirac points with four-fold degeneracy that are protected by C3 rotation symmetry and located on the Γ-A high-symmetry path are found. Through spatial-inversion symmetry breaking, a K(Au0.5 Hg0.5)(Te0.5As0.5) superlattice structure composed of KHgAs and KAuTe compounds is proven to be a Weyl semimetal with type-II Weyl points, which connect electronand hole-like bands. In this superlattice structure, the six pairs of Weyl nodes are distributed along the K- Γ high-symmetry path on the k z = 0 plane. Our research expands the family of topological Dirac and type-II Weyl semimetals.

  1. Tribological properties of ternary nanolayers, obtained from simple/compound materials

    Science.gov (United States)

    Jinga, V.; Cristea, D.; Samoilă, C.; Ursuţiu, D.; Mateescu, A. O.; Mateescu, G.; Munteanu, D.

    2016-06-01

    Numerous recently investigations are oriented towards the development of new classes of thin films, having dry-lubrication properties. These efforts were determined by the enormous energy losses generated by friction, and due to technical complications determined by the systems used for classic lubrication. This paper presents our results concerning a new class of nanomaterials, with ternary composition deposited from simple/compound materials (Ti/TixNy, TiB2/TixBiyNz, WC/WxCyNz). The films were deposited by magnetron sputtering, with varying sputtering parameters (sputtering power, reactive gas) on stainless steel substrates - ultrasonically and glow discharge cleaned before the deposition process. The influence of the deposition parameters on the mechanical and wear properties was assessed by nanoindentation, scratch resistance (to quantify the adhesion of the films to the steel substrate) and by pin-on- disk wear tests. The general conclusion was that the sample deposited at 5500 C, with N2 as reactive gas and 0.5 kV for substrate polarization, has the best mechanical characteristics (hardness and elastic modulus) and lubricant properties (represented by μ average), when compared to the remaining samples.

  2. Staging properties of potassium-ammonia ternary graphite intercalation compounds at high ammonia pressure

    Science.gov (United States)

    Qian, X. W.; Solin, S. A.

    1989-04-01

    The pressure dependence of the (00l) x-ray diffraction patterns of the ternary graphite intercalation compound K(NH3)xC24 has been studied in the range 0.5-11 kbar (for which x~4.5) using a diamond anvil cell. A special apparatus for loading the cell with liquid ammonia at room temperature has been constructed and is briefly described. In these experiments, the pressure-transmitting fluid was also an intercalant, namely ammonia. Therefore, the chemical potential of this species was linearly coupled to the applied pressure in contrast to the usual case where the pressure-transmitting fluid is chemically passive. The pressure dependences of the basal spacings and of the relative intensities of key reflections have been measured, as have the compressibilities of the stage-1 and stage-2 components of the two-phase system. Basal-spacing anomalies and anomalies in the relative intensities occur at pressures of ~3.5 and 8.0 kbar and are tentatively attributed to in-plane coordination changes in the potassium-ammonia ratio. Using thermodynamic arguments and Le Chatelier's principle we show quantitatively that a staging phase transition from pure stage-1 phase to an admixture of stage-1 and stage-2 is expected with increased pressure above 10 bar in agreement with experiment. The saturation ammonia compositions (x values) of the admixed stages are found to be 4.5 and 5.4 for the stage-1 and -2 components, respectively. This result is interpreted as evidence that the composition is not sterically limited but is determined by the binding energy of ammonia for potassium and by the perturbation to this energy from the guest-host interaction.

  3. Discovery of the Ternary Nanolaminated Compound Nb2GeC by a Systematic Theoretical-Experimental Approach

    Science.gov (United States)

    Eklund, Per; Dahlqvist, Martin; Tengstrand, Olof; Hultman, Lars; Lu, Jun; Nedfors, Nils; Jansson, Ulf; Rosén, Johanna

    2012-07-01

    Since the advent of theoretical materials science some 60 years ago, there has been a drive to predict and design new materials in silicio. Mathematical optimization procedures to determine phase stability can be generally applicable to complex ternary or higher-order materials systems where the phase diagrams of the binary constituents are sufficiently known. Here, we employ a simplex-optimization procedure to predict new compounds in the ternary Nb-Ge-C system. Our theoretical results show that the hypothetical Nb2GeC is stable, and excludes all reasonably conceivable competing hypothetical phases. We verify the existence of the Nb2GeC phase by thin film synthesis using magnetron sputtering. This hexagonal nanolaminated phase has a and c lattice parameters of ˜3.24Å and 12.82 Å.

  4. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values

    Science.gov (United States)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-01

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.

  5. THE INTERFACE OF TERNARY-BORIDE-BASED HARD CLADDING MATERIAL

    Institute of Scientific and Technical Information of China (English)

    Y.G. Wang; Z.Q. Li; D. Zhang

    2004-01-01

    The interfacial microstructure of ternary-boride-based hard cladding material (YF2) has been studied using scanning electron microanalyser (SEM), X-ray diffraction (XRD) and energy disperse spectroscopy (EDS). Results show that there are chemical reactions and elements diffusion in the interfacial zone, which make the interface bonding well and bonding strength ideal at the interface. The results gotten by studying of crack produced by Vickers indentation technique in the interfacial zone show that it is difficult to produce crack in the interface, the crack length in the cladding layer is longer than that to the interface, the crack which propagate to the interface stops at the interface rather than propagates along the interface. This suggests negligible residual stresses have developed because of thermal expansion mismatch. The bonding strength of the interface is 550MPa, which has been gotten by cutting test. The result gotten by analyzing the fracture surface shows that the fracture occurs at the side of cladding layer, which confirms that the bonding strength at the interface is higher than that in the cladding layer.

  6. Regularities of formation of ternary intermetallic compounds between two transition elements and one non-transition element

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The pattern recognition methods and a four-parameter model, basedon extended Miedema's cellular model of alloy phases, are used to study the regularities of formation of ternary compounds between two transition elements (T,T′) and one non-transition element (N) (T-T′-N system). The criterion of formation can be expressed as some functions of Φ (electronegativity), n1/3ws (valence electron density in Wagner-Seitz cell), R (Pauling's metallic radii) and Z (number of valence electrons in atom).

  7. Ternary Tree and Clustering Based Huffman Coding Algorithm

    Directory of Open Access Journals (Sweden)

    Pushpa R. Suri

    2010-09-01

    Full Text Available In this study, the focus was on the use of ternary tree over binary tree. Here, a new two pass Algorithm for encoding Huffman ternary tree codes was implemented. In this algorithm we tried to find out the codeword length of the symbol. Here I used the concept of Huffman encoding. Huffman encoding was a two pass problem. Here the first pass was to collect the letter frequencies. You need to use that information to create the Huffman tree. Note that char values range from -128 to 127, so you will need to cast them. I stored the data as unsigned chars to solve this problem, and then the range is 0 to 255. Open the output file and write the frequency table to it. Open the input file, read characters from it, gets the codes, and writes the encoding into the output file. Once a Huffman code has been generated, data may be encoded simply by replacing each symbol with its code. To reduce the memory size and fasten the process of finding the codeword length for a symbol in a Huffman tree, we proposed a memory efficient data structure to represent the codeword length of Huffman ternary tree. In this algorithm we tried to find out the length of the code of the symbols used in the tree.

  8. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    Directory of Open Access Journals (Sweden)

    Viktor Hlukhyy

    2010-12-01

    Full Text Available The title compound, terbium hexaniobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an intergrowth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodecahedron 6/mmm; Nb (distorted icosahedron 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15 6mm and overline{6}m2; Sn (distorted icosahedron overline{6}m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels.

  9. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  10. Ternary System of Fe-based Ionic Liquid, Ethanol and Water for Wet Flue Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    解美莹; 李沛沛; 郭惠锋; 高丽霞; 余江

    2012-01-01

    Fe-based ionic liquid (Fe-IL) was synthesized by mixing FeCl3·6H2O and 1-butyl-3-methylimidazolium chloride [Bmim]C1 in this paper. The phase diagram of a ternary Fe-IL, ethanol and water system was investigated to construct a ternary desulfurization solution for wet flue gas desulfurization. The effects of flow rate and concentration of SO2, reaction temperature, pH and Fe-IL fraction in aqueous desulfurization solution on the desulfiariza- tion efficiency were investigated. The results shows that the best composition of ternary desulfurization solution of Fe-IL, ethanol and water is 1 : 1.5 : 3 by volume ratio, and pH should be controlled at 2.0. Under such conditions, a desulfurization rate greater than 90% could be obtained. The product of sulfuric acid had inhibition effect on the wet desulfurization process. With applying this new ternary desulfurization solution, not only the catalyst Fe-IL can be recycled and reused, but also the product sulfuric acid can be separated directly from the ternary desulfurization system.

  11. Single-crystal growth and magnetic properties of a new ternary uranium compound U{sub 3}Ni{sub 5}Al{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: hagay@popsvr.tokai.jaeri.go.jp; Matsuda, Tatsuma D. [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Ikeda, Shugo [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Galatanu, Andrei [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Matsumoto, Takuya [Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 (Japan); Sugimoto, Toyonari [Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 (Japan); Tada, Toshiji [Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 (Japan); Noguchi, Satoru [Department of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531 (Japan); O-bar nuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2005-04-30

    A new ternary uranium-based intermetallic compound U{sub 3}Ni{sub 5}Al{sub 19} has been synthesized. It crystallizes in the unique flat orthorhombic structure. Uranium atoms occupy two crystallographic 4c and 8f sites of quite similar local chemical environments. The temperature dependence of the magnetic susceptibility {chi}(T) demonstrates peculiar magnetic anisotropy; {chi}(T) along the b- and c-axis obeys the Curie-Weiss law above 23K, while {chi}(T) along a-axis is small and temperature independent. At 23K, only {chi}{sub c} shows a sharp cusp corresponding to an antiferromagnetic ordering, while {chi}{sub b} remains paramagnetic down to 2K. From the crystallographical structure we suggest that only uranium atoms at the 8c site order antiferromagnetically at T{sub N}=23K, while those occupying the 4c site do not order down to 50mK.

  12. Multi-criteria decision-making approach with incomplete certain information based on ternary AHP

    Institute of Scientific and Technical Information of China (English)

    Wang Jianqiang

    2006-01-01

    It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.

  13. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...

  14. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    Science.gov (United States)

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  15. Crystal structure of the ternary compound {gamma}-Al{sub 3}FeSi

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Jerome; Jeanneau, Erwann; Viala, Jean-Claude [UMA CNRS no. 5615, Claude Bernard Lyon 1 Univ., Villeurbanne (France). Lab. des Multimateriaux et Interfaces

    2011-07-01

    Ternary iron silicide aluminide {gamma}-Al{sub 3}FeSi crystals were grown from two Al-Fe-Si melts quenched in cold water. The crystal structures were determined from single-crystal X-ray data: trigonal symmetry, space group R-3 (n 148), unit cell parameters a = 10.2223(2) A, c = 19.6791(4) A (V = 1781 A{sup 3}) for the Si-poorer crystal and a = 10.1987(2) A, c = 19.5320(3) A (V = 1759 A{sup 3}) for the Si-richer one. The structure of {gamma}-Al{sub 3}FeSi may be described in terms of Al-cubes connected together by Al-Al pairs. The structure contains also Al cuboctaedra with one Fe-Al mixed atom in the center. The average chemical formula obtained from the refinements is Al{sub 3}FeSi. This phase shows a partial disorder on the aluminium network because of the substitution of aluminum atoms by silicon. This substitution mechanism is at the origin of the large homogeneity range of this phase. (orig.)

  16. Crystal structure and physical properties of the new ternary compound MgNi{sub 7}B{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.Z. [Key Laboratory of Nonferrous Metals and New Processing Technology of Materials, Ministry of Education, Guangxi University, Nanning Guangxi 530004 (China); National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Dong, C., E-mail: chengdon@iphy.ac.c [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zeng, L.M. [Key Laboratory of Nonferrous Metals and New Processing Technology of Materials, Ministry of Education, Guangxi University, Nanning Guangxi 530004 (China); He, B. [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Luzhou Medical College, Luzhou, Sichuan 646000 (China); Cao, W.H. [Key Laboratory of Nonferrous Metals and New Processing Technology of Materials, Ministry of Education, Guangxi University, Nanning Guangxi 530004 (China); National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, L.H. [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-03-18

    A new compound MgNi{sub 7}B{sub 3} in the Mg-Ni-B ternary system was prepared by solid state reaction and its crystal structure was determined using X-ray powder diffraction data. The MgNi{sub 7}B{sub 3} compound crystallizes with ErNi{sub 7}B{sub 3} structure type (space group I4{sub 1}/amd, a = 7.4877(2) A, c = 15.4879(4) A, Z = 8.), and the Rietveld refinement of the crystal structure was performed which gave R{sub wp} = 7.02%, R{sub p} = 4.96%. The MgNi{sub 7}B{sub 3} sample was characterized by magnetization and electric resistivity measurements. MgNi{sub 7}B{sub 3} exhibits metallic behavior in the temperature range from 5 to 300 K and shows spin-glass-like behavior at low temperature with the spin freezing temperature (T{sub f}) around 13 K.

  17. Preparation and Catalytic Properties of Polymer-Bound Schiff Base Ternary Complexes

    Institute of Scientific and Technical Information of China (English)

    HAO Cheng-jun; WANG Rong-min; HE Yu-feng; WANG Yun-pu; XIA Chun-gu

    2004-01-01

    The polymer-bound Schiff base ternary manganese complexes [PS-SalPhe-Mn-L (L = Phen, Bipy and 8HQ)-] have been prepared from the polymer-bound Schiff base ligand, a manganese salt and the second ligand, such as 1,10-phenanthroline(phen), 2,2′-bipyridyl(bipy) and 8-quinolinol(8HQ). The polymer-bound Schiff base ternary manganese complexes were characterized by means of infrared spectrometry and ICPAES. The catalytic activities of the complexes have been studied in the aerobic epoxidation of long-chain linear a[iphatic olefins. It is shown that 1-octene or 1-decene can be directly oxidized by molecular oxygen when catalyzed by PS-SalPhe-Mn-L(L=Phen, Bipy and 8HQ), and 1,2-epoxy alkane can be afforded in these reactions.

  18. Structural characterization of the ternary compound Cu{sub 3}TaSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)]. E-mail: gerzon@ula.ve; Mora, Asiloe J. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Duran, Sonia [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Munoz, Marcos [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Grima-Gallardo, Pedro [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)

    2007-07-31

    The Cu{sub 3}TaSe{sub 4} compound crystallizes in the cubic P4bar 3m (No. 215) space group, Z=1, with a=5.6600(1)A, V=181.32(1)A{sup 3}. Its structure was refined from X-ray powder diffraction data using the Rietveld method. The refinement of 21 instrumental and structural variables led to R{sub p}=12.2%, R{sub wp}=14.7%, R{sub exp}=8.0%, R{sub B}=14.5% and S=1.8, for 4501 step intensities and 33 independent reflections. This compound is isostructural with the sulvanite mineral and is characterized for a three-dimensional arrangement of CuSe{sub 4} and TaSe{sub 4} tetrahedra connected by common edges, and the CuSe{sub 4} tetrahedra sharing vertexes among them.

  19. A ternary linear compound T{sub 2} and its phase equilibrium relationships in Mg-Zn-Nd system at 400 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L. [Department of Materials Science and Engineering, Northeastern University at Qinhuangdao, 066004 (China); School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Li, H.X., E-mail: mingli_huang@126.co [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Ding, H.; Tang, Z.Y. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Mei, R.B.; Zhou, H.T. [Department of Materials Science and Engineering, Northeastern University at Qinhuangdao, 066004 (China); School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Ren, R.P.; Hao, S.M. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2010-01-21

    The composition and the crystal structure of the phases in the alloys of Mg-Zn-Nd system at 400 {sup o}C have been studied by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), X-ray diffraction (XRD) and selected area electron diffraction (SAED) of transmission electron microscopy (TEM). The phase equilibrium relationships have been identified. As a result, a linear ternary compound T{sub 2} phase has been identified. The general chemical formula of T{sub 2} phase is (Mg, Zn){sub 11.5}Nd and the crystal structure of that is C-centered orthorhombic. As the results, the other three ternary compounds T{sub 1} phase, T{sub 3} phase and T{sub 4} phase have also been identified. The partial isothermal section of phase diagram of Mg-Zn-Nd system at 400 {sup o}C has been established.

  20. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    Science.gov (United States)

    Saleh, Gabriele; Oganov, Artem R.

    2016-09-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

  1. Copper-based diamond-like ternary semiconductors for thermoelectric applications

    Science.gov (United States)

    Skoug, Eric John

    Heightened global concern over greenhouse gas emissions has led to an increased demand for clean energy conversion technologies. Thermoelectric materials convert directly between thermal and electrical energy and can increase the efficiency of existing processes via waste heat recovery and solid-state climate control applications. The conversion efficiency of available thermoelectric materials and the devices comprised of them is unfortunately quite low, and thus new materials must be developed in order for thermoelectrics to keep pace with competing technologies. One approach to increasing the conversion efficiency of a given material is to decrease its lattice thermal conductivity, which has traditionally been accomplished by introducing phonon scattering centers into the material. These scattering centers also tend to degrade electronic transport in the material, thereby minimizing the overall effect on the thermoelectric performance. The purpose of this work is to develop materials with inherently low lattice thermal conductivity such that no extrinsic modifications are required. A novel approach in which complex ternary semiconductors are derived from well-known binary or elemental semiconductors is employed to identify candidate materials. Ternary diamond-like compounds, namely Cu2SnSe 3 and Cu3SbSe4, are synthesized, characterized, and optimized for thermoelectric applications. It is found that sample-to-sample variations in hole concentration limits the plausibility of Cu2SnSe3 as a thermoelectric material. Cu3SbSe 4 is found to be a promising material that can achieve thermoelectric performance comparable to state-of-the-art materials when optimized. This work uncovers anomalous thermal conductivity in several Cu-Sb-Se ternary compounds, which is used to develop a set of guidelines relating crystal structure to inherently low lattice thermal conductivity.

  2. Magnetotransport and magnetothermal properties of the ternary intermetallic compound TbFe2Al10

    Science.gov (United States)

    Khandelwal, Ashish; Chattopadhyay, M. K.; Roy, S. B.

    2016-09-01

    We have studied the temperature and field dependences of electrical resistivity and heat capacity of TbFe2Al10, and have also complimented the above studies with low field magnetization measurements. In zero magnetic field, TbFe2Al10 exhibits paramagnetic (PM) to ferrimagnetic (Ferri-I) and Ferri-I to antiferromagnetic (AFM) phase transitions below 17.6 and 10 K respectively. We have found that the electrical resistivity of TbFe2Al10 exhibits a sharp rise across the PM to Ferri-I phase transition in this compound. Our analysis indicates that this sharp rise of electrical resistivity is related to the formation of new zone boundaries (across the PM to Ferri-I phase transition) that reduce the area of the Fermi surface. We have found that TbFe2Al10 exhibits large magnetoresistance (MR) below 100 K. Overall, the MR behaviour of TbFe2Al10 below 17.6 K in different magnetic fields reveals strong competition between AFM and ferromagnetic (FM) correlations, which seems to be quite intrinsic to the magnetic structure of the compound. Our analysis indicates that the large MR and magnetocaloric effect persisting deep inside the PM regime of TbFe2Al10 is mainly related to the presence of FM spin fluctuations and the formation of a Griffiths like (GL) phase consisting of FM clusters within the PM regime. The formation of the GL phase may be mediated by the static crystal defects in the midst of the competing inter and intra layer magnetic interactions.

  3. Crystal structure of the ternary semiconductor compound thallium gallium sulfide, TlGaS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)]. E-mail: gerzon@ula.ve; Mora, A.J. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Perez, F.V. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Departamento de Fisica, Facultad de Ciencias, Universidad del Zulia, Zulia (Venezuela); Gonzalez, J. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)

    2007-04-01

    Thallium gallium sulfide, TlGaS{sub 2}, a semiconductor compound, was prepared by solid-state reaction technique. Its crystal structure was determined by single-crystal X-ray diffraction. This material crystallizes in the monoclinic system with space group C2/c (No. 15), Z=16 and unit cell parameters a=10.2990(8)A, b=10.2840(8)A, c=15.1750(18)A, {beta}=99.603(4){sup o}. The structural refinement converged to R(F)=0.0999, R(F{sup 2})=0.0764 and S=1.067. The structure consists of a three-dimensional arrangement of distorted TlS{sub 8} and GaS{sub 4} polyhedrons. Four GaS{sub 4} tetrahedra form adamantine-like units of the type Ga{sub 4}S{sub 10}, which in turn connect through the corners forming layers that run along the [100] direction.

  4. State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties

    KAUST Repository

    Noureldine, Dalal

    2016-09-19

    Developing visible light responsive metal oxide photocatalysts is a challenge that must be conquered to achieve high efficiency for water splitting or hydrogen evolution reactions. Valence band engineering is possible by forming ternary oxides using the combination of a metal cation with an s2d10 electronic configuration and a transition metal oxide with a d0 configuration. Many (Sn2+, Bi3+, Pb2+)-based ternary metal oxide photocatalysts have been reported for hydrogen and/or oxygen evolution under visible irradiation. Sn2+-based materials have attracted particular attention because tin is inexpensive, abundant and more environmentally friendly than lead or bismuth. In this review, we provide a fruitful library for Sn2+-based photocatalysts that have been reported to evolve hydrogen using sacrificial reagents, including SnNb2O6, Sn2Nb2O7, SnTaxNb2−xO6, SnTa2O6, Sn2Ta2O7, SnWO4 (α and β phases), SnSb2O6·nH2O, and Sn2TiO4. The synthesis method used in the literature and the resultant morphology and crystal structure of each compound are discussed. The density functional theory (DFT) calculations of the electronic structure and density of states are provided, and the consequent optoelectronic properties such as band gap, nature of the bandgap, dielectric constant, and effective masses are summarized. This review will help highlight the main challenges for Sn2+-based materials.

  5. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  6. Band gap and stability in the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf) A first principles study

    CERN Document Server

    Ogut, S

    1994-01-01

    The structural stability and electronic properties of the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf) and the closely related Heusler compounds Ni$_2$SnM are discussed using the results of ab initio pseudopotential total energy and band-structure calculations performed with a plane wave basis set using the conjugate gradients algorithm. The results characterize the lowest energy phase of NiSnM compounds, with a SnM rocksalt structure sublattice, as narrow gap semiconductors with indirect gaps near 0.5 eV. Two other atomic arrangements for NiSnM in the MgAgAs structure result in energetically unfavorable compounds that are metallic. The gap formation in the lowest energy structure of NiSnZr and relative stability of the three atomic arrangements are investigated within a tight-binding framework and by considering the decompositions of each ternary compound into a binary substructure plus a third element sublattice. The stabilization of the lowest energy phase of NiSnZr is found to be mainly due to t...

  7. Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Jankova Atanasova, Katja; Han, Junyoung;

    2016-01-01

    swelling, high electrolyte uptake, dramatic plasticization and increase of the ion conductivity for the formed poly(potassium benzimidazolide)-based structure. Further increasing the concentration of the bulk solution to 50 wt.% resulted in dehydration and extensive crystallization of the polymer matrix......Poly(2,20-(m-phenylene)-5,50-bisbenzimidazole) (m-PBI) can dissolve large amounts of aqueous electrolytes to give materials with extraordinary high ion conductivity and the practical applicability has been demonstrated repeatedly in fuel cells, water electrolysers and as anion conducting component...... in fuel cell catalyst layers. This work focuses on the chemistry of m-PBI in aqueous potassium hydroxide. Equilibration in aqueous KOH with concentrations of 15e20 wt.% was found to result in ionization of the polymer, causing released intermolecular hydrogen bonding. This allowed for extensive volume...

  8. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    Directory of Open Access Journals (Sweden)

    Anna Miodek

    2015-09-01

    Full Text Available An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT and further passivated with 1-mercapto-6-hexanol (MCH. HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS, the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  9. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors.

    Science.gov (United States)

    Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro

    2015-09-29

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  10. Enabling iron pyrite (FeS2) and related ternary pyrite compounds for high-performance solar energy applications

    Science.gov (United States)

    Caban Acevedo, Miguel

    The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for

  11. Crystal structure and magnetic properties of the new ternary actinide compounds AnPd{sub 5}Al{sub 2} (An = U, Np)

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: haga.yoshinori@jaea.go.jp; Aoki, D.; Homma, Y. [Institute for Materials Science, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Ikeda, S.; Matsuda, T.D.; Yamamoto, E.; Sakai, H.; Tateiwa, N. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Dung, N.D. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science, Osaka University, Toyonaka 560-0043 (Japan); Nakamura, A. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Shiokawa, Y. [Institute for Materials Science, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Onuki, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science, Osaka University, Toyonaka 560-0043 (Japan)

    2008-09-22

    We report the crystal structure and magnetic properties of new ternary actinide compounds UPd{sub 5}Al{sub 2} and NpPd{sub 5}Al{sub 2}. Both compounds crystallize in the body-centered tetragonal ZrNi{sub 2}Al{sub 5}-type tetragonal structure (I 4/mmm). Although the magnetic susceptibility of both compounds follows the Curie-Weiss behavior at high temperature, no magnetic phase transition was observed. UPd{sub 5}Al{sub 2} has a nonmagnetic ground state where the magnetic susceptibility saturates at low temperature, while NpPd{sub 5}Al{sub 2} superconducts below 4.9 K as reported recently.

  12. Improved Activity Assay Method for Arginine Kinase Based on a Ternary Heteropolyacid System

    Institute of Scientific and Technical Information of China (English)

    陈宝玉; 郭勤; 郭智; 王希成

    2003-01-01

    This paper presents a new system for the activity assay of arginine kinase (AK), based on the spectrophotometric determination of an ascorbic acid-reduced blue ternary heteropolyacid composed of bismuth, molybdate and the released phosphate from N-phospho-L-arginine (PArg) formed in the forward catalysis reaction.The assay conditions, including the formulation of the phosphate determination reagent (PDR), the assay timing, and the linear activity range of the enzyme concentration, have been tested and optimized.For these conditions, the ternary heteropolyacid color is completely developed within 1 min and is stable for at least 15 min, with an absorbance maximum at 700 nm and a molar extinction coefficient of 15.97 (mmol/L)-1 · cm-1 for the phosphate.Standard curves for phosphate show a good linearity of 0.999.Compared with previous activity assay methods for AK, this system exhibits superior sensitivity, reproducibility, and adaptability to various conditions in enzymological studies.This method also reduces the assay time and avoids the use of some expensive instruments and reagents.

  13. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    Highlights: • Monte Carlo calculations were performed on numerous lithium ternary alloys. • Elements with high neutron multiplication performed well with low absorbers. • Enriching lithium decreases minimum lithium concentration of alloys by 60% or more. • Alloys that performed well neutronically were selected for activation calculations. • Alloys activated, except LiBaBi, do not pose major environmental or safety concerns. - Abstract: An attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based ternary alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as Pb, Sn, and Sr, perform well with those that have high neutron multiplication such as Pb and Bi. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium with {sup 6}Li significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR

  14. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  15. Structural, elastic, electronic and optical properties of a new layered-ternary Ta{sub 4}SiC{sub 3} compound

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.S. [Department of Physics, Rajshahi University, Rajshahi 6205 (Bangladesh); Islam, A.K.M.A., E-mail: azi46@ru.ac.b [Department of Physics, Rajshahi University, Rajshahi 6205 (Bangladesh)

    2011-01-15

    We propose a new layered-ternary Ta{sub 4}SiC{sub 3} with two different stacking sequences ({alpha}- and {beta}-phases) of the metal atoms along c axis and study their structural stability. The mechanical, electronic and optical properties are then calculated and compared with those of other compounds M{sub 4}AX{sub 3} (M=V, Nb, Ta; A=Al, Si and X=C). The predicted compound in the {alpha}-phase is found to possess higher bulk modulus than these compounds. The independent elastic constants of the two phases are also evaluated and the results discussed. The electronic band structures for {alpha}- and {beta}-Ta{sub 4}SiC{sub 3} show metallic conductivity. Ta 5d electrons are mainly contributing to the total density of states (DOS). We see that the hybridization peak of Ta 5d and C 2p lies lower in energy and the Ta 5d-C 2p bond is stronger than Ta 5d-Si 3p bond. Further an analysis of the different optical properties shows the compound to possess improved behavior compared to similar types of compounds.

  16. Memory type switching behavior of ternary Ge20Te80-x Sn x (0  ⩽  x  ⩽  4) chalcogenide compounds

    Science.gov (United States)

    Jeevan Fernandes, Brian; Sridharan, Kishore; Munga, Pumlian; Ramesh, K.; Udayashankar, N. K.

    2016-07-01

    Chalcogenide compounds have gained huge research interest recently owing to their capability to transform from an amorphous to a crystalline phase with varying electrical properties. Such materials can be applied in building a new class of memories, such as phase-change memory and programmable metallization cells. Here we report the memory type electrical switching behavior of a ternary chalcogenide compound synthesized by doping Tin (Sn) in a germanium-telluride (Ge20Te80) host matrix, which yielded a composition of Ge20Te80-x Sn x (0  ⩽  x  ⩽  4). Results indicate a remarkable decrease in the threshold switching voltage (V T) from 140 to 61 V when the Sn concentration was increased stepwise, which is attributed to the domination of the metallicity factor leading to reduced amorphous network connectivity and rigidity. Variation in the threshold switching voltage (V T) was noticed even when the sample thickness and temperature were altered, confirming that the memory switching process is of thermal origin. Investigations using x-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the formation of a crystalline channel that acts as the conduction path between the two electrodes in the switched region. Structural and morphological studies indicated that Sn metal remained as a micro inclusion in the matrix and hardly contributed to the rigid amorphous network formation in Ge20Te80-x Sn x . Memory type electrical switching observed in these ternary chalcogenide compounds synthesized herein can be explored further for the fabrication of phase-change memory devices.

  17. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10.

    Science.gov (United States)

    Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming

    2016-12-01

    Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs.

  18. Synthesis and spectral characterization of ternary mixed-vanadyl β-diketonate complexes with Schiff bases.

    Science.gov (United States)

    Baranwal, Balram Prasad; Tripathi, Kiran; Singh, Alok Kumar; Tripathi, Saurabh

    2012-06-01

    A new method to synthesize some mononuclear ternary oxovanadium(IV) complexes of the general formula [VO(β-dike)(SB)] (where Hβ-dike=acetylacetone; benzoylacetone or dibenzoylmethane, HSB=Schiff bases) has been explored by stepwise substitutions of acetylacetonate ion of VO(acac)(2) with Schiff bases. The substituted acetylacetone could be fractionated out with p-xylene as an azeotrope. The complexes were characterized by elemental analyses, molecular weight determinations, spectral (electronic, infrared, (1)H NMR, EPR and powder XRD) studies, magnetic susceptibility measurements and cyclic voltammetry. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bidentate chelating nature of β-diketones and Schiff base anions in the complexes was established by infrared and NMR spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. The EPR spectra illustrated coupling of the unpaired electron with (51)V nucleus (I=7/2). Cyclic voltammograms of all the complexes displayed two-step oxidation processes. The oxidation peak potential corresponded to the quasireversible one-electron oxidation process of the metal center, yielding V(V) species. Transmission electron microscopy (TEM) indicated spherical particles of ∼200 nm diameter. The synthesized complexes are mixed-ligand complexes showing a considerable hydrolytic stability in which vanadium is having coordination number 5. A square pyramidal geometry around vanadium has been assigned in all the complexes.

  19. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    Science.gov (United States)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  20. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex.

    Science.gov (United States)

    Tan, Hongliang; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-12-15

    The meta-organic coordination polymers have been emerged as fascinating nanomaterials because of their tunable nature. In this work, we employed lanthanide coordination polymer self-assembled from adenosine monophosphate (AMP) and europium ion (Eu(3+)) as receptor reagent and citrate (Cit) as ancillary ligand to construct a fluorescent sensor for the detection of tetracycline (Tc) in milk. The co-coordination of Cit and Tc with Eu(3+) on the surface of the coordination polymer AMP/Eu leads to the formation of ternary complex which emitted strong fluorescence due to the removal of coordinated water molecules and an intramolecular energy transfer from Tc to Eu(3+). The fluorescent intensity of Eu(3+) displayed a good linear response to Tc concentrations in the range of 0.1-20 μM with a detection limit of 60 nM. This method was successfully applied to determine the levels of Tc in milk, which is the first application of coordination polymer as a fluorescent sensor in real sample. Compared with other Eu(3+)-based fluorescent methods for Tc detection, the presented method allows simple, direct analysis of Tc without requiring special reaction media or complicated prepreparation processes. This straightforward strategy could be extended to the preparation of other lanthanide coordination polymer-based fluorescent probes for applications in biosensing, imaging, drug delivery, and so on.

  1. Prediction of Activities in Fe-Based Ternary Liquid Alloys by Hoch-Arpshofen Model

    Institute of Scientific and Technical Information of China (English)

    YANGHong—wei; LIANChao; TAODong—ping

    2012-01-01

    Thermodynamic properties for an alloy system play an important role in the materials science and engineer- ing. Therefore, theoretical calculations having the flexibility to deal with complexity are very useful and have scien- tific meaning. The Hoch-Arpshofen model was deduced from physical principles and is applicable to binary, ternary and larger system using its binary interaction parameters only. Calculations of the activities of Fe-based liquid alloys are calculated using Hoch-Arpshofen model from data on the binary subsystems. Results for the activities for Fe-Au- Ni, Fe-Cr-Ni, Fe-Co-Cr and Fe-Co-Ni systems at required temperature are presented by Hoch-Arpshofen model. The average relative errors of prediction are 7.8%, 4.5%, 4.9~ and 2.7%, respectively. It shows that the calcu- lated results are in good agreement with the experimental data except Fe-Au-Ni system, which exhibits strong inter- action between unlike atoms. The model provides a simple, reliable and general method for calculating the activities for Fe-based liquid alloys.

  2. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  3. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wanli; Luther, Joseph; Zheng, Haimei; Wu, Yue; Alivisatos, A. Paul

    2009-02-05

    We report solar cells based on highly confined nanocrystals of the ternary compound PbSxSe1-x. Crystalline, monodisperse alloyed nanocrystals are obtained using a one-pot, hot injection reaction. Rutherford back scattering and energy filtered transmission electron microscopy suggest that the S and Se anions are uniformly distributed in the alloy nanoparticles. Photovoltaic devices made using ternary nanoparticles are more efficient than either pure PbS or pure PbSe based nanocrystal devices.

  4. Development of novel melt-compounded starch-grafted polypropylene/polypropylene-grafted maleic anhydride/organoclay ternary hybrids

    Directory of Open Access Journals (Sweden)

    E. Lafranche

    2012-11-01

    Full Text Available Starch-grafted polypropylene (PP-g-starch/organoclay nanocomposites were melt-compounded using a corotating twin-screw extruder. Homopolymer or copolymer-based polypropylene-grafted maleic anhydrides (PP-g-MA with different molecular weights and different maleic anhydride (MA grafting levels were added at different weight contents as compatibilizer. Two organo-modified montmorillonites were used, the first one containing polar functional groups (Cloisite®30B having affinity to the starch phase, and the other one containing non polar-groups (Cloisite®20A having affinity to the polypropylene phase of the polymer matrix. Whatever the MA grafting level and the molecular weight and content of PP-g-MA, no significant immiscibility of PP-g-starch/PP-g-MA blends is evidenced. Regarding clay dispersion, adding a low content of ethylene-propylene copolymer-based PP-g-MA compatibilizer having a high MA-grafting level, and a polar organoclay (Cloisite®30B is the most desirable formulation to optimize clay intercalation and exfoliation in PP-g-starch. Nevertheless, regarding the reinforcement effect, whatever the PP-g-MA compatibilizer, the addition of non polar organoclay (Cloisite®20A is preferably recommended to reach higher tensile properties (modulus, yield stress, strength without significant loss of ductility.

  5. Photocytotoxic ternary copper(II) complexes of histamine Schiff base and pyridyl ligands

    Indian Academy of Sciences (India)

    Samya Banerjee; Akanksha Dixit; K Sesha Maheswaramma; Basudev Maity; Sanjoy Mukherjee; Arun Kumar; Anjali A Karande; Akhil R Chakravarty

    2016-02-01

    Ternary copper(II) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. [Cu(bpy)(L)](ClO4) (1) and [Cu(dppz)(L)](ClO4) (2), where bpy is 2,2′-bipyridine (in 1) and dppz is dipyrido[3,2-a:2′,3′-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (b) of ∼105 M−1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming $^{\\bullet}\\text{OH}$ radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.

  6. Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed

    2013-01-01

    Full Text Available Recognition of human expression from facial image is an interesting research area, which has received increasing attention in the recent years. A robust and effective facial feature descriptor is the key to designing a successful expression recognition system. Although much progress has been made, deriving a face feature descriptor that can perform consistently under changing environment is still a difficult and challenging task. In this paper, we present the gradient local ternary pattern (GLTP—a discriminative local texture feature for representing facial expression. The proposed GLTP operator encodes the local texture of an image by computing the gradient magnitudes of the local neighborhood and quantizing those values in three discrimination levels. The location and occurrence information of the resulting micropatterns is then used as the face feature descriptor. The performance of the proposed method has been evaluated for the person-independent face expression recognition task. Experiments with prototypic expression images from the Cohn-Kanade (CK face expression database validate that the GLTP feature descriptor can effectively encode the facial texture and thus achieves improved recognition performance than some well-known appearance-based facial features.

  7. Electrorheological fluid of kaolinite-based ternary nanocomposite and its properties

    Institute of Scientific and Technical Information of China (English)

    WANG; Baoxiang; ZHAO; Xiaopeng; YAO; Yuan

    2005-01-01

    According to the physical and chemical design, a kind of kaolinite /dimethylsulfoxide/carboxymethyl starch (CMS) ternary nanocomposite was prepared by the two-step composite method. Firstly, the polar liquid-dimethylsulfoxide (DMSO) was directly intercalated into the interlayer of kaolinite, and then the intercalated complex was composite with CMS by the solution method. The results showed that DMSO moderately intercalated the interlayer of kaolinite and the basal spacing of kaolinite was swollen from 0.715 to 1.120 nm. Under the electric fields of 5 kV mm-1 and volume fraction 30%, the static shear stress of kaolinite/DMSO/CMS ternary ERF could reach 17 kPa, which was 14 times and 4.25 times higher than that of pure kaolinite ERF and kaolinite/CMS ERF respectively. At the suitable component ratio (kaolinite:DMSO:CMS=1:0.75:0.6) of nanocomposite, a stronger synergetic effect and the optimum electrorheological effect could be attained. The ternary nanocomposite ERF also had good temperature effect and sedimentation properties. The sedimentation part of ternary nanocomposite ERF was only 9% after 30 days. The results of dielectric properties showed that the dielectric constant and conductivity of ternary nanocomposite ERF had been improved more enormously than that of the single component ERF and binary composite ERF. So the polarization and dielectric mismatch were strengthened, which was suitable to the enhancement of ER effect.

  8. Crystal structure refinement of the ternary compound Cu{sub 2}SnTe{sub 3} by X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Mora, A.J. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Marcano, G.; Rincon, C. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Delgado, G.E.

    2008-04-15

    The ternary compound Cu{sub 2}SnTe{sub 3} crystallizes in the Imm2 (N circle 44) space group, Z=2, with a=2.833(4) A, b=4.274(1) A, c=6.043(1) A, V=331.5(1) A{sup 3}. Its structure was refined from X-ray powder diffraction data using the Rietveld method. The refinement of 25 instrumental and structural variables led to R{sub p}=10.2%, R{sub wp}=11.8%, R{sub exp}=7.7%, R{sub B}=10.6%, S=1.6 and {chi}{sup 2}=2.6, for 5501 step intensities and 163 independent reflections. This compound is isostructural with Cu{sub 2}GeSe{sub 3}, and consists of a three-dimensional arrangement of slightly distorted CuTe{sub 4} and SnTe{sub 4} tetrahedra connected by common corners. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Theoretical investigation on thermoelectric properties of Cu-based chalcopyrite compounds

    Science.gov (United States)

    Wang, Biao; Xiang, Hongjun; Nakayama, Tsuneyoshi; Zhou, Jun; Li, Baowen

    2017-01-01

    Cu-based materials are potential candidates for commercial thermoelectric materials due to their abundance, nontoxicity, and high performance. We incorporate the multiband Boltzmann transport equations with first-principles calculations to theoretically investigate the thermoelectric properties of Cu-based chalcopyrite compounds. As a demonstration of our method, the thermoelectric properties of quaternary compounds Cu2ZnSnX4 (X = S, Se) and ternary compounds CuBTe2 (B = Ga, In) are studied. We systematically calculate the electrical conductivity, the Seebeck coefficient, and the power factor of the four materials above based on parameters obtained from first-principles calculations and using several other fitting parameters. For quaternary compounds, our results reveal that Cu2ZnSnSe4 is better than Cu2ZnSnS4 and its optimal hole concentration is around 5 ×1019cm-3 with the peak power factor 4.7 μ W/cm K 2 at 600 K. For ternary compounds, we find that their optimal hole concentrations are around 1 ×1020cm-3 with the peak power factors over 26 μ W/cm K 2 at 800 K.

  10. Diffuse interface simulation of ternary fluids in contact with solid

    Science.gov (United States)

    Zhang, Chun-Yu; Ding, Hang; Gao, Peng; Wu, Yan-Ling

    2016-03-01

    In this article we developed a geometrical wetting condition for diffuse-interface simulation of ternary fluid flows with moving contact lines. The wettability of the substrate in the presence of ternary fluid flows is represented by multiple contact angles, corresponding to the different material properties between the respective fluid and the substrate. Displacement of ternary fluid flows on the substrate leads to the occurrence of moving contact point, at which three moving contact lines meet. We proposed a weighted contact angle model, to replace the jump in contact angle at the contact point by a relatively smooth transition of contact angle over a region of 'diffuse contact point' of finite size. Based on this model, we extended the geometrical formulation of wetting condition for two-phase flows with moving contact lines to ternary flows with moving contact lines. Combining this wetting condition, a Navier-Stokes solver and a ternary-fluid model, we simulated two-dimensional spreading of a compound droplet on a substrate, and validated the numerical results of the drop shape at equilibrium by comparing against the analytical solution. We also checked the convergence rate of the simulation by investigating the axisymmetric drop spreading in a capillary tube. Finally, we applied the model to a variety of applications of practical importance, including impact of a circular cylinder into a pool of two layers of different fluids and sliding of a three-dimensional compound droplet in shear flows.

  11. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  12. Moving least squares-based multi-functional sensing technique or estimating viscosity and density of ternary solution

    Institute of Scientific and Technical Information of China (English)

    LIU Dan; WEI Guo; SUN Jin-wei; LIU Xin

    2009-01-01

    In the osmotic dehydration process of food, on-line estimation of concentrations of two components in ternary solution with NaCI and sucrose was performed based on multi-functional sensing technique.Moving Least Squares were adopted in approximation procedure to estimate the viscosity of such interested ternary solu-tion with the given data set.As a result, in one mode of using total experimental data as calibration data andvalidation data, the relative deviations of estimated viscosities are less than ~ 1.24%.In the other mode, by taking total experimental data except the ones for estimation as calibration data, the relative deviations are less than±3.47%.In the same way, the density of ternary solution can be also estimated with deviations less than ± 0.11% and ± 0.30% respectively in these two models.The satisfactory and accurate results show the ex-traordinary efficiency of Moving Least Squares behaved in signal approximation for multi-functional sensors.

  13. Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base.

    Science.gov (United States)

    Levin, J R; Krummel, B; Chamberlin, M J

    1987-07-05

    We have studied the conditions needed for the formation of stable ternary complexes by Escherichia coli RNA polymerase using a procedure in which elongation by the majority of active enzyme molecules is halted at a specific template base. Stable complexes of this sort, containing RNA chains as short as 15 nucleotides, have been formed from three different promoter sites (T7 A1, lambda PL, and E. coli rrnB P1) using di- and trinucleotides as primers in reactions limited by the presence of only three of the nucleoside triphosphate substrates. The resulting ternary complexes can be stored for at least five days without loss in activity, and provide useful reagents and substrates for studies of the properties of RNA polymerases engaged in chain elongation and termination. At all three promoter sites abortive initiation, leading to synthesis and release of oligomers up to ten nucleotides, competes with productive initiation, leading to the formation of stable elongating complexes. Thus the relative instability of ternary RNA polymerase complexes bearing transcripts shorter than ten nucleotides may be a general feature of the transcription initiation reaction.

  14. Nanoassembly of Polydisperse Photonic Crystals based on Binary and Ternary Polymer Opal Alloys

    CERN Document Server

    Zhao, Qibin; Schafer, Christian; Spahn, Peter; Gallei, Markus; Herrmann, Lars; Petukhov, Andrei; Baumberg, Jeremy J

    2016-01-01

    Ordered binary and ternary photonic crystals, composed of different sized polymer-composite spheres with diameter ratios up to 120%, are generated using bending induced oscillatory shearing (BIOS). This viscoelastic system creates polydisperse equilibrium structures, producing mixed opaline colored films with greatly reduced requirements for particle monodispersity, and very different sphere size ratios, compared to other methods of nano-assembly.

  15. A comparative first-principles study on electronic structures and mechanical properties of ternary intermetallic compounds Al8Cr4Y and Al8Cu4Y: Pressure and tension effects

    Science.gov (United States)

    Yang, Wenchao; Pang, Mingjun; Tan, Yong; Zhan, Yongzhong

    2016-11-01

    An investigation into the bulk properties, elastic properties and Debye temperature under pressure, and deformation mode under tension of Al8Cu4Y and Al8Cr4Y compounds was investigated by using first principles calculations based on density functional theory. The calculated lattice constants for the ternary compounds (Al8Cu4Y and Al8Cr4Y) are in good agreement with the experimental data. It can be seen from interatomic distances that the bonding between Al1 atom and Cr, Y, and Al2 atoms in Al8Cr4Y are stronger than Al8Cu4Y. The results of cohesive energy show that Al8Cr4Y should be easier to be formed and much stronger chemical bonds than Al8Cu4Y. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν can be obtained by using the Voigt-Reuss-Hill averaging scheme. From the results of elastic properties, Al8Cr4Y has the stronger mechanical behavior than Al8Cu4Y. Our calculations also show that pressure has a greater effect on mechanical behavior for both compounds. The ideal tensile strength are obtained by stress-strain relationships under [001](001) uniaxial tensile deformation, which are 15.4 and 23.4 GPa for Al8Cu4Y and Al8Cr4Y, respectively. The total and partial density of states and electron charge density under uniaxial tensile deformations for Al8Cu4Y and Al8Cr4Y compounds are also calculated and discussed in this work.

  16. Activity Coefficient Derivatives of Ternary Systems Based on Scatchard's Neutral Electrolyte description

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D G

    2007-05-16

    Activity coefficient derivatives with respect to molality are presented for the Scatchard Neutral Electrolyte description of a ternary common-ion electrolyte system. These quantities are needed for the calculation of 'diffusion Onsager coefficients' and in turn for tests of the Onsager Reciprocal Relations in diffusion. The usually-omitted b{sub 23} term is included. The direct SNE binary approximations and a further approximation are discussed. Binary evaluation strategies other than constant ionic strength are considered.

  17. Metal-amino acid (or peptide)-nucleoside (or related bases) ternary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Terron, A.; Fiol, J.J.; Herrero, L.A.; Garcia-Raso, A. [Departament de Quimica. Universitat de les Illes Balears. Palma de Mallorca. (Spain); Apella, M.C. [Cerela Centro de Referencia de Lactobacilos, Tucaman, Argentina (Antigua and Barbuda); Caubet, A.; Moreno, V. [Departament de Quimica Inorganica. Universitat de Barcelona. Barcelona (Spain)

    1997-05-01

    The knowledge of simultaneous metal ion interaction with proteins and nucleic acids is one of the most exciting subjects inside the Inorganic Biochemistry. In the last years, several groups have published articles on the synthesis and characterization of ternary complexes bringing relevant data on the structure and stability of metallo biomolecules. In this short review, the last contributions found in the literature are collected. Comments on the factors influencing the behaviour and stability of these systems are offered. (Author) 100 refs.

  18. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells

    Science.gov (United States)

    Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2016-10-01

    Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm-2 and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs.

  19. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be [Department of Chemistry, B6c, University of Liege, B4000 Liege (Belgium)

    2014-10-28

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

  20. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    Science.gov (United States)

    Klymenko, M. V.; Remacle, F.

    2014-10-01

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

  1. Heavy-Fermion Compound of the Ternary Phosphide Ce2Pt8P with a Non-Centrosymmetric Structure

    Science.gov (United States)

    Kase, Naoki; Furukawa, Shoh; Nakano, Tomohito; Takeda, Naoya

    2017-01-01

    The low-temperature properties of Ce2Pt8P are studied by magnetic susceptibility χ(T), electrical resistivity ρ(T), and specific heat C(T) measurements. The crystal structure is considered to be analogs of the CePt3Si-type structure. From the magnetic susceptibility χ(T), the effective paramagnetic moment μeff is estimated to be 2.30 μB/Ce, suggesting that the valence state of Ce ions is expected to be close to trivalent (Ce3+). The paramagnetic Curie-Weiss temperature θcw is determined to be 12 K. The electrical resistivity ρ(T) shows -ln T dependence with a small slope from 10 to 3 K, which indicates a weak Kondo anomaly. The specific heat exhibits a λ-type anomaly at around T* = 1.0 K, while the magnetic entropy at T* is reduced to 80% of R ln 2. The linear coefficient of specific heat is determined to be 145 mJ/(mol-Ce·K2). From several measurements, Ce2Pt8P can be classified as a moderate heavy-fermion compound. The ground state is far from the quantum-critical point (QCP) compared with CePt3Si. La2Pt8P shows normal metallic behavior and no superconductivity is observed above 0.28 K.

  2. Temperature-dependent hard X-ray photoemission spectra of ternary Tl compounds with high Seebeck coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Kojiro; Ishizu, Takahiko; Yamamoto, Kazuya; Takasu, Junta; Yonehira, Yuri; Taguchi, Yukihiro; Ichikawa, Kouichi [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Wakita, Kazuki [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino, Chiba (Japan); Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan); Yan, Ke; Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho (Japan); Kobayashi, Keisuke [National Institute for Materials Science, Kouto, Sayo-cho, Sayo-gun, Hyogo (Japan)

    2009-05-15

    The temperature dependence of the core-level and valence-band electronic structures of TlGaTe{sub 2} and TlInSe{sub 2} that exhibits high values of Seebeck coefficient has been studied by hard X-ray photoemission spectroscopy over the temperature range 40-450 K. The relative peak position and peak width for Tl 4f, Ga 2p and Te 3d in TlGaTe{sub 2} are determined. It is shown that not only chemical shift defying the peak position but also electron-phonon interaction responsible for temperature line-broadening has rather peculiar temperature behaviour that reflects incommensurate phase transition. Thermoelectric power of TlGaTe{sub 2} is evaluated and found to be very close to that of TlInSe{sub 2}. It is shown that Tl 4f spectra of both compounds also display close similarity (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Elastic and electronic properties of antiperovskite-type Pd- and Pt-based ternary carbides from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, V.V.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru

    2013-11-15

    Highlights: • 23 Pd- and Pt-based antiperovskite-type ternary carbides are probed from first principles. • Structural, elastic, electronic properties and inter-atomic bonding are evaluated. • A rich variety of mechanical and electronic properties was predicted. -- Abstract: By means of first-principles calculations, the structural, elastic, and electronic properties of a broad series of proposed Pd- and Pt-based antiperovskite-type ternary carbides AC(Pd,Pt){sub 3}, where A are Zn, Ca, Al, Ga, In, Ge, Hg, Sn, Cd, Pb, Ag, Sc, Ti, Y, Nb, Mo, and Ta, have been studied, and their stability, elastic constants, bulk, shear, and Young’s moduli, compressibility, Pugh’s indicator, Poisson’s ratio, indexes of elastic anisotropy, as well as electronic properties have been evaluated. We found that these materials should demonstrate a rich variety of mechanical and electronic properties depending on the type of A sublattices, which can include (unlike the majority of known 3d-metal-based antiperovskites) both sp elements and d atoms. We believe that the presented results will be useful for future synthesis of these phases, as well as for expanding our knowledge of this interesting group of antiperovskite-type materials.

  4. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Huang G.

    2016-01-01

    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  5. Synthesis, structure and properties of the high-pressure modifications of the ternary compounds REPtSn (RE = La, Pr, Sm)

    Energy Technology Data Exchange (ETDEWEB)

    Riecken, J.F.; Rodewald, U.C.; Rayaprol, S.; Hoffmann, R.D.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany); Heymann, G.; Huppertz, H. [Dept. Chemie und Biochemie, Ludwig-Maximilians-Univ. Muenchen (Germany)

    2006-12-15

    The hexagonal high-pressure (HP) modifications of the ternary compounds REPtSn (RE = La, Pr, Sm) were prepared under multianvil high-pressure (9-14 GPa) high-temperature (1050-1400 C) conditions from the orthorhombic normal-pressure (NP) modifications. The HP-REPtSn stannides were investigated by X-ray diffraction on powders and single crystals: ZrNiAl type, space group P anti 62m, a = 762.6(2), c = 418.55(7) pm, wR2 = 0.1147, 256 F{sup 2} values and 14 variables for HP-LaPtSn, a = 754.97(7), c = 412.64(3) pm, wR2 = 0.0782, 252 F{sup 2} values and 14 variables for HP-PrPtSn, and a = 750.1(2), c = 407.6(1) pm, wR2 = 0.1060, 229 F{sup 2} values and 14 variables for HP-SmPtSn. The high-pressure modifications have two crystallographically independent platinum positions in trigonal prismatic coordination, Pt1Sn{sub 6}RE{sub 3} and Pt2Sn{sub 3}RE{sub 6}. The shortest interatomic distances occur between the platinum and tin atoms within the three-dimensional [PtSn] networks. The rare Earth atoms fill distorted hexagonal channels within these networks and they are bound through short RE-Pt contacts. Susceptibility measurements of HP-PrPtSn reveal paramagnetic behaviour with an experimental magnetic moment of 3.31(2) {mu}{sub B}/Pr atom. Low-temperature susceptibility and specific heat data point to inhomogeneous magnetism in HP-PrPtSn. (orig.)

  6. Li2B12Si2: the first ternary compound in the system Li/B/Si: synthesis, crystal structure, hardness, spectroscopic investigations, and electronic structure.

    Science.gov (United States)

    Vojteer, Natascha; Schroeder, Melanie; Röhr, Caroline; Hillebrecht, Harald

    2008-01-01

    We present the synthesis, crystal structure, hardness, IR/Raman and UV/Vis spectra, and FP-LAPW calculations of the electronic structure of Li(2)B(12)Si(2), the first ternary compound in the system Li/B/Si. Yellow, transparent single crystals were synthesized from the elements in tin as solvent at 1500 degrees C in h-BN crucibles in arc-welded Ta ampoules. Li(2)B(12)Si(2) crystallizes orthorhombic in the space group Cmce (no. 64) with a=6.1060(6), b=10.9794(14), c=8.4050(8) A, and Z=4. The crystal structure is characterized by a covalent network of B(12) icosahedra connected by Si atoms and Li atoms located in interstitial spaces. The structure is closely related to that of MgB(12)Si(2) and fulfils the electron-counting rules of Wade and Longuet-Higgins. Measurements of Vickers (H(V)=20.3 GPa) and Knoop microhardness (H(K)=20.4 GPa) revealed that Li(2)B(12)Si(2) is a hard material. The band gap was determined experimentally and calculated by theoretical means. UV/Vis spectra revealed a band gap of 2.27 eV, with which the calculated value of 2.1 eV agrees well. The IR and Raman spectra show the expected oscillations of icosahedral networks. Theoretical investigations of bonding in this structure were carried out with the FP-LAPW method. The results confirm the applicability of simple electron-counting rules and enable some structural specialties to be explained in more detail.

  7. Influence of Surface Energy on Organic Alloy Formation in Ternary Blend Solar Cells Based on Two Donor Polymers.

    Science.gov (United States)

    Gobalasingham, Nemal S; Noh, Sangtaik; Howard, Jenna B; Thompson, Barry C

    2016-10-05

    The compositional dependence of the open-circuit voltage (Voc) in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of polymers, which may be influenced by a number of attributes, including crystallinity, the random copolymer effect, or surface energy. Four ternary blend systems featuring poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT75-co-EHT25), poly(3-hexylthiophene-co-(hexyl-3-carboxylate)), herein referred to as poly(3-hexylthiophene-co-3-hexylesterthiophene) (P3HT50-co-3HET50), poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%), and an analog of P3HTT-DPP-10% with 40% of 3-hexylthiophene exchanged for 2-(2-methoxyethoxy)ethylthiophen-2-yl (3MEO-T) (featuring an electronically decoupled oligoether side-chain), referred to as P3HTTDPP-MEO40%, are explored in this work. All four polymers are semicrystalline and rich in rr-P3HT content and perform well in binary devices with PC61BM. Except for P3HTTDPP-MEO40%, all polymers exhibit similar surface energies (∼21-22 mN/m). P3HTTDPP-MEO40% exhibits an elevated surface energy of around 26 mN/m. As a result, despite the similar optoelectronic properties and binary solar cell performance of P3HTTDPP-MEO40% compared to P3HTT-DPP-10%, the former exhibits a pinned Voc in two different sets of ternary blend devices. This is a stark contrast to previous rr-P3HT-based systems and demonstrates that surface energy, and its influence on miscibility, plays a critical role in the formation of organic alloys and can supersede the influence of crystallinity, the random copolymer effect, similar backbone structures, and HOMO/LUMO considerations. Therefore, we confirm surface energy compatibility as a figure-of-merit for predicting the compositional dependence of the Voc in ternary blend solar cells and highlight the importance of polymer miscibility in organic alloy formation.

  8. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  9. Formation of ternary complexes between a macrotricyclic host and hetero-guest pairs: an acid-base controlled selective complexation process.

    Science.gov (United States)

    Han, Tao; Chen, Chuan-Feng

    2007-10-11

    A triptycene-based cylindrical macrotricyclic host can include diquat and electron-rich aromatics simultaneously to form stable ternary complexes, which is stabilized not only by a charge-transfer (CT) interaction between electron-rich and electron-deficient guests but also by the face to face pi-stacking interactions between the host and the guests. Moreover, a selective complexation process between a ternary complex containing benzidine and a binary complex can be effectively controlled by the use of acid and base.

  10. Study on La–Mg based ternary system for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Capurso, Giovanni, E-mail: giovanni.capurso@gmail.com [Dipartimento di Ingegneria Industriale, Università di Padova, via Marzolo 9, 35131 Padova (Italy); Naik, Mehraj-ud-din; Lo Russo, Sergio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, via Marzolo 8, 35131 Padova (Italy); Maddalena, Amedeo [Dipartimento di Ingegneria Industriale, Università di Padova, via Marzolo 9, 35131 Padova (Italy); Saccone, Adriana; Gastaldo, Federica; De Negri, Serena [Dipartimento di Chimica e Chimica Industriale, Università di Genova, via Dodecaneso 31, 16146 Genova (Italy)

    2013-12-15

    Highlights: ► Explorative study in the Mg-rich corner of the La–Pd–Mg ternary system. ► The studied alloys lay on the La{sub 2}(Mg{sub 1−x}Pd{sub x}){sub 17} compositional line. ► Higher Pd content results in lower H{sub 2} capacity, but higher equilibrium pressures. ► The highest absorbed hydrogen quantity is 4.8 wt% at 2 MPa and 310 °C. -- Abstract: An explorative study on the hydriding/dehydriding characteristics of the La{sub 2}(Mg,Pd){sub 17} ternary alloy, with different Pd content, is presented. All the samples were prepared by induction melting of the selected elements, characterized with scanning electron microscopy and X-ray powder diffraction, to detect present phases, and subsequently milled with a high-energy shaker apparatus. The hydrogen reaction kinetics and thermodynamics properties have been investigated by means of a volumetric Sievert’s apparatus. The measured H{sub 2} gravimetric capacity of the alloy varied with the Pd content, being the highest for the sample without Pd (>4.5 wt%). A possible correlation between the constituent phases individuated with microanalysis and the variation in the hydrogenation behaviour is proposed.

  11. Microstructures in a ternary eutectic alloy: devising metrics based on neighbourhood relationships

    Science.gov (United States)

    Dennstedt, A.; Choudhury, A.; Ratke, L.; Nestler, B.

    2016-03-01

    Ternary eutectics, where three phases form simultaneously from the melt, present an opportunity to study the fundamental science of microstructural pattern formation during the process of solidification. In this paper we investigate these phenomena, both experimentally and by phase-field simulations. The aim is to develop necessary characterisation tools which can be applied to both experimentally determined and simulated microstructures for a quantitative comparison between simulations and experiments. In SEM images of experimental cross sections of directionally solidified Ag-Al-Cu ternary eutectic alloy at least six different types of microstructures are observed. Corresponding 3D phase-field simulations for different solidification conditions and compositions allow us to span and isolate the material parameters which influence the formation of three-phase patterns. Both experimental and simulated microstructures were analysed regarding interface lengths, triple points and number of neighbours. As a result of this integrated experimental and computational effort we conclude that neighbourhood relationships as described herein, turn out to be an appropriate basis to characterise order in patterns.

  12. Biodegradable polymer based ternary blends for removal of trace metals from simulated industrial wastewater.

    Science.gov (United States)

    Prakash, N; Arungalai Vendan, S

    2016-02-01

    The ternary blends consisting of Chitosan (CS), Nylon 6 (Ny 6) and Montmorillonite clay (MM clay) were prepared by the solution blending method with glutaraldehyde. The prepared ternary blends were characterization by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo gravimetric analysis (TGA), Differential scanning calorimetry (DSC) and Scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bondings were established between chitosan, nylon 6 and montmorillonite clay. TGA showed the thermal stability of the blend is enhanced by glutaraldehyde as Crosslink agent. Results of XRD indicated that the relative crystalline of the pure chitosan film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend was rough and heterogenous. Further, it confirms the interaction between the functional groups of the blend components. The extent of removal of the trace metals was found to be almost the same. The removal of these metals at different pH was also done and the maximum removal of the metals was observed at pH 4.5 for both trace metals. Adsorption studies and kinetic analysis have also been made. Moreover, the protonation of amine groups is induced an electrostatic repulsion of cations. When the pH of the solution was more than 5.5, the sorption rate began to decrease. Besides, the quantity of adsorbate on absorbent was fitted as a function in Langmuir and Freundlich isotherm. The sorption kinetics was tested for pseudo first order and pseudo second order reaction. The kinetic experimental data correlated with the second order kinetic model and rate constants of sorption for kinetic models were calculated and accordingly, the correlation coefficients were obtained.

  13. Ternary systems based on PVDF, BaTiO{sub 3} and MWCNTs: Fabrication, characterization, electromagnetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cacciotti, Ilaria [University of Rome “Niccolò Cusano”, RU INSTM, Via Don Carlo Gnocchi 3, 00166-Rome (Italy); Valentini, Manlio; Nanni, Francesca [University of Rome “Tor Vergata”, Enterprise Engineering Department, RU INSTM-Roma “Tor Vergata”, Via del Politecnico 1, 00133-Rome (Italy)

    2015-03-10

    In this work, ternary bulk systems based on polyvinylidene fluoride (PVDF), synthesised barium titanate (BaTiO{sub 3}, BT) nanopowder and multi walled carbon nanotubes (MWCNTs) were fabricated by film stacking technique, starting from solvent cast films. The main purpose was to investigate the influence of BT and MWCNTs addition to the polymeric matrix on its microstructural and dielectrical properties. In order to achieve it, different BT concentrations, ranging between the 60 and 75 %wt, were tested, whereas a MWCNTs content of 2 %wt was maintained constant. The morphology was studied by observation at scanning electron microscopy (SEM), the microstructure and crystalline phases investigated by X-Ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, and the electromagnetic properties measured in the microwave region (8-12 GHz). The electromagnetic response of the investigated bulk systems was also simulated as function of the sample thickness.

  14. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films.

    Science.gov (United States)

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-11-04

    Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films.

  15. Thermodynamic modeling of the Au-Sb-Si ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J., E-mail: jiang.wang@empa.ch [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, Duebendorf, Zuerich CH-8600 (Switzerland); Liu, Y.J. [Western Transportation Institute, Montana State University, Bozeman, MT 59715 (United States); Liu, L.B. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Zhou, H.Y. [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Jin, Z.P. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2011-02-10

    Research highlights: > Thermodynamic optimization of the Au-Sb binary system was updated. > The Si-Sb binary system was assessed from critical review of experimental information. > Thermodynamic modeling of the Au-Sb-Si ternary system was performed. > The phase relations of this ternary system are useful to design Au-based solders. - Abstract: Thermodynamic optimization of the Au-Sb binary system was updated as well as the Si-Sb binary system was assessed thermodynamically using the CALPHAD method based on the critical review of the available experimental information from the published literature. The solution phases including liquid, fcc{sub A}1(Au), diamond{sub A}4(Si) and rhombohedral{sub A}7(Sb), are modeled as substitutional solutions and their excess Gibbs energies are expressed by a Redlich-Kister polynomial. The solubility of Si in the intermetallic compound AuSb{sub 2} is not taken into account because of the lack of experimental information. Combined with previous assessment of the Au-Si binary system, thermodynamic modeling of the Au-Sb-Si ternary system was performed to reproduce well the measured phase equilibria. The liquidus projection and several vertical sections of this ternary system were calculated, which are in reasonable agreement with the reported experimental data.

  16. Determination of thermodynamic properties of aluminum based binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Altıntas, Yemliha [Abdullah Gül University, Faculty of Engineering, Department of Materials Science and Nanotechnology, 38039, Kayseri (Turkey); Aksöz, Sezen [Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Physics, 50300, Nevşehir (Turkey); Keşlioğlu, Kâzım, E-mail: kesli@erciyes.edu.tr [Erciyes University, Faculty of Science, Department of Physics, 38039, Kayseri (Turkey); Maraşlı, Necmettin [Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, 34210, Davutpaşa, İstanbul (Turkey)

    2015-11-15

    In the present work, the Gibbs–Thomson coefficient, solid–liquid and solid–solid interfacial energies and grain boundary energy of a solid Al solution in the Al–Cu–Si eutectic system were determined from the observed grain boundary groove shapes by measuring the thermal conductivity of the solid and liquid phases and temperature gradient. Some thermodynamic properties such as the enthalpy of fusion, entropy of fusion, the change of specific heat from liquid to solid and the electrical conductivity of solid phases at their melting temperature were also evaluated by using the measured values of relevant data for Al–Cu, Al–Si, Al–Mg, Al–Ni, Al–Ti, Al–Cu–Ag, Al–Cu–Si binary and ternary alloys. - Highlights: • The microstructure of the Al–Cu–Si eutectic alloy was observed through SEM. • The three eutectic phases (α-Al, Si, CuAl{sub 2}) have been determined by EDX analysis. • Solid–liquid and solid–solid interfacial energies of α-Al solution were determined. • ΔS{sub f},ΔH{sub M}, ΔC{sub P}, electrical conductivity of solid phases for solid Al solutions were determined. • G–T coefficient and grain boundary energy of solid Al solution were determined.

  17. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  18. Cerium-iron-based magnetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.

    2017-01-17

    New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo in combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.

  19. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid

    Science.gov (United States)

    Faheim, Abeer A.; Abdou, Safaa N.; Abd El-Wahab, Zeinab H.

    2013-03-01

    Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H2L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, 1H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H2L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.

  20. 基于三值光学计算机的旅行商问题的求解实现%Solving TSP based on ternary optical computer

    Institute of Scientific and Technical Information of China (English)

    沈云付; 樊孝领

    2011-01-01

    根据三值光计算机具有的巨并行性特点,对给定城市数的旅行商问题进行研究.首先将旅行商问题进行预处理,并转换为改进的符号数(modified signed-digit,MSD)表示形式;然后根据三值光学计算机的位数众多和MSD加法的无进位过程,建立了相应的计算方法,用自主开发的三值逻辑光处理器系统进行求解.结果表明,在数据量同样的情况下,与电子计算机相比,三值光学计算机需较少的计算步数就可以解决旅行商问题,显示出三值光学计算机潜在的优势.%Through the ternary optical computer, this paper studied the traveling salesman problem with arbitrarily definite number of nodes. The traveling salesman problem was first preproeessed and transformed into the form of modified signed-digit ( MSD ) data format. Then based on the characteristic of giant parallelism of the ternary optical computer and the MSD addition of non-carry process, established a calculation to solve the problem using the self-developed ternary optical processor system.Experiments show that under the same amount of data, as compared with the electronic computer, ternary optical computer can solve the traveling salesman problem with less number of steps, which demonstrates the potential advantages of ternary optical computer.

  1. On the importance of thermodynamic investigations for the re-assessment of selected ternary Fe-base systems

    Science.gov (United States)

    Presoly, P.; Bernhard, C.

    2016-07-01

    Reliable thermodynamic data are essential for the design and the production of new alloying systems. Particularly, the knowledge of the high-temperature phase transformations (TLiquid, TSolid, TPerit, Tγ→δ) are important for the solidification and the further processing. Investigations of selected commercial Dual-Phase, TRIP and high-Mn TWIP steels by DTA/DSC measurements show that the experimental results differ significantly from the calculation results of thermodynamic databases with respect to the phase transformation temperature and sequence. Based on these findings, it is very important to identify the defective subsystems of complex alloys in order to optimise the thermodynamic databases. In order to verify a quaternary system, e.g. the Fe-C-Si-Mn system, it is important to check the corresponding ternary subsystems. This was performed by DSC measurements of selected model alloys. By doing so, it was found that in Si- and Mn-alloyed Dual-Phase steels the thermodynamic description of the Fe-Si-Mn system is currently inadequate. This is a very important result, since all new designed steel grades for the automotive industry are based on a Fe-C-Si-Mn matrix.

  2. Monolayer MoS2 metal insulator transition based memcapacitor modeling with extension to a ternary device

    Science.gov (United States)

    Khan, Abdul Karim; Lee, Byoung Hun

    2016-09-01

    Memcapacitor model based on its one possible physical realization is developed and simulated in order to know its limitation before making a real device. The proposed device structure consists of vertically stacked dielectric layer and MoS2 monolayer between two external metal plates. The Metal Insulator Transition (MIT) phenomenon of MoS2 monolayer is represented in terms of percolation probabilty which is used as the system state. Cluster based site percolation theory is used to mimic the MIT of MoS2 which shows slight discontinuous change in MoS2 monolayer conductivity. The metal to insulator transition switches the capacitance of the device in hysterical way. An Ioffe Regel criterion is used to determine the MIT state of MoS2 monolayer. A good control of MIT time in the range of psec is also achieved by changing a single parameter in the model. The model shows memcapacitive behavior with an edge of fast switching (in psec range) over the previous general models. The model is then extended into vertical cascaded version which behaves like a ternary device instead of binary.

  3. Monolayer MoS2 metal insulator transition based memcapacitor modeling with extension to a ternary device

    Directory of Open Access Journals (Sweden)

    Abdul Karim Khan

    2016-09-01

    Full Text Available Memcapacitor model based on its one possible physical realization is developed and simulated in order to know its limitation before making a real device. The proposed device structure consists of vertically stacked dielectric layer and MoS2 monolayer between two external metal plates. The Metal Insulator Transition (MIT phenomenon of MoS2 monolayer is represented in terms of percolation probabilty which is used as the system state. Cluster based site percolation theory is used to mimic the MIT of MoS2 which shows slight discontinuous change in MoS2 monolayer conductivity. The metal to insulator transition switches the capacitance of the device in hysterical way. An Ioffe Regel criterion is used to determine the MIT state of MoS2 monolayer. A good control of MIT time in the range of psec is also achieved by changing a single parameter in the model. The model shows memcapacitive behavior with an edge of fast switching (in psec range over the previous general models. The model is then extended into vertical cascaded version which behaves like a ternary device instead of binary.

  4. Solvent effect on H-bond cooperativity factors in ternary complexes of methanol, octan-1-ol, 2,2,2-trifluoroethanol with some bases.

    Science.gov (United States)

    Solomonov, Boris N; Varfolomeev, Mikhail A; Abaidullina, Dilyara I

    2008-03-01

    Cooperative hydrogen bonds in ternary complexes (ROH)(2)...B (ROH-alcohols; B-bases) formed in pure bases (B) and solutions in n-hexane, carbon tetrachloride, benzene and 1,2-dichloroethane were studied by FTIR spectroscopy. Based on the observations, the authors were able to propose an original method of evaluating solvent effects on cooperativity factors in the complexes. Frequencies of cooperative hydrogen bonds OH...B (nu(b)) were determined for ternary complexes of pyridine with aliphatic alcohols (methanol, octan-1-ol) and for 2,2,2-trifluoroethanol with three different bases (acetonitrile, diethyl ether, tetrahydrofuran). The solvent shifts of nu(b) were found to correlate with an empirical thermochemical parameter of the solvent, S(VW). The cooperativity factors were determined for the complexes (ROH)(2)...B in all studied media. It has been found that the cooperativity factors are almost independent of the solvent. In addition, a method was proposed of estimating the frequencies and cooperativity factors for ternary complexes (ROH)(2)...B in the gas phase. It has been found that in gas phase the cooperativity factors are practically the same as in condensed media.

  5. Moessbauer studies of ternary superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, C.W.; Van Landuyt, G.L.; Barnet, C.D.; Shenoy, G.K.; Dunlap, B.D.; Fradin, F.Y.

    1978-01-01

    Moessbauer studies of the ternary Chevrel phase and rare earth rhodium boride superconductors have been made. Anomalous phonon properties at the Sn site in SnMo/sub 6/S/sub 8/, SnMo/sub 6/Se/sub 8/, and La/sub 0/ /sub 98/Sn/sub 0/ /sub 02/Mo/sub 6/Se/sub 8/ have been investigated. Studies of polarization of conduction electrons at the site of the magnetic ion have been made by means of the /sup 151/Eu Moessbauer effect in Eu/sub x/Sn/sub 1-x/Mo/sub 6/S/sub 8/ and the effects of such polarization on superconducting properties discussed. The Moessbauer effect in /sup 166/Er has been used to investigate the electronic ground state in the ternary compound ErRh/sub 4/B/sub 4/ both in the superconducting and magnetically ordered states.

  6. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  7. A new ternary composite based on carbon nanotubes/polyindole/graphene with preeminent electrocapacitive performance for supercapacitors

    Science.gov (United States)

    Wang, Weigang; Wu, Shishan

    2017-02-01

    In this work, a hybrid nanocomposite based on carbon nanotubes (CNTs), polyindole (PIn) and reduced graphene oxides (RGO) was firstly fabricated and the optimal feed ratio of this composite was investigated. The morphology and structure of CNTs/PIn/RGO composite were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The electrocapacitive performances of this ternary electrode composite were researched by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). And the specific surface area and pore size distribution of the samples were investigated by nitrogen adsorption-desorption isotherms. The prepared composite shows high dispersibility, high specific capacitance and excellent stability. Specifically, the CNTs/PIn/RGO composite exhibits a large specific capacitance of 383 F g-1 at 1 A g-1 and outstanding cycling stability of 88.79% capacitive retention after 3000 cycles at 10 A g-1. It was anticipated that CNTs/PIn/RGO12 composite could be a practical and valuable material for the application of supercapacitors.

  8. Synthesis, characteristics and luminescent properties of a new Tb(III) ternary complex applied in near UV-based LED

    Science.gov (United States)

    Sun, Naiqun; Li, Liping; Yang, Yamin; Zhang, Aiqin; Jia, Husheng; Liu, Xuguang; Xu, Bingshe

    2015-11-01

    A novel Tb(III) ternary complex, Tb(p-BBA)3UA, was synthesized with 4-benzoylbenzoic acid (p-BBA) as primary ligand and undecylenic acid (UA) as reactive ligand. Tb(III) complex exhibits high thermal stability and wide and strong excitation bands from 310 nm to 400 nm when monitored at 543 nm, which matches well with the 365 nm UV chip. The complex displays Tb(III) characteristic peaks at 488, 543, 584 and 619 nm under the excitation of 365 nm UV-light. The intramolecular energy transfer process was also discussed. Meanwhile, the complex has longer fluorescence lifetime (1.317 ms) and higher quantum yield (44.8%). When used in LED with 365 nm UV chip (power efficiency is 17.3 lm/W), the complex still maintained its qualified luminescent performance. All the results indicate that Tb(p-BBA)3UA can be applied as a green component for fabrication of near UV-based white LED.

  9. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  10. Thermoelectric properties of ternary and Al-containing quaternary Ru{sub 1-x}Re{sub x}Si{sub y} chimney-ladder compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, Kyosuke [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: k.kishida@materials.mbox.media.kyoto-u.ac.jp; Ishida, Akira; Koyama, Tatsuya; Harada, Shunta; Okamoto, Norihiko L.; Tanaka, Katsushi; Inui, Haruyuki [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)

    2009-04-15

    The thermoelectric properties of ternary and Al-containing quaternary Ru{sub 1-x}Re{sub x}Si{sub y} chimney-ladder phases have been studied as a function of the Re concentration with the use of directionally solidified alloys. The Ru{sub 1-x}Re{sub x}Si{sub y} chimney-ladder phases exhibit n- and p-type semiconducting behaviors, respectively, at low and high Re concentrations, at which the X(=Si)/M(=Ru + Re) ratios are respectively, larger and smaller than those expected from the VEC (valence electron concentration) = 14 rule. The absolute values of both Seebeck coefficient and electrical resistivity increase as the extent of the deviation from the VEC = 14 rule increases, i.e. as the alloy composition deviates from that corresponding to the p-n transition (x {approx} 0.5), indicating that the carrier concentration can be controlled by changing the extent of compositional deviation from the ideal VEC = 14 composition. The highest values of the dimensionless figure of merit obtained are 0.47 for ternary (x = 0.60) and 0.56 for Al-containing quaternary alloys. The reasons for the systematic compositional deviation from the ideal VEC = 14 compositions observed for a series of chimney-ladder phases are discussed in terms of atomic packing.

  11. Cohesion energy calculations for ternary ionic novel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez P, G.; Cabrera, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico); Mijangos, R.R. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-88, 83190 Hermosillo, Sonora (Mexico); Valdez, E. [Escuela Nacional de Estudios Profesionales Acatlan, Universidad Nacional Autonoma de Mexico, Santa Cruz Acatlan, Naucalpan (Mexico); Duarte, C. [Departamento de Geologia, Universidad de Sonora, 83000 Hermosillo, Sonora (Mexico)

    2001-07-01

    The present work calculates the value of the link energy of a crystalline ternary structure newly formed by alkali halides. The ternary structure prepared with different concentrations of KCl{sub x}KBrRbCl{sub 2} maintains a very good miscibility and stability. The calculation is based on the use of a generalization of the Vegard law (which generally is valid for binary compounds) for calculating the values of the lattice constant and the repulsive m exponent. The value of the lattice parameter given by X-ray diffractometry agrees with the close approximation of the calculated value of the method used. It also compares the value of energy cohesion obtained by the Born expression with more complex approximations. (Author)

  12. Co-based ternary nanocomposites: synthesis and their superior performances for hydrogenation of p-nitrophenol and adsorption for methyl blue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Yuan; Fan, Yan-Ling; Ni, Jing-Jing; Xu, Ting-Ting; Song, Ji-Ming, E-mail: songjm@ahu.edu.cn, E-mail: jiming@ahu.edu.cn [Anhui University, The Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, School of Chemistry & Chemical Engineering (China)

    2016-01-15

    A new kind of Co-based ternary nanocomposites has been obtained via one step without any additional surfactant at zero centigrade degree. Some experimental parameters play crucial roles in determining the morphologies and homogeneity of the final products, such as reaction temperature and the introduction of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O. The samples were characterized by XRD, SEM, TEM, UV–Vis, XPS, and BET. The result reveals that the as-prepared samples are Co{sub 1.29}Ni{sub 1.71}O{sub 4}–Co{sub 3}S{sub 4}–Co{sub 3}O{sub 4} Co-based ternary nanocomposites with an elliptic morphology composed of numerous fold-shaped superthin films (average thickness of ca. 2 nm). Interestingly, the obtained nanocomposites display superior performance for the hydrogenation of p-nitrophenol at room temperature in the presence of NaBH{sub 4}. More importantly, the as-prepared nanocomposites show the huge adsorption capacity for methyl blue at room temperature, reaches 1100 mg g{sup −1}. Graphical Abstract: A kind of new-type Co-based ternary nanocomposites has been obtained via one step without surfactants at zero centigrade degree. The as-prepared nanocomposites display superior performance for the hydrogenation of p-nitrophenol in the presence of NaBH{sub 4} at room temperature.

  13. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material.

    Science.gov (United States)

    Stylianakis, M M; Konios, D; Kakavelakis, G; Charalambidis, G; Stratakis, E; Coutsolelos, A G; Kymakis, E; Anastasiadis, S H

    2015-11-14

    A graphene-based porphyrin molecule (GO-TPP) was synthesized by covalent linkage of graphene oxide (GO) with 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP-NH2). The yielded graphene-based material is a donor-acceptor (D-A) molecule, exhibiting strong intermolecular interactions between the GO core (A) and the covalently anchored porphyrin molecule (D). To demonstrate the universal role of GO-TPP as an electron cascade material, ternary blend organic photovoltaics based on [6,6]-phenyl-C71-butyric-acid-methyl-ester (PC71BM) as an electron acceptor material and two different polymer donor materials, poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) and the highly efficient poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7), were fabricated. The addition of GO-TPP into the active layer implies continuous percolation paths between the D-A interfaces, enhancing charge transport, reducing exciton recombination and thus improving the photovoltaic performance of the device. A simultaneous increase of short circuit current density (Jsc), open-circuit voltage (Voc) and fill factor (FF), compared to the PTB7:PC71BM reference cell, led to an improved power conversion efficiency (PCE) of 8.81% for the PTB7:GO-TPP:PC71BM-based device, owing mainly to the more efficient energy level offset between the active layer components.

  14. Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys

    Directory of Open Access Journals (Sweden)

    Farida Benhalla-Haddad

    2012-01-01

    Full Text Available This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (δ(Fe and graphite as well as two univariante lines : peritectic L+(Fe↔(Fe and eutectic L↔(Fe+Cgraphite. The ternary alloys were thereafter studied in nondeaerated solution of 10−3 M NaHCO3 + 10−3 M Na2SO4, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.

  15. Influence of the active layer nanomorphology on device performance for ternary PbS(x)Se(1-x) quantum dots based solution-processed infrared photodetector.

    Science.gov (United States)

    Song, Taojian; Cheng, Haijuan; Fu, Chunjie; He, Bo; Li, Weile; Xu, Junfeng; Tang, Yi; Yang, Shengyi; Zou, Bingsuo

    2016-04-22

    In this paper, the influence of the active layer nanomorphology on device performance for ternary PbS(x)Se(1-x) quantum dot-based solution-processed infrared photodetector is presented. Firstly, ternary PbS(x)Se(1-x) quantum dots (QDs) in various chemical composition were synthesized and the bandgap of the ternary PbS(x)Se(1-x) QDs can be controlled by the component ratio of S/(S + Se), and then field-effect transistor (FET) based photodetectors Au/PbS0.4Se0.6:P3HT/PMMA/Al, in which ternary PbS0.4Se0.6 QDs doped with poly(3-hexylthiophene) (P3HT) act as the active layer and poly(methyl methacrylate) (PMMA) as the dielectric layer, were presented. By changing the weight ratio of P3HT to PbS0.4Se0.6 QDs (K = M(P3HT):M(QDs)) in dichlorobenzene solution, we found that the device with K = 2:1 shows optimal electrical property in dark; however, the device with K = 1:2 demonstrated optimal performance under illumination, showing a maximum responsivity and specific detectivity of 55.98 mA W(-1) and 1.02 × 10(10) Jones, respectively, at low V(DS) = -10 V and V(G) = 3 V under 980 nm laser with an illumination intensity of 0.1 mW cm(-2). By measuring the atomic force microscopy phase images of PbS0.4Se0.6:P3HT films in different weight ratio K, our experimental data show that the active layer nanomorphology has a great influence on the device performance. Also, it provides an easy way to fabricate high performance solution-processed infrared photodetector.

  16. Synthesis and characterization of the new ternary uranium compound U{sub 1.2}Fe{sub 4}Si{sub 9.7}

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Satoru; Okuda, Kiichi; Adachi, Tomohiro [Osaka Prefectural Univ., Sakai (Japan); Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika

    1997-09-01

    A single crystal of a new ternary silicide U{sub 1.2}Fe{sub 4}Si{sub 9.7} has been synthesized by the Czochralski method and characterized by X-ray diffraction, magnetization, specific heat and electrical resistivity measurements. It crystallizes in the hexagonal Er{sub 1.2}Fe{sub 4}Si{sub 9.8}-type structure characterized by a disordered two-dimensional layer of U-atoms. The lattice parameters are a = 3.956(1) A and c = 15.055(2) A. Magnetic susceptibility follows the Curie-Weiss law down to 40 K with the effective magnetic moment of 2.4 {mu}{sub B}/U. The electronic specific heat coefficient, {gamma} of 180 mJ/K{sup 2}mol{center_dot}U was obtained. A large residual resistivity due to the disordered structure of the U-Si layer was observed. (author)

  17. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-01-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254

  18. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites.

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-21

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  19. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  20. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-02-01

    Full Text Available Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated.

  1. Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium (III) complexes bonded

    Science.gov (United States)

    Yang, Jing; Li, Zhiqiang; Xu, Yang; Wang, Yige

    2016-05-01

    In this work, a novel red-emitting organic-inorganic hybrid material with europium (III) lanthanide β-diketonate complexes linked to a zirconia was reported, which was realized by adduct formation with zirconia-tethered terpyridine moieties. Luminescence enhancement of the hybrid material has been observed compared with pure Eu(tta)3·2H2O. Transparent and strongly luminescent thin films based on PMMA were also prepared at room temperature, which are highly luminescent under UV-light irradiation and possess a promising prospect in the area of optics.

  2. Dielectric Relaxation of Lanthanide-Based Ternary Oxides: Physical and Mathematical Models

    Directory of Open Access Journals (Sweden)

    Chun Zhao

    2012-01-01

    Full Text Available Cerium-doped hafnium oxides (CexHf1−xO2 and lanthanum-doped zirconium oxides (LaxZr1−xO2 were investigated. The highest dielectric constants, k, were obtained from lightly doped oxides with an La content of x=0.09 and a Ce content of x=0.1, for which k-values of 33~40 were obtained. The dielectric relaxation appears to be related to the size of crystal grains formed during annealing, which was dependent on the doping level. The physical and mathematical models were used to analyze the relationship between k-values and frequencies. The variations in the k-values up to megahertz frequencies for both CexHf1−xO2 and LaxZr1−xO2 are simulated based on the Curie-von Schweidler (CS or Havriliak-Negami (HN relationships. Concerning the lightly doped CexHf1−xO2 and LaxZr1−xO2, the data extracted are best modeled by the HN law, while LaxZr1−xO2 with doping level from x=0.22 to 0.63 are best modelled based on the CS law.

  3. Ternary rare-earth based alternative gate-dielectrics for future integration in MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Juergen; Lopes, Joao Marcelo; Durgun Oezben, Eylem; Luptak, Roman; Lenk, Steffi; Zander, Willi; Roeckerath, Martin [IBN 1-IT, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-07-01

    The dielectric SiO{sub 2} has been the key to the tremendous improvements in Si-based metal-oxide-semiconductor (MOS) device performance over the past four decades. It has, however, reached its limit in terms of scaling since it exhibits a leakage current density higher than 1 A/cm{sup 2} and does not retain its intrinsic physical properties at thicknesses below 1.5 nm. In order to overcome these problems and keep Moore's law ongoing, the use of higher dielectric constant (k) gate oxides has been suggested. These high-k materials must satisfy numerous requirements such as the high k, low leakage currents, suitable band gap und offsets to silicon. Rare-earth based dielectrics are promising materials which fulfill these needs. We will review the properties of REScO{sub 3} (RE = La, Dy, Gd, Sm, Tb) and LaLuO{sub 3} thin films, grown with pulsed laser deposition, e-gun evaporation or molecular beam deposition, integrated in capacitors and transistors. A k > 20 for the REScO{sub 3} (RE = Dy, Gd) and around 30 for (RE = La, Sm, Tb) and LaLuO{sub 3} are obtained. Transistors prepared on SOI and sSOI show mobility values up to 380 cm{sup 2}/Vs on sSOI, which are comparable to such prepared with HfO{sub 2}.

  4. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  5. A New Nonlinear Compound Forecasting Method Based on ANN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper the compound-forecasting method is discussed. The compound-forecasting method is one of the hotspots in the current predication. Firstly, the compound-forecasting method is introduced and various existing compound-forecasting methods arediscussed. Secondly, the Artificial Neural Network (ANN) is brought in compound-prediction research and a nonlinear compound-prediction model based on ANN is presented. Finally, inorder to avoid irregular weight, a new method is presented which uses principal component analyses to increase the availability of compound-forecasting information. Higherforecasting precision is achieved in practice.

  6. Ternary rare earth-lanthanide sulfides

    Science.gov (United States)

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  7. Ternary optical computer principle

    Institute of Scientific and Technical Information of China (English)

    金翊; 何华灿; 吕养天

    2003-01-01

    The fundamental principle and the characteristics of ternary optical computer, using horizontal polarized light, vertical polarized light and no-intensity to express information, are propounded in thispaper. The practicability to make key parts of the ternary optical computer from modern micro or integrated optical devices, opto-electronic and electro-photonic elements is discussed. The principle can be applied in three-state optical fiber communication via horizontal and vertical polarized light.

  8. Predicting toxicity of aromatic ternary mixtures to algae

    Institute of Scientific and Technical Information of China (English)

    LU GuangHua; WANG Chao; WANG PeiFang; YANG ChengZhi

    2009-01-01

    Aquatic ecosystems are often polluted with more than one type of contaminant, and information on the combined toxic effects of mixed pollutants on aquatic organisms is scarce at present. Acute toxicity of aromatic compounds and their ternary mixtures to the alga (Scenedesmus obliquus) was determined by the algae growth inhibition test. The median effective concentration (EC_(50)) value for a single aromatic compound and EC_(50mix) values for mixtures were obtained, the logarithm of n-octanol/water partition coefficient (logP_(mix)) and the frontier orbital energy gap (△E_(mix) for mixtures were calculated. Based on the quantitative structure-activity relationship model for single chemical toxicity log(1/EC_(50)) =0.426logP-1.150△E+12.61 (n=15, R~2=0.917 and Q~2=0.878), the following two-descriptor model was developed for the ternary mixture toxicity of aromatic compounds: log(1/EC_(50mix))=O.68210gP_(mix)-O.367△E_(mix)+ 4.971 (n=44, R~2-0.869 and Q~2=0.843). This model can be used to predict the combined toxicity of mixtures containing toxicants with different mechanisms of action.

  9. Regularities of formation of ternary alloy phases between non-transition metals

    Institute of Scientific and Technical Information of China (English)

    姚莉秀; 陈瑞亮; 钦佩; 陈念贻; 陆文聪

    2000-01-01

    Using a four-parameter model based on extended Miedema’ s cellular model of alloy phases and pattern recognition methods, the regularities of formation of ternary intermetallic compounds between non-transition metals have been investigated. The criterion of formation can be expressed as some empirical functions of Φ (electronegativity), nws1/3( valence electron density in Wagn-er-Seitz cell), R (Pauling’s metallic radius) and Z (number of valence electrons in atom).

  10. Regularities of formation of ternary alloy phases between non-transition metals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using a four-parameter model based on extended Miedema's cellular model of alloy phases and pattern recognition methods, the regularities of formation of ternary intermetallic compounds between non-transition metals have been investigated. The criterion of formation can be expressed as some empirical functions of Ф (electronegativity), n1/3WS (valence electron density in Wagner-Seitz cell), R (Pauling's metallic radius) and Z (number of valence electrons in atom).

  11. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    Castricum, H.L.; Bakker, H.; Poels, E.K.

    1999-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  12. Synthesis and single-crystal structure of the pseudo-ternary compounds LiA[N(CN){sub 2}]{sub 2} (A = K or Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    Crystals of LiA[N(CN){sub 2}]{sub 2} were obtained from the reaction of LiCl and ACl (A = K or Rb) with Ag[N(CN){sub 2}] in water and subsequent evaporation of the filtered solution at 80 C under normal atmospheric conditions. Crystals of the title compound form thin rectangular plates that are transparent, colorless, and very fragile. Single-crystal structure analyses have shown that both compounds are isotypic and adopt the tetragonal space group I4/mcm (no. 140, Z = 4) with the cell parameters a = 701.53(12) and c = 1413.7(5) pm for LiK[N(CN){sub 2}]{sub 2} and a = 730.34(10) and c = 1414.4(4) pm for LiRb[N(CN){sub 2}]{sub 2}. The crystal structure is described and compared to that of the pseudo-binary alkali metal dicyanamides.

  13. Phase diagram of the Al-Er-Mo ternary system at 873 K

    Science.gov (United States)

    Pan, Yanfang; Yang, Wenchao; Tang, Chenghuang; Lan, Yanni; Zhan, Yong Zhong

    2015-11-01

    The phase relationship in the Al-Er-Mo ternary system at 873 K has been investigated based on the equilibrated method mainly by means of X-ray powder diffraction and scanning electron microscopy. The existence of 10 binary compounds and two ternary compounds has been confirmed. The results present that the isothermal section at 873 K is governed by 15 single-phase regions, 29 two-phase regions and 15 three-phase regions. By using the phase-disappearing method, Al8Mo3 has a narrow homogeneity range (from 72 to 73 at% Al), while the homogeneity range of AlMo3 is from 21% to 28.5% at% Al. Also, the maximum solubility of Al in Mo is about 16 at%.

  14. Photovoltaic cells based on ternary P3HT:PCBM:polymethine dye active layer transparent in the visible range of light

    Science.gov (United States)

    Bliznyuk, Valery N.; Gasiorowski, Jacek; Ishchenko, Alexander A.; Bulavko, Gennadiy V.; Rahaman, Mahfujur; Hingerl, Kurt; Zahn, Dietrich R. T.; Sariciftci, Niyazi S.

    2016-12-01

    Optical and photovoltaic properties were studied for ternary photovoltaic cells containing a traditional donor-acceptor bulk-heterojunction (BHJ) active layer modified with polymethine dye molecules in a broad range of compositions and wavelengths. An effect of composition induced optical transparency, due to the strong modification of the density of states, was observed for symmetrical compositions with approximately equal amount of components. Based on our spectroscopic ellipsometry and atomic force microscopy (AFM) studies we can suggest that the variation of the refractive index, which is significantly reduced in the visible range for ternary systems, is involved in the physical mechanism of the phenomenon. Despite of an addition of the IR absorbing component (which allows broadening of the absorption band to up to 800 nm) no improvement in the power conversion efficiency (PCE) is observed in comparison to the binary BHJ system (P3HT:PCBM). Nevertheless, we believe that further advance of the efficiency will be possible if the energy levels will be chemically designed to avoid formation of charge traps at the BHJ interface during light excitation. Such fine adjustment of the system should become possible with a proper choice of polymer:dye composition due to a high versatility of the polymethine dyes demonstrated in previous studies.

  15. Binary and Ternary Catalytic Systems for Olefin Metathesis Based on MoCl5/SiO2

    Science.gov (United States)

    Bykov, Victor I.; Belyaev, Boris A.; Butenko, Tamara A.; Finkelshtein, Eugene Sh.

    Kinetics of α-olefin metathesis in the presence of binary (MoCl5/ SiO2-Me4Sn) and ternary catalytic systems (MoCl5/SiO2-Me4Sn-ECl4, E = Si or Ge) was studied. Specifically, kinetics and reactivity of 1-decene, 1-octene, and 1-hexene in the metathesis reaction at 27°C and 50°C in the presence of MoCl5/ SiO2-SnMe4 were examined and evaluated in detail. It was shown that experimental data comply well with the simple kinetic equation for the rate of formation of symmetrical olefins with allowance for the reverse reaction and catalyst deactivation: r = left( {k_1 \\cdot c_α - k_{ - 1} \\cdot c_s } right) \\cdot e^{ - k_d \\cdot tilde n_{tot} } . The coefficients for this equation were determined, and it was shown that these α-olefins had practically the same reactivity. It was found that reactivation in the course of metathesis took place due to the addition of a third component (silicon tetrachloride or germanium tetrachloride in combination with tetramethyltin) to a partially deactivated catalyst. The number of active centers was determined (5-6% of the amount of Mo) and the mechanisms of formation, deactivation, and reactivation were proposed for the binary and ternary catalytic systems. The role of individual components of the catalytic systems was revealed.

  16. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    Science.gov (United States)

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM.

  17. Surface exciton-polaritons in ternary mixed crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The surface exciton-polaritons in ternary mixed crystals are investigated. The numerical calculations for several Ⅲ-Ⅴ and Ⅱ-Ⅵ compound systems are performed and the polariton frequencies as functions of the wave-vector and the compositions for ternary mixed crystals AlxGa1-xAs, CdxZn1-xSe and AlxGa1-xN as examples are given and discussed. The results show that the dependence of the energies of surface polaritons on the composition of ternary mixed crystals are slightly nonlinear different from the bulk modes.

  18. Phase equilibria in the ternary In-Ni-Sn system at 700 °C.

    Science.gov (United States)

    Schmetterer, C; Zemanova, A; Flandorfer, H; Kroupa, A; Ipser, H

    2013-04-01

    The phase equilibria of the ternary system In-Ni-Sn were investigated experimentally at 700 °C using X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron micro probe analysis (EMPA) and energy dispersive X-ray spectroscopy (EDX). A corresponding isothermal section was established based on these results. This particular temperature was chosen because it allowed obtaining reliable results within reasonable time. The existence of the ternary phase InNi6Sn5 was confirmed whereas the ternary compound In2NiSn, reported earlier in literature, was found to be part of a large solid solution field based on binary InNi. The ternary solubility of the binary phases was established, and continuous solid solutions were found between the isostructural phases Ni3Sn LT and InNi3 as well as between Ni3Sn2 HT and InNi2. In addition, this isothermal section could be well reproduced by CALPHAD modelling. The resulting calculated isotherm at 700 °C is presented, too, and compared with the experimental results.

  19. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics

    2016-08-01

    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  20. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    Science.gov (United States)

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit.

  1. Microstructural and Electronic Origins of Open-Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends

    KAUST Repository

    Mollinger, Sonya A.

    2015-09-22

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Organic ternary heterojunction photovoltaic blends are sometimes observed to undergo a gradual evolution in open-circuit voltage (Voc) with increasing amounts of a second donor or an acceptor. The Voc is strongly correlated with the energy of the charge transfer state in the blend, but this value depends on both local and mesoscopic orders. In this work, the behavior of Voc in the presence of a wide range of interfacial electronic states is investigated. The key charge transfer state interfaces responsible for Voc in several model systems with varying morphology are identified. Systems consisting of one donor with two fullerene molecules and of one acceptor with a donor polymer of varying regio-regularity are used. The effects from the changing energetic disorder in the material and from the variation due to a law of simple mixtures are quantified. It has been found that populating the higher-energy charge transfer states is not responsible for the observed change in Voc upon the addition of a third component. Aggregating polymers and miscible fullerenes are compared, and it has been concluded that in both cases charge delocalization, aggregation, and local polarization effects shift the lowest-energy charge transfer state distribution. The open-circuit voltage evolution and charge transfer state interfaces in ternary organic photovoltaic blends are investigated using several model systems. The changes in subgap spectra from energetic disorder and increased population of higher energy states are analyzed and the lowest charge transfer state distribution is observed to shift due to local aggregation and delocalization effects.

  2. Organic ternary solar cells: a review.

    Science.gov (United States)

    Ameri, Tayebeh; Khoram, Parisa; Min, Jie; Brabec, Christoph J

    2013-08-21

    Recently, researchers have paid a great deal of attention to the research and development of organic solar cells, leading to a breakthrough of over 10% power conversion efficiency. Though impressive, further development is required to ensure a bright industrial future for organic photovoltaics. Relatively narrow spectral overlap of organic polymer absorption bands within the solar spectrum is one of the major limitations of organic solar cells. Among different strategies that are in progress to tackle this restriction, the novel concept of ternary organic solar cells is a promising candidate to extend the absorption spectra of large bandgap polymers to the near IR region and to enhance light harvesting in single bulk-heterojunction solar cells. In this contribution, we review the recent developments in organic ternary solar cell research based on various types of sensitizers. In addition, the aspects of miscibility, morphology complexity, charge transfer dynamics as well as carrier transport in ternary organic composites are addressed.

  3. Synthesis, structural characterization and cytotoxic activity of ternary copper(II)-dipeptide-phenanthroline complexes. A step towards the development of new copper compounds for the treatment of cancer.

    Science.gov (United States)

    Iglesias, Sebastián; Alvarez, Natalia; Torre, María H; Kremer, Eduardo; Ellena, Javier; Ribeiro, Ronny R; Barroso, Rafael P; Costa-Filho, Antonio J; Kramer, M Gabriela; Facchin, Gianella

    2014-10-01

    In the search for new compounds with antitumor activity, coordination complexes with different metals are being studied by our group. This work presents the synthesis and characterization of six copper complexes with general stoichiometry [Cu(L-dipeptide)(phen)]·nH2O (were phen=1,10-phenanthroline) and their cytotoxic activities against tumor cell lines. To characterize these systems, analytical and spectroscopic studies were performed in solid state (by UV-visible, IR, X-ray diffraction) including the crystal structure of four new complexes (of the six complexes studied): [Cu(Ala-Phe)(phen)]·4H2O, [Cu(Phe-Ala)(phen)]·4H2O, [Cu(Phe-Val)(phen)]·4.5H2O and [Cu(Phe-Phe)(phen)]·3H2O. In all of them, the copper ion is situated in a distorted squared pyramidal environment. The phen ligand is perpendicular to the dipeptide, therefore exposed and potentially available for interaction with biological molecules. In addition, for all the studied complexes, structural information in solution using EPR and UV-visible spectroscopies were obtained, showing that the coordination observed in solid state is maintained. The lipophilicity, DNA binding and albumin interaction were also studied. Biological experiments showed that all the complexes induce cell death in the cell lines: HeLa (human cervical adenocarcinoma), MCF-7 (human metastatic breast adenocarcinoma) and A549 (human lung epithelial carcinoma). Among the six complexes, [Cu(Ala-Phe)(phen)] presents the lowest IC50 values. Taken together all these data we hypothesize that [Cu(Ala-Phe)(phen)] may be a good candidate for further studies in vivo.

  4. Coelectrodeposition of Ternary Mn-Oxide/Polypyrrole Composites for ORR Electrocatalysts: A Study Based on Micro-X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping

    Directory of Open Access Journals (Sweden)

    Benedetto Bozzini

    2015-08-01

    Full Text Available Low energy X-ray fluorescence (XRF and soft X-ray absorption (XAS microspectroscopies at high space-resolution are employed for the investigation of the coelectrodeposition of composites consisting of a polypyrrole(PPy-matrix and Mn-based ternary dispersoids, that have been proposed as promising electrocatalysts for oxygen-reduction electrodes. Specifically, we studied Mn–Co–Cu/PP, Mn–Co–Mg/PPy and Mn–Ni–Mg/PPy co-electrodeposits. The Mn–Co–Cu system features the best ORR electrocatalytic activity in terms of electron transfer number, onset potential, half-wave potential and current density. XRF maps and micro-XAS spectra yield compositional and chemical state distributions, contributing unique molecular-level information on the pulse-plating processes. Mn, Ni, Co and Mg exhibit a bimodal distribution consisting of mesoscopic aggregates of micrometric globuli, separated by polymer-rich ridges. Within this common qualitative scenario, the individual systems exhibit quantitatively different chemical distribution patterns, resulting from specific electrokinetic and electrosorption properties of the single components. The electrodeposits consist of Mn3+,4+-oxide particles, accompanied by combinations of Co0/Co2+, Ni0/Ni2+ and Cu0,+/Cu2+ resulting from the alternance of cathodic and anodic pulses. The formation of highly electroactive Mn3+,4+ in the as-fabricated material is a specific feature of the ternary systems, deriving from synergistic stabilisation brought about by two types of bivalent dopants as well as by galvanic contact to elemental metal; this result represents a considerable improvement in material quality with respect to previously studied Mn/PPy and Mn-based/PPy binaries.

  5. Alkane-Based Urethane Potting Compounds

    Science.gov (United States)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  6. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    Science.gov (United States)

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications.

  7. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Ebrahimpour, Zeinab; Moslemi, Fatemeh

    2015-07-01

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N-1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  8. Carbon-Based Compounds and Exobiology

    Science.gov (United States)

    Kerridge, John; DesMarais, David; Khanna, R. K.; Mancinelli, Rocco; McDonald, Gene; diBrozollo, Fillipo Radicati; Wdowiak, Tom

    1996-01-01

    The Committee for Planetary and Lunar Explorations (COMPLEX) posed questions related to exobiological exploration of Mars and the possibility of a population of carbonaceous materials in cometary nuclei to be addressed by future space missions. The scientific objectives for such missions are translated into a series of measurements and/or observations to be performed by Martian landers. These are: (1) A detailed mineralogical, chemical, and textural assessment of rock diversity at a landing site; (2) Chemical characterization of the materials at a local site; (3) Abundance of Hydrogen at any accessible sites; (4) Identification of specific minerals that would be diagnostic of aqueous processes; (5) Textual examination of lithologies thought to be formed by aqueous activity; (6) Search for minerals that might have been produced as a result of biological processes; (7) Mapping the distribution, in three dimensions, of the oxidant(s) identified on the Martian surface by the Viking mission; (8) Definition of the local chemical environment; (9) Determination of stable-isotopic ratios for the biogenic elements in surface mineral deposits; (10) Quantitative analysis of organic (non-carbonate) carbon; (11) Elemental and isotopic composition of bulk organic material; (12) Search for specific organic compounds that would yield information about synthetic mechanisms, in the case of prebiotic evolution, and about possible bio-markers, in the case of extinct or extant life; (13) and Coring, sampling, and detection of entrained gases and cosmic-ray induced reaction products at the polar ice cap. A discussion of measurements and/or observations required for cometary landers is included as well.

  9. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  10. Improved Ternary Subdivision Interpolation Scheme

    Institute of Scientific and Technical Information of China (English)

    WANG Huawei; QIN Kaihuai

    2005-01-01

    An improved ternary subdivision interpolation scheme was developed for computer graphics applications that can manipulate open control polygons unlike the previous ternary scheme, with the resulting curve proved to be still C2-continuous. Parameterizations of the limit curve near the two endpoints are given with expressions for the boundary derivatives. The split joint problem is handled with the interpolating ternary subdivision scheme. The improved scheme can be used for modeling interpolation curves in computer aided geometric design systems, and provides a method for joining two limit curves of interpolating ternary subdivisions.

  11. Studies on ternary silver sulfides; Fukugo gin ryukabutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    Some sulfides containing silver show high ion mobility based on movability of silver, whose application is expected. Studies have been carried out centrally on synthesis of new compounds of ternary silver sulfides by elucidating the relationship among their compositions, structures and properties by means of crystal chemical studies mainly on their phase relationship. A few new compounds have been synthesized, such as the ones having the argyrodite family compound structure including transition metals. The synthesizing process takes a kind of turbulent liquid state structure at elevated temperatures because of movability of silver, but silver is fixed at low temperatures in different sites between skeleton structures made by other atoms. These studies on phase transfer, structures, and silver movability have been based on X-ray diffraction, infrared and Raman spectroscopic measurements, NMR, measurements of electric and thermal characteristics. For the studies related to compositions and structures of ternary metal sulfides which take compound crystalline structure, a structure analyzing method based on multi-dimensional hyperspatial groups was used. This paper reports the summary of the studies in seven chapters, and dwells on the remaining problems and future prospects. 158 refs., 114 figs., 65 tabs.

  12. Preparation and photoluminescence enhancement in terbium(III ternary complexes with β-diketone and monodentate auxiliary ligands

    Directory of Open Access Journals (Sweden)

    Devender Singh

    2016-12-01

    Full Text Available A series of new solid ternary complexes of terbium(III ion based on β-diketone ligand acetylacetone (acac and monodentate auxiliary ligands (aqua/urea/triphenylphosphineoxide/pyridine-N-oxide had been prepared. The structural characterizations of synthesized ternary compounds were studied by means of elemental analysis, infrared (IR, and proton nuclear magnetic resonance (NMR spectral techniques. The optical characteristics were investigated with absorption as well as photoluminescence spectroscopy. Thermal behavior of compounds was examined by TGA/DTA analysis and all metal complexes were found to have good thermal stability. The luminescence decay time of complexes were also calculated by monitoring at emission wavelength corresponding to 5D4 → 7F5 transition. A comparative inspection of the luminescent behavior of prepared ternary compounds was performed in order to determine the function of auxiliary ligands in the enhancement of luminescence intensity produced by central terbium(III ion. The color coordinates values suggested that compounds showed bright green emission in visible region in electromagnetic spectrum. Complexes producing green light could play a significant role in the fabrication of efficient light conversion molecular devices for display purposes and lightning systems.

  13. The volatile compound BinBase mass spectral database

    Directory of Open Access Journals (Sweden)

    Barupal Dinesh K

    2011-08-01

    Full Text Available Abstract Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species. Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  14. Computer recognition of slag property diagrams in ternary systems

    Institute of Scientific and Technical Information of China (English)

    Jinxiong Lu; Li Wang; Jiongming Zhang; Xinhua Wang

    2004-01-01

    In order to take data information from the slag property diagram in a ternary system automatically and actually, a picture recognition and drawing software has been developed by Visual Basic 6.0 based on the image coding principle of computer system and the graphics programming method of VB. This software can transform the ternary system isopleth diagram from bitmap format to data file and establish a corresponding database which can be applied to rapidly retrieve a mass of data and make correlative thermodynamics or kinetics calculation. Besides, it still has the function of drawing the ternary system diagram which can draw different kinds of property parameters in the same diagram.

  15. Investigation of ternary and quaternary high-temperature fixed-point cells, based on platinum-carbon-X, as blind comparison artefacts

    Science.gov (United States)

    Dong, W.; Machin, G.; Bloembergen, P.; Lowe, D.; Wang, T.

    2016-11-01

    Extensive studies of platinum-carbon eutectic alloy based high temperature fixed point cells have shown that this alloy has extremely good metrological potential as a temperature reference. However, it’s possible adoption as an accepted reference standard means that its eutectic temperature value will soon be agreed with an uncertainty less than most radiation thermometry scales at that temperature. Thus it will lack credibility if used as a future scale comparison artefact. To avoid this, the fixed-point cell can be deliberately doped with an impurity to change its transition temperature by an amount sufficient to test the accuracy of the scales of the institutes, involved in the comparison. In this study dopants of palladium and iridium were added to platinum-carbon to produce ternary alloy and quaternary alloy fixed-point cells. The stability of these artefacts was demonstrated and the fixed-point cells were used to compare the ITS-90 scales of NIM and NPL. It was found that the fixed point temperatures could be changed by an appreciable amount while retaining the stability and repeatability required for comparison artefacts.

  16. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    Science.gov (United States)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  17. Synthesis of novel chiral compounds of purine and pyrimidine bases

    Institute of Scientific and Technical Information of China (English)

    汪毓海; 陈庆华

    1999-01-01

    The physiologically active groups such as purine and pyrimidine bases are introduced to the asymmetric ynthesis. The optically pure compounds bearing purine and pyrimidine bases (5a—5e) were prepared via the asymetric Michael addition reaction of purines and pyrimidines as Michael donators with the chiral source 5-(R)-[(1R, 2S, 5R)-menthyloxy]-2(5H)-furanone (3a), which was prepared from the natural chiral auxiliary (-)-menthol. The synthetic method was studied in detail and the new compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]D20, IR, UV, 1H NMR, 13C NMR and MS. The absolute configuration of 5a was established by X-ray crystallography. The results provided an efficient synthetic route to chiral purines and pyrimidine analogues, and offered chiral sources for further research on the physiologically active compounds of chiral nucleotides.

  18. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    Science.gov (United States)

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).

  19. Phosphorus-based compounds for EUV multilayer optics materials

    NARCIS (Netherlands)

    Medvedev, V.V.; Yakshin, A.E.; Kruijs, van de R.W.E.; Bijkerk, F.

    2015-01-01

    We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were cons

  20. FP-LAPW methodology based theoretical investigation of structural, electronic and optical properties of MgxPb1-xS, MgxPb1-xSe and MgxPb1-xTe ternary alloys

    Science.gov (United States)

    Chattopadhyaya, Surya; Bhattacharjee, Rahul

    2017-01-01

    The structural, electronic and optical properties of MgxPb1-xS, MgxPb1-xSe and MgxPb1-xTe alloys for 0≤ x≤1 in their rock-salt (B1) crystallographic phase have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method under the framework of density functional theory (DFT). Using the Wu-Cohen generalized-gradient approximation (WC-GGA) induced exchange-correlation potential scheme, the ground state structural parameters such as equilibrium lattice constants, bulk modulus and its pressure derivatives are calculated and deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence have been observed for the alloys. Electronic band structures and density of states have been calculated using Tran-Blaha modified Becke-Johnsoexit3b2tex.batn (TB-mBJ) parameterization scheme to study the electronic properties of the binary compounds and their ternary alloys. Using the approach of Zunger and co-workers, the microscopic origins of band gap bowing have been discussed in term of volume deformation, charge exchange and structural relaxation. Optical properties of the binary compounds and their ternary alloys have been calculated in terms of their respective dielectric function, refractive index, reflectivity and optical conductivity. Few calculated results are compared with available experimental and other theoretical data.

  1. Fabrication and characterization of ternary compound PMnN-PZT thin films on silicon substrates%硅基三元系PMnN—PZT铁电薄膜制备与研究

    Institute of Scientific and Technical Information of China (English)

    张涛; 张淑仪; 李敏; 周胜男; 孙斌

    2012-01-01

    利用磁控溅射方法在单晶Si基底上沉积三元系铁电薄膜6%PMnN-94%5PZT(6%Pb(Mn1/3,Nb2/3)O3—94%Pb(Zr0.52,Ti0.48)O3),采用淬火方法对薄膜进行处理,以促进薄膜钙钛矿结构形成。同时,在相同条件下制备非掺杂PZT(52/48)薄膜以对比薄膜掺杂效果。运用X射线衍射(XRD)技术分析薄膜晶向及晶体结构,运用SawyerTower电路测试薄膜铁电性能,运用激光测振仪测试薄膜的压电系数。实验结果表明,所沉积薄膜为多晶钙钛矿结构铁电薄膜,薄膜铁电剩余极化Pr=23.7μC/cm2,饱和极化Ps=40μC/cm2,矫顽场电压2Ec=139kV/cm,横向压电系数e11=-13.2C/m2,薄膜的铁电及压电性能优良。%The ternary compound ferroelectric thin films, 6% Pb ( Mnl/3 , Nb2/3 ) O3-94 % Pb (Zr0.52, Ti0.48 ) 03, were deposited on the silicon substrates by the magnetron sputtering method, and the quench method was adopted for the post heat treatment for the perovskite phase. Besides, the non-doped PZT(52/48) thin films were also fab- ricated for comparisons with the same sputtering method. The X-ray diffraction was used to characterize the crystal structures of thin films, and the Sawyer Tower circuit was used to measure the ferroelectricity, and the laser vibration measurement system was used to measure the transverse piezoelectric coefficient of thin films. The results show that the PMnN-PZT thin films own perovskite structures, and the remnant polarization Pr = 23. 7μC/cm2 , the saturation polarization Ps=40μC/cm2 and the coercive electric field 2Ec=139kV/cm, and the transverse piezoelectric coefficient c31 = - 13. 2C/m2 , which identifies that the PMnN-PZT thin films own excellent ferroeleetricity and piezoelectricity.

  2. [The mechanism of rosiglitazone compound based on network pharmacology].

    Science.gov (United States)

    Bai, Yu; Fan, Xue-mei; Sun, Han; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an

    2015-03-01

    Applications of network pharmacology are increasingly widespread and methods abound in the field of drug development and pharmacological research. In this study, we choose rosiglitazone compound as the object to predict the targets and to discuss the mechanism based on three kinds of prediction methods of network pharmacology. Comparison of the prediction result has identified that the three kinds of prediction methods had their own characteristics: targets and pathways predicted were not in accordance with each other. However, the calcium signaling pathway could be predicted in the three kinds of methods, which associated with diabetes and cognitive impairment caused by diabetes by bioinformatics analysis. The above conclusion indicates that the calcium signaling pathway is important in signal pathway regulation of rosiglitazone compound, which provides a clue to further explain the mechanism of the compound and also provides a reference for the selection and application of methods of network pharmacology in the actual research.

  3. High-Tc Superconductors Based on FeAs Compounds

    CERN Document Server

    Izyumov, Yuri

    2010-01-01

    Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also...

  4. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    Science.gov (United States)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  5. Chemical compound navigator: a web-based chem-BLAST, chemical taxonomy-based search engine for browsing compounds.

    Science.gov (United States)

    Prasanna, M D; Vondrasek, Jiri; Wlodawer, Alexander; Rodriguez, H; Bhat, T N

    2006-06-01

    A novel technique to annotate, query, and analyze chemical compounds has been developed and is illustrated by using the inhibitor data on HIV protease-inhibitor complexes. In this method, all chemical compounds are annotated in terms of standard chemical structural fragments. These standard fragments are defined by using criteria, such as chemical classification; structural, chemical, or functional groups; and commercial, scientific or common names or synonyms. These fragments are then organized into a data tree based on their chemical substructures. Search engines have been developed to use this data tree to enable query on inhibitors of HIV protease (http://xpdb.nist.gov/hivsdb/hivsdb.html). These search engines use a new novel technique, Chemical Block Layered Alignment of Substructure Technique (Chem-BLAST) to search on the fragments of an inhibitor to look for its chemical structural neighbors. This novel technique to annotate and query compounds lays the foundation for the use of the Semantic Web concept on chemical compounds to allow end users to group, sort, and search structural neighbors accurately and efficiently. During annotation, it enables the attachment of "meaning" (i.e., semantics) to data in a manner that far exceeds the current practice of associating "metadata" with data by creating a knowledge base (or ontology) associated with compounds. Intended users of the technique are the research community and pharmaceutical industry, for which it will provide a new tool to better identify novel chemical structural neighbors to aid drug discovery.

  6. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    Directory of Open Access Journals (Sweden)

    Sudhakara Rao Gerapati

    2015-09-01

    Full Text Available Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated for anticonvulsant activity. Their structures have been elucidated on the basis of elemental analyses and spectroscopic studies (IR, 1H-NMR & Mass spectroscopy. A preliminary evaluation of the prepared compounds has indicated that some of them exhibit moderate to significant anticonvulsant activity compared to a diazepam standard1-3.  All compounds were tested for their anticonvulsant activity using maximal electroshock induced convulsions (MES in mice at a dose level of 4 mg/kg.b.w. The compounds  Ph1, Ph2 , Py2 ,Py3 and Py4 have shown  to  good anticonvulsant activity when doses are administered as 25mg/ kg.b.w  , reduced the phases of seizures severity and  found to be active and also  increased survival rate. Remaining compounds are less efficacious.

  7. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  8. Magnetic structures of new uranium or rare earth based ternary stannides T{sub 2}M{sub 2}Sn (T = RE, U and M = Ni, Pd); Structures magnetiques de nouveaux stannures ternaires a base d'uranium ou de terres rares T{sub 2}M{sub 2}Sn (T=U, RE et M=Ni, Pd)

    Energy Technology Data Exchange (ETDEWEB)

    Laffargue, D

    1997-07-15

    Magnetic structures of new ternary stannides T{sub 2}M{sub 2}Sn (T = U, RE and M Ni, Pd) have been determined by powder neutron diffraction. A precise study of U{sub 2}M{sub 2}Sn (M = Ni, Pd) compounds showed several relations between structural and magnetic properties. The hybridization effects between 5f(U) and 3d(Ni) states is responsible for the weak magnetic moment observed on the uranium atoms in U{sub 2}Ni{sub 2}Sn, and explains why this stannide is close to a magnetic instability. In the system U{sub 2}Pd{sub 2+x}Sn{sub 1-x}, the reduction of the magnetic moment when the palladium composition increases shows the influence of 5f(U) - 4d(Pd) hybridization. In this solid solution, the evolution of the magnetic structure with the composition confirms an empirical law: the uranium magnetic moments are directed perpendicularly to the shortest U-U links. The extension of this study to the new Rare Earth based stannides RE{sub 2}Pd{sub 2,04}Sn{sub 0,96} (RE = Ce, Tb, Dy, Ho, Er) evidenced systematic correlations between complicated magnetic structures. All these compounds present two magnetic transitions, characterized first by a sine-wave modulation, then at lower temperatures by a commensurate magnetic structure. (author)

  9. Thermoelectric properties of iron-based superconductors and parent compounds

    Science.gov (United States)

    Pallecchi, Ilaria; Caglieris, Federico; Putti, Marina

    2016-07-01

    Herewith, we review the available experimental data of thermoelectric transport properties of iron-based superconductors and parent compounds. We discuss possible physical mechanisms into play in determining the Seebeck effect, from whence one can extract information about Fermi surface reconstruction and Lifshitz transitions, multiband character, coupling of charge carriers with spin excitations and its relevance in the unconventional superconducting pairing mechanism, nematicity, quantum critical fluctuations close to the optimal doping for superconductivity, correlation. Additional information is obtained from the analysis of the Nernst effect, whose enhancement in parent compounds must be related partially to multiband transport and low Fermi level, but mainly to the presence of Dirac cone bands at the Fermi level. In the superconducting compounds, large Nernst effect in the normal state is explained in terms of fluctuating precursors of the spin density wave state, while in the superconducting state it mirrors the usual vortex liquid dissipative regime. A comparison between the phenomenology of thermoelectric behavior of different families of iron-based superconductors and parent compounds allows to evidence the key differences and analogies, thus providing clues on the rich and complex physics of these fascinating unconventional superconductors.

  10. Necessary conditions for ternary algebras

    Energy Technology Data Exchange (ETDEWEB)

    Fairlie, David B [Department of Mathematical Sciences, University of Durham, Science Laboratories, South Rd, Durham DH1 3LE (United Kingdom); Nuyts, Jean, E-mail: david.fairlie@durham.ac.u, E-mail: jean.nuyts@umons.ac.b [Physique Theorique et Mathematique, Universite de Mons, 20 Place du Parc, B-7000 Mons (Belgium)

    2010-11-19

    Ternary algebras, constructed from ternary commutators, or as we call them, ternutators, defined as the alternating sum of products of three operators, have been shown to satisfy cubic identities as necessary conditions for their existence. Here we examine the situation where we permit identities not solely constructed from ternutators or nested ternutators and we find that in general, these impose additional restrictions; for example, the anti-commutators or commutators of the operators must obey some linear relations among themselves.

  11. Ternary generalizations of Grassmann algebra

    CERN Document Server

    Abramov, V V

    1996-01-01

    We propose the ternary generalization of the classical anti-commutativity and study the algebras whose generators are ternary anti-commutative. The integral over an algebra with an arbitrary number of generators N is defined and the formula of a change of variables is proved. In analogy with the fermion integral we define an analogue of the Pfaffian for a cubic matrix by means of Gaussian type integral and calculate its explicit form in the case of N=3.

  12. Monolayer MoS2 metal insulator transition based memcapacitor modeling with extension to a ternary device

    OpenAIRE

    Abdul Karim Khan; Byoung Hun Lee

    2016-01-01

    Memcapacitor model based on its one possible physical realization is developed and simulated in order to know its limitation before making a real device. The proposed device structure consists of vertically stacked dielectric layer and MoS2 monolayer between two external metal plates. The Metal Insulator Transition (MIT) phenomenon of MoS2 monolayer is represented in terms of percolation probabilty which is used as the system state. Cluster based site percolation theory is used to mimic the M...

  13. AN ICT-BASED TRACEABILITY SYSTEM IN COMPOUND FEED INDUSTRY

    OpenAIRE

    Cebeci, Zeynel; Erdogan, Yoldas Erdogan; Alemdar, Tuna; Celik, Ladine; Boga, Mustafa; Uzun, Yusuf; Coban, Durdu H.; Gorgulu, Murat; Tosten, Funda

    2009-01-01

    The term traceability refers to recording of flow of products along the food chain from production to consumption with inclusion of all intermediate applications involved in processing/packaging stages. The aim for establishing traceability in the food chain is to provide the timely identification and recall of batches of product from the market when a risk threatens the health of consumers. Since compound feed products are basic inputs in livestock and poultry production, ICT-based feed trac...

  14. Research Progress on Ni-Based Antiperovskite Compounds

    Directory of Open Access Journals (Sweden)

    P. Tong

    2012-01-01

    Full Text Available The superconductivity in antiperovskite compound MgCNi3 was discovered in 2001 following the discovery of the superconducting MgB2. In spite of its lower superconducting transition temperature (8 K than MgB2 (39 K, MgCNi3 has attracted considerable attention due to its high content of magnetic element Ni and the cubic structure analogous to the perovskite cuprates. After years of extensive investigations both theoretically and experimentally, however, it is still not clear whether the mechanism for superconductivity is conventional or not. The central issue is if and how the ferromagnetic spin fluctuations contribute to the cooper paring. Recently, the experimental results on the single crystals firstly reported in 2007 trend to indicate a conventional s-wave mechanism. Meanwhile many compounds neighboring to MgCNi3 were synthesized and the physical properties were investigated, which enriches the physics of the Ni-based antiperovskite compounds and help understand the superconductivity in MgCNi3. In this paper, we summarize the research progress in these two aspects. Moreover, a universal phase diagram of these compounds is presented, which suggests a phonon-mediated mechanism for the superconductivity, as well as a clue for searching new superconductors with the antiperovskite structure. Finally, a few possible scopes for future research are proposed.

  15. Quadratic MOKE on Co-based Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Georg; Leven, Britta; Hillebrands, Burkard [FB Physik, Landesforschungszentrum OPTIMAS, TU Kaiserslautern, 67663 Kaiserslautern (Germany); Hamrle, Jaroslav [Institute of Physics, VSB, Technical University, Ostrava (Czech Republic); Ebke, Daniel; Thomas, Andy; Reiss, Guenter [Thin Films and Physics of Nanostructures, Physics Department, Bielefeld University (Germany)

    2011-07-01

    The intensive research on Co-based Heusler compounds revealed that some of these materials show a large quadratic magneto-optical Kerr effect (QMOKE). The presence of QMOKE strongly depends on the electronic band structure. In the case of Heusler compounds the electronic bands can be modified by changing the composition or improving the crystalline structure. This work presents a systematic study on several Heusler compounds (Co{sub 2}FeSi, Co{sub 2}Fe{sub 0.5}Mn{sub 0.5}Si, Co{sub 2}MnSi and Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}). The amplitude of the QMOKE is investigated as a function of the post deposition annealing temperature, which is known to improve the crystal ordering. We find that the QMOKE is increasing with the annealing temperature. From this we conclude that there is a strong correlation between the presence of QMOKE and the high crystalline ordering in Heusler compounds.

  16. Synthesis, structural and fungicidal studies of hydrazone based coordination compounds.

    Science.gov (United States)

    Sharma, Amit Kumar; Chandra, Sulekh

    2013-02-15

    The coordination compounds of the Co(II), Ni(II) and Cu(II) metal ions derived from imine based ligand, benzil bis(carbohydarzone) were structurally and pharmaceutically studied. The compounds have the general stoichiometry [M(L)]X(2) and [Co(L)X(2)], where M=Ni(II) and Cu(II), and X=NO(3)(-) and Cl(-) ions. The analytical techniques like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV/Visible, NMR, ESI mass and EPR were used to study the compounds. The key IR bands, i.e., amide I, amide II and amide III stretching vibrations accounts for the tetradentate metal binding nature of the ligand. The electronic and EPR spectral results suggest the square planar Ni(II) and Cu(II) complexes (g(iso)=2.11-2.22) and tetragonal geometry Co(II) complexes (g(iso)=2.10-2.17). To explore the compounds in the biological field, they were examined against the opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The partial covalent character of metal-ligand bond is supported by the orbital reduction factor k (0.62-0.92) and nephalauxetic parameter β (0.55-0.57).

  17. DNA nanostructures based biosensor for the determination of aromatic compounds.

    Science.gov (United States)

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds.

  18. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Institute of Scientific and Technical Information of China (English)

    Mariana Braic; Viorel Braic; Alina Vladescu; Catalin N. Zoita; Mihai Balaceanu

    2014-01-01

    TiZr-based multicomponent metallic films composed of 3-5 constituents with almost equal atomic concentrations were prepared by co-sputtering of pure metallic targets in an Ar atmosphere. X-ray diffraction was employed to determine phase composition, crystalline structure, lattice parameters, texture and crystallite size of the deposited films. The deposited films exhibited only solid solution (fcc, bcc or hcp) or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema's approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  19. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Directory of Open Access Journals (Sweden)

    Mariana Braic

    2014-08-01

    The deposited films exhibited only solid solution (fcc, bcc or hcp or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema׳s approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  20. A europium(III) organic ternary complex applied in fabrication of near UV-based white light-emitting diodes

    Science.gov (United States)

    Wang, H.; He, P.; Liu, S.; Shi, J.; Gong, M.

    2009-10-01

    A β-diketone, 2-acetylfluorene-4,4,4-trifluorobutane-1,3-dione (HAFTFBD), and its three europium(III) complexes, Eu(AFTFBD)3ṡ2H2O, Eu(AFTFBD)3(TPPO)2 and Eu(AFTFBD)3phen, were designed and synthesized, where TPPO was triphenylphosphine oxide and phen was 1,10-phenanthroline. The complexes were characterized by IR, UV-visible, photoluminescence (PL) spectroscopy and thermogravimetric analysis (TGA). The results show that the Eu(III) complexes exhibit a high thermal stability,and wide and strong excitation bands when monitored at 613 nm. Excited by ˜395 nm near UV light, the complexes emitted strong and characteristic red light due to f- f transitions of the central Eu3+ ion, and no emission from the ligands was found. The photoluminescence mechanism of the europium(III) complexes was investigated and proposed as a ligand-sensitized luminescence process. Among the three europium(III) complexes, Eu(AFTFBD)3phen exhibits the highest thermal stability and the most excellent photoluminescence properties. A bright red light-emitting diode was fabricated by coating the Eu(AFTFBD)3phen complex onto an ˜395 nm-emitting InGaN chip, and the LED showed appropriate CIE chromaticity coordinates ( x=0.66, y=0.33). A white LED with CIE chromaticity coordinates ( x=0.32, y=0.32) was prepared with Eu(AFTFBD)3phen as red phosphor, indicating that Eu(AFTFBD)3phen can be applied as a red component for fabrication of near ultraviolet-based white light-emitting diodes.

  1. Thermodynamic description of the Mg-Nd-Zn ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Qi, H.Y.; Huang, G.X.; Bo, H.; Xu, G.L. [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, L.B., E-mail: pdc@mail.csu.edu.cn [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Center of Phase Diagram and Materials Design and Manufacture, Changsha, Hunan 410083 (China); Jin, Z.P. [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Center of Phase Diagram and Materials Design and Manufacture, Changsha, Hunan 410083 (China)

    2011-02-17

    A thermodynamic description of the Mg-Nd-Zn system was developed by means of the CALPHAD (CALculation of PHAse Diagrams) method. The constituent binary systems Mg-Nd and Nd-Zn were re-optimized based on the experimental phase equilibria and thermodynamic properties available in the literature. Combining with the thermodynamic parameters of the Mg-Zn system cited from the reference, the Mg-Nd-Zn ternary system was evaluated. The Gibbs energies of the solution phases (liquid, BCC{sub A}2, DHCP, HCP{sub A}3 and HCP{sub Z}n) were described by the subregular solution model with the Redlich-Kister polynomial function, and those of the stoichiometric compounds, Nd{sub 2}Zn{sub 17}, NdZn{sub 11H}, NdZn{sub 11L}, Nd{sub 3}Zn{sub 22}, Nd{sub 13}Zn{sub 58}, Nd{sub 3}Zn{sub 11}, NdZn{sub 3}, NdZn{sub 2} and Mg{sub 2}Nd, were described by the sublattice model. The compounds Mg{sub 3}Nd and Mg{sub 41}Nd{sub 5} in the Mg-Nd-Zn system were treated as the formulae (Mg, Zn){sub 3}(Mg, Nd) and (Mg, Nd, Zn){sub 41}(Mg, Nd){sub 5}. The order-disorder transition between BCC{sub B}2 and BCC{sub A}2 phases was treated using a two-sublattice model (Mg, Nd, Zn){sub 0.5}(Mg, Nd, Zn){sub 0.5}. Based on experimental data, four stable ternary compounds {tau}{sub 1}(Mg{sub 7}Nd{sub 1}Zn{sub 12}), {tau}{sub 2}(Mg{sub 7}Nd{sub 2}Zn{sub 11}), {tau}{sub 3}(Mg{sub 6}Nd{sub 1}Zn{sub 3}) and {tau}{sub 4}(Mg{sub 6}Nd{sub 3}Zn{sub 11}) were taken into consideration in this system. A set of self-consistent thermodynamic parameters of the Mg-Nd-Zn system was obtained. Projection of the liquidus surface, selected vertical and isothermal sections were calculated using the proposed thermodynamic description. Comprehensive comparisons between the calculated and measured phase diagrams show that almost all the accurate experimental information is satisfactorily accounted for by the present thermodynamic description.

  2. Ternary Weighted Function and Beurling Ternary Banach Algebra l1ω(S

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghanian

    2011-01-01

    Full Text Available Let S be a ternary semigroup. In this paper, we introduce our notation and prove some elementary properties of a ternary weight function ω on S. Also, we make ternary weighted algebra l1ω(S and show that l1ω(S is a ternary Banach algebra.

  3. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  4. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  5. Mechanical and electronic properties of antiperovskite Ti-based compounds AXTi{sub 3} (X = C, N): A first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ni-Na; Lu, Hong-Yan, E-mail: luhongyan2006@gmail.com [School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Shao, Ding-Fu, E-mail: dfshao@issp.ac.cn; Lu, Wen-Jian [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-01-28

    In this paper, we systematically studied the mechanical and electronic properties of a series of antiperovskite-type Ti-based ternary carbides and nitrides AXTi{sub 3} (A = Ba, Ca, In, Sn, Sr, Zn, Cu, Al, Ga, Cd, and La; X = C, N) from first-principles calculations. By calculating the formation energies, elastic constants, and other mechanical parameters, we predicted that 7 carbides ACTi{sub 3} and 7 nitrides ANTi{sub 3} compounds are stable among the 22 compounds. The predicted large Young's modulus and high hardness imply a good mechanical application prospect of AXTi{sub 3}. Particularly, SnNTi{sub 3} was found to show ferromagnetic ground state. For the electronic structure, our results confirm that the compounds are metallic in nature, and the density of states near the Fermi energy is predominately contributed by Ti-3d states. The effect of A- and X-site atom doping on AXTi{sub 3} can be evaluated by rigid band approximation. Our prediction will be useful for the experimental exploration of the new antiperovskite compounds.

  6. Pattern Avoidance in Ternary Trees

    CERN Document Server

    Gabriel, Nathan; Pudwell, Lara; Tay, Samuel

    2011-01-01

    This paper considers the enumeration of ternary trees (i.e. rooted ordered trees in which each vertex has 0 or 3 children) avoiding a contiguous ternary tree pattern. We begin by finding recurrence relations for several simple tree patterns; then, for more complex trees, we compute generating functions by extending a known algorithm for pattern-avoiding binary trees. Next, we present an alternate one-dimensional notation for trees which we use to find bijections that explain why certain pairs of tree patterns yield the same avoidance generating function. Finally, we compare our bijections to known "replacement rules" for binary trees and generalize these bijections to a larger class of trees.

  7. Liquid-liquid equilibria for ternary polymer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suk Yung [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: ycbae@hanyang.ac.kr [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-01-24

    Graphical abstract: We developed a molecular thermodynamic model for multicomponent systems and discribed the phase equilibrium for ternary polymer mixtures by using the model parameters obtained from the binary systems. Research highlights: {yields} Model parameters were obtained from the binary systems. {yields} The obtained parameters were directly used to predict the ternary data. {yields} The undetermined parameters were used to correlate the ternary data. {yields} The proposed model agreed well with the experimental data. - Abstract: A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  8. Liquid-liquid equilibria for ternary polymer mixtures

    Science.gov (United States)

    Oh, Suk Yung; Bae, Young Chan

    2011-01-01

    A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  9. 基于电路三要素理论的三值绝热加法器设计%Design of Ternary Adiabatic Adder Based on Theory of Three Essential Circuit Elements

    Institute of Scientific and Technical Information of China (English)

    汪鹏君; 李昆鹏

    2011-01-01

    通过对加法器和绝热电路工作原理及结构的研究,本文提出一种三值绝热加法器设计方案.该方案首先以电路三要素理论为指导,推导出一位三值绝热全加器的元件级函数式,并利用自举的NMOS管实现相应的电路结构,完成对电路的能量注入和恢复.然后在此基础上,进一步得到四位三值绝热加法器.最后 PSPICE模拟验证所设计的电路具有正确的逻辑功能和明显的低功耗特性.%Through the research on working principle and structure of adder and adiabatic circuits, a design of ternary adiabatic adder was presented in this paper.First,the component-level function expressions of one bit ternary adiabatic full-adder were derived under the guidance of the theory of three essential circuit elements, and the corresponding circuit structure were realizing by using the bootstapped NMOS FET, which enable the circuit to accomplish the energy injection and recovery. Then, the four bits ternary adiabatic adder was realized based on this circuit. Finally, PSPICE simulation results indicate that the proposed circuit has correct logic function and the obvious low power characteristics.

  10. Structure-based Drug Screening and Ligand-Based Drug Screening Toward Protein-Compound Network

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2007-12-01

    We developed two new methods to improve the accuracy of molecular interaction data using a protein-compound affinity matrix calculated by a protein-compound docking software. One method is a structure-based in silico drug screening method and another method is a ligand-based in silico drug screening method. These methods were applied to enhance the database enrichment of in silico drug screening and in silico target protein screening.

  11. Magnetic structures of new ternary uranium and rare earths stannides T{sub 2}M{sub 2}Sn (T=U, RE and M=Ni, Pd); Structures magnetiques de nouveaux stannures ternaires a base d`uranium ou de terres rares T{sub 2}M{sub 2}Sn (T=U, RE et M =Ni, Pd)

    Energy Technology Data Exchange (ETDEWEB)

    Laffargue, D

    1997-07-11

    Magnetic structures of new ternary stannides T{sub 2}M{sub 2}Sn (T = U, RE and M Ni, Pd) have been determined by powder neutron diffraction. A precise study of U{sub 2}M{sub 2}Sn (M = Ni, Pd) compounds showed several relations between structural and magnetic properties. The hybridization effects between 5f(U) and 3d(Ni) states is responsible for the weak magnetic moment observed on the uranium atoms in U{sub 2}Ni{sub 2}Sn, and explains why this stannide is close to a magnetic instability. In the system U{sub 2}Pd{sub 2+x}Sn{sub t-x}, the reduction of the magnetic moment when the palladium composition increases shows the influence of 5f(U) - 4d(Pd) hybridization. In this solid solution, the evolution of the magnetic structure with the composition confirms an empirical law: the uranium magnetic moments are directed perpendicularly to the shortest U-U links. The extension of this study to the new Rare based stannides RE{sub 2}Pd{sub 2,04}Sn{sub 0,96} (RE = Ce, Tb, Dy, Ho, Er) evidenced systematic correlations between complicated magnetic structures. All these compounds present two magnetic transitions, characterized first by a sine-wave modulation, then at lower temperatures by a commensurate magnetic structure. (author) 78 refs.

  12. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  13. Ternary rare earth-lanthanide sulfides. [Re = Eu, Sm or Yb

    Science.gov (United States)

    Takeshita, Takuo; Gschneidner, K.A. Jr.; Beaudry, B.J.

    1986-03-06

    Disclosed is a new ternary rare earth sulfur compound having the formula La/sub 3-x/M/sub x/S/sub 4/, where M is europium, samarium, or ytterbium, with x = 0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000/sup 0/C.

  14. Thermodynamic description of Au-Ag-Si ternary system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the available experimental information, the Ag-Si binary system was thermodynamically assessed using the CALPHAD method. The solution phases, including liquid, fcc-Al and diamond-A4, were modeled as substitutional solutions, of which the excess Gibbs energies were expressed by Redlich-Kister polynomial functions. Combined with previous assessment of the Ag-Au and Au-Si binary systems, thermodynamic description of the Au-Ag-Si ternary system was performed to reproduce the reported phase equilibria. Thermodynamic properties of liquid alloys, liquidus projection and several vertical and isothermal sections of this ternary system were calculated, which are in reasonable agreement with the reported experimental data.

  15. Microstructural characterization and phase transformation of ternary alloys near at Al{sub 3}Ti compound; Caracterizacion microestructural y transformaciones de fase de aleaciones ternareas cercanas al compuesto Al{sub 3}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Ch, C. [Instituto Nacional de Investigaciones Nucleares. Depto.de Sintesis y Caracterizacion de Materiales. Carretera Mexico-Toluca Km. 36.5 C.P. 52045, Ocoyoacac, Edo. de Mexico (Mexico)

    1999-07-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10{sup 3}-10{sup 4} K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al{sub 3}Ti and others phases of L1{sub 2} type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO{sub 22} to the cubic phases L1{sub 2}. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1{sub 2} phase tends to increase to hardness depending of the content of this phase.

  16. Elevated temperature corrosion behavior of iron-base ternary alloys that develop Cr/sub 2/O/sub 3/ and/or Al/sub 2/O/sub 3/ barrier scales

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, V.; Levy, A.V.

    1978-05-01

    The elevated temperature corrosion behavior of iron-base ternary alloys that develop Cr/sub 2/O/sub 3/ and/or Al/sub 2/O/sub 3/ barrier scales was investigated by exposing them to a mixed gas environment at 982/sup 0/C whose PO/sub 2/ was approximately 10/sup -18/ atm and whose PS/sub 2/ was approximately 10/sup -6/ atm. The alloys containing 18% Cr and 2.5 to 5% Al had the best corrosion resistance of the alloys tested. They developed a duplex Cr/sub 2/O/sub 3//Al/sub 2/O/sub 3/ scale through which sulfur did not readily diffuse. The 18% Cr alloy containing only 1% Al formed a Cr/sub 2/O/sub 3/ scale and had poor corrosion resistance because of rapid sulfur diffusion through the scale. Alloys that contained 10% Al and 0 to 15% Cr did not have good corrosion resistance because of sulfur diffusion through the single Al/sub 2/O/sub 3/ scale which formed. Alloys with 18% Cr that contained Si as a ternary addition did not develop continuous SiO/sub 2/ layers beneath the Cr/sub 2/O/sub 3/ outer scale and exhibited poor corrosion resistance.

  17. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  18. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    Science.gov (United States)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  19. Adiabatic pipelining: a key to ternary computing with quantum dots.

    Science.gov (United States)

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  20. Application of Analytic Geometry to Ternary and Quaternary Diagrams.

    Science.gov (United States)

    MacCarthy, Patrick

    1986-01-01

    Advantages of representing ternary and quaternary composition diagrams by means of rectangular coordinates were pointed out in a previous paper (EJ 288 693). A further advantage of that approach is that analytic geometry, based on rectangular coordinates, is directly applicable as demonstrated by the examples presented. (JN)

  1. High Curie temperature of Ce-Fe-Si compounds with ThMn12 structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Pinkerton, FE; Herbst, JF

    2015-01-15

    We report the discovery of ternary CeFe(12-x)Si(x)compounds possessing the ThMn12 structure. The samples were prepared by melt spinning followed by annealing. In contrast to other known Ce Fe-based binary and ternary compounds, CeFe12-xSix compounds exhibit exceptionally high Curie temperatures whose values increase with added Si substitution. The highest T. = 583 K in CeFe10Si2 rivals that of the well-established Nd2Fe14B compound. We ascribe the T-c behavior to a combination of Si-induced 3d band structure changes and partial Ce3+ stabilization. (C) 2014 Published by Elsevier Ltd.

  2. Phase equilibria in the La–Mg–Ge system at 500 °C and crystal structure of the new ternary compounds La{sub 11}Mg{sub 2}Ge{sub 7} and LaMg{sub 3−x}Ge{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    De Negri, S., E-mail: serena.denegri@unige.it [Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, via Dodecaneso 31, 16146 Genova (Italy); Solokha, P.; Skrobańska, M. [Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, via Dodecaneso 31, 16146 Genova (Italy); Proserpio, D.M. [Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, 20133 Milano (Italy); Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Samara 443011 (Russian Federation); Saccone, A. [Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, via Dodecaneso 31, 16146 Genova (Italy)

    2014-10-15

    The whole 500 °C isothermal section of the La–Mg–Ge ternary system was constructed. The existence and crystal structure of three ternary compounds were confirmed: La{sub 2+x}Mg{sub 1−x}Ge{sub 2} (τ{sub 2}, P4/mbm, tP10–Mo{sub 2}FeB{sub 2}, 0≤x≤0.25), La{sub 4}Mg{sub 5}Ge{sub 6} (τ{sub 3}, Cmc2{sub 1}, oS60–Gd{sub 4}Zn{sub 5}Ge{sub 6}) and La{sub 4}Mg{sub 7}Ge{sub 6} (τ{sub 4}, C2/m, mS34, own structure type). Five novel compounds were identified and structurally characterized: La{sub 11}Mg{sub 2}Ge{sub 7} (τ{sub 1}, P4{sub 2}/ncm, tP88-8, own structure type, a=1.21338(5), c=1.57802(6) nm), LaMg{sub 3−x}Ge{sub 2} (τ{sub 5}, P3{sup ¯}1c, hP34-0.44, own structure type, x=0.407(5), a=0.78408(4), c=1.45257(7) nm), La{sub 6}Mg{sub 23}Ge (τ{sub 6}, Fm3{sup ¯}m, cF120–Zr{sub 6}Zn{sub 23}Si, a=1.46694(6) nm), La{sub 4}MgGe{sub 10−x} (τ{sub 7}, x=0.37(1), C2/m, mS60-1.46, own structure type, a=0.88403(8), b=0.86756(8), c=1.7709(2) nm, β=97.16°(1) and La{sub 2}MgGe{sub 6} (τ{sub 8}, Cmce, oS72–Ce{sub 2}(Ga{sub 0.1}Ge{sub 0.9}){sub 7}, a=0.8989(2), b=0.8517(2), c=2.1064(3) nm). Disordering phenomena were revealed in several La–Mg–Ge phases in terms of partially occupied sites. The crystal structures of La{sub 11}Mg{sub 2}Ge{sub 7} and LaMg{sub 3−x}Ge{sub 2} are discussed in details. The latter is a √3a×√3a×2c superstructure of the LaLi{sub 3}Sb{sub 2} structure type; the symmetry reduction scheme is shown in the Bärnighausen formalism terms. - Graphical abstract: La–Mg–Ge isothermal section at 500 °C and group–subgroup relation between the LaLi{sub 3}Sb{sub 2} (parent type) and LaMg{sub 3−x}Ge{sub 2} (derivative) structures. - Highlights: • Novel La−Mg−Ge compounds structure determination from X-ray single crystal data. • Disordering phenomena as common features of the studied germanides. • Bärnighausen formalism as a useful tool for accurate structure determination. • Full isothermal section of the La

  3. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design.

    Science.gov (United States)

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Porté, Sergio; de Lera, Ángel R; Martín, María J; Manzanaro, Sonia; de la Fuente, Jesús A; Terwesten, Felix; Betz, Michael; Klebe, Gerhard; Farrés, Jaume; Parés, Xavier; Podjarny, Alberto

    2014-03-01

    Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.

  4. Electrochemical Fabrication and Characterization of Corrosion-Resistant, Ternary, Lead-Based Alloys as a New Material for Steel Surface Protection

    Science.gov (United States)

    Aliyev, A. Sh.; Tahirli, H. M.; Elrouby, Mahmoud; Soltanova, N. Sh.; Tagiev, D. B.

    2016-06-01

    This article presents the study of the synthesis of the ternary Pb-Sb-Te alloy on the stainless steel substrate via electrochemical method. The corrosion resistance of the electrodeposited alloy has been investigated via subjecting the electro-synthesized alloy to a corrosive medium containing sulfide ions; this medium is similar to the petroleum refining environment. The resulting film of the electrodeposited alloy was analyzed by the scanning electron microscope, energy-dispersive X-ray analysis, and X-ray diffraction to determine the morphology and the phase structure of the electrodeposited film. It was found that the electrodeposited Pb-Sb-Te alloy thin film is a multiphase composition. The obtained data reveal that the most corrosion-resistant phase is the PbSb2Te4 alloy.

  5. Acaricidal activity of eugenol based compounds against scabies mites.

    Directory of Open Access Journals (Sweden)

    Cielo Pasay

    Full Text Available BACKGROUND: Human scabies is a debilitating skin disease caused by the "itch mite" Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. METHODOLOGY/PRINCIPAL FINDINGS: Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues--acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. CONCLUSIONS: The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies.

  6. Stimulation of Ideas through Compound-Based Bibliometrics: Counting and Mapping Chemical Compounds for Analyzing Research Topics in Chemistry, Physics, and Materials Science.

    Science.gov (United States)

    Barth, Andreas; Marx, Werner

    2012-12-01

    Counting compounds (rather than papers or citations) offers a new perspective for quantitative analyses of research activities. First of all, we can precisely define (compound-related) research topics and access the corresponding publications (scientific papers as well as patents) as a measure of research activity. We can also establish the time evolution of the publications dealing with specific compounds or compound classes. Moreover, the mapping of compounds by establishing compound-based landscapes has some potential to visualize the compound basis of research topics for further research activities. We have analyzed the rare earth compounds to give an example of a broad compound class. We present the number of the currently existing compounds and of the corresponding publications as well as the time evolution of the papers and patents. Furthermore, we have analyzed the rare earth cuprates (copper oxides) as an example of a narrower compound class to demonstrate the potential of mapping compounds by compound-based landscapes. We have quantified the various element combinations of the existing compounds and revealed all element combinations not yet realized in the synthesis within this compound class. Finally, we have analyzed the quasicrystal compound category as an example of a compound class that is not defined by a specific element combination or a molecular structure.

  7. Crystal growth iron based pnictide compounds; Kristallzuechtung eisenbasierter Pniktidverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Nacke, Claudia

    2012-11-15

    The present work is concerned with selected crystal growth method for producing iron-based superconductors. The first part of this work introduces significant results of the crystal growth of BaFe{sub 2}As{sub 2} and the cobalt-substituted compound Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x{sub Nom} = 0.025, 0.05, 0.07, 0.10 and 0.20. For this purpose a test procedure for the vertical Bridgman method was developed. The second part of this work contains substantial results for growing a crystal of LiFeAs and the nickel-substituted compound Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As with x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 and 0.10. For this purpose a test procedure for the melt flow process has been developed successfully. [German] Die vorliegende Arbeit befasst sich mit ausgewaehlten Kristallzuechtungsverfahren zur Herstellung eisenbasierter Supraleiter. Der erste Teil dieser Arbeit fuehrt wesentliche Ergebnisse der Kristallzuechtung von BaFe{sub 2}As{sub 2} sowie der Cobalt-substituierten Verbindung Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} mit x{sub Nom} =0.025, 0.05, 0.07, 0.10 und 0.20 auf. Hierzu wurde eine Versuchsdurchfuehrung fuer das vertikale Bridgman-Verfahren konzipiert, mit welcher erfolgreich Kristalle dieser Zusammensetzungen gezuechtet wurden. Der zweite Teil dieser Arbeit enthaelt wesentliche Ergebnisse zur Kristallzuechtung von LiFeAs sowie der Nickel-substituierten Verbindung Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As mit x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 und 0.10. Hierfuer wurde erfolgreich eine Versuchsdurchfuehrung fuer das Schmelzfluss-Verfahren entwickelt.

  8. Superconductivity in BiS2-based compounds

    Science.gov (United States)

    Yazici, Duygu

    2014-03-01

    Polycrystalline samples of Ln O0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd, Yb) were synthesized by solid-state reaction. These compounds form in a tetragonal structure with space group P 4 / nmm conforming to the CeOBiS2 crystal structure. Electrical resistivity, magnetic susceptibility and specific heat measurements were performed on all of the samples. All of the compounds exhibit superconductivity in the range 1.9 K - 5.4 K, and the YbO0.5F0.5BiS2 sample was also found to exhibit magnetic order (probably antiferromagnetic order) at ~2.7 K that appears to coexist with superconductivity below 5.4 K. Electron-doping appears to induce superconductivity in the BiS2-based superconductors as partial substitution of F for O is necessary to observe superconductivity. This was further demonstrated in a study where trivalent La+3 was partially substituted with tetravalent Th+4, Hf+4, Zr+4, and Ti+4, all of which induced superconductivity. We also observed that substitution of divalent Sr+2 for La+3 (hole doping) does not induce superconductivity. Electrical resistivity measurements were also performed under applied pressure on Ln O0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd) up to ~3 GPa and down to 1 K. These studies revealed a universal behavior where the systems are tuned away from semi-conducting behavior towards metallic behavior. The superconducting states were stabilized by applied pressure, so that Tc increased in all of the rare earth members listed. At a critical pressure Pc, Tc increases rapidly from a low Tc phase to a distinct high Tc phase, after which additional pressure no longer suppressed the semiconducting behavior in the normal state [3,4]. In addition, the metallization of NdO0.5F0.5BiS2 also occurs at Pc. Research was supported by the US AFOSR MURI FA9550-09-1-0603, US DOE DE-FG02-04-ER46105 and NNSA DE-NA0001841.

  9. Isothermal section of the Ho-Fe-Ga ternary system at 773 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.S.; Yu, Y.J.; Zhang, W.H. [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China); Li, J.Q., E-mail: junqinli@szu.edu.cn [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China); Ao, W.Q. [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China)

    2011-02-03

    Graphical abstract: Display Omitted Research highlights: > Isothermal section of Ho-Fe-Ga ternary system at 773 K. > Crystal structure of new compound HoFe{sub 0.2}Ga{sub 1.8}. > Homogeneity ranges of the solid solutions in Ho-Fe-Ga system at 773 K. - Abstract: The isothermal section of the Ho-Fe-Ga ternary phase diagram at 773 K was constructed based on X-ray powder diffraction analysis. Fourteen binary compounds and twelve ternary compounds have been confirmed: Ho{sub 2}Fe{sub 17} Ho{sub 6}Fe{sub 23}, HoFe{sub 3}, HoFe{sub 2}, HoGa{sub 3}, HoGa{sub 2}, Ho{sub 3}Ga{sub 5}, HoGa, Ho{sub 3}Ga{sub 2}, Ho{sub 5}Ga{sub 3}, Fe{sub 3}Ga, Fe{sub 6}Ga{sub 5}, Fe{sub 3}Ga{sub 4}, FeGa{sub 3}, {kappa}{sub 1}-HoFe{sub 6.02-5.24}Ga{sub 5.98-6.76}, {kappa}{sub 2}-HoFe{sub 4.98-4.59}Ga{sub 7.02-7.41}, {kappa}{sub 3}-HoFe{sub 17-14.07}Ga{sub 0-2.93}, {kappa}{sub 4}-HoFe{sub 13.39-8.45} Ga{sub 3.61-8.55}, {kappa}{sub 5}-Ho{sub 2}FeGa{sub 8}, {kappa}{sub 6}-HoFe{sub 3-2.52}Ga{sub 0-0.48}, {kappa}{sub 7}-HoFe{sub 2.36-1.91}Ga{sub 0.64-1.09}, {kappa}{sub 8}-Ho{sub 2}FeGa{sub 8}, {kappa}{sub 9}-HoFe{sub 2-1.46} Ga{sub 0-0.54}, {kappa}{sub 10}-HoFe{sub 1.28-1.16}Ga{sub 0.72-0.84}, {kappa}{sub 11}-HoFe{sub 0.43-0.34}Ga{sub 1.57-1.66}, and {kappa}{sub 12}-HoFe{sub 0.26-0.19}Ga{sub 1.74-1.81}. The maximum solid solubilities of Ga in HoFe{sub 2}, HoFe{sub 3} and Ho{sub 2}Fe{sub 17} were determined to be 18.1, 11.9 and 15.4 at.%, respectively. The structures of the ternary compounds were refined by Rietveld refinement method. It was shown that all the solid solutions in the ternary system are formed by random distribution of Ga and Fe on the transition metal sites.

  10. Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4) - graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer.

    Science.gov (United States)

    Jo, Wan-Kuen; Natarajan, Thillai Sivakumar

    2016-11-15

    Novel ZnIn2S4-g-C3N4/BiVO4 nanorod-based ternary nanocomposite photocatalysts with enhanced visible light absorption were synthesized and systematically characterized to confirm the formation of ZnIn2S4 marigold flowers, the layered structure of the g-C3N4, BiVO4 nanorods, and the formation of binary and ternary nanocomposites. The visible light absorption of BiVO4 was significantly improved after coupling with g-C3N4 and ZnIn2S4, which was confirmed by UV-visible diffuse reflectance spectroscopic analysis. Ternary ZnIn2S4-g-C3N4/BiVO4 nanocomposites exhibited excellent visible light photocatalytic decomposition efficiency (VL-PDE) when used for the degradation of congo red (CR) dye and metronidazole (MTZ) pharmaceutical, as well as excellent stability and reusability. The ternary 5%ZnIn2S4-50%-g-C3N4/BiVO4 nanocomposite showed higher VL-PDE for CR (81.5%) and MTZ (59%) degradation than the binary composites, g-C3N4 and BiVO4. Radical quenching experiments showed that h(+), OH, and O2(-) were the reactive radicals, validating that the Z-scheme charge carrier transfer mechanism was responsible for the enhanced VL-PDE of the ternary ZnIn2S4-g-C3N4/BiVO4 nanocomposites, which was further confirmed by photoluminescence analysis. Furthermore, kinetic studies showed that the degradation followed pseudo-first-order kinetics, and that the ternary photocatalysts could be reused up to three times with good stability. The enhanced visible light absorption, high surface area, high adsorption capacity, Z-scheme charge carrier transfer, and increased lifetime of photo-produced electron-hole pairs were responsible for the increased visible light photocatalytic decomposition efficiency.

  11. Experimental investigation and thermodynamic assessment of phase equilibria in the Nb–Si–Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Guo, Y.H. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, S.Y.; Shi, Z.; Wang, C.P. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Liu, X.J., E-mail: lxj@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)

    2015-09-05

    Highlights: • The sections of Nb–Si–Zr system at 1373, 1473 and 1573 K were determined. • Large solubilities of Nb in αZr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2} and Zr{sub 2}Si phases were observed. • The thermodynamic assessment of Nb–Si–Zr ternary system was carried out. - Abstract: In this study, the phase equilibria of Nb–Si–Zr at 1373 K, 1473 K and 1573 K were experimentally determined by means of back-scattered electron (BSE), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results show that there were five three-phase regions and sixteen two-phase regions in the studied isothermal sections, and no any ternary compounds were found. The solubility of Si in the Nb–Zr side is very small. Large solubilities of Nb in αZr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2} and Zr{sub 2}Si phases were observed, otherwise the solubilities of Nb in ZrSi{sub 2}, αZrSi and Zr{sub 3}Si phases are relatively small. Based on the present experimental results, the thermodynamic assessment of Nb–Si–Zr system was carried out using the CALPHAD (Calculation of Phase Diagrams) method. The current calculated phase diagrams are in reasonable agreement with the present experimental data.

  12. Experimental investigation of the phase equilibria in the Co-Fe-Ti ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaohui; Chen, Chong; Peng, Yingbiao; Du, Yong; Li, Kun [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Lu, Xingxu [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Central South Univ., School of Materials Science and Engineering, Changsha (China)

    2015-08-15

    Phase equilibria in the Co-Fe-Ti ternary system were investigated by means of the equilibrated alloy method with X-ray powder diffraction and electron probe microanalysis. No ternary compounds were found. The experimental results indicated the existence of seven two-phase and one three-phase regions at 600 C, five two-phase and two three-phase regions at 800 C, and six two-phase and two three-phase regions at 950 C. The solubility of Co in TiFe{sub 2} was determined to be larger than 54 at.% at all investigated temperatures, and the solubilities of Fe in TiCo{sub 3} and Ti{sub 2}Co showed an appreciable increase with increasing temperature. The three-phase equilibrium in the Ti-rich corner at 800 C was revealed to be ((β-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) rather than ((α-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) reported in previous investigations. Based on the experimental data obtained in the present work, three isothermal sections at 600, 800 and 950 C were established.

  13. Ternary and senary representations using DNA double-crossover tiles

    CERN Document Server

    Kim, Byeonghoon; Son, Junyoung; Kim, Junghoon; Hwang, Si Un; Dugasani, Sreekantha Reddy; Kim, Min Hyeok; Kim, Byung-Dong; Chang, Iksoo; Liu, Wing Kam; Kim, Moon Ki; Park, Sung Ha

    2016-01-01

    The information capacity of double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure.

  14. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between the proc......This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...... the processors is free of clock skew and insensitive to any delay differences in buffers and wires. In addition, the number of signal wires and pins are reduced by 50 percent in comparison with a similar binary implementation. The ICN architecture is based on a crossbar topology and the high-speed part consists...... of two LSI GaAs chips, Interface and Crossbar, which were implemented in a 0.8 μm MESFET process. In a 4×4 ICN, communication at 300 Mbit/s per wire was demonstrated, which is twice as fast as pure synchronous and four times faster than pure asynchronous communication in the specific test set-up...

  15. Ternary diffusion path in terms of eigenvalues and eigenvectors

    Science.gov (United States)

    Ram-Mohan, L. R.; Dayananda, Mysore A.

    2016-04-01

    Based on the transfer matrix methodology, a new analysis is presented for the description of slopes of the ternary diffusion path for a solid-solid diffusion couple. Concentration profiles and diffusion paths for isothermal, ternary diffusion couples are examined in the context of eigenvalues and eigenvectors obtained from the diagonalisation of the ? ternary interdiffusion coefficients employed for their representation. New relations are derived relating the decoupled interdiffusion fluxes to combinations of concentration gradients through the major and minor eigenvalues, and the diffusion path becomes parallel to the major eigenvector at each path end. General expressions for the slope of the ternary diffusion path at any section of the couple are also derived in terms of eigenvalue and eigenvector parameters. Expressions for the path slope at the Matano plane involve only concentrations, major and minor eigenvalues and eigenvector parameters. New constraints relating the eigenvalues and the concentration gradients of the individual components are also presented at selected sections, where the diffusion path is parallel to the straight line joining the terminal composition points on an isotherm. Applications of the various relations are illustrated with the aid of a hypothetical couple and an experimental Cu-Ni-Zn diffusion couple.

  16. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells.

    Science.gov (United States)

    Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho

    2016-05-04

    Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.

  17. Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride.

    Science.gov (United States)

    Mousavi, Mitra; Habibi-Yangjeh, Aziz

    2016-03-01

    The present work demonstrates preparation of magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites as novel visible-light-driven photocatalysts. The resultant samples were characterized using XRD, EDX, SEM, TEM, UV-Vis DRS, FT-IR, PL, BET, and VSM techniques. The results revealed that weight percent of BiOI has considerable effect on photodegradation of rhodamine B under visible-light irradiation. Among the prepared samples, the g-C3N4/Fe3O4/BiOI (20%) nanocomposite has the best photocatalytic activity. The activity of this nanocomposite is about 10, 22, and 21-fold higher than that of the g-C3N4 sample in degradation of rhodamine B, methylene blue, and methyl orange under the visible-light irradiation. The excellent activity of the magnetic nanocomposite was attributed to more harvesting of the visible-light irradiation and efficiently separation of the electron-hole pairs. More importantly, the nanocomposite was magnetically separated after five successive cycles.

  18. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei

    2016-10-11

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  19. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  20. Solvent-based dissolution method to sample gas-phase volatile organic compounds for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Hunkeler, Daniel

    2014-01-17

    An investigation was carried out to develop a simple and efficient method to collect vapour samples for compound specific isotope analysis (CSIA) by bubbling vapours through an organic solvent (methanol or ethanol). The compounds tested were benzene and trichloroethylene (TCE). The dissolution efficiency was tested for different air volume injections, using flow rates ranging from 25ml/min to 150ml/min and injection periods varying between 10 and 40min. Based on the results, complete mass recovery for benzene and TCE in both solvents was observed for the flow rates of 25 and 50ml/min. However, small mass loss was observed at increased flow rate. At 150ml/min, recovery was on average 80±17% for benzene and 84±10% for TCE, respectively in methanol and ethanol. The δ(13)C data measured for benzene and TCE dissolved in both solvents were reproducible and were stable independently of the volume of air injected (up to 6L) or the flow rate used. The stability of δ(13)C values hence underlines no isotopic fractionation due to compound-solvent interaction or mass loss. The development of a novel and simple field sampling technique undertaken in this study will facilitate the application of CSIA to diverse gas-phase volatile organic compound studies, such as atmospheric emissions, soil gas or vapour intrusion.

  1. A Chiral Helical Compound Based on Achiral Components

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-Wei; WANG Gui-Xian

    2007-01-01

    The title compound, [Cu(dpa)(2,2'-bipy)(H2O)2]n 1 (H2dpa = diphenic acid and 2,2'- bipy = 2,2'-bipyridine), has been synthesized and its structure was determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group P212121 with a = 10.597(4), b = 11.317(4), c = 17.630(7) (A), V = 2114.3(14)(A)3, C24H20CuN2O6, Mr = 495.97, Z = 4, Dc = 1.558 g/cm3, μ = 1.079 mm-1, F(000) = 1020, Flack value = 0.052(18), R = 0.0430 and wR = 0.1016 for 3381 observed reflections (Ⅰ > 2σ(Ⅰ)). In compound 1, the dpa ligands link metal ions into helical structures in the same direction.

  2. Carbohydrate-based bioactive compounds for medicinal chemistry applications.

    Science.gov (United States)

    Cipolla, L; Peri, F

    2011-01-01

    In this article we review our work over the years on carbohydrates and carbohydrate mimetics and their applications in medicinal chemistry. In the first part of the review innovative synthetic methods, such as the chemoselective glycosylation method originally developed by our group and its applications to the synthesis of neoglycoconjugates (neoglycopeptides, oligosaccharide mimetics, neoglycolipids, etc…) will be presented. The high density of functional groups (hydroxyls) on the monosaccharides and the structural role of sugars forming the core of complex glycans in scaffolding and orienting the external sugar units for the interaction with receptors, inspired us and others to use sugars as scaffolds for the construction of pharmacologically active compounds. In the second part of this review, we will present some examples of bioactive and pharmacologically active compounds obtained by decorating monosaccharide scaffolds with pharmacophore groups. Sugar-derived protein ligands were also used as chemical probes to study the interaction of their target with other proteins in the cell. In this context, sugar mimetics and sugar-derived compounds have been employed as tools for exploring biology according to the "chemical genetic" approach.

  3. A new group contribution-based model for estimation of lower flammability limit of pure compounds.

    Science.gov (United States)

    Gharagheizi, Farhad

    2009-10-30

    In the present study, a new method is presented for estimation of lower flammability limit (LFL) of pure compounds. This method is based on a combination of a group contribution method and neural networks. The parameters of the model are the occurrences of a new collection of 105 functional groups. Basing on these 105 functional groups, a feed forward neural network is presented to estimate the LFL of pure compounds. The average absolute deviation error obtained over 1057 pure compounds is 4.62%. Therefore, the model is an accurate model and can be used to predict the LFL of a wide range of pure compounds.

  4. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland

    DEFF Research Database (Denmark)

    Lee, Hosin; Kim, Yongjoo; Geisler, Nivi

    2009-01-01

    heavy traffic and severe weather conditions in Greenland. Based on the initial set of strain data collected under the slow-moving loader right after construction, the highest strain value was observed from the test section with the highest amount of SBS-based compound. The increased amount of SBS......-based compound seemed to affect the asphalt mix to become more flexible under the heavy loads. By adding SBS-based compound to asphalt mixtures using a “dry” process, it is expected that the pavement would become more resistant to rutting than a typical asphalt mixture used in Greenland while enduring its arctic...... weather....

  5. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.;

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  6. Ternary and Multi-Bit FIR Filter Area-Performance Tradeoffs in FPGA

    Directory of Open Access Journals (Sweden)

    Khalil-Ur-Rahman Dayo

    2013-01-01

    Full Text Available In this paper, performance and area of conventional FIR (Finite Impulse Responce filters versus ternary sigma delta modulated FIR filter is compared in FPGA (Field Programmable Gate Arrays using VHDL (Verilog Description Language. Two different approaches were designed and synthesized at same spectral performance by obtaining a TIR (Target Impulse Response. Both filters were synthesized on adaptive LUT (Look Up Table FPGA device in pipelined and non-pipelined modes. It is shown that the Ternary FIR filter occupies approximately the same area as the corresponding multi-bit filter, but for a given specification, the ternary FIR filter has 32% better performance in non-pipelined and 72% in pipelined mode, compared to its equivalent Multi-Bit filter at its optimum 12-bit coefficient quantization. These promising results shows that ternary logic based (i.e. +1,0,-1 filters can be used for huge chip area savings and higher performance.

  7. Comparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval

    Directory of Open Access Journals (Sweden)

    Rajeswari Sridhar

    2010-07-01

    Full Text Available In this work we have compared two indexing algorithms that have been used to index and retrieve Carnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithm for music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. The modification in the dual ternary algorithm was essential to handle variable length query phrase and to accommodate features specific to Carnatic music. The dual ternary indexing algorithm is adapted for Carnatic music by segmenting using the segmentation technique for Carnatic music. The dual ternary algorithm is compared with the multi-key hashing algorithm designed by us for indexing and retrieval in which features like MFCC, spectral flux, melody string and spectral centroid are used as features for indexing data into a hash table. The way in which collision resolution was handled by this hash table is different than the normal hash table approaches. It was observed that multi-key hashing based retrieval had a lesser time complexity than dual-ternary based indexing The algorithms were also compared for their precision and recall in which multi-key hashing had a better recall than modified dual ternary indexing for the sample data considered.

  8. Cyclodextrin-based microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  9. Synthesis of Tetra-Schiff Base Macrocyclic Compound Containing Benzo-12-crown-4

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tetra-Schiff base macrocyclic compound containing benzo-12-crown-4 was synthesized via condensation of 2, 6-diformyl-4-methyl-phenol with 4(, 5(- diaminobenzo-12-C- 4 promoted by proton. The compound was characterized by MS, IR 1HNMR spectroscopy and elemental analysis.

  10. A specific gas chromatographic detector for carbonyl compounds, based on polarography.

    Science.gov (United States)

    Fleet, B; Risby, T H

    1969-07-01

    The evaluation of a specific gas Chromatographie detector for carbonyl compounds is described. This is based on the polarographic reduction of the Girard T hydrazone derivative which is formed when the carbonyl compound is absorbed in a buffered supporting electrolyte containing the carbonyl reagent. The detector was used to monitor the separation of a homologous series of alkanals.

  11. Activated Carbon Adsorption Characteristics of Multi-component Volatile Organic compounds in a Fixed Bed Adsorption Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Hoon; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Sihyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-04-15

    This study aims to examine absorption characteristics of toluene, isopropyl alcohol (IPA), ethyl acetate (EA), and ternary-compounds, all of which are widely used in industrial processes, by means of four types of commercial activated carbon substances. It turned out that among the three types of volatile organic compounds, the breakthrough point of activated carbon and that of IPA, whose affinity was the lowest, were the lowest, and then that of EA and that of toluene in the order. With the breakthrough point of IPA, which was the shortest, as the standard, changes in the breakthrough points of unary-compounds, binary-compounds, and ternary-compounds were examined. As a result, it turned out that the larger the number of elements, the lower the breakthrough point. This resulted from competitive adsorption, that is, substitution of substances with a low level of affinity with those with a high level of affinity. Hence, the adsorption of toluene-IPA-EA and ternary-compounds require a design of the activated carbon bed based on the breakthrough of IPA, and in the design of activated carbon beds in actual industries as well, a substance whose level of affinity is the lowest needs to be the standard.

  12. Translation of Japanese Noun Compounds at Super-Function Based MT System

    Science.gov (United States)

    Zhao, Xin; Ren, Fuji; Kuroiwa, Shingo

    Noun compounds are frequently encountered construction in nature language processing (NLP), consisting of a sequence of two or more nouns which functions syntactically as one noun. The translation of noun compounds has become a major issue in Machine Translation (MT) due to their frequency of occurrence and high productivity. In our previous studies on Super-Function Based Machine Translation (SFBMT), we have found that noun compounds are very frequently used and difficult to be translated correctly, the overgeneration of noun compounds can be dangerous as it may introduce ambiguity in the translation. In this paper, we discuss the challenges in handling Japanese noun compounds in an SFBMT system, we present a shallow method for translating noun compounds by using a word level translation dictionary and target language monolingual corpus.

  13. Determination of isothermal section of Ag-Ti-Zr ternary system at 1 023 K

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The isothermal section of Ag-Ti-Zr ternary system at 1023 K was determined by diffusion triple and electron probe microanalysis. The results indicate that four binary intermetallic phases of AgTi, AgTi2, AgZr and AgZr2 are found in Ag-Ti-Zr ternary system at 1 023 K. AgZr2 and AgTi2 form a continuous solid solution, namely Ag(Ti,Zr)2. Four three-phase regions: AgTi+AgZr + Ag, AgTi +AgZr + Ag (Ti, Zr)2, α-Zr +β3(Ti, Zr)+ Ag (Ti, Zr)2 and α-Ti +β(Ti, Zr)+ Ag (Ti, Zr)2 exist in the isothermal section. No ternary compound is observed.

  14. Isothermal Section of Er-Mn-Nd Ternary System at 773 K

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The isothermal section of the Er-Mn-Nd ternary system at 773 K was investigated mainly by X-ray powder diffraction with the aid of differential thermal analysis. The 773 K isothermal section of the ternary system consists of 9 single-phase regions, 14 two-phase regions, and 6 three-phase regions. At 773 K, the maximum solid solubility of Er in Nd and Nd in Er is about 20% (atom fraction) Er and 26% (atom fraction) Nd, respectively. Er6Mn23 and Nd6Mn23 form a continuous solid solution. The homogeneity range of δ phase extends from about 38% (atom fraction) Er to 43% (atom fraction) Er. No ternary compounds were observed at 773 K in this system.

  15. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  16. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)

    ANA I. KOSTOV

    2008-04-01

    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  17. High-throughput search of ternary chalcogenides for p-type transparent electrodes

    Science.gov (United States)

    Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen; Nogueira, Fernando; Botti, Silvana; Marques, Miguel A. L.

    2017-01-01

    Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes. PMID:28266587

  18. High-throughput search of ternary chalcogenides for p-type transparent electrodes

    Science.gov (United States)

    Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen; Nogueira, Fernando; Botti, Silvana; Marques, Miguel A. L.

    2017-03-01

    Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes.

  19. CMOS Design of Ternary Arithmetic Devices

    Institute of Scientific and Technical Information of China (English)

    吴训威; F.Prosser

    1991-01-01

    This paper presents CMOS circuit designs of a ternary adder and a ternary multiplier,formulated using transmission function theory.Binary carry signals appearing in these designs allow conventional look-ahead carry techniques to be used.compared with previous similar designs,the circuits proposed in this paper have advantages such as low dissipation,low output impedance,and simplicity of construction.

  20. Assessment of ternary iron-cyclodextrin-2-naphthol complexes using NMR and fluorescence spectroscopies

    Science.gov (United States)

    Zheng, Weixi; Tarr, Matthew A.

    2006-12-01

    Recent research has indicated that ternary complexes can be formed among carboxymethyl-β-cyclodextrin, certain polycyclic aromatic hydrocarbons (PAHs) (e.g. anthracene and 2-naphthol), and Fe 2+ in aqueous solution. The formation of these ternary complexes has been suggested as the reason for improved reaction efficiency in iron catalyzed Fenton degradation (H 2O 2 + Fe 2+ → rad OH + OH - + Fe 3+) of PAHs and other pollutants. In the present work, several other cyclodextrins were examined to determine their ability to form similar ternary complexes with 2-naphthol and Fe 2+. Fluorescence and NMR techniques were employed in this study. Results showed that hydroxypropyl-β-cyclodextrin, β-cyclodextrin, and α-cyclodextrin were able to encapsulate 2-naphthol molecules, but their binding with Fe 2+ was weak. On the contrary, sulfated-β-cyclodextrin has significant binding with Fe 2+, but it showed little inclusion of 2-naphthol molecules. Consequently, none of these four cyclodextrins formed significant amounts of ternary complexes in aqueous solution. The techniques used in this study provide useful methods for assessing the ability of cyclodextrins to form ternary complexes with guest compounds and metal ions.

  1. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    Directory of Open Access Journals (Sweden)

    Krivtcova Nadezhda

    2016-01-01

    Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  2. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  3. Nuclear magnetic resonance on selected lithium based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rudisch, Christian

    2013-11-26

    This thesis presents the NMR measurements on the single crystals LiMnPO{sub 4} and Li{sub 0.9}FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO{sub 4} with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO{sub 4} shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse X-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO{sub 4} measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li{sub 0.9}FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below T{sub c}-18 K which

  4. Antimonide-Based Compound Semiconductors for Electronic Devices: A Review

    Science.gov (United States)

    2005-04-01

    currents, apparently due to exten- sive interface recombination [137]. Dodd et al. fabricated npn InAs bipolar transistors on InP in an attempt to achieve...Demonstration of npn InAs bipolar transistors with inverted base doping. IEEE Electron Dev Lett 1996;17(4):166–8. [139] Moran PD, Chow D, Hunter A, Kuech TF...based electronic devices: high electron mobility transistors (HEMTs), resonant tunneling diodes (RTDs), and heterojunction bipolar transistors (HBTs

  5. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    Science.gov (United States)

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  6. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Langan, Paul; Dealwis, Chris G.; (Case Western); (LANL)

    2009-11-18

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.

  7. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Lin

    2015-01-01

    Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  8. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.

    Science.gov (United States)

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  9. Realizing Ternary Logic in FPGAs for SWL DSP Systems

    Directory of Open Access Journals (Sweden)

    Tayeb Din

    2013-07-01

    Full Text Available Recently SWL (Short Word Length DSP (Digital Signal Processing applications has been proposed to overcome multiplier complexity that is evident in most of the digital applications. These SWL applications have been processed through sigma-delta modulation as a key element. For such applications, adder design plays vital role and can impact upon the chip area and its performance. In this paper, a ternary approach for adder tree has been proposed instead of binary that can accommodate more data with less chip-area at the cost of extra pin. The proposed ternary adder tree has been designed and developed in Quartus-II using three different design strategies namely T-gate (Ternary gate, LUT (Look Up Table and algebraic equations. Through rigorous simulation it was found that T-gate technique results in superior performance, an average of 23.5 and 33% improvement compared to the same adder structure based on Boolean Algebraic Equation and LUT, respectively. The proposed adder design would benefit the efficient implementation of SWL applications.

  10. MBE Growth and Characterization of Hg Based Compounds and Heterostructures

    Science.gov (United States)

    2002-06-03

    The molecular beam epitaxy ( MBE ) growth of Mercury Cadmium Telluride (Hg(1-x)Cd(x)Te) alloys and type III HgTe/Hg(1-x)Cd(x)Te heterostructures has...been discussed, including similarities and differences between the (0 0 1) and (1 1 2)Beta orientations. Furthermore, the MBE growth of HgTe-based

  11. Chemical reactivity of hypervalent silicon compounds: The local hard and soft acids and bases principle viewpoint

    Indian Academy of Sciences (India)

    Francisco Méndez; María De L Romero; José L Gazquez

    2005-09-01

    The silicon atom may increase its coordination number to values greater than four, to form pentacoordinated compounds. It has been observed experimentally that, in general, pentacoordinated compounds show greater reactivity than tetracoordinated compounds. In this work, density functional theory is used to calculate the global softness and the condensed softness of the silicon atom for SiHF4- and SiHF$^{1-}_{5-n}$. The values obtained show that the global and condensed softness are greater in the pentacoordinated compounds than in the tetracoordinated compounds, a result that explains the enhanced reactivity. If the results are analysed through a local version of the hard and soft acids and bases principle, it is possible to suggest that in nucleophilic substitution reactions, soft nucleophiles preferably react with SiHF$^{1-}_{5-n}$, and hard nucleophiles with SiHF4-.

  12. Research on the Sparse Representation for Gearbox Compound Fault Features Using Wavelet Bases

    Directory of Open Access Journals (Sweden)

    Chunyan Luo

    2015-01-01

    Full Text Available The research on gearbox fault diagnosis has been gaining increasing attention in recent years, especially on single fault diagnosis. In engineering practices, there is always more than one fault in the gearbox, which is demonstrated as compound fault. Hence, it is equally important for gearbox compound fault diagnosis. Both bearing and gear faults in the gearbox tend to result in different kinds of transient impulse responses in the captured signal and thus it is necessary to propose a potential approach for compound fault diagnosis. Sparse representation is one of the effective methods for feature extraction from strong background noise. Therefore, sparse representation under wavelet bases for compound fault features extraction is developed in this paper. With the proposed method, the different transient features of both bearing and gear can be separated and extracted. Both the simulated study and the practical application in the gearbox with compound fault verify the effectiveness of the proposed method.

  13. The Spectrophotometric Multicomponent Analysis of a Ternary Mixture of Ibuprofen, Caffeine and Paracetamol by the Combination of Double Divisor-Ratio Spectra Derivative and H-Point Standard Addition Method

    Directory of Open Access Journals (Sweden)

    R. Hajian

    2012-01-01

    Full Text Available A new spectrophotometric method was developed for the simultaneous analysis of a ternary mixture containing paracetamol (PAR, ibuprofen (IBU and caffeine (CAF without prior separation. H-point standard addition method (HPSAM was used for the first time in the analysis of a component (IBU in a ternary mixture (paracetamol, ibuprofen and caffeine. In contrast, PAR and CAF determined using double divisor ratio spectra derivative method. This method is based on the use of derivative of the ratio spectrum obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of a mixture of two of the three compounds in the title mixture. The concentrations of PAR and CAF compounds in their mixture are determined by using their respective standard addition graphs which are obtained by measuring the amplitude at either the maximum or minimum wavelengths selected. The mathematical explanation of the procedure is illustrated. It was shown that at wavelengths 226 and 260 nm, the coordinate of H-point is only dependent on the concentration of IBU without any interference by PAR and CAF. This method was successfully applied for the analysis of Novafen capsule, with no interference from excipients as indicated by the recovery study results. The proposed method is simple and rapid and can be easily used in the quality control of drugs as an alternative analysis tools.

  14. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Jie; Tang Xin-Feng; Zhang Qing-Jie

    2007-01-01

    TiCoSb-based half-Heusler compounds with the substitution of Zr for Ti have been prepared quickly by combining high-energy ball milling method with spark plasma sintering technique, and their thermal transport properties have been investigated. With the increase of the concentration of Zr, the thermal conductivity of Ti1-xZrxCoSb compounds decreases significantly. Compared with the thermal conductivity of TiCoSb compound, that of Ti0.5Zr0.5CoSb decreases by 200% at 1000 K.

  15. Influence of lead Inorganic Compounds on Combustion Rate of Double Base Rocket Propellants

    Directory of Open Access Journals (Sweden)

    V. B. Pillai

    1982-04-01

    Full Text Available The influence of lead nitrate, red lead, lead chromate, lead floride and lead carbonate on the combustion behaviour of double base propellants in the pressure range-35-140kg/cm /sup 2/ was studied. While all these compounds increased burning rates in lower pressure range (35-60 kg/cm/sup 2/ and higher pressure range (120-140 kg/cm/sup 2/, only lead chromate and lead fluoride were effective in the intermediate pressure range of 60-105 kg/cm/sup 2/. None of these compounds were effective as platonizer, except lead fluoride, which lowered n value to 0.34 in the lower pressure range. Addition of carbon black along with lead compounds raised burning rates further and reduced n values significantly in the higher pressure regins. A probable mechanism on the role of lead compounds studied has been suggested based on burning rate and DTA results.

  16. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.

    Science.gov (United States)

    Nguyen, Ha P; Koutsoukas, Alexios; Mohd Fauzi, Fazlin; Drakakis, Georgios; Maciejewski, Mateusz; Glen, Robert C; Bender, Andreas

    2013-09-01

    Diversity selection is a frequently applied strategy for assembling high-throughput screening libraries, making the assumption that a diverse compound set increases chances of finding bioactive molecules. Based on previous work on experimental 'affinity fingerprints', in this study, a novel diversity selection method is benchmarked that utilizes predicted bioactivity profiles as descriptors. Compounds were selected based on their predicted activity against half of the targets (training set), and diversity was assessed based on coverage of the remaining (test set) targets. Simultaneously, fingerprint-based diversity selection was performed. An original version of the method exhibited on average 5% and an improved version on average 10% increase in target space coverage compared with the fingerprint-based methods. As a typical case, bioactivity-based selection of 231 compounds (2%) from a particular data set ('Cutoff-40') resulted in 47.0% and 50.1% coverage, while fingerprint-based selection only achieved 38.4% target coverage for the same subset size. In conclusion, the novel bioactivity-based selection method outperformed the fingerprint-based method in sampling bioactive chemical space on the data sets considered. The structures retrieved were structurally more acceptable to medicinal chemists while at the same time being more lipophilic, hence bioactivity-based diversity selection of compounds would best be combined with physicochemical property filters in practice.

  17. TEM Investigations on Layered Ternary Ceramics

    Institute of Scientific and Technical Information of China (English)

    Zhijun LIN; Meishuan LI; Yanchun ZHOU

    2007-01-01

    Layered ternary ceramics represent a new class of solids that combine the merits of both metals and ceramics.These unique properties are strongly related to their layered crystal structures and microstructures. The combination of atomic-resolution Z-contrast scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM), selected area electron diffraction (SAED), convergent beam electron diffraction (CBED) represents a powerful method to link microstructures of materials to macroscopic properties, allowing layered ternary ceramics to be investigated in an unprecedented detail. Vicrostructural information obtained using TEM is useful in understanding the formation mechanism, layered stacking characteristics, and defect structures for layered ternary ceramics down to atomic-scale level; and thus provides insight into understanding the "Processing-Structure-Property" relationship of layered ternary ceramics. Transmission electron microscopic characterizations of layered ternary ceramics in Ti-Si-C, Ti-Al-C, Cr-Al-C, Zr-Al-C, Ta-Al-C and Ti-Al-N systems are reviewed.

  18. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  19. On Approximate -Ternary -Homomorphisms: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    Cho YJ

    2011-01-01

    Full Text Available Using fixed point methods, we prove the stability and superstability of -ternary additive, quadratic, cubic, and quartic homomorphisms in -ternary rings for the functional equation , for each .

  20. Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage

    KAUST Repository

    Kurra, Narendra

    2015-05-11

    We report the successful fabrication of a micro-pseudocapacitor based on ternary nickel cobalt sulfide for the first time, with performance substantially exceeding that of previously reported micro-pseudocapacitors based on binary sulfides. CoNi2S4 micro-pseudocapacitor exhibits a maximum energy density of 18.7 mWh/cm3 at a power density of 1163 mW/cm3, opens up an avenue for exploring new family of ternary oxides/sulfides based micro-pseudocapacitors.

  1. Thermodynamic Modeling of the Al-Cr-Mn Ternary System

    Science.gov (United States)

    Cui, Senlin; Jung, In-Ho

    2017-03-01

    The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

  2. Electroless ternary NiCeP coatings: Preparation and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Balaraju, J.N., E-mail: jnbalraj@nal.res.in [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India); Chembath, Manju [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Rare earth element (Ce) has been successfully codeposited in NiP matrix. Black-Right-Pointing-Pointer Surface analysis carried out by XPS showed that the Ce is present in +3 and +4 oxidation state. Black-Right-Pointing-Pointer Palladium stability test indicated that the Ce salts in electroless nickel bath has reduced the stability. Black-Right-Pointing-Pointer Cerium codeposition in NiP matrix has increased the microhardness both in as-plated and annealed conditions. Black-Right-Pointing-Pointer Higher thermal stability has been obtained by Ce incorporation. - Abstract: Electroless ternary NiCeP deposits were prepared from alkaline citrate bath containing nickel sulphate, cerium chloride and sodium hypophosphite. Concentration of rare earth cerium was varied from 1 to 2 g/L to obtain ternary deposits containing variable Ce and P contents. The influence of cerium on the deposit properties was analysed. The deposit exhibited a maximum cerium content of 6.2 {+-} 0.1 wt.% when the cerium chloride concentration was 2 g/L. The result of the Pd stability test showed that the stability of the bath was reduced due to Ce salt addition. The microhardness measurements made on both as-plated and heat treated samples exhibited a peak hardness of 1006 {+-} 11 VHN for cerium concentration of 1.5 g/L. The concept of kinetic strength analysis was proved to be applicable only for binary and not for ternary alloys due to multistep deposition mechanism with different kinetic energies. X-ray diffraction (XRD) patterns of as-plated and heat treated samples revealed peaks corresponding to Ni (1 1 1) and nickel phosphide (Ni{sub 3}P). Higher amount of Ce incorporation in NiP matrix increased the crystallisation temperature of the deposit which could be due to the suppression of nickel crystallisation prior to Ni{sub 3}P compound formation and thus increasing the activation energy for the formation of stable phases. Surface compositional analysis

  3. Elliptic curves and positive definite ternary forms

    Institute of Scientific and Technical Information of China (English)

    WANG; Xueli(

    2001-01-01

    [1]Pei Dingyi, Rosenberger, G. , Wang Xueli, The eligible numbers of positive definite ternary forms, Math. Zeitschriften,2000, 235: 479-497.[2]Wang Xueli, Pei Dingyi, Modular forms of 3/2 weight and one conjecture of Kaplansky, preprint.[3]Jones, B., The regularity of a genus of positive ternary quadratic forms, Trans. Amer. Math. Soc., 1931, 33: 111-124.[4]Kaplansky, I., The first nontrivial genus of positive definite ternary forms, Math. Comp., 1995, 64: 341-345.[5]Antoniadis, J. A., Bungert, M., Frey, G., Properties of twists of elliptic curves, J. Reine Angew Math., 1990, 405: 1-28.

  4. Synthesis, Structure and Properties of Melamine-Based pTHF-Urethane Supramolecular Compounds

    NARCIS (Netherlands)

    Öjelund, Karin; Loontjens, Ton; Steeman, Paul; Palmans, Anja; Maurer, Frans

    2003-01-01

    The properties of melamine based supramolecular compounds have been studied with rheological, thermal, mechanical, dielectric and scattering techniques and compared with similar covalently bonded materials. The complexes are based on a linear pTHF-diol (M¯n=1 000) connected via a diisocyanate with m

  5. Understanding the toxicological potential of aerosol organic compounds using informatics based screening

    Science.gov (United States)

    Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea

    2016-04-01

    Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.

  6. Hydrogen trapping properties of Zr-based intermetallic compounds in the presence of CO contaminant gas

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Jocelyn [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Latroche, Michel, E-mail: latroche@icmpe.cnrs.fr [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Leoni, Elisa; Rohr, Valentin [AREVA NC, 1, rue des Herons, 78182 Montigny Le Bretonneux (France)

    2011-09-15

    Research highlights: > Hydrogen absorption in the presence of carbon monoxide is reported for several Zr rich intermetallic compounds. > Absorption rates have been determined and compared for pure and CO-containing hydrogen gases. > Using intermetallic compounds as getter materials in the presence of contaminant gases has been demonstrated. - Abstract: Intermetallic compounds, as hydrogen getters, are considered to control the quantity of hydrogen generated in radioactive waste packaging. The compounds ZrCo, Zr{sub 2}Fe and a Zr-rich Zr-Ti-V alloy have been chosen as they form very stable hydrides at ambient temperature. However, other gases are produced in the packaging such as carbon monoxide, a gas known to poison the surface of intermetallic compounds and to hinder the hydrogen sorption reaction. The three Zr-based compounds have been first characterized regarding their metallurgical state and their gas sorption properties toward pure hydrogen. Then, the sorption properties of the activated materials have been studied using a mixture of 5 vol.% CO + 95 vol.% H{sub 2}. We demonstrated that though the presence of CO sharply slows down the reaction rate the activated compounds still show significant sorption properties. Therefore, the presence of contaminant gases is not detrimental for the target application.

  7. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  8. Ternary interaction parameters in calphad solution models

    Energy Technology Data Exchange (ETDEWEB)

    Eleno, Luiz T.F., E-mail: luizeleno@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Schön, Claudio G., E-mail: schoen@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Computational Materials Science Laboratory. Department of Metallurgical and Materials Engineering

    2014-07-01

    For random, diluted, multicomponent solutions, the excess chemical potentials can be expanded in power series of the composition, with coefficients that are pressure- and temperature-dependent. For a binary system, this approach is equivalent to using polynomial truncated expansions, such as the Redlich-Kister series for describing integral thermodynamic quantities. For ternary systems, an equivalent expansion of the excess chemical potentials clearly justifies the inclusion of ternary interaction parameters, which arise naturally in the form of correction terms in higher-order power expansions. To demonstrate this, we carry out truncated polynomial expansions of the excess chemical potential up to the sixth power of the composition variables. (author)

  9. Target identification of natural products and bioactive compounds using affinity-based probes.

    Science.gov (United States)

    Pan, Sijun; Zhang, Hailong; Wang, Chenyu; Yao, Samantha C L; Yao, Shao Q

    2016-05-04

    Covering: 2010 to 2014.Advances in isolation, synthesis and screening strategies have made many bioactive substances available. However, in most cases their putative biological targets remain unknown. Herein, we highlight recent advances in target identification of natural products and bioactive compounds by using affinity-based probes. Aided by photoaffinity labelling, this strategy can capture potential cellular targets (on and off) of a natural product or bioactive compound in live cells directly, even when the compound-target interaction is reversible with moderate affinity. The knowledge of these targets may help uncover molecular pathways and new therapeutics for currently untreatable diseases. In this highlight, we will introduce the development of various photoactivatable groups, their synthesis and applications in target identification of natural products and bioactive compounds, with a focus on work done in recent years and from our laboratory. We will further discuss the strengths and weaknesses of each group and the outlooks for this novel proteome-wide profiling strategy.

  10. Mechanical properties, anisotropy and hardness of group IVA ternary spinel nitrides

    Science.gov (United States)

    Ding, Ying-Chun; Chen, Min

    2013-10-01

    In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based on the density-functional theory. The results show that γ-CSn2N4, γ-SiC2N4, γ-GeC2N4 and γ-SnC2N4 are not mechanically stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress-strain method. Derived elastic constants, such as bulk modulus, shear modulus, Young's modulus, Poisson coefficient and brittle/ductile behaviour are estimated using Voigt-Reuss-Hill theories. The B/G value, the Poisson's ratio and anisotropic factor are calculated for eight ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao's and Jiang's methods, it is observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ-CSi2N4. Furthermore, the Debye temperature for the eight stable crystals is also estimated.

  11. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    Science.gov (United States)

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-11-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately ‑65.6, ‑58.1, ‑41.1 and ‑47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below ‑20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials.

  12. Mechanism of ultrasonic-pulse electrochemical compound machining based on particles

    Institute of Scientific and Technical Information of China (English)

    张成光; 张勇; 张飞虎

    2014-01-01

    The electric double layer with the transmission of particles was presented based on the principle of electrochemistry. In accordance with this theory, the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining (UPECM) based on particles was proposed. The removal mechanism was a particular focus and was thus validated by experiments. The principles and experiments of UPECM were introduced, and the removal model of the UPECM based on the principles of UPECM was established. Furthermore, the effects of the material removal rate for the main processing parameters, including the particles size, the ultrasonic vibration amplitude, the pulse voltage and the minimum machining gap between the tool and the workpiece, were also studied through UPECM. The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM. The results also indicate that the processing speed, machining accuracy and surface quality can be improved under UPECM compound machining.

  13. Experimental investigation of phase equilibria in the Nb-Si-Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Wang, Cuiping; Yao, Jun; Yang, Shuiyuan; Zhan Shi; Liu, Xingjun [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Laboratory of Materials Genome; Kang, Yongwang [Beijing Institute of Aeronautical Materials (China). Science and Technology on Advanced High Temperature Structural Materials Lab.

    2016-12-15

    The phase equilibria in the Nb-Si-Ta ternary system at 1 373 K, 1 473 K and 1 573 K were investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction. The isothermal sections at 1 373 K, 1 473 K and 1 573 K consist of two three-phase regions and seven two-phase regions, without any ternary compounds. The compounds of NbSi{sub 2} and TaSi{sub 2}, αNb{sub 5}Si{sub 3} and αTa{sub 5}Si{sub 3} form continuous solid solutions, respectively. The solubilities of Nb in Ta{sub 3}Si and Ta{sub 2}Si phases are extremely large, whereas the solubility of Si in the β(Nb, Ta) phase is relatively small.

  14. Synthesis and characterization of a novel stationary phase, Si-Zr/Ti(PMTDS), based upon ternary oxide support for high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Amparo, Maura R.; Marques, Fabiana A.; Faria, Anizio M., E-mail: anizio@pontal.ufu.br [Universidade Federal de Uberlandia (FACIP/UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal

    2013-09-15

    A new stationary phase based on the thermal immobilization of poly(methyltetradecylsiloxane) (PMTDS) on silica particles coated with a mixture of zirconia and titania was prepared and evaluated for the chromatographic separation of test mixtures. The spherical particles were characterized by elemental analysis, SEM, FTIR and {sup 29}Si NMR. The physicochemical properties of PMTDS phase supported on Si-Zr/Ti were intermediate between PMTDS phases supported on titanized silica and zirconized silica. The chromatographic performance of Si-Zr/Ti(PMTDS) phase was similar to PMTDS phases based on metal oxide coated silica having only one metal oxide and the preparation of a Si-Zr/Ti(PMTDS) phase allowed evaluation of the effect of each oxide, zirconia and titania, on the separation process and on the stability of the immobilized polymer phase. The hydrolytic stability of Si-Zr/Ti(PMTDS) stationary phase was similar to the Si-Ti(PMTDS) phase, improving the chemical stability of the silica-based PMTDS phase by about 100%. (author)

  15. Ternary metal-rich sulfide with a layered structure

    Science.gov (United States)

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  16. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    Directory of Open Access Journals (Sweden)

    Zaixiang Lou

    2015-09-01

    Full Text Available Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  17. First principles total energy study of NbCr{sub 2} + V Laves phase ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey); Chen, S.P.; Wills, J.M.; Albers, R.C. [Los Alamos National Lab., NM (United States)

    1999-04-01

    The C15 NbCr{sub 2} + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr{sub 2} + V compounds, V atoms substitute Cr atoms only.

  18. Nd-Cu-Sn system: identification of ternary phases and partial determination of the isothermal section at 400 C

    Energy Technology Data Exchange (ETDEWEB)

    Riani, P. [Genova Univ. (Italy). Dipartimento di Chimica e Chimica Industriale; Zanicchi, G. [Genova Univ. (Italy). Dipartimento di Chimica e Chimica Industriale; Mazzone, D. [Genova Univ. (Italy). Dipartimento di Chimica e Chimica Industriale; Marazza, R. [Genova Univ. (Italy). Dipartimento di Chimica e Chimica Industriale

    1997-01-30

    The partial isothermal section at 400 C of the phase diagram Nd-Cu-Sn was investigated by X-ray diffraction, optical and scanning electron microscopy and electron probe microanalysis. In the studied region of the isothermal section, nine ternary compounds have been confirmed or determined and 14 tie-triangles identified. (orig.)

  19. The Crystal Growth and Characterization of CeT2Si2 Ternary Intermetallics (T = Ni, Pd, Pt)

    NARCIS (Netherlands)

    Menovsky, A.A.; Snel, C.E.; Gortenmulder, T.J.; Palstra, T.T.M.

    1986-01-01

    Bulk single crystals of the ternary intermetallic compounds CeNi2Si2, CePd2Si2 and CePt2Si2 have been grown from the melt with a modified “tri-arc” Czochralski method. The as-grown crystals were characterized by X-ray, microprobe, and chemical analyses. The measured densities were compared with the

  20. SiGeSn Ternaries for Efficient Group IV Heterostructure Light Emitters.

    Science.gov (United States)

    von den Driesch, Nils; Stange, Daniela; Wirths, Stephan; Rainko, Denis; Povstugar, Ivan; Savenko, Aleksei; Breuer, Uwe; Geiger, Richard; Sigg, Hans; Ikonic, Zoran; Hartmann, Jean-Michel; Grützmacher, Detlev; Mantl, Siegfried; Buca, Dan

    2017-02-03

    SiGeSn ternaries are grown on Ge-buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short-wave infrared range of up to about 2.6 µm. Temperature-dependent photoluminescence experiments indicate ternaries near the indirect-to-direct bandgap transition, proving their potential for ternary-based light emitters in the aforementioned optical range. The ternaries' layer relaxation is also monitored to explore their use as strain-relaxed buffers, since they are of interest not only for light emitting diodes investigated in this paper but also for many other optoelectronic and electronic applications. In particular, the authors have epitaxially grown a GeSn/SiGeSn multiquantum well heterostructure, which employs SiGeSn as barrier material to efficiently confine carriers in GeSn wells. Strong room temperature light emission from fabricated light emitting diodes proves the high potential of this heterostructure approach.

  1. Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C

    Science.gov (United States)

    Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen

    2016-12-01

    The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.

  2. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening

    Directory of Open Access Journals (Sweden)

    Mantsyzov AB

    2012-09-01

    Full Text Available Alexey B Mantsyzov,1 Guillaume Bouvier,2 Nathalie Evrard-Todeschi,1 Gildas Bertho11Université Paris Descartes, Sorbonne, Paris, France; 2Institut Pasteur, Paris, FranceAbstract: Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.Keywords: scoring, docking, virtual screening, CAR, AuPosSOM

  3. Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds

    CERN Document Server

    Vrubel, I I; Ivanov, V K

    2015-01-01

    A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.

  4. Ternary solution of sodium chloride, succinic acid and water; surface tension and its influence on cloud droplet activation

    Directory of Open Access Journals (Sweden)

    J. Vanhanen

    2008-08-01

    Full Text Available Surface tension of ternary solution of sodium chloride, succinic acid and water was measured as a function of both composition and temperature by using the capillary rise technique. Both sodium chloride and succinic acid are found in atmospheric aerosols, the former being main constituent of marine aerosol. Succinic acid was found to decrease the surface tension of water already at very low concentrations. Sodium chloride increased the surface tension linearly as a function of the concentration. Surface tensions of both binary solutions agreed well with the previous measurements. Succinic acid was found to lower the surface tension even if sodium chloride is present, indicating that succinic acid, as a surface active compound, tends to concentrate to the surface. An equation based on thermodynamical relations was fitted to the data and extrapolated to the whole concentration range by using estimated surface tensions for pure compounds. As a result, we obtained an estimate of surface tensions beyond solubility limits in addition to a fit to the experimental data. The parameterization can safely be used at temperatures from 10 to 30°C. These kinds of parameterizations are important for example in atmospheric nucleation models. To investigate the influence of surface tension on cloud droplet activation, the surface tension parameterization was included in an adiabatic air parcel model. Usually in cloud models the surface tension of pure water is used. Simulations were done for characteristic marine aerosol size distributions consisting of the considered ternary mixture. We found that by using the surface tension of pure water, the amount of activated particles is underestimated up to 8% if particles contain succinic acid and overestimated it up to 8% if particles contain only sodium chloride. The surface tension effect was found to increase with increasing updraft velocity.

  5. Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila.

    Science.gov (United States)

    Harrison, Christopher F; Chiriano, Gianpaolo; Finsel, Ivo; Manske, Christian; Hoffmann, Christine; Steiner, Bernhard; Kranjc, Agata; Patthey-Vuadens, Ophelie; Kicka, Sébastien; Trofimov, Valentin; Ouertatani-Sakouhi, Hajer; Soldati, Thierry; Scapozza, Leonardo; Hilbi, Hubert

    2015-07-10

    The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s).

  6. PMGA and its application in area and power optimization for ternary FPRM circuit

    Science.gov (United States)

    Pengjun, Wang; Kangping, Li; Huihong, Zhang

    2016-01-01

    Based on the research of population migration algorithms (PMAs), a population migration genetic algorithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY13F040003), the National Natural Science Foundation of China (Nos. 61234002, 61306041), and the K. C. Wong Magna Fund in Ningbo University.

  7. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    Science.gov (United States)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface

  8. New color image encryption algorithm based on compound chaos mapping and hyperchaotic cellular neural network

    Science.gov (United States)

    Li, Jinqing; Bai, Fengming; Di, Xiaoqiang

    2013-01-01

    We propose an image encryption/decryption algorithm based on chaotic control parameter and hyperchaotic system with the composite permutation-diffusion structure. Compound chaos mapping is used to generate control parameters in the permutation stage. The high correlation between pixels is shuffled. In the diffusion stage, compound chaos mapping of different initial condition and control parameter generates the diffusion parameters, which are applied to hyperchaotic cellular neural networks. The diffusion key stream is obtained by this process and implements the pixels' diffusion. Compared with the existing methods, both simulation and statistical analysis of our proposed algorithm show that the algorithm has a good performance against attacks and meets the corresponding security level.

  9. Single crystal growth of europium and ytterbium based intermetallic compounds using metal flux technique

    Indian Academy of Sciences (India)

    Sumanta Sarkar; Sebastian C Peter

    2012-11-01

    This article covers the use of indium as a potential metal solvent for the crystal growth of europium and ytterbium-based intermetallic compounds. A brief view about the advantage of metal flux technique and the use of indium as reactive and non-reactive flux are outlined. Large single crystals of EuGe2, EuCoGe3 and Yb2AuGe3 compounds were obtained in high yield from the reactions of the elements in liquid indium. The results presented here demonstrate that considerable advances in the discovery of single crystal growth of complex phases are achievable utilizing molten metals as solvents.

  10. Breast mass classification on mammograms using radial local ternary patterns.

    Science.gov (United States)

    Muramatsu, Chisako; Hara, Takeshi; Endo, Tokiko; Fujita, Hiroshi

    2016-05-01

    Textural features can be useful in differentiating between benign and malignant breast lesions on mammograms. Unlike previous computerized schemes, which relied largely on shape and margin features based on manual contours of masses, textural features can be determined from regions of interest (ROIs) without precise lesion segmentation. In this study, therefore, we investigated an ROI-based feature, namely, radial local ternary patterns (RLTP), which takes into account the direction of edge patterns with respect to the center of masses for classification of ROIs for benign and malignant masses. Using an artificial neural network (ANN), support vector machine (SVM) and random forest (RF) classifiers, the classification abilities of RLTP were compared with those of the regular local ternary patterns (LTP), rotation invariant uniform (RIU2) LTP, texture features based on the gray level co-occurrence matrix (GLCM), and wavelet features. The performance was evaluated with 376 ROIs including 181 malignant and 195 benign masses. The highest areas under the receiver operating characteristic curves among three classifiers were 0.90, 0.77, 0.78, 0.86, and 0.83 for RLTP, LTP, RIU2-LTP, GLCM, and wavelet features, respectively. The results indicate the usefulness of the proposed texture features for distinguishing between benign and malignant lesions and the superiority of the radial patterns compared with the conventional rotation invariant patterns.

  11. Two-and three-photon absorption in a novel fluorene-based compound

    Institute of Scientific and Technical Information of China (English)

    Wenbo Ma; Yiqun Wu; Donghong Gu; Fuxi Gan

    2005-01-01

    @@ A novel symmetrical charge transfer fluorene-based compound 2,7-bis (4-methoxystyryl)-9, 9-bis (2-ethylhexyl)-9H-fluorene (abbreviated as BMOSF) was synthesized and its nonlinear absorption was investigated using two different laser systems: a 140-fs, 800-nm Ti:sapphire laser operating at 1-kHz repetition rate and a 38-ps, 1064-nm Nd:YAG pulsed laser operating at 10-Hz repetition rate, respectively. Unique nonlinear absorption properties in this new compound were observed that rise from multiphoton absorption. The nonlinear absorption coefficients were measured to be 6.02 × 10-3 cm/GW (due to two-photon absorption, exciting wavelength is 800 nm) and 3.6×10-20 cm3/W2 (due to three-photon absorption, exciting wavelength is 1064 nm). This new compound possesses strong fluorescence induced by two-photon absorption and obvious three-photon absorption optical limiting effects.

  12. Thermoelectric Properties of ZrNiSn-Based Half-Heusler Compounds

    Science.gov (United States)

    Yang, Jihui

    2002-03-01

    An increasing awareness of energy efficiency and environmental concerns has rekindled prospects for automotive and other applications of thermoelectric materials. For instance, getting “free” electric power from waste heat or obtaining cooling power from a solid-state device is very appealing for the automotive industry. ZrNiSn-based half-Heusler compounds show promising transport properties that make these materials of interest for thermoelectric power generation. The talk will focus on the effect on transport properties of alloying and doping on the various sublattices. New high temperature data will be presented that indicate that appropriately modified half-Heusler compounds possess very high power factor and relatively low thermal conductivity, leading to a dimensionless thermoelectric figure of merit ZT of 0.7 at 800 K. This is the highest ZT value for any half-Heusler compound reported so far.

  13. Syntheses and Supramolecular Structures of Two Nickel(Ⅱ) Compounds Based on Two Thiosemicarbazone Ligands

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-juan; FENG Ze-jing; ZHAO Xiao-juan; WANG Su-na; DOU Jian-min

    2013-01-01

    Two new compounds,[Ni2(L1)(Py)6]Py·CH3OH(1) and [Ni3(L2)2(Py)4]·2DMF(2)(H4L1=N,N'-bisalicylbisthiocarbamide; H3L2=3-hydroxyl-2-naphthalene thiosemicarbazide; Py=pyridine; DMF=dimethyl fumarate),based upon two thiosemicarbazone ligands have been obtained and characterized by elemental analysis,Fourier transform infrared(FTIR) and X-ray diffraction(XRD).Compound 1 possesses a binuclear cluster,in which the bisalicylbisthiocarbamide acts as a hexadentate bridge.Compound 2 exhibits a linear trinuclear cluster with the triply-deprotonated ligand acting as pentadentate bridge.C—H…O,C—H…π and C—H…S weak interactions further link these molecules to form interesting supramolecular networks.

  14. Study of a ternary diagram gel according to a methodology of experimental research.

    Science.gov (United States)

    Forestier, J P; Puech, E; Tichadou, J L

    1985-10-01

    Synopsis The purpose of this work was to compare two methods to determine the formulation of a gel: a 'classical'method previously used and a rational method using matrixes based on the Scheffe algorithm which is particularly useful in the study of these type of mixtures. This gel was composed of three products: C12-C15 Alcohols Benzoate, Cyclomethicone and Ethylene Vinyl Acetate Copolymer in water. The ratios of these compounds were studied according to five criteria: compatibility between phases, consistency, whiteness, cost and 'skin spreading'. To determine the incompatibility zone inside the ternary diagram, we carried out our study by a systematic sequential walk strategy (seven experiments). Three parameters (consistency, whiteness, cost) were optimized using the Scheffe algorithm. This method only needs a limited number of experiments on which to base an empirical mathematical model of the studied phenomena as a function of the different experimental factors. The formulation is therefore discussed as a function of the first degree linear, the second degree and a third degree 'reduced cubical'model. The validity of the possible models are also discussed and the 'reduced cubical'best fits our phenomena.

  15. Development of diagnostic SPR based biosensor for the detection of pharmaceutical compounds in saliva

    Science.gov (United States)

    Sonny, Susanna; Sesay, Adama M.; Virtanen, Vesa

    2010-11-01

    The aim of the study is to develop diagnostic tests for the detection of pharmaceutical compounds in saliva. Oral fluid is increasingly being considered as an ideal sample matrix. It can be collected non-invasively and causes less stress to the person being tested. The detection of pharmaceutical compounds and drugs in saliva can give valuable information on individual bases on dose response, usage, characterization and clinical diagnostics. Surface plasmon resonance (SPR) is a highly sensitive, fast and label free analytical technique for the detection of molecular interactions. The specific binding of measured analyte onto the active gold sensing surface of the SPR device induces a refractive index change that can be monitored. To monitor these pharmaceutical compounds in saliva the immunoassays were developed using a SPR instrument. The instrument is equipped with a 670nm laser diode and has two sensing channels. Monoclonal antibodies against the pharmaceutical compounds were used to specifically recognise and capture the compounds which intern will have an effect of the refractive index monitored. Preliminary results show that the immunoassays for cocaine and MDMA (3,4-methylenedioxymethamphetamine) are very sensitive and have linear ranges of 0.01 pg/ml - 1 ng/ml and 0.1 pg/ml - 100 ng/ml, respectively.

  16. Solving the problem of structure determination in 3d transition metal based Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Balke, Benjamin; Fecher, Gerhard H.; Blum, Christian; Basit, Lubna; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany)

    2008-07-01

    This work reports on the structural investigation of Fe-containing, Co{sub 2}-based Heusler compounds (Co{sub 2}FeZ with Z=Al, Si, Ga, Ge) using anomalous X-ray diffraction (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). Using XRD, it was shown that Co{sub 2}FeAl crystallizes in the B2 structure whereas Co{sub 2}FeSi crystallizes in the L2{sub 1} structure. For compounds containing Ga or Ge, the XRD technique with regular laboratory sources for excitation can not be used easily to distinguish the two structures. For this reason, EXAFS was used to elucidate the structure of these two compounds. The absorption experiments close to the K-edges of Co, Fe, Ga, and Ge indicated that both compounds crystallize in the L2{sub 1} structure. Exciting the XRD at the K-edges of Co and Fe leads to anomalous X-ray scattering. The dependence of the scattering parameters on the energy close to the absorption edges was used to identify the L2{sub 1} structure of the Ga and Ge containing compounds unambiguously. The applicability of the techniques on nano-scaled materials is demonstrated for the example of Co{sub 2}FeGa nano-particles with sizes of below 25 nm.

  17. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status.

    Science.gov (United States)

    Ganesan, Palanivel; Arulselvan, Palanisamy; Choi, Dong-Kug

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is a major chronic disease that is prevalent worldwide, and it is characterized by an increase in blood glucose, disturbances in the metabolism, and alteration in insulin secretion. Nowadays, food-based therapy has become an important treatment mode for type 2 diabetes, and phytobioactive compounds have gained an increasing amount of attention to this end because they have an effect on multiple biological functions, including the sustained secretion of insulin and regeneration of pancreatic islets cells. However, the poor solubility and lower permeability of these phyto products results in a loss of bioactivity during processing and oral delivery, leading to a significant reduction in the bioavailability of phytobioactive compounds to treat T2DM. Recently, nanotechnological systems have been developed for use as various types of carrier systems to improve the delivery of bioactive compounds and thus obtain a greater bioavailability. Furthermore, carrier systems in most nanodelivery systems are highly biocompatible, with nonimmunologic behavior, a high degree of biodegradability, and greater mucoadhesive strength. Therefore, this review focuses on the various types of nanodelivery systems that can be used for phytobioactive compounds in treating T2DM with greater antidiabetic effects. There is also additional focus on improving the effects of various phytobioactive compounds through nanotechnological delivery to ensure a highly efficient treatment of type 2 diabetes.

  18. Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis

    Science.gov (United States)

    He, Shuilong; Chen, Jinglong; Zhou, Zitong; Zi, Yanyang; Wang, Yanxue; Wang, Xiaodong

    2016-08-01

    Compound-fault diagnosis of mechanical equipment is still challenging at present because of its complexity, multiplicity and non-stationarity. In this work, an adaptive redundant multiwavelet packet (ARMP) method is proposed for the compound-fault diagnosis. Multiwavelet transform has two or more base functions and many excellent properties, making it suitable for detecting all the features of compound-fault simultaneously. However, on the other hand, the fixed basis function used in multiwavelet transform may decrease the accuracy of fault extraction; what's more, the multi-resolution analysis of multiwavelet transform in low frequency band may also leave out the useful features. Thus, the minimum sum of normalized multifractal entropy is adopted as the optimization criteria for the proposed ARMP method, while the relative energy ratio of the characteristic frequency is utilized as an effective way in automatically selecting the sensitive frequency bands. Then, The ARMP technique combined with Hilbert transform demodulation analysis is then applied to detect the compound-fault of bevel gearbox and planetary gearbox. The results verify that the proposed method can effectively identify and detect the compound-fault of mechanical equipment.

  19. On the Dissolution Behavior of Sulfur in Ternary Silicate Slags

    Science.gov (United States)

    Kang, Youn-Bae; Park, Joo Hyun

    2011-12-01

    Sulfur dissolution behavior, in terms of sulfide capacity ( C S), in ternary silicate slags (molten oxide slags composed of MO - NO - SiO2, where M and N are Ca, Mn, Fe, and Mg), is discussed based on available experimental data. Composition dependence of the sulfur dissolution, at least in the dilute region of sulfur, may be explained by taking into account the cation-anion first-nearest-neighbor (FNN) interaction (stability of sulfide) and the cation-cation second-nearest-neighbor (SNN) interaction over O anion (oxygen proportions in silicate slags). When the Gibbs energy of a reciprocal reaction MO + NS = MS + NO is positive, the sulfide capacity of slags with virtually no SiO2 or low SiO2 concentration decreases as the concentration of MO increases. However, in some slags, as SiO2 concentration increases, replacing NO by MO at a constant SiO2 concentration may increase sulfide capacity when the basicity of NO is less than that of MO. This phenomenon is observed as rotation of iso- C S lines in ternary silicate slags, and it is explained by simultaneous consideration of the stability of sulfide and oxygen proportions in the silicate slags. It is suggested that a solution model for the prediction of sulfide capacity should be based on the actual dissolution mechanism of sulfur rather than on the simple empirical correlation.

  20. Genetic Synthesis of New Reversible/Quantum Ternary Comparator

    Directory of Open Access Journals (Sweden)

    DEIBUK, V.

    2015-08-01

    Full Text Available Methods of quantum/reversible logic synthesis are based on the use of the binary nature of quantum computing. However, multiple-valued logic is a promising choice for future quantum computer technology due to a number of advantages over binary circuits. In this paper we have developed a synthesis of ternary reversible circuits based on Muthukrishnan-Stroud gates using a genetic algorithm. The method of coding chromosome is presented, and well-grounded choice of algorithm parameters allowed obtaining better circuit schemes of one- and n-qutrit ternary comparators compared with other methods. These parameters are quantum cost of received reversible devices, delay time and number of constant input (ancilla lines. Proposed implementation of the genetic algorithm has led to reducing of the device delay time and the number of ancilla qutrits to 1 and 2n-1 for one- and n-qutrits full comparators, respectively. For designing of n-qutrit comparator we have introduced a complementary device which compares output functions of 1-qutrit comparators.

  1. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods; Caracterisation des elements: carbone, azote, oxygene et metal refractaire dans des depots binaires et ternaires a base de silicium par methodes d'analyse utilisant les faisceaux d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Somatri-Bouamrane, R. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1996-12-19

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions {sup 12}C({alpha},{alpha}), {sup 14}N({alpha},{alpha}), {sup 16}O({alpha},{alpha}), {sup 28}Si({alpha},{alpha}) and {sup 14}N({alpha},p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  2. Research on the image fusion and target extraction based on bionic compound eye system

    Science.gov (United States)

    Zhang, Shaowei; Hao, Qun; Song, Yong; Wang, Zihan; Zhang, Kaiyu; Zhang, Shiyu

    2015-08-01

    People attach more and more importance to bionic compound eye due to its advantages such as small volume, large field of view and sensitivity to high-speed moving objects. Small field of view and large volume are the disadvantages of traditional image sensor and in order to avoid these defects, this paper intends to build a set of compound eye system based on insect compound eye structure and visual processing mechanism. In the center of this system is the primary sensor which has high resolution ratio. The primary sensor is surrounded by the other six sensors which have low resolution ratio. Based on this system, this paper will study the target image fusion and extraction method by using plane compound eye structure. This paper designs a control module which can combine the distinguishing features of high resolution image with local features of low resolution image so as to conduct target detection, recognition and location. Compared with traditional ways, the way of high resolution in the center and low resolution around makes this system own the advantages of high resolution and large field of view and enables the system to detect the object quickly and recognize the object accurately.

  3. Energetics of ternary nitrides: Li-Ca-Zn-N and Ca-Ta-N systems

    Energy Technology Data Exchange (ETDEWEB)

    McHale, J.M.; Navrotsky, A. [Princeton Univ., NJ (United States); Kowach, G.R.; Balbarin, V.E.; DiSalvo, F.J. [Cornell Univ., Ithaca, NY (United States)

    1997-07-01

    High-temperature oxide melt drop solution calorimetry was used to study the energetics of ternary nitride formation. The standard enthalpies of formation of several binary and ternary nitrides were determined. These values in kJ mol{sup {minus}1} are {Delta}H{sub f}{degrees}(Li{sub 3}N) = {minus}166.1 {+-} 4.8, {Delta}H{sub f}{degrees}(Ca{sub 3}N{sub 2}) = 439.7{+-} 6.6, {Delta}H{sub f}{degrees}(Zn{sub 3}N{sub 2}) = 43.5 {+-} 4.1, {Delta}H{sub f}{degrees}(Ta{sub 3}N{sub 5}) = 849.7 {+-} 11.7, {Delta}H{sub f}{degrees}(Ca{sub 2}ZnN{sub 2}) = {minus}378.9 {+-} 8.6, {Delta}H{sub f}{degrees}(Sr{sub 2}ZnN{sub 2}) = {minus}385.6 {+-} 14.3, {Delta}H{sub f}{degrees}(LiCaN) = {minus}216.8 {+-} 10.8, {Delta}H{sub f}{degrees}(LiZnN) = {minus}137.5 {+-} 6.8, and {Delta}H{sub f}{degrees}(CaTaN{sub 2}) = 1643.8 {+-} 9.6. These enthalpies of formation are small in magnitude compared to analogous values for oxides. However, the enthalpies of formation of the ternaries from binary nitrides can be quite substantial, confirming significant energetic stabilization of ternary nitrides. The energetics of ternary nitride formation appears to be dominated by the acid/base character of the cations. A linear relationship was found between the enthalpies of formation of the ternaries from binary nitrides and the ionic potential ratio of the two cations. 43 refs., 4 tabs.

  4. Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth

    DEFF Research Database (Denmark)

    Brault, P.; Coutanceau, C.; C. Jennings, Paul

    2016-01-01

    Molecular dynamics simulation of PEMFC cathodes based on ternary Pt70Pd15Au15 and Pt50Pd25Au25 nanocatalysts dispersed on carbon indicate systematic Au segregation from the particle bulk to the surface, leading to an Au layer coating the cluster surface and to the spontaneous formation of a Pt...

  5. Multi-view 3D echocardiography compounding based on feature consistency

    Energy Technology Data Exchange (ETDEWEB)

    Yao Cheng; Schaeffter, Tobias; Penney, Graeme P [Division of Imaging Sciences and Biomedical Engineering, King' s College London (United Kingdom); Simpson, John M, E-mail: cheng.yao@kcl.ac.uk [Department of Congenital Heart Disease, Evelina Children' s Hospital, London (United Kingdom)

    2011-09-21

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  6. A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure.

    Science.gov (United States)

    Gharagheizi, Farhad

    2009-09-30

    In this study, a quantitative structure-property relationship was presented to estimate lower flammability limit temperature (LFLT) of pure compounds. This relationship is a multi-linear equation and has six parameters. These chemical structure-based parameters were selected from 1664 molecular-based parameters by genetic algorithm multivariate linear regression (GA-MLR). Since 1171 compounds were used to develop this equation, the model can be used to estimate the LFLT of a wide range of pure compounds.

  7. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Aditya M Vora

    2011-12-01

    The well-known empty core (EMC) model potential of Ashcroft was used to study the theoretical investigation of the superconducting state parameters (SSP) viz. electron–phonon coupling strength , Coulomb pseudopotential $\\mu^{\\ast}$, transition temperature $T_{C}$, isotope effect exponent and effective interaction strength $N_{O}V$ of some ternary metallic glasses. Most recent local field correction function due to Sarkar et al is used to study the screening influence on the aforesaid properties. Quadratic $T_{C}$ equations have been proposed and found successful. Also, the present findings are found to be in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary superconductors. The pseudo-alloy-atom (PAA) model was applied for the first time instead of Vegard’s law.

  8. BRCA1-Associated Triple-Negative Breast Cancer and Potential Treatment for Ruthenium-Based Compounds.

    Science.gov (United States)

    Hongthong, Khwanjira; Ratanaphan, Adisorn

    2016-01-01

    Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor (ER), progesterone receptor (PR), and a lack of overexpression or amplification of human epidermal growth factor receptor 2 (HER2). The clinicopathological characteristics of TNBC include a high grading, a high rate of cell proliferation and a greater degree of chromosomal rearrangement. Patients with triple-negative breast cancer are more likely to be drug resistant and more difficult to treat, and are also frequently BRCA1 mutants. Methylation of the BRCA1 promoter region is associated with a reduction of the BRCA1 mRNA level. TNBC patients with a methylated BRCA1 had a better disease-free survival compared with those with non-methylated BRCA1. From a therapeutic perspective, the expression level of BRCA1 has been a major determinant of the responses to different classes of chemotherapy. BRCA1-dysfunctional tumors are hypersensitive to DNA damaging chemotherapeutic agents like platinum drugs. Although platinum based drugs are currently widely used as conventional chemotherapeutic drugs in breast cancer chemotherapy, their use has several disadvantages. It is therefore of interest to seek out alternative therapeutic metal-based compounds that could overcome the limitations of these platinum based drugs. Ruthenium-based compounds could be the most promising alternative to the platinum drugs. This review highlights the use of BRCA1 as a predictive marker as well as for a potential drug target for anticancer ruthenium compounds.

  9. Experimental investigation of the ternary system Ni–Pd–Sn with special focus on the B8-type phase

    Energy Technology Data Exchange (ETDEWEB)

    Jandl, Isabella, E-mail: Isabella.jandl@univie.ac.at; Ipser, Herbert; Richter, Klaus W.

    2015-11-15

    The ternary alloy system Ni–Pd–Sn was investigated experimentally from 700 °C upwards, with special focus on the general NiAs-type compounds. The phase diagram and crystallographic parameters were studied by means of powder X-ray diffraction (XRD), differential thermal analysis (DTA), light optical microscopy (LOM) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDX). An isothermal section at 700 °C was constructed wherein a continuous phase field between the binary NiAs-type compounds γ (PdSn) and Ni{sub 3}Sn{sub 2} (high temperature modification) was detected. A series of samples throughout this phase field was used to investigate lattice parameter variations, occupation of the atomic sites and the melting behaviour. A partial ordering of the transition metals was observed. Moreover, three vertical sections at 30 at.%, 40 at.% and 50 at.% Sn were determined. Altogether, seven ternary invariant phase reactions were discovered: two ternary eutectic reactions, one ternary eutectoid reaction, three ternary transition reactions and one maximum. A complete reaction scheme for the investigated temperature range is given. Furthermore, a partial liquidus surface projection, except for the low-temperature Sn-rich region, was developed. - Highlights: • Detailed study of the ternary alloy system Ni–Pd–Sn. • 1 Isotherm, 3 vertical sections, a partial liquidus projection and a reaction scheme. • A continuous phase field, between γ and Ni{sub 3}Sn{sub 2}, was discovered. • Lattice parameters and structural features in this phase field were analysed. • A partial order of Ni and Pd in this phase field was observed.

  10. Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery.

    Science.gov (United States)

    Liang, Kun; Bae, Ki Hyun; Lee, Fan; Xu, Keming; Chung, Joo Eun; Gao, Shu Jun; Kurisawa, Motoichi

    2016-03-28

    Nanosized polyelectrolyte complexes are attractive delivery vehicles for the transfer of therapeutic genes to diseased cells. Here we report the application of self-assembled ternary complexes constructed with plasmid DNA, branched polyethylenimine and hyaluronic acid-green tea catechin conjugates for targeted gene delivery. These conjugates not only stabilize plasmid DNA/polyethylenimine complexes via the strong DNA-binding affinity of green tea catechin, but also facilitate their transport into CD44-overexpressing cells via receptor-mediated endocytosis. The hydrodynamic size, surface charge and physical stability of the complexes are characterized. We demonstrate that the stabilized ternary complexes display enhanced resistance to nuclease attack and polyanion-induced dissociation. Moreover, the ternary complexes can efficiently transfect the difficult-to-transfect HCT-116 colon cancer cell line even in serum-supplemented media due to their enhanced stability and CD44-targeting ability. Confocal microscopic analysis demonstrates that the stabilized ternary complexes are able to promote the nuclear transport of plasmid DNA more effectively than binary complexes and hyaluronic acid-coated ternary complexes. The present study suggests that the ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates can be widely utilized for CD44-targeted delivery of nucleic acid-based therapeutics.

  11. Experimental investigation of phase equilibria in the Co-Ni-Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Yu, Wenjie; Wang, Cuiping [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome; Xiong, Huaping; Cheng, Yaoyong; Wu, Xin [Beijing Institute of Aeronautical Materials (China). Div. of Welding and Forging

    2016-10-15

    The phase equilibria of the Co-Ni-Zr ternary system at 1 000 C, 1 100 C and 1 200 C were experimentally investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction on the equilibrated ternary alloys. In this study, no ternary compound is found. The (αCo, Ni) phase region extends from the Ni-rich corner to the Co-rich corner with small solubility of Zr at three sections. At 1 000 C and 1 100 C, Ni{sub 5}Zr, Co{sub 2}Zr and Ni{sub 10}Zr{sub 7} phases have large solid solution ranges, but Ni{sub 10}Zr{sub 7} phase disappears at 1 200 C. The Ni{sub 7}Zr{sub 2}, NiZr, Co{sub 11}Zr{sub 2}, Co{sub 23}Zr{sub 6} and CoZr phases exhibit nearly linear compounds in the studied sections, and have large composition ranges. Additionally, some differences in phase relationship exist among the above three isothermal sections.

  12. Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis.

    Science.gov (United States)

    Dutta, Soumen; Sahoo, Ramakrishna; Ray, Chaiti; Sarkar, Sougata; Jana, Jayasmita; Negishi, Yuichi; Pal, Tarasankar

    2015-01-07

    We report an environmentally friendly synthetic strategy to fabricate reduced graphene oxide (rGO)-based ternary nanocomposites, in which glutathione (GSH) acts both as a reducing agent for graphene oxide and sulfur donor for CdS synthesis under modified hydrothermal (MHT) conditions. The report becomes interesting as pH variation evolves two distinctly different semiconducting nanocrystals of anatase/rutile TiO2 and hexagonal yellow/cubic red CdS, and their packaging makes them suitable photocatalysts for dye degradation. Herein, a titanium peroxo compound, obtained from commercial TiO2, is hydrolyzed to TiO2 nanostructures without any additives. The yellow colored CdS-TiO2-rGO (YCTG), one of the ternary photocatalysts, shows maximum efficiency compared to the corresponding red ternary CdS-TiO2-rGO or binary photocatalysts (CdS-rGO, TiO2-rGO and CdS-TiO2) for dye degradation under visible light irradiation. Systematic characterizations reveal that TiO2 presents at the interface of rGO and CdS in YCTG and thus makes a barrier that inhibits the direct interaction between rGO and CdS. This leads to a relatively higher bandgap value for CdS in YCTG (2.15 eV vs. 2.04 eV for CdS-rGO) but with better photocatalytic activity simply by diminishing the possibility of the charge-recombination process. In the present situation, rGO in the YCTG also supports faster dye degradation through higher dye adsorption and rapid internal electron transfer (CdS→TiO2→rGO) in the YCTG nanocomposite. Thus, a simple aqueous phase and a greener synthetic procedure results in a low-cost, highly effective visible light-responsive material for environmental application.

  13. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Saswata Bhattacharyya; T A Abinandanan

    2003-01-01

    We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for A and B, the compositions (in mole fraction) of A and B, respectively. In this work, we present our results on the effect of relative interfacial energies on the temporal evolution of morphologies during spinodal phase separation of an alloy with average composition, A = 1/4, B = 1/4 and A = 1/2. Interfacial energies between the ‘A’ rich, ‘B’ rich and ‘C’ rich phases are varied by changing the gradient energy coefficients. The phases associated with a higher interfacial energy are found to be more rounded than those with lower energy. Further, the kinetic paths (i.e. the history of A-rich, B-rich and C-rich regions in the microstructure) are also affected significantly by the relative interfacial energies of the three phases.

  14. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. A Compound Fuzzy Disturbance Observer Based on Sliding Modes and Its Application on Flight Simulator

    OpenAIRE

    Yunjie Wu; Youmin Liu; Dapeng Tian

    2013-01-01

    A compound fuzzy disturbance observer based on sliding modes is developed, and its application on flight simulator is presented. Fuzzy disturbance observer (FDO) is an effective method in nonlinear control. However, traditional FDO is confined to monitor dynamic disturbance, and the frequency bandwidth of the system is restricted. Sliding mode control (SMC) compensates the high-frequency component of disturbance while it is limited by the chattering phenomenon. The proposed method uses the sl...

  16. Strength and durability of concrete modified by sulfur-based impregnating compounds

    OpenAIRE

    MASSALIMOV Ismail Alexandrovich; YANAKHMETOV Marat Rafisovich; CHUYKIN Alexander Eugenyevich

    2015-01-01

    The aim of the research was to determine how sulfur-containing compound impregnation influences on concrete compressive strength and the impact resistance of concrete tiles. The results of these studies indicate that impregnation of vibropressed concrete paving tiles and concrete samples of dif-ferent strength classes with aqueous solutions based on calcium polysulfide leads to a significant increase of compressive strength and impact resistance. These data show that the strength of the pr...

  17. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    Science.gov (United States)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  18. Bionic Mosaic Method of Panoramic Image Based on Compound Eye of Fly

    Institute of Scientific and Technical Information of China (English)

    Haipeng Chen; Xuanjing Shen; Xiaofei Li; Yushan Jin

    2011-01-01

    To satisfy the requirements of real-time and high quality mosaics,a bionic compound eye visual system was designed by simulating the visual mechanism of a fly compound eye.Several CCD cameras were used in this system to imitate the small eyes of a compound eye.Based on the optical analysis of this system,a direct panoramic image mosaic algorithm was proposed.Several sub-images were collected by the bionic compound eye visual system,and then the system obtained the overlapping proportions of these sub-images and cut the overlap sections of the neighboring images.Thus,a panoramic image with a large field of view was directly mosaicked,which expanded the field and guaranteed the high resolution.The experimental results show that the time consumed by the direct mosaic algorithm is only 2.2% of that by the traditional image mosaic algorithm while guaranteeing mosaic quality.Furthermore,the proposed method effectively solved the problem of misalignment of the mosaic image and eliminated mosaic cracks as a result of the illumination factor and other factors.This method has better real-time properties compared to other methods.

  19. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  20. Investigation of the isothermal section of the Ce-Co-Al ternary system at 573 K

    Institute of Scientific and Technical Information of China (English)

    YAO Qingrong; ZHOU Huaiying; TANG Chengying; PAN Shunkang

    2011-01-01

    The isothermal section of the Ce-Co-Al ternary system at 573 K was investigated by X-ray powder diffraction (XRD),scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques.It consisted of 19 single-phase regions,46 two-phase regions and 25 three-phase regions.Four ternary compounds,namely CeCoAl,Ce2Co15Al2,CeCoAl4,CeCo2Al8,were confirmed in this system.At 573 K,the maximum solid solubilities of Co in CeAl2 and A1 in CeCo2 were about 10.4 at.% and 10.0 at.%,respectively.The homogeneity range of CoAl phase extended from about 46.0 to 56.0 at.% Al.

  1. Electron-phonon interaction in three-, two- and one-dimensional ternary mixed crystals

    Science.gov (United States)

    Hou, Junhua; Fan, Yunpeng

    2016-05-01

    The electron-phonon (e-p) interaction in three-dimensional (3D), two-dimensional (2D) and one-dimensional (1D) ternary mixed crystals is studied. The e-p interaction Hamiltonians including the unit cell volume variation in ternary mixed crystals are obtained by using the modified random-element-isodisplacement model and Born-Huang method. The polaronic self-trapping energy and renormalized effective mass of GaAsxSb1-x, GaPxAs1-x and GaPxSb1-x compounds are numerically calculated. It is confirmed theoretically that the nonlinear variation of the self-trapping energy and effective mass with the composition is essential and the unit cell volume effects cannot be neglected except the weak e-p coupling. The dimensional effect cannot also be ignored.

  2. Synthesis and Photoluminescence Properties of New Europium, Terbium (Ⅲ)Ternary Complexes Based on β-diketone%新的稀土Eu,Tb(Ⅲ)β-二酮三元配合物的合成与光谱性质

    Institute of Scientific and Technical Information of China (English)

    程果; 魏长平; 任晓明; 王贺

    2012-01-01

    The β-diketone l-(4-aminophenyl)-3-phe-nylpropane-1,3-dione(L) was synthesized by classical Claisen condensation reaction, and the composition of the (3-diketone L was confirmed by elemental analysis and 1H NMR spectra. The result of 1H NMR spectra indicated that the ligand L existed as an enol form iso-mer, which was consistent with the result of IR analysis. With L as the first ligand and 1 ,10-phenanthro-line (phen) or 2 ,2'-bipyridin (bipy) as the secondary ligand, four new rare-earth Eu, Tb ( IH ) ternary complexes were prepared in ethanol solution. The ligand L and ternary complexes were characterized by elemental analysis, 1H NMR spectra, IR spectra, UV-vis spectra, phosphorescence spectra and fluorescence spectra. IR spectra indicated that; the rare-earth ion in the ternary complexes was coordinated with six oxygen atoms of three L ligands and two nitrogen atoms ofthe second ligand. The UV-vis spectra showed that the main absorption was from the ligand L in the ternary complexes. The fluorescence spectra demonstrated that the complexes could emit characteristic fluorescence of rare-earth ion and the strongest emission band was narrow which was attributed to the transitions of the 4f electrons of the central ions. The fluorescence intensity of Tb ( III ) ternary complexes was obviously higher than that of Eu ( HI ) ternary complexes, and this indicated that the energy level difference between the triplet state of ligand L and the emission energy of Tb3+ was well matched. The fluorescence spectra also showed that the phen was a better secondary ligand than bipy. So, the Tb(L)3phen exhibited the highest emission than others. It is an excellent green-emitter which would be regarded as a valuable material with bright green fluorescence.%采用Claisen缩合反应合成了一种β-二酮1-(4-氨基苯)-3-苯基丙烷-1,3-二酮(L:C15H13NO2),以元素分析和1H NMR谱确定了其组成,核磁和红外分析结果表明L主要以烯醇式存在.以L为第一

  3. The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)

    2009-02-15

    To acquire a high amount of information of the behaviour of the Homogeneous Charge Compression Ignition (HCCI) auto-ignition process, a reduced surrogate mechanism has been composed out of reduced n-heptane, iso-octane and toluene mechanisms, containing 62 reactions and 49 species. This mechanism has been validated numerically in a 0D HCCI engine code against more detailed mechanisms (inlet temperature varying from 290 to 500 K, the equivalence ratio from 0.2 to 0.7 and the compression ratio from 8 to 18) and experimentally against experimental shock tube and rapid compression machine data from the literature at pressures between 9 and 55 bar and temperatures between 700 and 1400 K for several fuels: the pure compounds n-heptane, iso-octane and toluene as well as binary and ternary mixtures of these compounds. For this validation, stoichiometric mixtures and mixtures with an equivalence ratio of 0.5 are used. The experimental validation is extended by comparing the surrogate mechanism to experimental data from an HCCI engine. A global reaction pathway is proposed for the auto-ignition of a surrogate gasoline, using the surrogate mechanism, in order to show the interactions that the three compounds can have with one another during the auto-ignition of a ternary mixture. (author)

  4. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2010-07-02

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  5. Atomistic simulation of defect structure in ternary intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.C.; Ternes, J.K.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1995-08-01

    Interatomic potentials of the Embedded Atom type were used to study defect structure in ternary intermetallics. Interatomic potentials with appropriate inner consistency were developed for the modeling of ternary systems. Alloys were considered in the Nb-Al-Ti and in the Ni-Al-Ti systems. The stability of ternary phases in these systems was studied, particularly the B2 phase in Nb rich alloys of the Nb-Al-Ti system. The effects of increasing Ti additions in these alloys were studied, as well as the APB energies in these ternary alloys.

  6. Syntheses, Crystal Structures and Fluorescent Properties of Two New Imidazolidino Schiff Base Compounds

    Institute of Scientific and Technical Information of China (English)

    FENG Yue; LIU Gang; TIAN Xiu-Mei; WANG Ji-De; WANG Wei

    2008-01-01

    Two new imidazolidino Schiff base compounds, (E)-N-((quinoxalin-2-yl)methylene)-2-(2-(quinoxalin-3-yl)imidazolidin-1-yl)ethanamine 1 and 2-(1-(2-(2-(quinoxalin-3-yl)imidazolidin-1-yl)ethyl)imidazolidin-2-yl)quinoxaline 2, have been synthesized and characterized by elemental analysis,1H NMR, IR, MS and single-crystal X-ray diffraction. Crystallographic data for 1: C22H21N7,Mr = 383.46, monoclinic, space group P21, a = 7.0036(14), b=6.9151(14), c=19.701(4)(A),β=96.57(3)°, Z = 2, V=947.9(3)(A)3, Dc = 1.344 g/cm3, F(000)=404, μ = 0.085 mm-1, Flack parameter =0(2), R = 0.0464 and wR = 0.1055; and those for 2: C24H26N8, Mr = 426.53, triclinic, space group P(1),a = 9.6680(19), b = 10.334(2), c = 11.389(2)(A),α= 104.12(3),β= 102.95(3),γ= 100.48(3)°, Z=2,V=1041.2(4)(A)3, Dc=1.361 g/cm3, F(000) = 452,μ = 0.086 mm-1, R = 0.0373 and wR = 0.1155. For the two compounds, the five-membered imidazolidine rings all adopt envelope conformation.Moreover, the title compounds show one-dimensional layered and three-dimensional supramolecular chainlike structures, respectively. Fluorescent properties of the two compounds have been investigated in the solid state at room temperature. Compound 1 exhibits strong fluorescence and thus may serve as excellent candidates of green fluorescent materials.

  7. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  8. Developing Backward Chaining Algorithm of Inference Engine in Ternary Grid Expert System

    Directory of Open Access Journals (Sweden)

    Yuliadi Erdani

    2012-09-01

    Full Text Available The inference engine is one of main components of expert system that influences the performance of expert system. The task of inference engine is to give answers and reasons to users by inference the knowledge of expert system. Since the idea of ternary grid issued in 2004, there is only several developed method, technique or engine working on ternary grid knowledge model. The in 2010 developed inference engine is less efficient because it works based on iterative process. The in 2011 developed inference engine works statically and quite expensive to compute. In order to improve the previous inference methods, a new inference engine has been developed. It works based on backward chaining process in ternary grid expert system. This paper describes the development of inference engine of expert system that can work in ternary grid knowledge model. The strategy to inference knowledge uses backward chaining with recursive process. The design result is implemented in the form of software. The result of experiment shows that the inference process works properly, dynamically and more efficient to compute in comparison to the previous developed methods.

  9. Comparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval

    Directory of Open Access Journals (Sweden)

    Rajeswari Sridhar

    2010-07-01

    Full Text Available In this work we have compared two indexing algorithms that have been used to index and retrieveCarnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithmfor music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. Themodification in the dual ternary algorithm was essential to handle variable length query phrase and toaccommodate features specific to Carnatic music. The dual ternary indexing algorithm is adapted forCarnatic music by segmenting using the segmentation technique for Carnatic music. The dual ternaryalgorithm is compared with the multi-key hashing algorithm designed by us for indexing and retrieval inwhich features like MFCC, spectral flux, melody string and spectral centroid are used as features forindexing data into a hash table. The way in which collision resolution was handled by this hash table isdifferent than the normal hash table approaches. It was observed that multi-key hashing based retrievalhad a lesser time complexity than dual-ternary based indexing The algorithms were also compared fortheir precision and recall in which multi-key hashing had a better recall than modified dual ternaryindexing for the sample data considered.

  10. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  11. High temperature thermal diffusivity of nickel-based superalloys and intermetallic compounds

    OpenAIRE

    Hazotte, A.; Perrot, B.; Archambault, P

    1993-01-01

    By means of an installation developed in our laboratory, we measured the thermal diffusivity (α) as a function of temperature for several single and polycrystal nickel-based superalloys as well as for different intermetallic compounds with a L12 (Ni3Al, Ni3Si, Ni3Ge, Ni3Fe, Zr3Al, Co3Ti), L10 (TiAl) or B2 (NiAl) structure. In the case of nickel-based superalloys, the experiments pointed out an unexpected but reproductible slope change in the α=f(T) curves at about 750°C, which is not explaine...

  12. Syntheses, magnetic and spectral studies on polystyrene supported coordination compounds of bidentate and tetradentate Schiff bases

    Indian Academy of Sciences (India)

    D Kumar; P K Gupta; A Syamal

    2005-05-01

    The reaction of aminomethylated polystyrene (PSCH2-NH2) and 2-hydroxyacetanilide in DMF results in the formation of polystyrene-anchored monobasic bidentate Schiff base, PSCH2-LH (I). On the other hand, the reaction of chloromethylated polystyrene (PSCH2-Cl), 3-formylsalicylic acid, ethylenediamine and acetylacetone in DMF in presence of ethyl acetate (EA) and triethylamine (TEA) produces another polystyrene-anchored dibasic tetradentate Schiff base, PSCH2-L'H2 (II). Both I and II react with a number of di-, tri- and hexavalent metal ions like Co, Ni, Cu, Zn and Cd to form polystyreneanchored coordination compounds, and these have been characterized and discussed.

  13. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities.

    Science.gov (United States)

    Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal

    2016-01-01

    Compound 2 was synthesized by reacting CS2/KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

  14. A design and application of compound multi-functional sensor in wood-based panel processing

    Institute of Scientific and Technical Information of China (English)

    XU Kai-hong; ZHOU Ding-guo

    2006-01-01

    A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.

  15. Filter based receive-side spatial compounding for veterinary ultrasound B-mode imaging.

    Science.gov (United States)

    Liu, Wen; Cheng, Yangjie; Liu, Dong C

    2014-01-01

    Veterinary ultrasound has been used in a large number of animal husbandry-related circumstances while many corresponding applications also call for the use of ultrasound in human patients. However, veterinary ultrasound images are affected by speckle, an interference pattern that can reduce the quality and contrast of ultrasound images. In this paper, a filter-based receive-side spatial compounding technique for veterinary ultrasound B-Mode imaging is used to create a compounded veterinary B-Mode image based on multiple looks. In particular, filtering in the lateral direction has been proved to be able to preserve the axial information in the sub-bands and to create decorrelation between sub-bands at the expense of some lateral resolution. A new method was proposed to obtain B-Mode IQ data by special veterinary ultrasonic probe. This approach is tested on 275 in-vivo swine. The effect is accomplished in real-time veterinary ultrasonic imaging with a measurable improvement of SNRe. Meanwhile, the speckle and electronic noise in the compounded image have been greatly reduced and smoothed in the visual result.

  16. USING H.264/AVC-INTRA FOR DCT BASED SEGMENTATION DRIVEN COMPOUND IMAGE COMPRESSION

    Directory of Open Access Journals (Sweden)

    S. Ebenezer Juliet

    2011-08-01

    Full Text Available This paper presents a one pass block classification algorithm for efficient coding of compound images which consists of multimedia elements like text, graphics and natural images. The objective is to minimize the loss of visual quality of text during compression by separating text information which needs high special resolution than the pictures and background. It segments computer screen images into text/graphics and picture/background classes based on DCT energy in each 4x4 block, and then compresses both text/graphics pixels and picture/background blocks by H.264/AVC with variable quantization parameter. Experimental results show that the single H.264/AVC-INTRA coder with variable quantization outperforms single coders such as JPEG, JPEG-2000 for compound images. Also the proposed method improves the PSNR value significantly than standard JPEG, JPEG-2000 and while keeping competitive compression ratios.

  17. Comparative Study of Laterite and Bentonite Based Organoclays: Implications of Hydrophobic Compounds Remediation from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Muhammad Nafees

    2013-01-01

    Full Text Available Four cost effective organoclays were synthesized, characterized, and studied for the sorption of hydrophobic compounds (edible oil/grease and hydrocarbon oil from aqueous solutions. Organoclays were prepared by cation exchange reaction of lattice ions (present onto the surface of laterite and bentonite clay minerals with two surfactants, hexadecyl trimethyl ammonium chloride (HDTMA-Cl and tetradecyl trimethyl ammonium bromide (TDTMA-Br. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of synthesized organoclays. It was found that the amount of surfactant loading and the nature of the surfactant molecules used in the syntheses of organoclay strongly affect the sorption capacity of the clay mineral. Further, it was found that both the laterite and bentonite based organoclays efficiently removed the edible and hydrocarbon oil content from lab prepared emulsions; however, the adsorption capacity of clay mineral was greatly influenced by the nature of hydrophobic compounds as well.

  18. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yi [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Phoungthong, Khamphe [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Shi, Dong-Xiao; Shen, Wen-Hui [Changzhou Domestic Waste Treatment Center, Changzhou 213000 (China); Shao, Li-Ming [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China); He, Pin-Jing, E-mail: solidwaste@tongji.edu.cn [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China)

    2015-08-15

    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO{sub 3} was the most sensitive to leaching temperature and Ca{sub 3}(PO{sub 4}){sub 2} was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO{sub 3} and CaSiO{sub 3} began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca{sub 3}(PO{sub 4}){sub 2} leached at pH < 12. CaSO{sub 4} could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO{sub 3} > Ca{sub 3}(PO{sub 4}){sub 2} > CaCO{sub 3}. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the

  19. Computer based screening of compound databases: 1. Preselection of benzamidine-based thrombin inhibitors.

    Science.gov (United States)

    Fox, T; Haaksma, E E

    2000-07-01

    We present a computational protocol which uses the known three-dimensional structure of a target enzyme to identify possible ligands from databases of compounds with low molecular weight. This is accomplished by first mapping the essential interactions in the binding site with the program GRID. The resulting regions of favorable interaction between target and ligand are translated into a database query, and with UNITY a flexible 3D database search is performed. The feasibility of this approach is calibrated with thrombin as the target. Our results show that the resulting hit lists are enriched with thrombin inhibitors compared to the total database.

  20. Structural studies of the metal-rich region in the ternary Ta-Nb-S system

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiaoqiang.

    1991-10-07

    Six new solid solution type compounds have been prepared using high temperature techniques and characterized by means of single crystal x-ray techniques during a study of the metal-rich region of the ternary Ta-Nb-S system. The structures of Nb{sub x}Ta{sub 11-x}S{sub 4} are reminiscent of niobium-rich sulfides, rather than of tantalum-rich sulfides. The coordinations of sulfur are capped trigonal prismatic while the metal coordinations are capped distorted cubic prismatic for Nb{sub x}Ta{sub 11-x}S{sub 4}, and capped distorted cubic prismatic and pentagonal prismatic for Nb{sub 12-x}Ta{sub x}S{sub 4}. The structures of Nb{sub x}Ta{sub 5-x}S{sub 2} contain homoatomic layers sequenced S-M3-M2-M1-M2-M3-S (M is mixed Nb, Ta) generating six-layer sheets, respectively. Weak S-S interactions at 3.26 and 3.19{Angstrom} between sheets contrast with the M-M binding within and between the sheets in these two novel layered compounds. The former are presumably responsible for the observed graphitic slippage of the samples. Nb{sub 21-x}Ta{sub x}S{sub 8} and Nb{sub x}Ta{sub 2-x}S are isostructural with Nb{sub 21}S{sub 8} and Ta{sub 2}S, respectively. Extended Hueckel band calculations were carried out for two layered compounds, Nb{sub x}Ta{sub 5-x}S{sub 2} (x {approx} 1.72) and Nb{sub x}ta{sub 2-x}S (x {approx} 0.95). Based upon band calculations metallic properties can be expected for these two layered compounds. The relative preference of the metal sites for the two metal elements (Ta, Nb) in two layered compounds is explained by the results of the band calculations. 17 figs., 31 tabs., 80 refs.

  1. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  2. Comparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval

    CERN Document Server

    Sridhar, Rajeswari; Karthiga, S; T, Geetha; 10.5121/ijaia.2010.1305

    2010-01-01

    In this work we have compared two indexing algorithms that have been used to index and retrieve Carnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithm for music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. The modification in the dual ternary algorithm was essential to handle variable length query phrase and to accommodate features specific to Carnatic music. The dual ternary indexing algorithm is adapted for Carnatic music by segmenting using the segmentation technique for Carnatic music. The dual ternary algorithm is compared with the multi-key hashing algorithm designed by us for indexing and retrieval in which features like MFCC, spectral flux, melody string and spectral centroid are used as features for indexing data into a hash table. The way in which collision resolution was handled by this hash table is different than the normal hash table approaches. It was observed that multi-key hashing based retrieval had a lesser ...

  3. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    Directory of Open Access Journals (Sweden)

    M. Adília Lemos

    2015-06-01

    Full Text Available The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein.

  4. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay.

    Science.gov (United States)

    Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H; Xia, Menghang

    2016-04-01

    In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling.

  5. Partition coefficients of organic compounds between water and imidazolium-, pyridinium-, and phosphonium-based ionic liquids.

    Science.gov (United States)

    Padró, Juan M; Pellegrino Vidal, Rocío B; Reta, Mario

    2014-12-01

    The partition coefficients, P IL/w, of several compounds, some of them of biological and pharmacological interest, between water and room-temperature ionic liquids based on the imidazolium, pyridinium, and phosphonium cations, namely 1-octyl-3-methylimidazolium hexafluorophosphate, N-octylpyridinium tetrafluorophosphate, trihexyl(tetradecyl)phosphonium chloride, trihexyl(tetradecyl)phosphonium bromide, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium dicyanamide, were accurately measured. In this way, we extended our database of partition coefficients in room-temperature ionic liquids previously reported. We employed the solvation parameter model with different probe molecules (the training set) to elucidate the chemical interactions involved in the partition process and discussed the most relevant differences among the three types of ionic liquids. The multiparametric equations obtained with the aforementioned model were used to predict the partition coefficients for compounds (the test set) not present in the training set, most being of biological and pharmacological interest. An excellent agreement between calculated and experimental log P IL/w values was obtained. Thus, the obtained equations can be used to predict, a priori, the extraction efficiency for any compound using these ionic liquids as extraction solvents in liquid-liquid extractions.

  6. Emission of reactive compounds and secondary products from wood-based furniture coatings

    Science.gov (United States)

    Salthammer, T.; Schwarz, A.; Fuhrmann, F.

    Emissions of organic fragmentation products, so-called "secondary emission products" and reactive species from wood-based furniture coatings have been studied in 1 m 3 test chambers. the climatic conditions were representative of indoor environments. Relevant compounds and compound groups were the wetting agent 2,4,7,9-tetramethyl-5-dicyne-4,7-diol (T4MDD), the plasticiser di-2-ethyl-hexyl-phthalate (DEHP), aliphatic aldehydes, monoterpenes, photoinitiator fragments, acrylic monomers/reactive solvents and diisocyanate monomers. Such substances may affect human health in several ways. Aliphatic aldehydes and some photoinitiator fragments are of strong odour, while acrylates and diisocyanates cause irritation of skin, eyes and upper airways. Terpenes and reactive solvents like styrene undergo indoor chemistry in the presence of ozone, nitrogen oxides or hydroxy radicals. Secondary emission products and reactive species can achieve significant indoor concentrations. On the other hand, it has been reported that even small quantities can cause health effects. In the cases of indoor studies with special regard to emissions from furniture, chemical analysis should always include these compounds.

  7. 3D-QSAR and docking studies of estrogen compounds based on estrogen receptor β

    Institute of Scientific and Technical Information of China (English)

    YANG XuShu; WANG XiaoDong; LUO Si; JI Li; QIN Liang; LI Rong; SUN Cheng; WANG LianSheng

    2009-01-01

    Close attention has been paid to estrogen compounds because these chemicals may pose a serious threat to the health of humans and wildlife.Estrogen receptor (ER) exists as two subtypes,ERo and ERβ.The difference in amino acids sequence of the binding sites of ERo and ERβ might lead to a result that some synthetic estrogens and naturally occurring steroidal ligands have different relative affinities and binding modes for ERa and ERβ.In this investigation,comparative molecular similarity indices analysis (CoMSIA) was performed on 50 estrogen compounds binding ERβ to find out the structural relationship with the activities.We also compared two alignment schemes employed in CoMSIA analysis,namely,atom-fit and receptor-based alignment,with respect to the predictive capability of their respective models for structurally diverse data sets.The model with the significant correlation and the best predictive power (R2=0.961,q2LOO=0.671,Rp2red=0.722) was achieved.The CoMSIA and docking results revealed the structural features related to an activity and provided an insight into molecular mechanisms of estrogenic activities for estrogen compounds.

  8. 3D-QSAR and docking studies of estrogen compounds based on estrogen receptor β

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Close attention has been paid to estrogen compounds because these chemicals may pose a serious threat to the health of humans and wildlife. Estrogen receptor (ER) exists as two subtypes, ERα and ERβ. The difference in amino acids sequence of the binding sites of ERα and ERβ might lead to a result that some synthetic estrogens and naturally occurring steroidal ligands have different relative affinities and binding modes for ERα and ERβ. In this investigation, comparative molecular similarity indices analysis (CoMSIA) was performed on 50 estrogen compounds binding ERβ to find out the structural relationship with the activities. We also compared two alignment schemes employed in CoMSIA analy-sis, namely, atom-fit and receptor-based alignment, with respect to the predictive capability of their respective models for structurally diverse data sets. The model with the significant correlation and the best predictive power (R2=0.961, qL 2OO=0.671, RP 2red=0.722) was achieved. The CoMSIA and docking results revealed the structural features related to an activity and provided an insight into molecular mechanisms of estrogenic activities for estrogen compounds.

  9. Screening for Antifibrotic Compounds Using High Throughput System Based on Fluorescence Polarization

    Directory of Open Access Journals (Sweden)

    Branko Stefanovic

    2014-04-01

    Full Text Available Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I mRNA and α2(I mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL. Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.

  10. EuroFIR-BASIS - a combined composition and biological activity database for bioactive compounds in plant-based foods

    DEFF Research Database (Denmark)

    Gry, Jørn; Black, Lucinda; Eriksen, Folmer Damsted;

    2007-01-01

    Mounting evidence suggests that certain non-nutrient bioactive compounds promote optimal human health and reduce the risk of chronic disease. An Internet-deployed database, EuroFIR-BASIS, which uniquely combines food composition and biological effects data for plant-based bioactive compounds...... and researchers interested in diet and health relationships, and product developers within the food industry....

  11. Algorithms for effective querying of compound graph-based pathway databases

    Directory of Open Access Journals (Sweden)

    Demir Emek

    2009-11-01

    Full Text Available Abstract Background Graph-based pathway ontologies and databases are widely used to represent data about cellular processes. This representation makes it possible to programmatically integrate cellular networks and to investigate them using the well-understood concepts of graph theory in order to predict their structural and dynamic properties. An extension of this graph representation, namely hierarchically structured or compound graphs, in which a member of a biological network may recursively contain a sub-network of a somehow logically similar group of biological objects, provides many additional benefits for analysis of biological pathways, including reduction of complexity by decomposition into distinct components or modules. In this regard, it is essential to effectively query such integrated large compound networks to extract the sub-networks of interest with the help of efficient algorithms and software tools. Results Towards this goal, we developed a querying framework, along with a number of graph-theoretic algorithms from simple neighborhood queries to shortest paths to feedback loops, that is applicable to all sorts of graph-based pathway databases, from PPIs (protein-protein interactions to metabolic and signaling pathways. The framework is unique in that it can account for compound or nested structures and ubiquitous entities present in the pathway data. In addition, the queries may be related to each other through "AND" and "OR" operators, and can be recursively organized into a tree, in which the result of one query might be a source and/or target for another, to form more complex queries. The algorithms were implemented within the querying component of a new version of the software tool PATIKAweb (Pathway Analysis Tool for Integration and Knowledge Acquisition and have proven useful for answering a number of biologically significant questions for large graph-based pathway databases. Conclusion The PATIKA Project Web site is

  12. Bond-based linear indices in QSAR: computational discovery of novel anti-trichomonal compounds

    Science.gov (United States)

    Marrero-Ponce, Yovani; Meneses-Marcel, Alfredo; Rivera-Borroto, Oscar M.; García-Domenech, Ramón; De Julián-Ortiz, Jesus Vicente; Montero, Alina; Escario, José Antonio; Barrio, Alicia Gómez; Pereira, David Montero; Nogal, Juan José; Grau, Ricardo; Torrens, Francisco; Vogel, Christian; Arán, Vicente J.

    2008-08-01

    Trichomonas vaginalis ( Tv) is the causative agent of the most common, non-viral, sexually transmitted disease in women and men worldwide. Since 1959, metronidazole (MTZ) has been the drug of choice in the systemic treatment of trichomoniasis. However, resistance to MTZ in some patients and the great cost associated with the development of new trichomonacidals make necessary the development of computational methods that shorten the drug discovery pipeline. Toward this end, bond-based linear indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis were used to discover novel trichomonacidal chemicals. The obtained models, using non-stochastic and stochastic indices, are able to classify correctly 89.01% (87.50%) and 82.42% (84.38%) of the chemicals in the training (test) sets, respectively. These results validate the models for their use in the ligand-based virtual screening. In addition, they show large Matthews' correlation coefficients ( C) of 0.78 (0.71) and 0.65 (0.65) for the training (test) sets, correspondingly. The result of predictions on the 10% full-out cross-validation test also evidences the robustness of the obtained models. Later, both models are applied to the virtual screening of 12 compounds already proved against Tv. As a result, they correctly classify 10 out of 12 (83.33%) and 9 out of 12 (75.00%) of the chemicals, respectively; which is the most important criterion for validating the models. Besides, these classification functions are applied to a library of seven chemicals in order to find novel antitrichomonal agents. These compounds are synthesized and tested for in vitro activity against Tv. As a result, experimental observations approached to theoretical predictions, since it was obtained a correct classification of 85.71% (6 out of 7) of the chemicals. Moreover, out of the seven compounds that are screened, synthesized and biologically assayed, six compounds (VA7-34, VA7-35, VA7-37, VA7-38, VA7-68, VA7-70) show

  13. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages.

  14. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren;

    2015-01-01

    polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm......The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...

  15. Saccharin: a lead compound for structure-based drug design of carbonic anhydrase IX inhibitors.

    Science.gov (United States)

    Mahon, Brian P; Hendon, Alex M; Driscoll, Jenna M; Rankin, Gregory M; Poulsen, Sally-Ann; Supuran, Claudiu T; McKenna, Robert

    2015-02-15

    Carbonic anhydrase IX (CA IX) is a key modulator of aggressive tumor behavior and a prognostic marker and target for several cancers. Saccharin (SAC) based compounds may provide an avenue to overcome CA isoform specificity, as they display both nanomolar affinity and preferential binding, for CA IX compared to CA II (>50-fold for SAC and >1000-fold when SAC is conjugated to a carbohydrate moiety). The X-ray crystal structures of SAC and a SAC-carbohydrate conjugate bound to a CA IX-mimic are presented and compared to CA II. The structures provide substantial new insight into the mechanism of SAC selective CA isoform inhibition.

  16. Computational design of axion insulators based on 5d spinel compounds.

    Science.gov (United States)

    Wan, Xiangang; Vishwanath, Ashvin; Savrasov, Sergey Y

    2012-04-06

    Based on density functional calculation using the local density approximation+U method, we predict that osmium compounds such as CaOs(2)O(4) and SrOs(2)O(4) can be stabilized in the geometrically frustrated spinel crystal structure. They show ferromagnetic order in a reasonable range of the on-site Coulomb correlation U and exotic electronic properties, in particular, a large magnetoelectric coupling characteristic of axion electrodynamics. Depending on U, other electronic phases including a 3D Weyl semimetal and Mott insulator are also shown to occur.

  17. A Solution-Based Temperature Sensor Using the Organic Compound CuTsPc

    Directory of Open Access Journals (Sweden)

    Shahino Mah Abdullah

    2014-06-01

    Full Text Available An electrochemical cell using an organic compound, copper (II phthalocyanine-tetrasulfonic acid tetrasodium salt (CuTsPc, has been fabricated and investigated as a solution-based temperature sensor. The capacitance and resistance of the ITO/CuTsPc solution/ITO chemical cell has been characterized as a function of temperature in the temperature range of 25–80 °C. A linear response with minimal hysteresis is observed. The fabricated temperature sensor has shown high consistency and sensitive response towards a specific range of temperature values.

  18. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren;

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  19. Aqueous two-phase system based on natural quaternary ammonium compounds for the extraction of proteins.

    Science.gov (United States)

    Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua

    2016-02-01

    Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.

  20. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  1. Balanced ternary addition using a gated silicon nanowire

    NARCIS (Netherlands)

    Mol, J.A.; Van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.

    2011-01-01

    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a

  2. Demonstration of Complementary Ternary Graphene Field-Effect Transistors

    Science.gov (United States)

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-12-01

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology.

  3. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  4. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  5. Ternary semitransparent organic solar cells with a laminated top electrode

    Science.gov (United States)

    Makha, Mohammed; Testa, Paolo; Anantharaman, Surendra Babu; Heier, Jakob; Jenatsch, Sandra; Leclaire, Nicolas; Tisserant, Jean-Nicolas; Véron, Anna C.; Wang, Lei; Nüesch, Frank; Hany, Roland

    2017-01-01

    Abstract Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate a semitransparent organic photovoltaic cell with a dry-laminated top electrode that achieves a uniform average visible transmittance of 51% and a power conversion efficiency of 3%. The photo-active material is based on a majority blend composed of a visibly absorbing donor polymer and a fullerene acceptor, to which a selective near-infrared absorbing cyanine dye is added as a minority component. Our results show that organic ternary blends are attractive for the fabrication of semitransparent solar cells in general, because a guest component with a complementary absorption can compensate for the inevitably reduced current generation capability of a high-performing binary blend when applied as a thin, semitransparent film. PMID:28179960

  6. Ternary semitransparent organic solar cells with a laminated top electrode.

    Science.gov (United States)

    Makha, Mohammed; Testa, Paolo; Anantharaman, Surendra Babu; Heier, Jakob; Jenatsch, Sandra; Leclaire, Nicolas; Tisserant, Jean-Nicolas; Véron, Anna C; Wang, Lei; Nüesch, Frank; Hany, Roland

    2017-01-01

    Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate a semitransparent organic photovoltaic cell with a dry-laminated top electrode that achieves a uniform average visible transmittance of 51% and a power conversion efficiency of 3%. The photo-active material is based on a majority blend composed of a visibly absorbing donor polymer and a fullerene acceptor, to which a selective near-infrared absorbing cyanine dye is added as a minority component. Our results show that organic ternary blends are attractive for the fabrication of semitransparent solar cells in general, because a guest component with a complementary absorption can compensate for the inevitably reduced current generation capability of a high-performing binary blend when applied as a thin, semitransparent film.

  7. Photophysical study of blue-light excitable ternary Eu(III) complexes and their encapsulation into polystyrene nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Räsänen, Markus, E-mail: mpvras@utu.fi [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland); Takalo, Harri [DHR Finland Oy, Innotrac Diagnostics, Biolinja 12, FIN-20750 Turku (Finland); Soukka, Tero [Department of Biochemistry/Biotechnology, University of Turku, FIN-20014 Turku (Finland); Haapakka, Keijo; Kankare, Jouko [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland)

    2015-04-15

    In this work, 14 ternary Eu(III) complexes were studied by means of spectroscopy. The studied Eu(III) complexes consisted of Lewis bases (4′-(4-diethylaminophenyl)-2,2′:6′,2″-terpyridine (L{sup 8}) or 1,10-phenanthroline (L{sup 9})) and differently substituted β-diketones. The ternary complexes with L{sup 8} show the excitation peak at 405 nm and the quantum yield even 76%. The brightest ternary complex at the 405 nm excitation was Eu(L{sup 3}){sub 3}L{sup 8} while Eu(L{sup 7}){sub 3}L{sup 8} (HL{sup 3}=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, HL{sup 7}=1-(9-ethyl-9H-carbazol-3-yl)-4,4,5,5,5-pentafluoro-1,3-pentanedione) was found to be the brightest at the ligand-centred excitation maximum. The ternary complexes were studied mainly in toluene as the model environment for the polystyrene nanoparticle cavities. The complexes were successfully loaded into the polystyrene nanoparticles enabling their bioanalytical application in aqueous environment. The encapsulation of the complexes preserved, or even enhanced, their good photophysical features. - Highlights: • Ternary Eu{sup 3+} complexes with some β-diketone and substituted terpyridine were studied. • Ternary complexes with substituted terpyridine showed blue-light excitability. • Ternary complexes were successfully loaded into the polystyrene nanoparticles. • Encapsulation of the complexes preserved their good photophysical features.

  8. The isothermal section of the Zrsbnd Crsbnd Cu ternary system at 580 °C

    Science.gov (United States)

    Tang, Junkai; Liu, Yuqin; Shen, Jianyun

    2016-10-01

    The 580 °C isothermal section of the Zrsbnd Crsbnd Cu ternary system was determined by means of X-ray diffraction, scanning electron microscopy and electron probe microanalysis. This isothermal section contained 10 single-phase regions, 18 two-phase regions and 9 three-phase regions. No ternary compound was found at 580 °C in the system. The solubility of Cu in the ZrCr2 cubic Laves C15 phase and the solubility of Cr and Cu in the terminal α-Zr solid solution phase were determined. The site occupation of element Cu in the ZrCr2 cubic Laves C15 phase was determined by Rietveld refinement. The Cu prefers to occupy the position of Cr. The CuZr phase, which is not stable at 580 °C in the binary Cusbnd Zr system, was confirmed to exist at this temperature in the Zrsbnd Crsbnd Cu ternary system. This is probably due to that the dissolving of Cr in the CuZr phase increases its thermodynamic stability.

  9. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic com- pound may grow cooperatively within ternary eutectic microstructures, they sel- dom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of sol- ute solubility.

  10. Ternary Tree and Memory-Efficient Huffman Decoding Algorithm

    Directory of Open Access Journals (Sweden)

    Pushpa R. Suri

    2011-01-01

    Full Text Available In this study, the focus was on the use of ternary tree over binary tree. Here, a new one pass Algorithm for Decoding adaptive Huffman ternary tree codes was implemented. To reduce the memory size and fasten the process of searching for a symbol in a Huffman tree, we exploited the property of the encoded symbols and proposed a memory efficient data structure to represent the codeword length of Huffman ternary tree. In this algorithm we tried to find out the staring and ending address of the code to know the length of the code. And then in second algorithm we tried to decode the ternary tree code using binary search method. In this algorithm we tried to find out the staring and ending address of the code to know the length of the code. And then in second algorithm we tried to decode the ternary tree code using binary search method.

  11. Protamine/DNA/Niosome Ternary Nonviral Vectors for Gene Delivery to the Retina: The Role of Protamine.

    Science.gov (United States)

    Puras, G; Martínez-Navarrete, G; Mashal, M; Zárate, J; Agirre, M; Ojeda, E; Grijalvo, S; Eritja, R; Diaz-Tahoces, A; Avilés-Trigueros, M; Fernández, E; Pedraz, J L

    2015-10-05

    The present study aimed to evaluate the incorporation of protamine into niosome/DNA vectors to analyze the potential application of this novel ternary formulation to deliver the pCMS-EGFP plasmid into the rat retina. Binary vectors based on niosome/DNA and ternary vectors based on protamine/DNA/niosomes were prepared and physicochemically characterized. In vitro experiments were performed in ARPE-19 cells. At 1:1:5 protamine/DNA/niosome mass ratio, the resulted ternary vectors had 150 nm size, positive charge, spherical morphology, and condensed, released, and protected the DNA against enzymatic digestion. The presence of protamine in the ternary vectors improved transfection efficiency, cell viability, and DNA condensation. After ocular administration, the EGFP expression was detected in different cell layers of the retina depending on the administration route without any sign of toxicity associated with the formulations. While subretinal administration transfected mainly photoreceptors and retinal pigment epithelial cells at the site of injection, intravitreal administration produced a more uniform distribution of the protein expression through the inner layers of the retina. The protein expression in the retina persisted for at least one month after both administrations. Our study highlights the flattering properties of protamine/DNA/niosome ternary vectors for efficient and safe gene delivery to the rat retina.

  12. Structures and physical properties of R2TX3 compounds

    Institute of Scientific and Technical Information of China (English)

    Pan Zhi-Yan; Cao Chong-De; Bai Xiao-Jun; Song Rui-Bo; Zheng Jian-Bang; Duan Li-Bing

    2013-01-01

    Rare-earth compounds have been an attractive subject based on the unique electronic structures of the rare-earth elements.Novel ternary intermetallic compounds R2TX3 (R =rare-earth element or U,T =transition-metal element,X =Si,Ge,Ga,In) are a significant branch of this research field due to their complex and intriguing physical properties,such as magnetic order at low temperature,spin-glass behavior,Kondo effect,heavy fermion behavior,and so on.The unique physical properties of R2TX3 compounds are related to distinctive electronic structures,crystal structures,microinteraction,and external environment.Most R2TX3 compounds crystallize in AlB2-type or derived AlB2-type structures and exhibit many similar properties.This paper gives a concise review of the structures and physical properties of these compounds.Spin glass,magnetic susceptibility,resistivity,and specific heat of R2TX3 compounds are discussed.

  13. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  14. Ionic liquids based microwave-assisted extraction of lichen compounds with quantitative spectrophotodensitometry analysis.

    Science.gov (United States)

    Bonny, Sarah; Paquin, Ludovic; Carrié, Daniel; Boustie, Joël; Tomasi, Sophie

    2011-11-30

    Ionic liquids based extraction method has been applied to the effective extraction of norstictic acid, a common depsidone isolated from Pertusaria pseudocorallina, a crustose lichen. Five 1-alkyl-3-methylimidazolium ionic liquids (ILs) differing in composition of alkyl chain and anion were investigated for extraction efficiency. The extraction amount of norstictic acid was determined after recovery on HPTLC with a spectrophotodensitometer. The proposed approaches (IL-MAE and IL-heat extraction (IL-HE)) have been evaluated in comparison with usual solvents such as tetrahydrofuran in heat-reflux extraction and microwave-assisted extraction (MAE). The results indicated that both the characteristics of the alkyl chain and anion influenced the extraction of polyphenolic compounds. The sulfate-based ILs [C(1)mim][MSO(4)] and [C(2)mim][ESO(4)] presented the best extraction efficiency of norstictic acid. The reduction of the extraction times between HE and MAE (2 h-5 min) and a non-negligible ratio of norstictic acid in total extract (28%) supports the suitability of the proposed method. This approach was successfully applied to obtain additional compounds from other crustose lichens (Pertusaria amara and Ochrolechia parella).

  15. Two 8-Hydroxyquinolinate Based Supramolecular Coordination Compounds: Synthesis, Structures and Spectral Properties

    Directory of Open Access Journals (Sweden)

    Chengfeng Zhu

    2017-03-01

    Full Text Available Two new Cr(III complexes based on 2-substituted 8-hydroxyquinoline ligands, namely [Cr(L13] (1, (HL1=(E-2-[2-(4-nitro-phenyl-vinyl]-8-hydroxy-quinoline and [Cr(L23] (2, (HL2=(E-2-[2-(4-chloro-phenylvinyl]-8-hydroxy-quinoline, were prepared by a facile hydrothermal method and characterized thoroughly by single crystal X-ray diffraction, powder X-ray diffraction, FTIR, TGA, ESI-MS, UV-Visible absorption spectra and fluorescence emission spectra. Single crystal X-ray diffraction analyses showed that the two compounds featured 3D supramolecular architectures constructed from noncovalent interactions, such as π···π stacking, C-H···π, C-H···O, C-Cl···π, C-H···Cl interactions. The thermogravimetric analysis and ESI-MS study of compounds 1 and 2 suggested that the Cr(III complexes possessed good stability both in solid and solution. In addition, the ultraviolet and fluorescence response of the HL1 and HL2 shown marked changes upon their complexation with Cr(III ion, which indicated that the two 8-hydroxyquinolinate based ligand are promising heavy metal chelating agent for Cr3+.

  16. Sensitive properties of In-based compound semiconductor oxide to C12 gas

    Institute of Scientific and Technical Information of China (English)

    Zhao Wenjie; Shi Yunbo; Xiu Debin; Lei Tingping; Feng Qiaohua; Wang Liquan

    2009-01-01

    Aiming at detecting C12 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive mechanism was also discussed. Adopting constant temperature chemical coprecipitation, the compound oxides such as In-Nb, In-Cd and In-Mg were synthesized, respectively. The products were sintered at 600 ℃ and characterized by the Scanning Electron Microscope (SEM), showing the grain size almost about 50-60 nm. The test results show that the sensitivities of In-Nb, In-Cd and In-Mg materials under the concentration of 50 x 10-6 in C12 gas are above 100 times, 4 times and 10 times, respectively. The response time of In-Nb, In-Cd and In-Mg materials is about 30, 60 and 30 s, and the recovery time less than 2, 10 and 2 min, respectively. Among them, the In-Nb material was found to have a relatively high conductivity and ideal sensitivity to C12 gas, which showed rather good selectivity and stability, and could detect the minimum concentration of 0.5 x 10-6 with the sensitivity of 2.2, and the upper limit concentration of 500 ×10-6. The power loss of the device is around 220 mW under the heating voltage of 3 V.

  17. Composition engineering of single crystalline films based on the multicomponent garnet compounds

    Science.gov (United States)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Bilski, Paweł; Twardak, Anna; Voznyak, Taras; Sidletskiy, Oleg; Gerasimov, Yaroslav; Gryniov, Boris; Fedorov, Alexandr

    2016-11-01

    The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOsbnd B2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates. We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180-200 ns range.

  18. A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2016-08-01

    Full Text Available We present a cost-effective concentrating photovoltaic system composed of a prism and a compound parabolic concentrator (P-CPC. In this approach, the primary collector consists of a prism, a solid compound parabolic concentrator (CPC, and a slab waveguide. The prism, which is placed on the input aperture of CPC, directs the incoming sunlight beam to be parallel with the main axes of parabolic rims of CPC. Then, the sunlight is reflected at the parabolic rims and concentrated at the focal point of these parabolas. A slab waveguide is coupled at the output aperture of the CPC to collect focused sunlight beams and to guide them to the solar cell. The optical system was modeled and simulated with commercial ray tracing software (LightTools™. Simulation results show that the optical efficiency of a P-CPC can achieve up to 89%. when the concentration ratio of the P-CPC is fixed at 50. We also determine an optimal geometric structure of P-CPC based on simulation. Because of the simplicity of the P-CPC structure, a lower-cost mass production process is possible. A simulation based on optimal structure of P-CPC was performed and the results also shown that P-CPC has high angular tolerance for input sunlight. The high tolerance of the input angle of sunlight allows P-CPC solar concentrator utilize a single sun tracking system instead of a highly precise dual suntracking system as cost effective solution.

  19. Analytical methods for phenyltin compounds in polychlorinated biphenyl-based transformer oil samples.

    Science.gov (United States)

    Yamamoto, Takashi; Noma, Yukio; Yasuhara, Akio; Sakai, Shin-ichi

    2003-10-31

    We present the first study on the analytical methods of phenyltin compounds (PTs) in polychlorinated biphenyl (PCB)-based transformer oil samples. Tetraphenyltin (TePhT) has been used as stabilizer for some kinds of PCBs-based transformer oil formulations. Monophenyltin (MPhT), diphenyltin (DPhT) and triphenyltin (TrPhT) could have been formed from TePhT during long-term use. TePhT was directly measured by gas chromatograph (GC) connected with three types of detectors, a mass spectrometer (MS), a flame photometric detector (FPD) and an atomic emission detector (AED) after dilution with hexane. MPhT, DPhT and TrPhT were propylated with Grignard reagent before measurement. The MS was the most sensitive of the detectors, with detection limits of phenyltin compounds of 30 ng/ml (MPhT), 9.8 ng/ml (DPhT), 5.5 ng/ml (TrPhT) and 0.60 ng/ml (TePhT), respectively. From the viewpoint of selectivity, MS was slightly worse than other detectors, but interference from PCBs matrices was not significant under ordinary analytical conditions. Two used transformer oil samples were analyzed using the analytical methods developed in this study. TePhT and TrPhT were found in both samples.

  20. Phase Equilibria of the Ce-Mg-Zn Ternary System at 300 °C

    Directory of Open Access Journals (Sweden)

    Ahmad Mostafa

    2014-05-01

    Full Text Available The isothermal section of the Ce-Mg-Zn system at 300 °C was experimentally established in the full composition range via diffusion multiple/couples and key alloys. Annealed key alloys were used to confirm the phase equilibria obtained by diffusion multiple/couples and to determine the solid solubility ranges. Spot analysis was carried out, using wavelength dispersive X-ray spectroscopy (WDS, to identify the composition of the observed phases. The composition profiles were obtained using WDS line-scans across the diffusion zones. X-ray diffraction (XRD was performed to identify the phases in the annealed alloys and to confirm the WDS results. Eight ternary compounds, in the Ce-Mg-Zn isothermal section at 300 °C, were observed from 45–80 at.% Zn. These are: τ1 (Ce6Mg3Zn19, τ2 (CeMg29Zn25, τ3 (Ce2Mg3Zn3, τ4 (CeMg3Zn5, τ5 (CeMg7Zn12, τ6 (CeMg2.3−xZn12.8+x; 0 ≤ x ≤ 1.1, τ7 (CeMgZn4 and τ8 (Ce(Mg1−yZny11; 0.096 ≤ y ≤ 0.43. The ternary solubility of Zn in the Ce-Mg compounds was found to increase with a decrease in Mg concentration. Accordingly, the ternary solid solubility of Zn in CeMg12 and CeMg3 was measured as 5.6 and 28.4 at.% Zn, respectively. Furthermore, the CeMg and CeZn showed a complete solid solubility. The complete solubility was confirmed by a diffusion couple made from alloys containing CeMg and CeZn compounds.

  1. Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T., E-mail: v.vitusevych@access-technology.de [ACCESSe.V., Intzestr. 5, D-52072 Aachen (Germany); Bondar, A.A. [Frantsevich Institute for Problems of Materials Science, Krzhyzhanovsky Str. 3, 03680 Kyiv (Ukraine); Hecht, U. [ACCESSe.V., Intzestr. 5, D-52072 Aachen (Germany); Velikanova, T.Ya. [Frantsevich Institute for Problems of Materials Science, Krzhyzhanovsky Str. 3, 03680 Kyiv (Ukraine)

    2015-09-25

    Highlights: • Thermodynamic refinement of the Al–Cr system. • Key experimental investigations of the ternary Al–Cr–Ti alloys. • Thermodynamic modelling of the complete Al–Cr–Ti system. - Abstract: In the present paper, the ternary Al–Cr–Ti and binary constituent Al–Cr systems are thermodynamically re-modelled based on new experimental information reported in the literature within the past few years. Few key experiments were performed with selected ternary alloys in order to complement data on phase equilibria in the composition range of common TiAl-based alloys. Six sample compositions were prepared and analyzed in the as-cast and annealed conditions by means of SEM/EDS, XRD and DTA techniques. The elaborated thermodynamic description was applied to calculate selected phase equilibria as to provide a comparison between calculated and experimental results. The calculations are shown to reproduce the experimental data reasonably well.

  2. Flashpoint prediction for ternary mixtures of alcohols with water for CFD simulation of unsteady flame propagation during explosion

    Science.gov (United States)

    Skřínský, Jan; Vereš, Ján; Ševčíková, Silvie Petránková

    2016-06-01

    Aqueous solutions of binary and ternary mixtures of alcohols are of considerable interest for a wide range of scientists and technologists. Simple dimensionless experimental formulae based on rational reciprocal and polynomial functions are proposed for correlation of the flashpoint data of binary mixtures of two components. The formulae are based on data obtained from flashpoint experiments and predictions. The main results are the derived experimental flashpoint values for ternary mixtures of two aqueous-organic solutions and the model prediction of maximum explosion pressure values for the studied mixtures. Potential application for the results concerns the assessment of fire and explosion hazards, and the development of inherently safer designs for chemical processes containing binary and ternary partially miscible mixtures of an aqueous-organic system. The goal of this article is to present the results of modelling using these standard models and to demonstrate its importance in the area of CFD simulation.

  3. [Analyses of biogenic related compounds based on intramolecular excimer-forming fluorescence derivatization].

    Science.gov (United States)

    Yoshida, Hideyuki

    2003-08-01

    A highly selective and sensitive method based on a novel concept is introduced for the assay of biological substances. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, followed by reverse-phase HPLC. Polyamines, polyphenols, and dicarboxylic acids, which have two or more reactive functional groups in a molecule, were converted to the corresponding polypyrene-labeled derivatives by reaction with the appropriate pyrene reagent. The derivatives exhibited intramolecular excimer fluorescence (440-520 nm), which can clearly be discriminated from the monomer (normal) fluorescence (360-420 nm) emitted by pyrene reagents and monopyrene-labeled derivatives of monofunctional compounds. With excimer fluorescence detection, highly selective and sensitive determination of polyamines, polyphenols, and dicarboxylic acids can be achieved. Furthermore, the methods were successfully applied to the determination of various biological and environmental substances in real samples, which require only a small amount of sample and simple pretreatment.

  4. Research of Compound Control for DC Motor System Based on Global Sliding Mode Disturbance Observer

    Directory of Open Access Journals (Sweden)

    He Zhang

    2014-01-01

    Full Text Available Aiming at the problems of modeling errors, parameter variations, and load moment disturbances in DC motor control system, one global sliding mode disturbance observer (GSMDO is proposed based on the global sliding mode (GSM control theory. The output of GSMDO is used as the disturbance compensation in control system, which can improve the robust performance of DC motor control system. Based on the designed GSMDO in inner loop, one compound controller, composed of a feedback controller and a feedforward controller, is proposed in order to realize the position tracking of DC motor system. The gains of feedback controller are obtained by means of linear quadratic regulator (LQR optimal control theory. Simulation results present that the proposed control scheme possesses better tracking properties and stronger robustness against modeling errors, parameter variations, and friction moment disturbances. Moreover, its structure is simple; therefore it is easy to be implemented in engineering.

  5. Nanomaterial-based sensors for detection of disease by volatile organic compounds.

    Science.gov (United States)

    Broza, Yoav Y; Haick, Hossam

    2013-05-01

    The importance of developing new diagnostic and detection technologies for the growing number of clinical challenges is rising each year. Here, we present a concise, yet didactic review on a new diagnostics frontier based on the detection of disease-related volatile organic compounds (VOCs) by means of nanomaterial-based sensors. Nanomaterials are ideal for such sensor arrays because they are easily fabricated, chemically versatile and can be integrated into currently available sensing platforms. Following a general introduction, we provide a brief description of the VOC-related diseases concept. Then, we focus on detection of VOC-related diseases by selective and crossreactive sensing approaches, through chemical, optical and mechanical transducers incorporating the most important classes of nanomaterials. Selected examples of the integration of nanomaterials into selective sensors and crossreactive sensor arrays are given. We conclude with a brief discussion on the integration possibilities of different types of nanomaterials into sensor arrays, and the expected outcomes and limitations.

  6. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2016-01-01

    Full Text Available Lymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. According to the World Health Organization, over 1.2 billion people in 58 countries are at risk of contracting lymphatic filariasis. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7-15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases.We have developed a yeast-based, high-throughput screening system whereby essential yeast genes are replaced with their filarial or human counterparts. These strains are labeled with different fluorescent proteins to allow the simultaneous monitoring of strains with parasite or human genes in competition, and hence the identification of compounds that inhibit the parasite target without affecting its human ortholog. We constructed yeast strains expressing eight different Brugia malayi drug targets (as well as seven of their human counterparts, and performed medium-throughput drug screens for compounds that specifically inhibit the parasite enzymes. Using the Malaria Box collection (400 compounds, we identified nine filarial specific inhibitors and confirmed the antifilarial activity of five of these using in vitro assays against Brugia pahangi.We were able to functionally complement yeast deletions with eight different Brugia malayi enzymes that represent potential drug targets. We demonstrated that our yeast-based screening platform is efficient in identifying compounds that can discriminate between human and filarial enzymes. Hence, we are confident

  7. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  8. Synthesis and characterization of the ternary telluroargentate K4[Ag18Te11

    KAUST Repository

    Davaasuren, Bambar

    2014-10-19

    The ternary potassium telluroargentate(I), K4[Ag18Te11], was prepared by solvothermal synthesis in ethylenediamine at 160 °C. It crystallizes in the cubic space group Fm3¯ m (no. 225) with the cell parameter a = 18.6589(6) Å. The crystal structure can be described as a [Ag18Te11]4- three-dimensional anionic framework with the voids accommodating potassium cations. Chemical bonding analysis reveals polar covalent Ag-Te bonds and considerable Ag-Ag interactions, which support the complex anionic character of the structure. The compound is thermally stable up to 450 °C in an inert atmosphere.

  9. Isothermal section (500  ℃) of phase diagram of Nd-Al-Si ternary system

    Institute of Scientific and Technical Information of China (English)

    龙志林; 周益春; 庄应烘; 陈荣贞; 刘敬旗

    2001-01-01

    The isothermal section of the phase diagram of the ternary system Nd-Al-Si at 500  ℃ (Nd≤50%, mole fraction) has been constructed on the basis of the data obtained by X-ray diffraction analysis, differential thermal analysis, metallographic examination, chemical analysis and electron micro-probe analysis. The obtained diagram consists of 11 single-phase regions, 21 two-phase regions and 11 three-phase regions. There exist two limit solid solutions. The intermetallic compound NdAl1.5Si0.5 has not been found in this section. No evidence of new phase has been observed in this work.

  10. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    Science.gov (United States)

    Park, Jeong-Yong; Kim, Il-Hyun; Motta, Arthur T.; Ulmer, Christopher J.; Kirk, Marquis A.; Ryan, Edward A.; Baldo, Peter M.

    2015-12-01

    An in situ ion-irradiation study, simultaneously examined using transmission electron microscopy, was performed to investigate irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples of two crystalline structures: D022-structured Al3Ti and L12-structured (Al,Cr)3Ti were irradiated using 1.0 MeV Kr ions at a temperature range from 40 K to 573 K to doses up to 4.06 × 1015 ions/cm2. The results showed that both the compounds underwent an order-disorder transformation under irradiation, where both Al3Ti and (Al,Cr)3Ti ordered structures were fully transformed to the disordered face-centered cubic (FCC) structure except at the highest irradiation temperature of 573 K. A slightly higher irradiation dose was required for order-disorder transformation in case of Al3Ti as compared to (Al,Cr)3Ti at a given temperature. However, their amorphization resistances were different: while the disordered FCC (Al,Cr)3Ti amorphized at the irradiation dose of 6.25 × 1014 ions/cm2 (0.92 dpa) at 40 K and 100 K, the Al3Ti compound with the same disordered FCC structure maintained crystallinity up to 4.06 × 1015 ions/cm2 (5.62 dpa) at 40 K. The critical temperature for amorphization of (Al,Cr)3Ti under Kr ion irradiation is likely between 100 K and room temperature and the critical temperature for disordering between room temperature and 573 K.

  11. Experimental investigation of the U–Zr–Al ternary phase diagram: Isothermal sections at 673 K and 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, C.; Désévédavy, F.; Noël, H.; Pasturel, M.; Gouttefangeas, F. [ISCR/CSM, Université de Rennes1, UMR-CNRS 6226, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France, (France); Dubois, S. [CEA/DEN/DEC, Cadarache, 13108 St. Paul Lez Durance (France); Stepnik, B. [AREVA/CERCA, 10 Rue Juliette Récamier, 69006 Lyon (France); Tougait, O., E-mail: tougait@univ-rennes1.fr [ISCR/CSM, Université de Rennes1, UMR-CNRS 6226, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France, (France); UCCS, UMR 8181 CNRS, Université Lille 1, ENSCL, Avenue Mendeleiev, 59655 Villeneuve d’Ascq Cedex (France)

    2015-06-15

    Highlights: • Isothermal sections of the U–Zr–Al system were investigated for 673 K and 1073 K. • The crystallographic properties of the equilibrium phases were checked. • The ternary extension of both unary and binary phases was determined. • The solubility of Al into UZr{sub 2} (δ-phase) was assessed by diffusion couples. • The microstructure of quenched alloys is discussed. - Abstract: Isothermal sections at 673 K and 1073 K of the ternary U–Zr–Al system were established in the whole concentration range, by means of powder X-ray diffraction, scanning electron microscopy–energy dispersive X-ray spectroscopy and differential thermal analysis. All measured compositions and unit-cell refinements were performed at room temperature from quenched samples annealed at 1073 K and 673 K for four and eight weeks respectively. For both temperatures, the Al-rich corner of the phase diagram is characterized by extended homogeneity ranges due to mutual exchange between U and Zr in UAl{sub 3} (cubic, AuCu{sub 3}-type) and in the Laves phase UAl{sub 2} (cubic, MgCu{sub 2}-type). Minute U solubility in ZrAl{sub 2} (hexagonal, MgZn{sub 2}-type) and in Zr{sub 2}Al (hexagonal, Ni{sub 2}In-type) was evaluated to be of the order of 1 at.% U. For the other binary compounds, the solubility of the third component was found negligible. At 1073 K, the solid solution based on γU (cubic, W-type) which covers the U–Zr binary axis up to 95.5 at.% Zr, allows also some limited solubility of Al [maximum of 5 at.%]. For Al-content below 66 at.%, most of the phase relations comprise equilibria between the Zr–Al binaries and the γ(U,Zr,Al) solid solution. At 673 K, the U–Zr axis is found in agreement with the literature data and no Al solubility could be detected in αU, αZr and UZr{sub 2} (δ phase). The phase relations are mainly established between Zr–Al binaries and αU. For monolithic UMo fuel with a Zr diffusion barrier foil cladded with Al, the main interaction

  12. Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization.

    Science.gov (United States)

    Iyer, Siddharth; Lopez-Hilfiker, Felipe; Lee, Ben H; Thornton, Joel A; Kurtén, Theo

    2016-02-04

    Iodide-based chemical ionization mass spectrometry (CIMS) has been used to detect and measure concentrations of several atmospherically relevant organic and inorganic compounds. The significant electronegativity of iodide and the strong acidity of hydroiodic acid makes electron transfer and proton abstraction essentially negligible, and the soft nature of the adduct formation ionization technique reduces the chances of sample fragmentation. In addition, iodide has a large negative mass defect, which, when combined with the high resolving power of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), provides good selectivity. In this work, we use quantum chemical methods to calculate the binding energies, enthalpies and free energies for clusters of an iodide ion with a number of atmospherically relevant organic and inorganic compounds. Systematic configurational sampling of the free molecules and clusters was carried out at the B3LYP/6-31G* level, followed by subsequent calculations at the PBE/SDD and DLPNO-CCSD(T)/def2-QZVPP//PBE/aug-cc-pVTZ-PP levels. The binding energies, enthalpies, and free energies thus obtained were then compared to the iodide-based University of Washington HR-ToF-CIMS (UW-CIMS) instrument sensitivities for these molecules. We observed a reasonably linear relationship between the cluster binding enthalpies and logarithmic instrument sensitivities already at the PBE/SDD level, which indicates that relatively simple quantum chemical methods can predict the sensitivity of an iodide-based CIMS instrument toward most molecules. However, higher level calculations were needed to treat some outlier molecules, most notably oxalic acid and methylerythritol. Our calculations also corroborated the recent experimental findings that the molecules that the UW-CIMS detects at maximum sensitivity usually have binding enthalpies to iodide which are higher than about 26 kcal/mol, depending slightly on the level of theory.

  13. Microstructures and thermoelectric properties of GeSbTe based layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yan, F.; Zhu, T.J.; Zhao, X.B. [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China); Dong, S.R. [Zhejiang University, Department of Information and Electronics Engineering, Hangzhou (China)

    2007-08-15

    Microstructures and thermoelectric properties of Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge{sub 2}Sb{sub 2}Te{sub 5} compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} attained 0.975 x 10{sup -3} Wm{sup -1}K{sup -2} at 750 K and 0.767 x 10{sup -3} Wm{sup -1}K{sup -2} at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. (orig.)

  14. Metal-based ethanolamine-derived compounds: a note on their synthesis, characterization and bioactivity.

    Science.gov (United States)

    Amjad, Muhammad; Sumrra, Sajjad H; Akram, Muhammad Safwan; Chohan, Zahid H

    2016-01-01

    Metal-based ethanolamines, (L(1))-(L(4)) coordinated with Co(II), Cu(II), Ni(II) and Zn(II) metals in 1:2 (metal:ligand) molar ratio to produce new compounds have been reported. These compounds were screened for their bactericidal/fungicidal activity against a number of bacterial (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Bacillus subtilis) and fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) alongside against a shrimp species known as Artemia salina. The screening results indicated that metal complexes have significantly higher activity than uncomplexed ligands against one or more bacterial/fungal species due to chelation. The ligand (L(4)) displayed good bacterial and fungal activity as compared to other ligands. The antibacterial results revealed that the Zn(II) complex (16) of (L(4)) was found to be the most active complex and Co(II) complex (14) of the same ligand (L(4)), demonstrated the highest antifungal activity.

  15. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    Science.gov (United States)

    Hilsenbeck, Shane J.; McCarley, Robert E.; Schrader, Glenn L.; Xie, Xiaobing

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M.sup.n+.sub.2x/n (L.sub.6 S.sub.8)S.sub.x, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M.sub.6 S.sub.8).sup.0 cluster units are present. Vacuum thermolysis of the amorphous Na.sub.2x (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH first produces poorly crystalline NaMo.sub.6 S.sub.8 by disproportionation at 800.degree. C. and well-crystallized NaMo.sub.6 S.sub.8 at .gtoreq. 900.degree. C. Ion-exchange of the sodium material in methanol with soluble M.sup.2+ and M.sup.3+ salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M.sup.n+.sub.2x/n (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M.sup.n+.sub.2x/n Mo.sub.6 S.sub.8+x (MeOH).sub.y ›MMOS! (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as "Chevrel phase-like" in that both contain Mo.sub.6 S.sub.8 cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst showed to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS.sub.2 catalysts.

  16. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    Science.gov (United States)

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures.

  17. Polyoxometalate-based Catalysts for Toxic Compound Decontamination and Solar Energy Conversion

    Science.gov (United States)

    Guo, Weiwei

    Polyoxometalates (POMs) have been attracting interest from researchers in the fields of Inorganic Chemistry, Physical Chemistry, Biomolecular Chemistry, etc. Their unique structures and properties render them versatile and facilitate applications in medicine, magnetism, electrochemistry, photochemistry and catalysis. In particular, toxic compound (chemical warfare agents (CWAs) and toxic industrial compounds (TICs)) decontamination and solar energy conversion by POM-based materials have becoming promising and important research areas that deserve much attention. The focus of this thesis is to explore the structural features of POMs, to develop POM-based materials and to investigate their applications in toxic compound decontamination and solar energy conversion. The first part of this thesis gives a general introduction on the history, structures, properties and applications of POMs. The second part reports the synthesis, structures, and reactivity of different types of POMs in the destruction of TICs and CWAs. Three tetra-n-butylammonium (TBA) salts of polyvanadotungstates, [n-Bu4N]6[ PW9V3], [n-Bu4N] 5H2PW8V4O40 (PW 8V4), [n-Bu4N]4H 5PW6V6O40· 20H2O (PW6V6) are discussed in detail. These vanadium-substituted Keggin type POMs show effective activity for the aerobic oxidation of formaldehyde (a major TIC and human-environment carcingen) to formic acid under ambient conditions. Moreover, two types of POMs have also been developed for the removal of CWAs and/or their simulants. Specifically, a layered manganese(IV)-containing heteropolyvanadate with a 1:14 Stoichiometry, K4Li2[MnV14O40]˙21H2 O has been prepared. Its catalytic activity for oxidative removal of 2-chloroethyl ethyl sulfide (a mustard simulant) is discussed. The second type of POM developed for decontamination of CWAs and their simulants is the new one-dimensional polymeric polyniobate (P-PONb), K12[Ti 2O2][GeNb12O40]˙19H2O (KGeNb). The complex has been applied to the decontamination of a wide range

  18. Rescuing compound bioactivity in a secondary cell-based screening by using γ-cyclodextrin as a molecular carrier

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Vega, Sonia; Grazu, Valeria; de la Fuente, Jesús M; Lanas, Angel; Velazquez-Campoy, Adrian; Abian, Olga

    2015-01-01

    In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead compounds that must be tested in cell-based efficacy secondary screenings. Very often lead compounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly according to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that problem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with γ-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while γ-cyclodextrin did not show antiviral activity by itself). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solution, but its γ-cyclodextrin complex exhibited a 50% effective concentration of 5 μM. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using γ-cyclodextrin as carrier molecule. PMID:25834436

  19. Hydrodesulfurization catalysis by Chevrel phase compounds

    Science.gov (United States)

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  20. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    Science.gov (United States)

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds.

  1. Structural characterization of some Schiff base compounds: Investigation of their electrochemical, photoluminescence, thermal and anticancer activity properties

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Gökhan; Köse, Muhammet [Chemistry Department, Kahramanmaraş Sütcü Imam University, 46100 Kahramanmaraş (Turkey); Tümer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, Kahramanmaraş Sütcü Imam University, 46100 Kahramanmaraş (Turkey); Demirtaş, İbrahim; Şahin Yağlioğlu, Ayse [Chemistry Department, Çankırı Karatekin University, 18100 Çankırı (Turkey); McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leics (United Kingdom)

    2013-11-15

    Three Schiff base compounds, N,N′-bis(2,4-dimethoxy benzaldiimine)-1,4-diamino cyclohexane (IGA{sup 1}), N,N′-bis(2,3,4-trimethoxy benzaldiimine)-1,4-diamino cyclohexane (IGA{sup 2}) and N,N′-bis(3,4,5-trimethoxy benzaldiimine)-1,4-diamino cyclohexane (IGA{sup 3}) were synthesized and characterized by the spectroscopic and analytical methods. The electrochemical and photoluminescence properties of the compounds IGA{sup 1}–IGA{sup 3} have been investigated in the different conditions. All the synthesized Schiff base compounds IGA{sup 1}, IGA{sup 2} and IGA{sup 3} were screened for their cytotoxicity (HeLa and Vera cells). The structural characterization of the Schiff base compounds was determined by single crystal X-ray diffraction studies. The molecules IGA{sup 1} and IGA{sup 3} both lie on centers of symmetry but in IGA{sup 2} the molecule has no crystallographically imposed symmetry. In the compound IGA{sup 1}, Schiff base molecules are linked by π stacking interactions. There is no evidence of π stacking in both IGA{sup 2} and IGA{sup 3}, however there are some C–H⋯π and C–H…O interactions in these compounds. The thermal stabilities of the compounds were investigated in the nitrogen atmosphere. -- Highlights: • Schiff base ligands were prepared and fully characterized. • X-ray crystal structures of Schiff base ligands were reported. • Electrochemical properties of Schiff base ligands were investigated. • Absorption and photoluminescence properties of the Schiff bases were examined.

  2. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Shao Li-Hui; Liu Yao-Zong; Wen Ji-Hong

    2006-01-01

    Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.

  3. Preparation of lignosulfonate-acrylamide-chitosan ternary graft copolymer and its flocculation performance.

    Science.gov (United States)

    He, Kunpeng; Lou, Tao; Wang, Xuejun; Zhao, Wenhua

    2015-11-01

    As flocculant plays an important role in wastewater treatment, searching for high efficient and cost-effective flocculants has always become the challenge in chemical industry. In the current work, lignosulfonate-acrylamide-chitosan ternary copolymer was designed and prepared as a new kind of flocculant. The elemental analysis and structure characterization of FTIR and XRD showed that acrylamide successfully grafted onto the two natural polymers and amorphous macromolecules were formed. The natural polymers-based flocculant was water soluble and pH independent. As it had multiple functional groups from the raw materials, the amphoteric flocculant showed high color removal efficiency to anionic (acid blue 113, >95%), neutral (reactive black 5, >95%) and cationic dyes (methyl orange, >50%) in a wide range of flocculant dosage and pH windows. The ternary flocculant, based on lignosulfonate, chitosan, and acrylamide, might be a promising material in practical applications from the perspective of cost, source and performance.

  4. The competition numbers of ternary Hamming graphs

    CERN Document Server

    Park, Boram

    2010-01-01

    The competition graph of a digraph D is a graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is defined to be the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of important research problems in the study of competition graphs to characterize a graph by its competition number. In this paper, we give the exact values of the competition numbers of ternary Hamming graphs.

  5. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  6. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    SOUMEN SAHA; SONALIKA VAIDYA; KANDALAM V RAMANUJACHARY; SAMUEL E LOFLAND; ASHOK K GANGULI

    2016-04-01

    Cu–Fe–Ni ternary alloys (size ∼55–80 nm) with varying compositions viz. CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an appropriate microemulsion system. High electrocatalytic activity towards HER in alkaline medium was achieved by the formation of alloys of metals with low and high binding energies. A high value of current density (228 mA cm$^2$) at an overpotential of 545 mV was obtained for CuFeNi (A1), which is significantly high as compared to the previously reported Ni$_{59}$Cu$_{41}$ alloy catalyst.

  7. On Ternary Inclusion-Exclusion Polynomials

    CERN Document Server

    Bachman, Gennady

    2010-01-01

    Taking a combinatorial point of view on cyclotomic polynomials leads to a larger class of polynomials we shall call the inclusion-exclusion polynomials. This gives a more appropriate setting for certain types of questions about the coefficients of these polynomials. After establishing some basic properties of inclusion-exclusion polynomials we turn to a detailed study of the structure of ternary inclusion-exclusion polynomials. The latter subclass is exemplified by cyclotomic polynomials $\\Phi_{pqr}$, where $p

  8. Designing a Novel Ternary Multiplier Using CNTFET

    Directory of Open Access Journals (Sweden)

    Nooshin Azimi

    2014-11-01

    Full Text Available Today, multipliers are included as substantial keys of many systems with high efficiency such as FIR filters, microprocessors and processors of digital signals. The efficiency of the systems are mainly evaluated by their multipliers capability since multipliers are generally the slowest components of a system while occupying the most space. Multiple Valued Logic reduces the number of the required operations to implement a function and decreases the chip surface. Carbon Nanotube Field Effect Transistors (CNTFET are considered as good substitutes for Silicon Transistors (MOSFET. Combining the abilities of Carbon Nanotubes Transistors with the advantages of Multiple Valued can provide a unique design which has a higher speed and less complexity. In this paper, a new multiplier is presented by nanotechnology using a ternary logic that improves the consuming power, raises the speed and decreased the chip surface as well. The presented design is simulated using CNTFET of Stanford University and HSPICE software, and the results are compared with other instances.

  9. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Yu Dian-Long

    2006-01-01

    The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sanchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.

  10. Within-compound associations explain potentiation and failure to overshadow learning based on geometry by discrete landmarks.

    Science.gov (United States)

    Austen, Joe M; Kosaki, Yutaka; McGregor, Anthony

    2013-07-01

    In three experiments, rats were trained to locate a submerged platform in one of the base corners of a triangular arena above each of which was suspended one of two distinctive landmarks. In Experiment 1, it was established that these landmarks differed in their salience by the differential control they gained over behavior after training in compound with geometric cues. In Experiment 2, it was shown that locating the platform beneath the less salient landmark potentiated learning based on geometry compared with control rats for which landmarks provided ambiguous information about the location of the platform. The presence of the more salient landmark above the platform for another group of animals appeared to have no effect on learning based on geometry. Experiment 3 established that these landmark and geometry cues entered into within-compound associations during compound training. We argue that these within-compound associations can account for the potentiation seen in Experiment 2, as well as previous failures to demonstrate overshadowing of geometric cues. We also suggest that these within-compound associations need not be of different magnitudes, despite the different effects of each of the landmarks on learning based on geometry seen in Experiment 2. Instead, within-compound associations appear to mitigate the overshadowing effects that traditional theories of associative learning would predict.

  11. Pb-free Sn-Ag-Cu ternary eutectic solder

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  12. Proofs of two conjectures on ternary weakly regular bent functions

    OpenAIRE

    Helleseth, Tor; Hollmann, Henk D. L.; Kholosha, Alexander; Wang, Zeying; Xiang, Qing

    2008-01-01

    We study ternary monomial functions of the form $f(x)=\\Tr_n(ax^d)$, where $x\\in \\Ff_{3^n}$ and $\\Tr_n: \\Ff_{3^n}\\to \\Ff_3$ is the absolute trace function. Using a lemma of Hou \\cite{hou}, Stickelberger's theorem on Gauss sums, and certain ternary weight inequalities, we show that certain ternary monomial functions arising from \\cite{hk1} are weakly regular bent, settling a conjecture of Helleseth and Kholosha \\cite{hk1}. We also prove that the Coulter-Matthews bent functions are weakly regular.

  13. Strength and durability of concrete modified by sulfur-based impregnating compounds

    Directory of Open Access Journals (Sweden)

    MASSALIMOV Ismail Alexandrovich

    2015-06-01

    Full Text Available The aim of the research was to determine how sulfur-containing compound impregnation influences on concrete compressive strength and the impact resistance of concrete tiles. The results of these studies indicate that impregnation of vibropressed concrete paving tiles and concrete samples of dif-ferent strength classes with aqueous solutions based on calcium polysulfide leads to a significant increase of compressive strength and impact resistance. These data show that the strength of the products can be controlled by varying duration and frequency of the impregnation and by using pre-vacuum method. Impregnation with a solution of calcium polysulfide density of 1,23 g/cm³ can be recommended to increase strength of concrete products that are exposed to intense hydration and mechanical stress.

  14. Self-assembled host monolayer based chemical microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jing-Xuan; Moore, L.W.; Springer, K.N. [Los Alamos National Lab., NM (United States)] [and others

    1995-12-01

    The interaction of organic vapors with self-assembled host monolayers on the surface of 200 MHz surface acoustic wave (SAW) resonators is studied as a method of tracking toxins in the gas phase. Molecular self-assembly techniques were employed to achieve covalent surface-attachment of two families of {open_quotes}bucket{close_quotes} molecules - cyclodextrins and calix[n]arenes - to native oxides on Si<100> and single-crystal ST-cut quartz. The formation of the covalently-bound functionalized bucket monolayers on oxide surfaces was characterized by polarized, variable-angle, internal attenuated total reflection infrared spectroscopy and surface acoustic mass transduction. SAW based sensors were capable of detecting volatile organic compounds (VOCs) down to ppb levels. Pattern recognition with an array of complementary microsensors appears to be a viable approach for identifying and quantifying a particular VOC.

  15. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  16. Crystal structure of a new hybrid compound based on an iodido-plumbate(II) anionic motif.

    Science.gov (United States)

    Mokhnache, Oualid; Boughzala, Habib

    2016-01-01

    Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis-(piperazine-1,4-diium) [[tetra-iodido-plumbate(II)]-μ-iodido] iodide monohydrate], (C4N2H12)2[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H12)(2+) cations, water mol-ecules of crystallization and isolated I(-) anions are connected through N-H⋯·I, N-H⋯OW and OW-H⋯I hydrogen-bond inter-actions. Zigzag chains of corner-sharing [PbI6](4-) octa-hedra with composition [PbI4/1I2/2](3-) running parallel to the a axis are present in the structure packing.

  17. Graphene Based Electrochemical Sensor for the Detection of Volatile Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    Yixin Zhang; Kim KT Lau

    2014-01-01

    Many household consumables contain volatile organic compounds (VOCs) as the active ingredient. Long term exposure to VOCs could cause various health problems, especially to the respiratory system. Graphene has attracted a lot of attention recently for its potential to be used as sensing material for VOCs. In this project we have constructed graphene/PVA composite based gas sensors for VOC detection. It was perceived that the poly-mer could introduce better selectivity to the sensor. Results suggest that the proposed sen-sor is highly sensitive to low molecular weight VOCs and that the manner in which the sensor respond to the vapour depends on the polarity or hydrophobicity of the vapour.

  18. Crystal structure of a new hybrid compound based on an iodidoplumbate(II anionic motif

    Directory of Open Access Journals (Sweden)

    Oualid Mokhnache

    2016-01-01

    Full Text Available Crystals of the one-dimensional organic–inorganic lead iodide-based compound catena-poly[bis(piperazine-1,4-diium [[tetraiodidoplumbate(II]-μ-iodido] iodide monohydrate], (C4N2H122[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H122+ cations, water molecules of crystallization and isolated I− anions are connected through N—H...·I, N—H...OW and OW—H...I hydrogen-bond interactions. Zigzag chains of corner-sharing [PbI6]4− octahedra with composition [PbI4/1I2/2]3− running parallel to the a axis are present in the structure packing.

  19. Inferring Alcoholism SNPs and Regulatory Chemical Compounds Based on Ensemble Bayesian Network.

    Science.gov (United States)

    Chen, Huan; Sun, Jiatong; Jiang, Hong; Wang, Xianyue; Wu, Lingxiang; Wu, Wei; Wang, Qh

    2016-12-20

    The disturbance of consciousness is one of the most common symptoms of those have alcoholism and may cause disability and mortality. Previous studies indicated that several single nucleotide polymorphisms (SNP) increase the susceptibility of alcoholism. In this study, we utilized the Ensemble Bayesian Network (EBN) method to identify causal SNPs of alcoholism based on the verified GAW14 data. Thirteen out of eighteen SNPs directly connected with alcoholism were found concordance with potential risk regions of alcoholism in OMIM database. As a number of SNPs were found contributing to alteration on gene expression, known as expression quantitative trait loci (eQTLs), we further sought to identify chemical compounds acting as regulators of alcoholism genes captured by causal SNPs. Chloroprene and valproic acid were identified as the expression regulators for genes C11orf66 and SALL3 which were captured by alcoholism SNPs, respectively.

  20. Separation of ethanol/water azeotrope using compound starch-based adsorbents.

    Science.gov (United States)

    Wang, Yanhong; Gong, Chunmei; Sun, Jinsheng; Gao, Hong; Zheng, Shuai; Xu, Shimin

    2010-08-01

    Comparing breakthrough cures of five starch-based materials experimentally prepared for ethanol dehydration, a compound adsorptive agent ZSG-1 was formulated with high adsorption capacity, low energy and material cost. The selective water adsorption was conducted in a fixed-bed absorber packed with ZSG-1 to find the optimum conditions yielding 99.7 wt% anhydrous ethanol with high efficiency. The adsorption kinetics is well described by Bohart-Adams equation. The adsorption heat, Delta H(abs), was calculated to be -3.16 x 10(4)J mol(-1) from retention data by inverse gas chromatography. Results suggested that water entrapment in ZSG-1 is a exothermic and physisorption process. Also, ZSG-1 is recyclable for on-site multiple-use and then adapt for upstream fermentation process after saturation, avoiding pollution through disposal.

  1. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  2. Ethanol-Water Near-Azeotropic Mixture Dehydration by Compound Starch-Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    孙津生; 师明; 王文平

    2015-01-01

    Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starch-based adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separa-tion factor of water over ethanol were measured by inverse gas chromatography(IGC). Results indicated that water has a longer net retention time than ethanol and that low temperature is beneficial to this dehydration process. Or-thogonal test was conducted under different vapor feed flow rates, bed temperatures and bed heights, to obtain op-timal fixed-bed dehydration condition. Dynamic saturated adsorbance was also studied. It was found that CSA has the same water adsorption capacity(0.15 g/g)as some commercial molecular sieves. Besides, this biosorptive dehy-dration process was found to be the most energy-efficient compared with other ethanol purification processes.

  3. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren;

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...... and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body...... a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization....

  4. A method based on diffraction theory for predicting 3D focusing performance of compound refractive X-ray lenses

    Institute of Scientific and Technical Information of China (English)

    Zichun Le; Kai Liu; Jingqiu Liang

    2005-01-01

    A method based on the diffraction theory for estimating the three-dimensional (3D) focusing performance of the compound refractive X-ray lenses is presented in this paper. As a special application, the 3D X-ray intensity distribution near the focus is derived for a plano-concave compound refractive X-ray lens.Moreover, the computer codes are developed and some results of 3D focusing performance for a compound refractive X-ray lens with Si material are shown and discussed.

  5. PHASE EQUILIBRIUM FOR THE TERNARY SYSTEM VINYL CHLORIDE-CHLORINATED POLYETHYLENE-POLY (VINYL CHLORIDE)

    Institute of Scientific and Technical Information of China (English)

    LOU Jianfeng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1991-01-01

    Swelling capacity of vinyl chloride (VC) in chlorinated polyethylene (CPE) with 25- 40 wt% Cl at temperature 30- 57 ℃ was studied and their relationships were correlated with Langmuir and Freundlich adsorption equations. A ternary phase diagram for VC-CPE-PVC was also established.In-situ polymerization conditions of CPE-g -VC were proposed and CPE content control was analyzed for the manufacturing process of CPE-g-VC graft product based on results of phase equilibrium study.

  6. Regular Functions with Values in Ternary Number System on the Complex Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2013-01-01

    Full Text Available We define a new modified basis i^ which is an association of two bases, e1 and e2. We give an expression of the form z=x0+ i ^z0-, where x0 is a real number and z0- is a complex number on three-dimensional real skew field. And we research the properties of regular functions with values in ternary field and reduced quaternions by Clifford analysis.

  7. Enthalpies of formation of compounds in Al-Ni-Y system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The enthalpies of formation of the ternary compounds Al4NiY, Al2NiY, Al2Ni6Y3, Al16 Ni3Y, AlNiY, Al3Ni2Y, AlNi8Y3, Al7Ni3Y2, and of the binary comp ounds Al2Y containing nickel and Ni5Y containing aluminum have been determined by high temperature reaction calorimetry. The enthalpy values measured are compared to previously published results where available as well as extended Miedema model predictions. The melting points of the compounds were determined by DTA and X-ray diffraction was used to confirm the crystal structures of the compounds. The enthalpi es of formation of the ternary compounds show a maximum along the 50%Al (mole fr action) section. The ternary compounds appear along lines of constant yttrium content consistent with binary compound solubility extensions.

  8. A high-throughput screen for aggregation-based inhibition in a large compound library.

    Science.gov (United States)

    Feng, Brian Y; Simeonov, Anton; Jadhav, Ajit; Babaoglu, Kerim; Inglese, James; Shoichet, Brian K; Austin, Christopher P

    2007-05-17

    High-throughput screening (HTS) is the primary technique for new lead identification in drug discovery and chemical biology. Unfortunately, it is susceptible to false-positive hits. One common mechanism for such false-positives is the congregation of organic molecules into colloidal aggregates, which nonspecifically inhibit enzymes. To both evaluate the feasibility of large-scale identification of aggregate-based inhibition and quantify its prevalence among screening hits, we tested 70,563 molecules from the National Institutes of Health Chemical Genomics Center (NCGC) library for detergent-sensitive inhibition. Each molecule was screened in at least seven concentrations, such that dose-response curves were obtained for all molecules in the library. There were 1274 inhibitors identified in total, of which 1204 were unambiguously detergent-sensitive. We identified these as aggregate-based inhibitors. Thirty-one library molecules were independently purchased and retested in secondary low-throughput experiments; 29 of these were confirmed as either aggregators or nonaggregators, as appropriate. Finally, with the dose-response information collected for every compound, we could examine the correlation between aggregate-based inhibition and steep dose-response curves. Three key results emerge from this study: first, detergent-dependent identification of aggregate-based inhibition is feasible on the large scale. Second, 95% of the actives obtained in this screen are aggregate-based inhibitors. Third, aggregate-based inhibition is correlated with steep dose-response curves, although not absolutely. The results of this screen are being released publicly via the PubChem database.

  9. Weighted Feature Significance: A Simple, Interpretable Model of Compound Toxicity Based on the Statistical Enrichment of Structural Features

    OpenAIRE

    Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.

    2009-01-01

    In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) dat...

  10. A novel schiff base zinc coordination compound inhibits proliferation and induces apoptosis of human osteosarcoma cells.

    Science.gov (United States)

    Yan, Ming; Pang, Li; Ma, Tan-tan; Zhao, Cheng-liang; Zhang, Nan; Yu, Bing-xin; Xia, Yan

    2015-10-01

    Various kinds of schiff base metal complexes have been proven to induce apoptosis of tumor cells. However, it remains largely unknown whether schiff base zinc complexes induce apoptosis in human cancer cells. Here, we synthesized a novel schiff base zinc coordination compound (SBZCC) and investigated its effects on the growth, proliferation and apoptosis of human osteosarcoma MG-63 cells. A novel SBZCC was synthesized by chemical processes and used to treat MG-63 cells. The cell viability was determined by CCK-8 assay. The cell cycle progression, mitochondrial membrane potential and apoptotic cells were analyzed by flow cytometry. The apoptosis-related proteins levels were determined by immunoblotting. Treatment of MG-63 cells with SBZCC resulted in inhibition of cell proliferation and cell cycle arrest at G1 phase. Moreover, SBZCC significantly reduced the mitochondrial membrane potential and induced apoptosis, accompanied with increased Bax/Bcl-2 and FlasL/Fas expression as well as caspase-3/8/9 cleavage. Our results demonstrated that the synthesized novel SBZCC could inhibit the proliferation and induce apoptosis of MG-63 cells via activating both the mitochondrial and cell death receptor apoptosis pathways, suggesting that SBZCC is a promising agent for the development as anticancer drugs.

  11. SEASONAL CHANGES IN THE REDUCTION OF BIOGENIC COMPOUNDS IN WASTEWATER TREATMENT PLANTS BASED ON HYDROPONIC TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Aleksandra Bawiec

    2016-04-01

    Full Text Available The study presents the results of the treatment of domestic and industrial wastewater with respect to the reduction of nitrogen and phosphorus compounds. The analysis encompasses the results of physical and chemical tests of effluents from two facilities based on hydroponic technology: wastewater treatment plants with hydroponic lagoons using the BIOPAX technology – Paczków, Poland and the Organica technology – Szarvas, Hungary. Monthly treatment effectiveness was determined basing on these analyses. The composition of wastewater flowing into the lagoon (after mechanical treatment and wastewater discharged to the collector in 2009–2011 was subject to physical and chemical analysis in both facilities. The effluent quality was determined basing on the concentration of total phosphorus, total nitrogen and ammonium nitrogen. Mean annual results of the operation of both objects were high. For the wastewater treatment plant in Paczkow, operating in the BIOPAX technology, the effectiveness of treatment with respect to total nitrogen throughout the analysed period ranged from 76.9–84.4%. Total phosphorus was eliminated from wastewater with an effectiveness of 96.4–98.0%. Such high reduction level was caused by the application of additional precipitation process in the chambers of activated sludge reactor. The hydroponic plant in Szarvas (Organica technology was characterised by a high effectiveness of reduction with respect to ammonium nitrogen: 92.0–93.0%, while the reduction of total phosphorus fell into the range 49.3–55.3%.

  12. Functional analysis of OMICs data and small molecule compounds in an integrated "knowledge-based" platform.

    Science.gov (United States)

    Nikolsky, Yuri; Kirillov, Eugene; Zuev, Roman; Rakhmatulin, Eugene; Nikolskaya, Tatiana

    2009-01-01

    Analysis of microarray, SNPs, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high-fidelity annotated knowledge base of protein interactions, pathways, and functional ontologies. This knowledge base has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here we present MetaDiscovery, an integrated platform for functional data analysis which is being developed at GeneGo for the past 8 years. On the content side, MetaDiscovery encompasses a comprehensive database of protein interactions of different types, pathways, network models and 10 functional ontologies covering human, mouse, and rat proteins. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for identification of over- and under-connected proteins in the data set, and a network module made up of network generation algorithms and filters. The suite also features MetaSearch, an application for combinatorial search of the database content, as well as a Java-based tool called MapEditor for drawing and editing custom pathway maps. Applications of MetaDiscovery include identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds, and clinical applications (analysis of large cohorts of patients and translational and personalized medicine).

  13. The phase relations in the Gd-Fe-Ga ternary system at 500 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D.C. [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China); Li, J.Q. [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China)], E-mail: junqinli@szu.edu.cn; Ouyang, M.; Liu, F.S.; Ao, W.Q. [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China)

    2009-06-24

    The isothermal section (500 deg. C) of the phase diagram of the Gd-Fe-Ga ternary system was investigated by X-ray powder diffraction analysis. Eleven binary compounds, GdGa{sub 2}, GdGa, Gd{sub 3}Ga{sub 2}, Gd{sub 5}Ga{sub 3}, GdFe{sub 2}, GdFe{sub 3}, Gd{sub 2}Fe{sub 17}, Fe{sub 3}Ga, Fe{sub 6}Ga{sub 5}, Fe{sub 3}Ga{sub 4} and FeGa{sub 3}, have been confirmed. Two ternary compounds, GdFe{sub 5.3}Ga{sub 6.7} and GdFe{sub 5}Ga{sub 7}, were found in this ternary system at 500 deg. C. The compound GdFe{sub 5.3}Ga{sub 6.7} is orthorhombic ScFe{sub 6}Ga{sub 6}-type structure (space group Immm) with a = 0.8567 (9), b = 0.86960 (9) and c = 0.50782 (5) nm, while the compound GdFe{sub 5}Ga{sub 7} is tetragonal ThMn{sub 12}-type structure (space group I4/mmm) with a = 0.8651(1) and c = 0.50934 (6) nm. The isothermal section at 500 deg. C consists of 16 single-phase regions, 31 two-phase regions and 16 three-phase regions. The maximum solid solubilities of Ga in GdFe{sub 2}, GdFe{sub 3}, Gd{sub 2}Fe{sub 17} are 9.2, 9.0, and 44.3 at.% respectively. The homogeneity range of GdGa{sub 2} is from 22 to 33.3 at.% Ga in Gd-Ga side but the solid solubility of Fe in this compound is very small. The homogeneity range of GdFe{sub 5}Ga{sub 7} is from 53.8 to 59.2 at.% Ga. Very limited solid solutions were measured in the other compounds.

  14. The isothermal section of the Nd-Fe-Ga ternary system at 773 K

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.Q., E-mail: junqinli@szu.edu.c [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China); Zhang, W.H.; Yu, Y.J.; Liu, F.S.; Ao, W.Q. [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China); Yan, J.L. [College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060 (China); College of Materials Science and Engineering, Guangxi University and Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi 530004 (China)

    2009-11-13

    The isothermal section of the Nd-Fe-Ga ternary system at 773 K was constructed using X-ray diffraction analysis. Ten binary compounds, Nd{sub 2}Fe{sub 17}, Nd{sub 5}Fe{sub 17}, Nd{sub 9}Ga{sub 4}, Nd{sub 5}Ga{sub 3}, NdGa, NdGa{sub 2}, FeGa{sub 3}, Fe{sub 3}Ga{sub 4}, {alpha}-Fe{sub 6}Ga{sub 5} and {alpha}-Fe{sub 3}Ga, and three ternary compounds, NdFe{sub 2}Ga{sub 8}, NdFe{sub 5}Ga{sub 7} and Nd{sub 6}Fe{sub 13}Ga were existed in this isothermal section. The solid solutions Nd{sub 2}Fe{sub 17.00-15.57}Ga{sub 0-1.43} (Th{sub 2}Zn{sub 17}-type structure, space group R3-barm), NdFe{sub 5.46-4.65}Ga{sub 6.54-7.35} (ThMn{sub 12}-type structure, space group I4/mmm) and Nd{sub 6}Fe{sub 13.0-12.0}Ga{sub 1.0-2.0} (La{sub 6}Co{sub 11}Ga{sub 3}-type structure, space group I4/mcm) were formed by substitution of Ga for Fe in the compounds Nd{sub 2}Fe{sub 17}, NdFe{sub 5}Ga{sub 7} and Nd{sub 6}Fe{sub 13}Ga at 773 K, respectively. The ternary compound NdFe{sub 2}Ga{sub 8} is CaCo{sub 2}Al{sub 8}-type (space group Pbam) with a = 1.43742 (4), b = 1.24601 (4), c = 0.40479 (1)). The homogeneity range of NdGa{sub 2} is from 66.7 to 74.7 at.% Ga in Nd-Ga side but the solid solubility of Fe in this compound is very small. The homogeneity ranges of Nd{sub 6}Fe{sub 13}Ga and NdFe{sub 5}Ga{sub 7} are from 5.0 to 10.0 and from 50.3 to 56.5 at.% Ga, respectively. The maximum solid solubilities of Ga in Nd{sub 2}Fe{sub 17} is 7.5. The homogeneity ranges for the other compounds are small.

  15. Recent insights on the medicinal chemistry of metal-based compounds: hints for the successful drug design.

    Science.gov (United States)

    Hernandes, M Z; de S Pontes, F J; Coelho, L C D; Moreira, D R M; Pereira, V R A; Leite, A C L

    2010-01-01

    Although more complex than usually described, the anticancer action mechanism of cisplatin is based on binding to DNA. Following this line of reasoning, most the metal-based compounds discovered soon after cisplatin were designed to acting as DNA-binding agents and their pharmacological properties were thought to be correlated with this mechanism. Apart from the DNA structure, a significant number of proteins and biochemical pathways have been described as drug targets for metal-based compounds. This paper is therefore aimed at discussing the most recent findings on the medicinal chemistry of metal-based drugs. It starts illustrating the design concept behind the bioinorganic chemistry of anticancer complexes. Anticancer metallic compounds that inhibit the protein kinases are concisely discussed as a case study. The accuracy and limitations of molecular docking programs currently available to predict the binding mode of metallic complexes in molecular targets are further discussed. Finally, the advantages and disadvantages of different in vitro screenings are briefly commented.

  16. Solution-based colloidal synthesis of hybrid P3HT: Ternary CuInSe2 nanocomposites using a novel combination of capping agents for low-cost photovoltaics

    Science.gov (United States)

    Sharma, Shailesh Narain; Chawla, Parul; Akanksha; Srivastava, A. K.

    2016-06-01

    In this work, ternary CuInSe2 (CISe) chalcopyrite nanocrystallites efficiently passivated by a novel combination of capping agents viz: aniline and 1-octadecene during chemical route synthesis were dispersed in conducting polymer matrix poly(3-hexylthiophene) (P3HT). By varying the composition and concentration of the ligands, the properties of the resulting CISe nanocrystallites and its corresponding polymer nanocomposites thus could be tailored. The structural, morphological and optical studies accomplished by various complimentary techniques viz. Transmission Electron Microscopy (TEM), Contact angle, Photoluminescence (PL) and Raman have enabled us to compare the different hybrid organic (polymer)-inorganic nanocomposites. On the basis of aniline-octadecene equilibrium phase diagram, the polydispersity of the CISe nanocrystals could be tuned by using controlled variations in the reaction conditions of nucleation and growth such as composition of the solvent and temperature. To the best of author's knowledge, the beneficial effects of both the capping agents; aniline and octadecene contributing well in tandem in the development of large-sized (100-125 nm) high quality, sterically- and photo-oxidative stable polycrystalline CISe and its corresponding polymer (P3HT):CISe composites with enhanced charge transfer efficiency has been reported for the first time. The low-cost synthesis and ease of preparation renders this method of great potential for its possible application in low-cost hybrid organic-inorganic photovoltaics. The figure shows the Temperature vs Mole fraction graph of two different phases (aniline and 1-octadecene) in equilibrium.

  17. Carbometalates. Intermediate phases in the ternary systems RE-T-C (RE = Y, La, Gd-Er; T = Cr, Fe, Ru)

    Energy Technology Data Exchange (ETDEWEB)

    Davaasuren, Bambar

    2010-07-01

    The main motivation of this work was the preparation and characterization of novel compounds in the ternary systems RE-T-C with T = Cr, Fe and Ru with a special focus on compounds containing C{sub 2}{sup n-} and C{sub 3}{sup m-} or mixed C and C{sub 2}{sup n-} as structural units. This would allow to investigate the applicability of the concept of complex anions to this class of materials.

  18. The theory and geological application of ternary statistics

    Science.gov (United States)

    Cooper, D. H.

    A statistical procedure for defining the relationship of three interdependent variables was developed. A plotting scheme was devised which would reduce any three variable values to a single representative point. The centroid of a triangle formed by the three input values provided the best definition for such a point. Ternary statistical plots were made of geological data which were previously analyzed using conventional statistical and graphical methods. In instances where multiple plots were needed to define the correlation of three variables, ternary statistical analysis reduced the same correlation to a single plot. Ternary statistical plots emphasized features not shown on the conventional plots. Ternary statistical techniques provided a more complete and less complex approach.

  19. The Mapping Synthesis of Ternary Functions under Fixed Polarities

    Institute of Scientific and Technical Information of China (English)

    陈偕雄; 吴浩敏

    1993-01-01

    This paper proposes a mapping method simplifying the Reed-Muller expansion(“RM expansion”)of a ternary function under fixed polarities and the transformation of the RM expansion coefficients with different fixed polarities.

  20. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  1. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Science.gov (United States)

    Pandey, G. N.; Kumar, Narendra; Thapa, Khem B.; Ojha, S. P.

    2016-05-01

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  2. Calculation of activity coefficients for components in ternary Ti alloys and intermetallics as matrix of composites

    Institute of Scientific and Technical Information of China (English)

    朱艳; 杨延清; 孙军

    2004-01-01

    Based on Kohler's ternary solution model and Miedema's model for calculating the formation heat of binary solution, the integral equation was established for calculating the activity coefficients in ternary alloys and intermetallics. The activity coefficients for components in alloy Ti-5Al-2.5Sn, Ti-6Al-4V and intermetallics TiAl, Ti3 Al and Ti2 AlNb were calculated with the equations. The calculated data coincide well with the experimental ones found in literatures. According to the calculated activity coefficients and activities, it can be predicted that the interfacial reaction in SiC/Ti3 Al composite is more severe than that in composites SiC/Ti2 AlNb and SiC/TiAl.

  3. Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups

    Indian Academy of Sciences (India)

    Afsar Ali; Deepak Bansal; Nagendra K Kaushik; Neha Kaushik; Neha Kaushik; Eun Ha Choi; Rajeev Gupta

    2014-07-01

    Several pyridine-amide compounds appended with phenol/catechol groups are synthesized. These compounds consist of protected or deprotected phenol/catechol groups and offer pyridine, amide, and phenol/catechol functional groups. All compounds have been well-characterized by various spectroscopic methods, elemental analysis, thermal studies, and crystallography. The biological activities of all compounds were investigated while a few compounds significantly decreased the metabolic viability, growth and clonogenicity of T98G cells in dose dependent manner. Accumulation of ROS was observed in T98G cells, which displayed a compromised redox status as evident from increased cellular Caspase 3/7 activity and formation of micronuclei. The in silico pharmacokinetic studies suggest that all compounds have good bioavailability, water solubility and other drug-like parameters. A few compounds were identified as the lead molecules for future investigation due to their: (a) high activity against T98G brain, H-460 lung, and SNU-80 thyroid cancer cells; (b) low cytotoxicity in non-malignant HEK and MRC-5 cells; (c) low toxic risks based on in silico evaluation; (d) good theoretical oral bioavailability according to Lipinski ‘rule of five’ pharmacokinetic parameters; and (e) better drug-likeness and drug-score values.

  4. Hardness and Second Phase Percentage of Ni-Ti-Hf Compounds After Heat Treatment at 700C

    Science.gov (United States)

    Stanford, Malcolm K.

    2017-01-01

    The Vickers hardness and second phase precipitation of three ternary intermetallic Ni-Ti-Hf compounds containing either 1, 3 or 5 at.% Hf were compared to 60-Nitinol (55 at.% Ni - 45 at.% Ti). Heat treatment either at 700 C or with a subsequent aging step, hardened the 3 and 5 at.% Hf-containing ternaries to approximately 620 HV (56 HRC). Heat treatment increased the hardness of the 1 at.% Hf compound by more than 25 percent. Average hardness of the 3 and 5 at.% Hf ternaries, though higher than that of the binary Ni-Ti or the Ni-Ti-Hf compound containing 1 at.% Hf, appeared to be fairly insensitive to the different heat treatments. There was a drastic reduction of fatigue-enhancing second phase precipitates for the 5 at.% Hf ternaries compared to the other compounds. These results should guide materials selection for development of aerospace componentry.

  5. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)

    2016-07-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  6. First-Principle Study of the Structural, Electronic, and Optical Properties of Cubic InNxP1-x Ternary Alloys under Hydrostatic Pressure

    Science.gov (United States)

    Hattabi, I.; Abdiche, A.; Moussa, R.; Riane, R.; Hadji, K.; Soyalp, F.; Varshney, Dinesh; Syrotyuk, S. V.; Khenata, R.

    2016-09-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InNxP1-x in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InNxP1-x compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  7. Yb-based heavy fermion compounds and field tuned quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Eundeok [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in ρ(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT2Zn20 and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, TK, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum

  8. An intimately bonded titanate nanotube–polyaniline–gold nanoparticle ternary composite as a scaffold for electrochemical enzyme biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: liuxiaoqiang@henu.edu.cn [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004 (China); Zhu, Jie; Huo, Xiaohe; Yan, Rui [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004 (China); Wong, Danny K.Y., E-mail: Danny.Wong@mq.edu.au [Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 (Australia)

    2016-03-10

    In this work, titanate nanotubes (TNTs), polyaniline (PANI) and gold nanoparticles (GNPs) were assembled to form a ternary composite, which was then applied on an electrode as a scaffold of an electrochemical enzyme biosensor. The scaffold was constructed by oxidatively polymerising aniline to produce an emeraldine salt of PANI on TNTs, followed by gold nanoparticle deposition. A novel aspect of this scaffold lies in the use of the emeraldine salt of PANI as a molecular wire between TNTs and GNPs. Using horseradish peroxidase (HRP) as a model enzyme, voltammetric results demonstrated that direct electron transfer of HRP was achieved at both TNT-PANI and TNT-PANI-GNP-modified electrodes. More significantly, the catalytic reduction current of H{sub 2}O{sub 2} by HRP was ∼75% enhanced at the TNT-PANI-GNP-modified electrode, compared to that at the TNT-PANI-modified electrode. The heterogeneous electron transfer rate constant of HRP was found to be ∼3 times larger at the TNT-PANI-GNP-modified electrode than that at the TNT-PANI-modified electrode. Based on chronoamperometric detection of H{sub 2}O{sub 2}, a linear range from 1 to 1200 μM, a sensitivity of 22.7 μA mM{sup −1} and a detection limit of 0.13 μM were obtained at the TNT-PANI-GNP-modified electrode. The performance of the biosensor can be ascribed to the superior synergistic properties of the ternary composite. - Highlights: • A ternary TiO{sub 2} nanotube–polyaniline–gold nanoparticle composite was developed. • New synthetic route for ternary composite with a polyaniline molecular wire between TiO{sub 2} nanotubes and gold nanoparticles. • An electrochemical biosensor with ternary composite as a scaffold. • Ternary composite facilitated improved analytical performance of electrochemical biosensor.

  9. Evaluation of a compound distribution based on weather patterns subsampling for extreme rainfall in Norway

    Science.gov (United States)

    Blanchet, J.; Touati, J.; Lawrence, D.; Garavaglia, F.; Paquet, E.

    2015-06-01

    Simulation methods for design flood analyses require estimates of extreme precipitation for simulating maximum discharges. This article evaluates the MEWP model, a compound model based on weather pattern classification, seasonal splitting and exponential distributions, for its suitability for use in Norway. The MEWP model is the probabilistic rainfall model used in the SCHADEX method for extreme flood estimation. Regional scores of evaluation are used in a split sample framework to compare the MEWP distribution with more general heavy-tailed distributions, in this case the Multi Generalized Pareto Weather Pattern (MGPWP) distribution. The analysis shows the clear benefit obtained from seasonal and weather pattern-based subsampling for extreme value estimation. The MEWP distribution is found to have an overall better performance as compared with the MGPWP, which tends to overfit the data and lacks robustness. Finally, we take advantage of the split sample framework to present evidence for an increase in extreme rainfall in the south-western part of Norway during the period 1979-2009, relative to 1948-1978.

  10. Evaluation of a compound distribution based on weather pattern subsampling for extreme rainfall in Norway

    Science.gov (United States)

    Blanchet, J.; Touati, J.; Lawrence, D.; Garavaglia, F.; Paquet, E.

    2015-12-01

    Simulation methods for design flood analyses require estimates of extreme precipitation for simulating maximum discharges. This article evaluates the multi-exponential weather pattern (MEWP) model, a compound model based on weather pattern classification, seasonal splitting and exponential distributions, for its suitability for use in Norway. The MEWP model is the probabilistic rainfall model used in the SCHADEX method for extreme flood estimation. Regional scores of evaluation are used in a split sample framework to compare the MEWP distribution with more general heavy-tailed distributions, in this case the Multi Generalized Pareto Weather Pattern (MGPWP) distribution. The analysis shows the clear benefit obtained from seasonal and weather pattern-based subsampling for extreme value estimation. The MEWP distribution is found to have an overall better performance as compared with the MGPWP, which tends to overfit the data and lacks robustness. Finally, we take advantage of the split sample framework to present evidence for an increase in extreme rainfall in the southwestern part of Norway during the period 1979-2009, relative to 1948-1978.

  11. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection

    Directory of Open Access Journals (Sweden)

    Fang-Qian Xu

    2015-12-01

    Full Text Available A new wireless and passive surface acoustic wave (SAW-based chemical sensor for organophosphorous compound (OC detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs and three shorted reflectors was fabricated on YZ LiNbO3 piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally.

  12. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves

    Energy Technology Data Exchange (ETDEWEB)

    Lou Zaixiang, E-mail: louzaixiang@126.com [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang Hongxin, E-mail: whx200720082009@yahoo.cn [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Zhu Song; Chen Shangwei; Zhang Ming; Wang Zhouping [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2012-02-24

    The ionic liquids based simultaneous ultrasonic and microwave assisted extraction (IL-UMAE) technique was first proposed and applied to isolate compounds. The ionic liquids comprising a range of four anions, five 1-alkyl-3-methylimidazolium derivatives were designed and prepared. The results suggested that varying the anion and cation both had apparent effects on the extraction of phenolics. The results also showed that irradiation power, time and solid-liquid ratio significantly affected the yields. The yields of caffeic acid and quercetin obtained by IL-UMAE were higher than those by regular UMAE. Compared with conventional heat-reflux extraction (HRE), the proposed approach exhibited higher efficiency (8-17% enhanced) and shorter extraction time (from 5 h to 30 s). The results indicated ILUMAE to be a fast and efficient extraction technique. Moreover, the proposed method was validated by the reproducibility and recovery experiments. The ILUMAE method provided good recoveries (from 96.1% to 105.3%) with RSD lower than 5.2%, which indicated that the proposed method was credible. Based on the designable nature of ionic liquids, and the rapid and highly efficient performance of the proposed approach, ILUMAE provided a new alternative for preparation of various useful substances from solid samples.

  13. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves.

    Science.gov (United States)

    Lou, Zaixiang; Wang, Hongxin; Zhu, Song; Chen, Shangwei; Zhang, Ming; Wang, Zhouping

    2012-02-24

    The ionic liquids based simultaneous ultrasonic and microwave assisted extraction (IL-UMAE) technique was first proposed and applied to isolate compounds. The ionic liquids comprising a range of four anions, five 1-alkyl-3-methylimidazolium derivatives were designed and prepared. The results suggested that varying the anion and cation both had apparent effects on the extraction of phenolics. The results also showed that irradiation power, time and solid-liquid ratio significantly affected the yields. The yields of caffeic acid and quercetin obtained by IL-UMAE were higher than those by regular UMAE. Compared with conventional heat-reflux extraction (HRE), the proposed approach exhibited higher efficiency (8-17% enhanced) and shorter extraction time (from 5h to 30s). The results indicated ILUMAE to be a fast and efficient extraction technique. Moreover, the proposed method was validated by the reproducibility and recovery experiments. The ILUMAE method provided good recoveries (from 96.1% to 105.3%) with RSD lower than 5.2%, which indicated that the proposed method was credible. Based on the designable nature of ionic liquids, and the rapid and highly efficient performance of the proposed approach, ILUMAE provided a new alternative for preparation of various useful substances from solid samples.

  14. Zeolite based microconcentrators for volatile organic compounds sensing at trace-level: fabrication and performance

    Science.gov (United States)

    Almazán, Fernando; Pellejero, Ismael; Morales, Alberto; Urbiztondo, Miguel A.; Sesé, Javier; Pina, M. Pilar; Santamaría, Jesús

    2016-08-01

    A novel 6-step microfabrication process is proposed in this work to prepare microfluidic devices with integrated zeolite layers. In particular, microfabricated preconcentrators designed for volatile organic compounds (VOC) sensing applications are fully described. The main novelty of this work is the integration of the pure siliceous MFI type zeolite (silicalite-1) polycrystalline layer, i.e. 4.0  ±  0.5 μm thick, as active phase, within the microfabrication process just before the anodic bonding step. Following this new procedure, Si microdevices with an excellent distribution of the adsorbent material, integrated resistive heaters and Pyrex caps have been obtained. Firstly, the microconcentrator performance has been assessed by means of the normal hexane breakthrough curves as a function of sampling and desorption flowrates, temperature and micropreconcentrator design. In a step further, the best preconcentrator device has been tested in combination with downstream Si based microcantilevers deployed as VOC detectors. Thus, a preliminar evaluation of the improvement on detection sensitivity by silicalite-1 based microconcentrators is presented.

  15. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds.

    Science.gov (United States)

    Tan, Cai-Ping; Lu, Yi-Ying; Ji, Liang-Nian; Mao, Zong-Wan

    2014-05-01

    Since the discovery of cisplatin more than 40 years ago, enormous research efforts have been dedicated to developing metal-based anticancer agents and to elucidating the mechanisms involved in the action of these compounds. Abnormal metabolism and the evasion of apoptosis are important hallmarks of malignant transformation, and the induction of apoptotic cell death has been considered to be a main pathway by which cytotoxic metal complexes combat cancer. However, many cancers have cellular defects involving the apoptotic machinery, which results in an acquired resistance to apoptotic cell death and therefore reduced chemotherapeutic effectiveness. Over the past decade, it has been revealed that a growing number of cell death pathways induced by metal complexes are not dependent on apoptosis. Metal complexes specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. In this review, we discuss recent examples of metallomics studies on the different types of cell death induced by metal-based anticancer drugs, especially on the three major forms of programmed cell death (PCD) in mammalian cells: apoptosis, autophagy and regulated necrosis, also called necroptosis.

  16. Site-specific acid-base properties of pholcodine and related compounds.

    Science.gov (United States)

    Kovács, Z; Hosztafi, S; Noszál, B

    2006-11-01

    The acid-base properties of pholcodine, a cough-depressant agent, and related compounds including metabolites were studied by 1H NMR-pH titrations, and are characterised in terms of macroscopic and microscopic protonation constants. New N-methylated derivatives were also synthesized in order to quantitate site- and nucleus-specific protonation shifts and to unravel microscopic acid-base equilibria. The piperidine nitrogen was found to be 38 and 400 times more basic than its morpholine counterpart in pholcodine and norpholcodine, respectively. The protonation data show that the molecule of pholcodine bears an average of positive charge of 1.07 at physiological pH, preventing it from entering the central nervous system, a plausible reason for its lack of analgesic or addictive properties. The protonation constants of pholcodine and its derivatives are interpreted by comparing with related molecules of pharmaceutical interest. The pH-dependent relative concentrations of the variously protonated forms of pholcodine and morphine are depicted in distribution diagrams.

  17. Improvement of Bioactive Compound Classification through Integration of Orthogonal Cell-Based Biosensing Methods

    Directory of Open Access Journals (Sweden)

    Goran N. Jovanovic

    2007-01-01

    Full Text Available Lack of specificity for different classes of chemical and biological agents, and false positives and negatives, can limit the range of applications for cell-based biosensors. This study suggests that the integration of results from algal cells (Mesotaenium caldariorum and fish chromatophores (Betta splendens improves classification efficiency and detection reliability. Cells were challenged with paraquat, mercuric chloride, sodium arsenite and clonidine. The two detection systems were independently investigated for classification of the toxin set by performing discriminant analysis. The algal system correctly classified 72% of the bioactive compounds, whereas the fish chromatophore system correctly classified 68%. The combined classification efficiency was 95%. The algal sensor readout is based on fluorescence measurements of changes in the energy producing pathways of photosynthetic cells, whereas the response from fish chromatophores was quantified using optical density. Change in optical density reflects interference with the functioning of cellular signal transduction networks. Thus, algal cells and fish chromatophores respond to the challenge agents through sufficiently different mechanisms of action to be considered orthogonal.

  18. Crystal structures of Two Potential Tumor Imaging Agents and Therapeutic Agents-Copper(II)Ternary Complexes With Salicylidene-tyrosinato Schiff Base and Nitrogen-donor Chelating Lewis Base

    Institute of Scientific and Technical Information of China (English)

    Ming Zhao WANG; Guan Liang CAI; Ling XIA; Jun Jian YAO; Hong Yan CHEN; Zhao Xing MENG; Bo Li LIU

    2004-01-01

    The crystal structures of two potential tumor imaging agents and therapeutic agents -copper(II) complexes with salicylidene-tyrosinato Schiff base and nitrogen-donor chelating Lewis base,[Cu(sal-tyr)(bipy)] 1 and [Cu(sal-tyr)(phen)]·2CH3OH 2, are presented. Our work is helpful to get deep understanding of novel 64Cu tumor imaging agents and therapeutic agents.

  19. ThermoData Engine (TDE) software implementation of the dynamic data evaluation concept. 7. Ternary mixtures.

    Science.gov (United States)

    Diky, Vladimir; Chirico, Robert D; Muzny, Chris D; Kazakov, Andrei F; Kroenlein, Kenneth; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Frenkel, Michael

    2012-01-23

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for ternary chemical systems. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity coefficient models for phase equilibrium properties (vapor-liquid and liquid-liquid equilibrium). Constructed ternary models are based on those for the three pure component and three binary subsystems evaluated on demand through the TDE software algorithms. All models are described in detail, and extensions to the class structure of the program are provided. Reliable evaluation of properties for the binary subsystems is essential for successful property evaluations for ternary systems, and algorithms are described to aid appropriate parameter selection and fitting for the implemented activity coefficient models (NRTL, Wilson, Van Laar, Redlich-Kister, and UNIQUAC). Two activity coefficient models based on group contributions (original UNIFAC and NIST-KT-UNIFAC) are also implemented. Novel features of the user interface are shown, and directions for future enhancements are outlined.

  20. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  1. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  2. Luminescence of Ce doped oxygen crystalline compounds based on Hf and Ba

    CERN Document Server

    Borisevich, A E; Lecoq, P

    2003-01-01

    The luminescence properties of the Ce-doped hafnium and barium compounds have been investigated to determine their potential as heavy scintillation materials. Compounds have been prepared by solid state synthesis. All of them have shown a bright luminescence attributed to trivalent cerium. Emission bands are peaked in the 425-475nm spectral region at room temperature.

  3. Anion effect on the binary and ternary phase diagrams of chiral medetomidine salts and conglomerate crystal formation.

    Science.gov (United States)

    Choobdari, Ebrahim; Fakhraian, Hossein; Peyrovi, Mohammad Hassan

    2014-03-01

    The binary phase diagrams of hydrogen halides salts of medetomidine (Med.HX, X:Br,I) and hydrogen oxalate salt of medetomidine (Med.Ox) were determined based on thermogravimetric/differential thermal analysis (TGA/DTA) and their crystal structure behavior was confirmed by comparison of the X-ray diffractometry and FT-IR spectroscopy of the racemate and pure enantiomer. All hydrogen halide salts presented racemic compound behavior. Heat of fusion of halides salt of (rac)-medetomidine decreased with ionic radius increase. Eutectic points for Med.HCl (previously reported), Med.HBr, and Med.HI rest were unchanged approximately. The solubility of different enantiomeric mixtures of Med.HBr and Med.HI were measured at 10, 20, and 30°C in 2-propanol showing a solubility increase with ionic radius. A binary phase diagram of Med.Ox shows a racemic conglomerate behavior. The solubility of enantiomeric mixtures of Med.Ox were measured at 10, 20, 30, and 40°C. The ternary phase diagram of Med.Ox in ethanol conforms to a conglomerate crystal forming system, favoring its enantiomeric purification by preferential crystallization.

  4. Structural, mechanical and magneto-electronic properties of the ternary sodium palladium and platinum oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq, Saima [Malakand Univ., Chakdara Dir (Pakistan). Center for Computational Materials Science; Malakand Univ., Chakdara Dir (Pakistan). Dept. of Chemistry; Ali, Zahid; Ahmad, Iftikhar; Khan, Imad; Rehman, Gul [Malakand Univ., Chakdara Dir (Pakistan). Center for Computational Materials Science; Malakand Univ., Chakdara Dir (Pakistan). Dept. of Physics; Sadiq, Muhammad; Rehman, Najeeb Ur [Malakand Univ., Chakdara Dir (Pakistan). Dept. of Chemistry

    2015-07-01

    Ternary palladium and platinum oxides NaPd{sub 3}O{sub 4} and NaPt{sub 3}O{sub 4} are studied theoretically using DFT. The calculated structural parameters and geometry are found consistent with the experiments. The mechanical properties analysis show that both compounds are elastically stable; anisotropic and reveal the ductile nature. Electronic cloud explain that the chemical bond between Na and Pd/Pt is ionic, whereas between O and Pd/Pt is covalent. The electronic band structures and densities of states demonstrate that these compounds are metals. The d-state splitting explains the origin of the electronic behaviour of these oxides. The optimised magnetic phase energies and magnetic susceptibility confirm that these oxides are paramagnetic metals.

  5. Peculiarity of component interaction in {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Pavlyuk, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Jan Dlugosz University, Institute of Chemistry, Environmental Protection and Biotechnology, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Tkachuk, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine)

    2011-07-14

    Highlights: > {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems at 770 K are characterized by formation of stannides with general compositions RMn{sub 6}Sn{sub 6} and R{sub 4}Mn{sub 4}Sn{sub 7}. > The crystal structure of YMn{sub 6}Sn{sub 6} was determined by single crystal and powder diffraction methods. > Structural analysis showed that Dy{sub 4}Mn{sub 4}Sn{sub 7} compound is disordered. > Isostructural R{sub 4}Mn{sub 4}Sn{sub 7} compounds were also found with Gd, Tb, Ho, Er, Tm(confirmed), Yb, and Lu. - Abstract: The phase equilibria in the Y-Mn-Sn and Dy-Mn-Sn ternary systems were studied at 770 K by means of X-ray and metallographic analyses in the whole concentration range. Both Y-Mn-Sn and Dy-Mn-Sn systems are characterized by formation of two ternary compounds RMn{sub 6}Sn{sub 6} (MgFe{sub 6}Ge{sub 6}-type, space group P6/mmm) and R{sub 4}Mn{sub 4}Sn{sub 7} (Zr{sub 4}Co{sub 4}Ge{sub 7}-type, space group I4/mmm). The disorder in Dy{sub 4}Mn{sub 4}Sn{sub 7} compound was found by single crystal method. Compounds with the same type of structure were also found with Gd, Tb, Ho, Er, Tm (confirmed), Yb, and Lu and their lattice parameters were determined.

  6. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  7. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    Science.gov (United States)

    Sadia, Yatir; Ohaion-Raz, Tsion; Ben-Yehuda, Ohad; Korngold, Meidad; Gelbstein, Yaniv

    2016-09-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological "valley of death", including among others, transport properties' degradation, due to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410-430 °C range for GeTe rich alloys and to 510-530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter.

  8. CGBVS-DNN: Prediction of Compound-protein Interactions Based on Deep Learning.

    Science.gov (United States)

    Hamanaka, Masatoshi; Taneishi, Kei; Iwata, Hiroaki; Ye, Jun; Pei, Jianguo; Hou, Jinlong; Okuno, Yasushi

    2017-01-01

    Computational prediction of compound-protein interactions (CPIs) is of great importance for drug design as the first step in in-silico screening. We previously proposed chemical genomics-based virtual screening (CGBVS), which predicts CPIs by using a support vector machine (SVM). However, the CGBVS has problems when training using more than a million datasets of CPIs since SVMs require an exponential increase in the calculation time and computer memory. To solve this problem, we propose the CGBVS-DNN, in which we use deep neural networks, a kind of deep learning technique, instead of the SVM. Deep learning does not require learning all input data at once because the network can be trained with small mini-batches. Experimental results show that the CGBVS-DNN outperformed the original CGBVS with a quarter million CPIs. Results of cross-validation show that the accuracy of the CGBVS-DNN reaches up to 98.2 % (σ<0.01) with 4 million CPIs.

  9. Detection of volatile organic compounds released by wood furniture based on a cataluminescence test system.

    Science.gov (United States)

    Miao, Yanfeng; Deng, Fangming; Chen, Yulong; Guan, Huiyuan

    2016-03-01

    Wood furniture is an important source of indoor air pollution. To date, the detection of harmful substances in wood furniture has relied on the control of a single formaldehyde component, therefore the detection and evaluation of pollutants released by wood furniture are necessary. A novel method based on a cataluminescence (CTL) sensor system generated on the surface of nano-3TiO2-2BiVO4 was proposed for the simultaneous detection of pollutants released by wood furniture. Formaldehyde and benzene were selected as a model to investigate the CTL-sensing properties of the sensor system. Field emission scanning electronic microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to characterize the as-prepared samples. The results showed that the as-prepared test system exhibited outstanding CTL properties such as stable intensity, a high signal-to-noise ratio, and short response and recovery times. In addition, the limit of detection for formaldehyde and benzene was below the standard permitted concentrations. Moreover, the sensor system showed outstanding selectivity for formaldehyde and benzene compared with eight other common volatile organic compounds (VOCs). The performance of the sensor system will enable furniture VOC limit emissions standards to be promulgated as soon as possible.

  10. Volatile organic compound gas sensor based on aluminum-doped zinc oxide with nanoparticle.

    Science.gov (United States)

    Choi, Nak-Jin; Lee, Hyung-Kun; Moon, Seung Eon; Yang, Woo Seok; Kim, Jongdae

    2013-08-01

    Thick film semiconductor gas sensors based on aluminum-doped zinc oxide (AZO) with nanoparticle size were fabricated to detect volatile organic compound (VOC) existed in building, especially, formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. The sensing materials for screen printing were prepared using roll milling process with binder. The crystallite sizes of prepared materials were about 15 nm through X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Gas response characteristics were examined for formaldehyde (HCHO), benzene, carbon monoxide, carbon dioxide gas existing in building. In particular, the sensors showed responses to HCHO gas at sub ppm as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repeativity, selectivity, and response time of sensor. The transients were very sharp, taking less than 2 s for 90% response. The sensor has shown very stable response at 350 degrees C and followed a very good behavior and showed 60% response in 50 ppb HCHO concentration at 350 degrees C operating temperatures.

  11. Antibacterial activity of resazurin-based compounds against Neisseria gonorrhoeae in vitro and in vivo.

    Science.gov (United States)

    Schmitt, Deanna M; Connolly, Kristie L; Jerse, Ann E; Detrick, Melinda S; Horzempa, Joseph

    2016-10-01

    Neisseria gonorrhoeae is the cause of the second most common sexually transmitted bacterial infection, with ca. 80 million new cases of gonorrhoea reported annually. The recent emergence of clinical isolates resistant to the last monotherapy against this bacterium, the cephalosporins, illustrates the need for new antigonococcal agents. Here we have characterised a new group of antimicrobials based on the compound resazurin that exhibits robust activity against N. gonorrhoeae in vitro. Resazurin inhibits the growth of a broad range of N. gonorrhoeae isolates, including those resistant to multiple antibiotics. Furthermore, treatment of human endometrial cells infected with N. gonorrhoeae with resazurin significantly reduces the number of intracellular bacteria. Whilst resazurin exhibited potent in vitro antimicrobial activity, in vivo resazurin did not limit the colonisation of mice with N. gonorrhoeae following vaginal infection. The ineffectiveness of resazurin in vivo is likely due to its interaction with serum albumin, which completely diminishes its antimicrobial activity. However, treatment of mice with a resazurin analogue (resorufin pentyl ether) that maintains its antimicrobial activity in the presence of serum albumin approached a significant decrease in the percentage of mice vaginally colonised. This treatment also decreased vaginal colonisation by N. gonorrhoeae over time. Together, these data suggest that resazurin derivatives have potential for the treatment of gonorrhoea.

  12. An electrochemical hydrogen meter for measuring hydrogen in sodium using a ternary electrolyte mixture

    CERN Document Server

    Sridharan, R; Nagaraj, S; Gnanasekaran, T; Periaswami, G

    2003-01-01

    An electrochemical sensor for measuring hydrogen concentration in liquid sodium that is based on a ternary mixture of LiCl, CaCl sub 2 and CaHCl as the electrolyte has been developed. DSC experiments showed the eutectic temperature of this ternary system to be approx 725 K. Impedance spectroscopic analysis of the electrolyte indicated ionic conduction through a molten phase at approx 725 K. Two electrochemical hydrogen sensors were constructed using the ternary electrolyte of composition 70 mol% LiCl:16 mol% CaHCl:14 mol% CaCl sub 2 and tested at 723 K in a mini sodium loop and at hydrogen levels of 60-250 ppb in sodium. The sensors show linear response in this concentration range and are capable of detecting a change of 10 ppb hydrogen in sodium over a background level of 60 ppb. Identification of this electrolyte system and its use in a sensor for measuring hydrogen in sodium are described in this paper.

  13. Mean centering of double divisor ratio spectra, a novel spectrophotometric method for analysis of ternary mixtures

    Science.gov (United States)

    Hassan, Said A.; Elzanfaly, Eman S.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-01-01

    A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.

  14. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Yu, E-mail: buaasyliu@gmail.com [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, Shiyang [Institute of Information Optics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Li, De-Jun [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Guo, Jing; Shen, Yaogen, E-mail: meshen@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  15. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    Science.gov (United States)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  16. Capillary-assisted fabrication of biconcave polymeric microlenses from microfluidic ternary emulsion droplets.

    Science.gov (United States)

    Nisisako, Takasi; Ando, Takuya; Hatsuzawa, Takeshi

    2014-12-29

    In this study, a simple capillary-based approach for producing biconcave polymeric microlenses with uniform size and shape from ternary emulsion droplets is presented. Monodisperse ternary emulsion droplets (0.6-4.0 nL) are produced which contain a photocurable segment of an acrylate monomer and two non-curable segments of silicone oil (SO) by using a microfluidic sheath-flowing droplet generator on a glass chip. The curvature radius of the interfaces separating the droplet segments, as well as the droplet size, and production rate can be flexibly varied by changing the flow conditions of the organic and aqueous phases. Subsequently, off-chip suspension photopolymerization yields non-spherical polymeric microparticles with two spherical concave surfaces templated by two SO segments at random positions. By ultraviolet light irradiation of ternary droplets with two SO segments trapped by the interior wall of a cylindrical microcapillary (internal diameter: 130 μm), biconcave microlenses can be produced with two spherical concave surfaces with a common lens axis. The produced lenses are suitable for use as optical diverging lenses.

  17. A study of the formation constants of ternary and quaternary complexes of some bivalent transition metals

    Directory of Open Access Journals (Sweden)

    MADHURJYA NEOG

    2010-01-01

    Full Text Available The formation of hetero-ligand 1:1:1, M(II-Opda-Sal/Gly ternary and 1:1:1:1, M(II-Opda-Sal-Gly quaternary complexes, where M(II = Ni, Cu, Zn and Cd; Opda = o‑phenylenediamine, Sal = salicylic acid, Gly = glycine, was studied pH-metrically in aqueous medium. The formation constants for the resulting ternary and quaternary complexes were evaluated at a constant ionic strength, μ = 0.20 mol dm-3 and temperature, 30±0.1 °C. The order of the formation constants in terms of the metal ion for both type of complexes was found to be Cu(II > Ni(II > Zn(II > Cd(II. This order was explained based on the increasing number of fused rings, the coordination number of the metal ions, the Irving – William order and the stability of various species. The expected species formed in solution were pruned with the Fortran IV program SPEPLOT and the stability of the ternary and quaternary complexes is explained.

  18. Delay Insensitive Ternary CMOS Logic for Secure Hardware

    Directory of Open Access Journals (Sweden)

    Ravi S. P. Nair

    2015-09-01

    Full Text Available As digital circuit design continues to evolve due to progress of semiconductor processes well into the sub 100 nm range, clocked architectures face limitations in a number of cases where clockless asynchronous architectures generate less noise and produce less electro-magnetic interference (EMI. This paper develops the Delay-Insensitive Ternary Logic (DITL asynchronous design paradigm that combines design aspects of similar dual-rail asynchronous paradigms and Boolean logic to create a single wire per bit, three voltage signaling and logic scheme. DITL is compared with other delay insensitive paradigms, such as Pre-Charge Half-Buffers (PCHB and NULL Convention Logic (NCL on which it is based. An application of DITL is discussed in designing secure digital circuits resistant to side channel attacks based on measurement of timing, power, and EMI signatures. A Secure DITL Adder circuit is designed at the transistor level, and several variance parameters are measured to validate the efficiency of DITL in resisting side channel attacks. The DITL design methodology is then applied to design a secure 8051 ALU.

  19. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target.

    Science.gov (United States)

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M Michael; Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A Mary; Velmurugan, D; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-11-26

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.

  20. Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: jian.wang@polymtl.ca [Center for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, Montréal, Québec H3C 3A7 (Canada); Zhang, Yi-Nan [Department of Mechanical Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada); Hudon, Pierre; Jung, In-Ho [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5 (Canada); Medraj, Mamoun [Department of Mechanical Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada); Department of Mechanical and Materials Engineering, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi (United Arab Emirates); Chartrand, Patrice [Center for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, Montréal, Québec H3C 3A7 (Canada)

    2015-08-05

    Highlights: • The phase equilibria of Mg–Zn–Ag system at 300 °C were determined. • A bcc continuous ternary solid solution forms between MgAg (bcc-B2) and AgZn (bcc-A2) was determined. • The extended solid solubilities of the sub-binary compounds were also determined. - Abstract: The phase equilibria in the Mg–Zn–Ag ternary system at 300 °C were investigated using three diffusion couples and 35 key samples. Scanning electron microscopy (SEM) equipped with energy-dispersive spectroscope (EDS) and X-ray diffraction (XRD) techniques were used for homogeneity ranges and crystal structure determination. Large solid solubility limits, due to substitution among Mg, Zn and Ag atoms in Mg{sub 3}Ag and MgZn{sub 2} phases, were observed in the present work. Solid solubility limits of Ag and Zn in the hcp (Mg) phase were found to be less than 1 at.%. The extended solid solubilities of the Mg{sub 12}Zn{sub 13}, Mg{sub 2}Zn{sub 3}, MgZn{sub 2} (C14), Mg{sub 2}Zn{sub 11}, Ag{sub 5}Zn{sub 8} and hcp (AgZn{sub 3}) sub-binary compounds were also determined in the Mg–Zn–Ag ternary system. In addition, a bcc continuous ternary solid solution forms between MgAg (bcc-B2) and AgZn (bcc-A2) at 300 °C.