WorldWideScience

Sample records for based ternary compounds

  1. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  2. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds

    Science.gov (United States)

    Barua, Radhika; Jiménez-Villacorta, Félix; Lewis, L. H.

    2014-05-01

    In this work, we demonstrate that the magnetocaloric response of FeRh-based compounds may be tailored for potential magnetic refrigeration applications by chemical modification of the FeRh lattice. Alloys of composition Fe(Rh1-xAx) or (Fe1-xBx)Rh (A = Cu, Pd; B = Ni; 0 FeRh-based systems were determined using isothermal M(H) curves measured in the vicinity of the magnetostructural temperature (Tt). It is found that the FeRh working temperature range (δTFWHM) may be chemically tuned over a wide temperature range, 100 K ≤ T ≤ 400 K. While elemental substitution consistently decreases the magnetic entropy change (ΔSmag) of the FeRh-based ternary alloys from that of the parent FeRh compound (ΔSmag,FeRh ˜ 17 J/kg K; ΔSmag,FeRh-ternary = 7-14 J/kg K at Happ = 2 T), the net refrigeration capacity (RC), defined as the amount of heat that can be transferred during one magnetic refrigeration cycle, of the modified systems is significantly higher (RCFeRh ˜ 150 J/kg; RCFeRh-ternary = 170-210 J/kg at Happ = 2 T). These results are attributed to stoichiometry-induced changes in the FeRh electronic band structure and beneficial broadening of the magnetostructural transition due to local chemical disorder.

  3. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barua, Radhika, E-mail: barua.r@husky.neu.edu; Jiménez-Villacorta, Félix; Lewis, L. H. [Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07

    In this work, we demonstrate that the magnetocaloric response of FeRh-based compounds may be tailored for potential magnetic refrigeration applications by chemical modification of the FeRh lattice. Alloys of composition Fe(Rh{sub 1−x}A{sub x}) or (Fe{sub 1−x}B{sub x})Rh (A = Cu, Pd; B = Ni; 0 < x < 0.06) were synthesized via arc-melting and subsequent annealing in vacuum at 1000 °C for 48 h. The magnetocaloric properties of the FeRh-based systems were determined using isothermal M(H) curves measured in the vicinity of the magnetostructural temperature (T{sub t}). It is found that the FeRh working temperature range (δT{sub FWHM}) may be chemically tuned over a wide temperature range, 100 K ≤ T ≤ 400 K. While elemental substitution consistently decreases the magnetic entropy change (ΔS{sub mag}) of the FeRh-based ternary alloys from that of the parent FeRh compound (ΔS{sub mag},{sub FeRh} ∼ 17 J/kg K; ΔS{sub mag,FeRh-ternary =} 7–14 J/kg K at H{sub app} = 2 T), the net refrigeration capacity (RC), defined as the amount of heat that can be transferred during one magnetic refrigeration cycle, of the modified systems is significantly higher (RC{sub FeRh} ∼ 150 J/kg; RC{sub FeRh-ternary =} 170–210 J/kg at H{sub app} = 2 T). These results are attributed to stoichiometry-induced changes in the FeRh electronic band structure and beneficial broadening of the magnetostructural transition due to local chemical disorder.

  4. Ferromagnetic quantum criticality in the uranium-based ternary compounds URhSi, URhAl, and UCoAl

    International Nuclear Information System (INIS)

    In this thesis we explore the ferromagnetic quantum criticality in three uranium-based ternary compounds, by means of thermodynamical and transport measurements on single crystal samples, at low temperature and high pressure. URhSi and URhAl are itinerant ferromagnets, while UCoAl is a paramagnet being close to a ferromagnetic instability. All of them have Ising-type magnetic ordering. In the orthorhombic compound URhSi, we show that the Curie temperature decreases upon applying a magnetic field perpendicular to the easy magnetization axis, and a quantum phase transition is expected around 40 T. In the hexagonal system URhAl, we establish the pressure-temperature phase diagram for the first time, indicating a quantum phase transition around 5 GPa. In the isostructural compound UCoAl, we investigate the metamagnetic transition with measurements of magnetization, Hall effect, resistivity and X-ray magnetic circular dichroism. Some intriguing magnetic relaxation phenomena are observed, with step-like features. Hall effect and resistivity have been measured at dilution temperatures, under hydrostatic pressure up to 2.2 GPa and magnetic field up to 16 T. The metamagnetic transition terminates under pressure and magnetic field at a quantum critical endpoint. In this region, a strong effective mass enhancement occurs, and an intriguing difference between up and down field sweeps appears in transverse resistivity. This may be the signature of a new phase, supposedly linked to the relaxation phenomena observed in magnetic measurements, arising from frustration on the quasi-Kagome lattice of uranium atoms in this crystal structure. (author)

  5. Regularities of Formation of Ternary Intermetallic Compound between Transition Elements

    Institute of Scientific and Technical Information of China (English)

    Lixiu YAO; Jie YANG; Chenzhou YE; Nianyi CHEN

    2001-01-01

    Four parameters, φ (electronegativity), nws1/3 (valence electron density in Wagner-Seitz cell),R (Pauling's metallic radius) and Z (number of valence electrons in atom), and the pattern recognition methods were used to investigate the regularities of formation of ternary intermetallic compounds between three transition elements. The obtained mathematical model expressed by some inequalities can be used as a criterion of ternary compound formation in "unknown" phase diagrams of alloy systems.

  6. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.;

    2012-01-01

    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  7. A comparison between HfO2/Al2O3 nano-laminates and ternary HfxAlyO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors

    Science.gov (United States)

    Krylov, Igor; Pokroy, Boaz; Eizenberg, Moshe; Ritter, Dan

    2016-09-01

    We compare the electrical properties of HfO2/Al2O3 nano-laminates with those of the ternary HfxAlyO compound in metal oxide semiconductor (MOS) capacitors. The dielectrics were deposited by atomic layer deposition on InGaAs. Water, ozone, and oxygen plasma were tested as oxygen precursors, and best results were obtained using water. The total dielectric thickness was kept constant in our experiments. It was found that the effective dielectric constant increased and the leakage current decreased with the number of periods. Best results were obtained for the ternary compound. The effect of the sublayer thicknesses on the electrical properties of the interface was carefully investigated, as well as the role of post-metallization annealing. Possible explanations for the observed trends are provided. We conclude that the ternary HfxAlyO compound is more favorable than the nano-laminates approach for InGaAs based MOS transistor applications.

  8. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  9. The study of ternary compound CuGaTe2

    International Nuclear Information System (INIS)

    By the two-temperature method large unit crystals of ternary compound CuGaTe2 were synthesized. The crystals were used to study specific electric conductivity and the Hall effect, heat conductivity, thermal expansion and optical transmission. The values of hole concentrations and their mobility, heat conductivity, thermal expansion factor and energy were determined

  10. Evaluation of Ternary Mobile Phases for the Analysis of Carbonyl Compound Derivatives Using High-Performance Liquid Chromatography

    OpenAIRE

    Duy Xuan Ho; Ki-Hyun Kim

    2011-01-01

    In this study, the feasibility of ternary mobile phases was examined in a high-performance liquid chromatography (HPLC)-based analysis of carbonyl compounds (CCs). To test the performance of different ternary phases, the liquid phase standards containing a 15 aldehyde/ketone-DNPH(o) mix were analyzed through a series of five-point calibration experiments. For this comparison, three types of ternary mobile phases were prepared initially by mixing water (W) with two of the following three organ...

  11. Hardness and Microstructure of Binary and Ternary Nitinol Compounds

    Science.gov (United States)

    Stanford, Malcolm K.

    2016-01-01

    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  12. Thermoelectric materials: ternary penta telluride and selenide compounds

    Science.gov (United States)

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  13. Thermoelectric materials ternary penta telluride and selenide compounds

    Science.gov (United States)

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  14. Topological Insulators in Ternary Compounds with a Honeycomb Lattice

    OpenAIRE

    Zhang, Hai-Jun; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Qi, Xiao-Liang; Kübler, Jürgen; Zhang, Shou-Cheng; FELSER, CLAUDIA

    2010-01-01

    One of the most exciting subjects in solid state physics is a single layer of graphite which exhibits a variety of unconventional novel properties. The key feature of its electronic structure are linear dispersive bands which cross in a single point at the Fermi energy. This so-called Dirac cone is closely related to the surface states of the recently discovered topological insulators. The ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers f...

  15. A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model

    Science.gov (United States)

    Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid

    2016-07-01

    A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.

  16. Decision tree method applied to computerized prediction of ternary intermetallic compounds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Decision tree method and atomic parameters were used to find the regularities of the formation of ternary intermetallic compounds in alloy systems. The criteria of formation can be expressed by a group of inequalities with two kinds of atomic parameters Zl (number of valence electrons in the atom of constituent element) and Ri/Rj (ratio of the atomic radius of constituent element i and j) as independent variables. The data of 2238 known ternary alloy systems were used to extract the empirical rules governing the formation of ternary intermetallic compounds, and the facts of ternary compound formation of other 1334 alloy systems were used as samples to test the reliability of the empirical criteria found. The rate of correctness of prediction was found to be nearly 95%. An expert system for ternary intermetallic compound formation was built and some prediction results of the expert system were confirmed.

  17. Regularities of Formation of Ternary Intermetallic Compounds between One Transition Element and Two Non-transition Elements

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The pattern recognition methods and a four-parameter model, based on extension of Miedema's cellular model of alloy phases, are used to study the regularities of formation of ternary compounds between one transition element (T) and two non-transition elements (N, N') (T-N-N'system). The influences of φ (electronegativity), 1/3(nws (valence electron density in Wagner-Seitz cell), R(Pauling's metallic radii) and Z (number of valence electrons in atom) on the formation of the ternary intermetallic compounds were investigated.

  18. Synthesis of Be–Ti–V ternary beryllium intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp; Nakamichi, Masaru

    2015-08-15

    Highlights: • Preliminary synthesis of ternary Be–Ti–V beryllides was investigated. • An area fraction of Be phase increased with increase of V amount in the beryllide because of increasing melting temperature. • The increase of Be phase fraction resulted in increase of weight gain as well as H{sub 2} generation. • The beryllides with lower V contents indicated to better phase stability at high temperature. - Abstract: Beryllium intermetallic compounds (beryllides) such as Be{sub 12}Ti and Be{sub 12}V are the most promising advanced neutron multipliers in demonstration power reactors. Advanced neutron multipliers are being developed by Japan and the EU as part of their Broader Approach activities. It has been previously shown, however, that beryllides are too brittle to fabricate into pebble- or rod-like shapes using conventional methods such as arc melting and hot isostatic pressing. To overcome this issue, we developed a new combined plasma sintering and rotating electrode method for the fabrication of beryllide rods and pebbles. Previously, we prepared a beryllide pebble with a Be–7.7 at.% Ti composition as the stoichiometric value of the Be{sub 12}Ti phase; however, Be{sub 17}Ti{sub 2} and Be phases were present along with the Be{sub 12}Ti phase that formed as the result of a peritectic reaction due to re-melting during granulation using the rotating electrode method. This Be phase was found to be highly reactive with oxygen and water vapor. Accordingly, to investigate the Be phase reduction and applicability for fabrication of electrodes prior to granulation using the rotating electrode method, Be–Ti–V ternary beryllides were synthesized using the plasma sintering method. Surface observation results indicated that increasing plasma sintering time and V addition led to an increase in the intermetallic compound phases compared with plasma-sintered beryllide with a Be–7.7 at.% Ti composition. Additionally, evaluation of the reactivity of

  19. Ternary atom site location in L12-structured intermetallic compounds

    International Nuclear Information System (INIS)

    Ternary sublattice site occupancy in two L12-structured intermetallic compounds were evaluated by a transmission electron microscope technique called ALCHEMI, or atom site location by channeling enhanced microanalysis, and by x-ray diffractometry, through measuring the relative integrated intensity of fundamental and superlattice x-ray diffraction peaks. The x-ray diffractometry showed that in nickel-rich Ni3Al+Hf hafnium was found to occupy preferentially the aluminum sublattice, and in a multiphase alloy an L12-structured phase with the composition Al74.2Ti19Ni6.8 nickel atoms showed a strong preference for the titanium sublattice. The ALCHEMI data broadly agreed with the x-ray results for Ni3Al but gave completely the opposite result, i.e., a preference of nickel for the titanium sublattice, for Al3Ti. The methods of ALCHEMI and x-ray diffractometry are compared, and it is concluded that ALCHEMI data may be easily convoluted by peak overlap and delocalization effects

  20. Mössbauer and magnetic studies of the ternary compound FeIn2Se4

    International Nuclear Information System (INIS)

    Single crystals of the ternary compound FeIn2Se4 are grown by directional crystallization of the melt. The composition and structure of the single crystals are determined. The local states of iron ions in this compound are studied by nuclear γ-resonance spectroscopy in transmission configuration. The temperature and field dependences of a specific magnetic moment for the ternary compound FeIn2Se4 are measured in the temperature range 4–310 K in magnetic fields of 0–140 kOe. The reasons and mechanisms for magnetic state formation in single crystals of the obtained compound are discussed.

  1. Evaluation of ternary mobile phases for the analysis of carbonyl compound derivatives using high-performance liquid chromatography.

    Science.gov (United States)

    Ho, Duy Xuan; Kim, Ki-Hyun

    2011-01-01

    In this study, the feasibility of ternary mobile phases was examined in a high-performance liquid chromatography (HPLC)-based analysis of carbonyl compounds (CCs). To test the performance of different ternary phases, the liquid phase standards containing a 15 aldehyde/ketone-DNPH(o) mix were analyzed through a series of five-point calibration experiments. For this comparison, three types of ternary mobile phases were prepared initially by mixing water (W) with two of the following three organic solvents: isopropanol (I), methanol (M), and tetrahydrofuran (T). The resulting three types of ternary phases (named as WIM, WTM, and WIT) were tested and evaluated in relation to the water content or in terms of methanol-to-water ratio (M/W). The results derived by the three ternary phases revealed that the optimal resolution was attained near maximum water content, while those of WIT consistently suffered from poor resolution problems. The relative performances of WIM and WTM phases, if assessed by three key operating parameters (sensitivity, retention time, and resolution), were found to be reliable for most selected CCs with the decreasing M/W ratio. PMID:21218260

  2. Evaluation of Ternary Mobile Phases for the Analysis of Carbonyl Compound Derivatives Using High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Duy Xuan Ho

    2011-01-01

    Full Text Available In this study, the feasibility of ternary mobile phases was examined in a high-performance liquid chromatography (HPLC-based analysis of carbonyl compounds (CCs. To test the performance of different ternary phases, the liquid phase standards containing a 15 aldehyde/ketone-DNPH(o mix were analyzed through a series of five-point calibration experiments. For this comparison, three types of ternary mobile phases were prepared initially by mixing water (W with two of the following three organic solvents: isopropanol (I, methanol (M, and tetrahydrofuran (T. The resulting three types of ternary phases (named as WIM, WTM, and WIT were tested and evaluated in relation to the water content or in terms of methanol-to-water ratio (M/W. The results derived by the three ternary phases revealed that the optimal resolution was attained near maximum water content, while those of WIT consistently suffered from poor resolution problems. The relative performances of WIM and WTM phases, if assessed by three key operating parameters (sensitivity, retention time, and resolution, were found to be reliable for most selected CCs with the decreasing M/W ratio.

  3. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John

    2016-09-22

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ³11 wt% and ³80 g/L that can deliver hydrogen and be recharged at moderate temperatures (£100 °C) and pressures (£100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement. For the first approach, possible pairs of ternary borides and mixed-metal borohydrides based on Mg with various first row transition metals were investigated both experimentally and theoretically. In particular, the Mg/Mn ternary boride and mixed-metal borohydride were found to be a suitable pair and

  4. Thermal conductivity of A1B3C26 ternary compounds and their solid solutions

    International Nuclear Information System (INIS)

    Thermal conductivity of ternary compounds A1B3C26 and solid solutions CuGaxIn1-xS2, CuGaxIn1-xSe2, CuInS2xSe2(1-x), was studied by the absolute and relative methods in the temperature range of 300-550 K. Interrelation between thermal conductivity and tetragonal distortion of the ternary compounds A1B3C26 was established. It is shown that concentrational dependence of thermal conductivity for the solid solutions has the minimum near equimolar compositions

  5. Magnetic and Electrical Properties of Several Equiatomic Ternary U-Compounds

    NARCIS (Netherlands)

    Palstra, T.T.M.; Nieuwenhuys, G.J.; Vlastuin, R.F.M.; Berg, J. van den; Mydosh, J.A.; Buschow, K.H.J.

    1987-01-01

    Magnetisation, specific heat, electrical resistivity, magnetoresistivity and Hall effect were measured for several equiatomic ternary (1-1-1) intermetallic compounds of formula RTX with R = U, Th, Hf and Ti, T a transition metal (Co, Ni, Ru, Rh, Pd, Ir, Pt and Au), and X = Al, Ga, Sn and Sb. These c

  6. Growth and properties of CuIn5Se8 ternary compound thin films

    International Nuclear Information System (INIS)

    Data on preparation of CuIn5Se8 ternary compound thin films by PLD and investigation of their optical properties have been presented in the work. CuIn5Se8 single crystals grown by a directional crystallization of the melt in evacuated quartz ampoules from elemental components have been used as targets. (authors)

  7. An analysis of migration paths of Li+ cations in ternary oxygen-containing compounds LipXqOr

    International Nuclear Information System (INIS)

    A new method was developed for studying voids and channels in crystal structures based on the Voronoi-Dirichlet partition of crystal space, and 822 structurally characterized ternary compounds LipXqOr were analyzed for the first time. For these compounds, the dimensionality was determined and the migration patterns of channel systems capable of providing lithium-ion transport were constructed. The calculated coordinates of lithium atoms in the centers of the voids are consistent (within 0.4 A) with the known structural data. Among these compounds, 113 compounds have infinite channel systems, 60 compounds (18 structural types, STs) have been described earlier in the literature as solid electrolytes, and 53 compounds (23 STs) can be considered as potential one-, two-, or three-dimensional ionic conductors (13, 3, and 7 STs, respectively).

  8. Rietveld Refinement of New Ternary Compound Al14Dy5Si

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new ternary compound Al14Dy5Si was discovered and studied by means of X-ray powder diffraction technique. The ternary compound Al14Dy5Si has a hexagonal BaPb3-type structure, space group R3m(No.166), the lattice parameters a=0.61482(1) nm, c=2.09780(2) nm. The crystal structure of the compound Al14Dy5Si was successfully refined by using Rietveld method from X-ray diffraction data. The R-factors of Rietveld refinement are Rp=0.091 and Rwp=0.120, respectively. The thermal dependence of the magnetization (M-T curves) for the compound was measured by a vibrating sample magnetometer. The experimentally determined magnetic effective paramagnetic moment is μeff=23.22 μB per formula unit (10.36 μB per Dy atom).

  9. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  10. Structure and properties of intermetallic ternary rare earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Casper, Frederick

    2008-12-17

    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  11. Origins of bandgap bowing in compound-semiconductor common-cation ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tit, Nacir; Obaidat, Ihab M [Department of Physics, UAE University, PO Box 17551, Al-Ain (United Arab Emirates); Alawadhi, Hussain [Department of Applied Physics, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates)], E-mail: ntit@uaeu.ac.ae

    2009-02-18

    We present an investigation into the existence and origins of bandgap bowing in compound-semiconductor common-cation ternary alloys. As examples, we consider CdSe{sub x}Te{sub 1-x} and ZnSe{sub 1-x}Te{sub x} alloys. A calculation, based on the sp{sup 3}s* tight-binding method including spin-orbit coupling within the framework of the virtual crystal approximation, is employed to determine the bandgap energy, local density of states and atomic charge states versus composition and valence-band offset. The results show that (i) in the valence band, the top states are mainly contributed by Te atoms. The degree of ionicity of all atoms is found to vary linearly with mole fraction x. (ii) There is a strong competition between the anions (Se and Te) in trapping/losing charges and this competition is the main reason for the bandgap bowing character. (iii) There is a reasonable agreement between the calculated results and the available photoluminescence data. (iv) The bowing parameter is found to increase with increasing valence-band offset and increasing lattice mismatch.

  12. Moessbauer and magnetic studies of the ternary compound FeIn{sub 2}Se{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I. V., E-mail: chemzav@bsuir.by; Pauliukavets, S. A. [Belarussian State University of Informatics and Radioelectronics (Belarus); Trukhanov, S. V. [National Academy of Sciences of Belarus, Scientific-Practical Materials Research Center (Belarus); Fedotova, Yu. A. [Belarus State University (Belarus)

    2012-05-15

    Single crystals of the ternary compound FeIn{sub 2}Se{sub 4} are grown by directional crystallization of the melt. The composition and structure of the single crystals are determined. The local states of iron ions in this compound are studied by nuclear {gamma}-resonance spectroscopy in transmission configuration. The temperature and field dependences of a specific magnetic moment for the ternary compound FeIn{sub 2}Se{sub 4} are measured in the temperature range 4-310 K in magnetic fields of 0-140 kOe. The reasons and mechanisms for magnetic state formation in single crystals of the obtained compound are discussed.

  13. Crystal structure and Rietveld refinement of the new ternary compound Al14Nd5Si

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The new ternary compound Al14Nd5Si has been studied by means of the X-ray powder diffraction technique and the Rietveld method.The ternary compound Al14NdsSi has a hexagonal Ni3Sn-type structure with space group P63/mmc (No.194),the lattice parameters are a=0.64470 (2) nm and c = 0.45926 (1) nm.The Smith and Snyder figure of merit for the index,FN,is F30 = 97.8 (30).The X-ray diffraction data indicated that the crystal structure of the compound Al14Nd5Si has been successfully refined by the Rietveld method.The R-factors of Rietreid refinement are Rp = 0.088 and Rwp = 0.120,respectively.The thermal dependence of magnetization for the compound was measured by a vibrating sample magnetometer.The experimentally determined magnetic effective paramagnetic moment is μeff=3.60 μB per Nd atom.The paramagnetic Currie temperature θp = -33.7 K was also obtained from the Currie-Weiss law.

  14. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  15. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  16. Thermodynamic description of the ternary compounds in the Cu-In-Se system

    Institute of Scientific and Technical Information of China (English)

    SHEN Jianyun; W.K. Kim; SHANG Shunli; CHU Maoyou; CAO Song; T.J. Anderson

    2006-01-01

    A set of thermodynamic descriptions of the ternary compounds (mainly α-CuInSe2, δ-CuInSe2, CuIn3Se5 and CuIn5Se8) in the Cu-In-Se system was established by adopting sub-lattice model. The model parameters are carefully evaluated by integrating the experimental data of thermodynamic properties, phase equilibrium and theoretical calculation of formation energies of different point defects. The evaluated Gibbs energies of the compounds reasonably agree with that estimated from EMF experiment and ab initio calculation. The calculated phase relationships in the Cu-In-Se system are in accord with the experimental phase diagrams. The obtained standard enthalpy of formation of CuInSe2 is close to that reported in the literatures.

  17. Phase evolution and correlation between tolerance factor and electromechanical properties in BNT-based ternary perovskite compounds with calculated end-member Bi(Me0.5Ti0.5)O3 (Me = Zn, Mg, Ni, Co).

    Science.gov (United States)

    Bai, Wangfeng; Shen, Bo; Zhai, Jiwei; Liu, Feng; Li, Peng; Liu, Baihui; Zhang, Yang

    2016-09-28

    In this work, the structure of end-member Bi(Me0.5Ti0.5)O3 (Me = Zn, Ni, Mg, Co) was calculated through a first-principles method and lead-free piezoelectric ternary systems (0.94 -x)(Bi0.5Na0.5)TiO3-0.06BaTiO3-xBi(Me0.5Ti0.5)O3 (Me = Zn, Ni, Mg, Co) (BNT-BT-Bi(Me0.5Ti0.5)O3) were designed to achieve a large strain response for actuator applications. Composition-driven phase transition characteristics and the resulting associated piezoelectric and electromechanical properties were systematically investigated, and schematic phase diagrams were constructed. XRD measurements, Raman spectra analysis and temperature-dependent polarization and strain hysteresis loops indicate that Bi(Me0.5Ti0.5)O3 substitution induces a phase transformation from a ferroelectric rhombohedral to an ergodic relaxor pseudo-cubic phase, accounting for the large strain response (>0.3%) with a high normalized strain Smax/Emax (≥550 pm V(-1)) at around the corresponding critical composition in the vicinity of room temperature. In addition, correlations between the tolerance factor t of the added end-member, the calculated tetragonality and the morphotropic phase boundary (MPB) composition were sought. In comparison to other reported BNT-based systems, there is a noticeable correlation between the MPB composition and the calculated tetragonality of the end-member Bi(Me0.5Ti0.5)O3, and the t value corresponding to the formation of the MPB composition is approximately 0.981 in the present ternary system with low tolerance factor end-members. As a result, we believe that the general correlations and design principles obtained from the present comprehensive research will be effective to predict the approximate MPB region quickly in BNT-based ceramics with an excellent actuating performance. PMID:27530079

  18. Study of crystal structure of ternary compounds CuIn3Se5 and CuIn5Se8

    International Nuclear Information System (INIS)

    The structures of monocrystals of CuIn3Se5 and CuIn5Se8 ternary compounds have been studied by X-ray diffraction for the first time. The lattice parameters of CuIn3Se5 and CuIn5Se8 crystals are determined. It is established that CuIn3Se5 has a thiogallate lattice with c = 2a, which leads to the domain structure formation. CuIn5Se8 has a hexagonal lattice and exhibits cleavage along the (001) plane. The interrelation between the atomic composition and crystal structure of these new ternary semiconductor compounds is discussed

  19. Thermal expansion of ternary semiconductor compounds AgB3C26

    International Nuclear Information System (INIS)

    Temperature dependences of elementary cell parameters, molar volume, main and mean coefficients of thermal expansion for crystals are determined, melting temperatures are improved characteristic Debay temperatures and some thermodynamic properties of AgGaSr, AgInS2, AgGaSe2, AgInSe2, AgGaTe2, AgInTe2 compounds are calculated, effect of anion (S-Se-Te) and cation substitutions on the change of these parameters is considered, using X-ray diffraction technique. It is shown, that within 80-650 K temperature range for AgB3C26 (B-Ga, In; C-S, Se, Te) with chalcopyrite tetragonal structure the thermal expansion coefficients along the direction, parallel to tetragonal axis, are negative, while along the perpendicular direction-positive ones. With temperature increase both main coefficients of expansion increase by absolute value, coefficients, characterizing thermal expansion anisotropy, grorespectively. AgGaSe2 compound has the largest anisotropy of thermal expansion, while AgInTe2 compound has the smalest anisotropy of thermal expansion, while AgInTe2 compound has the smalest anisotropy among the considered group of A1B3C26 ternary compounds

  20. Infrared target recognition based on improved joint local ternary pattern

    Science.gov (United States)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  1. Electronic and total energy properties of ternary and quaternary semiconductor compounds, alloys and superlattices

    Science.gov (United States)

    Lambrecht, Walter R. L.

    1992-01-01

    This proposal was mainly concerned with the theoretical study of semiconductor compounds, alloys, and superlattices of interest for photovoltaic applications. In the last year (1991) a study was devoted to metal/graphite bonding in relation to use of graphite fiber reinforcement of Cu for high thermal conductivity applications. The main research topics addressed during the full period of the grant are briefly described: studies of the In-Ga-As ternary system; band-offsets at common anion and InAs/GaSb/AlSb heterojunctions; alloy theory (cluster variation method); and Cu/graphite bonding. Most of the work was described more extensively in previous yearly reports and renewal applications and in publications. The last topic is described more fully in a separate report attached. A list of publications resulting directly from this grant or from other grants but related to this work and of conference presentations is given at the end.

  2. DESIGN OF TERNARY COUNTER BASED ON ADIABATIC DOMINO CIRCUIT

    Institute of Scientific and Technical Information of China (English)

    Yang Qiankun; Wang Pengjun; Zheng Xuesong

    2013-01-01

    By researching the ternary counter and low power circuit design method,a novel design of low power ternary Domino counter on switch-level is proposed.Firstly,the switch-level structure expression of ternary loop operation circuit with enable pin is derived according to the switch-signal theory,and the one bit ternary counter is obtained combining the ternary adiabatic Domino literal operation circuit and buffer.Then the switch-level structure expression of enable signal circuit is derived,and the four bits ternary counter is obtained by cascade connection.Finally,the circuit is simulated by Spice tool and the output waveforms transform in proper order indicating that the logic function is correct.The energy consumption of the four bits ternary adiabatic Domino counter is 63% less than the conventional Domino counterpart.

  3. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  4. Electron paramagnetic resonance study of ternary CuII compounds with glycine and phenanthroline

    Indian Academy of Sciences (India)

    Ricardo C Santana; Anderson B C Araújo; Jesiel F Carvalho; Rafael Calvo

    2014-01-01

    We report here electron paramagnetic resonance (EPR) measurements at 9 and 34 GHz, and room temperature (), in powder and single crystal samples of the ternary compounds of copper nitrate or copper chloride with glycine and 1,10-phenanthroline [Cu(Gly)(phen)(H2O)]·NO3·1.5H2O (1) and [Cu(Gly)(phen)Cl]2·7H2O (2). In compound 1, the copper ions are arranged in 1-D chains along one of the crystal axes connected by syn-anti carboxylate ligands, while in 2 the array is nearly 3-D and the connections involve -bonds and stacking interactions. The angular variation of the squared g-factor and the line width were measured as a function of orientation of the magnetic field (0) in three orthogonal crystal planes. In both compounds we observed one resonance without hyperfine structure for any magnetic field orientation which we attribute to the collapse of the hyperfine coupling and of the resonances of two chemically identical but rotated coppers in the unit cell, produced by exchange interactions. We analyse the results in terms of the structures of the compounds and chemical paths connecting neighbour copper ions which support the exchange interactions between neighbour spins in the lattice. Considering the collapse of the EPR signals of rotated sites in the lattices we are able to set lower limits to the exchange interactions, which are supported by weak equatorial-apical carboxylate bridges in 1, and by paths containing hydrogen bonds and aromatic - interactions in 2. Broadening due to dipole-dipole couplings and hyperfine interactions are strongly reduced by these exchange couplings and their role in the EPR line width is more difficult to recognize.

  5. Study on the oscillatory behaviour of the lattice parameter in ternary iron-nitrogen compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gil Rebaza, A.V.; Desimoni, J. [Departamento de Fisica, Facultad de Ciencias Exactas, UNLP, CC No 67, 1900 La Plata (Argentina); Peltzer y Blanca, E.L., E-mail: eitelpyb@ing.unlp.edu.ar [Grupo de Estudio de Materiales y Dispositivos Electronicos (GEMyDE), Facultad de Ingenieria, UNLP, IFLYSIB-CONICET, CC No. 565, 1900 La Plata (Argentina)

    2012-08-15

    The structural properties of the XFe{sub 3}N (X=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) cubic ternary iron based nitrides as well as the preferential occupation site of X in the structure were studied using Full Potential Linearized Augmented Plane Wave method, within the Density Functional Theory formalism, Wien2k code, the exchange-correlation potential described with the Perdew-Burke-Ernzerhof expression, based in the Local Spin Density Approximation and Generalized Gradient Approximation. According the calculations, the Sc, Co, Ni, Cu and Zn, atoms preferred the corner sites of the cubes, while Ti, V, Cr and Mn occupy the centre of the faces of the equilibrium structures. The equilibrium structure lattice parameters have an oscillatory behaviour with the atomic number of X, with decreasing amplitude as the atomic number of X increases. This trend do not correlated with the atomic radii of X.

  6. Tribological properties of ternary nanolayers, obtained from simple/compound materials

    Science.gov (United States)

    Jinga, V.; Cristea, D.; Samoilă, C.; Ursuţiu, D.; Mateescu, A. O.; Mateescu, G.; Munteanu, D.

    2016-06-01

    Numerous recently investigations are oriented towards the development of new classes of thin films, having dry-lubrication properties. These efforts were determined by the enormous energy losses generated by friction, and due to technical complications determined by the systems used for classic lubrication. This paper presents our results concerning a new class of nanomaterials, with ternary composition deposited from simple/compound materials (Ti/TixNy, TiB2/TixBiyNz, WC/WxCyNz). The films were deposited by magnetron sputtering, with varying sputtering parameters (sputtering power, reactive gas) on stainless steel substrates - ultrasonically and glow discharge cleaned before the deposition process. The influence of the deposition parameters on the mechanical and wear properties was assessed by nanoindentation, scratch resistance (to quantify the adhesion of the films to the steel substrate) and by pin-on- disk wear tests. The general conclusion was that the sample deposited at 5500 C, with N2 as reactive gas and 0.5 kV for substrate polarization, has the best mechanical characteristics (hardness and elastic modulus) and lubricant properties (represented by μ average), when compared to the remaining samples.

  7. Phase selection of ternary intermetallic compounds during solidification of high zinc magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    GUAN Shao-kang; ZHANG Chun-xiang; WANG Li-guo; WU Li-hong; CHEN Pei-lei; TANG Ya-li

    2008-01-01

    The phase selection of ternary intermetallic compound τ phase (Mg32 (Al,Zn)49) and φ phase (A12Mg5Zn2) in high zinc magnesium alloys was studied by using scanning electron microscope,X-ray diffractometer and differential scanning calorimeter,etc.The results indicate that,when adding element Si in Mg-8Zn-4Al-0.3Mn (ZA84) alloy,φ phase is promoted,whereas τ phase is inhibited.The Chinese script-type Mg2Si and matrix microstructure are greatly refined,the formation of τ phase is facilitated and φ phase is restrained when modifier Al-AlP master alloy is added in ZA84 alloy containing Si.The kinetics study of phase selection indicates that there is a critical degree of undercooling of the melt.If the undcrcooling exceeds the critical value,τ phase preferentially forms while φ phase is restrained; otherwise,φ phase preferentially forms while τ phase is restrained.

  8. Transmittance spectra of the CuGa3Se5 ternary compound near the fundamental absorption edge

    International Nuclear Information System (INIS)

    The CuGa3Se5 ternary compound films are produced by laser deposition at the substrate temperatures 480 and 580 K. The composition and structure of the films are studied. It is shown that, similarly to the corresponding crystals, the CuGa3Se5 films crystallize into the imperfect chalcopyrite structure. The transmittance spectra near the fundamental absorption edge are used to establish the energies and nature of optical transitions. The energies of crystal-field splitting (Δcr) and spin-orbit splitting (ΔSO of the valence band of the CuGa3Se5 ternary compound are calculated in the context of the Hopfield quasi-cubic model.

  9. Transmittance spectra of the CuGa{sub 3}Se{sub 5} ternary compound near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I. V., E-mail: chemzav@bsuir.by [Belarusian State University of Information and Radio Electronics (Belarus)

    2011-04-15

    The CuGa{sub 3}Se{sub 5} ternary compound films are produced by laser deposition at the substrate temperatures 480 and 580 K. The composition and structure of the films are studied. It is shown that, similarly to the corresponding crystals, the CuGa{sub 3}Se{sub 5} films crystallize into the imperfect chalcopyrite structure. The transmittance spectra near the fundamental absorption edge are used to establish the energies and nature of optical transitions. The energies of crystal-field splitting ({Delta}{sub cr}) and spin-orbit splitting ({Delta}{sub SO} of the valence band of the CuGa{sub 3}Se{sub 5} ternary compound are calculated in the context of the Hopfield quasi-cubic model.

  10. An efficient ternary serial adder based on carbon nanotube FETs

    OpenAIRE

    Mohammad Hossein Moaiyeri; Molood Nasiri; Nooshin Khastoo

    2016-01-01

    This paper presents an efficient ternary serial adder for nanotechnology employing negative, positive and standard ternary logics. Multiple-valued logic results in chips with more density, less complexity and high-bandwidth data transfer. The unique properties of CNTFETs such as the capability of adapting the desired threshold voltage by changing the diameters of the nanotubes and same carrier mobility for the n-type and p-type devices play an important role in designing this circuit. The pro...

  11. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Brebrick, R. F.; Dudley, M.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. The following are the research progress in the past two years. In-situ monitoring of partial pressure by optical absorption technique and visual observation of the growing crystal were performed during vapor growth of ZnSe. Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. Optical characterization was performed on wafers sliced from the grown crystals of ZnSe, ZnTe and ZnSe(1-x),Te(x), (0Beer's Law constants for 15 wavelengths between 200 and 440 nm were determined. From these constants the vapor pressure of HgI2 was established as a function of temperature for the liquid and the solid Beta-phases To characterize the growth conditions during the PVT growth of In-doped ZnSe the optical absorbance of the vapor phase over the In-Se system were measured and were used to obtain the partial pressures of Se2(g) and In2Se(g).

  12. Discovery of the Ternary Nanolaminated Compound Nb2GeC by a Systematic Theoretical-Experimental Approach

    Science.gov (United States)

    Eklund, Per; Dahlqvist, Martin; Tengstrand, Olof; Hultman, Lars; Lu, Jun; Nedfors, Nils; Jansson, Ulf; Rosén, Johanna

    2012-07-01

    Since the advent of theoretical materials science some 60 years ago, there has been a drive to predict and design new materials in silicio. Mathematical optimization procedures to determine phase stability can be generally applicable to complex ternary or higher-order materials systems where the phase diagrams of the binary constituents are sufficiently known. Here, we employ a simplex-optimization procedure to predict new compounds in the ternary Nb-Ge-C system. Our theoretical results show that the hypothetical Nb2GeC is stable, and excludes all reasonably conceivable competing hypothetical phases. We verify the existence of the Nb2GeC phase by thin film synthesis using magnetron sputtering. This hexagonal nanolaminated phase has a and c lattice parameters of ˜3.24Å and 12.82 Å.

  13. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values

    Science.gov (United States)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-01

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.

  14. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values.

    Science.gov (United States)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-01

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD=0.12], 0.67-23.19 [LOD=0.13] and 0.73-25.12 [LOD=0.15] μgmL(-1) for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples. PMID:27176001

  15. Regularities of formation of ternary intermetallic compounds between two transition elements and one non-transition element

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The pattern recognition methods and a four-parameter model, basedon extended Miedema's cellular model of alloy phases, are used to study the regularities of formation of ternary compounds between two transition elements (T,T′) and one non-transition element (N) (T-T′-N system). The criterion of formation can be expressed as some functions of Φ (electronegativity), n1/3ws (valence electron density in Wagner-Seitz cell), R (Pauling's metallic radii) and Z (number of valence electrons in atom).

  16. The location and extent of exfoliation of clay on the fracture mechanisms in nylon 66-based ternary nanocomposites.

    Science.gov (United States)

    Dasari, Aravind; Yu, Zhong-Zhen; Mai, Yiu-Wing; Yang, Mingshu

    2008-04-01

    The primary focus of this work is to elucidate the location and extent of exfoliation of clay on fracture (under both static and dynamic loading conditions) of melt-compounded nylon 66/clay/SEBS-g-MA ternary nanocomposites fabricated by different blending sequences. Distinct microstructures are obtained depending on the blending protocol employed. The state of exfoliation and dispersion of clay in nylon 66 matrix and SEBS-g-MA phase are quantified and the presence of clay in rubber is shown to have a negative effect on the toughness of the nanocomposites. The level of toughness enhancement of ternary nanocomposites depends on the blending protocol and the capability of different fillers to activate the plastic deformation mechanisms in the matrix. These mechanisms include: cavitation of SEBS-g-MA phase, stretching of voided matrix material, interfacial debonding of SEBS-g-MA particles, debonding of intercalated clay embedded inside the SEBS-g-MA phase, and delamination of intercalated clay platelets. Based on these results, new insights and approaches for the processing of better toughened polymer ternary nanocomposites are discussed. PMID:18572592

  17. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    Directory of Open Access Journals (Sweden)

    Viktor Hlukhyy

    2010-12-01

    Full Text Available The title compound, terbium hexaniobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an intergrowth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodecahedron 6/mmm; Nb (distorted icosahedron 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15 6mm and overline{6}m2; Sn (distorted icosahedron overline{6}m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels.

  18. The phase equilibria in the Bi–S–I ternary system and thermodynamic properties of the BiSI and Bi{sub 19}S{sub 27}I{sub 3} ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ziya S. [Baku State University, General and Inorganic Chemistry Department, Baku (Azerbaijan); Institute of Physics, Azerbaijan National Academy of Science, AZ1143 Baku (Azerbaijan); Musayeva, Sabina S.; Jafarli, Farhad Y. [Baku State University, General and Inorganic Chemistry Department, Baku (Azerbaijan); Amiraslanov, Imamaddin R. [Baku State University, General and Inorganic Chemistry Department, Baku (Azerbaijan); Institute of Physics, Azerbaijan National Academy of Science, AZ1143 Baku (Azerbaijan); Shevelkov, Andrei V., E-mail: shev@inorg.chem.msu.ru [Lomonosov Moscow State University, Chemistry Department, Moscow (Russian Federation); Babanly, Mahammad B., E-mail: babanly_mb@rambler.ru [Baku State University, General and Inorganic Chemistry Department, Baku (Azerbaijan)

    2014-10-15

    Highlights: • The Bi–S–I ternary system is experimentally investigated. • The fields of primary crystallization are determined. • The projection of the liquidus surface is presented. • Partial molar thermodynamic functions of Bi are calculated. • Standard integral thermodynamic functions of BiSI and Bi{sub 19}S{sub 27}I{sub 3} are calculated. - Abstract: Phase equilibria in the entire Bi–S–I ternary system were determined experimentally by means of differential thermal analysis (DTA), X-ray diffraction (XRD) techniques and EMF measurements. Several vertical sections, an isothermal section at 300 K, and a liquidus surface projection of the system were constructed and two ternary compounds BiSI and Bi{sub 19}S{sub 27}I{sub 3} reported earlier were confirmed. The primary crystallization fields of all phases, the types and coordinates of invariant and monovariant equilibria were determined. Thermodynamic properties of the both BiSI and Bi{sub 19}S{sub 27}I{sub 3} ternary compounds were studied by electromotive force measurements (EMF) with the bismuth electrode. From the EMF measurements, the partial molar functions of bismuth in alloys and the standard integral thermodynamic functions of BiSI and Bi{sub 19}S{sub 27}I{sub 3} were calculated.

  19. A magnetic study of ThCr2Si2-type pseudo-ternary RMn1.5T0.5Ge2 compounds. (R=Y,Ce-Sm,Gd-Ho; T=Fe,Cu)

    International Nuclear Information System (INIS)

    We report on bulk magnetization measurements performed on ThCr2Si2-type RMn1.5T0.5Ge2 compounds (R=Y, La-Nd, Sm, Gd-Ho; T=Cu, Fe). These pseudo-ternary compounds display largely correlated variations of their magnetic transition temperatures. This phenomenon might be related to magnetic properties based on competing in-plane and inter-plane Mn-Mn interactions. The RMn1.5Cu0.5Ge2 compounds are characterized by relatively large magnetocrystalline anisotropy. (orig.)

  20. Modeling Of Combinational Circuits Based On Ternary Multiplexer Using VHDL

    Directory of Open Access Journals (Sweden)

    A.Sathish kumar,

    2010-08-01

    Full Text Available This paper presents a novel method for defining, analyzing, testing and implementing the basic combinational circuitry with VHDL Simulator. This paper shows the potential of VHDL modeling and simulation that can be applied to Ternary switching circuits to verify its functionality and timing specifications. A novel method is brought out for implementing the basic combinational circuitry with minimum number of multiplexers. It also includes 1-bit and 2-bit position shifter and Barrel shifter. Method of coding is illustrated with respect to block diagram. An intention is to show how proposed simulator can be used to simulate MVL circuits and to evaluate systemperformance.

  1. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  2. Ternary System of Fe-based Ionic Liquid, Ethanol and Water for Wet Flue Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    解美莹; 李沛沛; 郭惠锋; 高丽霞; 余江

    2012-01-01

    Fe-based ionic liquid (Fe-IL) was synthesized by mixing FeCl3·6H2O and 1-butyl-3-methylimidazolium chloride [Bmim]C1 in this paper. The phase diagram of a ternary Fe-IL, ethanol and water system was investigated to construct a ternary desulfurization solution for wet flue gas desulfurization. The effects of flow rate and concentration of SO2, reaction temperature, pH and Fe-IL fraction in aqueous desulfurization solution on the desulfiariza- tion efficiency were investigated. The results shows that the best composition of ternary desulfurization solution of Fe-IL, ethanol and water is 1 : 1.5 : 3 by volume ratio, and pH should be controlled at 2.0. Under such conditions, a desulfurization rate greater than 90% could be obtained. The product of sulfuric acid had inhibition effect on the wet desulfurization process. With applying this new ternary desulfurization solution, not only the catalyst Fe-IL can be recycled and reused, but also the product sulfuric acid can be separated directly from the ternary desulfurization system.

  3. Single-crystal growth and magnetic properties of a new ternary uranium compound U{sub 3}Ni{sub 5}Al{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: hagay@popsvr.tokai.jaeri.go.jp; Matsuda, Tatsuma D. [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Ikeda, Shugo [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Galatanu, Andrei [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Matsumoto, Takuya [Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 (Japan); Sugimoto, Toyonari [Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 (Japan); Tada, Toshiji [Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 (Japan); Noguchi, Satoru [Department of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531 (Japan); O-bar nuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2005-04-30

    A new ternary uranium-based intermetallic compound U{sub 3}Ni{sub 5}Al{sub 19} has been synthesized. It crystallizes in the unique flat orthorhombic structure. Uranium atoms occupy two crystallographic 4c and 8f sites of quite similar local chemical environments. The temperature dependence of the magnetic susceptibility {chi}(T) demonstrates peculiar magnetic anisotropy; {chi}(T) along the b- and c-axis obeys the Curie-Weiss law above 23K, while {chi}(T) along a-axis is small and temperature independent. At 23K, only {chi}{sub c} shows a sharp cusp corresponding to an antiferromagnetic ordering, while {chi}{sub b} remains paramagnetic down to 2K. From the crystallographical structure we suggest that only uranium atoms at the 8c site order antiferromagnetically at T{sub N}=23K, while those occupying the 4c site do not order down to 50mK.

  4. Multi-criteria decision-making approach with incomplete certain information based on ternary AHP

    Institute of Scientific and Technical Information of China (English)

    Wang Jianqiang

    2006-01-01

    It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.

  5. Bioreducible polyether-based pDNA ternary polyplexes: Balancing particle stability and transfection efficiency

    Science.gov (United States)

    Lai, Tsz Chung; Kataoka, Kazunori; Kwon, Glen S.

    2016-01-01

    Polyplex particles formed with plasmid DNA (pDNA) and Pluronic P85-block-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (P85-b-P[Asp(DET)]) demonstrated highly effective transfection ability compared to PEG-based block cationomer, PEG-b-P[Asp(DET)]. Ternary polyplexes comprising PEG-b-P[Asp(DET)], poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-P[Asp(DET)] (P(EPE)-b-P[Asp(DET)]) used as an analog of P85-b-P[Asp(DET)], and pDNA were prepared in this work aiming at maintaining adequate transfection efficiency while solving the stability issues of the P85-b-P[Asp(DET)] polyplexes. Furthermore, a bioreducible P(EPE)-SS-P[Asp(DET)] possessing a redox potential-sensitive disulfide linkage between the P(EPE) polymer and the cationic block was used as a substitute for P(EPE)-b-P[Asp(DET)] during ternary complex formation to investigate whether the trans-fection ability of the ternary polyplex system could be enhanced by triggered release of P(EPE) polymers from the polyplexes. The ternary complexes showed significant improvement in terms of stability against salt-induced aggregation compared to binary complexes, although the gene delivery ability dropped with the amount of PEG-b-P[Asp(DET)] used for complexation. By manipulating the difference in redox potential between the extracellular and intracellular environments, the reducible ternary complexes achieved higher transfection compared to the non-reducible polyplexes; moreover, the reducible poly-plexes exhibited comparable stability to the non-reducible ones. These results suggest that reducible ternary complexes could provide satisfactory transfection efficiency without comprising the colloidal stability of the particles. PMID:22000077

  6. Growth and morphology of the CuGaS2, CuAlSe2, CuGaSe2, and CuInS2 ternary compounds

    International Nuclear Information System (INIS)

    Monocrystals of the ternary compounds CuGaS2, CuAlSe2, CuGaSe2, and CuInS2 were grown from their elements by transport reactions; their cell parameters and melting temperature were determined. The character of the phase transition in these compounds was found out and also the boundary conditions of growing the monocrystals as well as their dislocation structure (by etching). (author)

  7. Microstructural characterization and phase transformation of ternary alloys near at Al3Ti compound

    International Nuclear Information System (INIS)

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (103-104 K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al3Ti and others phases of L12 type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO22 to the cubic phases L12. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L12 phase tends to increase to hardness depending of the content of this phase

  8. Anodic formation of binary and ternary compound semiconductor films for photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Schimmel, M.I.; Bottechia, O.L.; Wendt, H. [Technical University of Darmstadt (Germany). Institute of Chemical Technology

    1998-03-01

    By anodic oxidation of copper sheets in sulfide anion-containing electrolytes copper chalcogenide semiconductor films suitable for photovoltaic applications can be attained. Anodically chalcopyrite (Cu{sub 2}S) has been formed as pure, mechanically stable, homogeneous and adhesive polycrystalline films, consisting of well-developed large crystallites. Cu{sub 2}S coated copper sheets were produced with an area of 3 cm x 3 cm. P-n-junctions formed by evaporation of CdS onto the anodically formed Cu{sub 2}S films show an energy efficiency of 3.3%. The extension of this process to ternary systems, like copper/indium/sulfur, is likely to be possible. A mixture of Cu{sub 2}S and CuInS{sub 2} could be formed by codepositing In{sub 2}S{sub 3} together with Cu{sub 2}S. Cu{sub 2}Se-films with a thickness of up to 1 {mu}m were formed by chemical bath deposition. (author)

  9. Crystal structure and physical properties of the new ternary compound MgNi{sub 7}B{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.Z. [Key Laboratory of Nonferrous Metals and New Processing Technology of Materials, Ministry of Education, Guangxi University, Nanning Guangxi 530004 (China); National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Dong, C., E-mail: chengdon@iphy.ac.c [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zeng, L.M. [Key Laboratory of Nonferrous Metals and New Processing Technology of Materials, Ministry of Education, Guangxi University, Nanning Guangxi 530004 (China); He, B. [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Luzhou Medical College, Luzhou, Sichuan 646000 (China); Cao, W.H. [Key Laboratory of Nonferrous Metals and New Processing Technology of Materials, Ministry of Education, Guangxi University, Nanning Guangxi 530004 (China); National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, L.H. [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-03-18

    A new compound MgNi{sub 7}B{sub 3} in the Mg-Ni-B ternary system was prepared by solid state reaction and its crystal structure was determined using X-ray powder diffraction data. The MgNi{sub 7}B{sub 3} compound crystallizes with ErNi{sub 7}B{sub 3} structure type (space group I4{sub 1}/amd, a = 7.4877(2) A, c = 15.4879(4) A, Z = 8.), and the Rietveld refinement of the crystal structure was performed which gave R{sub wp} = 7.02%, R{sub p} = 4.96%. The MgNi{sub 7}B{sub 3} sample was characterized by magnetization and electric resistivity measurements. MgNi{sub 7}B{sub 3} exhibits metallic behavior in the temperature range from 5 to 300 K and shows spin-glass-like behavior at low temperature with the spin freezing temperature (T{sub f}) around 13 K.

  10. Structural characterization of the ternary compound Cu{sub 3}TaSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)]. E-mail: gerzon@ula.ve; Mora, Asiloe J. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Duran, Sonia [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Munoz, Marcos [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Grima-Gallardo, Pedro [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)

    2007-07-31

    The Cu{sub 3}TaSe{sub 4} compound crystallizes in the cubic P4bar 3m (No. 215) space group, Z=1, with a=5.6600(1)A, V=181.32(1)A{sup 3}. Its structure was refined from X-ray powder diffraction data using the Rietveld method. The refinement of 21 instrumental and structural variables led to R{sub p}=12.2%, R{sub wp}=14.7%, R{sub exp}=8.0%, R{sub B}=14.5% and S=1.8, for 4501 step intensities and 33 independent reflections. This compound is isostructural with the sulvanite mineral and is characterized for a three-dimensional arrangement of CuSe{sub 4} and TaSe{sub 4} tetrahedra connected by common edges, and the CuSe{sub 4} tetrahedra sharing vertexes among them.

  11. A ternary linear compound T{sub 2} and its phase equilibrium relationships in Mg-Zn-Nd system at 400 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L. [Department of Materials Science and Engineering, Northeastern University at Qinhuangdao, 066004 (China); School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Li, H.X., E-mail: mingli_huang@126.co [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Ding, H.; Tang, Z.Y. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Mei, R.B.; Zhou, H.T. [Department of Materials Science and Engineering, Northeastern University at Qinhuangdao, 066004 (China); School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Ren, R.P.; Hao, S.M. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2010-01-21

    The composition and the crystal structure of the phases in the alloys of Mg-Zn-Nd system at 400 {sup o}C have been studied by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), X-ray diffraction (XRD) and selected area electron diffraction (SAED) of transmission electron microscopy (TEM). The phase equilibrium relationships have been identified. As a result, a linear ternary compound T{sub 2} phase has been identified. The general chemical formula of T{sub 2} phase is (Mg, Zn){sub 11.5}Nd and the crystal structure of that is C-centered orthorhombic. As the results, the other three ternary compounds T{sub 1} phase, T{sub 3} phase and T{sub 4} phase have also been identified. The partial isothermal section of phase diagram of Mg-Zn-Nd system at 400 {sup o}C has been established.

  12. (Liquid + liquid) equilibrium for ternary mixtures of {l_brace}heptane + aromatic compounds + [EMpy][ESO{sub 4}]{r_brace} at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Mirkhani, S.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vossoughi, M., E-mail: vosoughi@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Pazuki, G.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Safekordi, A.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Heydari, A.; Akbari, J. [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Yavari, M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > This paper reports the LLE data of ternary systems {l_brace}heptane (1) + aromatic compounds (2) + [EMpy][ESO{sub 4}] (3){r_brace}. > The distribution coefficient and the selectivity were obtained from the experimental data. > The consistency of LLE data was successfully correlated with Othmer-Tobias and Hand equation. - Abstract: (Liquid + liquid) equilibrium (LLE) data for the ternary systems (heptane + toluene + 1-ethyl-3-methylpyridinium ethylsulfate) and (heptane + benzene + 1-ethyl-3-methylpyridinium ethylsulfate) were measured at T = 298.15 K and atmospheric pressure. The selectivity and aromatic distribution coefficients, calculated from the equilibrium data, were used to determine if this ionic liquid can be used as a potential extracting solvent for the separation of aromatic compounds from heptane. The consistency of tie-line data was ascertained by applying the Othmer-Tobias and Hand equations.

  13. Copper-based diamond-like ternary semiconductors for thermoelectric applications

    Science.gov (United States)

    Skoug, Eric John

    Heightened global concern over greenhouse gas emissions has led to an increased demand for clean energy conversion technologies. Thermoelectric materials convert directly between thermal and electrical energy and can increase the efficiency of existing processes via waste heat recovery and solid-state climate control applications. The conversion efficiency of available thermoelectric materials and the devices comprised of them is unfortunately quite low, and thus new materials must be developed in order for thermoelectrics to keep pace with competing technologies. One approach to increasing the conversion efficiency of a given material is to decrease its lattice thermal conductivity, which has traditionally been accomplished by introducing phonon scattering centers into the material. These scattering centers also tend to degrade electronic transport in the material, thereby minimizing the overall effect on the thermoelectric performance. The purpose of this work is to develop materials with inherently low lattice thermal conductivity such that no extrinsic modifications are required. A novel approach in which complex ternary semiconductors are derived from well-known binary or elemental semiconductors is employed to identify candidate materials. Ternary diamond-like compounds, namely Cu2SnSe 3 and Cu3SbSe4, are synthesized, characterized, and optimized for thermoelectric applications. It is found that sample-to-sample variations in hole concentration limits the plausibility of Cu2SnSe3 as a thermoelectric material. Cu3SbSe 4 is found to be a promising material that can achieve thermoelectric performance comparable to state-of-the-art materials when optimized. This work uncovers anomalous thermal conductivity in several Cu-Sb-Se ternary compounds, which is used to develop a set of guidelines relating crystal structure to inherently low lattice thermal conductivity.

  14. Novel Stable Compounds in the C-H-O Ternary System at High Pressure.

    Science.gov (United States)

    Saleh, Gabriele; Oganov, Artem R

    2016-01-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed. PMID:27580525

  15. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    Science.gov (United States)

    Saleh, Gabriele; Oganov, Artem R.

    2016-09-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

  16. Magnetotransport and magnetothermal properties of the ternary intermetallic compound TbFe2Al10.

    Science.gov (United States)

    Khandelwal, Ashish; Chattopadhyay, M K; Roy, S B

    2016-09-01

    We have studied the temperature and field dependences of electrical resistivity and heat capacity of TbFe2Al10, and have also complimented the above studies with low field magnetization measurements. In zero magnetic field, TbFe2Al10 exhibits paramagnetic (PM) to ferrimagnetic (Ferri-I) and Ferri-I to antiferromagnetic (AFM) phase transitions below 17.6 and 10 K respectively. We have found that the electrical resistivity of TbFe2Al10 exhibits a sharp rise across the PM to Ferri-I phase transition in this compound. Our analysis indicates that this sharp rise of electrical resistivity is related to the formation of new zone boundaries (across the PM to Ferri-I phase transition) that reduce the area of the Fermi surface. We have found that TbFe2Al10 exhibits large magnetoresistance (MR) below 100 K. Overall, the MR behaviour of TbFe2Al10 below 17.6 K in different magnetic fields reveals strong competition between AFM and ferromagnetic (FM) correlations, which seems to be quite intrinsic to the magnetic structure of the compound. Our analysis indicates that the large MR and magnetocaloric effect persisting deep inside the PM regime of TbFe2Al10 is mainly related to the presence of FM spin fluctuations and the formation of a Griffiths like (GL) phase consisting of FM clusters within the PM regime. The formation of the GL phase may be mediated by the static crystal defects in the midst of the competing inter and intra layer magnetic interactions. PMID:27385638

  17. Spectrum-Based Electrochemiluminescent Immunoassay with Ternary CdZnSe Nanocrystals as Labels.

    Science.gov (United States)

    Zhang, Xin; Tan, Xiao; Zhang, Bin; Miao, Wujian; Zou, Guizheng

    2016-07-01

    Conventional electrochemiluminescence (ECL) research has been performed by detecting the total photons (i.e., the ECL intensity). Herein, systematic spectral exploration on the ECL of dual-stabilizers-capped ternary CdZnSe nanocrystals (NCs) and its sensing application were carried out on a homemade ECL spectral acquiring system. The ternary CdZnSe NCs could be repeatedly injected with electrons via some electrochemical ways and then result in strong cathodic ECL with the coupling of ammonium persulfate. ECL spectrum of the CdZnSe NCs was almost identical to corresponding photoluminescence spectrum, indicating that the excited states of CdZnSe NCs in ECL were essentially the same as those in photoluminescence. Importantly, after being labeled to the probe antibody (Ab2) of α-fetal protein (AFP) antigen, the ternary NCs in the Ab2|NCs conjugates could preserve their ECL spectrum very well. A spectrum-based ECL immunoassay was consequently proposed with the CdZnSe NCs as ECL tags and AFP as target molecules. The limit of detection is 0.010 pg/mL, with a signal-to-noise (S/N) ratio of 3, indicating a sensitive ECL sensing strategy that was different from the conventional ones. This work might open a pathway to the spectrally resolved ECL analysis with even-higher S/N ratios than the fluorescent analysis. PMID:27266486

  18. Crystal structure of the ternary semiconductor compound thallium gallium sulfide, TlGaS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)]. E-mail: gerzon@ula.ve; Mora, A.J. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Perez, F.V. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Departamento de Fisica, Facultad de Ciencias, Universidad del Zulia, Zulia (Venezuela); Gonzalez, J. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)

    2007-04-01

    Thallium gallium sulfide, TlGaS{sub 2}, a semiconductor compound, was prepared by solid-state reaction technique. Its crystal structure was determined by single-crystal X-ray diffraction. This material crystallizes in the monoclinic system with space group C2/c (No. 15), Z=16 and unit cell parameters a=10.2990(8)A, b=10.2840(8)A, c=15.1750(18)A, {beta}=99.603(4){sup o}. The structural refinement converged to R(F)=0.0999, R(F{sup 2})=0.0764 and S=1.067. The structure consists of a three-dimensional arrangement of distorted TlS{sub 8} and GaS{sub 4} polyhedrons. Four GaS{sub 4} tetrahedra form adamantine-like units of the type Ga{sub 4}S{sub 10}, which in turn connect through the corners forming layers that run along the [100] direction.

  19. Molecular dynamics study of the ternary compound Li3AlB2O6

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong; Wu Hai-Ying; Chen Yu-Yu; Cheng Xin-Lu

    2006-01-01

    A new compound with the same chemical composition as LisAlB2O6 but with a different x-ray powder diffraction pattern as reported before was synthesized and studied experimentally by M. He, Chen X L et al (J. Solid State Chem. 163, 369 (2002)), but there lacks first principles study on the structure of it. Using conjugant gradient (CG) molecule dynamics (MD) simulation with a full relaxation of the atomic positions and of the shape and size of the cell, the structure of LisAlB2O6 is studied from first principles. For the density functional, the local density approximation (LDA) and the generalized gradient approximation (GGA) forms are used respectively. Both the LDA and GGA results support the experimental structure of M. He et al. The result of MD simulation using GGA agrees with the experimental result much better. The energy bands are also studied, the band gap given by LDA and GGA are 5.65 eV, 5.34eV, respectively.

  20. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  1. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    Directory of Open Access Journals (Sweden)

    Anna Miodek

    2015-09-01

    Full Text Available An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT and further passivated with 1-mercapto-6-hexanol (MCH. HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS, the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  2. Theoretical Prediction of Topological Insulators in Thallium-based III-V-VI$_2$ Ternary Chalcogenides

    OpenAIRE

    Yan, Binghai; Liu, Chao-Xing; Zhang, Hai-Jun; Yam, Chi-Yung; Qi, Xiao-Liang; Frauenheim, Thomas; Zhang, Shou-Cheng

    2010-01-01

    We predict a new class of three dimensional topological insulators in thallium-based III-V-VI$_2$ ternary chalcogenides, including TlBiQ$_2$ and TlSbQ$_2$ (Q = Te, Se and S). These topological insulators have robust and simple surface states consisting of a single Dirac cone at the $\\Gamma$ point. The mechanism for topological insulating behavior is elucidated using both first principle calculations and effective field theory models. Remarkably, one topological insulator in this class, TlBiTe...

  3. Synthesis and structure investigation of ternary oxides based on molybdenum and lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Bissengaliyeva, Mira R., E-mail: 160655@mail.ru [Institute of Problems of Complex Development of Mineral Resources, Ippodromnaya Street 5, 100019 Karaganda (Kazakhstan); Bekturganov, Nuraly S. [National Scientific-Technological Holding “Parasat”, Republic Avenue 18, 010000 Astana (Kazakhstan); Gogol, Daniil B. [Institute of Problems of Complex Development of Mineral Resources, Ippodromnaya Street 5, 100019 Karaganda (Kazakhstan); Knyazev, Alexander V. [N.I. Lobachevsky State University of Nizhniy Novgorod, Gagarin Avenue 23, 603950 Nizhniy Novgorod (Russian Federation); Smolenkov, Yuriy Yu.; Taimassova, Shynar T. [Institute of Problems of Complex Development of Mineral Resources, Ippodromnaya Street 5, 100019 Karaganda (Kazakhstan); Balbekova, Bakhyt K. [Karaganda State Technical University, Mira Boulevard 56, 100027 Karaganda (Kazakhstan); Babich, Boris P. [Irtysh Rare Earths Company Ltd., 071809 Pervomaysky Settlement, Shemonaihinsky Region, East Kazakhstan Province (Kazakhstan)

    2015-05-01

    Compounds of the ternary oxides class with formulae MgLa{sub 2}MoO{sub 7} and CaLa{sub 2}MoO{sub 7} were synthesized by the citrate method. According to the SEM and X-ray analysis data the samples are referred to pyrochlore with a tetragonal (MgLa{sub 2}MoO{sub 7}) and monoclinic (CaLa{sub 2}MoO{sub 7}) crystal lattice. At the temperature of 900 °C the compound CaLa{sub 2}MoO{sub 7} is subjected to phase transition from the monoclinic crystal system to the cubic one. According to the differential thermal analysis data, this transition occurs through the intermediate states characterized by non-monotonic changes of lattice parameters of the unit cell. In general, the compounds are characterized by minor structural distortions compared with the cubic structure of pyrochlore. - Highlights: • Samples of lanthanum–molybdenum pyrochlores MgLa{sub 2}MoO{sub 7} and CaLa{sub 2}MoO{sub 7} are synthesized. • The X-ray diffraction study, SEM, IR and DTA investigations were carried out. • Structural parameters of the samples at room and high temperature were determined.

  4. Enabling iron pyrite (FeS2) and related ternary pyrite compounds for high-performance solar energy applications

    Science.gov (United States)

    Caban Acevedo, Miguel

    The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for

  5. Improved Activity Assay Method for Arginine Kinase Based on a Ternary Heteropolyacid System

    Institute of Scientific and Technical Information of China (English)

    陈宝玉; 郭勤; 郭智; 王希成

    2003-01-01

    This paper presents a new system for the activity assay of arginine kinase (AK), based on the spectrophotometric determination of an ascorbic acid-reduced blue ternary heteropolyacid composed of bismuth, molybdate and the released phosphate from N-phospho-L-arginine (PArg) formed in the forward catalysis reaction.The assay conditions, including the formulation of the phosphate determination reagent (PDR), the assay timing, and the linear activity range of the enzyme concentration, have been tested and optimized.For these conditions, the ternary heteropolyacid color is completely developed within 1 min and is stable for at least 15 min, with an absorbance maximum at 700 nm and a molar extinction coefficient of 15.97 (mmol/L)-1 · cm-1 for the phosphate.Standard curves for phosphate show a good linearity of 0.999.Compared with previous activity assay methods for AK, this system exhibits superior sensitivity, reproducibility, and adaptability to various conditions in enzymological studies.This method also reduces the assay time and avoids the use of some expensive instruments and reagents.

  6. New nanobiomaterials based on irridoidic compounds

    Science.gov (United States)

    Radu, Nicoleta; Corobea, Cosmin; Rau, Ileana

    2009-08-01

    New type of nanomaterials has been synthesized using irridoidic extract derived from Plantago sp. The irridoidic compounds were separated from Plantago lanceolata by successive extraction in aqueous media. The composition of the stable nano-emulsion used for nanomaterials synthesis has been chosen from the pseudo ternary phase diagram and the dimensions of the emulsion were confirmed by Dynamic Light Scattering measurements. The obtained nanodrops were then encapsulated in silica resulting porous core - shell particles which were characterized by Dynamic Light Scattering and electronic microscopy confirming the nanostructure of the new biomaterials.

  7. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes;

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  8. Structural, elastic, electronic and optical properties of a new layered-ternary Ta{sub 4}SiC{sub 3} compound

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.S. [Department of Physics, Rajshahi University, Rajshahi 6205 (Bangladesh); Islam, A.K.M.A., E-mail: azi46@ru.ac.b [Department of Physics, Rajshahi University, Rajshahi 6205 (Bangladesh)

    2011-01-15

    We propose a new layered-ternary Ta{sub 4}SiC{sub 3} with two different stacking sequences ({alpha}- and {beta}-phases) of the metal atoms along c axis and study their structural stability. The mechanical, electronic and optical properties are then calculated and compared with those of other compounds M{sub 4}AX{sub 3} (M=V, Nb, Ta; A=Al, Si and X=C). The predicted compound in the {alpha}-phase is found to possess higher bulk modulus than these compounds. The independent elastic constants of the two phases are also evaluated and the results discussed. The electronic band structures for {alpha}- and {beta}-Ta{sub 4}SiC{sub 3} show metallic conductivity. Ta 5d electrons are mainly contributing to the total density of states (DOS). We see that the hybridization peak of Ta 5d and C 2p lies lower in energy and the Ta 5d-C 2p bond is stronger than Ta 5d-Si 3p bond. Further an analysis of the different optical properties shows the compound to possess improved behavior compared to similar types of compounds.

  9. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.

  10. Memory type switching behavior of ternary Ge20Te80-x Sn x (0  ⩽  x  ⩽  4) chalcogenide compounds

    Science.gov (United States)

    Jeevan Fernandes, Brian; Sridharan, Kishore; Munga, Pumlian; Ramesh, K.; Udayashankar, N. K.

    2016-07-01

    Chalcogenide compounds have gained huge research interest recently owing to their capability to transform from an amorphous to a crystalline phase with varying electrical properties. Such materials can be applied in building a new class of memories, such as phase-change memory and programmable metallization cells. Here we report the memory type electrical switching behavior of a ternary chalcogenide compound synthesized by doping Tin (Sn) in a germanium-telluride (Ge20Te80) host matrix, which yielded a composition of Ge20Te80-x Sn x (0  ⩽  x  ⩽  4). Results indicate a remarkable decrease in the threshold switching voltage (V T) from 140 to 61 V when the Sn concentration was increased stepwise, which is attributed to the domination of the metallicity factor leading to reduced amorphous network connectivity and rigidity. Variation in the threshold switching voltage (V T) was noticed even when the sample thickness and temperature were altered, confirming that the memory switching process is of thermal origin. Investigations using x-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the formation of a crystalline channel that acts as the conduction path between the two electrodes in the switched region. Structural and morphological studies indicated that Sn metal remained as a micro inclusion in the matrix and hardly contributed to the rigid amorphous network formation in Ge20Te80-x Sn x . Memory type electrical switching observed in these ternary chalcogenide compounds synthesized herein can be explored further for the fabrication of phase-change memory devices.

  11. Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti sub 3 SiC sub 2 at high pressure

    CERN Document Server

    Wang, J Y

    2003-01-01

    The pressure dependences of the lattice parameters, electronic structure, and bonding properties of the layered ternary compound Ti sub 3 SiC sub 2 were investigated by performing ab initio plane-wave pseudopotential total energy calculations. The material exhibited elastic anisotropy. The lattice constants and axial ratio were studied for different pressures, and the same trend was obtained as is measured in experiment. It was found that although the structure was stable at high pressure, the electronic structure and atomic bonding were definitely affected. The electrical conductivity was predicted to reduce with pressure, which was interpreted by analysing the band dispersion curve and density of states at the Fermi level. The strengths of the atomic bonds in Ti sub 3 SiC sub 2 were considered by analysing the Mulliken population and by examining the bond length contraction for various pressures. A redistribution of charge density that accompanied high pressures was also revealed.

  12. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    Science.gov (United States)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  13. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex.

    Science.gov (United States)

    Tan, Hongliang; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-12-15

    The meta-organic coordination polymers have been emerged as fascinating nanomaterials because of their tunable nature. In this work, we employed lanthanide coordination polymer self-assembled from adenosine monophosphate (AMP) and europium ion (Eu(3+)) as receptor reagent and citrate (Cit) as ancillary ligand to construct a fluorescent sensor for the detection of tetracycline (Tc) in milk. The co-coordination of Cit and Tc with Eu(3+) on the surface of the coordination polymer AMP/Eu leads to the formation of ternary complex which emitted strong fluorescence due to the removal of coordinated water molecules and an intramolecular energy transfer from Tc to Eu(3+). The fluorescent intensity of Eu(3+) displayed a good linear response to Tc concentrations in the range of 0.1-20 μM with a detection limit of 60 nM. This method was successfully applied to determine the levels of Tc in milk, which is the first application of coordination polymer as a fluorescent sensor in real sample. Compared with other Eu(3+)-based fluorescent methods for Tc detection, the presented method allows simple, direct analysis of Tc without requiring special reaction media or complicated prepreparation processes. This straightforward strategy could be extended to the preparation of other lanthanide coordination polymer-based fluorescent probes for applications in biosensing, imaging, drug delivery, and so on.

  14. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    Science.gov (United States)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  15. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  16. Photocytotoxic ternary copper(II) complexes of histamine Schiff base and pyridyl ligands

    Indian Academy of Sciences (India)

    Samya Banerjee; Akanksha Dixit; K Sesha Maheswaramma; Basudev Maity; Sanjoy Mukherjee; Arun Kumar; Anjali A Karande; Akhil R Chakravarty

    2016-02-01

    Ternary copper(II) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. [Cu(bpy)(L)](ClO4) (1) and [Cu(dppz)(L)](ClO4) (2), where bpy is 2,2′-bipyridine (in 1) and dppz is dipyrido[3,2-a:2′,3′-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (b) of ∼105 M−1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming $^{\\bullet}\\text{OH}$ radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.

  17. Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed

    2013-01-01

    Full Text Available Recognition of human expression from facial image is an interesting research area, which has received increasing attention in the recent years. A robust and effective facial feature descriptor is the key to designing a successful expression recognition system. Although much progress has been made, deriving a face feature descriptor that can perform consistently under changing environment is still a difficult and challenging task. In this paper, we present the gradient local ternary pattern (GLTP—a discriminative local texture feature for representing facial expression. The proposed GLTP operator encodes the local texture of an image by computing the gradient magnitudes of the local neighborhood and quantizing those values in three discrimination levels. The location and occurrence information of the resulting micropatterns is then used as the face feature descriptor. The performance of the proposed method has been evaluated for the person-independent face expression recognition task. Experiments with prototypic expression images from the Cohn-Kanade (CK face expression database validate that the GLTP feature descriptor can effectively encode the facial texture and thus achieves improved recognition performance than some well-known appearance-based facial features.

  18. Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties.

    Science.gov (United States)

    Wu, Liang; Chen, Shi-You; Fan, Feng-Jia; Zhuang, Tao-Tao; Dai, Chen-Min; Yu, Shu-Hong

    2016-05-01

    Heterocrystalline polytype nanostructured semiconductors have been attracting more and more attention in recent years due to their novel structures and special interfaces. Up to now, controlled polytypic nanostructures are mostly realized in II-VI and III-V semiconductors. Herein, we report the synthesis and photoelectrochemical properties of Cu-based ternary I-III-VI2 chalcogenide polytypic nanocrystals, with a focus on polytypic CuInS2 (CIS), CuInSe2 (CISe), and CuIn(S0.5Se0.5)2 alloy nanocrystals. Each obtained polytypic nanocrystal is constructed with a wurtzite hexagonal column and a zinc blende/chalcopyrite cusp, regardless of the S/Se ratio. The growth mechanisms of polytypic CIS and CISe nanocrystals have been studied by time-dependent experiments. The polytypic nanocrystals are solution-deposited on indium-tin oxide glass substrate and used as a photoelectrode, thus showing stable photoelectrochemical activity in aqueous solution. Density functional theory calculation was used to study the electronic structure and the band gap alignment. This versatile synthetic method provides a new route for synthesis of novel polytypic nanostructured semiconductors with unique properties. PMID:27063512

  19. Electrorheological fluid of kaolinite-based ternary nanocomposite and its properties

    Institute of Scientific and Technical Information of China (English)

    WANG; Baoxiang; ZHAO; Xiaopeng; YAO; Yuan

    2005-01-01

    According to the physical and chemical design, a kind of kaolinite /dimethylsulfoxide/carboxymethyl starch (CMS) ternary nanocomposite was prepared by the two-step composite method. Firstly, the polar liquid-dimethylsulfoxide (DMSO) was directly intercalated into the interlayer of kaolinite, and then the intercalated complex was composite with CMS by the solution method. The results showed that DMSO moderately intercalated the interlayer of kaolinite and the basal spacing of kaolinite was swollen from 0.715 to 1.120 nm. Under the electric fields of 5 kV mm-1 and volume fraction 30%, the static shear stress of kaolinite/DMSO/CMS ternary ERF could reach 17 kPa, which was 14 times and 4.25 times higher than that of pure kaolinite ERF and kaolinite/CMS ERF respectively. At the suitable component ratio (kaolinite:DMSO:CMS=1:0.75:0.6) of nanocomposite, a stronger synergetic effect and the optimum electrorheological effect could be attained. The ternary nanocomposite ERF also had good temperature effect and sedimentation properties. The sedimentation part of ternary nanocomposite ERF was only 9% after 30 days. The results of dielectric properties showed that the dielectric constant and conductivity of ternary nanocomposite ERF had been improved more enormously than that of the single component ERF and binary composite ERF. So the polarization and dielectric mismatch were strengthened, which was suitable to the enhancement of ER effect.

  20. Crystal structure refinement of the ternary compound Cu{sub 2}SnTe{sub 3} by X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Mora, A.J. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Marcano, G.; Rincon, C. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Delgado, G.E.

    2008-04-15

    The ternary compound Cu{sub 2}SnTe{sub 3} crystallizes in the Imm2 (N circle 44) space group, Z=2, with a=2.833(4) A, b=4.274(1) A, c=6.043(1) A, V=331.5(1) A{sup 3}. Its structure was refined from X-ray powder diffraction data using the Rietveld method. The refinement of 25 instrumental and structural variables led to R{sub p}=10.2%, R{sub wp}=11.8%, R{sub exp}=7.7%, R{sub B}=10.6%, S=1.6 and {chi}{sup 2}=2.6, for 5501 step intensities and 163 independent reflections. This compound is isostructural with Cu{sub 2}GeSe{sub 3}, and consists of a three-dimensional arrangement of slightly distorted CuTe{sub 4} and SnTe{sub 4} tetrahedra connected by common corners. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. New ternary CeScSi-type RTi0.85Mo0.15Ge compounds (R=Gd-Tm,Lu)

    International Nuclear Information System (INIS)

    Investigations made by powder X-ray diffraction on new ternary RTi0.85Mo0.15Ge compounds (R=Gd-Tm,Lu) are reported. The compounds GdTi0.85Mo0.15Ge (a=0.4032(1) nm,c=1.5467(1) nm),TbTi0.85Mo0.15Ge(a=0.4014(1) nm,c=1.5315(1) nm),DyTi0.85Mo0.15Ge(a=0.4010(1) nm,c=1.5264(1) nm),HoTi0.85Mo0.15Ge(a=0.3990(1) nm,c=1.5144(1) nm),ErTi0.85Mo0.15Ge(a=0.3993(1) nm,c=1.5107(2) nm),TmTi0.85Mo0.15Ge(a=0.3970(1) nm, c=1.5004(2) nm) and LuTi0.85Mo0.15(a=0.3955(1) nm,c=1.4875(3) nm) crystallize in the tetragonal CeScSi-type structure (space group I4/mmm). (orig.)

  2. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  3. Moving least squares-based multi-functional sensing technique or estimating viscosity and density of ternary solution

    Institute of Scientific and Technical Information of China (English)

    LIU Dan; WEI Guo; SUN Jin-wei; LIU Xin

    2009-01-01

    In the osmotic dehydration process of food, on-line estimation of concentrations of two components in ternary solution with NaCI and sucrose was performed based on multi-functional sensing technique.Moving Least Squares were adopted in approximation procedure to estimate the viscosity of such interested ternary solu-tion with the given data set.As a result, in one mode of using total experimental data as calibration data andvalidation data, the relative deviations of estimated viscosities are less than ~ 1.24%.In the other mode, by taking total experimental data except the ones for estimation as calibration data, the relative deviations are less than±3.47%.In the same way, the density of ternary solution can be also estimated with deviations less than ± 0.11% and ± 0.30% respectively in these two models.The satisfactory and accurate results show the ex-traordinary efficiency of Moving Least Squares behaved in signal approximation for multi-functional sensors.

  4. Diffuse interface simulation of ternary fluids in contact with solid

    Science.gov (United States)

    Zhang, Chun-Yu; Ding, Hang; Gao, Peng; Wu, Yan-Ling

    2016-03-01

    In this article we developed a geometrical wetting condition for diffuse-interface simulation of ternary fluid flows with moving contact lines. The wettability of the substrate in the presence of ternary fluid flows is represented by multiple contact angles, corresponding to the different material properties between the respective fluid and the substrate. Displacement of ternary fluid flows on the substrate leads to the occurrence of moving contact point, at which three moving contact lines meet. We proposed a weighted contact angle model, to replace the jump in contact angle at the contact point by a relatively smooth transition of contact angle over a region of 'diffuse contact point' of finite size. Based on this model, we extended the geometrical formulation of wetting condition for two-phase flows with moving contact lines to ternary flows with moving contact lines. Combining this wetting condition, a Navier-Stokes solver and a ternary-fluid model, we simulated two-dimensional spreading of a compound droplet on a substrate, and validated the numerical results of the drop shape at equilibrium by comparing against the analytical solution. We also checked the convergence rate of the simulation by investigating the axisymmetric drop spreading in a capillary tube. Finally, we applied the model to a variety of applications of practical importance, including impact of a circular cylinder into a pool of two layers of different fluids and sliding of a three-dimensional compound droplet in shear flows.

  5. Nanoassembly of Polydisperse Photonic Crystals based on Binary and Ternary Polymer Opal Alloys

    CERN Document Server

    Zhao, Qibin; Schafer, Christian; Spahn, Peter; Gallei, Markus; Herrmann, Lars; Petukhov, Andrei; Baumberg, Jeremy J

    2016-01-01

    Ordered binary and ternary photonic crystals, composed of different sized polymer-composite spheres with diameter ratios up to 120%, are generated using bending induced oscillatory shearing (BIOS). This viscoelastic system creates polydisperse equilibrium structures, producing mixed opaline colored films with greatly reduced requirements for particle monodispersity, and very different sphere size ratios, compared to other methods of nano-assembly.

  6. A comparative first-principles study on electronic structures and mechanical properties of ternary intermetallic compounds Al8Cr4Y and Al8Cu4Y: Pressure and tension effects

    Science.gov (United States)

    Yang, Wenchao; Pang, Mingjun; Tan, Yong; Zhan, Yongzhong

    2016-11-01

    An investigation into the bulk properties, elastic properties and Debye temperature under pressure, and deformation mode under tension of Al8Cu4Y and Al8Cr4Y compounds was investigated by using first principles calculations based on density functional theory. The calculated lattice constants for the ternary compounds (Al8Cu4Y and Al8Cr4Y) are in good agreement with the experimental data. It can be seen from interatomic distances that the bonding between Al1 atom and Cr, Y, and Al2 atoms in Al8Cr4Y are stronger than Al8Cu4Y. The results of cohesive energy show that Al8Cr4Y should be easier to be formed and much stronger chemical bonds than Al8Cu4Y. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν can be obtained by using the Voigt-Reuss-Hill averaging scheme. From the results of elastic properties, Al8Cr4Y has the stronger mechanical behavior than Al8Cu4Y. Our calculations also show that pressure has a greater effect on mechanical behavior for both compounds. The ideal tensile strength are obtained by stress-strain relationships under [001](001) uniaxial tensile deformation, which are 15.4 and 23.4 GPa for Al8Cu4Y and Al8Cr4Y, respectively. The total and partial density of states and electron charge density under uniaxial tensile deformations for Al8Cu4Y and Al8Cr4Y compounds are also calculated and discussed in this work.

  7. Photoemission study of the uranium ternary compounds U3T3X4 (T = Ni, Cu; X = Sn, Sb)

    International Nuclear Information System (INIS)

    Valence-band structures of U3Ni3Sn4, U3Ni3Sb4, U3Cu3Sn4 and U3Cu3Sb4 ranging from a semiconductor to a heavy fermion system, are studied using photemission spectroscopy with synchrotron radiation. We found that the Ni 3d band in U3Ni3Sn4 is not fully filled up, the Cu 3d states in the ferromagnet U3Cu3Sb4 are strongly hybridized with the Sb 5p states, but the 3d states localized in the heavy-fermion compound U3Cu3Sn4. However, the U 5f emission spectra obtained by the resonant photoemission technique are nearly identical for all compounds and have an asymmetric peak of 1.6 eV in width. (author)

  8. Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns

    OpenAIRE

    Faisal Ahmed; Emam Hossain

    2013-01-01

    Recognition of human expression from facial image is an interesting research area, which has received increasing attention in the recent years. A robust and effective facial feature descriptor is the key to designing a successful expression recognition system. Although much progress has been made, deriving a face feature descriptor that can perform consistently under changing environment is still a difficult and challenging task. In this paper, we present the gradient local ternary pattern (G...

  9. Activity Coefficient Derivatives of Ternary Systems Based on Scatchard's Neutral Electrolyte description

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D G

    2007-05-16

    Activity coefficient derivatives with respect to molality are presented for the Scatchard Neutral Electrolyte description of a ternary common-ion electrolyte system. These quantities are needed for the calculation of 'diffusion Onsager coefficients' and in turn for tests of the Onsager Reciprocal Relations in diffusion. The usually-omitted b{sub 23} term is included. The direct SNE binary approximations and a further approximation are discussed. Binary evaluation strategies other than constant ionic strength are considered.

  10. Metal-amino acid (or peptide)-nucleoside (or related bases) ternary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Terron, A.; Fiol, J.J.; Herrero, L.A.; Garcia-Raso, A. [Departament de Quimica. Universitat de les Illes Balears. Palma de Mallorca. (Spain); Apella, M.C. [Cerela Centro de Referencia de Lactobacilos, Tucaman, Argentina (Antigua and Barbuda); Caubet, A.; Moreno, V. [Departament de Quimica Inorganica. Universitat de Barcelona. Barcelona (Spain)

    1997-05-01

    The knowledge of simultaneous metal ion interaction with proteins and nucleic acids is one of the most exciting subjects inside the Inorganic Biochemistry. In the last years, several groups have published articles on the synthesis and characterization of ternary complexes bringing relevant data on the structure and stability of metallo biomolecules. In this short review, the last contributions found in the literature are collected. Comments on the factors influencing the behaviour and stability of these systems are offered. (Author) 100 refs.

  11. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells

    Science.gov (United States)

    Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2016-10-01

    Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm-2 and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs.

  12. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells.

    Science.gov (United States)

    Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2016-10-14

    Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm(-2) and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs. PMID:27595326

  13. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    International Nuclear Information System (INIS)

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

  14. Elastic and electronic properties of antiperovskite-type Pd- and Pt-based ternary carbides from first-principles calculations

    International Nuclear Information System (INIS)

    Highlights: • 23 Pd- and Pt-based antiperovskite-type ternary carbides are probed from first principles. • Structural, elastic, electronic properties and inter-atomic bonding are evaluated. • A rich variety of mechanical and electronic properties was predicted. -- Abstract: By means of first-principles calculations, the structural, elastic, and electronic properties of a broad series of proposed Pd- and Pt-based antiperovskite-type ternary carbides AC(Pd,Pt)3, where A are Zn, Ca, Al, Ga, In, Ge, Hg, Sn, Cd, Pb, Ag, Sc, Ti, Y, Nb, Mo, and Ta, have been studied, and their stability, elastic constants, bulk, shear, and Young’s moduli, compressibility, Pugh’s indicator, Poisson’s ratio, indexes of elastic anisotropy, as well as electronic properties have been evaluated. We found that these materials should demonstrate a rich variety of mechanical and electronic properties depending on the type of A sublattices, which can include (unlike the majority of known 3d-metal-based antiperovskites) both sp elements and d atoms. We believe that the presented results will be useful for future synthesis of these phases, as well as for expanding our knowledge of this interesting group of antiperovskite-type materials

  15. Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram

    Science.gov (United States)

    Kudo, Shoji; Takiyama, Hiroshi

    2014-04-01

    In the pharmaceutical field, improvement of drug solubility is required, and an interest in cocrystals is growing. Crystallization methods for industrial production of cocrystals have not been developed enough whereas many cocrystals have been prepared in order to find a new crystal form by screening in the laboratory. The objective of this study was the development of the crystallization method which is useful for the industrial production of cocrystal particles based on the phase diagram. A cocrystal of carbamazepine and saccharin was selected as a model substance. The ternary phase diagram of carbamazepine and saccharin in methanol at 303 K was measured. A cocrystallization method of mixing two kinds of different eutectic solutions was designed based on the ternary phase diagram. In order to adjust the cocrystallization conditions, the determination method of the driving force for cocrystal deposition such as supersaturation based on mass balance was proposed. The cocrystal particles were obtained under all the conditions of the five mixing ratios. From these experimental results, the relationship between the supersaturation and the induction time for nucleation was confirmed as well as conventional crystallization. In conclusion, the crystallization method for industrial production of cocrystal particles including the determination of the supersaturation was suggested.

  16. Superconductivity, Magnetism, and Charge Density Wave Formation in Ternary Compounds with the SCANDIUM(5)COBALT(4)SILICON(10) - Structure.

    Science.gov (United States)

    Yang, Hung-Duen

    1987-05-01

    The variation of the superconducting transition temperature T(,c) with hydrostatic pressure up to 23.7 kbar is reported for eleven compounds with the Sc(,5)Co(,4)Si(,10) -type structure. Most of these compounds display a modest linear depression of T(,c) with pressure (dT(,c)/dp (TURN) 10('-5) K/bar), however, two materials, Lu(,5)Ir(,4)Si(,10) and Lu(,5)Rh(,4)Si(,10), undergo a discontinuous transformation above a critical pressure of about 20 kbar to a state with a significantly higher T(,c). The resistivity and magnetic susceptibility show an anomaly in Lu(,5)Ir(,4)Si(,10) and Lu(,5)Rh(,4)Si(,10) at T(,o) = 83 K and 155 K respectively. It is interpreted that this phase transformation may involve a charge density wave (CDW) formation that opens an energy gap over a portion of the Fermi surface. The P-T phase diagram for Lu(,5)Ir(,4)Si(,10), given to demonstrate the correlation between T(,o) and T(,c), provides the clear evidence that the pressure enhancement of T(,c) is due to a progressive removal of the charge density wave in the crystal. Combining the magnetic susceptibility and heat capacity data, we give a quantitative estimate of a 36% loss in the electronic density of states at the Fermi level due to this energy gap in Lu(,5)Ir(,4)Si(,10). The pseudoternary system (Lu(,1-x)Sc(,x))(,5)Ir(,4)Si(,10), 0 (LESSTHEQ) x (LESSTHEQ) 0.05, is used to study the doping (impurity) effect on the CDW and the competition between T(,o) and T(,c) in Lu(,5)Ir(,4)Si(,10). It is found that (dT(,o)/dx)(,x=0) = -18.5 K/at % and (dT(,c)/dx)(,x=0) = 0.5 K/at %, are comparable to another CDW system (Ta(,1 -x)Nb(,x))S(,3). The electrical and magnetic properties for R(,5)Ir(,4)Si(,10) (R = Dy-Yb) are also reported. All of these compounds exhibit an anomaly in resistivity, which is considered to be due to the formation of a CDW, similar to the one observed in Lu(,5)Ir(,4)Si(,10). Two distinct magnetic transitions with different features, seen in the ac magnetic susceptibility and heat

  17. Binary and ternary niobium-base superconductors by the infiltration process

    International Nuclear Information System (INIS)

    This report summarizes the work on high field superconducting materials and processes performed at the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory. Two major interrelated focal points characterize this research. One was the decision to restrict the effort to A-15 compounds because of their superior critical temperatures and critical fields. The inherent brittleness of these compounds along with the requirement for a filamentary morphology led to the second focal point: a heavy reliance on a powder approach for the fabrication of superconducting tapes and wires. There have been exceptions to the use of powder techniques where special circumstances such as the nature of a particular alloy system suggested on alternative approach. The quench-age technique described herein is an example of a non-powder approach. Here the niobium-aluminum system is involved and the methodology is based on the fact that in a certain composition range a solid solution of aluminum in niobium is the stable phase at elevated temperatures (19500C), whereas at lower temperatures (0C) the stable phase is the desired A-15 compound. Additionally, niobium forms deformation twins which were found to be effective sites for the nucleation of the A-15 phase

  18. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  19. Ternary (liquid + liquid) equilibria of {trifluorotris(perfluoroethyl)phosphate based ionic liquids + thiophene + heptane}: Part 2

    International Nuclear Information System (INIS)

    Highlights: • Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. • The influence of ionic liquid structure on phase diagrams is discussed. • Influence of IL structure on S and β for heptane/thiophene separation is discussed. - Abstract: Ternary (liquid + liquid) equilibria for 3 systems containing ionic liquids {(1-ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, 1-(2-hydroxyethyl)-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, ethyl-dimethyl-(2-methoxyethyl)ammonium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. The selectivity and solute distribution ratio were calculated for investigated systems and compared with literature values obtained for other systems containing ionic liquids with [FAP]− anions and [emim]+ cations. In each system, high solubility of thiophene and low solubility of heptane in the ionic liquid are observed. The experimental results have been correlated using NRTL model. The influence of the structure of ionic liquid on phase equilibria, selectivity and solute distribution ratio is discussed

  20. Microstructures in a ternary eutectic alloy: devising metrics based on neighbourhood relationships

    Science.gov (United States)

    Dennstedt, A.; Choudhury, A.; Ratke, L.; Nestler, B.

    2016-03-01

    Ternary eutectics, where three phases form simultaneously from the melt, present an opportunity to study the fundamental science of microstructural pattern formation during the process of solidification. In this paper we investigate these phenomena, both experimentally and by phase-field simulations. The aim is to develop necessary characterisation tools which can be applied to both experimentally determined and simulated microstructures for a quantitative comparison between simulations and experiments. In SEM images of experimental cross sections of directionally solidified Ag-Al-Cu ternary eutectic alloy at least six different types of microstructures are observed. Corresponding 3D phase-field simulations for different solidification conditions and compositions allow us to span and isolate the material parameters which influence the formation of three-phase patterns. Both experimental and simulated microstructures were analysed regarding interface lengths, triple points and number of neighbours. As a result of this integrated experimental and computational effort we conclude that neighbourhood relationships as described herein, turn out to be an appropriate basis to characterise order in patterns.

  1. Study on La–Mg based ternary system for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Capurso, Giovanni, E-mail: giovanni.capurso@gmail.com [Dipartimento di Ingegneria Industriale, Università di Padova, via Marzolo 9, 35131 Padova (Italy); Naik, Mehraj-ud-din; Lo Russo, Sergio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, via Marzolo 8, 35131 Padova (Italy); Maddalena, Amedeo [Dipartimento di Ingegneria Industriale, Università di Padova, via Marzolo 9, 35131 Padova (Italy); Saccone, Adriana; Gastaldo, Federica; De Negri, Serena [Dipartimento di Chimica e Chimica Industriale, Università di Genova, via Dodecaneso 31, 16146 Genova (Italy)

    2013-12-15

    Highlights: ► Explorative study in the Mg-rich corner of the La–Pd–Mg ternary system. ► The studied alloys lay on the La{sub 2}(Mg{sub 1−x}Pd{sub x}){sub 17} compositional line. ► Higher Pd content results in lower H{sub 2} capacity, but higher equilibrium pressures. ► The highest absorbed hydrogen quantity is 4.8 wt% at 2 MPa and 310 °C. -- Abstract: An explorative study on the hydriding/dehydriding characteristics of the La{sub 2}(Mg,Pd){sub 17} ternary alloy, with different Pd content, is presented. All the samples were prepared by induction melting of the selected elements, characterized with scanning electron microscopy and X-ray powder diffraction, to detect present phases, and subsequently milled with a high-energy shaker apparatus. The hydrogen reaction kinetics and thermodynamics properties have been investigated by means of a volumetric Sievert’s apparatus. The measured H{sub 2} gravimetric capacity of the alloy varied with the Pd content, being the highest for the sample without Pd (>4.5 wt%). A possible correlation between the constituent phases individuated with microanalysis and the variation in the hydrogenation behaviour is proposed.

  2. Predicting magnetostructural trends in equiatomic FeRh-based ternary systems

    Science.gov (United States)

    Barua, Radhika; Jimenez-Villacorta, Felix; Lewis, Laura; Nanomagnetism Group Team

    2013-03-01

    A phenomenological model is proposed to predict the influence of elemental substitution on the magnetostructural transition temperatures and Curie temperatures of nominally-equiatomic FeRh-based compounds with the B2 (CsCl)-type crystal structure. Clear trends in the characteristic magnetic transition temperatures, as reported in the literature, are found as a function of the averaged weighted valence band electrons ((s + d) electrons/atom) in compounds of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals). Substitution of 3 d or 4 d elements (FeRh causes the magnetostructural transition temperature Tt to increase to a maximum around a critical valence band electron concentration of 8.5 electrons/atom and then decrease. Substitution of 5 d transition metal atoms echoes this trend but shifts it to higher transition temperatures. These data and associated trends allow deductions that the stability of the ground state antiferromagnetic phase of the FeRh-based system depends both on the size of the constituent atoms as well as the character of the valence electrons. Research was performed under the auspices of the U.S. Dept. of Energy, Division of Materials Science, Office of Basic Energy Sciences (Contract No. DE-SC0005250).

  3. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    Science.gov (United States)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-01

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications.

  4. Crystal structure and physical properties of new ternary rare earth borides

    International Nuclear Information System (INIS)

    Two ternary boride systems with a new type of structure are reported for MRh3B2 (M equivalent to Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) and MIr3B2 (M equivalent to Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y). These materials were found to crystallize in a base-centered monoclinic structure with space group C2/m and two formula units per unit cell. The proposed atomic positions were determined by a structural study of the ErIr3B2 compound. The magnetic and superconducting properties are discussed by comparisons with those of other related binary and ternary compounds. (Auth.)

  5. Thermodynamic modeling of the Au-Sb-Si ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J., E-mail: jiang.wang@empa.ch [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, Duebendorf, Zuerich CH-8600 (Switzerland); Liu, Y.J. [Western Transportation Institute, Montana State University, Bozeman, MT 59715 (United States); Liu, L.B. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Zhou, H.Y. [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Jin, Z.P. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2011-02-10

    Research highlights: > Thermodynamic optimization of the Au-Sb binary system was updated. > The Si-Sb binary system was assessed from critical review of experimental information. > Thermodynamic modeling of the Au-Sb-Si ternary system was performed. > The phase relations of this ternary system are useful to design Au-based solders. - Abstract: Thermodynamic optimization of the Au-Sb binary system was updated as well as the Si-Sb binary system was assessed thermodynamically using the CALPHAD method based on the critical review of the available experimental information from the published literature. The solution phases including liquid, fcc{sub A}1(Au), diamond{sub A}4(Si) and rhombohedral{sub A}7(Sb), are modeled as substitutional solutions and their excess Gibbs energies are expressed by a Redlich-Kister polynomial. The solubility of Si in the intermetallic compound AuSb{sub 2} is not taken into account because of the lack of experimental information. Combined with previous assessment of the Au-Si binary system, thermodynamic modeling of the Au-Sb-Si ternary system was performed to reproduce well the measured phase equilibria. The liquidus projection and several vertical sections of this ternary system were calculated, which are in reasonable agreement with the reported experimental data.

  6. Long-range structural correlations in amorphous ternary In-based oxides

    Science.gov (United States)

    Khanal, Rabi; Medvedeva, Julia

    2015-03-01

    In recent years, there is an increasing shift towards the use of oxide semiconductor materials in their amorphous form owing to several technological advantages and the fact that amorphous oxides exhibit similar or even superior properties than their crystalline counterparts. In this work we have systemically investigated the effect of chemical composition and oxygen stoichiometry on the local and long-range structure of ternary amorphous oxides, namely In-X-O with X =Sn, Zn, Ga, Cd, Ge, Sc, Y, or La, by means of ab-initio molecular dynamics. The results reveal that the local MO structure remains nearly intact upon amorphization and exhibit weak dependence on the composition. In marked contrast, the structural characteristics of the metal-metal shell, namely, the M-M distances and M-O-M angles that determine how MO polyhedra are connected into a network, are affected by the presence of X. Complex interplay between several factors such as the cation ionic size, metal-oxygen bond strength, as well as the natural preference for edge, corner, or face-sharing between the MO polyhedra, leads to a correlated behavior in the long-range structure. These findings highlight the mechanisms of the amorphous structure formation as well as the species of the carrier transport in these oxides.

  7. Determination of thermodynamic properties of aluminum based binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Altıntas, Yemliha [Abdullah Gül University, Faculty of Engineering, Department of Materials Science and Nanotechnology, 38039, Kayseri (Turkey); Aksöz, Sezen [Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Physics, 50300, Nevşehir (Turkey); Keşlioğlu, Kâzım, E-mail: kesli@erciyes.edu.tr [Erciyes University, Faculty of Science, Department of Physics, 38039, Kayseri (Turkey); Maraşlı, Necmettin [Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, 34210, Davutpaşa, İstanbul (Turkey)

    2015-11-15

    In the present work, the Gibbs–Thomson coefficient, solid–liquid and solid–solid interfacial energies and grain boundary energy of a solid Al solution in the Al–Cu–Si eutectic system were determined from the observed grain boundary groove shapes by measuring the thermal conductivity of the solid and liquid phases and temperature gradient. Some thermodynamic properties such as the enthalpy of fusion, entropy of fusion, the change of specific heat from liquid to solid and the electrical conductivity of solid phases at their melting temperature were also evaluated by using the measured values of relevant data for Al–Cu, Al–Si, Al–Mg, Al–Ni, Al–Ti, Al–Cu–Ag, Al–Cu–Si binary and ternary alloys. - Highlights: • The microstructure of the Al–Cu–Si eutectic alloy was observed through SEM. • The three eutectic phases (α-Al, Si, CuAl{sub 2}) have been determined by EDX analysis. • Solid–liquid and solid–solid interfacial energies of α-Al solution were determined. • ΔS{sub f},ΔH{sub M}, ΔC{sub P}, electrical conductivity of solid phases for solid Al solutions were determined. • G–T coefficient and grain boundary energy of solid Al solution were determined.

  8. Soft Ternary Semirings

    Directory of Open Access Journals (Sweden)

    S. Kar

    2016-03-01

    Full Text Available In this paper, we introduce the notion of soft ternary semiring by using the concept of soft set theory. Besides, we characterize the notions of regularity and intra-regularity in soft ternary semiring by using different soft (left, lateral, right, quasi, bi ideals of soft ternary semirings.

  9. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  10. The Influence of Sn Additions on the Thermoelectric and Transport Properties of FeSb2Te-based Ternary Skutterudites

    Science.gov (United States)

    Navrátil, J.; Plecháček, T.; Drašar, Č.; Kucek, V.; Laufek, F.; Černošková, E.; Beneš, L.; Vlček, M.

    2016-06-01

    The influence of Sn additions was studied in a series of samples of a nominal composition FeSb2Te1- x Sn x ( x = 0, 0.05, 0.1, 0.15, 0.2). SnTe compound was primarily identified in the matrix compound of the ternary skutterudite structure in the multiphase composite samples. It was determined that Sn atoms preferentially react with Te atoms which are present in order to form SnTe compound instead of entering the skutterudite structure. A detailed analysis of the composition of the ternary skutterudite matrix compound evoked by the striking similarities of the observed changes between the samples and another two published systems (FeSb2Te1- x Ge x and FeSb2+ x Te1- x ) revealed the crucial role of the Sb/Te ratio as the dominant factor driving the observed changes of the measured properties. The anomalous changes of the measured transport properties values were explained in terms of an effective medium theory for two-phase FeSb2Te-SnTe composites. A maximum value of thermoelectric figure-of-merit, ZT = 0.47 at 673 K, was attained for the sample of a nominal composition FeSb2Te0.85Sn0.15.

  11. Uniform deposition of ternary chalcogenide nanoparticles onto mesoporous TiO2 film using liquid carbon dioxide-based coating

    International Nuclear Information System (INIS)

    We report the simultaneous deposition of two different metal precursors dissolved in liquid carbon dioxide (l-CO2), aiming to the synthesis of ternary chalcopyrite (e.g. CuInS2) nanoparticles on a mesoporous TiO2 film. The l-CO2-based deposition of Cu and In precursors and subsequent reaction with a dilute H2S gas resulted in CuxInySz nanoparticles uniformly deposited across the entire thickness of a mesoporous TiO2 film. Further heat treatment (air annealing and sulfurization) led to the formation of more stoichiometric CuInS2 nanoparticles. The formation of CuInS2 on TiO2 was confirmed by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The crystal growth of CuInS2 was also found to be controllable by adjusting the number of coating cycles of the l-CO2-based deposition. - Highlights: • Simultaneous deposition of two different metal precursors dissolved in l-CO2. • Uniform deposition of CuInS2 nanoparticles across mesoporous TiO2 film. • Highly crystalline CuInS2 formed on mesoporous TiO2 film. • Nearly stoichiometric ratio of Cu:In:S was obtained

  12. Monolayer MoS2 metal insulator transition based memcapacitor modeling with extension to a ternary device

    Science.gov (United States)

    Khan, Abdul Karim; Lee, Byoung Hun

    2016-09-01

    Memcapacitor model based on its one possible physical realization is developed and simulated in order to know its limitation before making a real device. The proposed device structure consists of vertically stacked dielectric layer and MoS2 monolayer between two external metal plates. The Metal Insulator Transition (MIT) phenomenon of MoS2 monolayer is represented in terms of percolation probabilty which is used as the system state. Cluster based site percolation theory is used to mimic the MIT of MoS2 which shows slight discontinuous change in MoS2 monolayer conductivity. The metal to insulator transition switches the capacitance of the device in hysterical way. An Ioffe Regel criterion is used to determine the MIT state of MoS2 monolayer. A good control of MIT time in the range of psec is also achieved by changing a single parameter in the model. The model shows memcapacitive behavior with an edge of fast switching (in psec range) over the previous general models. The model is then extended into vertical cascaded version which behaves like a ternary device instead of binary.

  13. On the importance of thermodynamic investigations for the re-assessment of selected ternary Fe-base systems

    Science.gov (United States)

    Presoly, P.; Bernhard, C.

    2016-07-01

    Reliable thermodynamic data are essential for the design and the production of new alloying systems. Particularly, the knowledge of the high-temperature phase transformations (TLiquid, TSolid, TPerit, Tγ→δ) are important for the solidification and the further processing. Investigations of selected commercial Dual-Phase, TRIP and high-Mn TWIP steels by DTA/DSC measurements show that the experimental results differ significantly from the calculation results of thermodynamic databases with respect to the phase transformation temperature and sequence. Based on these findings, it is very important to identify the defective subsystems of complex alloys in order to optimise the thermodynamic databases. In order to verify a quaternary system, e.g. the Fe-C-Si-Mn system, it is important to check the corresponding ternary subsystems. This was performed by DSC measurements of selected model alloys. By doing so, it was found that in Si- and Mn-alloyed Dual-Phase steels the thermodynamic description of the Fe-Si-Mn system is currently inadequate. This is a very important result, since all new designed steel grades for the automotive industry are based on a Fe-C-Si-Mn matrix.

  14. Solvent effect on H-bond cooperativity factors in ternary complexes of methanol, octan-1-ol, 2,2,2-trifluoroethanol with some bases

    Science.gov (United States)

    Solomonov, Boris N.; Varfolomeev, Mikhail A.; Abaidullina, Dilyara I.

    2008-03-01

    Cooperative hydrogen bonds in ternary complexes (ROH) 2⋯B (ROH—alcohols; B—bases) formed in pure bases (B) and solutions in n-hexane, carbon tetrachloride, benzene and 1,2-dichloroethane were studied by FTIR spectroscopy. Based on the observations, the authors were able to propose an original method of evaluating solvent effects on cooperativity factors in the complexes. Frequencies of cooperative hydrogen bonds OH⋯B ( νb) were determined for ternary complexes of pyridine with aliphatic alcohols (methanol, octan-1-ol) and for 2,2,2-trifluoroethanol with three different bases (acetonitrile, diethyl ether, tetrahydrofuran). The solvent shifts of νb were found to correlate with an empirical thermochemical parameter of the solvent, SVW. The cooperativity factors were determined for the complexes (ROH) 2⋯B in all studied media. It has been found that the cooperativity factors are almost independent of the solvent. In addition, a method was proposed of estimating the frequencies and cooperativity factors for ternary complexes (ROH) 2⋯B in the gas phase. It has been found that in gas phase the cooperativity factors are practically the same as in condensed media.

  15. Production of Al-Co-Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing

    Science.gov (United States)

    Alkan, Murat; Sonmez, M. Seref; Derin, Bora; Yücel, Onuralp; Andreev, Dmitrii E.; Sanin, Vladimir N.; Yukhvid, Vladimir I.

    2015-05-01

    In this study, Al-Co-Ni ternary alloys were synthesized, in order to obtain low-cost starting material for Ni-based superalloy production, by a self-propagating high temperature synthesis (SHS) both under normal gravity conditions (a = 9.81 m/s2) and under high gravity conditions (up to 1000 g-force) by using a centrifugal machine. The mixture of Co3O4-NiO powder were reduced by Al powder for the production of SHS alloys with the estimated compositions of 5-10 mass% Al, 20-65 mass% Co, 25-75 mass% Ni. The effect of green mixture compositions and centrifugal overload on combustion temperature, alloy/slag separations, chemical composition and microstructure of final alloys were investigated. The chemical analysis results showed that production of SHS alloys were achieved by having up to 86.12% of Co and 92.32% of Ni recoveries. The highest metal recovery value was obtained in SHS alloy with the estimated composition of 10%Al-65%Co-25%Ni by the addition of 20% Al2O3 into the green mixture. The metal/slag separation efficiency increased by increasing the centrifugal overload.

  16. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction.

    Science.gov (United States)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E; Lowe, Michael A; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A; Xin, Huolin L; Abruña, Héctor D

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  17. Synthesis, characteristics and luminescent properties of a new Tb(III) ternary complex applied in near UV-based LED

    Science.gov (United States)

    Sun, Naiqun; Li, Liping; Yang, Yamin; Zhang, Aiqin; Jia, Husheng; Liu, Xuguang; Xu, Bingshe

    2015-11-01

    A novel Tb(III) ternary complex, Tb(p-BBA)3UA, was synthesized with 4-benzoylbenzoic acid (p-BBA) as primary ligand and undecylenic acid (UA) as reactive ligand. Tb(III) complex exhibits high thermal stability and wide and strong excitation bands from 310 nm to 400 nm when monitored at 543 nm, which matches well with the 365 nm UV chip. The complex displays Tb(III) characteristic peaks at 488, 543, 584 and 619 nm under the excitation of 365 nm UV-light. The intramolecular energy transfer process was also discussed. Meanwhile, the complex has longer fluorescence lifetime (1.317 ms) and higher quantum yield (44.8%). When used in LED with 365 nm UV chip (power efficiency is 17.3 lm/W), the complex still maintained its qualified luminescent performance. All the results indicate that Tb(p-BBA)3UA can be applied as a green component for fabrication of near UV-based white LED.

  18. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  19. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  20. Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation.

    Science.gov (United States)

    Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo

    2014-09-01

    Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case. PMID:25060000

  1. Co-based ternary nanocomposites: synthesis and their superior performances for hydrogenation of p-nitrophenol and adsorption for methyl blue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Yuan; Fan, Yan-Ling; Ni, Jing-Jing; Xu, Ting-Ting; Song, Ji-Ming, E-mail: songjm@ahu.edu.cn, E-mail: jiming@ahu.edu.cn [Anhui University, The Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, School of Chemistry & Chemical Engineering (China)

    2016-01-15

    A new kind of Co-based ternary nanocomposites has been obtained via one step without any additional surfactant at zero centigrade degree. Some experimental parameters play crucial roles in determining the morphologies and homogeneity of the final products, such as reaction temperature and the introduction of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O. The samples were characterized by XRD, SEM, TEM, UV–Vis, XPS, and BET. The result reveals that the as-prepared samples are Co{sub 1.29}Ni{sub 1.71}O{sub 4}–Co{sub 3}S{sub 4}–Co{sub 3}O{sub 4} Co-based ternary nanocomposites with an elliptic morphology composed of numerous fold-shaped superthin films (average thickness of ca. 2 nm). Interestingly, the obtained nanocomposites display superior performance for the hydrogenation of p-nitrophenol at room temperature in the presence of NaBH{sub 4}. More importantly, the as-prepared nanocomposites show the huge adsorption capacity for methyl blue at room temperature, reaches 1100 mg g{sup −1}. Graphical Abstract: A kind of new-type Co-based ternary nanocomposites has been obtained via one step without surfactants at zero centigrade degree. The as-prepared nanocomposites display superior performance for the hydrogenation of p-nitrophenol in the presence of NaBH{sub 4} at room temperature.

  2. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material

    Science.gov (United States)

    Stylianakis, M. M.; Konios, D.; Kakavelakis, G.; Charalambidis, G.; Stratakis, E.; Coutsolelos, A. G.; Kymakis, E.; Anastasiadis, S. H.

    2015-10-01

    A graphene-based porphyrin molecule (GO-TPP) was synthesized by covalent linkage of graphene oxide (GO) with 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP-NH2). The yielded graphene-based material is a donor-acceptor (D-A) molecule, exhibiting strong intermolecular interactions between the GO core (A) and the covalently anchored porphyrin molecule (D). To demonstrate the universal role of GO-TPP as an electron cascade material, ternary blend organic photovoltaics based on [6,6]-phenyl-C71-butyric-acid-methyl-ester (PC71BM) as an electron acceptor material and two different polymer donor materials, poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) and the highly efficient poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7), were fabricated. The addition of GO-TPP into the active layer implies continuous percolation paths between the D-A interfaces, enhancing charge transport, reducing exciton recombination and thus improving the photovoltaic performance of the device. A simultaneous increase of short circuit current density (Jsc), open-circuit voltage (Voc) and fill factor (FF), compared to the PTB7:PC71BM reference cell, led to an improved power conversion efficiency (PCE) of 8.81% for the PTB7:GO-TPP:PC71BM-based device, owing mainly to the more efficient energy level offset between the active layer components.A graphene-based porphyrin molecule (GO-TPP) was synthesized by covalent linkage of graphene oxide (GO) with 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP-NH2). The yielded graphene-based material is a donor-acceptor (D-A) molecule, exhibiting strong intermolecular interactions between the GO core (A) and the covalently anchored porphyrin molecule (D). To demonstrate the universal role of GO-TPP as an electron cascade material, ternary blend organic photovoltaics based on [6,6]-phenyl-C71-butyric

  3. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material.

    Science.gov (United States)

    Stylianakis, M M; Konios, D; Kakavelakis, G; Charalambidis, G; Stratakis, E; Coutsolelos, A G; Kymakis, E; Anastasiadis, S H

    2015-11-14

    A graphene-based porphyrin molecule (GO-TPP) was synthesized by covalent linkage of graphene oxide (GO) with 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP-NH2). The yielded graphene-based material is a donor-acceptor (D-A) molecule, exhibiting strong intermolecular interactions between the GO core (A) and the covalently anchored porphyrin molecule (D). To demonstrate the universal role of GO-TPP as an electron cascade material, ternary blend organic photovoltaics based on [6,6]-phenyl-C71-butyric-acid-methyl-ester (PC71BM) as an electron acceptor material and two different polymer donor materials, poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) and the highly efficient poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7), were fabricated. The addition of GO-TPP into the active layer implies continuous percolation paths between the D-A interfaces, enhancing charge transport, reducing exciton recombination and thus improving the photovoltaic performance of the device. A simultaneous increase of short circuit current density (Jsc), open-circuit voltage (Voc) and fill factor (FF), compared to the PTB7:PC71BM reference cell, led to an improved power conversion efficiency (PCE) of 8.81% for the PTB7:GO-TPP:PC71BM-based device, owing mainly to the more efficient energy level offset between the active layer components.

  4. High volume intermetallics reinforced Ti-based composites in situ synthesized from Ti-Si-Sn ternary system

    International Nuclear Information System (INIS)

    Research highlights: → Ti-based composites reinforced with 20-40 vol.% eutectic Ti5Si3 or Ti3Sn + Ti5Si3 intermetallics were in situ synthesized. → Significant increase of Young's modulus and ultimate compressive strength was obtained. → Modification of the shape and interface of the intermetallic particles can further improve the mechanical properties. - Abstract: Ti-based alloys or composites reinforced with high fraction of intermetallic or ceramic phases may be good candidate for aerospace components operating under vibration and extremely difficult environments that require high strength, elasticity and damping capacity. In the present work, Ti-based composites reinforced with eutectic Ti5Si3 or Ti3Sn + Ti5Si3 intermetallics with volume fraction up to 20-40% have been synthesized from the Ti-Si-Sn ternary system, through non-consumable vacuum arc melting. The composites exhibit a hyporeutectic microstructure with primary Ti solid solution or/and Ti3Sn phases, plus an (α-Ti + Ti5Si3) eutectic. The results of room-temperature compressive test show that the composites exhibit significant increase of Young's modulus and higher ultimate compressive strength (UCS) than the Ti-Si hypoeutectic alloy, which can be attributed to the presence of intermetallics i.e. Ti5Si3 or (Ti3Sn + Ti5Si3) and the solute atom Sn in the Ti matrix. It is implied from the fractography that modification of the shape and interface of the intermetallics particles can further improve the mechanical properties of the Ti-based composites.

  5. Influence of the active layer nanomorphology on device performance for ternary PbS(x)Se(1-x) quantum dots based solution-processed infrared photodetector.

    Science.gov (United States)

    Song, Taojian; Cheng, Haijuan; Fu, Chunjie; He, Bo; Li, Weile; Xu, Junfeng; Tang, Yi; Yang, Shengyi; Zou, Bingsuo

    2016-04-22

    In this paper, the influence of the active layer nanomorphology on device performance for ternary PbS(x)Se(1-x) quantum dot-based solution-processed infrared photodetector is presented. Firstly, ternary PbS(x)Se(1-x) quantum dots (QDs) in various chemical composition were synthesized and the bandgap of the ternary PbS(x)Se(1-x) QDs can be controlled by the component ratio of S/(S + Se), and then field-effect transistor (FET) based photodetectors Au/PbS0.4Se0.6:P3HT/PMMA/Al, in which ternary PbS0.4Se0.6 QDs doped with poly(3-hexylthiophene) (P3HT) act as the active layer and poly(methyl methacrylate) (PMMA) as the dielectric layer, were presented. By changing the weight ratio of P3HT to PbS0.4Se0.6 QDs (K = M(P3HT):M(QDs)) in dichlorobenzene solution, we found that the device with K = 2:1 shows optimal electrical property in dark; however, the device with K = 1:2 demonstrated optimal performance under illumination, showing a maximum responsivity and specific detectivity of 55.98 mA W(-1) and 1.02 × 10(10) Jones, respectively, at low V(DS) = -10 V and V(G) = 3 V under 980 nm laser with an illumination intensity of 0.1 mW cm(-2). By measuring the atomic force microscopy phase images of PbS0.4Se0.6:P3HT films in different weight ratio K, our experimental data show that the active layer nanomorphology has a great influence on the device performance. Also, it provides an easy way to fabricate high performance solution-processed infrared photodetector.

  6. Influence of the active layer nanomorphology on device performance for ternary PbS(x)Se(1-x) quantum dots based solution-processed infrared photodetector.

    Science.gov (United States)

    Song, Taojian; Cheng, Haijuan; Fu, Chunjie; He, Bo; Li, Weile; Xu, Junfeng; Tang, Yi; Yang, Shengyi; Zou, Bingsuo

    2016-04-22

    In this paper, the influence of the active layer nanomorphology on device performance for ternary PbS(x)Se(1-x) quantum dot-based solution-processed infrared photodetector is presented. Firstly, ternary PbS(x)Se(1-x) quantum dots (QDs) in various chemical composition were synthesized and the bandgap of the ternary PbS(x)Se(1-x) QDs can be controlled by the component ratio of S/(S + Se), and then field-effect transistor (FET) based photodetectors Au/PbS0.4Se0.6:P3HT/PMMA/Al, in which ternary PbS0.4Se0.6 QDs doped with poly(3-hexylthiophene) (P3HT) act as the active layer and poly(methyl methacrylate) (PMMA) as the dielectric layer, were presented. By changing the weight ratio of P3HT to PbS0.4Se0.6 QDs (K = M(P3HT):M(QDs)) in dichlorobenzene solution, we found that the device with K = 2:1 shows optimal electrical property in dark; however, the device with K = 1:2 demonstrated optimal performance under illumination, showing a maximum responsivity and specific detectivity of 55.98 mA W(-1) and 1.02 × 10(10) Jones, respectively, at low V(DS) = -10 V and V(G) = 3 V under 980 nm laser with an illumination intensity of 0.1 mW cm(-2). By measuring the atomic force microscopy phase images of PbS0.4Se0.6:P3HT films in different weight ratio K, our experimental data show that the active layer nanomorphology has a great influence on the device performance. Also, it provides an easy way to fabricate high performance solution-processed infrared photodetector. PMID:26963474

  7. Influence of the active layer nanomorphology on device performance for ternary PbS x Se1-x quantum dots based solution-processed infrared photodetector

    Science.gov (United States)

    Song, Taojian; Cheng, Haijuan; Fu, Chunjie; He, Bo; Li, Weile; Xu, Junfeng; Tang, Yi; Yang, Shengyi; Zou, Bingsuo

    2016-04-01

    In this paper, the influence of the active layer nanomorphology on device performance for ternary PbS x Se1-x quantum dot-based solution-processed infrared photodetector is presented. Firstly, ternary PbS x Se1-x quantum dots (QDs) in various chemical composition were synthesized and the bandgap of the ternary PbS x Se1-x QDs can be controlled by the component ratio of S/(S + Se), and then field-effect transistor (FET) based photodetectors Au/PbS0.4Se0.6:P3HT/PMMA/Al, in which ternary PbS0.4Se0.6 QDs doped with poly(3-hexylthiophene) (P3HT) act as the active layer and poly(methyl methacrylate) (PMMA) as the dielectric layer, were presented. By changing the weight ratio of P3HT to PbS0.4Se0.6 QDs (K = MP3HT:MQDs) in dichlorobenzene solution, we found that the device with K = 2:1 shows optimal electrical property in dark; however, the device with K = 1:2 demonstrated optimal performance under illumination, showing a maximum responsivity and specific detectivity of 55.98 mA W-1 and 1.02 × 1010 Jones, respectively, at low V DS = -10 V and V G = 3 V under 980 nm laser with an illumination intensity of 0.1 mW cm-2. By measuring the atomic force microscopy phase images of PbS0.4Se0.6:P3HT films in different weight ratio K, our experimental data show that the active layer nanomorphology has a great influence on the device performance. Also, it provides an easy way to fabricate high performance solution-processed infrared photodetector.

  8. Measurements of second-order susceptibility at λ=1.5 μm in CdTe-based ternary alloys for efficient wavelength conversion

    Science.gov (United States)

    Zappettini, Andrea; Pietralunga, Silvia M.; Milani, Antonella; Martinelli, Mario; Mycielski, Andrzej

    2000-10-01

    We have characterized the second-order optical nonlinear response of II-VI semiconductor ternary compounds Cd0.8Zn0.2Te and Cd0.78Mn0.22Te at λ=1.5 μm. A spectrally resolved phase-mismatch second-harmonic generation (SHG) technique has been used on bulk single crystals, exploiting 10-13 s optical pulses and multichannel detection. The nonlinear d coefficient has been measured and chromatic dispersion parameters have been validated. By normalizing SHG results in view of applications to all-optical wavelength conversion, the tested compounds prove to be interesting alternatives to more renowned AlxGa1-xAs.

  9. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites.

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-01-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254

  10. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites.

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-21

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  11. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-01-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254

  12. Synthesis and characterization of the new ternary uranium compound U{sub 1.2}Fe{sub 4}Si{sub 9.7}

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Satoru; Okuda, Kiichi; Adachi, Tomohiro [Osaka Prefectural Univ., Sakai (Japan); Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika

    1997-09-01

    A single crystal of a new ternary silicide U{sub 1.2}Fe{sub 4}Si{sub 9.7} has been synthesized by the Czochralski method and characterized by X-ray diffraction, magnetization, specific heat and electrical resistivity measurements. It crystallizes in the hexagonal Er{sub 1.2}Fe{sub 4}Si{sub 9.8}-type structure characterized by a disordered two-dimensional layer of U-atoms. The lattice parameters are a = 3.956(1) A and c = 15.055(2) A. Magnetic susceptibility follows the Curie-Weiss law down to 40 K with the effective magnetic moment of 2.4 {mu}{sub B}/U. The electronic specific heat coefficient, {gamma} of 180 mJ/K{sup 2}mol{center_dot}U was obtained. A large residual resistivity due to the disordered structure of the U-Si layer was observed. (author)

  13. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  14. Ternary DNA chip based on a novel thymine spacer group chemistry.

    Science.gov (United States)

    Yang, Yanli; Yildiz, Umit Hakan; Peh, Jaime; Liedberg, Bo

    2015-01-01

    A novel thymine-based surface chemistry suitable for label-free electrochemical DNA detection is described. It involves a simple two-step sequential process: immobilization of 9-mer thymine-terminated probe DNAs followed by backfilling with 9-mer thymine-based spacers (T9). As compared to commonly used organic spacer groups like 2-mercaptoethanol, 3-mercapto-1-propanol and 6-mercapto-1-hexanol, the 9-mer thymine-based spacers offer a 10-fold improvement in discriminating between complementary and non-complementary target hybridization, which is due mainly to facilitated transport of the redox probes through the probe-DNA/T9 layers. Electrochemical measurements, complemented with Surface Plasmon Resonance (SPR) and Quartz Crystal Microbalance (QCM-D) binding analyses, reveal that optimum selectivity between complementary and non-complementary hybridization is obtained for a sensing surface prepared using probe-DNA and backfiller T9 at equimolar concentration (1:1). At this particular ratio, the probe-DNAs are preferentially oriented and easily accessible to yield a sensing surface with favorable hybridization and electron transfer characteristics. Our findings suggest that oligonucleotide-based spacer groups offer an attractive alternative to short organic thiol spacers in the design of future DNA biochips. PMID:25465760

  15. The ternary Goldbach conjecture is true

    OpenAIRE

    Helfgott, H. A.

    2013-01-01

    The ternary Goldbach conjecture, or three-primes problem, asserts that every odd integer $n$ greater than $5$ is the sum of three primes. The present paper proves this conjecture. Both the ternary Goldbach conjecture and the binary, or strong, Goldbach conjecture had their origin in an exchange of letters between Euler and Goldbach in 1742. We will follow an approach based on the circle method, the large sieve and exponential sums. Some ideas coming from Hardy, Littlewood and Vinogradov are r...

  16. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  17. Ternary rare-earth based alternative gate-dielectrics for future integration in MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Juergen; Lopes, Joao Marcelo; Durgun Oezben, Eylem; Luptak, Roman; Lenk, Steffi; Zander, Willi; Roeckerath, Martin [IBN 1-IT, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-07-01

    The dielectric SiO{sub 2} has been the key to the tremendous improvements in Si-based metal-oxide-semiconductor (MOS) device performance over the past four decades. It has, however, reached its limit in terms of scaling since it exhibits a leakage current density higher than 1 A/cm{sup 2} and does not retain its intrinsic physical properties at thicknesses below 1.5 nm. In order to overcome these problems and keep Moore's law ongoing, the use of higher dielectric constant (k) gate oxides has been suggested. These high-k materials must satisfy numerous requirements such as the high k, low leakage currents, suitable band gap und offsets to silicon. Rare-earth based dielectrics are promising materials which fulfill these needs. We will review the properties of REScO{sub 3} (RE = La, Dy, Gd, Sm, Tb) and LaLuO{sub 3} thin films, grown with pulsed laser deposition, e-gun evaporation or molecular beam deposition, integrated in capacitors and transistors. A k > 20 for the REScO{sub 3} (RE = Dy, Gd) and around 30 for (RE = La, Sm, Tb) and LaLuO{sub 3} are obtained. Transistors prepared on SOI and sSOI show mobility values up to 380 cm{sup 2}/Vs on sSOI, which are comparable to such prepared with HfO{sub 2}.

  18. Cerium-based binary and ternary oxides in the transesterification of dimethylcarbonate with phenol.

    Science.gov (United States)

    Dibenedetto, Angela; Angelini, Antonella; di Bitonto, Luigi; De Giglio, Elvira; Cometa, Stefania; Aresta, Michele

    2014-04-01

    Diphenyl carbonate (DPC) plays a key role in phosgene-free carbonylation processes. It can be produced by transesterification of dimethyl carbonate (DMC) with phenol in the presence of catalysts. Methyl phenyl carbonate (MPC) is first produced that is then converted into DPC by either disproportionation or further transesterification with phenol. Cerium-based bimetallic oxides (with the heterometal being niobium, iron, palladium, or aluminum) are used as catalysts in the transesterification of DMC to synthesize MPC. The catalytic activity is affected by the type and concentration of the heterometal. XPS, IR and elementary analyses are employed to characterize the new catalysts. Differently from pure oxides, the mixed oxides produce a significant increase of the conversion and selectivity towards MPC. PMID:24616260

  19. A New Nonlinear Compound Forecasting Method Based on ANN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper the compound-forecasting method is discussed. The compound-forecasting method is one of the hotspots in the current predication. Firstly, the compound-forecasting method is introduced and various existing compound-forecasting methods arediscussed. Secondly, the Artificial Neural Network (ANN) is brought in compound-prediction research and a nonlinear compound-prediction model based on ANN is presented. Finally, inorder to avoid irregular weight, a new method is presented which uses principal component analyses to increase the availability of compound-forecasting information. Higherforecasting precision is achieved in practice.

  20. Microstructural and mechanical characterization of Nb-based in situ composites from Nb-Si-Ti ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Department of Mechanics and Mechanical Engineering, CAS Key Laboratory for Mechanical Behavior and Design of Materials, School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui (China); Peng, L.M. [Department of Mechanics and Mechanical Engineering, CAS Key Laboratory for Mechanical Behavior and Design of Materials, School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui (China)], E-mail: penglm@ustc.edu.cn

    2007-11-15

    This study deals with the Nb-niobium silicide-based composites developed by the hot-pressing of Nb-Si-Ti ternary powder mixtures with a fixed Ti addition (6 at.%) and Si content ranging from hypereutectic (11 at.%) to near-eutectic compositions (18 at.%). The effects of Si content, Ti addition and strain rates on the sample microstructural characterization, flexural strength, fracture toughness, quasi-static compressive deformation and failure processes were investigated. It was revealed that the volume fraction of silicides increased with increasing Si content, and most of the Ti atoms dissolved into the niobium silicides to form (Nb,Ti){sub 5}Si{sub 3} solid solutions instead of binary titanium silicides. The experimental evidence showed that a moderate improvement in the flexural strength, fracture toughness and compressive yield stress of the composites was achieved by the addition of Ti. Higher Si additions produced a much more remarkable enhancement in the compressive yield stress and bulk hardness, whereas both the flexural strength and fracture toughness decreased with increasing Si content owing to the existence of residual porosities in the samples. The composites showed remarkable superiority to the arc-melted Nb-Si alloys and monolithic niobium silicides in fracture toughness (8.3-13.0MPa{radical}(m) vs. 4.5MPa{radical}(m)), where the toughening effect was attributed mainly to crack bridging and crack deflection by the remaining ductile Nb phase. Moreover, quasi-static uniaxial compression tests at strain rates between 10{sup -5} and 10{sup -3} s{sup -1} indicated that the deformation behavior and failure processes were significantly affected by Si content and strain rates. The strain-rate-hardening behavior for all the strain rates was observed in the composite materials and the strain-rate sensitivity decreased with increasing Si content. At a lower strain rate, the composite materials with a hypoeutectic Si composition failed with a pseudoplastic

  1. Ternary optical computer principle

    Institute of Scientific and Technical Information of China (English)

    金翊; 何华灿; 吕养天

    2003-01-01

    The fundamental principle and the characteristics of ternary optical computer, using horizontal polarized light, vertical polarized light and no-intensity to express information, are propounded in thispaper. The practicability to make key parts of the ternary optical computer from modern micro or integrated optical devices, opto-electronic and electro-photonic elements is discussed. The principle can be applied in three-state optical fiber communication via horizontal and vertical polarized light.

  2. Predicting toxicity of aromatic ternary mixtures to algae

    Institute of Scientific and Technical Information of China (English)

    LU GuangHua; WANG Chao; WANG PeiFang; YANG ChengZhi

    2009-01-01

    Aquatic ecosystems are often polluted with more than one type of contaminant, and information on the combined toxic effects of mixed pollutants on aquatic organisms is scarce at present. Acute toxicity of aromatic compounds and their ternary mixtures to the alga (Scenedesmus obliquus) was determined by the algae growth inhibition test. The median effective concentration (EC_(50)) value for a single aromatic compound and EC_(50mix) values for mixtures were obtained, the logarithm of n-octanol/water partition coefficient (logP_(mix)) and the frontier orbital energy gap (△E_(mix) for mixtures were calculated. Based on the quantitative structure-activity relationship model for single chemical toxicity log(1/EC_(50)) =0.426logP-1.150△E+12.61 (n=15, R~2=0.917 and Q~2=0.878), the following two-descriptor model was developed for the ternary mixture toxicity of aromatic compounds: log(1/EC_(50mix))=O.68210gP_(mix)-O.367△E_(mix)+ 4.971 (n=44, R~2-0.869 and Q~2=0.843). This model can be used to predict the combined toxicity of mixtures containing toxicants with different mechanisms of action.

  3. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    H.L. Castricum; H. Bakker; E.K. Poels

    1998-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  4. Regularities of formation of ternary alloy phases between non-transition metals

    Institute of Scientific and Technical Information of China (English)

    姚莉秀; 陈瑞亮; 钦佩; 陈念贻; 陆文聪

    2000-01-01

    Using a four-parameter model based on extended Miedema’ s cellular model of alloy phases and pattern recognition methods, the regularities of formation of ternary intermetallic compounds between non-transition metals have been investigated. The criterion of formation can be expressed as some empirical functions of Φ (electronegativity), nws1/3( valence electron density in Wagn-er-Seitz cell), R (Pauling’s metallic radius) and Z (number of valence electrons in atom).

  5. Synthesis and single-crystal structure of the pseudo-ternary compounds LiA[N(CN){sub 2}]{sub 2} (A = K or Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    Crystals of LiA[N(CN){sub 2}]{sub 2} were obtained from the reaction of LiCl and ACl (A = K or Rb) with Ag[N(CN){sub 2}] in water and subsequent evaporation of the filtered solution at 80 C under normal atmospheric conditions. Crystals of the title compound form thin rectangular plates that are transparent, colorless, and very fragile. Single-crystal structure analyses have shown that both compounds are isotypic and adopt the tetragonal space group I4/mcm (no. 140, Z = 4) with the cell parameters a = 701.53(12) and c = 1413.7(5) pm for LiK[N(CN){sub 2}]{sub 2} and a = 730.34(10) and c = 1414.4(4) pm for LiRb[N(CN){sub 2}]{sub 2}. The crystal structure is described and compared to that of the pseudo-binary alkali metal dicyanamides.

  6. Binary and Ternary Catalytic Systems for Olefin Metathesis Based on MoCl5/SiO2

    Science.gov (United States)

    Bykov, Victor I.; Belyaev, Boris A.; Butenko, Tamara A.; Finkelshtein, Eugene Sh.

    Kinetics of α-olefin metathesis in the presence of binary (MoCl5/ SiO2-Me4Sn) and ternary catalytic systems (MoCl5/SiO2-Me4Sn-ECl4, E = Si or Ge) was studied. Specifically, kinetics and reactivity of 1-decene, 1-octene, and 1-hexene in the metathesis reaction at 27°C and 50°C in the presence of MoCl5/ SiO2-SnMe4 were examined and evaluated in detail. It was shown that experimental data comply well with the simple kinetic equation for the rate of formation of symmetrical olefins with allowance for the reverse reaction and catalyst deactivation: r = left( {k_1 \\cdot c_α - k_{ - 1} \\cdot c_s } right) \\cdot e^{ - k_d \\cdot tilde n_{tot} } . The coefficients for this equation were determined, and it was shown that these α-olefins had practically the same reactivity. It was found that reactivation in the course of metathesis took place due to the addition of a third component (silicon tetrachloride or germanium tetrachloride in combination with tetramethyltin) to a partially deactivated catalyst. The number of active centers was determined (5-6% of the amount of Mo) and the mechanisms of formation, deactivation, and reactivation were proposed for the binary and ternary catalytic systems. The role of individual components of the catalytic systems was revealed.

  7. Polysaccharide-based polyanion--polycation--polyanion ternary systems. A preliminary analysis of interpolyelectrolyte interactions in dilute solutions.

    Science.gov (United States)

    Donati, Ivan; Feresini, Massimo; Travan, Andrea; Marsich, Eleonora; Lapasin, Romano; Paoletti, Sergio

    2011-11-14

    The present contribution deals with the preparation and characterization of ternary mixtures of polysaccharides with potential applications in the field of tissue engineering. Two natural polyanions, i.e., alginate and hyaluronic acid, and a polycation, a lactose-modified chitosan (chitlac), were mixed in dilute conditions. The miscibility between the three components was explored in the presence of different amounts of supporting simple salt. These analyses allowed to identify the experimental conditions avoiding polymer phase separation and leading to either solution of independent polymers or soluble nonstoichiometric interpolyelectrolyte complexes. The characterization of the interpolyelectrolyte complexes was tackled by means of viscometry, light scattering, fluorescence quenching, and energy transfer. The electrostatic interactions taking place among the different polyelectrolytes led to synergistic effects on the viscosity of the polymer mixtures which strongly depend on the ionic strength. It has been found that, starting from binary soluble complexes of alginate and chitlac, the addition of hyaluronan led to the dissolution of the complexes. At variance, the addition of alginate to a phase-separated binary mixture of hyaluronan and chitlac led to the formation of soluble complexes composed of all three polysaccharides and, eventually, to their dissolution. In addition, the results showed that at low ionic strength the overall properties of the ternary mixtures depend on their order of mixing. PMID:21995461

  8. Phase diagram of the Al-Er-Mo ternary system at 873 K

    Science.gov (United States)

    Pan, Yanfang; Yang, Wenchao; Tang, Chenghuang; Lan, Yanni; Zhan, Yong Zhong

    2015-11-01

    The phase relationship in the Al-Er-Mo ternary system at 873 K has been investigated based on the equilibrated method mainly by means of X-ray powder diffraction and scanning electron microscopy. The existence of 10 binary compounds and two ternary compounds has been confirmed. The results present that the isothermal section at 873 K is governed by 15 single-phase regions, 29 two-phase regions and 15 three-phase regions. By using the phase-disappearing method, Al8Mo3 has a narrow homogeneity range (from 72 to 73 at% Al), while the homogeneity range of AlMo3 is from 21% to 28.5% at% Al. Also, the maximum solubility of Al in Mo is about 16 at%.

  9. Surface exciton-polaritons in ternary mixed crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The surface exciton-polaritons in ternary mixed crystals are investigated. The numerical calculations for several Ⅲ-Ⅴ and Ⅱ-Ⅵ compound systems are performed and the polariton frequencies as functions of the wave-vector and the compositions for ternary mixed crystals AlxGa1-xAs, CdxZn1-xSe and AlxGa1-xN as examples are given and discussed. The results show that the dependence of the energies of surface polaritons on the composition of ternary mixed crystals are slightly nonlinear different from the bulk modes.

  10. Crystal structures of new ternary compounds in RE-Pt-Pb and RE-Au-Pb systems (RE = rare earth metal)

    Energy Technology Data Exchange (ETDEWEB)

    Melnyk, G. [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz, Duesbergweg 10-14, D-55099 Mainz (Germany); Gulay, L.D. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43025 Lutsk (Ukraine); Tremel, W., E-mail: tremel@uni-mainz.de [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz, Duesbergweg 10-14, D-55099 Mainz (Germany)

    2012-07-05

    Highlights: Black-Right-Pointing-Pointer We have performed a phase analysis of the systems RE-Pt-Pb and REPtPb (RE = rare earth). Black-Right-Pointing-Pointer We have prepared the compounds RE-Pt-Pb and REPtPb by arc melting and subsequent annealing. Black-Right-Pointing-Pointer We have determined the structures of Pr{sub 2}Pt{sub 2}Pb, PrPtPb, and Yb{sub 2}Au{sub 2}Pb by X-ray powder diffraction. - Abstract: The crystal structures of the compounds RE{sub 2}Pt{sub 2}Pb (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; Mo{sub 2}FeB{sub 2} structure type, space group P4/mbm, Pearson code tP10), REPtPb (RE = La, Ce, Pr, Nd, Sm; ZrNiAl structure type, space group P6{sup Macron }2m, Pearson code hP9), RE{sub 2}Au{sub 2}Pb (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; Er{sub 2}Au{sub 2}Sn structure type, space group P4{sub 2}/mnm, Pearson code tP20) and REAuPb (RE = Tm, Yb and Lu) were determined using X-ray powder diffraction.

  11. Microstructural and Electronic Origins of Open-Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends

    KAUST Repository

    Mollinger, Sonya A.

    2015-09-22

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Organic ternary heterojunction photovoltaic blends are sometimes observed to undergo a gradual evolution in open-circuit voltage (Voc) with increasing amounts of a second donor or an acceptor. The Voc is strongly correlated with the energy of the charge transfer state in the blend, but this value depends on both local and mesoscopic orders. In this work, the behavior of Voc in the presence of a wide range of interfacial electronic states is investigated. The key charge transfer state interfaces responsible for Voc in several model systems with varying morphology are identified. Systems consisting of one donor with two fullerene molecules and of one acceptor with a donor polymer of varying regio-regularity are used. The effects from the changing energetic disorder in the material and from the variation due to a law of simple mixtures are quantified. It has been found that populating the higher-energy charge transfer states is not responsible for the observed change in Voc upon the addition of a third component. Aggregating polymers and miscible fullerenes are compared, and it has been concluded that in both cases charge delocalization, aggregation, and local polarization effects shift the lowest-energy charge transfer state distribution. The open-circuit voltage evolution and charge transfer state interfaces in ternary organic photovoltaic blends are investigated using several model systems. The changes in subgap spectra from energetic disorder and increased population of higher energy states are analyzed and the lowest charge transfer state distribution is observed to shift due to local aggregation and delocalization effects.

  12. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics

    2016-08-01

    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  13. Coelectrodeposition of Ternary Mn-Oxide/Polypyrrole Composites for ORR Electrocatalysts: A Study Based on Micro-X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping

    Directory of Open Access Journals (Sweden)

    Benedetto Bozzini

    2015-08-01

    Full Text Available Low energy X-ray fluorescence (XRF and soft X-ray absorption (XAS microspectroscopies at high space-resolution are employed for the investigation of the coelectrodeposition of composites consisting of a polypyrrole(PPy-matrix and Mn-based ternary dispersoids, that have been proposed as promising electrocatalysts for oxygen-reduction electrodes. Specifically, we studied Mn–Co–Cu/PP, Mn–Co–Mg/PPy and Mn–Ni–Mg/PPy co-electrodeposits. The Mn–Co–Cu system features the best ORR electrocatalytic activity in terms of electron transfer number, onset potential, half-wave potential and current density. XRF maps and micro-XAS spectra yield compositional and chemical state distributions, contributing unique molecular-level information on the pulse-plating processes. Mn, Ni, Co and Mg exhibit a bimodal distribution consisting of mesoscopic aggregates of micrometric globuli, separated by polymer-rich ridges. Within this common qualitative scenario, the individual systems exhibit quantitatively different chemical distribution patterns, resulting from specific electrokinetic and electrosorption properties of the single components. The electrodeposits consist of Mn3+,4+-oxide particles, accompanied by combinations of Co0/Co2+, Ni0/Ni2+ and Cu0,+/Cu2+ resulting from the alternance of cathodic and anodic pulses. The formation of highly electroactive Mn3+,4+ in the as-fabricated material is a specific feature of the ternary systems, deriving from synergistic stabilisation brought about by two types of bivalent dopants as well as by galvanic contact to elemental metal; this result represents a considerable improvement in material quality with respect to previously studied Mn/PPy and Mn-based/PPy binaries.

  14. Synergistic enhancement of the electro-oxidation of methanol at tailor-designed nanoparticle-based CoOx/MnOx/Pt ternary catalysts

    International Nuclear Information System (INIS)

    Highlights: • A novel ternary nanoparticle-based electrode is fabricated for MOR. • The loading level and deposition sequence of each constituent are crucial for MOR. • CoOx/MnOx/Pt/GC electrode showed a superb catalysis for MOR. • Activity for MOR at CoOx/MnOx/Pt/GC electrode increases with pH. - Abstract: The current study addresses the enhanced electroctrocatalytic activity of a nanoparticle-based ternary catalyst composed of Pt (nano-Pt), manganese oxide (nano-MnOx), and cobalt oxide (nano-CoOx) (all were assembled on a glassy carbon (GC) substrate) towards the direct methanol electro-oxidation reaction (MOR) in an alkaline medium. The electrocatalytic activity of the modified electrodes towards MOR depends on the loading level of nano-Pt, nano-MnOx, and nano-CoOx onto the GC electrode as well as the order of deposition of each component. Interestingly, the CoOx/MnOx/Pt/GC electrode (with nano-Pt firstly deposited onto the GC surface followed by nano-MnOx then nano-CoOx) shows the highest catalytic activity and stability towards MOR for a prolonged time of continuous electrolysis. This is revealed from the large increase (seven times) in the peak current of MOR at this electrode compared with that obtained at Pt/GC electrode. The influence of operating pH on the catalytic activity of the proposed catalyst is investigated. Several techniques including cyclic voltammetry, field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy and X-ray diffraction are used to address the catalytic activity of the catalyst and to reveal its surface morphology and composition

  15. Synthesis, structural characterization and cytotoxic activity of ternary copper(II)-dipeptide-phenanthroline complexes. A step towards the development of new copper compounds for the treatment of cancer.

    Science.gov (United States)

    Iglesias, Sebastián; Alvarez, Natalia; Torre, María H; Kremer, Eduardo; Ellena, Javier; Ribeiro, Ronny R; Barroso, Rafael P; Costa-Filho, Antonio J; Kramer, M Gabriela; Facchin, Gianella

    2014-10-01

    In the search for new compounds with antitumor activity, coordination complexes with different metals are being studied by our group. This work presents the synthesis and characterization of six copper complexes with general stoichiometry [Cu(L-dipeptide)(phen)]·nH2O (were phen=1,10-phenanthroline) and their cytotoxic activities against tumor cell lines. To characterize these systems, analytical and spectroscopic studies were performed in solid state (by UV-visible, IR, X-ray diffraction) including the crystal structure of four new complexes (of the six complexes studied): [Cu(Ala-Phe)(phen)]·4H2O, [Cu(Phe-Ala)(phen)]·4H2O, [Cu(Phe-Val)(phen)]·4.5H2O and [Cu(Phe-Phe)(phen)]·3H2O. In all of them, the copper ion is situated in a distorted squared pyramidal environment. The phen ligand is perpendicular to the dipeptide, therefore exposed and potentially available for interaction with biological molecules. In addition, for all the studied complexes, structural information in solution using EPR and UV-visible spectroscopies were obtained, showing that the coordination observed in solid state is maintained. The lipophilicity, DNA binding and albumin interaction were also studied. Biological experiments showed that all the complexes induce cell death in the cell lines: HeLa (human cervical adenocarcinoma), MCF-7 (human metastatic breast adenocarcinoma) and A549 (human lung epithelial carcinoma). Among the six complexes, [Cu(Ala-Phe)(phen)] presents the lowest IC50 values. Taken together all these data we hypothesize that [Cu(Ala-Phe)(phen)] may be a good candidate for further studies in vivo. PMID:25033418

  16. Synthesis, structural characterization and cytotoxic activity of ternary copper(II)-dipeptide-phenanthroline complexes. A step towards the development of new copper compounds for the treatment of cancer.

    Science.gov (United States)

    Iglesias, Sebastián; Alvarez, Natalia; Torre, María H; Kremer, Eduardo; Ellena, Javier; Ribeiro, Ronny R; Barroso, Rafael P; Costa-Filho, Antonio J; Kramer, M Gabriela; Facchin, Gianella

    2014-10-01

    In the search for new compounds with antitumor activity, coordination complexes with different metals are being studied by our group. This work presents the synthesis and characterization of six copper complexes with general stoichiometry [Cu(L-dipeptide)(phen)]·nH2O (were phen=1,10-phenanthroline) and their cytotoxic activities against tumor cell lines. To characterize these systems, analytical and spectroscopic studies were performed in solid state (by UV-visible, IR, X-ray diffraction) including the crystal structure of four new complexes (of the six complexes studied): [Cu(Ala-Phe)(phen)]·4H2O, [Cu(Phe-Ala)(phen)]·4H2O, [Cu(Phe-Val)(phen)]·4.5H2O and [Cu(Phe-Phe)(phen)]·3H2O. In all of them, the copper ion is situated in a distorted squared pyramidal environment. The phen ligand is perpendicular to the dipeptide, therefore exposed and potentially available for interaction with biological molecules. In addition, for all the studied complexes, structural information in solution using EPR and UV-visible spectroscopies were obtained, showing that the coordination observed in solid state is maintained. The lipophilicity, DNA binding and albumin interaction were also studied. Biological experiments showed that all the complexes induce cell death in the cell lines: HeLa (human cervical adenocarcinoma), MCF-7 (human metastatic breast adenocarcinoma) and A549 (human lung epithelial carcinoma). Among the six complexes, [Cu(Ala-Phe)(phen)] presents the lowest IC50 values. Taken together all these data we hypothesize that [Cu(Ala-Phe)(phen)] may be a good candidate for further studies in vivo.

  17. Pathways for tailoring the magnetostructural response of FeRh-based compounds

    Science.gov (United States)

    Barua, Radhika

    /chemically-modified counterparts were examined using a variety of structural and magnetic probes including x-ray diffraction (synchrotron and laboratory based), transmission electron microscopy (TEM) and magnetometry. Overall, the results achieved in this work provide predictive capability and pathways for tailoring the magnetostructural behavior and the associated functional response of FeRh systems for potential technological applications such as magnetic refrigeration and heat-assisted magnetic recording media. Further, insight is gained into the mechanism of magnetostructural phenomena at the fundamental atomic level. In particular, the experimental evidence obtained in this work suggests that the magnetostructural response of FeRh-based compounds depends upon both the electronic state of the system and the magnetovolume effect. Despite the success achieved in this Dissertation, many open questions regarding the first-order magnetostructural transition in FeRh systems still persist. The concluding chapter of this Dissertation provides recommendations for future experiments that may be conducted to develop a more advanced understanding of the fundamental thermodynamic and kinetic factors influencing the magnetostructural phase transformation process in FeRh and related intermetallic compounds. Further, it is anticipated that computational studies aimed at modeling the magnetostructural behavior of FeRh-based ternary alloys using ab initio calculations and density functional theory will be useful for providing a theoretical framework to the results obtained in this study. Despite the success achieved in this Dissertation, many open questions regarding the first-order magnetostructural transition in FeRh systems still persist. The concluding chapter of this Dissertation provides recommendations for future experiments that may be conducted to develop a more advanced understanding of the fundamental thermodynamic and kinetic factors influencing the magnetostructural phase transformation process in

  18. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi-Ghaleh, Kazem, E-mail: k-jamshidi@azaruinv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of); Ebrahimpour, Zeinab [Department of Physics, Shahid Beheshti University, Evin 19839 Tehran (Iran, Islamic Republic of); Moslemi, Fatemeh [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2015-07-15

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM){sup N}, (GDM){sup N} and (DMG){sup N}, where N is the number of periodicity, were investigated. Two full photonic band gaps and N−1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  19. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    International Nuclear Information System (INIS)

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N−1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region

  20. 7Li nuclear magnetic resonance studies of dynamics in a ternary gel polymer electrolyte based on polymeric ionic liquids

    International Nuclear Information System (INIS)

    The influence of the polymeric ionic liquid (PIL) Poly(diallyldimethylammonium bis(trifluoromethylsulfonyl) imide) (PDADMATFSI) on the lithium dynamics was investigated in a ternary gel polymer electrolyte consisting of PDADMATFSI as stabilizing polymer, ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, P14TFSI) and lithium salt (lithium bis(trifluoromethylsulfonyl) imide, LiTFSI). The diffusion coefficient of the lithium ions is investigated by pulsed-field-gradient NMR, the conductivity of the electrolyte is determined by impedance spectroscopy. The local lithium dynamics is characterized by 7Li spin lattice relaxation rates (R1). The relaxation rates are well described by Blombergen-Purcell-Pound (BPP) theory at all polymer concentrations (up to 45 mol%), implying that the Li dynamics is governed by one single motional mode. Interestingly, activation energies for this motion decrease from 20 kJ/mol to 15 kJ/mol with increasing polymer content and are independent on the salt content. We thus conclude that the polymer is interacting with the anion coordination shell, which is accompanied by a very beneficial effect on the local lithium dynamics, as the polymer PDADMATFSI reduces the Li-TFSI interactions. This result is promising for further investigations for potential use of PDADMATFSI-containing gels as electrolytes in energy storage devices

  1. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture.

    Science.gov (United States)

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2014-05-21

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. PMID:24589996

  2. Carbon-Based Compounds and Exobiology

    Science.gov (United States)

    Kerridge, John; DesMarais, David; Khanna, R. K.; Mancinelli, Rocco; McDonald, Gene; diBrozollo, Fillipo Radicati; Wdowiak, Tom

    1996-01-01

    The Committee for Planetary and Lunar Explorations (COMPLEX) posed questions related to exobiological exploration of Mars and the possibility of a population of carbonaceous materials in cometary nuclei to be addressed by future space missions. The scientific objectives for such missions are translated into a series of measurements and/or observations to be performed by Martian landers. These are: (1) A detailed mineralogical, chemical, and textural assessment of rock diversity at a landing site; (2) Chemical characterization of the materials at a local site; (3) Abundance of Hydrogen at any accessible sites; (4) Identification of specific minerals that would be diagnostic of aqueous processes; (5) Textual examination of lithologies thought to be formed by aqueous activity; (6) Search for minerals that might have been produced as a result of biological processes; (7) Mapping the distribution, in three dimensions, of the oxidant(s) identified on the Martian surface by the Viking mission; (8) Definition of the local chemical environment; (9) Determination of stable-isotopic ratios for the biogenic elements in surface mineral deposits; (10) Quantitative analysis of organic (non-carbonate) carbon; (11) Elemental and isotopic composition of bulk organic material; (12) Search for specific organic compounds that would yield information about synthetic mechanisms, in the case of prebiotic evolution, and about possible bio-markers, in the case of extinct or extant life; (13) and Coring, sampling, and detection of entrained gases and cosmic-ray induced reaction products at the polar ice cap. A discussion of measurements and/or observations required for cometary landers is included as well.

  3. The ternary Goldbach problem

    OpenAIRE

    Helfgott, Harald Andrés

    2015-01-01

    The ternary Goldbach conjecture, or three-primes problem, states that every odd number $n$ greater than $5$ can be written as the sum of three primes. The conjecture, posed in 1742, remained unsolved until now, in spite of great progress in the twentieth century. In 2013 -- following a line of research pioneered and developed by Hardy, Littlewood and Vinogradov, among others -- the author proved the conjecture. In this, as in many other additive problems, what is at issue is really the proper...

  4. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  5. Reliability of earth dams on compound base

    OpenAIRE

    G.Ya. Bulatov; D.S. Gatanov

    2012-01-01

    This article deals with the design of earth dams (estimating filter strength, compressibility and permeability of soils, studing of the stress-strain state, etc.) The authors look through a new, not previously discussed task of reliability of groundwater dams in extreme conditions like an influence of new and additional loads in the form of intense deformation of elongation and the base curvature.The dependences that allow determining the permissible values of deformations of ground dams eart...

  6. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries

    Science.gov (United States)

    Chen, Renjie; Zhu, Lu; Wu, Feng; Li, Li; Zhang, Rong; Chen, Shi

    2014-01-01

    Lithium difluoromono(oxalato)borate (LiODFB) has been used as a novel lithium salt for battery in recent studies. In this study, a series of novel electrolytes has been prepared by adding 30 vol% dimethyl sulfite (DMS) or dimethyl carbonate (DMC) as co-solvent into an ethylene carbonate (EC)/ethyl methyl carbonate (EMC) + LiX mixture, in which the LiX could be LiClO4, LiODFB, LiBOB, LiTFSI, or LiCF3SO3. These ternary electrolytes have been investigated for use in lithium ion batteries. FT-IR spectroscopy analysis shows that characteristic functional groups (-CO3, -SO3) undergo red-shift or blue-shift with the addition of different lithium salts. The LiODFB-EC/EMC/DMS electrolyte exhibits high ionic conductivity, which is mainly because of the low melting point of DMS, and LiODFB possessing high solubility. The Li/MCMB cells containing this novel electrolyte exhibit high capacities, good cycling performance, and excellent rate performance. These performances are probably because both LiODFB and DMS can assist in the formation of SEI films by reductive decomposition. Additionally, the discharge capacity of Li/LiCoO2 half cell containing LiODFB-EC/EMC/DMS electrolyte is 130.9 mAh g-1 after 50 cycles, and it is very comparable with the standard-commercial electrolyte. The results show that this study produces a promising electrolyte candidate for lithium ion batteries.

  7. Improved Ternary Subdivision Interpolation Scheme

    Institute of Scientific and Technical Information of China (English)

    WANG Huawei; QIN Kaihuai

    2005-01-01

    An improved ternary subdivision interpolation scheme was developed for computer graphics applications that can manipulate open control polygons unlike the previous ternary scheme, with the resulting curve proved to be still C2-continuous. Parameterizations of the limit curve near the two endpoints are given with expressions for the boundary derivatives. The split joint problem is handled with the interpolating ternary subdivision scheme. The improved scheme can be used for modeling interpolation curves in computer aided geometric design systems, and provides a method for joining two limit curves of interpolating ternary subdivisions.

  8. The volatile compound BinBase mass spectral database

    Directory of Open Access Journals (Sweden)

    Barupal Dinesh K

    2011-08-01

    Full Text Available Abstract Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species. Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  9. Studies on ternary silver sulfides; Fukugo gin ryukabutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    Some sulfides containing silver show high ion mobility based on movability of silver, whose application is expected. Studies have been carried out centrally on synthesis of new compounds of ternary silver sulfides by elucidating the relationship among their compositions, structures and properties by means of crystal chemical studies mainly on their phase relationship. A few new compounds have been synthesized, such as the ones having the argyrodite family compound structure including transition metals. The synthesizing process takes a kind of turbulent liquid state structure at elevated temperatures because of movability of silver, but silver is fixed at low temperatures in different sites between skeleton structures made by other atoms. These studies on phase transfer, structures, and silver movability have been based on X-ray diffraction, infrared and Raman spectroscopic measurements, NMR, measurements of electric and thermal characteristics. For the studies related to compositions and structures of ternary metal sulfides which take compound crystalline structure, a structure analyzing method based on multi-dimensional hyperspatial groups was used. This paper reports the summary of the studies in seven chapters, and dwells on the remaining problems and future prospects. 158 refs., 114 figs., 65 tabs.

  10. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study

    Science.gov (United States)

    Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D.

    2014-02-01

    In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1-xQx (A =Sb, Bi; Q =Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 00.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T ≠0 K but with an ordered structure of alternating Bi and Sb layers for x =0.5 at T =0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3,Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.

  11. Uniform deposition of ternary chalcogenide nanoparticles onto mesoporous TiO{sub 2} film using liquid carbon dioxide-based coating

    Energy Technology Data Exchange (ETDEWEB)

    Nursanto, Eduardus Budi [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Park, Se Jin [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Jeon, Hyo Sang; Hwang, Yun Jeong [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Kim, Jaehoon, E-mail: jaehoonkim@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); Min, Byoung Koun, E-mail: bkmin@kist.re.kr [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Green School, Korea University, 145,Anam-ro, Seongbuk-gu, Seoul 136–713 (Korea, Republic of)

    2014-08-28

    We report the simultaneous deposition of two different metal precursors dissolved in liquid carbon dioxide (l-CO{sub 2}), aiming to the synthesis of ternary chalcopyrite (e.g. CuInS{sub 2}) nanoparticles on a mesoporous TiO{sub 2} film. The l-CO{sub 2}-based deposition of Cu and In precursors and subsequent reaction with a dilute H{sub 2}S gas resulted in Cu{sub x}In{sub y}S{sub z} nanoparticles uniformly deposited across the entire thickness of a mesoporous TiO{sub 2} film. Further heat treatment (air annealing and sulfurization) led to the formation of more stoichiometric CuInS{sub 2} nanoparticles. The formation of CuInS{sub 2} on TiO{sub 2} was confirmed by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The crystal growth of CuInS{sub 2} was also found to be controllable by adjusting the number of coating cycles of the l-CO{sub 2}-based deposition. - Highlights: • Simultaneous deposition of two different metal precursors dissolved in l-CO{sub 2}. • Uniform deposition of CuInS{sub 2} nanoparticles across mesoporous TiO{sub 2} film. • Highly crystalline CuInS{sub 2} formed on mesoporous TiO{sub 2} film. • Nearly stoichiometric ratio of Cu:In:S was obtained.

  12. Computer recognition of slag property diagrams in ternary systems

    Institute of Scientific and Technical Information of China (English)

    Jinxiong Lu; Li Wang; Jiongming Zhang; Xinhua Wang

    2004-01-01

    In order to take data information from the slag property diagram in a ternary system automatically and actually, a picture recognition and drawing software has been developed by Visual Basic 6.0 based on the image coding principle of computer system and the graphics programming method of VB. This software can transform the ternary system isopleth diagram from bitmap format to data file and establish a corresponding database which can be applied to rapidly retrieve a mass of data and make correlative thermodynamics or kinetics calculation. Besides, it still has the function of drawing the ternary system diagram which can draw different kinds of property parameters in the same diagram.

  13. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    Science.gov (United States)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  14. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    Science.gov (United States)

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF). PMID:27316988

  15. Synthesis of novel chiral compounds of purine and pyrimidine bases

    Institute of Scientific and Technical Information of China (English)

    汪毓海; 陈庆华

    1999-01-01

    The physiologically active groups such as purine and pyrimidine bases are introduced to the asymmetric ynthesis. The optically pure compounds bearing purine and pyrimidine bases (5a—5e) were prepared via the asymetric Michael addition reaction of purines and pyrimidines as Michael donators with the chiral source 5-(R)-[(1R, 2S, 5R)-menthyloxy]-2(5H)-furanone (3a), which was prepared from the natural chiral auxiliary (-)-menthol. The synthetic method was studied in detail and the new compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]D20, IR, UV, 1H NMR, 13C NMR and MS. The absolute configuration of 5a was established by X-ray crystallography. The results provided an efficient synthetic route to chiral purines and pyrimidine analogues, and offered chiral sources for further research on the physiologically active compounds of chiral nucleotides.

  16. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    Science.gov (United States)

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).

  17. LOW PRESSURE MOCVD OF COPPER BASED COMPOUNDS FOR PHOTOVOLTAIC APPLICATIONS

    OpenAIRE

    Pilkington, R; Jones, P.; Ahmed, W.; Tomlinson, R.; Hill, A.; J. Smith; Nuttall, R.

    1991-01-01

    In recent years copper based compounds such as copper indium diselenide (CuInSe2, CIS) have emerged as the most promising candidates for high efficiency stable solar cells. To date research has been centred around the standard thin film deposition techniques i.e. evaporation, sputtering and electroplating. While these techniques give good films it has proved difficult to gain reproducible results. The production of devices based on CIS thin films has now progressed to a point where, to achiev...

  18. High-Tc Superconductors Based on FeAs Compounds

    CERN Document Server

    Izyumov, Yuri

    2010-01-01

    Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also...

  19. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    Directory of Open Access Journals (Sweden)

    Sudhakara Rao Gerapati

    2015-09-01

    Full Text Available Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated for anticonvulsant activity. Their structures have been elucidated on the basis of elemental analyses and spectroscopic studies (IR, 1H-NMR & Mass spectroscopy. A preliminary evaluation of the prepared compounds has indicated that some of them exhibit moderate to significant anticonvulsant activity compared to a diazepam standard1-3.  All compounds were tested for their anticonvulsant activity using maximal electroshock induced convulsions (MES in mice at a dose level of 4 mg/kg.b.w. The compounds  Ph1, Ph2 , Py2 ,Py3 and Py4 have shown  to  good anticonvulsant activity when doses are administered as 25mg/ kg.b.w  , reduced the phases of seizures severity and  found to be active and also  increased survival rate. Remaining compounds are less efficacious.

  20. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    Science.gov (United States)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  1. Ternary Chaotic Pulse Compression Sequences

    Directory of Open Access Journals (Sweden)

    J. B. Seventline

    2010-09-01

    Full Text Available In this paper method available for generating ternary sequences is discussed. These sequences are useful in many applications but specifically in synchronization of block codes and pulse compression in radar. The ternary sequences are derived from chaotic maps. It is feasible to achieve simultaneously superior performances in detection range and range resolution using the proposed ternary sequences. The properties of these sequences like autocorrelation function, Peak Side Lobe Ratio (PSLR, ambiguity diagram and performance under AWGN noise background has been studied. The generation of these sequences is much simpler, and the available number of sequences is virtually infinite and not limited by the length of the sequence.

  2. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  3. Positron annihilation lifetime study of interfaces in ternary polymer blends

    Science.gov (United States)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  4. Alloying behavior of Ni3M-type GCP compounds

    International Nuclear Information System (INIS)

    The site preference of ternary additions in Ni3M-type GCP compounds was determined from the direction of solubility lobe of the GCP phase on the ternary phase diagram that have been experimentally reported. In Ni3Nb (D0a), Co and Cu preferred the substitution for Ni-site, Ti, V and W the substitution for Nb-site, and Fe the substitution for both sites. In Ni3V (D022), Co preferred the substitution for Ni-site, Cr the substitution for both sites, and Ti the substitution for V-site. In Ni3Ti (D024), Fe, Co, Cu, and Si preferred the substitution for Ni-site, Nb, Mo and V the substitution for Ti-site. The thermodynamic model, which was based on the change in total bonding energy of the host compound by a small addition of ternary solute, was applied to predict the site preference of ternary additions. The bond energy of each nearest neighbor pair used in the thermodynamic calculation was derived from the heat of compound formation by Miedema's formula. The agreement between the thermodynamic model and the result of the literature search was excellent. From both experimental and theoretical results, it was shown in three Ni3M-type GCP compounds that both transition and B-subgroup elements have two possibilities, i.e., the case of substitution for Ni-site or the case for M-site, depending on the relative value of two interaction energies.

  5. Study of pressure induced polyamorphic transition in Ce-based ternary BMG using in situ x-ray scattering and electrical conductivity measurement

    Science.gov (United States)

    Chen, J.; Ma, C.; Tang, R.; Li, L.; Liu, H.; Gao, C.; Yang, W.

    2015-12-01

    In situ high energy x-ray scattering and electrical conductivity measurements on Ce70Al10Cu20 bulk metallic glass have been conducted using a diamond anvil cell (DAC) in conjunction with synchrotron x-rays or a laboratory electrical measurement system. The relative volumetric change (V/V0) as a function of pressure is inferred using the first sharp diffraction peak (FSDP) and the universal fractional noncubic power law[1]. The result indicates a pressure-induced polyamorphic transition at about 4 GPa in the ternary system. While the observed pressure of such polyamorphic transition in the Ce-base binary BMG is not very sensitive to its composition based on some of the previous studies[2, 3], this study indicates that such transition pressure increases considerably when a new component is added to the system. In the electrical conductivity measurement, a significant resistance change was observed in the pressure range coupled to polyamorphic transition. More discussions will be given regarding the electrical conductivity behavior of this system under high pressure to illustrate the delocalization of 4f electrons as the origin of the observed polyamorphic transition. References: 1. Zeng Q, Kono Y, Lin Y, Zeng Z, Wang J, Sinogeikin SV, Park C, Meng Y, Yang W, Mao H-K (2014) Universal fractional noncubic power law for density of metallic glasses. Physical Review Letters 112: 185502-185502 2. Zeng Q-S, Ding Y, Mao WL, Yang W, Sinogeikin SV, Shu J, Mao H-K, Jiang JZ (2010) Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Physical Review Letters 104: 105702-105702 3. Sheng HW, Liu HZ, Cheng YQ, Wen J, Lee PL, Luo WK, Shastri SD, Ma E (2007) Polyamorphism in a metallic glass. Nature Materials DOI: 10.1038/nmat1839.

  6. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  7. Thermoelectric properties of iron-based superconductors and parent compounds

    Science.gov (United States)

    Pallecchi, Ilaria; Caglieris, Federico; Putti, Marina

    2016-07-01

    Herewith, we review the available experimental data of thermoelectric transport properties of iron-based superconductors and parent compounds. We discuss possible physical mechanisms into play in determining the Seebeck effect, from whence one can extract information about Fermi surface reconstruction and Lifshitz transitions, multiband character, coupling of charge carriers with spin excitations and its relevance in the unconventional superconducting pairing mechanism, nematicity, quantum critical fluctuations close to the optimal doping for superconductivity, correlation. Additional information is obtained from the analysis of the Nernst effect, whose enhancement in parent compounds must be related partially to multiband transport and low Fermi level, but mainly to the presence of Dirac cone bands at the Fermi level. In the superconducting compounds, large Nernst effect in the normal state is explained in terms of fluctuating precursors of the spin density wave state, while in the superconducting state it mirrors the usual vortex liquid dissipative regime. A comparison between the phenomenology of thermoelectric behavior of different families of iron-based superconductors and parent compounds allows to evidence the key differences and analogies, thus providing clues on the rich and complex physics of these fascinating unconventional superconductors.

  8. Investigations on ternary B-C-N materials

    Institute of Scientific and Technical Information of China (English)

    HE Ju-long; LIU Zhong-yuan; YU Dong-li; XU Bo; TIAN Yong-jun

    2007-01-01

    Isoelectronic BCxN compounds have been researched widelv.However,electron-deficient boron-rich B-C-N solids have also attracted much interest both theoretically and experimentally.In this paper,we introduce the synthesis,theoretical prediction,and physical properties of crystalline ternary B-C-N compounds.Our recent work reveals that the novel B-C-N materialS may have a wide variety of crystal structures with different characteristics.

  9. Structural and magnetic study of thin films based on anisotropic ternary alloys FeNiPt{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Montsouka, R.V.P. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Arabski, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Derory, A. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Faerber, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Schmerber, G. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Pierron-Bohnes, V. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France)]. E-mail: vero@ipcms.u-strasbg.fr

    2006-01-25

    L1 ordered (Fe-Ni){sub 5}Pt{sub 5} alloy films with perpendicular magnetic anisotropy were successfully prepared by interdiffusing FePt(0 0 1) and NiPt(0 0 1) layers co-deposited on MgO(0 0 1) substrates by MBE. The [0 0 1] growth direction corresponds to the epitaxy of the alloy on the substrate and is the interesting growth orientation to get a perpendicular magnetization. The X-ray diffraction shows a high L1 chemical order (S = 0.7 {+-} 0.1). The easy magnetization direction is perpendicular for all samples. The MFM images display highly interconnected stripes corresponding to up and down orientations of the magnetization. Large uniaxial magnetic anisotropy (K {sub u} 9.10{sup 5} J/m{sup 3}) and suitable magnetic transition temperature (T {sub C} = 400 K) are obtained. The addition of Ni changes the spin-orbit interaction in the FePt compound system, hence causes a decrease of anisotropy, saturation magnetization and coercivity.

  10. New Layered Ternary Transition-Metal Tellurides

    Science.gov (United States)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  11. Occupancy sites of constituent atoms and their effects on the martensitic transformations in some Cu-based and Ti-Ni-based ternary alloys

    International Nuclear Information System (INIS)

    Atomic configurations in β phase Cu-Al-Ni, Cu-Au-Zn and Cu-Zn-Al ternary alloys before and after martensitic transformations, and occupancy sites of third elements X in the B2 parent lattice of Ti-Ni-X ternary alloys, where X = 3d elements, Pd and Au, have been investigated by means of an electron channeling enhanced microanalysis method, called ALCHEMI. Large increases in Ms and As temperatures by several tens of K or more observed in the β phase alloys upon aging at ambient temperatures are attributed to ordering in the parent phase and to disordering in the martensite phase, respectively, both taking place between certain atoms occupying specific sites. The occupancy sites of third elements X in Ti-Ni-X alloys have been systematically examined, changing compositions in the following formulae: Ti0.5-xNi0.5Xx, Ti0.5-x/2Ni0.5-x/2Xx and Ti0.5Ni0.5-xXx, where x ≤ 0.05. While Fe, Co and Pd atoms occupy the Ni site preferentially, Sc atoms occupy the Ti site irrespective of composition, and the others the Ni and/or Ti site, depending on composition. These results for the Ti-Ni-X alloys are reasonably explained by a parameter D, which is defined by D = VTiX-VNiX/VTiNi, where Vij is pairwise interaction between i and j atoms. Decreases in Ms temperature for the B2→B19' martensitic transformation are discussed in terms of an average number of valence electrons at the specific sites in the parent lattice. (orig.)

  12. Ternary generalizations of Grassmann algebra

    CERN Document Server

    Abramov, V V

    1996-01-01

    We propose the ternary generalization of the classical anti-commutativity and study the algebras whose generators are ternary anti-commutative. The integral over an algebra with an arbitrary number of generators N is defined and the formula of a change of variables is proved. In analogy with the fermion integral we define an analogue of the Pfaffian for a cubic matrix by means of Gaussian type integral and calculate its explicit form in the case of N=3.

  13. Investigations on Ce- and Yb-based intermetallic compounds

    International Nuclear Information System (INIS)

    The author describes investigations on a number of cerium- and ytterbium-based intermetallic compounds and alloys, yielding a lot of experimental results which could not always be put in a quantitative picture. All experimental data are consistent with a single-ion behaviour, where the 4f state is more or less modified by the conduction electrons. In the investigated systems several different features of the magnetism of cerium atoms in metals were studied. (Auth.)

  14. AN ICT-BASED TRACEABILITY SYSTEM IN COMPOUND FEED INDUSTRY

    OpenAIRE

    Cebeci, Zeynel; Erdogan, Yoldas Erdogan; Alemdar, Tuna; Celik, Ladine; Boga, Mustafa; Uzun, Yusuf; Coban, Durdu H.; Gorgulu, Murat; Tosten, Funda

    2009-01-01

    The term traceability refers to recording of flow of products along the food chain from production to consumption with inclusion of all intermediate applications involved in processing/packaging stages. The aim for establishing traceability in the food chain is to provide the timely identification and recall of batches of product from the market when a risk threatens the health of consumers. Since compound feed products are basic inputs in livestock and poultry production, ICT-based feed trac...

  15. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    OpenAIRE

    Sudhakara Rao Gerapati; Kalaichelvan V K; Ganguri Sudhakara Rao

    2015-01-01

    Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated ...

  16. Synthesis, structural and fungicidal studies of hydrazone based coordination compounds.

    Science.gov (United States)

    Sharma, Amit Kumar; Chandra, Sulekh

    2013-02-15

    The coordination compounds of the Co(II), Ni(II) and Cu(II) metal ions derived from imine based ligand, benzil bis(carbohydarzone) were structurally and pharmaceutically studied. The compounds have the general stoichiometry [M(L)]X(2) and [Co(L)X(2)], where M=Ni(II) and Cu(II), and X=NO(3)(-) and Cl(-) ions. The analytical techniques like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV/Visible, NMR, ESI mass and EPR were used to study the compounds. The key IR bands, i.e., amide I, amide II and amide III stretching vibrations accounts for the tetradentate metal binding nature of the ligand. The electronic and EPR spectral results suggest the square planar Ni(II) and Cu(II) complexes (g(iso)=2.11-2.22) and tetragonal geometry Co(II) complexes (g(iso)=2.10-2.17). To explore the compounds in the biological field, they were examined against the opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The partial covalent character of metal-ligand bond is supported by the orbital reduction factor k (0.62-0.92) and nephalauxetic parameter β (0.55-0.57).

  17. Research Progress on Ni-Based Antiperovskite Compounds

    Directory of Open Access Journals (Sweden)

    P. Tong

    2012-01-01

    Full Text Available The superconductivity in antiperovskite compound MgCNi3 was discovered in 2001 following the discovery of the superconducting MgB2. In spite of its lower superconducting transition temperature (8 K than MgB2 (39 K, MgCNi3 has attracted considerable attention due to its high content of magnetic element Ni and the cubic structure analogous to the perovskite cuprates. After years of extensive investigations both theoretically and experimentally, however, it is still not clear whether the mechanism for superconductivity is conventional or not. The central issue is if and how the ferromagnetic spin fluctuations contribute to the cooper paring. Recently, the experimental results on the single crystals firstly reported in 2007 trend to indicate a conventional s-wave mechanism. Meanwhile many compounds neighboring to MgCNi3 were synthesized and the physical properties were investigated, which enriches the physics of the Ni-based antiperovskite compounds and help understand the superconductivity in MgCNi3. In this paper, we summarize the research progress in these two aspects. Moreover, a universal phase diagram of these compounds is presented, which suggests a phonon-mediated mechanism for the superconductivity, as well as a clue for searching new superconductors with the antiperovskite structure. Finally, a few possible scopes for future research are proposed.

  18. Ternary fission of 466, 476 184X formed in U + U collisions

    Science.gov (United States)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-06-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 466, 476 184X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 466 184X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners.

  19. DNA nanostructures based biosensor for the determination of aromatic compounds.

    Science.gov (United States)

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds.

  20. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    Science.gov (United States)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  1. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Institute of Scientific and Technical Information of China (English)

    Mariana Braic; Viorel Braic; Alina Vladescu; Catalin N. Zoita; Mihai Balaceanu

    2014-01-01

    TiZr-based multicomponent metallic films composed of 3-5 constituents with almost equal atomic concentrations were prepared by co-sputtering of pure metallic targets in an Ar atmosphere. X-ray diffraction was employed to determine phase composition, crystalline structure, lattice parameters, texture and crystallite size of the deposited films. The deposited films exhibited only solid solution (fcc, bcc or hcp) or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema's approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  2. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Directory of Open Access Journals (Sweden)

    Mariana Braic

    2014-08-01

    The deposited films exhibited only solid solution (fcc, bcc or hcp or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema׳s approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  3. Thermal stability, mechanical and corrosion behaviour of niobium-based coatings in the ternary system Nb-O-N

    International Nuclear Information System (INIS)

    The influence of oxygen in the system Nb-O-N on properties like thermal, mechanical, corrosion and degradation behaviour was studied with respect to the O/N ratio in the films prepared by reactive magnetron sputtering. With increasing O/N ratio the hardness, the Young's Modulus and the residual stress strongly decreased. Furthermore the friction coefficient decreased in pin-on-disk tests against a 100Cr6 ball and was lowest for NbON coatings with medium oxygen content. The thermal stability in vacuum was excellent for the coatings up to 800 oC except for coatings with an O/N ratio of ≥ 12.8. These high oxygen-containing coatings crystallised at about 600 oC. The corrosion resistance of the Nb-based coatings in NaCl-containing media strongly improved with increasing O/N ratio, presumably due to the amorphous structure of the oxygen-containing coatings.

  4. Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities.

    Science.gov (United States)

    Yuan, Caixia; Lu, Liping; Gao, Xiaoli; Wu, Yanbo; Guo, Maolin; Li, Ying; Fu, Xueqi; Zhu, Miaoli

    2009-08-01

    A series of oxovanadium complexes with mixed ligands, a tridentate ONO-donor Schiff base ligand [viz., salicylidene anthranilic acid (SAA)], and a bidentate NN ligand [viz., 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), dipyrido[3,2-a:2',3'-c]phenazine (dppz), or 7-methyldipyrido[3,2-a:2',3'-c]phenazine (dppm)], have been synthesized and characterized by elemental analysis, electrospray ionization mass spectrometry, UV-vis spectroscopy, Fourier transform IR spectroscopy, EPR spectroscopy, and X-ray crystallography. Crystal structures of both complexes, [V(IV)O(SAA)(bpy)].0.25bpy and [V(IV)O(SAA)(phen)].0.33H(2)O, reveal that oxovanadium(IV) is coordinated with one nitrogen and two oxygen atoms from the Schiff base and two nitrogen atoms from the bidentate planar ligands, in a distorted octahedral geometry (VO(3)N(3)). The oxidation state of V(IV) with d(1) configuration was confirmed by EPR spectroscopy. The speciation of VO-SAA-bpy in aqueous solution was investigated by potentiomtreic pH titrations, and the results revealed that the main species are two ternary complexes at a pH range of 7.0-7.4, and one is the isolated crystalline complex. The complexes have been found to be potent inhibitors against human protein tyrosine phosphatase 1B (PTP1B) (IC(50) approximately 30-61 nM), T-cell protein tyrosine phosphatase (TCPTP), and Src homology phosphatase 1 (SHP-1) in vitro. Interestingly, the [V(IV)O(SAA)(bpy)] complex selectively inhibits PTP1B over the other two phosphatases (approximate ninefold selectivity against SHP-1 and about twofold selectivity against TCPTP). Kinetics assays suggest that the complexes inhibit PTP1B in a competitive and reversible manner. These suggest that the complexes may be promising candidates as novel antidiabetic agents. PMID:19290551

  5. Thermodynamic description of the Mg-Nd-Zn ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Qi, H.Y.; Huang, G.X.; Bo, H.; Xu, G.L. [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, L.B., E-mail: pdc@mail.csu.edu.cn [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Center of Phase Diagram and Materials Design and Manufacture, Changsha, Hunan 410083 (China); Jin, Z.P. [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Center of Phase Diagram and Materials Design and Manufacture, Changsha, Hunan 410083 (China)

    2011-02-17

    A thermodynamic description of the Mg-Nd-Zn system was developed by means of the CALPHAD (CALculation of PHAse Diagrams) method. The constituent binary systems Mg-Nd and Nd-Zn were re-optimized based on the experimental phase equilibria and thermodynamic properties available in the literature. Combining with the thermodynamic parameters of the Mg-Zn system cited from the reference, the Mg-Nd-Zn ternary system was evaluated. The Gibbs energies of the solution phases (liquid, BCC{sub A}2, DHCP, HCP{sub A}3 and HCP{sub Z}n) were described by the subregular solution model with the Redlich-Kister polynomial function, and those of the stoichiometric compounds, Nd{sub 2}Zn{sub 17}, NdZn{sub 11H}, NdZn{sub 11L}, Nd{sub 3}Zn{sub 22}, Nd{sub 13}Zn{sub 58}, Nd{sub 3}Zn{sub 11}, NdZn{sub 3}, NdZn{sub 2} and Mg{sub 2}Nd, were described by the sublattice model. The compounds Mg{sub 3}Nd and Mg{sub 41}Nd{sub 5} in the Mg-Nd-Zn system were treated as the formulae (Mg, Zn){sub 3}(Mg, Nd) and (Mg, Nd, Zn){sub 41}(Mg, Nd){sub 5}. The order-disorder transition between BCC{sub B}2 and BCC{sub A}2 phases was treated using a two-sublattice model (Mg, Nd, Zn){sub 0.5}(Mg, Nd, Zn){sub 0.5}. Based on experimental data, four stable ternary compounds {tau}{sub 1}(Mg{sub 7}Nd{sub 1}Zn{sub 12}), {tau}{sub 2}(Mg{sub 7}Nd{sub 2}Zn{sub 11}), {tau}{sub 3}(Mg{sub 6}Nd{sub 1}Zn{sub 3}) and {tau}{sub 4}(Mg{sub 6}Nd{sub 3}Zn{sub 11}) were taken into consideration in this system. A set of self-consistent thermodynamic parameters of the Mg-Nd-Zn system was obtained. Projection of the liquidus surface, selected vertical and isothermal sections were calculated using the proposed thermodynamic description. Comprehensive comparisons between the calculated and measured phase diagrams show that almost all the accurate experimental information is satisfactorily accounted for by the present thermodynamic description.

  6. Transformations and phase relations in Nb-Ti-Si ternary system at 1373~1473K

    Institute of Scientific and Technical Information of China (English)

    王日初; 柳春雷; 金展鹏

    2002-01-01

    The isothermal sections of the Nb-Ti-Si ternary system at 1473K and 1373K were determined by means of diffusion triple technique and electron microprobe analysis. By analyzing the diffusion layers in the diffusion couples, the titanium silicides and niobium silicides forming in this system were identified. The results show that no ternary compounds formed in the Nb-Ti-Si ternary system at the test temperatures. The phase transformations occurring on cooling from 1473K to 1373K were discussed.

  7. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  8. Mechanical and electronic properties of antiperovskite Ti-based compounds AXTi{sub 3} (X = C, N): A first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ni-Na; Lu, Hong-Yan, E-mail: luhongyan2006@gmail.com [School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Shao, Ding-Fu, E-mail: dfshao@issp.ac.cn; Lu, Wen-Jian [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-01-28

    In this paper, we systematically studied the mechanical and electronic properties of a series of antiperovskite-type Ti-based ternary carbides and nitrides AXTi{sub 3} (A = Ba, Ca, In, Sn, Sr, Zn, Cu, Al, Ga, Cd, and La; X = C, N) from first-principles calculations. By calculating the formation energies, elastic constants, and other mechanical parameters, we predicted that 7 carbides ACTi{sub 3} and 7 nitrides ANTi{sub 3} compounds are stable among the 22 compounds. The predicted large Young's modulus and high hardness imply a good mechanical application prospect of AXTi{sub 3}. Particularly, SnNTi{sub 3} was found to show ferromagnetic ground state. For the electronic structure, our results confirm that the compounds are metallic in nature, and the density of states near the Fermi energy is predominately contributed by Ti-3d states. The effect of A- and X-site atom doping on AXTi{sub 3} can be evaluated by rigid band approximation. Our prediction will be useful for the experimental exploration of the new antiperovskite compounds.

  9. Thin-film ternary superconductors

    International Nuclear Information System (INIS)

    Physical properties and preparation methods of thin film ternary superconductors, (mainly molybdenum chalcogenides) are reviewed. Properties discussed include the superconducting critical fields and critical currents, resistivity and the Hall effect. Experimental results at low temperatures, together with electron microscopy data are used to determine magnetic flux pinning mechanisms in films. Flux pinning results, together with an empirical model for pinning, are used to get estimates for possible applications of thin film ternary superconductors where high current densities are needed in the presence of high magnetic fields. The normal state experimental data is used to derive several Fermi surface parameters, e.g. the Fermi velocity and the effective Fermi surface area. (orig.)

  10. Ternary arsenides based on platinum–indium and palladium–indium fragments of the Cu{sub 3}Au-type: Crystal structures and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zakharova, Elena Yu.; Andreeva, Natalia A.; Kazakov, Sergey M. [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow (Russian Federation)

    2015-02-05

    Highlights: • Three metal-rich platinum–indium and palladium–indium arsenides were synthesized. • Their crystal structures were determined from powder XRD. • Electronic structures and bonding were studied using DFT/FP-LAPW calculations. • Multi-centered Pt–In or Pd–In bonding was revealed using ELF and ELI-D analysis. • Extra pairwise Pt–Pt interactions are observed only for Pt-based compounds. - Abstract: Three metal-rich palladium–indium and platinum–indium arsenides, Pd{sub 5}InAs, Pt{sub 5}InAs, and Pt{sub 8}In{sub 2}As, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data. All the compounds crystallize in tetragonal system with P4/mmm space group (Pd{sub 5}InAs: a = 3.9874(1) Å, c = 6.9848(2) Å, Z = 1, R{sub p} = 0.053; R{sub b} = 0.013; Pt{sub 5}InAs: a = 3.9981(2) Å, c = 7.0597(4) Å, Z = 1, R{sub p} = 0.058, R{sub b} = 0.016; Pt{sub 8}In{sub 2}As: a = 3.9872(3) Å, c = 11.1129(7) Å, Z = 1, R{sub p} = 0.047; R{sub b} = 0.014). The first two compounds belong to the Pd{sub 5}TlAs structure type, while the third one is isotypic with the recently discovered Pd{sub 8}In{sub 2}Se. Main structural units in all arsenides are indium-centered [TM{sub 12}In] cuboctahedra (TM = Pd, Pt) of the Cu{sub 3}Au type, single- and double-stacked along the c axis in TM{sub 5}InAs and Pt{sub 8}In{sub 2}As, respectively, alternating with [TM{sub 8}As] rectangular prisms. DFT electronic structure calculations predict all three compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function and electron localizability indicator topologies, all compounds feature multi-centered interactions between transition metal and indium in their heterometallic fragments. Additionally, pairwise interactions between platinum atoms are also observed, indicating a somewhat more localized bonding

  11. Structure-based Drug Screening and Ligand-Based Drug Screening Toward Protein-Compound Network

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2007-12-01

    We developed two new methods to improve the accuracy of molecular interaction data using a protein-compound affinity matrix calculated by a protein-compound docking software. One method is a structure-based in silico drug screening method and another method is a ligand-based in silico drug screening method. These methods were applied to enhance the database enrichment of in silico drug screening and in silico target protein screening.

  12. An approach to accidents modeling based on compounds road environments.

    Science.gov (United States)

    Fernandes, Ana; Neves, Jose

    2013-04-01

    The most common approach to study the influence of certain road features on accidents has been the consideration of uniform road segments characterized by a unique feature. However, when an accident is related to the road infrastructure, its cause is usually not a single characteristic but rather a complex combination of several characteristics. The main objective of this paper is to describe a methodology developed in order to consider the road as a complete environment by using compound road environments, overcoming the limitations inherented in considering only uniform road segments. The methodology consists of: dividing a sample of roads into segments; grouping them into quite homogeneous road environments using cluster analysis; and identifying the influence of skid resistance and texture depth on road accidents in each environment by using generalized linear models. The application of this methodology is demonstrated for eight roads. Based on real data from accidents and road characteristics, three compound road environments were established where the pavement surface properties significantly influence the occurrence of accidents. Results have showed clearly that road environments where braking maneuvers are more common or those with small radii of curvature and high speeds require higher skid resistance and texture depth as an important contribution to the accident prevention. PMID:23376544

  13. Formation of coke precursors from pyrene-based model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alshareef, Ali H.; Gray, Murray R. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], email: murray.gray@ualberta.ca; Azyat, Khalid [Department of Chemistry, University of Alberta (Canada); Tykwinski, Rik [Friedrich-Alexander-Universitat (Germany)

    2010-07-01

    This work highlights understanding the thermal behavior and coking mechanism of pyrene-based model compounds. Microcarbon residue (MCR) was estimated for a thermally cracked model compound (Py-m-Phenyl-Py) using a thermal gravimetric analyzer (TGA). Nevertheless, when the coke produced by this process was analyzed it revealed insignificant information; hence, microreactor experiments were implemented to better analyze residual structures. Py-m-Phenyl-Py was converted with 30% and a mass spectrometry was performed on high molecular weight products, whereas, low molecular cracked weight products were analyzed using GC-MS. It was shown that the products obtained from this process matched those obtained by free-radical cracking. Moreover, MALDI-TOF analysis was used to reveal the addition product, and a spectrum of products was generated. It was shown that most of these products were yielded from the same species. It was believed that cyclization might be characterized by the dehydrogenation of the addition products, and coke precursors were generated due to olefin formation and radical additions.

  14. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  15. Synthesis and characterization of (Ni1-xCox)Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells

    Science.gov (United States)

    Theerthagiri, J.; Senthil, R. A.; Buraidah, M. H.; Raghavender, M.; Madhavan, J.; Arof, A. K.

    2016-06-01

    Ternary metal selenides of (Ni1-xCox)Se2 with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni0.5Co0.5Se2 counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni0.5Co0.5Se2 offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might be due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni0.5Co0.5Se2 counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni0.5Co0.5Se2 as counter electrode in dye-sensitized solar cells.

  16. Stimulation of Ideas through Compound-Based Bibliometrics: Counting and Mapping Chemical Compounds for Analyzing Research Topics in Chemistry, Physics, and Materials Science

    OpenAIRE

    Barth, Andreas; Marx, Werner

    2012-01-01

    Counting compounds (rather than papers or citations) offers a new perspective for quantitative analyses of research activities. First of all, we can precisely define (compound-related) research topics and access the corresponding publications (scientific papers as well as patents) as a measure of research activity. We can also establish the time evolution of the publications dealing with specific compounds or compound classes. Moreover, the mapping of compounds by establishing compound-based ...

  17. Elevated temperature corrosion behavior of iron-base ternary alloys that develop Cr/sub 2/O/sub 3/ and/or Al/sub 2/O/sub 3/ barrier scales

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, V.; Levy, A.V.

    1978-05-01

    The elevated temperature corrosion behavior of iron-base ternary alloys that develop Cr/sub 2/O/sub 3/ and/or Al/sub 2/O/sub 3/ barrier scales was investigated by exposing them to a mixed gas environment at 982/sup 0/C whose PO/sub 2/ was approximately 10/sup -18/ atm and whose PS/sub 2/ was approximately 10/sup -6/ atm. The alloys containing 18% Cr and 2.5 to 5% Al had the best corrosion resistance of the alloys tested. They developed a duplex Cr/sub 2/O/sub 3//Al/sub 2/O/sub 3/ scale through which sulfur did not readily diffuse. The 18% Cr alloy containing only 1% Al formed a Cr/sub 2/O/sub 3/ scale and had poor corrosion resistance because of rapid sulfur diffusion through the scale. Alloys that contained 10% Al and 0 to 15% Cr did not have good corrosion resistance because of sulfur diffusion through the single Al/sub 2/O/sub 3/ scale which formed. Alloys with 18% Cr that contained Si as a ternary addition did not develop continuous SiO/sub 2/ layers beneath the Cr/sub 2/O/sub 3/ outer scale and exhibited poor corrosion resistance.

  18. Thermodynamic description of Au-Ag-Si ternary system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the available experimental information, the Ag-Si binary system was thermodynamically assessed using the CALPHAD method. The solution phases, including liquid, fcc-Al and diamond-A4, were modeled as substitutional solutions, of which the excess Gibbs energies were expressed by Redlich-Kister polynomial functions. Combined with previous assessment of the Ag-Au and Au-Si binary systems, thermodynamic description of the Au-Ag-Si ternary system was performed to reproduce the reported phase equilibria. Thermodynamic properties of liquid alloys, liquidus projection and several vertical and isothermal sections of this ternary system were calculated, which are in reasonable agreement with the reported experimental data.

  19. Microstructural characterization and phase transformation of ternary alloys near at Al{sub 3}Ti compound; Caracterizacion microestructural y transformaciones de fase de aleaciones ternareas cercanas al compuesto Al{sub 3}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Ch, C. [Instituto Nacional de Investigaciones Nucleares. Depto.de Sintesis y Caracterizacion de Materiales. Carretera Mexico-Toluca Km. 36.5 C.P. 52045, Ocoyoacac, Edo. de Mexico (Mexico)

    1999-07-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10{sup 3}-10{sup 4} K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al{sub 3}Ti and others phases of L1{sub 2} type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO{sub 22} to the cubic phases L1{sub 2}. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1{sub 2} phase tends to increase to hardness depending of the content of this phase.

  20. Microstructural investigation on a Ni-Ta-Al ternary Alloys

    International Nuclear Information System (INIS)

    Full text: The nickel-based alloys are used in various fields such as marine industry, the nuclear industry, aerospace and aviation for their good resistance to creep and thermal fatigue at high temperatures. [1 DJERDJAR,ABDI: 2006 2008,]. This metallic alloys family is characterized by a relatively low density and their good mechanical properties. They have the peculiarity of having by precipitation, in the Ni rich corner, hardening and ordered phases (g') type Ni3X (X: Al, Ti, Ta, Nb etc) within the matrix (g) that can induce an increase in their yield strength with temperature giving them excellent mechanical properties at high temperature (650-1150 degree Celsius) (2: superalloys ATI). The Ni-Al-Ta ternary alloys Nickel rich presents complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni (γ) Ni3Al (γ'), Ni6AlTa (τ3), Ni3Ta (δ) or balances: two solid phases (γ' τ3), (τ3-δ), (τ3-γ), (γ-δ) or three solid phases (γ'-τ3-δ). These local balances generate a variety of phases of different crystalline structures. The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, solidified in ATD, characterized by SEM-EDS, X-ray diffraction and by a micro hardness. According to The results, correlation have been made between the nature of the formed phases and the solidifying way into the system Ni (75 %)-Al (x %)-Ta (y %), which are varied and complex. In addition to the solid solution (γ), the intermetallic compounds (γ', τ3 and δ) trained were identified and correlated with the complex balance between phases. This approach is achieved by combining information with additional characterization techniques. We show that the hardness increases with the Tantalum which has a hardening effect and

  1. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    Science.gov (United States)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  2. Anticancer agent-based marine natural products and related compounds.

    Science.gov (United States)

    Chen, Jian-Wei; Wu, Qi-Hao; Rowley, David C; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine natural products constitute a huge reservoir of anticancer agents. Consequently during the past decades, several marine anticancer compounds have been isolated, identified, and approved for anticancer treatment or are under trials. In this article the sources, structure, bioactivities, mode of actions, and analogs of some promising marine and derived anticancer compounds have been discussed. PMID:25559315

  3. Low-energy ternary fission

    International Nuclear Information System (INIS)

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  4. Synthesis and photophysical studies of tetrazolate-based Eu(III) photoluminescent ternary complexes containing N-heterocyclic phosphine oxides auxiliary co-ligands.

    Science.gov (United States)

    Mal, Suraj; Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana

    2016-08-01

    Two new ternary tetrazolate Eu(III) complexes with phosphine oxide co-ligands Eu(PTO)3 ·(P1/P2) [PTO = 5-(2-pyridyl-1-oxide)tetrazole, P1 = diphenylphosphorylamino-phenylphosphoryl-benzene, P2 = diphenylphosphorylpyridine)-bis-isobutyricphosphoryl] were synthesized and characterized using UV, fluorescence, IR and (1) H NMR spectroscopic techniques. The analytical data prove that the complexes are mononuclear in nature and the central Eu(III) ion is coordinated by three N and three O atoms of tetrazolate, and two O atoms of the corresponding bidentate phosphine oxide ligands. The ancillary ligand increased the photoluminescence efficiency of Eu(PTO)3 ·P1 (complex 3) by twofold compared with our previously reported Eu(PTO)3 complex (complex 1). Copyright © 2015 John Wiley & Sons, Ltd. PMID:26679054

  5. Electrochemical Fabrication and Characterization of Corrosion-Resistant, Ternary, Lead-Based Alloys as a New Material for Steel Surface Protection

    Science.gov (United States)

    Aliyev, A. Sh.; Tahirli, H. M.; Elrouby, Mahmoud; Soltanova, N. Sh.; Tagiev, D. B.

    2016-06-01

    This article presents the study of the synthesis of the ternary Pb-Sb-Te alloy on the stainless steel substrate via electrochemical method. The corrosion resistance of the electrodeposited alloy has been investigated via subjecting the electro-synthesized alloy to a corrosive medium containing sulfide ions; this medium is similar to the petroleum refining environment. The resulting film of the electrodeposited alloy was analyzed by the scanning electron microscope, energy-dispersive X-ray analysis, and X-ray diffraction to determine the morphology and the phase structure of the electrodeposited film. It was found that the electrodeposited Pb-Sb-Te alloy thin film is a multiphase composition. The obtained data reveal that the most corrosion-resistant phase is the PbSb2Te4 alloy.

  6. Acaricidal activity of eugenol based compounds against scabies mites.

    Directory of Open Access Journals (Sweden)

    Cielo Pasay

    Full Text Available BACKGROUND: Human scabies is a debilitating skin disease caused by the "itch mite" Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. METHODOLOGY/PRINCIPAL FINDINGS: Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues--acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. CONCLUSIONS: The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies.

  7. Crystal growth iron based pnictide compounds; Kristallzuechtung eisenbasierter Pniktidverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Nacke, Claudia

    2012-11-15

    The present work is concerned with selected crystal growth method for producing iron-based superconductors. The first part of this work introduces significant results of the crystal growth of BaFe{sub 2}As{sub 2} and the cobalt-substituted compound Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x{sub Nom} = 0.025, 0.05, 0.07, 0.10 and 0.20. For this purpose a test procedure for the vertical Bridgman method was developed. The second part of this work contains substantial results for growing a crystal of LiFeAs and the nickel-substituted compound Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As with x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 and 0.10. For this purpose a test procedure for the melt flow process has been developed successfully. [German] Die vorliegende Arbeit befasst sich mit ausgewaehlten Kristallzuechtungsverfahren zur Herstellung eisenbasierter Supraleiter. Der erste Teil dieser Arbeit fuehrt wesentliche Ergebnisse der Kristallzuechtung von BaFe{sub 2}As{sub 2} sowie der Cobalt-substituierten Verbindung Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} mit x{sub Nom} =0.025, 0.05, 0.07, 0.10 und 0.20 auf. Hierzu wurde eine Versuchsdurchfuehrung fuer das vertikale Bridgman-Verfahren konzipiert, mit welcher erfolgreich Kristalle dieser Zusammensetzungen gezuechtet wurden. Der zweite Teil dieser Arbeit enthaelt wesentliche Ergebnisse zur Kristallzuechtung von LiFeAs sowie der Nickel-substituierten Verbindung Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As mit x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 und 0.10. Hierfuer wurde erfolgreich eine Versuchsdurchfuehrung fuer das Schmelzfluss-Verfahren entwickelt.

  8. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.;

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... transition metal nitrides are also obtained by nitridation of the corresponding ternary carbide at 823 K. This transformation appears to occur by solid-state diffusion of carbide and nitride ions. To establish more general synthesis schemes for ternary nitrides, we have focused on the preparation of ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  9. Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4) - graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer.

    Science.gov (United States)

    Jo, Wan-Kuen; Natarajan, Thillai Sivakumar

    2016-11-15

    Novel ZnIn2S4-g-C3N4/BiVO4 nanorod-based ternary nanocomposite photocatalysts with enhanced visible light absorption were synthesized and systematically characterized to confirm the formation of ZnIn2S4 marigold flowers, the layered structure of the g-C3N4, BiVO4 nanorods, and the formation of binary and ternary nanocomposites. The visible light absorption of BiVO4 was significantly improved after coupling with g-C3N4 and ZnIn2S4, which was confirmed by UV-visible diffuse reflectance spectroscopic analysis. Ternary ZnIn2S4-g-C3N4/BiVO4 nanocomposites exhibited excellent visible light photocatalytic decomposition efficiency (VL-PDE) when used for the degradation of congo red (CR) dye and metronidazole (MTZ) pharmaceutical, as well as excellent stability and reusability. The ternary 5%ZnIn2S4-50%-g-C3N4/BiVO4 nanocomposite showed higher VL-PDE for CR (81.5%) and MTZ (59%) degradation than the binary composites, g-C3N4 and BiVO4. Radical quenching experiments showed that h(+), OH, and O2(-) were the reactive radicals, validating that the Z-scheme charge carrier transfer mechanism was responsible for the enhanced VL-PDE of the ternary ZnIn2S4-g-C3N4/BiVO4 nanocomposites, which was further confirmed by photoluminescence analysis. Furthermore, kinetic studies showed that the degradation followed pseudo-first-order kinetics, and that the ternary photocatalysts could be reused up to three times with good stability. The enhanced visible light absorption, high surface area, high adsorption capacity, Z-scheme charge carrier transfer, and increased lifetime of photo-produced electron-hole pairs were responsible for the increased visible light photocatalytic decomposition efficiency.

  10. Metal biosorption equilibria in a ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.H.; Volesky, B. [McGill Univ., Montreal, Quebec (Canada). Dept. of Chemical Engineering

    1996-03-20

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data and with conclusions postulated from the three possible binary subsystems.

  11. Ternary forecast of heavy snowfall in the Honam area, Korea

    Science.gov (United States)

    Sohn, Keon Tae; Lee, Jeong Hyeong; Cho, Young Seuk

    2009-03-01

    The objective of this study is to improve the statistical modeling for the ternary forecast of heavy snowfall in the Honam area in Korea. The ternary forecast of heavy snowfall consists of one of three values, 0 for less than 50 mm, 1 for an advisory (50-150 mm), and 2 for a warning (more than 150 mm). For our study, the observed daily snow amounts and the numerical model outputs for 45 synoptic factors at 17 stations in the Honam area during 5 years (2001 to 2005) are used as observations and potential predictors respectively. For statistical modeling and validation, the data set is divided into training data and validation data by cluster analysis. A multi-grade logistic regression model and neural networks are separately applied to generate the probabilities of three categories based on the model output statistic (MOS) method. Two models are estimated by the training data and tested by the validation data. Based on the estimated probabilities, three thresholds are chosen to generate ternary forecasts. The results are summarized in 3×3 contingency tables and the results of the three-grade logistic regression model are compared to those of the neural networks model. According to the model training and model validation results, the estimated three-grade logistic regression model is recommended as a ternary forecast model for heavy snowfall in the Honam area.

  12. Experimental investigation of the phase equilibria in the Co-Fe-Ti ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaohui; Chen, Chong; Peng, Yingbiao; Du, Yong; Li, Kun [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Lu, Xingxu [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Central South Univ., School of Materials Science and Engineering, Changsha (China)

    2015-08-15

    Phase equilibria in the Co-Fe-Ti ternary system were investigated by means of the equilibrated alloy method with X-ray powder diffraction and electron probe microanalysis. No ternary compounds were found. The experimental results indicated the existence of seven two-phase and one three-phase regions at 600 C, five two-phase and two three-phase regions at 800 C, and six two-phase and two three-phase regions at 950 C. The solubility of Co in TiFe{sub 2} was determined to be larger than 54 at.% at all investigated temperatures, and the solubilities of Fe in TiCo{sub 3} and Ti{sub 2}Co showed an appreciable increase with increasing temperature. The three-phase equilibrium in the Ti-rich corner at 800 C was revealed to be ((β-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) rather than ((α-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) reported in previous investigations. Based on the experimental data obtained in the present work, three isothermal sections at 600, 800 and 950 C were established.

  13. Evaluation of ternary blended cements for use in transportation concrete structures

    Science.gov (United States)

    Gilliland, Amanda Louise

    designing ternary blended cements more acceptable by eliminating arbitrary limitations for supplementary cementitious materials (SCMs) use and changing to performance-based standards. Performance-based standards require trial batching of concrete mixture designs, which can be used to optimize ternary combinations of portland cement and SCMs. States should be aware of various SCMs that are appropriate for the project type and its environment.

  14. Ternary and senary representations using DNA double-crossover tiles

    CERN Document Server

    Kim, Byeonghoon; Son, Junyoung; Kim, Junghoon; Hwang, Si Un; Dugasani, Sreekantha Reddy; Kim, Min Hyeok; Kim, Byung-Dong; Chang, Iksoo; Liu, Wing Kam; Kim, Moon Ki; Park, Sung Ha

    2016-01-01

    The information capacity of double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure.

  15. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei

    2016-10-11

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  16. Inquiry-Based Instruction of Compound Microscopy Using Simulated Paleobiogeography

    Science.gov (United States)

    Hodgson, Jay Y. S.; Mateer, Scott C.

    2015-01-01

    The compound microscope is an important tool in biology, and mastering it requires repetition. Unfortunately, introductory activities for students can be formulaic, and consequently, students are often unengaged and fail to develop the required experience to become proficient in microscopy. To engage students, increase repetition, and develop…

  17. Crystal structure and magnetic studies of the uranium ternary pnictides

    International Nuclear Information System (INIS)

    Crystallographic and magnetic properties of seven identified phases in the ternary U-Cu(Ni)-P(As) systems are reported. Preliminary studies performed on both polycrystalline and single-crystal samples have indicated a new type of crystal structure for UCuP2, UCuAs2 and UNiAs2. Magnetic susceptibility measurements of these phases have shown that the U-Cu-P(As) ternaries are ferromagnetically ordered with TC being 216, 76, 140 and 131 K for UCu2P2, UCuP2, UCu2As2 and UCuAs2 respectively. The U-NiP(As) ternaries are antiferromagnets with TN=228 K for UNiAs2 and 111 K for UNi2P2. The seventh phase obtained in the form of single crystals with, as yet, uncertain composition denoted as ''U3Cu3P5'' and having a complex tetragonal crystal structure with c/a=9.2, exhibits an antiferromagnetic phase transition below 146 K. Magnetization measurements reveal a strong magnetic anisotropy in all the ferromagnetic compounds examined. (orig.)

  18. Chemical bonding and electronic structure of fullerene-based compounds

    International Nuclear Information System (INIS)

    This talk will focus on the nature of bonding of fullerenes with other materials as demonstrated by synchrotron radiation and x-ray photoemission. Adsorption of C60 on metallic and semiconducting substrates occurs via charge transfer from the substrate to a LUMO-derived resonance, resulting in Fermi level alignment and dipole formation. Bonding of metal atoms to C60 depends on the metal work function and bulk cohesive energy. Evaporation of high cohesive energy materials onto a fullerene substrate results in metal cluster nucleation and limited C60 disruption for transition metals. Low cohesive energy metals form compounds with a degree of ionic character related to the metal work function. Photoemission results show the formation of ionic K-fulleride compounds while greater hybridization is observed for Ca-rich fullerides. Finally the electronic structure of fluorinated and hydrogenated fullerenes demonstrate changes in states derived from C60 π bonds due to reaction of dangling bonds

  19. Enhanced environmental detection of uranyl compounds based on luminescence characterization

    Science.gov (United States)

    Nelson, Jean Dennis

    Uranium (U) contamination can be introduced to the environment as a result of mining and manufacturing activities related to nuclear power, detonation of U-containing munitions (DoD), or nuclear weapons production/processing (DOE facilities). In oxidizing environments such as surface soils, U predominantly exists as U(VI), which is highly water soluble and very mobile in soils. U(VI) compounds typically contain the UO22+ group (uranyl compounds). The uniquely structured and long-lived green luminescence (fluorescence) of the uranyl ion (under UV radiation) has been studied and remained a strong topic of interest for two centuries. The presented research is distinct in its objective of improving capabilities for remotely sensing U contamination by understanding what environmental conditions are ideal for detection and need to be taken into consideration. Specific focuses include: (1) the accumulation and fluorescence enhancement of uranyl compounds at soil surfaces using distributed silica gel, and (2) environmental factors capable of influencing the luminescence response, directly or indirectly. In a complex environmental system, matrix effects co-exist from key soil parameters including moisture content (affected by evaporation, temperature and humidity), soil texture, pH, CEC, organic matter and iron content. Chapter 1 is a review of pertinent background information and provides justification for the selected key environmental parameters. Chapter 2 presents empirical investigations related to the fluorescence detection and characterization of uranyl compounds in soil and aqueous samples. An integrative experimental design was employed, testing different soils, generating steady-state fluorescence spectra, and building a comprehensive dataset which was then utilized to simultaneously test three hypotheses: The fluorescence detection of uranyl compounds is dependent upon (1) the key soil parameters, (2) the concentration of U contamination, and (3) time of analysis

  20. Cooperative phenomena in ternary superconductors

    International Nuclear Information System (INIS)

    A microscopic theory of ferromagnetic superconductors is developed from first principles. Self-consistent equations for the superconducting order parameter Δ and spontaneous magnetization are derived using a Green's function technique and considering the f-d exchange effect up to the second order. The theory is applied to explain the experimental results in the reentrant superconducting ternary system ErRh4B4. The present model explains reentrant behavior, predicts the coexistence of superconductivity and ferromagnetism in a very small range of temperature, the suppression of superconductivity by ferromagnetism, and vice versa. These results are in excellent agreement with the experimental data and predictions of other models. The behavior of the spontaneous magnetization, the superconducting order parameter, the specific heat, and the density of states is also studied

  1. Theoretical prediction of topological insulator in ternary rare earth chalcogenides

    OpenAIRE

    Yan, Binghai; Zhang, Hai-Jun; Liu, Chao-Xing; Qi, Xiao-Liang; Frauenheim, Thomas; Zhang, Shou-Cheng

    2010-01-01

    A new class of three-dimensional topological insulator, ternary rare earth chalcogenides, is theoretically investigated with ab initio calculations. Based on both bulk band structure analysis and the direct calculation of topological surface states, we demonstrate that LaBiTe3 is a topological insulator. La can be substituted by other rare earth elements, which provide candidates for novel topological states such as quantum anomalous Hall insulator, axionic insulator and topological Kondo ins...

  2. The lamellar-to-isotropic transition in ternary amphiphilic systems

    OpenAIRE

    Schwarz, U. S.; Swamy, K.; Gompper, G.

    1996-01-01

    We study the dependence of the phase behavior of ternary amphiphilic systems on composition and temperature. Our analysis is based on a curvature elastic model of the surfactant film with sufficiently large spontaneous curvature and sufficiently negative saddle-splay modulus that the stable phases are the lamellar phase and a droplet microemulsion. In addition to the curvature energy, we consider the contributions to the free energy of the long-ranged van der Waals interaction and of the undu...

  3. Cyclodextrin-based microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  4. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland

    DEFF Research Database (Denmark)

    Lee, Hosin; Kim, Yongjoo; Geisler, Nivi;

    2009-01-01

    -based compound seemed to affect the asphalt mix to become more flexible under the heavy loads. By adding SBS-based compound to asphalt mixtures using a “dry” process, it is expected that the pavement would become more resistant to rutting than a typical asphalt mixture used in Greenland while enduring its arctic...... PMA where it is formulated to melt and blend with asphalt quickly during a batch mixing process. The main objectives of this study are to (1) build asphalt pavement using asphalt mixtures with SBS-based compound added using a “dry” process at the batch plant and (2) evaluate its performance under...

  5. Comparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval

    Directory of Open Access Journals (Sweden)

    Rajeswari Sridhar

    2010-07-01

    Full Text Available In this work we have compared two indexing algorithms that have been used to index and retrieve Carnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithm for music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. The modification in the dual ternary algorithm was essential to handle variable length query phrase and to accommodate features specific to Carnatic music. The dual ternary indexing algorithm is adapted for Carnatic music by segmenting using the segmentation technique for Carnatic music. The dual ternary algorithm is compared with the multi-key hashing algorithm designed by us for indexing and retrieval in which features like MFCC, spectral flux, melody string and spectral centroid are used as features for indexing data into a hash table. The way in which collision resolution was handled by this hash table is different than the normal hash table approaches. It was observed that multi-key hashing based retrieval had a lesser time complexity than dual-ternary based indexing The algorithms were also compared for their precision and recall in which multi-key hashing had a better recall than modified dual ternary indexing for the sample data considered.

  6. Activated Carbon Adsorption Characteristics of Multi-component Volatile Organic compounds in a Fixed Bed Adsorption Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Hoon; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Sihyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-04-15

    This study aims to examine absorption characteristics of toluene, isopropyl alcohol (IPA), ethyl acetate (EA), and ternary-compounds, all of which are widely used in industrial processes, by means of four types of commercial activated carbon substances. It turned out that among the three types of volatile organic compounds, the breakthrough point of activated carbon and that of IPA, whose affinity was the lowest, were the lowest, and then that of EA and that of toluene in the order. With the breakthrough point of IPA, which was the shortest, as the standard, changes in the breakthrough points of unary-compounds, binary-compounds, and ternary-compounds were examined. As a result, it turned out that the larger the number of elements, the lower the breakthrough point. This resulted from competitive adsorption, that is, substitution of substances with a low level of affinity with those with a high level of affinity. Hence, the adsorption of toluene-IPA-EA and ternary-compounds require a design of the activated carbon bed based on the breakthrough of IPA, and in the design of activated carbon beds in actual industries as well, a substance whose level of affinity is the lowest needs to be the standard.

  7. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids.

    Science.gov (United States)

    Wang, Hui; Yuan, Haijian; Li, Shujun; Li, Zhuo; Jiang, Mingyue

    2016-02-01

    The purpose of this study was to synthesize hydrophilic cinnamaldehyde Schiff base compounds and investigate those bioactivity. A total of 24 Schiff base compounds were synthesized using a simple approach with 3 cinnamaldehyde derivates and 8 amino acids as raw materials. The structures of synthesized compounds were confirmed using FTIR, (1)HNMR, HRMS purity and melting point. The antimicrobial activities of new compounds were evaluated with fluconazole and ciprofloxacin as the control against Aspergillus niger, Penicillium citrinum, Escherichia coli and Staphylococcus aureus. Findings show that major compounds exhibited significant bioactivity. Results from the structure-activity relationship suggest that both -p-Cl on benzene ring of cinnamaldehyde and the number of -COOK of amino acid salts significantly contributed to antimicrobial activity. PMID:26774583

  8. Effects of the alloy compositions on the phonon-polaritons in ternary mixed crystals

    Institute of Scientific and Technical Information of China (English)

    BAO Jin; LIANG Xi-xia

    2008-01-01

    Composition dependence of bulk and surface phonon-polaritons in ternary mixed crystals are studied in the framework of the modified random-element-isodisplacement model and the Bom-Huang approximation. The numerical results for several Ⅱ - Ⅵ and Ⅲ-Ⅴ compound systems are performed, and the polariton frequencies as functions of the compositions for ternary mixed crystals AlxGa1-xAs, GaPxAs1-x, ZnSxSex-x, GaAsSb1-x, GaxIn1-xP, and ZnxCd1-xS as examples are given and discussed. The results show that the dependence of the energies of two branches of bulk phonon-polaritons which have phonon-like characteristics, and surface phonon-polaritons on the compositions of ternary mixed crystals are nonlinear and different from those of the corresponding binary systems.

  9. Isothermal Section of Er-Mn-Nd Ternary System at 773 K

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The isothermal section of the Er-Mn-Nd ternary system at 773 K was investigated mainly by X-ray powder diffraction with the aid of differential thermal analysis. The 773 K isothermal section of the ternary system consists of 9 single-phase regions, 14 two-phase regions, and 6 three-phase regions. At 773 K, the maximum solid solubility of Er in Nd and Nd in Er is about 20% (atom fraction) Er and 26% (atom fraction) Nd, respectively. Er6Mn23 and Nd6Mn23 form a continuous solid solution. The homogeneity range of δ phase extends from about 38% (atom fraction) Er to 43% (atom fraction) Er. No ternary compounds were observed at 773 K in this system.

  10. Radiation effects on II-VI compound-based detectors

    CERN Document Server

    Cavallini, A; Dusi, W; Auricchio, N; Chirco, P; Zanarini, M; Siffert, P; Fougeres, P

    2002-01-01

    The performance of room temperature CdTe and CdZnTe detectors exposed to a radiation source can be strongly altered by the interaction of the ionizing particles and the material. Up to now, few experimental data are available on the response of II-VI compound detectors to different types of radiation sources. We have carried out a thorough investigation on the effects of gamma-rays, neutrons and electron irradiation both on CdTe : Cl and Cd sub 0 sub . sub 9 Zn sub 0 sub . sub 1 Te detectors. We have studied the detector response after radiation exposure by means of dark current measurements and of quantitative spectroscopic analyses at low and medium energies. The deep traps present in the material have been characterized by means of PICTS (photo-induced current transient spectroscopy) analyses, which allow to determine the trap apparent activation energy and capture cross-section. The evolution of the trap parameters with increasing irradiation doses has been monitored for all the different types of radiati...

  11. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  12. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)

    ANA I. KOSTOV

    2008-04-01

    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  13. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  14. Study of the photonic crystal waveguide based on 2D compound lattice structure

    Institute of Scientific and Technical Information of China (English)

    WU Chao-jun; LI Yan-ping; WANG Zi-u

    2009-01-01

    group velocity dispersion compensation can be realized by the structure optimization. The results provide a reference for the study and application of photonic crystal waveguide based on the compound lattice structure.

  15. Nuclear magnetic resonance on selected lithium based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rudisch, Christian

    2013-11-26

    This thesis presents the NMR measurements on the single crystals LiMnPO{sub 4} and Li{sub 0.9}FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO{sub 4} with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO{sub 4} shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse X-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO{sub 4} measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li{sub 0.9}FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below T{sub c}-18 K which

  16. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Lin

    2015-01-01

    Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  17. Detection of polyaromatic compounds using antibody-based fiberoptics fluoroimmunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Vo-Dinh, T.; Tromberg, B.J.; Griffin, G.D.; Ambrose, K.R.; Sepaniak, M.J.; Alarie, J.P.

    1987-01-01

    In this work we have investigated the performance of an antibody-based fiberoptics sensor for the detection of the carcinogen benzo(a)pyrene and its DNA-adduct product BP-tetrol. The excellent sensitivity of this device - femtomole limits of detection for BP - illustrates that it has considerable potential to perform analyses of chemical and biological samples at trace levels in complex matrices. The results indicate that fiberoptics-based fluoroimmunosensors can be useful in a wide spectrum of biochemical and clinical analyses. 17 refs., 4 figs., 1 tab.

  18. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Langan, Paul; Dealwis, Chris G.; (Case Western); (LANL)

    2009-11-18

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.

  19. Molecular Recognition: Detection of Colorless Compounds Based on Color Change

    Science.gov (United States)

    Khalafi, Lida; Kashani, Samira; Karimi, Javad

    2016-01-01

    A laboratory experiment is described in which students measure the amount of cetirizine in allergy-treatment tablets based on molecular recognition. The basis of recognition is competition of cetirizine with phenolphthalein to form an inclusion complex with ß-cyclodextrin. Phenolphthalein is pinkish under basic condition, whereas it's complex form…

  20. Chemical reactivity of hypervalent silicon compounds: The local hard and soft acids and bases principle viewpoint

    Indian Academy of Sciences (India)

    Francisco Méndez; María De L Romero; José L Gazquez

    2005-09-01

    The silicon atom may increase its coordination number to values greater than four, to form pentacoordinated compounds. It has been observed experimentally that, in general, pentacoordinated compounds show greater reactivity than tetracoordinated compounds. In this work, density functional theory is used to calculate the global softness and the condensed softness of the silicon atom for SiHF4- and SiHF$^{1-}_{5-n}$. The values obtained show that the global and condensed softness are greater in the pentacoordinated compounds than in the tetracoordinated compounds, a result that explains the enhanced reactivity. If the results are analysed through a local version of the hard and soft acids and bases principle, it is possible to suggest that in nucleophilic substitution reactions, soft nucleophiles preferably react with SiHF$^{1-}_{5-n}$, and hard nucleophiles with SiHF4-.

  1. Defects, deformation mechanisms and phase stabilities in Nb-based B2 compounds

    International Nuclear Information System (INIS)

    Deformation mechanisms have been determined for compounds based on Nb3Al containing various additions of Ti. These compounds exhibit the B2 crystal structure and deform by activation of one or more of the following slip systems, namely left-angle 111 right-angle {110}, left-angle 111 right-angle {112} and left-angle 111 right-angle {123}. The dislocations are dissociated as superpartial pairs, each with Burgers vector, b, given by b=1/2 left-angle 111 right-angle, which bound a ribbon of antiphase boundary. Attempts have been made to determine the ordering temperatures and the ordering energy of these compounds. Estimates of the site occupancy of these nonstoichiometric B2 compounds have also been determined by the ALCHEMI technique. The phase stabilities of these compounds have been determined over a wide range of temperatures and the effect of these on mechanical properties has been assessed

  2. Research on the Sparse Representation for Gearbox Compound Fault Features Using Wavelet Bases

    Directory of Open Access Journals (Sweden)

    Chunyan Luo

    2015-01-01

    Full Text Available The research on gearbox fault diagnosis has been gaining increasing attention in recent years, especially on single fault diagnosis. In engineering practices, there is always more than one fault in the gearbox, which is demonstrated as compound fault. Hence, it is equally important for gearbox compound fault diagnosis. Both bearing and gear faults in the gearbox tend to result in different kinds of transient impulse responses in the captured signal and thus it is necessary to propose a potential approach for compound fault diagnosis. Sparse representation is one of the effective methods for feature extraction from strong background noise. Therefore, sparse representation under wavelet bases for compound fault features extraction is developed in this paper. With the proposed method, the different transient features of both bearing and gear can be separated and extracted. Both the simulated study and the practical application in the gearbox with compound fault verify the effectiveness of the proposed method.

  3. Realizing Ternary Logic in FPGAs for SWL DSP Systems

    Directory of Open Access Journals (Sweden)

    Tayeb Din

    2013-07-01

    Full Text Available Recently SWL (Short Word Length DSP (Digital Signal Processing applications has been proposed to overcome multiplier complexity that is evident in most of the digital applications. These SWL applications have been processed through sigma-delta modulation as a key element. For such applications, adder design plays vital role and can impact upon the chip area and its performance. In this paper, a ternary approach for adder tree has been proposed instead of binary that can accommodate more data with less chip-area at the cost of extra pin. The proposed ternary adder tree has been designed and developed in Quartus-II using three different design strategies namely T-gate (Ternary gate, LUT (Look Up Table and algebraic equations. Through rigorous simulation it was found that T-gate technique results in superior performance, an average of 23.5 and 33% improvement compared to the same adder structure based on Boolean Algebraic Equation and LUT, respectively. The proposed adder design would benefit the efficient implementation of SWL applications.

  4. Growing high-quality ternary CdMnTe epilayers by molecular beam epitaxy on Si substrates and its mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: jswang@cycu.edu.tw [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Tong, Shih-Chang; Tsai, Yu-Hsuan; Tsai, Wei-jiun [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Yang, Chu-Shou; Chang, Yi-Hsin [Graduate Institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Cheng, Yung-Chen [Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Yuan, Chi-Tsu; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China)

    2015-10-15

    Cd(Mn,Zn)Te-based ternary compound semiconductors with wide band-gaps are important in the detection of radiation and photovoltaic applications. This study characterizes Cd{sub 1-x}Mn{sub x}Te epilayers on Si substrates with various Mn compositions grown by molecular beam epitaxy. The surface smoothness, crystallinity and optical quality all are significantly improved with increasing Mn content. The Cd{sub 0.61}Mn{sub 0.39}Te epilayer with a thickness of only about 500 nm yields a full width at half maximum of the X-ray rocking curve of 165 arcsec. Photoluminescence spectra at 10 K show that the intensity of defect-related emissions is much lower than that of binary CdTe epilayers, reaching zero from the samples with high Mn content, while the integral intensity of the exciton-related emissions is increased by more than two orders of magnitude. Raman scattering spectra reveal that the intensity of the Te–Te related defect vibration modes falls significantly as the Mn content increase, even disappearing altogether in the samples with high Mn content. This work proposes that incorporating Mn atoms during epitaxial growth can promote the decomposition of Te{sub 2} sources, owing to the high sticking coefficient of Mn and the high cohesive energy of the Mn–Te bond, and then reduce the number of Te–Te related stacking fault defects, yielding high-quality CdMnTe epilayers. Our results herein demonstrate that the CdMnTe ternary epilayers are much more promising in terms of material quality than the CdZnTe ternary epilayers. - Highlights: • High-quality ternary CdMnTe were grown on Si substrates by molecular beam epitaxy. • The material qualities were significantly improved with increasing Mn content. • The Te–Te related defects were greatly reduced with increasing Mn content. • We report an enhanced growth of CdTe-based epilayers by the incorporation of Mn atoms.

  5. DFT study and microbiology of some coumarin-based compounds containing a chalcone moiety

    Directory of Open Access Journals (Sweden)

    Špirtović-Halilović Selma

    2014-01-01

    Full Text Available In the present investigation, a series of coumarin-based compounds containing a chalcone moiety were studied for their in vitro and in silico properties. DFT global chemical reactivity descriptors (chemical hardness, total energy, electronic chemical potential and electrophilicity are calculated for four synthesized compounds and used to predict their relative stability and reactivity. The antibacterial activities of all compounds have been screened against Bacillus subtilis (ATCC No. 6633 and Bacillus cereus (ATCC No. 11778. Quantum-chemical calculations indicate that antibacterial activity correlates well with chemical reactivity descriptors of molecules.

  6. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Jie; Tang Xin-Feng; Zhang Qing-Jie

    2007-01-01

    TiCoSb-based half-Heusler compounds with the substitution of Zr for Ti have been prepared quickly by combining high-energy ball milling method with spark plasma sintering technique, and their thermal transport properties have been investigated. With the increase of the concentration of Zr, the thermal conductivity of Ti1-xZrxCoSb compounds decreases significantly. Compared with the thermal conductivity of TiCoSb compound, that of Ti0.5Zr0.5CoSb decreases by 200% at 1000 K.

  7. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    Science.gov (United States)

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-10-01

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.

  8. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Amine, A. [Faculte des Sciences et Techniques, Mohammadia (Morocco). Dept. Biologie; Cremisini, C. [ENEA, Rome (Italy). Dipartimento Ambiente; Palleschi, G. [Univ. di Napoli Federico II, Portici (Italy). Dipartimento di Scienze

    1995-12-31

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results showed that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2--10 ppb.

  9. Influence of lead Inorganic Compounds on Combustion Rate of Double Base Rocket Propellants

    Directory of Open Access Journals (Sweden)

    V. B. Pillai

    1982-04-01

    Full Text Available The influence of lead nitrate, red lead, lead chromate, lead floride and lead carbonate on the combustion behaviour of double base propellants in the pressure range-35-140kg/cm /sup 2/ was studied. While all these compounds increased burning rates in lower pressure range (35-60 kg/cm/sup 2/ and higher pressure range (120-140 kg/cm/sup 2/, only lead chromate and lead fluoride were effective in the intermediate pressure range of 60-105 kg/cm/sup 2/. None of these compounds were effective as platonizer, except lead fluoride, which lowered n value to 0.34 in the lower pressure range. Addition of carbon black along with lead compounds raised burning rates further and reduced n values significantly in the higher pressure regins. A probable mechanism on the role of lead compounds studied has been suggested based on burning rate and DTA results.

  10. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.

    Science.gov (United States)

    Nguyen, Ha P; Koutsoukas, Alexios; Mohd Fauzi, Fazlin; Drakakis, Georgios; Maciejewski, Mateusz; Glen, Robert C; Bender, Andreas

    2013-09-01

    Diversity selection is a frequently applied strategy for assembling high-throughput screening libraries, making the assumption that a diverse compound set increases chances of finding bioactive molecules. Based on previous work on experimental 'affinity fingerprints', in this study, a novel diversity selection method is benchmarked that utilizes predicted bioactivity profiles as descriptors. Compounds were selected based on their predicted activity against half of the targets (training set), and diversity was assessed based on coverage of the remaining (test set) targets. Simultaneously, fingerprint-based diversity selection was performed. An original version of the method exhibited on average 5% and an improved version on average 10% increase in target space coverage compared with the fingerprint-based methods. As a typical case, bioactivity-based selection of 231 compounds (2%) from a particular data set ('Cutoff-40') resulted in 47.0% and 50.1% coverage, while fingerprint-based selection only achieved 38.4% target coverage for the same subset size. In conclusion, the novel bioactivity-based selection method outperformed the fingerprint-based method in sampling bioactive chemical space on the data sets considered. The structures retrieved were structurally more acceptable to medicinal chemists while at the same time being more lipophilic, hence bioactivity-based diversity selection of compounds would best be combined with physicochemical property filters in practice.

  11. Experimental investigation of phase equilibria in the Cu–Ni–Si ternary system

    International Nuclear Information System (INIS)

    Highlights: •Three isothermal sections of the Cu–Ni–Si system have been investigated. •The ternary compound τ1 and the liquid phase are confirmed at 1073 K. •The γ (Cu5Si) and θ (Ni2Si) phases can be stabilized at higher or lower temperatures. -- Abstract: The phase equilibria in the Cu–Ni–Si ternary system have been investigated experimentally by means of electron probe microanalysis (EPMA), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis on equilibrated ternary alloys. Three isothermal sections at 1073, 1173 and 1273 K are determined in the whole composition range. The existence of liquid phase and the ternary compound τ1 is confirmed at 1073 K. The binary γ (Cu5Si), γ (Ni31Si12), δ (Ni2Si) and θ (Ni2Si) phases exhibit a considerable solubility of a third element. In addition, the γ (Cu5Si) and θ (Ni2Si) phases can be stabilized by the addition of Ni and Cu, respectively

  12. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    OpenAIRE

    Zaixiang Lou; Yuxia Tang; Xinyi Song; Hongxin Wang

    2015-01-01

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic aci...

  13. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    OpenAIRE

    Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well...

  14. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  15. A Risk-Based Strategy for Evaluating Mitigation Options for Process-Formed Compounds in Food

    OpenAIRE

    Hanlon, Paul; Brorby, Gregory P.; Krishan, Mansi

    2016-01-01

    Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed com...

  16. Synthesis, Structure and Properties of Melamine-Based pTHF-Urethane Supramolecular Compounds

    NARCIS (Netherlands)

    Öjelund, Karin; Loontjens, Ton; Steeman, Paul; Palmans, Anja; Maurer, Frans

    2003-01-01

    The properties of melamine based supramolecular compounds have been studied with rheological, thermal, mechanical, dielectric and scattering techniques and compared with similar covalently bonded materials. The complexes are based on a linear pTHF-diol (M¯n=1 000) connected via a diisocyanate with m

  17. Understanding the toxicological potential of aerosol organic compounds using informatics based screening

    Science.gov (United States)

    Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea

    2016-04-01

    Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.

  18. Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage

    KAUST Repository

    Kurra, Narendra

    2015-05-11

    We report the successful fabrication of a micro-pseudocapacitor based on ternary nickel cobalt sulfide for the first time, with performance substantially exceeding that of previously reported micro-pseudocapacitors based on binary sulfides. CoNi2S4 micro-pseudocapacitor exhibits a maximum energy density of 18.7 mWh/cm3 at a power density of 1163 mW/cm3, opens up an avenue for exploring new family of ternary oxides/sulfides based micro-pseudocapacitors.

  19. Electroless ternary NiCeP coatings: Preparation and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Balaraju, J.N., E-mail: jnbalraj@nal.res.in [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India); Chembath, Manju [Surface Engineering Division, CSIR National Aerospace Laboratories, Post Bag No. 1779 Bangalore 560017, Karnataka (India)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Rare earth element (Ce) has been successfully codeposited in NiP matrix. Black-Right-Pointing-Pointer Surface analysis carried out by XPS showed that the Ce is present in +3 and +4 oxidation state. Black-Right-Pointing-Pointer Palladium stability test indicated that the Ce salts in electroless nickel bath has reduced the stability. Black-Right-Pointing-Pointer Cerium codeposition in NiP matrix has increased the microhardness both in as-plated and annealed conditions. Black-Right-Pointing-Pointer Higher thermal stability has been obtained by Ce incorporation. - Abstract: Electroless ternary NiCeP deposits were prepared from alkaline citrate bath containing nickel sulphate, cerium chloride and sodium hypophosphite. Concentration of rare earth cerium was varied from 1 to 2 g/L to obtain ternary deposits containing variable Ce and P contents. The influence of cerium on the deposit properties was analysed. The deposit exhibited a maximum cerium content of 6.2 {+-} 0.1 wt.% when the cerium chloride concentration was 2 g/L. The result of the Pd stability test showed that the stability of the bath was reduced due to Ce salt addition. The microhardness measurements made on both as-plated and heat treated samples exhibited a peak hardness of 1006 {+-} 11 VHN for cerium concentration of 1.5 g/L. The concept of kinetic strength analysis was proved to be applicable only for binary and not for ternary alloys due to multistep deposition mechanism with different kinetic energies. X-ray diffraction (XRD) patterns of as-plated and heat treated samples revealed peaks corresponding to Ni (1 1 1) and nickel phosphide (Ni{sub 3}P). Higher amount of Ce incorporation in NiP matrix increased the crystallisation temperature of the deposit which could be due to the suppression of nickel crystallisation prior to Ni{sub 3}P compound formation and thus increasing the activation energy for the formation of stable phases. Surface compositional analysis

  20. Elliptic curves and positive definite ternary forms

    Institute of Scientific and Technical Information of China (English)

    WANG; Xueli(

    2001-01-01

    [1]Pei Dingyi, Rosenberger, G. , Wang Xueli, The eligible numbers of positive definite ternary forms, Math. Zeitschriften,2000, 235: 479-497.[2]Wang Xueli, Pei Dingyi, Modular forms of 3/2 weight and one conjecture of Kaplansky, preprint.[3]Jones, B., The regularity of a genus of positive ternary quadratic forms, Trans. Amer. Math. Soc., 1931, 33: 111-124.[4]Kaplansky, I., The first nontrivial genus of positive definite ternary forms, Math. Comp., 1995, 64: 341-345.[5]Antoniadis, J. A., Bungert, M., Frey, G., Properties of twists of elliptic curves, J. Reine Angew Math., 1990, 405: 1-28.

  1. Mechanism of ultrasonic-pulse electrochemical compound machining based on particles

    Institute of Scientific and Technical Information of China (English)

    张成光; 张勇; 张飞虎

    2014-01-01

    The electric double layer with the transmission of particles was presented based on the principle of electrochemistry. In accordance with this theory, the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining (UPECM) based on particles was proposed. The removal mechanism was a particular focus and was thus validated by experiments. The principles and experiments of UPECM were introduced, and the removal model of the UPECM based on the principles of UPECM was established. Furthermore, the effects of the material removal rate for the main processing parameters, including the particles size, the ultrasonic vibration amplitude, the pulse voltage and the minimum machining gap between the tool and the workpiece, were also studied through UPECM. The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM. The results also indicate that the processing speed, machining accuracy and surface quality can be improved under UPECM compound machining.

  2. Volatile compounds and bacterial community dynamics of chestnut-flour-based sourdoughs.

    Science.gov (United States)

    Aponte, M; Boscaino, F; Sorrentino, A; Coppola, R; Masi, P; Romano, A

    2013-12-01

    The aims of this study were the monitoring of the microbial dynamics by means of a polyphasic approach based on conventional isolation techniques and PCR-DGGE-based methods in different chestnut-based sourdoughs and the evaluation of the impact of fermentation on volatile organic compounds formation during sourdoughs ripening. Members of the Lactobacillus plantarum group and Pediococcus pentosaceous dominated the sourdough ecosystems. Nevertheless, RAPD-PCR allowed recording a relevant genotypic biodiversity among strains coming from gluten-free flour combinations. Volatile compounds were characterised by GC/MS. A total of 59 volatile compounds were identified, mainly alcohols, esters, acids, aldehydes and ketones. Principal component analysis of samples at the beginning and at the end of ripening offered a good separation of the samples and highlighted the effect of fermentation on the sensorial profile. PMID:23870973

  3. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  4. Anion directed cation templated synthesis of three ternary copper(II) complexes with a monocondensed N2O donor Schiff base and different pseudohalides

    OpenAIRE

    Bhowmik, Prasanta; Bhattacharyya, Anik; Harms, Klaus; Sproules, Stephen; Chattopadhyay, Shouvik

    2015-01-01

    Three copper(II) complexes, [Cu2(L)2(μ1,1-N3)2] (1), [Cu2(L)2(μ1,1-NCO)2] (2) and [Cu(L)(μ1,5-dca)]n (3), where HL is a tridentate mono-condensed Schiff base, 1-(2-aminoethyliminomethyl)naphthalen-2-ol, and dca is dicyanamide, have been prepared and characterized by elemental analysis, IR, UV–Vis and fluorescence spectroscopy and single crystal X-ray diffraction studies. The Schiff base ligand was prepared by a counter anion mediated copper(II) templated synthesis. The azide ligand in complex...

  5. Ternary interaction parameters in calphad solution models

    Energy Technology Data Exchange (ETDEWEB)

    Eleno, Luiz T.F., E-mail: luizeleno@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Schön, Claudio G., E-mail: schoen@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Computational Materials Science Laboratory. Department of Metallurgical and Materials Engineering

    2014-07-01

    For random, diluted, multicomponent solutions, the excess chemical potentials can be expanded in power series of the composition, with coefficients that are pressure- and temperature-dependent. For a binary system, this approach is equivalent to using polynomial truncated expansions, such as the Redlich-Kister series for describing integral thermodynamic quantities. For ternary systems, an equivalent expansion of the excess chemical potentials clearly justifies the inclusion of ternary interaction parameters, which arise naturally in the form of correction terms in higher-order power expansions. To demonstrate this, we carry out truncated polynomial expansions of the excess chemical potential up to the sixth power of the composition variables. (author)

  6. Fabrication of ternary Ca-Mg-Zn bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2013-02-01

    Full Text Available Purpose: The paper describes the preparation, structure and thermal properties of ternary Ca-Mg-Zn bulk metallic glass in form of as-cast rods.Design/methodology/approach: The investigations on the ternary Ca-Mg-Zn glassy rods were conducted by using X-ray diffraction (XRD, scanning electron microscopy (SEM which energy dispersive X-ray analysis (EDS.Findings: The X-ray diffraction investigations have revealed that the studied as-cast rod was amorphous. The fractures of studied alloy could be classified as mixed fracture with indicated “river” and “smooth” fractures. Both type of the fracture surfaces consist of weakly formed “river” and “shell” patterns and “smooth” regions. The “river” patterns are characteristic for metallic glassy alloys.Practical implications: The studied Ca-based bulk metallic glasses is a relatively new group of material. Ca-based bulk metallic glasses are applied for many applications in different elements. Ca-based bulk metallic glasses have many unique properties such as low density (~2.0 g/cm3, low Youn g’s modulus ( ~20 to 30 GPa. The elastic modulus of Ca-b ased BMGs is comparable to that of hum an bone s, and Ca, Mg, and Zn are biocompatible. These features make the Ca-Mg-Zn–based alloys attractive for use in biomedical applications.Originality/value: Fabrication of amorphous alloy in the form of rod ternary Ca-Mg-Zn alloy by pressure die casting method.

  7. Mechanical properties, anisotropy and hardness of group IVA ternary spinel nitrides

    Science.gov (United States)

    Ding, Ying-Chun; Chen, Min

    2013-10-01

    In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based on the density-functional theory. The results show that γ-CSn2N4, γ-SiC2N4, γ-GeC2N4 and γ-SnC2N4 are not mechanically stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress-strain method. Derived elastic constants, such as bulk modulus, shear modulus, Young's modulus, Poisson coefficient and brittle/ductile behaviour are estimated using Voigt-Reuss-Hill theories. The B/G value, the Poisson's ratio and anisotropic factor are calculated for eight ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao's and Jiang's methods, it is observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ-CSi2N4. Furthermore, the Debye temperature for the eight stable crystals is also estimated.

  8. Clinical studies with oral lipid based formulations of poorly soluble compounds

    DEFF Research Database (Denmark)

    Fatouros, Dimitrios; Karpf, Ditte M; Nielsen, Flemming S;

    2007-01-01

    . Several drug products intended for oral administration have been marketed utilizing lipid and surfactant based formulations. Sandimmune((R)) and Sandimmune Neoral((R)) (cyclosporin A, Novartis), Norvir((R)) (ritonavir), and Fortovase((R)) (saquinavir) have been formulated in self-emulsifying drug delivery...... properties on the in vivo performance of the formulation. Equally important is the effect of concurrent food intake on the bioavailability of poorly soluble compounds. The effect of food on the bioavailability of compounds formulated in lipid and surfactant based formulations is also reviewed....

  9. Constitution and structure chemistry of the ternary metal-silicon-nitrogen systems (ME = Al, Mn, Fe, Co, Ni, Cu, Zn, Ru, In, Sn, Sb, Tl, Pb, Bi, Ce)

    International Nuclear Information System (INIS)

    The ternary systems Me-Si-N, ME = Al, Mn, Fe, Co, Ni, Cu, Zn, Ru, In, Sn, Sb, Tl, Pb, Bi, Ce were investigated on annealed powder samples by X-ray analysis. In isothermal cuts the thermodynamic equilibria were determined. No ternary compounds were found in the temperature- and pressure range considered except Mn-Si-N. 18 refs., 11 figs., 11 tabs. (qui)

  10. Synthesis and characterization of a novel stationary phase, Si-Zr/Ti(PMTDS), based upon ternary oxide support for high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Amparo, Maura R.; Marques, Fabiana A.; Faria, Anizio M., E-mail: anizio@pontal.ufu.br [Universidade Federal de Uberlandia (FACIP/UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal

    2013-09-15

    A new stationary phase based on the thermal immobilization of poly(methyltetradecylsiloxane) (PMTDS) on silica particles coated with a mixture of zirconia and titania was prepared and evaluated for the chromatographic separation of test mixtures. The spherical particles were characterized by elemental analysis, SEM, FTIR and {sup 29}Si NMR. The physicochemical properties of PMTDS phase supported on Si-Zr/Ti were intermediate between PMTDS phases supported on titanized silica and zirconized silica. The chromatographic performance of Si-Zr/Ti(PMTDS) phase was similar to PMTDS phases based on metal oxide coated silica having only one metal oxide and the preparation of a Si-Zr/Ti(PMTDS) phase allowed evaluation of the effect of each oxide, zirconia and titania, on the separation process and on the stability of the immobilized polymer phase. The hydrolytic stability of Si-Zr/Ti(PMTDS) stationary phase was similar to the Si-Ti(PMTDS) phase, improving the chemical stability of the silica-based PMTDS phase by about 100%. (author)

  11. Synthesis and luminescent properties of a Schiff-base-boron-quinacridone compound

    Institute of Scientific and Technical Information of China (English)

    YU DingYi; ZHAO YunFeng; ZHANG JingYing; WANG Yue

    2008-01-01

    A novel Schiff-base-boron-quinacridone compound (4) has been synthesized. The absorption and emission properties of 4 have been studied carefully. Experimental results demonstrated that the introduction of Schiff-base-boron moieties could suppress the aggregation of molecules 4 in solution and enhance the photoluminescent efficiency in relatively high concentration solution. The energy transfer from the Schiff-base-boron moieties to quinacridone cores could take place in 4 system.

  12. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    Directory of Open Access Journals (Sweden)

    Zaixiang Lou

    2015-09-01

    Full Text Available Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  13. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf.

    Science.gov (United States)

    Lou, Zaixiang; Tang, Yuxia; Song, Xinyi; Wang, Hongxin

    2015-01-01

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL(-1). Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I) were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis) and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants. PMID:26370951

  14. GPU-based beamformer: fast realization of plane wave compounding and synthetic aperture imaging.

    Science.gov (United States)

    Yiu, Billy Y S; Tsang, Ivan K H; Yu, Alfred C H

    2011-08-01

    Although they show potential to improve ultrasound image quality, plane wave (PW) compounding and synthetic aperture (SA) imaging are computationally demanding and are known to be challenging to implement in real-time. In this work, we have developed a novel beamformer architecture with the real-time parallel processing capacity needed to enable fast realization of PW compounding and SA imaging. The beamformer hardware comprises an array of graphics processing units (GPUs) that are hosted within the same computer workstation. Their parallel computational resources are controlled by a pixel-based software processor that includes the operations of analytic signal conversion, delay-and-sum beamforming, and recursive compounding as required to generate images from the channel-domain data samples acquired using PW compounding and SA imaging principles. When using two GTX-480 GPUs for beamforming and one GTX-470 GPU for recursive compounding, the beamformer can compute compounded 512 x 255 pixel PW and SA images at throughputs of over 4700 fps and 3000 fps, respectively, for imaging depths of 5 cm and 15 cm (32 receive channels, 40 MHz sampling rate). Its processing capacity can be further increased if additional GPUs or more advanced models of GPU are used. PMID:21859591

  15. Ternary metal-rich sulfide with a layered structure

    Science.gov (United States)

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  16. Density functional for ternary non-additive hard sphere mixtures.

    Science.gov (United States)

    Schmidt, Matthias

    2011-10-19

    Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. PMID:21946780

  17. First principles total energy study of NbCr{sub 2} + V Laves phase ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey); Chen, S.P.; Wills, J.M.; Albers, R.C. [Los Alamos National Lab., NM (United States)

    1999-04-01

    The C15 NbCr{sub 2} + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr{sub 2} + V compounds, V atoms substitute Cr atoms only.

  18. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening

    Directory of Open Access Journals (Sweden)

    Mantsyzov AB

    2012-09-01

    Full Text Available Alexey B Mantsyzov,1 Guillaume Bouvier,2 Nathalie Evrard-Todeschi,1 Gildas Bertho11Université Paris Descartes, Sorbonne, Paris, France; 2Institut Pasteur, Paris, FranceAbstract: Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.Keywords: scoring, docking, virtual screening, CAR, AuPosSOM

  19. All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron.

    Science.gov (United States)

    Zhang, Deming; Zeng, Lang; Cao, Kaihua; Wang, Mengxing; Peng, Shouzhong; Zhang, Yue; Zhang, Youguang; Klein, Jacques-Olivier; Wang, Yu; Zhao, Weisheng

    2016-08-01

    Artificial synaptic devices implemented by emerging post-CMOS non-volatile memory technologies such as Resistive RAM (RRAM) have made great progress recently. However, it is still a big challenge to fabricate stable and controllable multilevel RRAM. Benefitting from the control of electron spin instead of electron charge, spintronic devices, e.g., magnetic tunnel junction (MTJ) as a binary device, have been explored for neuromorphic computing with low power dissipation. In this paper, a compound spintronic device consisting of multiple vertically stacked MTJs is proposed to jointly behave as a synaptic device, termed as compound spintronic synapse (CSS). Based on our theoretical and experimental work, it has been demonstrated that the proposed compound spintronic device can achieve designable and stable multiple resistance states by interfacial and materials engineering of its components. Additionally, a compound spintronic neuron (CSN) circuit based on the proposed compound spintronic device is presented, enabling a multi-step transfer function. Then, an All Spin Artificial Neural Network (ASANN) is constructed with the CSS and CSN circuit. By conducting system-level simulations on the MNIST database for handwritten digital recognition, the performance of such ASANN has been investigated. Moreover, the impact of the resolution of both the CSS and CSN and device variation on the system performance are discussed in this work. PMID:27214913

  20. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    Science.gov (United States)

    Brazzle, Bob; Tapp, Anne

    2016-04-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory (calculus-based) physics course in a novel context—tracking the distribution of energy in a system as it transforms among three categories (e.g., gravitational, kinetic, and thermal) or transfers among three objects (e.g., inductor, capacitor, and resistor). The ternary diagram has some significant advantages over other graphical representations of energy distributions: an entire scenario can appear in a single plot, even when using very small time steps. This also means that the plot can be used to compare relative rates of energy change during various processes. Our goal for this paper is to introduce the ternary diagram and discuss these advantages in hopes that this will stimulate broader use of ternary diagrams and further research into their educational utility.

  1. Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds

    CERN Document Server

    Vrubel, I I; Ivanov, V K

    2015-01-01

    A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.

  2. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren;

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...

  3. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren;

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...

  4. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren;

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...

  5. Ternary supramolecular quantum-dot network flocculation for selective lectin detection

    NARCIS (Netherlands)

    Oikonomou, Maria; Wang, Junyou; Carvalho, Rui Rijo; Velders, Aldrik H.

    2016-01-01

    We present a versatile, tuneable, and selective nanoparticle-based lectin biosensor, based on flocculation of ternary supramolecular nanoparticle networks (NPN), formed through the sequential binding of three building blocks. The three building blocks are β-cyclodextrin-capped CdTe quantum dots,

  6. Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C

    Science.gov (United States)

    Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen

    2016-07-01

    The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.

  7. Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila.

    Science.gov (United States)

    Harrison, Christopher F; Chiriano, Gianpaolo; Finsel, Ivo; Manske, Christian; Hoffmann, Christine; Steiner, Bernhard; Kranjc, Agata; Patthey-Vuadens, Ophelie; Kicka, Sébastien; Trofimov, Valentin; Ouertatani-Sakouhi, Hajer; Soldati, Thierry; Scapozza, Leonardo; Hilbi, Hubert

    2015-07-10

    The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s). PMID:27622823

  8. Response surface methodology based optimization of diesel–n-butanol –cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics

    International Nuclear Information System (INIS)

    Highlights: • RSM based optimization for optimum blend ratio of diesel fuel, n-butanol and cotton oil was done. • 65.5 vol.% diesel fuel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC) was determined. • DnBC decreased brake torque, brake power, BTE and BMEP, while increased BSFC. • DnBC decreased NOx, CO and HC emissions. - Abstract: Many studies declare that 20% biodiesel is the optimum concentration for biodiesel–diesel fuel blends to improve performance. The present work focuses on finding diesel fuel, n-butanol, and cotton oil optimum blend ratios for diesel engine applications by using the response surface method (RSM). Experimental test fuels were prepared by choosing 7 different concentrations, where phase decomposition did not occur in the phase diagram of −10 °C. Experiments were carried out at full load conditions and the constant speed (2200 rpm) of maximum brake torque to determine engine performance and emission parameters. According to the test results of the engine, optimization was done by using RSM considering engine performance and exhaust emissions parameters, to identify the rates of concentrations of components in the optimum blend of three. Confirmation tests were employed to compare the output values of concentrations that were identified by optimization. The real experiment results and the R2 actual values that show the relation between the outputs from the optimizations and real experiments were determined in high accordance. The optimum component concentration was determined as 65.5 vol.% diesel, 23.1 vol.% n-butanol and 11.4 vol.% cotton oil (DnBC). According to engine performance tests brake torque, brake power, BTE and BMEP of DnBC decreased while BSFC increased compared to those of diesel fuel. NOx, CO and HC emissions of DnBC drastically decreased as 11.33%, 45.17% and 81.45%, respectively

  9. Ternary solution of sodium chloride, succinic acid and water; surface tension and its influence on cloud droplet activation

    Directory of Open Access Journals (Sweden)

    J. Vanhanen

    2008-08-01

    Full Text Available Surface tension of ternary solution of sodium chloride, succinic acid and water was measured as a function of both composition and temperature by using the capillary rise technique. Both sodium chloride and succinic acid are found in atmospheric aerosols, the former being main constituent of marine aerosol. Succinic acid was found to decrease the surface tension of water already at very low concentrations. Sodium chloride increased the surface tension linearly as a function of the concentration. Surface tensions of both binary solutions agreed well with the previous measurements. Succinic acid was found to lower the surface tension even if sodium chloride is present, indicating that succinic acid, as a surface active compound, tends to concentrate to the surface. An equation based on thermodynamical relations was fitted to the data and extrapolated to the whole concentration range by using estimated surface tensions for pure compounds. As a result, we obtained an estimate of surface tensions beyond solubility limits in addition to a fit to the experimental data. The parameterization can safely be used at temperatures from 10 to 30°C. These kinds of parameterizations are important for example in atmospheric nucleation models. To investigate the influence of surface tension on cloud droplet activation, the surface tension parameterization was included in an adiabatic air parcel model. Usually in cloud models the surface tension of pure water is used. Simulations were done for characteristic marine aerosol size distributions consisting of the considered ternary mixture. We found that by using the surface tension of pure water, the amount of activated particles is underestimated up to 8% if particles contain succinic acid and overestimated it up to 8% if particles contain only sodium chloride. The surface tension effect was found to increase with increasing updraft velocity.

  10. New color image encryption algorithm based on compound chaos mapping and hyperchaotic cellular neural network

    Science.gov (United States)

    Li, Jinqing; Bai, Fengming; Di, Xiaoqiang

    2013-01-01

    We propose an image encryption/decryption algorithm based on chaotic control parameter and hyperchaotic system with the composite permutation-diffusion structure. Compound chaos mapping is used to generate control parameters in the permutation stage. The high correlation between pixels is shuffled. In the diffusion stage, compound chaos mapping of different initial condition and control parameter generates the diffusion parameters, which are applied to hyperchaotic cellular neural networks. The diffusion key stream is obtained by this process and implements the pixels' diffusion. Compared with the existing methods, both simulation and statistical analysis of our proposed algorithm show that the algorithm has a good performance against attacks and meets the corresponding security level.

  11. Single crystal growth of europium and ytterbium based intermetallic compounds using metal flux technique

    Indian Academy of Sciences (India)

    Sumanta Sarkar; Sebastian C Peter

    2012-11-01

    This article covers the use of indium as a potential metal solvent for the crystal growth of europium and ytterbium-based intermetallic compounds. A brief view about the advantage of metal flux technique and the use of indium as reactive and non-reactive flux are outlined. Large single crystals of EuGe2, EuCoGe3 and Yb2AuGe3 compounds were obtained in high yield from the reactions of the elements in liquid indium. The results presented here demonstrate that considerable advances in the discovery of single crystal growth of complex phases are achievable utilizing molten metals as solvents.

  12. SEASONAL CHANGES IN THE REDUCTION OF BIOGENIC COMPOUNDS IN WASTEWATER TREATMENT PLANTS BASED ON HYDROPONIC TECHNOLOGY

    OpenAIRE

    Aleksandra Bawiec; Katarzyna Pawęska; Krzysztof Pulikowski

    2016-01-01

    The study presents the results of the treatment of domestic and industrial wastewater with respect to the reduction of nitrogen and phosphorus compounds. The analysis encompasses the results of physical and chemical tests of effluents from two facilities based on hydroponic technology: wastewater treatment plants with hydroponic lagoons using the BIOPAX technology – Paczków, Poland and the Organica technology – Szarvas, Hungary. Monthly treatment effectiveness was determined basing on these a...

  13. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation

    OpenAIRE

    Hauschild, Karsten; Picker, Katharina M.

    2004-01-01

    The development of new direct compression excipients should include a comprehensive and rapid determination of deformation properties. The aim of this study was to characterize StarLac, a new coprocessed compound for direct compression based on lactose and maize starch. For this purpose, the effects of the base materials (maize starch and spraydried lactose) were considered and the influence of the spray-drying process was investigated. This was performed by comparing the physical mixture of ...

  14. PMGA and its application in area and power optimization for ternary FPRM circuit

    Science.gov (United States)

    Pengjun, Wang; Kangping, Li; Huihong, Zhang

    2016-01-01

    Based on the research of population migration algorithms (PMAs), a population migration genetic algorithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY13F040003), the National Natural Science Foundation of China (Nos. 61234002, 61306041), and the K. C. Wong Magna Fund in Ningbo University.

  15. Syntheses and Supramolecular Structures of Two Nickel(Ⅱ) Compounds Based on Two Thiosemicarbazone Ligands

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-juan; FENG Ze-jing; ZHAO Xiao-juan; WANG Su-na; DOU Jian-min

    2013-01-01

    Two new compounds,[Ni2(L1)(Py)6]Py·CH3OH(1) and [Ni3(L2)2(Py)4]·2DMF(2)(H4L1=N,N'-bisalicylbisthiocarbamide; H3L2=3-hydroxyl-2-naphthalene thiosemicarbazide; Py=pyridine; DMF=dimethyl fumarate),based upon two thiosemicarbazone ligands have been obtained and characterized by elemental analysis,Fourier transform infrared(FTIR) and X-ray diffraction(XRD).Compound 1 possesses a binuclear cluster,in which the bisalicylbisthiocarbamide acts as a hexadentate bridge.Compound 2 exhibits a linear trinuclear cluster with the triply-deprotonated ligand acting as pentadentate bridge.C—H…O,C—H…π and C—H…S weak interactions further link these molecules to form interesting supramolecular networks.

  16. In silico structure-based design and synthesis of novel anti-RSV compounds.

    Science.gov (United States)

    Cancellieri, Michela; Bassetto, Marcella; Widjaja, Ivy; van Kuppeveld, Frank; de Haan, Cornelis A M; Brancale, Andrea

    2015-10-01

    Respiratory syncytial virus (RSV) is the major cause for respiratory tract disease in infants and young children. Currently, no licensed vaccine or a selective antiviral drug against RSV infections are available. Here, we describe a structure-based drug design approach that led to the synthesis of a novel series of zinc-ejecting compounds active against RSV replication. 30 compounds, sharing a common dithiocarbamate moiety, were designed and prepared to target the zinc finger motif of the M2-1 protein. A library of ∼ 12,000 small fragments was docked to explore the area surrounding the zinc ion. Among these, seven ligands were selected and used for the preparation of the new derivatives. The results reported here may help the development of a lead compound for the treatment of RSV infections. PMID:26259810

  17. Thermoelectric Properties of ZrNiSn-Based Half-Heusler Compounds

    Science.gov (United States)

    Yang, Jihui

    2002-03-01

    An increasing awareness of energy efficiency and environmental concerns has rekindled prospects for automotive and other applications of thermoelectric materials. For instance, getting “free” electric power from waste heat or obtaining cooling power from a solid-state device is very appealing for the automotive industry. ZrNiSn-based half-Heusler compounds show promising transport properties that make these materials of interest for thermoelectric power generation. The talk will focus on the effect on transport properties of alloying and doping on the various sublattices. New high temperature data will be presented that indicate that appropriately modified half-Heusler compounds possess very high power factor and relatively low thermal conductivity, leading to a dimensionless thermoelectric figure of merit ZT of 0.7 at 800 K. This is the highest ZT value for any half-Heusler compound reported so far.

  18. Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis

    Science.gov (United States)

    He, Shuilong; Chen, Jinglong; Zhou, Zitong; Zi, Yanyang; Wang, Yanxue; Wang, Xiaodong

    2016-08-01

    Compound-fault diagnosis of mechanical equipment is still challenging at present because of its complexity, multiplicity and non-stationarity. In this work, an adaptive redundant multiwavelet packet (ARMP) method is proposed for the compound-fault diagnosis. Multiwavelet transform has two or more base functions and many excellent properties, making it suitable for detecting all the features of compound-fault simultaneously. However, on the other hand, the fixed basis function used in multiwavelet transform may decrease the accuracy of fault extraction; what's more, the multi-resolution analysis of multiwavelet transform in low frequency band may also leave out the useful features. Thus, the minimum sum of normalized multifractal entropy is adopted as the optimization criteria for the proposed ARMP method, while the relative energy ratio of the characteristic frequency is utilized as an effective way in automatically selecting the sensitive frequency bands. Then, The ARMP technique combined with Hilbert transform demodulation analysis is then applied to detect the compound-fault of bevel gearbox and planetary gearbox. The results verify that the proposed method can effectively identify and detect the compound-fault of mechanical equipment.

  19. Synthesis of Natural Acylphloroglucinol-Based Antifungal Compounds against Cryptococcus Species.

    Science.gov (United States)

    Yu, Qian; Ravu, Ranga Rao; Jacob, Melissa R; Khan, Shabana I; Agarwal, Ameeta K; Yu, Bo-Yang; Li, Xing-Cong

    2016-09-23

    Thirty-three natural-product-based acylphloroglucinol derivatives were synthesized to identify antifungal compounds against Cryptococcus spp. that cause the life-threatening disseminated cryptococcosis. In vitro antifungal testing showed that 17 compounds were active against C. neoformans ATCC 90113, C. neoformans H99, and C. gattii ATCC 32609, with minimum inhibitory concentrations (MICs) in the range 1.0-16.7 μg/mL. Analysis of the structure and antifungal activity of these compounds indicated that the 2,4-diacyl- and 2-acyl-4-alkylphloroglucinols were more active than O-alkyl-acylphloroglucinols. The most promising compound found was 2-methyl-1-(2,4,6-trihydroxy-3-(4-isopropylbenzyl)phenyl)propan-1-one (11j), which exhibited potent antifungal activity (MICs, 1.5-2.1 μg/mL) and low cytotoxicity against the mammalian Vero and LLC-PK1 cell lines (IC50 values >50 μg/mL). This compound may serve as a template for further synthesis of new analogues with improved antifungal activity. The findings of the present work may contribute to future antifungal discovery toward pharmaceutical development of new treatments for cryptococcosis. PMID:27584935

  20. Development of diagnostic SPR based biosensor for the detection of pharmaceutical compounds in saliva

    Science.gov (United States)

    Sonny, Susanna; Sesay, Adama M.; Virtanen, Vesa

    2010-11-01

    The aim of the study is to develop diagnostic tests for the detection of pharmaceutical compounds in saliva. Oral fluid is increasingly being considered as an ideal sample matrix. It can be collected non-invasively and causes less stress to the person being tested. The detection of pharmaceutical compounds and drugs in saliva can give valuable information on individual bases on dose response, usage, characterization and clinical diagnostics. Surface plasmon resonance (SPR) is a highly sensitive, fast and label free analytical technique for the detection of molecular interactions. The specific binding of measured analyte onto the active gold sensing surface of the SPR device induces a refractive index change that can be monitored. To monitor these pharmaceutical compounds in saliva the immunoassays were developed using a SPR instrument. The instrument is equipped with a 670nm laser diode and has two sensing channels. Monoclonal antibodies against the pharmaceutical compounds were used to specifically recognise and capture the compounds which intern will have an effect of the refractive index monitored. Preliminary results show that the immunoassays for cocaine and MDMA (3,4-methylenedioxymethamphetamine) are very sensitive and have linear ranges of 0.01 pg/ml - 1 ng/ml and 0.1 pg/ml - 100 ng/ml, respectively.

  1. Electrodeposition of catalytic ternary cobalt based coatings

    OpenAIRE

    Ved, M. V.; Sakhnenko, N. D.; Glushkova, M. A.; Hapon, Yu. K.; Kozyar, M. A.

    2015-01-01

    Consistent patterns for electrodeposition of Co-Mo-W and Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface topography of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by alloying components with current density increasing as well as the rising of pulse time promotes the content of zirconium, and pause – molybdenum be...

  2. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods; Caracterisation des elements: carbone, azote, oxygene et metal refractaire dans des depots binaires et ternaires a base de silicium par methodes d'analyse utilisant les faisceaux d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Somatri-Bouamrane, R. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1996-12-19

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions {sup 12}C({alpha},{alpha}), {sup 14}N({alpha},{alpha}), {sup 16}O({alpha},{alpha}), {sup 28}Si({alpha},{alpha}) and {sup 14}N({alpha},p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  3. Research on the image fusion and target extraction based on bionic compound eye system

    Science.gov (United States)

    Zhang, Shaowei; Hao, Qun; Song, Yong; Wang, Zihan; Zhang, Kaiyu; Zhang, Shiyu

    2015-08-01

    People attach more and more importance to bionic compound eye due to its advantages such as small volume, large field of view and sensitivity to high-speed moving objects. Small field of view and large volume are the disadvantages of traditional image sensor and in order to avoid these defects, this paper intends to build a set of compound eye system based on insect compound eye structure and visual processing mechanism. In the center of this system is the primary sensor which has high resolution ratio. The primary sensor is surrounded by the other six sensors which have low resolution ratio. Based on this system, this paper will study the target image fusion and extraction method by using plane compound eye structure. This paper designs a control module which can combine the distinguishing features of high resolution image with local features of low resolution image so as to conduct target detection, recognition and location. Compared with traditional ways, the way of high resolution in the center and low resolution around makes this system own the advantages of high resolution and large field of view and enables the system to detect the object quickly and recognize the object accurately.

  4. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    Science.gov (United States)

    Almarri, Masoud S.

    The ultimate goal of this thesis is to develop a fundamental understanding of the role of surface oxygen functional groups on carbon-based adsorbents in the adsorption of nitrogen compounds that are known to be present in liquid fuels. N2 adsorption was used to characterize pore structures. The surface chemical properties of the adsorbents were characterized by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques with a mass spectrometer to identify and quantify the type and concentration of oxygen functional groups on the basis of CO2 and CO evolution profiles. It was found that although surface area and pore size distribution are important for the adsorption process, they are not primary factors in the adsorption of nitrogen compounds. On the other hand, both the type and concentration of surface oxygen-containing functional groups play an important role in determining adsorptive denitrogenation performance. Higher concentrations of the oxygen functional groups on the adsorbents resulted in a higher adsorption capacity for the nitrogen compounds. A fundamental insight was gained into the contributions of different oxygen functional groups by analyzing the changes in the monolayer maximum adsorption capacity, qm, and the adsorption constant, K, for nitrogen compounds on different activated carbons. Acidic functional groups such as carboxylic acids and carboxylic anhydrides appear to contribute more to the adsorption of quinoline, while the basic oxygen functional groups such as carbonyls and quinones enhance the adsorption of indole. Despite the high number of publications on the adsorptive desulfurization of liquid hydrocarbon fuels, these studies did not consider the presence of coexisting nitrogen compounds. It is well-known that, to achieve ultraclean diesel fuel, sulfur must be reduced to a very low level, where the concentrations of nitrogen and sulfur compounds are comparable. The adsorptive denitrogenation and

  5. On the Dissolution Behavior of Sulfur in Ternary Silicate Slags

    Science.gov (United States)

    Kang, Youn-Bae; Park, Joo Hyun

    2011-12-01

    Sulfur dissolution behavior, in terms of sulfide capacity ( C S), in ternary silicate slags (molten oxide slags composed of MO - NO - SiO2, where M and N are Ca, Mn, Fe, and Mg), is discussed based on available experimental data. Composition dependence of the sulfur dissolution, at least in the dilute region of sulfur, may be explained by taking into account the cation-anion first-nearest-neighbor (FNN) interaction (stability of sulfide) and the cation-cation second-nearest-neighbor (SNN) interaction over O anion (oxygen proportions in silicate slags). When the Gibbs energy of a reciprocal reaction MO + NS = MS + NO is positive, the sulfide capacity of slags with virtually no SiO2 or low SiO2 concentration decreases as the concentration of MO increases. However, in some slags, as SiO2 concentration increases, replacing NO by MO at a constant SiO2 concentration may increase sulfide capacity when the basicity of NO is less than that of MO. This phenomenon is observed as rotation of iso- C S lines in ternary silicate slags, and it is explained by simultaneous consideration of the stability of sulfide and oxygen proportions in the silicate slags. It is suggested that a solution model for the prediction of sulfide capacity should be based on the actual dissolution mechanism of sulfur rather than on the simple empirical correlation.

  6. Multi-view 3D echocardiography compounding based on feature consistency

    Energy Technology Data Exchange (ETDEWEB)

    Yao Cheng; Schaeffter, Tobias; Penney, Graeme P [Division of Imaging Sciences and Biomedical Engineering, King' s College London (United Kingdom); Simpson, John M, E-mail: cheng.yao@kcl.ac.uk [Department of Congenital Heart Disease, Evelina Children' s Hospital, London (United Kingdom)

    2011-09-21

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  7. BRCA1-Associated Triple-Negative Breast Cancer and Potential Treatment for Ruthenium-Based Compounds.

    Science.gov (United States)

    Hongthong, Khwanjira; Ratanaphan, Adisorn

    2016-01-01

    Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor (ER), progesterone receptor (PR), and a lack of overexpression or amplification of human epidermal growth factor receptor 2 (HER2). The clinicopathological characteristics of TNBC include a high grading, a high rate of cell proliferation and a greater degree of chromosomal rearrangement. Patients with triple-negative breast cancer are more likely to be drug resistant and more difficult to treat, and are also frequently BRCA1 mutants. Methylation of the BRCA1 promoter region is associated with a reduction of the BRCA1 mRNA level. TNBC patients with a methylated BRCA1 had a better disease-free survival compared with those with non-methylated BRCA1. From a therapeutic perspective, the expression level of BRCA1 has been a major determinant of the responses to different classes of chemotherapy. BRCA1-dysfunctional tumors are hypersensitive to DNA damaging chemotherapeutic agents like platinum drugs. Although platinum based drugs are currently widely used as conventional chemotherapeutic drugs in breast cancer chemotherapy, their use has several disadvantages. It is therefore of interest to seek out alternative therapeutic metal-based compounds that could overcome the limitations of these platinum based drugs. Ruthenium-based compounds could be the most promising alternative to the platinum drugs. This review highlights the use of BRCA1 as a predictive marker as well as for a potential drug target for anticancer ruthenium compounds.

  8. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Aditya M Vora

    2011-12-01

    The well-known empty core (EMC) model potential of Ashcroft was used to study the theoretical investigation of the superconducting state parameters (SSP) viz. electron–phonon coupling strength , Coulomb pseudopotential $\\mu^{\\ast}$, transition temperature $T_{C}$, isotope effect exponent and effective interaction strength $N_{O}V$ of some ternary metallic glasses. Most recent local field correction function due to Sarkar et al is used to study the screening influence on the aforesaid properties. Quadratic $T_{C}$ equations have been proposed and found successful. Also, the present findings are found to be in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary superconductors. The pseudo-alloy-atom (PAA) model was applied for the first time instead of Vegard’s law.

  9. Experimental investigation of the ternary system Ni–Pd–Sn with special focus on the B8-type phase

    Energy Technology Data Exchange (ETDEWEB)

    Jandl, Isabella, E-mail: Isabella.jandl@univie.ac.at; Ipser, Herbert; Richter, Klaus W.

    2015-11-15

    The ternary alloy system Ni–Pd–Sn was investigated experimentally from 700 °C upwards, with special focus on the general NiAs-type compounds. The phase diagram and crystallographic parameters were studied by means of powder X-ray diffraction (XRD), differential thermal analysis (DTA), light optical microscopy (LOM) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDX). An isothermal section at 700 °C was constructed wherein a continuous phase field between the binary NiAs-type compounds γ (PdSn) and Ni{sub 3}Sn{sub 2} (high temperature modification) was detected. A series of samples throughout this phase field was used to investigate lattice parameter variations, occupation of the atomic sites and the melting behaviour. A partial ordering of the transition metals was observed. Moreover, three vertical sections at 30 at.%, 40 at.% and 50 at.% Sn were determined. Altogether, seven ternary invariant phase reactions were discovered: two ternary eutectic reactions, one ternary eutectoid reaction, three ternary transition reactions and one maximum. A complete reaction scheme for the investigated temperature range is given. Furthermore, a partial liquidus surface projection, except for the low-temperature Sn-rich region, was developed. - Highlights: • Detailed study of the ternary alloy system Ni–Pd–Sn. • 1 Isotherm, 3 vertical sections, a partial liquidus projection and a reaction scheme. • A continuous phase field, between γ and Ni{sub 3}Sn{sub 2}, was discovered. • Lattice parameters and structural features in this phase field were analysed. • A partial order of Ni and Pd in this phase field was observed.

  10. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    Science.gov (United States)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  11. Computational development of rubromycin-based lead compounds for HIV-1 reverse transcriptase inhibition.

    Science.gov (United States)

    Bernardo, Carlos E P; Silva, Pedro J

    2014-01-01

    The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed using molecular docking and molecular dynamics simulations. MM-PBSA analysis and examination of the trajectories allowed the identification of several promising compounds with predicted high affinity towards reverse transcriptase mutants which have proven resistant to current drugs. Important insights on the complex interplay of factors determining the ability of ligands to selectively target each mutant have been obtained. PMID:25071993

  12. Computational development of rubromycin-based lead compounds for HIV-1 reverse transcriptase inhibition

    OpenAIRE

    Bernardo, Carlos E. P.; Silva, Pedro J.

    2014-01-01

    The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed using molecular docking and molecular dynamics simulations. MM-PBSA analysis and examination of the trajectories allowed the identification of several promising compounds with predicted high affinity towards reverse transcriptase mutants which have proven resistant to current drugs. Important insights on the complex interplay of factors determining the ability of ligands to selectively target each mutan...

  13. Computational development of rubromycin-based lead compounds for HIV-1 reverse transcriptase inhibition

    Directory of Open Access Journals (Sweden)

    Carlos E.P. Bernardo

    2014-07-01

    Full Text Available The binding of several rubromycin-based ligands to HIV1-reverse transcriptase was analyzed using molecular docking and molecular dynamics simulations. MM-PBSA analysis and examination of the trajectories allowed the identification of several promising compounds with predicted high affinity towards reverse transcriptase mutants which have proven resistant to current drugs. Important insights on the complex interplay of factors determining the ability of ligands to selectively target each mutant have been obtained.

  14. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery.

    Science.gov (United States)

    Liang, Kun; Bae, Ki Hyun; Lee, Fan; Xu, Keming; Chung, Joo Eun; Gao, Shu Jun; Kurisawa, Motoichi

    2016-03-28

    Nanosized polyelectrolyte complexes are attractive delivery vehicles for the transfer of therapeutic genes to diseased cells. Here we report the application of self-assembled ternary complexes constructed with plasmid DNA, branched polyethylenimine and hyaluronic acid-green tea catechin conjugates for targeted gene delivery. These conjugates not only stabilize plasmid DNA/polyethylenimine complexes via the strong DNA-binding affinity of green tea catechin, but also facilitate their transport into CD44-overexpressing cells via receptor-mediated endocytosis. The hydrodynamic size, surface charge and physical stability of the complexes are characterized. We demonstrate that the stabilized ternary complexes display enhanced resistance to nuclease attack and polyanion-induced dissociation. Moreover, the ternary complexes can efficiently transfect the difficult-to-transfect HCT-116 colon cancer cell line even in serum-supplemented media due to their enhanced stability and CD44-targeting ability. Confocal microscopic analysis demonstrates that the stabilized ternary complexes are able to promote the nuclear transport of plasmid DNA more effectively than binary complexes and hyaluronic acid-coated ternary complexes. The present study suggests that the ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates can be widely utilized for CD44-targeted delivery of nucleic acid-based therapeutics. PMID:26855049

  16. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  17. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.

    Science.gov (United States)

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  18. Laser-based methods for the analysis of low molecular weight compounds in biological matrices.

    Science.gov (United States)

    Kiss, András; Hopfgartner, Gérard

    2016-07-15

    Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. PMID:27107904

  19. Convective instabilities of ternary mixtures in thermogravitational columns

    Science.gov (United States)

    Zebib, Abdelfattah

    2007-11-01

    Convective instabilities in side heated infinite vertical slots containing a single fluid are stationary, shear driven when the Prandtl number Pr12.5 due to the diminished influence of the thermal diffusivity with increasing Pr. Here we examine the influence of the concentration field generated by thermodiffusion in a ternary mixture of otherwise uniform concentration on this phenomenon. We first derive expressions and calculate the basic steady one-dimensional flow taking into account the vertical concentration gradients caused by thermodiffusion. Linear stability of this basic state is performed and the critical Rayleigh number, wavenumber, frequency, and vertical concentration gradients are determined as function of the two separation ratios, ratio of thermal expansivities, four Lewis numbers, and Pr. The results are in agreement with the base flow of the ternary mixture considered by Leahy-Dios et al., J. Chem. Phys. (2005). Stability results are in agreement with those from a simplified model in the long wave approximation as well as when restricted to binary mixtures. Stability restrictions on the operation of the thermogravitational column will be discussed.

  20. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Saswata Bhattacharyya; T A Abinandanan

    2003-01-01

    We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for A and B, the compositions (in mole fraction) of A and B, respectively. In this work, we present our results on the effect of relative interfacial energies on the temporal evolution of morphologies during spinodal phase separation of an alloy with average composition, A = 1/4, B = 1/4 and A = 1/2. Interfacial energies between the ‘A’ rich, ‘B’ rich and ‘C’ rich phases are varied by changing the gradient energy coefficients. The phases associated with a higher interfacial energy are found to be more rounded than those with lower energy. Further, the kinetic paths (i.e. the history of A-rich, B-rich and C-rich regions in the microstructure) are also affected significantly by the relative interfacial energies of the three phases.

  1. Ternary fission of 260No in collinear configuration

    Science.gov (United States)

    Ismail, M.; Seif, W. M.; Hashem, A. S.; Botros, M. M.; Abdul-Magead, I. A. M.

    2016-09-01

    We investigate the collinear ternary fission of the 260No isotope. The calculations are performed in the framework of the three cluster model for all possible accompanied light particles of even mass numbers A = 4 - 52. The folding nuclear and Coulomb interaction potentials are used, based on the M3Y-Reid nucleon-nucleon force for the nuclear part. The deformation of the involved fragments and their relative orientations with respect to each other inside the fissioning nuclei are considered. Among all possible fragmentation channels, the suggested most probable channels are indicated as the ones showing a peak in the Q-value and a local minimum in the fragmentation potential, with respect to the mass and charge asymmetries. The indicated favored fragmentation channels from the approximate spherical calculations and those obtained after considering the deformations of the produced fragments are discussed in detail. In addition to the preferred heavy fragments of closed shells, favored prolate ones of high deformations appear when the nuclear deformations are taken into account. Among indicated fifty six favored channels, a collinear ternary fission of the 260No isotope is indicated to be most favored through the fragmentation channels of 15058Ce+410Be+40100Zr,60152Nd+412Be+3896Sr,58150Ce+614C+3896Sr,58148Ce+616C+3896Sr,54140Xe+822O+4098Zr,42106Mo+1848Ar+42106Mo and 41104Nb+2052Ca+41104Nb.

  2. Electron-phonon interaction in three-, two- and one-dimensional ternary mixed crystals

    Science.gov (United States)

    Hou, Junhua; Fan, Yunpeng

    2016-05-01

    The electron-phonon (e-p) interaction in three-dimensional (3D), two-dimensional (2D) and one-dimensional (1D) ternary mixed crystals is studied. The e-p interaction Hamiltonians including the unit cell volume variation in ternary mixed crystals are obtained by using the modified random-element-isodisplacement model and Born-Huang method. The polaronic self-trapping energy and renormalized effective mass of GaAsxSb1-x, GaPxAs1-x and GaPxSb1-x compounds are numerically calculated. It is confirmed theoretically that the nonlinear variation of the self-trapping energy and effective mass with the composition is essential and the unit cell volume effects cannot be neglected except the weak e-p coupling. The dimensional effect cannot also be ignored.

  3. Investigation of the isothermal section of the Ce-Co-Al ternary system at 573 K

    Institute of Scientific and Technical Information of China (English)

    YAO Qingrong; ZHOU Huaiying; TANG Chengying; PAN Shunkang

    2011-01-01

    The isothermal section of the Ce-Co-Al ternary system at 573 K was investigated by X-ray powder diffraction (XRD),scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques.It consisted of 19 single-phase regions,46 two-phase regions and 25 three-phase regions.Four ternary compounds,namely CeCoAl,Ce2Co15Al2,CeCoAl4,CeCo2Al8,were confirmed in this system.At 573 K,the maximum solid solubilities of Co in CeAl2 and A1 in CeCo2 were about 10.4 at.% and 10.0 at.%,respectively.The homogeneity range of CoAl phase extended from about 46.0 to 56.0 at.% Al.

  4. Syntheses, Crystal Structures and Fluorescent Properties of Two New Imidazolidino Schiff Base Compounds

    Institute of Scientific and Technical Information of China (English)

    FENG Yue; LIU Gang; TIAN Xiu-Mei; WANG Ji-De; WANG Wei

    2008-01-01

    Two new imidazolidino Schiff base compounds, (E)-N-((quinoxalin-2-yl)methylene)-2-(2-(quinoxalin-3-yl)imidazolidin-1-yl)ethanamine 1 and 2-(1-(2-(2-(quinoxalin-3-yl)imidazolidin-1-yl)ethyl)imidazolidin-2-yl)quinoxaline 2, have been synthesized and characterized by elemental analysis,1H NMR, IR, MS and single-crystal X-ray diffraction. Crystallographic data for 1: C22H21N7,Mr = 383.46, monoclinic, space group P21, a = 7.0036(14), b=6.9151(14), c=19.701(4)(A),β=96.57(3)°, Z = 2, V=947.9(3)(A)3, Dc = 1.344 g/cm3, F(000)=404, μ = 0.085 mm-1, Flack parameter =0(2), R = 0.0464 and wR = 0.1055; and those for 2: C24H26N8, Mr = 426.53, triclinic, space group P(1),a = 9.6680(19), b = 10.334(2), c = 11.389(2)(A),α= 104.12(3),β= 102.95(3),γ= 100.48(3)°, Z=2,V=1041.2(4)(A)3, Dc=1.361 g/cm3, F(000) = 452,μ = 0.086 mm-1, R = 0.0373 and wR = 0.1155. For the two compounds, the five-membered imidazolidine rings all adopt envelope conformation.Moreover, the title compounds show one-dimensional layered and three-dimensional supramolecular chainlike structures, respectively. Fluorescent properties of the two compounds have been investigated in the solid state at room temperature. Compound 1 exhibits strong fluorescence and thus may serve as excellent candidates of green fluorescent materials.

  5. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  6. Syntheses, magnetic and spectral studies on polystyrene supported coordination compounds of bidentate and tetradentate Schiff bases

    Indian Academy of Sciences (India)

    D Kumar; P K Gupta; A Syamal

    2005-05-01

    The reaction of aminomethylated polystyrene (PSCH2-NH2) and 2-hydroxyacetanilide in DMF results in the formation of polystyrene-anchored monobasic bidentate Schiff base, PSCH2-LH (I). On the other hand, the reaction of chloromethylated polystyrene (PSCH2-Cl), 3-formylsalicylic acid, ethylenediamine and acetylacetone in DMF in presence of ethyl acetate (EA) and triethylamine (TEA) produces another polystyrene-anchored dibasic tetradentate Schiff base, PSCH2-L'H2 (II). Both I and II react with a number of di-, tri- and hexavalent metal ions like Co, Ni, Cu, Zn and Cd to form polystyreneanchored coordination compounds, and these have been characterized and discussed.

  7. The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)

    2009-02-15

    To acquire a high amount of information of the behaviour of the Homogeneous Charge Compression Ignition (HCCI) auto-ignition process, a reduced surrogate mechanism has been composed out of reduced n-heptane, iso-octane and toluene mechanisms, containing 62 reactions and 49 species. This mechanism has been validated numerically in a 0D HCCI engine code against more detailed mechanisms (inlet temperature varying from 290 to 500 K, the equivalence ratio from 0.2 to 0.7 and the compression ratio from 8 to 18) and experimentally against experimental shock tube and rapid compression machine data from the literature at pressures between 9 and 55 bar and temperatures between 700 and 1400 K for several fuels: the pure compounds n-heptane, iso-octane and toluene as well as binary and ternary mixtures of these compounds. For this validation, stoichiometric mixtures and mixtures with an equivalence ratio of 0.5 are used. The experimental validation is extended by comparing the surrogate mechanism to experimental data from an HCCI engine. A global reaction pathway is proposed for the auto-ignition of a surrogate gasoline, using the surrogate mechanism, in order to show the interactions that the three compounds can have with one another during the auto-ignition of a ternary mixture. (author)

  8. A design and application of compound multi-functional sensor in wood-based panel processing

    Institute of Scientific and Technical Information of China (English)

    XU Kai-hong; ZHOU Ding-guo

    2006-01-01

    A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.

  9. Atomistic simulation of defect structure in ternary intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.C.; Ternes, J.K.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1995-08-01

    Interatomic potentials of the Embedded Atom type were used to study defect structure in ternary intermetallics. Interatomic potentials with appropriate inner consistency were developed for the modeling of ternary systems. Alloys were considered in the Nb-Al-Ti and in the Ni-Al-Ti systems. The stability of ternary phases in these systems was studied, particularly the B2 phase in Nb rich alloys of the Nb-Al-Ti system. The effects of increasing Ti additions in these alloys were studied, as well as the APB energies in these ternary alloys.

  10. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between the proc......This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  11. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2010-07-02

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  12. Balanced ternary addition using a gated silicon nanowire

    Science.gov (United States)

    Mol, J. A.; van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.

    2011-12-01

    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a function of the potential of the single electron transistor island. Mapping logical, ternary inputs to the three gates controlling the potential of the single electron transistor island allows us to perform complex, inherently ternary operations, on a single transistor.

  13. Phylogeny of Collembola based on cuticular compounds:inherent usefulness and limitation of a character type

    Science.gov (United States)

    Porco, David; Deharveng, Louis

    2009-08-01

    The phylogeny of Collembola, originally discussed from a morphological point of view, has more recently benefited from novel insights brought by molecular analyses. Both morphological and molecular characters produced a well-resolved phylogenetic hypothesis including all orders, most families, and a large number of genera. However, several conflicting points exist between molecular and morphological data, and new characters are clearly needed to resolve these inconsistencies. In this study the usefulness of a new character type not previously used in the phylogenetic study of Collembola was tested: the epicuticular chemical compounds. Our phylogenetic analysis was based on 380 compounds from 26 Collembola species. The results show good resolution for terminal branches but not for internal nodes. This is probably due to the partial involvement of epicuticular lipids in ecological functions such as water conservation and sexual attraction. Thus, this character type is appropriate for reconstructing phylogenetic relationships among recently diversified groups.

  14. USING H.264/AVC-INTRA FOR DCT BASED SEGMENTATION DRIVEN COMPOUND IMAGE COMPRESSION

    Directory of Open Access Journals (Sweden)

    S. Ebenezer Juliet

    2011-08-01

    Full Text Available This paper presents a one pass block classification algorithm for efficient coding of compound images which consists of multimedia elements like text, graphics and natural images. The objective is to minimize the loss of visual quality of text during compression by separating text information which needs high special resolution than the pictures and background. It segments computer screen images into text/graphics and picture/background classes based on DCT energy in each 4x4 block, and then compresses both text/graphics pixels and picture/background blocks by H.264/AVC with variable quantization parameter. Experimental results show that the single H.264/AVC-INTRA coder with variable quantization outperforms single coders such as JPEG, JPEG-2000 for compound images. Also the proposed method improves the PSNR value significantly than standard JPEG, JPEG-2000 and while keeping competitive compression ratios.

  15. Comparative Study of Laterite and Bentonite Based Organoclays: Implications of Hydrophobic Compounds Remediation from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Muhammad Nafees

    2013-01-01

    Full Text Available Four cost effective organoclays were synthesized, characterized, and studied for the sorption of hydrophobic compounds (edible oil/grease and hydrocarbon oil from aqueous solutions. Organoclays were prepared by cation exchange reaction of lattice ions (present onto the surface of laterite and bentonite clay minerals with two surfactants, hexadecyl trimethyl ammonium chloride (HDTMA-Cl and tetradecyl trimethyl ammonium bromide (TDTMA-Br. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of synthesized organoclays. It was found that the amount of surfactant loading and the nature of the surfactant molecules used in the syntheses of organoclay strongly affect the sorption capacity of the clay mineral. Further, it was found that both the laterite and bentonite based organoclays efficiently removed the edible and hydrocarbon oil content from lab prepared emulsions; however, the adsorption capacity of clay mineral was greatly influenced by the nature of hydrophobic compounds as well.

  16. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    International Nuclear Information System (INIS)

    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO3 was the most sensitive to leaching temperature and Ca3(PO4)2 was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO3 and Ca3(PO4)2 respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO3 and CaSiO3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca3(PO4)2 leached at pH < 12. CaSO4 could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO3 > Ca3(PO4)2 > CaCO3. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO3 and Ca3(PO4)2 leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills

  17. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yi [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Phoungthong, Khamphe [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Shi, Dong-Xiao; Shen, Wen-Hui [Changzhou Domestic Waste Treatment Center, Changzhou 213000 (China); Shao, Li-Ming [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China); He, Pin-Jing, E-mail: solidwaste@tongji.edu.cn [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China)

    2015-08-15

    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO{sub 3} was the most sensitive to leaching temperature and Ca{sub 3}(PO{sub 4}){sub 2} was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO{sub 3} and CaSiO{sub 3} began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca{sub 3}(PO{sub 4}){sub 2} leached at pH < 12. CaSO{sub 4} could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO{sub 3} > Ca{sub 3}(PO{sub 4}){sub 2} > CaCO{sub 3}. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the

  18. Developing Backward Chaining Algorithm of Inference Engine in Ternary Grid Expert System

    Directory of Open Access Journals (Sweden)

    Yuliadi Erdani

    2012-09-01

    Full Text Available The inference engine is one of main components of expert system that influences the performance of expert system. The task of inference engine is to give answers and reasons to users by inference the knowledge of expert system. Since the idea of ternary grid issued in 2004, there is only several developed method, technique or engine working on ternary grid knowledge model. The in 2010 developed inference engine is less efficient because it works based on iterative process. The in 2011 developed inference engine works statically and quite expensive to compute. In order to improve the previous inference methods, a new inference engine has been developed. It works based on backward chaining process in ternary grid expert system. This paper describes the development of inference engine of expert system that can work in ternary grid knowledge model. The strategy to inference knowledge uses backward chaining with recursive process. The design result is implemented in the form of software. The result of experiment shows that the inference process works properly, dynamically and more efficient to compute in comparison to the previous developed methods.

  19. Comparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval

    Directory of Open Access Journals (Sweden)

    Rajeswari Sridhar

    2010-07-01

    Full Text Available In this work we have compared two indexing algorithms that have been used to index and retrieveCarnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithmfor music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. Themodification in the dual ternary algorithm was essential to handle variable length query phrase and toaccommodate features specific to Carnatic music. The dual ternary indexing algorithm is adapted forCarnatic music by segmenting using the segmentation technique for Carnatic music. The dual ternaryalgorithm is compared with the multi-key hashing algorithm designed by us for indexing and retrieval inwhich features like MFCC, spectral flux, melody string and spectral centroid are used as features forindexing data into a hash table. The way in which collision resolution was handled by this hash table isdifferent than the normal hash table approaches. It was observed that multi-key hashing based retrievalhad a lesser time complexity than dual-ternary based indexing The algorithms were also compared fortheir precision and recall in which multi-key hashing had a better recall than modified dual ternaryindexing for the sample data considered.

  20. Computer based screening of compound databases: 1. Preselection of benzamidine-based thrombin inhibitors.

    Science.gov (United States)

    Fox, T; Haaksma, E E

    2000-07-01

    We present a computational protocol which uses the known three-dimensional structure of a target enzyme to identify possible ligands from databases of compounds with low molecular weight. This is accomplished by first mapping the essential interactions in the binding site with the program GRID. The resulting regions of favorable interaction between target and ligand are translated into a database query, and with UNITY a flexible 3D database search is performed. The feasibility of this approach is calibrated with thrombin as the target. Our results show that the resulting hit lists are enriched with thrombin inhibitors compared to the total database.

  1. Structural studies of the metal-rich region in the ternary Ta-Nb-S system

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiaoqiang.

    1991-10-07

    Six new solid solution type compounds have been prepared using high temperature techniques and characterized by means of single crystal x-ray techniques during a study of the metal-rich region of the ternary Ta-Nb-S system. The structures of Nb{sub x}Ta{sub 11-x}S{sub 4} are reminiscent of niobium-rich sulfides, rather than of tantalum-rich sulfides. The coordinations of sulfur are capped trigonal prismatic while the metal coordinations are capped distorted cubic prismatic for Nb{sub x}Ta{sub 11-x}S{sub 4}, and capped distorted cubic prismatic and pentagonal prismatic for Nb{sub 12-x}Ta{sub x}S{sub 4}. The structures of Nb{sub x}Ta{sub 5-x}S{sub 2} contain homoatomic layers sequenced S-M3-M2-M1-M2-M3-S (M is mixed Nb, Ta) generating six-layer sheets, respectively. Weak S-S interactions at 3.26 and 3.19{Angstrom} between sheets contrast with the M-M binding within and between the sheets in these two novel layered compounds. The former are presumably responsible for the observed graphitic slippage of the samples. Nb{sub 21-x}Ta{sub x}S{sub 8} and Nb{sub x}Ta{sub 2-x}S are isostructural with Nb{sub 21}S{sub 8} and Ta{sub 2}S, respectively. Extended Hueckel band calculations were carried out for two layered compounds, Nb{sub x}Ta{sub 5-x}S{sub 2} (x {approx} 1.72) and Nb{sub x}ta{sub 2-x}S (x {approx} 0.95). Based upon band calculations metallic properties can be expected for these two layered compounds. The relative preference of the metal sites for the two metal elements (Ta, Nb) in two layered compounds is explained by the results of the band calculations. 17 figs., 31 tabs., 80 refs.

  2. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay.

    Science.gov (United States)

    Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H; Xia, Menghang

    2016-04-01

    In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling. PMID:26820057

  3. Emission of reactive compounds and secondary products from wood-based furniture coatings

    Science.gov (United States)

    Salthammer, T.; Schwarz, A.; Fuhrmann, F.

    Emissions of organic fragmentation products, so-called "secondary emission products" and reactive species from wood-based furniture coatings have been studied in 1 m 3 test chambers. the climatic conditions were representative of indoor environments. Relevant compounds and compound groups were the wetting agent 2,4,7,9-tetramethyl-5-dicyne-4,7-diol (T4MDD), the plasticiser di-2-ethyl-hexyl-phthalate (DEHP), aliphatic aldehydes, monoterpenes, photoinitiator fragments, acrylic monomers/reactive solvents and diisocyanate monomers. Such substances may affect human health in several ways. Aliphatic aldehydes and some photoinitiator fragments are of strong odour, while acrylates and diisocyanates cause irritation of skin, eyes and upper airways. Terpenes and reactive solvents like styrene undergo indoor chemistry in the presence of ozone, nitrogen oxides or hydroxy radicals. Secondary emission products and reactive species can achieve significant indoor concentrations. On the other hand, it has been reported that even small quantities can cause health effects. In the cases of indoor studies with special regard to emissions from furniture, chemical analysis should always include these compounds.

  4. 3D-QSAR and docking studies of estrogen compounds based on estrogen receptor β

    Institute of Scientific and Technical Information of China (English)

    YANG XuShu; WANG XiaoDong; LUO Si; JI Li; QIN Liang; LI Rong; SUN Cheng; WANG LianSheng

    2009-01-01

    Close attention has been paid to estrogen compounds because these chemicals may pose a serious threat to the health of humans and wildlife.Estrogen receptor (ER) exists as two subtypes,ERo and ERβ.The difference in amino acids sequence of the binding sites of ERo and ERβ might lead to a result that some synthetic estrogens and naturally occurring steroidal ligands have different relative affinities and binding modes for ERa and ERβ.In this investigation,comparative molecular similarity indices analysis (CoMSIA) was performed on 50 estrogen compounds binding ERβ to find out the structural relationship with the activities.We also compared two alignment schemes employed in CoMSIA analysis,namely,atom-fit and receptor-based alignment,with respect to the predictive capability of their respective models for structurally diverse data sets.The model with the significant correlation and the best predictive power (R2=0.961,q2LOO=0.671,Rp2red=0.722) was achieved.The CoMSIA and docking results revealed the structural features related to an activity and provided an insight into molecular mechanisms of estrogenic activities for estrogen compounds.

  5. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs.

    Science.gov (United States)

    Lemos, M Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  6. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    Directory of Open Access Journals (Sweden)

    M. Adília Lemos

    2015-06-01

    Full Text Available The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein.

  7. 3D-QSAR and docking studies of estrogen compounds based on estrogen receptor β

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Close attention has been paid to estrogen compounds because these chemicals may pose a serious threat to the health of humans and wildlife. Estrogen receptor (ER) exists as two subtypes, ERα and ERβ. The difference in amino acids sequence of the binding sites of ERα and ERβ might lead to a result that some synthetic estrogens and naturally occurring steroidal ligands have different relative affinities and binding modes for ERα and ERβ. In this investigation, comparative molecular similarity indices analysis (CoMSIA) was performed on 50 estrogen compounds binding ERβ to find out the structural relationship with the activities. We also compared two alignment schemes employed in CoMSIA analy-sis, namely, atom-fit and receptor-based alignment, with respect to the predictive capability of their respective models for structurally diverse data sets. The model with the significant correlation and the best predictive power (R2=0.961, qL 2OO=0.671, RP 2red=0.722) was achieved. The CoMSIA and docking results revealed the structural features related to an activity and provided an insight into molecular mechanisms of estrogenic activities for estrogen compounds.

  8. Screening for Antifibrotic Compounds Using High Throughput System Based on Fluorescence Polarization

    Directory of Open Access Journals (Sweden)

    Branko Stefanovic

    2014-04-01

    Full Text Available Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I mRNA and α2(I mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL. Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.

  9. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  10. Synthesis and in Silico Evaluation of Novel Compounds for PET-Based Investigations of the Norepinephrine Transporter

    Directory of Open Access Journals (Sweden)

    Catharina Neudorfer

    2015-01-01

    Full Text Available Since the norepinephrine transporter (NET is involved in a variety of diseases, the investigation of underlying dysregulation-mechanisms of the norepinephrine (NE system is of major interest. Based on the previously described highly potent and selective NET ligand 1-(3-(methylamino-1-phenylpropyl-3-phenyl-1,3-dihydro-2H-benzimidaz- ol-2-one (Me@APPI, this paper aims at the development of several fluorinated methylamine-based analogs of this compound. The newly synthesized compounds were computationally evaluated for their interactions with the monoamine transporters and represent reference compounds for PET-based investigation of the NET.

  11. Thermal gravitational separation of ternary mixture n-dodecane/isobutylbenzene/tetralin components in a porous medium.

    Science.gov (United States)

    Larabi, Mohamed Aziz; Mutschler, Dimitri; Mojtabi, Abdelkader

    2016-06-28

    Our present work focuses on the coupling between thermal diffusion and convection in order to improve the thermal gravitational separation of mixture components. The separation phenomenon was studied in a porous medium contained in vertical columns. We performed analytical and numerical simulations to corroborate the experimental measurements of the thermal diffusion coefficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the international space station. Our approach corroborates the existing data published in the literature. The authors show that it is possible to quantify and to optimize the species separation for ternary mixtures. The authors checked, for ternary mixtures, the validity of the "forgotten effect hypothesis" established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical resolution methods were used in order to describe the separation in terms of Lewis numbers, the separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is based on the parallel flow approximation. In order to validate this model, a numerical simulation was performed using the finite element method. From our new approach to vertical separation columns, new relations for mass fraction gradients and the optimal Rayleigh number for each component of the ternary mixture were obtained. PMID:27369539

  12. Thermal gravitational separation of ternary mixture n-dodecane/isobutylbenzene/tetralin components in a porous medium

    Science.gov (United States)

    Larabi, Mohamed Aziz; Mutschler, Dimitri; Mojtabi, Abdelkader

    2016-06-01

    Our present work focuses on the coupling between thermal diffusion and convection in order to improve the thermal gravitational separation of mixture components. The separation phenomenon was studied in a porous medium contained in vertical columns. We performed analytical and numerical simulations to corroborate the experimental measurements of the thermal diffusion coefficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the international space station. Our approach corroborates the existing data published in the literature. The authors show that it is possible to quantify and to optimize the species separation for ternary mixtures. The authors checked, for ternary mixtures, the validity of the "forgotten effect hypothesis" established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical resolution methods were used in order to describe the separation in terms of Lewis numbers, the separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is based on the parallel flow approximation. In order to validate this model, a numerical simulation was performed using the finite element method. From our new approach to vertical separation columns, new relations for mass fraction gradients and the optimal Rayleigh number for each component of the ternary mixture were obtained.

  13. A Solution-Based Temperature Sensor Using the Organic Compound CuTsPc

    Directory of Open Access Journals (Sweden)

    Shahino Mah Abdullah

    2014-06-01

    Full Text Available An electrochemical cell using an organic compound, copper (II phthalocyanine-tetrasulfonic acid tetrasodium salt (CuTsPc, has been fabricated and investigated as a solution-based temperature sensor. The capacitance and resistance of the ITO/CuTsPc solution/ITO chemical cell has been characterized as a function of temperature in the temperature range of 25–80 °C. A linear response with minimal hysteresis is observed. The fabricated temperature sensor has shown high consistency and sensitive response towards a specific range of temperature values.

  14. A Solution-Based Temperature Sensor Using the Organic Compound CuTsPc

    OpenAIRE

    Shahino Mah Abdullah; Zubair Ahmad; Khaulah Sulaiman

    2014-01-01

    An electrochemical cell using an organic compound, copper (II) phthalocyanine-tetrasulfonic acid tetrasodium salt (CuTsPc,) has been fabricated and investigated as a solution-based temperature sensor. The capacitance and resistance of the ITO/CuTsPc solution/ITO chemical cell has been characterized as a function of temperature in the temperature range of 25–80 °C. A linear response with minimal hysteresis is observed. The fabricated temperature sensor has shown high consistency and sensitive...

  15. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren;

    2015-01-01

    and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body......We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...

  16. Charge-transfer complexes of pyrimidine Schiff bases with aromatic nitro compounds

    Science.gov (United States)

    Issa, Yousry M.; El Ansary, A. L.; Sherif, O. E.; Hassib, H. B.

    2011-08-01

    Charge-transfer (CT) complexes of pyrimidine Schiff bases, derived from condensation of 2-aminopyrimidine and substituted benzaldehydes, with some aromatic polynitro compounds were prepared and investigated using IR, UV, visible and 1H NMR spectroscopy. For all solid complexes, the main interaction between the donor and acceptor molecules takes place through the π-π* interaction. Strong and some weak acidic acceptors, in addition interact through proton transfer from the acceptor molecule to the basic centre of the electron donor. Also, an n-π* transition was detected in some complexes.

  17. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  18. True ternary fission of superheavy nuclei

    OpenAIRE

    Zagrebaev, V.I.; A. V. Karpov; Greiner, Walter

    2010-01-01

    We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-b...

  19. Conductivity enhancement of polyacrylonitrile-based electrolytes by addition of cascade nitrile compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Hiromori; Matsuo, Akiko; Takase, Kimio; Doi, Shizuka; Hisanaga, Atsushi; Onimura, Kenjiro; Oishi, Tsutomu [Yamaguchi Univ. (Japan). Dept. of Applied Chemistry and Chemical Engineering

    2000-09-01

    A cascade nitrile compound ([CH{sub 2}N(CH{sub 2}CH{sub 2}CN){sub 2}]{sub 2}, ED4CN) made by addition of acrylonitrile to alkyldiamine (1,2-diaminoethane), has been used as a plasticizer for solid polymer electrolytes. The ionic conductivity of a polymer electrolyte using this type of plasticizer in polyethylene oxide (PEO)- and polyacrylonitrile (PAN)-LiClO{sub 4} complex was measured. Addition of ED4CN to PEO-based electrolytes did not enhance the conductivity of them. However, interaction between ED4CN and lithium ions in the complex was confirmed by infrared spectroscopy. The peak assigned to the stretching vibration of nitrile group in ED4CN shifted to high-energy side. The shift indicated that the nitrile groups interacted with the lithium ions in the PEO-based electrolytes. Conductivity enhancement was observed in the PAN-based electrolytes containing ED4CN. Conductivity of the electrolyte containing ED4CN was about 10 or 23 times larger than that of the electrolyte without ED4CN. Addition of ED4CN to a PAN-LiClO{sub 4} electrolyte decreases the glass transition temperature of the complexes. Conductivity enhancement of the PAN-based electrolyte with ED4CN containing lithium salt in high concentration was also confirmed. Other low molecular weight additives, tetraethylsulfamide (TESA) and a cascade nitrile compound, ([CH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}CN){sub 2}]{sub 2}, TE4CN) were also used and their possibility for a conducting enhancer of PAN-based electrolytes was tested. TESA was effective; however, TE4CN was inactive for a conductance enhancer of the PAN-based electrolytes. (orig.)

  20. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  1. Magnetism, superconductivity and their interplay. A study of three novel intermetallic compounds: La(Fe,Al)13, UNiSn, URu2Si2

    International Nuclear Information System (INIS)

    In this thesis the magnetic and superconducting properties are discussed for three novel types of intermetallic compounds. These compounds are studied with methods probing the magnetism, electrical transport and superconductivity. First, the LaFe13-type compounds were studied. The author establishes the magnetic phase diagram of La(Fe,Al)13, consisting of a mictomagnetic, ferromagnetic and antiferromagnetic regime. Second, uranium-based compounds were studied. In several equiatomic ternary (1-1-1) compounds (UNiSn, URu2Si2) they observed a broad variety of magnetic properties, ranging from local-moment magnetism to Kondo-lattice behaviour. Finally, the magnetic and superconducting properties are described for several RT2Si2 compounds, with T a transition metal. For R=Y, La and Lu type-I superconductivity was observed, which is explained with BCS-theory. (Auth.)

  2. The isothermal section of the Zrsbnd Crsbnd Cu ternary system at 580 °C

    Science.gov (United States)

    Tang, Junkai; Liu, Yuqin; Shen, Jianyun

    2016-10-01

    The 580 °C isothermal section of the Zrsbnd Crsbnd Cu ternary system was determined by means of X-ray diffraction, scanning electron microscopy and electron probe microanalysis. This isothermal section contained 10 single-phase regions, 18 two-phase regions and 9 three-phase regions. No ternary compound was found at 580 °C in the system. The solubility of Cu in the ZrCr2 cubic Laves C15 phase and the solubility of Cr and Cu in the terminal α-Zr solid solution phase were determined. The site occupation of element Cu in the ZrCr2 cubic Laves C15 phase was determined by Rietveld refinement. The Cu prefers to occupy the position of Cr. The CuZr phase, which is not stable at 580 °C in the binary Cusbnd Zr system, was confirmed to exist at this temperature in the Zrsbnd Crsbnd Cu ternary system. This is probably due to that the dissolving of Cr in the CuZr phase increases its thermodynamic stability.

  3. Photophysical study of blue-light excitable ternary Eu(III) complexes and their encapsulation into polystyrene nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Räsänen, Markus, E-mail: mpvras@utu.fi [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland); Takalo, Harri [DHR Finland Oy, Innotrac Diagnostics, Biolinja 12, FIN-20750 Turku (Finland); Soukka, Tero [Department of Biochemistry/Biotechnology, University of Turku, FIN-20014 Turku (Finland); Haapakka, Keijo; Kankare, Jouko [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland)

    2015-04-15

    In this work, 14 ternary Eu(III) complexes were studied by means of spectroscopy. The studied Eu(III) complexes consisted of Lewis bases (4′-(4-diethylaminophenyl)-2,2′:6′,2″-terpyridine (L{sup 8}) or 1,10-phenanthroline (L{sup 9})) and differently substituted β-diketones. The ternary complexes with L{sup 8} show the excitation peak at 405 nm and the quantum yield even 76%. The brightest ternary complex at the 405 nm excitation was Eu(L{sup 3}){sub 3}L{sup 8} while Eu(L{sup 7}){sub 3}L{sup 8} (HL{sup 3}=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, HL{sup 7}=1-(9-ethyl-9H-carbazol-3-yl)-4,4,5,5,5-pentafluoro-1,3-pentanedione) was found to be the brightest at the ligand-centred excitation maximum. The ternary complexes were studied mainly in toluene as the model environment for the polystyrene nanoparticle cavities. The complexes were successfully loaded into the polystyrene nanoparticles enabling their bioanalytical application in aqueous environment. The encapsulation of the complexes preserved, or even enhanced, their good photophysical features. - Highlights: • Ternary Eu{sup 3+} complexes with some β-diketone and substituted terpyridine were studied. • Ternary complexes with substituted terpyridine showed blue-light excitability. • Ternary complexes were successfully loaded into the polystyrene nanoparticles. • Encapsulation of the complexes preserved their good photophysical features.

  4. Ternary Tree and Memory-Efficient Huffman Decoding Algorithm

    Directory of Open Access Journals (Sweden)

    Pushpa R. Suri

    2011-01-01

    Full Text Available In this study, the focus was on the use of ternary tree over binary tree. Here, a new one pass Algorithm for Decoding adaptive Huffman ternary tree codes was implemented. To reduce the memory size and fasten the process of searching for a symbol in a Huffman tree, we exploited the property of the encoded symbols and proposed a memory efficient data structure to represent the codeword length of Huffman ternary tree. In this algorithm we tried to find out the staring and ending address of the code to know the length of the code. And then in second algorithm we tried to decode the ternary tree code using binary search method. In this algorithm we tried to find out the staring and ending address of the code to know the length of the code. And then in second algorithm we tried to decode the ternary tree code using binary search method.

  5. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    International Nuclear Information System (INIS)

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 x 103 μA mM-1 cm-2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  6. Sensitive properties of In-based compound semiconductor oxide to C12 gas

    Institute of Scientific and Technical Information of China (English)

    Zhao Wenjie; Shi Yunbo; Xiu Debin; Lei Tingping; Feng Qiaohua; Wang Liquan

    2009-01-01

    Aiming at detecting C12 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive mechanism was also discussed. Adopting constant temperature chemical coprecipitation, the compound oxides such as In-Nb, In-Cd and In-Mg were synthesized, respectively. The products were sintered at 600 ℃ and characterized by the Scanning Electron Microscope (SEM), showing the grain size almost about 50-60 nm. The test results show that the sensitivities of In-Nb, In-Cd and In-Mg materials under the concentration of 50 x 10-6 in C12 gas are above 100 times, 4 times and 10 times, respectively. The response time of In-Nb, In-Cd and In-Mg materials is about 30, 60 and 30 s, and the recovery time less than 2, 10 and 2 min, respectively. Among them, the In-Nb material was found to have a relatively high conductivity and ideal sensitivity to C12 gas, which showed rather good selectivity and stability, and could detect the minimum concentration of 0.5 x 10-6 with the sensitivity of 2.2, and the upper limit concentration of 500 ×10-6. The power loss of the device is around 220 mW under the heating voltage of 3 V.

  7. Structures and physical properties of R2TX3 compounds

    Institute of Scientific and Technical Information of China (English)

    Pan Zhi-Yan; Cao Chong-De; Bai Xiao-Jun; Song Rui-Bo; Zheng Jian-Bang; Duan Li-Bing

    2013-01-01

    Rare-earth compounds have been an attractive subject based on the unique electronic structures of the rare-earth elements.Novel ternary intermetallic compounds R2TX3 (R =rare-earth element or U,T =transition-metal element,X =Si,Ge,Ga,In) are a significant branch of this research field due to their complex and intriguing physical properties,such as magnetic order at low temperature,spin-glass behavior,Kondo effect,heavy fermion behavior,and so on.The unique physical properties of R2TX3 compounds are related to distinctive electronic structures,crystal structures,microinteraction,and external environment.Most R2TX3 compounds crystallize in AlB2-type or derived AlB2-type structures and exhibit many similar properties.This paper gives a concise review of the structures and physical properties of these compounds.Spin glass,magnetic susceptibility,resistivity,and specific heat of R2TX3 compounds are discussed.

  8. Research of Compound Control for DC Motor System Based on Global Sliding Mode Disturbance Observer

    Directory of Open Access Journals (Sweden)

    He Zhang

    2014-01-01

    Full Text Available Aiming at the problems of modeling errors, parameter variations, and load moment disturbances in DC motor control system, one global sliding mode disturbance observer (GSMDO is proposed based on the global sliding mode (GSM control theory. The output of GSMDO is used as the disturbance compensation in control system, which can improve the robust performance of DC motor control system. Based on the designed GSMDO in inner loop, one compound controller, composed of a feedback controller and a feedforward controller, is proposed in order to realize the position tracking of DC motor system. The gains of feedback controller are obtained by means of linear quadratic regulator (LQR optimal control theory. Simulation results present that the proposed control scheme possesses better tracking properties and stronger robustness against modeling errors, parameter variations, and friction moment disturbances. Moreover, its structure is simple; therefore it is easy to be implemented in engineering.

  9. [Analyses of biogenic related compounds based on intramolecular excimer-forming fluorescence derivatization].

    Science.gov (United States)

    Yoshida, Hideyuki

    2003-08-01

    A highly selective and sensitive method based on a novel concept is introduced for the assay of biological substances. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, followed by reverse-phase HPLC. Polyamines, polyphenols, and dicarboxylic acids, which have two or more reactive functional groups in a molecule, were converted to the corresponding polypyrene-labeled derivatives by reaction with the appropriate pyrene reagent. The derivatives exhibited intramolecular excimer fluorescence (440-520 nm), which can clearly be discriminated from the monomer (normal) fluorescence (360-420 nm) emitted by pyrene reagents and monopyrene-labeled derivatives of monofunctional compounds. With excimer fluorescence detection, highly selective and sensitive determination of polyamines, polyphenols, and dicarboxylic acids can be achieved. Furthermore, the methods were successfully applied to the determination of various biological and environmental substances in real samples, which require only a small amount of sample and simple pretreatment.

  10. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2016-01-01

    Full Text Available Lymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. According to the World Health Organization, over 1.2 billion people in 58 countries are at risk of contracting lymphatic filariasis. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7-15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases.We have developed a yeast-based, high-throughput screening system whereby essential yeast genes are replaced with their filarial or human counterparts. These strains are labeled with different fluorescent proteins to allow the simultaneous monitoring of strains with parasite or human genes in competition, and hence the identification of compounds that inhibit the parasite target without affecting its human ortholog. We constructed yeast strains expressing eight different Brugia malayi drug targets (as well as seven of their human counterparts, and performed medium-throughput drug screens for compounds that specifically inhibit the parasite enzymes. Using the Malaria Box collection (400 compounds, we identified nine filarial specific inhibitors and confirmed the antifilarial activity of five of these using in vitro assays against Brugia pahangi.We were able to functionally complement yeast deletions with eight different Brugia malayi enzymes that represent potential drug targets. We demonstrated that our yeast-based screening platform is efficient in identifying compounds that can discriminate between human and filarial enzymes. Hence, we are confident

  11. Semantic packaging in verb-based compounds in English and Bulgarian

    Directory of Open Access Journals (Sweden)

    Alexandra Bagasheva

    2015-05-01

    Full Text Available Semantic packaging in verb­ based compounds in English and BulgarianThe article contrasts the word­ formation types of (parasynthetic compound nouns and compound verbs in two genetically distantly related but typologically distinct languages Bulgarian and English. While the nature of synthetic compound nouns in both languages is comparable, compound verbs show greater contrasts in terms of types, restrictions and preferences for intra­ compound relations and semantic diversity. An explanation is sought in terms of the influence of word­ relevant syntactic properties on word­ formation phenomena in the two languages. An additional powerful factor is the ubiquity of conversion or syntactic promiscuity in English. A hypothesis is formulated that in Bulgarian the iconicity of word­ formation processes and products associated with the biuniqueness of the sign as understood by Natural Morphology accounts for restrictions on the absolute reign of word­ formation paradigms in Bulgarian, where the distinction between inflectional morphology and word­ formation is more sharply delineated. The typological character of the two languages is ultimately taken into account as a factor which determines the preferences for compounds in English and the prevalence of affixal derivation in Bulgarian. Kompresja semantyczna w złożeniach czasownikowych w językach bułgarskim i angielskimAutorzy artykułu dokonali porównania mechanizmów słowotwórczych wykorzystywanych przy derywacji (parasyntetycznych złożeń rzeczownikowych oraz czasownikowych w językach bułgarskim i angielskim. Badane języki wykazują dalekie pokrewieństwo genetyczne, lecz z typologicznego punktu widzenia są one od siebie różne. W odróżnieniu od mechanizmów tworzenia syntetycznych złożeń rzeczownikowych, które w obu językach są podobne, złożenia czasownikowe różnią się, jeżeli chodzi o ich typy, ograniczenia użycia oraz preferencje odnośnie relacji zawartych

  12. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  13. Compound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrum

    Science.gov (United States)

    Yan, Xiaoan; Jia, Minping; Xiang, Ling

    2016-07-01

    Owing to the character of diversity and complexity, the compound fault diagnosis of rotating machinery under non-stationary operation has turned into a challenging task. In this paper, a novel method based on the optimal variational mode decomposition (OVMD) and 1.5-dimension envelope spectrum is proposed for detecting the compound faults of rotating machinery. In this method, compound fault signals are first decomposed by using OVMD containing optimal decomposition parameters, and several intrinsic mode components are obtained. Then, an adaptive selection method based on the weight factor (WF) is presented to choose two intrinsic mode components that contain the principal fault characteristic information. Finally, the 1.5-dimension envelope spectrum of the selected intrinsic mode components is utilized to extract the compound fault characteristic information of vibration signals. The performance of the proposed method is demonstrated by using the simulation signal and the experimental vibration signals collected from a rolling bearing and a gearbox with compound faults. The analysis results suggest that the proposed method is not only capable of detecting compound faults of a bearing and a gearbox, but can separate the characteristic signatures of compound faults. The research offers a new means for the compound fault diagnosis of rotating machinery.

  14. Flashpoint prediction for ternary mixtures of alcohols with water for CFD simulation of unsteady flame propagation during explosion

    Science.gov (United States)

    Skřínský, Jan; Vereš, Ján; Ševčíková, Silvie Petránková

    2016-06-01

    Aqueous solutions of binary and ternary mixtures of alcohols are of considerable interest for a wide range of scientists and technologists. Simple dimensionless experimental formulae based on rational reciprocal and polynomial functions are proposed for correlation of the flashpoint data of binary mixtures of two components. The formulae are based on data obtained from flashpoint experiments and predictions. The main results are the derived experimental flashpoint values for ternary mixtures of two aqueous-organic solutions and the model prediction of maximum explosion pressure values for the studied mixtures. Potential application for the results concerns the assessment of fire and explosion hazards, and the development of inherently safer designs for chemical processes containing binary and ternary partially miscible mixtures of an aqueous-organic system. The goal of this article is to present the results of modelling using these standard models and to demonstrate its importance in the area of CFD simulation.

  15. Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T., E-mail: v.vitusevych@access-technology.de [ACCESSe.V., Intzestr. 5, D-52072 Aachen (Germany); Bondar, A.A. [Frantsevich Institute for Problems of Materials Science, Krzhyzhanovsky Str. 3, 03680 Kyiv (Ukraine); Hecht, U. [ACCESSe.V., Intzestr. 5, D-52072 Aachen (Germany); Velikanova, T.Ya. [Frantsevich Institute for Problems of Materials Science, Krzhyzhanovsky Str. 3, 03680 Kyiv (Ukraine)

    2015-09-25

    Highlights: • Thermodynamic refinement of the Al–Cr system. • Key experimental investigations of the ternary Al–Cr–Ti alloys. • Thermodynamic modelling of the complete Al–Cr–Ti system. - Abstract: In the present paper, the ternary Al–Cr–Ti and binary constituent Al–Cr systems are thermodynamically re-modelled based on new experimental information reported in the literature within the past few years. Few key experiments were performed with selected ternary alloys in order to complement data on phase equilibria in the composition range of common TiAl-based alloys. Six sample compositions were prepared and analyzed in the as-cast and annealed conditions by means of SEM/EDS, XRD and DTA techniques. The elaborated thermodynamic description was applied to calculate selected phase equilibria as to provide a comparison between calculated and experimental results. The calculations are shown to reproduce the experimental data reasonably well.

  16. Isothermal section of the ternary phase diagram U–Fe–Ge at 900 °C and its new intermetallic phases

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, M.S., E-mail: mish@itn.pt [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal); Berthebaud, D.; Lignie, A.; El Sayah, Z.; Moussa, C.; Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); Havela, L. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Gonçalves, A.P. [CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal)

    2015-08-05

    Highlights: • Isothermal section of the U–Fe–Ge at 900 °C was investigated. • Ten ternary compounds and four significant solubility ranges were found. • Three new compounds and a solid solution were discovered. - Abstract: The isothermal section at 900 °C of the U–Fe–Ge ternary system was assessed using experimental results from X-ray diffraction and observations by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy chemical analysis. The phase diagram at this temperature is characterized by the formation of fourteen stable phases: four homogeneity ranges and ten intermetallic compounds. Among these, there is an extension of the binary compound UFe{sub 2} into the ternary system (UFe{sub 2−x}Ge{sub x,}x < 0.15), three ternary line compounds, U{sub 2}Fe{sub 17−x}Ge{sub x} (2 < x < 3.7), UFe{sub 1−x}Ge{sub 2} (0.58 < x < 0.78), UFe{sub 6+x}Ge{sub 6−x} (x < 0.7), and ten ternary stoichiometric compounds, U{sub 2}Fe{sub 3}Ge, U{sub 6}Fe{sub 16}Ge{sub 7}, UFe{sub 4}Ge{sub 2}, U{sub 6}Fe{sub 22}Ge{sub 13}, UFeGe, U{sub 3}Fe{sub 4}Ge{sub 4}, UFe{sub 2}Ge{sub 2}, U{sub 34}Fe{sub 3.32}Ge{sub 33}, U{sub 3}Fe{sub 2}Ge{sub 7}, and U{sub 9}Fe{sub 7}Ge{sub 24}.

  17. Interaction in the ternary system Bi2O3-B2O3-Zno

    International Nuclear Information System (INIS)

    The authors have investigated the Bi2O3-B2O3-ZnO system along section between the starting components which were bismuth borate and zinc borate, including additionally the compound 3ZnO.B2O3. The presence of polymorphic transformation was noted in the phase at 9640C and x-ray diffraction data were provided for both modifications. The investigations performed here on both the binary phase 3Zn0.B2O3 and on the ternary system confirm the presence of the polymorphic transformation in them at 9400C and the x-ray diffraction data

  18. Synthesis and characterization of the ternary telluroargentate K4[Ag18Te11

    KAUST Repository

    Davaasuren, Bambar

    2014-10-19

    The ternary potassium telluroargentate(I), K4[Ag18Te11], was prepared by solvothermal synthesis in ethylenediamine at 160 °C. It crystallizes in the cubic space group Fm3¯ m (no. 225) with the cell parameter a = 18.6589(6) Å. The crystal structure can be described as a [Ag18Te11]4- three-dimensional anionic framework with the voids accommodating potassium cations. Chemical bonding analysis reveals polar covalent Ag-Te bonds and considerable Ag-Ag interactions, which support the complex anionic character of the structure. The compound is thermally stable up to 450 °C in an inert atmosphere.

  19. Isothermal section (500  ℃) of phase diagram of Nd-Al-Si ternary system

    Institute of Scientific and Technical Information of China (English)

    龙志林; 周益春; 庄应烘; 陈荣贞; 刘敬旗

    2001-01-01

    The isothermal section of the phase diagram of the ternary system Nd-Al-Si at 500  ℃ (Nd≤50%, mole fraction) has been constructed on the basis of the data obtained by X-ray diffraction analysis, differential thermal analysis, metallographic examination, chemical analysis and electron micro-probe analysis. The obtained diagram consists of 11 single-phase regions, 21 two-phase regions and 11 three-phase regions. There exist two limit solid solutions. The intermetallic compound NdAl1.5Si0.5 has not been found in this section. No evidence of new phase has been observed in this work.

  20. Cross-section SmS-Ga2S3 of Sm-Ga-S ternary system

    International Nuclear Information System (INIS)

    The SmS-Ga2S3 system state diagram has been built up for the first time on the basis of the data of differential thermal, microstructural, and X-ray phase analyses and also according to the results of microhardness measurements. It has been established that ternary SmGa2S4, SmGa4S7 compounds are formed in the system

  1. Experimental phase diagram of the V-Si-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hao; Tang, Chenghuang; Zhang, Bo; Yang, Wenchao; Tang, Hongqun; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering

    2015-05-15

    The phase equilibria of the V-Si-Ho ternary system at 973 K were experimentally investigated by using X-ray powder diffraction and backscattered electron imaging with energy dispersive X-ray analysis. The existence of nine binary compounds, namely, V{sub 5}Si{sub 3}, V{sub 6}Si{sub 5}, VSi{sub 2}, V{sub 3}Si, HoSi{sub 2-b}, HoSi{sub 2-a}, HoSi, Ho{sub 5}Si{sub 3} and Ho{sub 5}Si{sub 4} was confirmed. The phases of HoSi (FeB) and Ho{sub 4}Si{sub 5} were not found at 973 K. No binary compound was found in the V-Ho binary system. No ternary compound was found at 973 K in this system. The homogeneity range of V{sub 3}Si was determined to be from 22 at.% to 25 at.% Si. The maximum solid solubility of Si in V is about 4 at.%.

  2. Sorption of DOM and hydrophobic organic compounds onto sewage-based activated carbon.

    Science.gov (United States)

    Björklund, Karin; Li, Loretta Y

    2016-01-01

    Treatment of stormwater via sorption has the potential to remove both colloidal and dissolved pollutants. Previous research shows that activated carbon produced from sewage sludge is very efficient in sorbing hydrophobic organic compounds (HOCs), frequently detected in stormwater. The aim of this research was to determine whether the presence of dissolved organic matter (DOM) has a negative effect on the adsorption of HOCs onto sludge-based activated carbon (SBAC) in batch adsorption tests. Batch adsorption tests were used to investigate the influence of two types of DOM - soil organic matter and humic acid (HA) technical standard - on the sorption of HOCs onto SBAC, and whether preloading adsorbent and adsorbates with DOM affects HOC sorption. The results indicate that soil DOM and HAs do not have a significant negative effect on the adsorption of HOCs under tested experimental conditions, except for a highly hydrophobic compound. In addition, preloading SBAC or HOCs with DOM did not lead to lower adsorption of HOCs. Batch adsorption tests appear to be inefficient for investigating DOM effects on HOC adsorption, as saturating the carbon is difficult because of high SBAC adsorption capacity and low HOC solubility, so that limited competition occurs on the sorbent. PMID:27533860

  3. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds.

    Science.gov (United States)

    Billès, Elise; Onwukamike, Kelechukwu N; Coma, Véronique; Grelier, Stéphane; Peruch, Frédéric

    2016-12-10

    Cellulose oligomers are water-soluble, on the contrary to cellulose, which greatly increase their application range. In this study, cellulose oligomers were obtained from the acidic hydrolysis of cellulose with phosphoric acid. The global yield in water-soluble oligomers was around 23% with polymerization degree (DP) ranging from 1 to 12. The cellulose oligomers DP distribution was successfully reduced by differential solubilisation in methanol as one of the goals of this work was to avoid the use of a time-consuming full chromatographic separation. The methanol-soluble oligomers were mainly low DP (≤3). The oligomers of higher molar mass, composed of 42% of cellotetraose and 36% of cellopentaose, were then functionalized and coupled with stearic acid through azide-alkyne click chemistry to obtain amphiphilic compounds. The self-assembly of these new bio-based compounds was finally investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and their critical micellar concentration (CMC) was found to be in the same range as alkylmaltosides and alkylglucosides. PMID:27577903

  4. X-ray crystal structure and activity of fluorenyl-based compounds as transthyretin fibrillogenesis inhibitors.

    Science.gov (United States)

    Ciccone, Lidia; Nencetti, Susanna; Rossello, Armando; Tepshi, Livia; Stura, Enrico A; Orlandini, Elisabetta

    2016-10-01

    Transthyretin (TTR) is a 54 kDa homotetrameric protein that transports thyroxine (T4) and retinol (vitamin A), through its association with retinol binding protein (RBP). Under unknown conditions, it aggregates to form fibrils associated with TTR amyloidosis. Ligands able to inhibit fibril formation have been studied by X-ray crystallography. The use of polyethylene glycol (PEG) instead of ammonium sulphate or citrate has been evaluated as an alternative to obtain new TTR complexes with (R)-3-(9-fluoren-9-ylideneaminooxy)-2-methyl-N-(methylsulfonyl) propionamide (48R(1)) and 2-(9H-fluoren-9-ylideneaminooxy) acetic acid (ES8(2)). The previously described fluorenyl based inhibitors (S)-3-((9H-fluoren-9-ylideneamino)oxy)-2-methylpropanoic acid (6BD) and 3-((9H-fluoren-9-ylideneamino)oxy)propanoic acid (7BD) have been re-evaluated with the changed crystallization method. The new TTR complexes with compounds of the same family show that the 9-fluorenyl motif can occupy alternative hydrophobic binding sites. This augments the potential use of this scaffold to yield a large variety of differently substituted mono-aryl compounds able to inhibit TTR fibril formation. PMID:26235916

  5. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - I. A ternary Bragg-Williams ordering model

    Science.gov (United States)

    McSwiggen, P.L.

    1993-01-01

    The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.

  6. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    Science.gov (United States)

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds.

  7. Rescuing compound bioactivity in a secondary cell-based screening by using γ-cyclodextrin as a molecular carrier

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Vega, Sonia; Grazu, Valeria; de la Fuente, Jesús M; Lanas, Angel; Velazquez-Campoy, Adrian; Abian, Olga

    2015-01-01

    In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead compounds that must be tested in cell-based efficacy secondary screenings. Very often lead compounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly according to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that problem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with γ-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while γ-cyclodextrin did not show antiviral activity by itself). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solution, but its γ-cyclodextrin complex exhibited a 50% effective concentration of 5 μM. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using γ-cyclodextrin as carrier molecule. PMID:25834436

  8. Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS2) Thin Film Materials

    Science.gov (United States)

    Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius

    2002-01-01

    Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.

  9. Experimental investigation of the U–Zr–Al ternary phase diagram: Isothermal sections at 673 K and 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, C.; Désévédavy, F.; Noël, H.; Pasturel, M.; Gouttefangeas, F. [ISCR/CSM, Université de Rennes1, UMR-CNRS 6226, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France, (France); Dubois, S. [CEA/DEN/DEC, Cadarache, 13108 St. Paul Lez Durance (France); Stepnik, B. [AREVA/CERCA, 10 Rue Juliette Récamier, 69006 Lyon (France); Tougait, O., E-mail: tougait@univ-rennes1.fr [ISCR/CSM, Université de Rennes1, UMR-CNRS 6226, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France, (France); UCCS, UMR 8181 CNRS, Université Lille 1, ENSCL, Avenue Mendeleiev, 59655 Villeneuve d’Ascq Cedex (France)

    2015-06-15

    Highlights: • Isothermal sections of the U–Zr–Al system were investigated for 673 K and 1073 K. • The crystallographic properties of the equilibrium phases were checked. • The ternary extension of both unary and binary phases was determined. • The solubility of Al into UZr{sub 2} (δ-phase) was assessed by diffusion couples. • The microstructure of quenched alloys is discussed. - Abstract: Isothermal sections at 673 K and 1073 K of the ternary U–Zr–Al system were established in the whole concentration range, by means of powder X-ray diffraction, scanning electron microscopy–energy dispersive X-ray spectroscopy and differential thermal analysis. All measured compositions and unit-cell refinements were performed at room temperature from quenched samples annealed at 1073 K and 673 K for four and eight weeks respectively. For both temperatures, the Al-rich corner of the phase diagram is characterized by extended homogeneity ranges due to mutual exchange between U and Zr in UAl{sub 3} (cubic, AuCu{sub 3}-type) and in the Laves phase UAl{sub 2} (cubic, MgCu{sub 2}-type). Minute U solubility in ZrAl{sub 2} (hexagonal, MgZn{sub 2}-type) and in Zr{sub 2}Al (hexagonal, Ni{sub 2}In-type) was evaluated to be of the order of 1 at.% U. For the other binary compounds, the solubility of the third component was found negligible. At 1073 K, the solid solution based on γU (cubic, W-type) which covers the U–Zr binary axis up to 95.5 at.% Zr, allows also some limited solubility of Al [maximum of 5 at.%]. For Al-content below 66 at.%, most of the phase relations comprise equilibria between the Zr–Al binaries and the γ(U,Zr,Al) solid solution. At 673 K, the U–Zr axis is found in agreement with the literature data and no Al solubility could be detected in αU, αZr and UZr{sub 2} (δ phase). The phase relations are mainly established between Zr–Al binaries and αU. For monolithic UMo fuel with a Zr diffusion barrier foil cladded with Al, the main interaction

  10. Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors.

    Science.gov (United States)

    Staszewska, Anna; Kurowska, Ewa; Bal, Wojciech

    2013-11-01

    Our current understanding of the intracellular thermodynamics and kinetics of Zn(ii) ions is largely based on the application of fluorescent sensor molecules, used to study and visualize the concentration, distribution and transport of Zn(ii) ions in real time. Such agents are designed for high selectivity for zinc in respect to other biological metal ions. However, the issue of their sensitivity to physiological levels of low molecular weight Zn(ii) ligands (LMWLs) has not been addressed. We followed the effects of eight such compounds on the fluorescence of ZnAF-1 and ZnAF-2F, two representatives of the ZnAF family of fluorescein-based zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine chelating unit. Fluorescence titrations of equimolar Zn(ii)-ZnAF-1 and Zn(ii)-ZnAF-2F solutions with acetate, phosphate, citrate, glycine, glutamic acid, histidine, ATP and GSH demonstrated strong fluorescence quenching. These results are interpreted in terms of an interplay of the formation of the [ZnAF-Zn(ii)-LMWL] ternary complexes and the competition for Zn(ii) between ZnAF and LMWLs. UV-vis spectroscopic titrations revealed the existence of supramolecular interactions between the fluorescein moiety of ZnAF-1 and ATP and His, which, however, did not contribute to fluorescence quenching. Therefore, the obtained results show that the ZnAF sensors, other currently used zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine unit, and, in general, all sensors that do not saturate the Zn(ii) coordination sphere may co-report cellular metabolites and Zn(ii) ions, leading to misrepresentations of the concentrations and fluxes of biological zinc. PMID:23939683

  11. Experimental, theoretical and docking studies of 2-hydroxy Schiff base type compounds derived from 2-amino-4-chlorobenzenethiol

    Science.gov (United States)

    Kusmariya, Brajendra S.; Mishra, A. P.

    2015-12-01

    We report here synthesis, DFT, Docking and Fluorescence studies of three Schiff base organic compounds viz. 2-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol (1); 2,4-dichloro-6-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol (2) and 2-{(E)-[(5-chloro-2-sulfanylphenyl) imino] methyl}-5-(diethylamino) phenol (3). These compounds have been characterized by elemental, FTIR, electronic and 1H NMR spectral techniques. Spectroscopic studies reveal that all the compounds exist in enol-form in the solid state whereas keto and enol, both forms exist in solution. The fluorescence behavior has been studied in DMF solvents and 1 &2 compound exhibit more efficient fluorescence properties. The molecular geometry of all the compounds in the ground state has been computed using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31++G basis set. The theoretical electronic absorption spectra of the compounds have been predicted using TD-DFT and TD-HF methods and compared with experimental spectral results. The predicted nonlinear optical properties of all the compounds are higher than those of urea. In addition to DFT calculations; frequency calculations, mulliken charge distribution, HOMO-LUMO and molecular electrostatic potential (MEP) have also been computed at the same level of theory. Molecular docking studies of the compounds in the active site of CAII (PDB code: 1CNX) have been performed to predict their possible binding modes in the active site of target carbonic anhydrase II enzyme.

  12. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    Science.gov (United States)

    Hilsenbeck, Shane J.; McCarley, Robert E.; Schrader, Glenn L.; Xie, Xiaobing

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M.sup.n+.sub.2x/n (L.sub.6 S.sub.8)S.sub.x, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M.sub.6 S.sub.8).sup.0 cluster units are present. Vacuum thermolysis of the amorphous Na.sub.2x (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH first produces poorly crystalline NaMo.sub.6 S.sub.8 by disproportionation at 800.degree. C. and well-crystallized NaMo.sub.6 S.sub.8 at .gtoreq. 900.degree. C. Ion-exchange of the sodium material in methanol with soluble M.sup.2+ and M.sup.3+ salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M.sup.n+.sub.2x/n (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M.sup.n+.sub.2x/n Mo.sub.6 S.sub.8+x (MeOH).sub.y ›MMOS! (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as "Chevrel phase-like" in that both contain Mo.sub.6 S.sub.8 cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst showed to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS.sub.2 catalysts.

  13. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    Science.gov (United States)

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures.

  14. Health evaluation of volatile organic compound (VOC) emissions from wood and wood-based materials.

    Science.gov (United States)

    Jensen, L K; Larsen, A; Mølhave, L; Hansen, M K; Knudsen, B

    2001-01-01

    In this study, the authors describe a method for evaluation of material emissions. The study was based on chemical analysis of emissions from 23 materials representing solid wood and wood-based materials commonly used in furniture, interior furnishings, and building products in Denmark in the 1990s. The authors used the emission chamber testing method to examine the selected materials with a qualitative screening and quantitative determination of volatile organic compounds. The authors evaluated the toxicological effects of all substances identified with chamber testing. Lowest concentration of interest and standard room concentrations were assessed, and the authors calculated an S-value for each wood and wood-based material. The authors identified 144 different chemical substances with the screening analyses, and a total of 84 individual substances were quantified with chamber measurements. The irritative effects dominated at low exposure levels; therefore, the lowest concentration of interest and the S-value were based predominantly on these effects. The S-values were very low for solid ash, oak, and beech. For solid spruce and pine, the determining substances for size of the S-value were delta3-carene, alpha-pinene, and limonene. For the surface-treated wood materials, the S-value reflected the emitted substances from the surface treatment. PMID:11777023

  15. Within-compound associations explain potentiation and failure to overshadow learning based on geometry by discrete landmarks.

    Science.gov (United States)

    Austen, Joe M; Kosaki, Yutaka; McGregor, Anthony

    2013-07-01

    In three experiments, rats were trained to locate a submerged platform in one of the base corners of a triangular arena above each of which was suspended one of two distinctive landmarks. In Experiment 1, it was established that these landmarks differed in their salience by the differential control they gained over behavior after training in compound with geometric cues. In Experiment 2, it was shown that locating the platform beneath the less salient landmark potentiated learning based on geometry compared with control rats for which landmarks provided ambiguous information about the location of the platform. The presence of the more salient landmark above the platform for another group of animals appeared to have no effect on learning based on geometry. Experiment 3 established that these landmark and geometry cues entered into within-compound associations during compound training. We argue that these within-compound associations can account for the potentiation seen in Experiment 2, as well as previous failures to demonstrate overshadowing of geometric cues. We also suggest that these within-compound associations need not be of different magnitudes, despite the different effects of each of the landmarks on learning based on geometry seen in Experiment 2. Instead, within-compound associations appear to mitigate the overshadowing effects that traditional theories of associative learning would predict.

  16. Hydrodesulfurization catalysis by Chevrel phase compounds

    Science.gov (United States)

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  17. Crystal structure of a new hybrid compound based on an iodido-plumbate(II) anionic motif.

    Science.gov (United States)

    Mokhnache, Oualid; Boughzala, Habib

    2016-01-01

    Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis-(piperazine-1,4-diium) [[tetra-iodido-plumbate(II)]-μ-iodido] iodide monohydrate], (C4N2H12)2[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H12)(2+) cations, water mol-ecules of crystallization and isolated I(-) anions are connected through N-H⋯·I, N-H⋯OW and OW-H⋯I hydrogen-bond inter-actions. Zigzag chains of corner-sharing [PbI6](4-) octa-hedra with composition [PbI4/1I2/2](3-) running parallel to the a axis are present in the structure packing.

  18. Graphene Based Electrochemical Sensor for the Detection of Volatile Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    Yixin Zhang; Kim KT Lau

    2014-01-01

    Many household consumables contain volatile organic compounds (VOCs) as the active ingredient. Long term exposure to VOCs could cause various health problems, especially to the respiratory system. Graphene has attracted a lot of attention recently for its potential to be used as sensing material for VOCs. In this project we have constructed graphene/PVA composite based gas sensors for VOC detection. It was perceived that the poly-mer could introduce better selectivity to the sensor. Results suggest that the proposed sen-sor is highly sensitive to low molecular weight VOCs and that the manner in which the sensor respond to the vapour depends on the polarity or hydrophobicity of the vapour.

  19. Ethanol-Water Near-Azeotropic Mixture Dehydration by Compound Starch-Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    孙津生; 师明; 王文平

    2015-01-01

    Ethanol-water near-azeotropic mixture dehydration was investigated by formulated compound starch-based adsorbent(CSA), which consists of corn, sweet potato and foaming agent. The net retention time and separa-tion factor of water over ethanol were measured by inverse gas chromatography(IGC). Results indicated that water has a longer net retention time than ethanol and that low temperature is beneficial to this dehydration process. Or-thogonal test was conducted under different vapor feed flow rates, bed temperatures and bed heights, to obtain op-timal fixed-bed dehydration condition. Dynamic saturated adsorbance was also studied. It was found that CSA has the same water adsorption capacity(0.15 g/g)as some commercial molecular sieves. Besides, this biosorptive dehy-dration process was found to be the most energy-efficient compared with other ethanol purification processes.

  20. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  1. Strength and durability of concrete modified by sulfur-based impregnating compounds

    Directory of Open Access Journals (Sweden)

    MASSALIMOV Ismail Alexandrovich

    2015-06-01

    Full Text Available The aim of the research was to determine how sulfur-containing compound impregnation influences on concrete compressive strength and the impact resistance of concrete tiles. The results of these studies indicate that impregnation of vibropressed concrete paving tiles and concrete samples of dif-ferent strength classes with aqueous solutions based on calcium polysulfide leads to a significant increase of compressive strength and impact resistance. These data show that the strength of the products can be controlled by varying duration and frequency of the impregnation and by using pre-vacuum method. Impregnation with a solution of calcium polysulfide density of 1,23 g/cm³ can be recommended to increase strength of concrete products that are exposed to intense hydration and mechanical stress.

  2. Reaction jet and aerodynamics compound control missile autopilot design based on adaptive fuzzy sliding mode control

    Science.gov (United States)

    Wu, Zhenhui; Dong, Chaoyang

    2006-11-01

    Because of nonlinearity and strong coupling of reaction-jet and aerodynamics compound control missile, a missile autopilot design method based on adaptive fuzzy sliding mode control (AFSMC) is proposed in this paper. The universal approximation ability of adaptive fuzzy system is used to approximate the nonlinear function in missile dynamics equation during the flight of high angle of attack. And because the sliding mode control is robustness to external disturbance strongly, the sliding mode surface of the error system is constructed to overcome the influence of approximation error and external disturbance so that the actual overload can track the maneuvering command with high precision. Simulation results show that the missile autopilot designed in this paper not only can track large overload command with higher precision than traditional method, but also is robust to model uncertainty and external disturbance strongly.

  3. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  4. Separation of ethanol/water azeotrope using compound starch-based adsorbents.

    Science.gov (United States)

    Wang, Yanhong; Gong, Chunmei; Sun, Jinsheng; Gao, Hong; Zheng, Shuai; Xu, Shimin

    2010-08-01

    Comparing breakthrough cures of five starch-based materials experimentally prepared for ethanol dehydration, a compound adsorptive agent ZSG-1 was formulated with high adsorption capacity, low energy and material cost. The selective water adsorption was conducted in a fixed-bed absorber packed with ZSG-1 to find the optimum conditions yielding 99.7 wt% anhydrous ethanol with high efficiency. The adsorption kinetics is well described by Bohart-Adams equation. The adsorption heat, Delta H(abs), was calculated to be -3.16 x 10(4)J mol(-1) from retention data by inverse gas chromatography. Results suggested that water entrapment in ZSG-1 is a exothermic and physisorption process. Also, ZSG-1 is recyclable for on-site multiple-use and then adapt for upstream fermentation process after saturation, avoiding pollution through disposal.

  5. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Shao Li-Hui; Liu Yao-Zong; Wen Ji-Hong

    2006-01-01

    Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.

  6. Preparation of lignosulfonate-acrylamide-chitosan ternary graft copolymer and its flocculation performance.

    Science.gov (United States)

    He, Kunpeng; Lou, Tao; Wang, Xuejun; Zhao, Wenhua

    2015-11-01

    As flocculant plays an important role in wastewater treatment, searching for high efficient and cost-effective flocculants has always become the challenge in chemical industry. In the current work, lignosulfonate-acrylamide-chitosan ternary copolymer was designed and prepared as a new kind of flocculant. The elemental analysis and structure characterization of FTIR and XRD showed that acrylamide successfully grafted onto the two natural polymers and amorphous macromolecules were formed. The natural polymers-based flocculant was water soluble and pH independent. As it had multiple functional groups from the raw materials, the amphoteric flocculant showed high color removal efficiency to anionic (acid blue 113, >95%), neutral (reactive black 5, >95%) and cationic dyes (methyl orange, >50%) in a wide range of flocculant dosage and pH windows. The ternary flocculant, based on lignosulfonate, chitosan, and acrylamide, might be a promising material in practical applications from the perspective of cost, source and performance.

  7. EuroFIR-BASIS - a combined composition and biological activity database for bioactive compounds in plant-based foods

    DEFF Research Database (Denmark)

    Gry, Jørn; Black, Lucinda; Eriksen, Folmer Damsted;

    2007-01-01

    Mounting evidence suggests that certain non-nutrient bioactive compounds promote optimal human health and reduce the risk of chronic disease. An Internet-deployed database, EuroFIR-BASIS, which uniquely combines food composition and biological effects data for plant-based bioactive compounds......, is being developed. The database covers multiple compound classes and 330 major food plants and their edible parts with data sourced from quality-assessed, peer-reviewed literature. The database will be a valuable resource for food regulatory and advisory bodies, risk authorities, epidemiologists...

  8. A method based on diffraction theory for predicting 3D focusing performance of compound refractive X-ray lenses

    Institute of Scientific and Technical Information of China (English)

    Zichun Le; Kai Liu; Jingqiu Liang

    2005-01-01

    A method based on the diffraction theory for estimating the three-dimensional (3D) focusing performance of the compound refractive X-ray lenses is presented in this paper. As a special application, the 3D X-ray intensity distribution near the focus is derived for a plano-concave compound refractive X-ray lens.Moreover, the computer codes are developed and some results of 3D focusing performance for a compound refractive X-ray lens with Si material are shown and discussed.

  9. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    SOUMEN SAHA; SONALIKA VAIDYA; KANDALAM V RAMANUJACHARY; SAMUEL E LOFLAND; ASHOK K GANGULI

    2016-04-01

    Cu–Fe–Ni ternary alloys (size ∼55–80 nm) with varying compositions viz. CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an appropriate microemulsion system. High electrocatalytic activity towards HER in alkaline medium was achieved by the formation of alloys of metals with low and high binding energies. A high value of current density (228 mA cm$^2$) at an overpotential of 545 mV was obtained for CuFeNi (A1), which is significantly high as compared to the previously reported Ni$_{59}$Cu$_{41}$ alloy catalyst.

  10. The competition numbers of ternary Hamming graphs

    CERN Document Server

    Park, Boram

    2010-01-01

    The competition graph of a digraph D is a graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is defined to be the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of important research problems in the study of competition graphs to characterize a graph by its competition number. In this paper, we give the exact values of the competition numbers of ternary Hamming graphs.

  11. On Ternary Inclusion-Exclusion Polynomials

    CERN Document Server

    Bachman, Gennady

    2010-01-01

    Taking a combinatorial point of view on cyclotomic polynomials leads to a larger class of polynomials we shall call the inclusion-exclusion polynomials. This gives a more appropriate setting for certain types of questions about the coefficients of these polynomials. After establishing some basic properties of inclusion-exclusion polynomials we turn to a detailed study of the structure of ternary inclusion-exclusion polynomials. The latter subclass is exemplified by cyclotomic polynomials $\\Phi_{pqr}$, where $p

  12. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  13. Surface and interface phonon-polaritons in freestanding quantum well wire systems of polar ternary mixed crystals

    Science.gov (United States)

    Yan, C. L.; Bao, J.; Yan, Z. W.

    2016-03-01

    The surface and interface phonon-polaritons in freestanding rectangular quantum well wire systems consisting of polar ternary mixed crystals are investigated in the modified random-element-isodisplacement model and the Born-Huang approximation, based on the Maxwell's equations with the boundary conditions. The numerical results of the surface and interface phonon-polariton frequencies as functions of the wave-vector, geometric structure, and the composition of the ternary mixed crystals in GaAs/AlxGa1-xAs and ZnxCd1-xSe/ZnSe quantum well wire systems are obtained and discussed. It is shown that there are 10 and 8 branches of surface and interface phonon-polaritons in the two quantum well wire systems respectively. The effects of the "two-mode" and "one-mode" behaviors of the ternary mixed crystals on the surface and interface phonon-polariton modes are shown in the dispersion curves.

  14. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Yu Dian-Long

    2006-01-01

    The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sanchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.

  15. 三元两亲共聚物作乳化剂制备核壳型改性酪素皮革涂饰剂%Synthesis of Core-shell Structural Modified Casein Leather Finishing Agent Based on a Ternary Amphiphilic Polymer

    Institute of Scientific and Technical Information of China (English)

    甘长凤; 徐群娜; 周建华; 马建中

    2013-01-01

    Modified casein leather finishing agents with core - shell structure prepared via emulsifier - free emulsion polymerization were studied, using a ternary amphiphilic polymer as the emulsifier. Effects of adding method and the amount of the emulsifier on the properties of the emulsion ( diluting stability, acid resistance, alkali resistance) and film properties ( water resistance, mechanical properties) were investigated. Latex structure, morphology and particle size were characterized by Infrared Spectrosco-py (FT-IR), Transmission Electron Microscopy (TEM) and Dynamic Laser Light Scattering (DLS), respectively. The best properties of modified casein is obtained when the emulsifier is added after the monomers with the amount 4%. Compared with those of control system (without emulsifiers) , water resistance, tensile strength and breaking elongation of films formed by modified casein based on ternary amphiphilic polymer are increased. The results of FT - IR suggest that ternary amphiphilic polymer successfully graft on modified casein polymer. TEM and DLS show that particles size of modified casein based on ternary amphiphilic polymer are about 40 ~ 50 nm with obvious core - shell structure and uniform distribution.%采用无皂乳液聚合法同时引入三元两亲共聚物作乳化剂,合成具有核壳结构的聚丙烯酸酯改性酪素皮革涂饰剂,考察了乳化剂的加入方式及其用量对乳液性能(稀释稳定性、耐酸性、耐碱性等)及成膜性能(耐水性、机械力学性能)的影响,并分别通过红外光谱(Fr-IR)、透射电镜(TEM)和动态激光光散射(DLS),对乳液结构、形貌和粒径大小进行表征.结果表明:当三元两亲性共聚物在单体后加入,用量为4%时,制备的皮革涂饰剂性能最优.与未采用三元两亲共聚物做乳化剂制备的乳液相比,采用本方法所制备的乳液成膜耐水性、抗张强度和断裂伸长率均有所提高.FT-IR谱图显示三元两亲共聚物成功接

  16. Pb-free Sn-Ag-Cu ternary eutectic solder

    Science.gov (United States)

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  17. Terminating species and Lewis acid-base preference in oxohalides – a new route to low-dimensional compounds

    OpenAIRE

    Becker, Richard

    2007-01-01

    This thesis is based upon synthesis and structure determination of new transition metal oxo-halide compounds, which includes p-element cations that have a stereochemically active lone pair. A synthesis concept has been developed, which uses several different structural features to increase the possibility to yield a low-dimensional arrangement of transition metal cations. A total of 17 new compounds has been synthesised and their structures have been determined via single-crystal X-ray diffra...

  18. Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight

    OpenAIRE

    Bourbon, A. I.; A.C. Pinheiro; Cerqueira, M. A.; Rocha, Cristina M. R.; Avides, Maria do Carmo; Quintas, Mafalda A. C.; Vicente, A.A.

    2011-01-01

    Chitosan packaging films containing different bioactive compounds (a peptide fraction from whey protein concentrate (WPC) hydrolysate, glycomacropeptide (GMP) and lactoferrin) were produced and their mechanical and barrier properties were evaluated. The molecular weight of protein-based compounds was determined using SDS–PAGE. The addition of GMP and lactoferrin to chitosan film caused a significant reduction of tensile strength and the elongation-at-break significantly increased ...

  19. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds?

    OpenAIRE

    Herrmann, I K; Schlegel, A A; Graf, R.; Stark, W J; Beck-Schimmer, Beatrice

    2015-01-01

    Recent studies report promising results regarding extracorporeal magnetic separation-based blood purification for the rapid and selective removal of disease-causing compounds from whole blood. High molecular weight compounds, bacteria and cells can be eliminated from blood within minutes, hence offering novel treatment strategies for the management of intoxications and blood stream infections. However, risks associated with incomplete particle separation and the biological consequences of par...

  20. Weighted Feature Significance: A Simple, Interpretable Model of Compound Toxicity Based on the Statistical Enrichment of Structural Features

    OpenAIRE

    Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.

    2009-01-01

    In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) dat...

  1. A high-throughput screen for aggregation-based inhibition in a large compound library.

    Science.gov (United States)

    Feng, Brian Y; Simeonov, Anton; Jadhav, Ajit; Babaoglu, Kerim; Inglese, James; Shoichet, Brian K; Austin, Christopher P

    2007-05-17

    High-throughput screening (HTS) is the primary technique for new lead identification in drug discovery and chemical biology. Unfortunately, it is susceptible to false-positive hits. One common mechanism for such false-positives is the congregation of organic molecules into colloidal aggregates, which nonspecifically inhibit enzymes. To both evaluate the feasibility of large-scale identification of aggregate-based inhibition and quantify its prevalence among screening hits, we tested 70,563 molecules from the National Institutes of Health Chemical Genomics Center (NCGC) library for detergent-sensitive inhibition. Each molecule was screened in at least seven concentrations, such that dose-response curves were obtained for all molecules in the library. There were 1274 inhibitors identified in total, of which 1204 were unambiguously detergent-sensitive. We identified these as aggregate-based inhibitors. Thirty-one library molecules were independently purchased and retested in secondary low-throughput experiments; 29 of these were confirmed as either aggregators or nonaggregators, as appropriate. Finally, with the dose-response information collected for every compound, we could examine the correlation between aggregate-based inhibition and steep dose-response curves. Three key results emerge from this study: first, detergent-dependent identification of aggregate-based inhibition is feasible on the large scale. Second, 95% of the actives obtained in this screen are aggregate-based inhibitors. Third, aggregate-based inhibition is correlated with steep dose-response curves, although not absolutely. The results of this screen are being released publicly via the PubChem database.

  2. PHASE EQUILIBRIUM FOR THE TERNARY SYSTEM VINYL CHLORIDE-CHLORINATED POLYETHYLENE-POLY (VINYL CHLORIDE)

    Institute of Scientific and Technical Information of China (English)

    LOU Jianfeng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1991-01-01

    Swelling capacity of vinyl chloride (VC) in chlorinated polyethylene (CPE) with 25- 40 wt% Cl at temperature 30- 57 ℃ was studied and their relationships were correlated with Langmuir and Freundlich adsorption equations. A ternary phase diagram for VC-CPE-PVC was also established.In-situ polymerization conditions of CPE-g -VC were proposed and CPE content control was analyzed for the manufacturing process of CPE-g-VC graft product based on results of phase equilibrium study.

  3. Regular Functions with Values in Ternary Number System on the Complex Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2013-01-01

    Full Text Available We define a new modified basis i^ which is an association of two bases, e1 and e2. We give an expression of the form z=x0+ i ^z0-, where x0 is a real number and z0- is a complex number on three-dimensional real skew field. And we research the properties of regular functions with values in ternary field and reduced quaternions by Clifford analysis.

  4. SEASONAL CHANGES IN THE REDUCTION OF BIOGENIC COMPOUNDS IN WASTEWATER TREATMENT PLANTS BASED ON HYDROPONIC TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Aleksandra Bawiec

    2016-04-01

    Full Text Available The study presents the results of the treatment of domestic and industrial wastewater with respect to the reduction of nitrogen and phosphorus compounds. The analysis encompasses the results of physical and chemical tests of effluents from two facilities based on hydroponic technology: wastewater treatment plants with hydroponic lagoons using the BIOPAX technology – Paczków, Poland and the Organica technology – Szarvas, Hungary. Monthly treatment effectiveness was determined basing on these analyses. The composition of wastewater flowing into the lagoon (after mechanical treatment and wastewater discharged to the collector in 2009–2011 was subject to physical and chemical analysis in both facilities. The effluent quality was determined basing on the concentration of total phosphorus, total nitrogen and ammonium nitrogen. Mean annual results of the operation of both objects were high. For the wastewater treatment plant in Paczkow, operating in the BIOPAX technology, the effectiveness of treatment with respect to total nitrogen throughout the analysed period ranged from 76.9–84.4%. Total phosphorus was eliminated from wastewater with an effectiveness of 96.4–98.0%. Such high reduction level was caused by the application of additional precipitation process in the chambers of activated sludge reactor. The hydroponic plant in Szarvas (Organica technology was characterised by a high effectiveness of reduction with respect to ammonium nitrogen: 92.0–93.0%, while the reduction of total phosphorus fell into the range 49.3–55.3%.

  5. Enthalpies of formation of compounds in Al-Ni-Y system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The enthalpies of formation of the ternary compounds Al4NiY, Al2NiY, Al2Ni6Y3, Al16 Ni3Y, AlNiY, Al3Ni2Y, AlNi8Y3, Al7Ni3Y2, and of the binary comp ounds Al2Y containing nickel and Ni5Y containing aluminum have been determined by high temperature reaction calorimetry. The enthalpy values measured are compared to previously published results where available as well as extended Miedema model predictions. The melting points of the compounds were determined by DTA and X-ray diffraction was used to confirm the crystal structures of the compounds. The enthalpi es of formation of the ternary compounds show a maximum along the 50%Al (mole fr action) section. The ternary compounds appear along lines of constant yttrium content consistent with binary compound solubility extensions.

  6. Solution-based colloidal synthesis of hybrid P3HT: Ternary CuInSe2 nanocomposites using a novel combination of capping agents for low-cost photovoltaics

    Science.gov (United States)

    Sharma, Shailesh Narain; Chawla, Parul; Akanksha; Srivastava, A. K.

    2016-06-01

    In this work, ternary CuInSe2 (CISe) chalcopyrite nanocrystallites efficiently passivated by a novel combination of capping agents viz: aniline and 1-octadecene during chemical route synthesis were dispersed in conducting polymer matrix poly(3-hexylthiophene) (P3HT). By varying the composition and concentration of the ligands, the properties of the resulting CISe nanocrystallites and its corresponding polymer nanocomposites thus could be tailored. The structural, morphological and optical studies accomplished by various complimentary techniques viz. Transmission Electron Microscopy (TEM), Contact angle, Photoluminescence (PL) and Raman have enabled us to compare the different hybrid organic (polymer)-inorganic nanocomposites. On the basis of aniline-octadecene equilibrium phase diagram, the polydispersity of the CISe nanocrystals could be tuned by using controlled variations in the reaction conditions of nucleation and growth such as composition of the solvent and temperature. To the best of author's knowledge, the beneficial effects of both the capping agents; aniline and octadecene contributing well in tandem in the development of large-sized (100-125 nm) high quality, sterically- and photo-oxidative stable polycrystalline CISe and its corresponding polymer (P3HT):CISe composites with enhanced charge transfer efficiency has been reported for the first time. The low-cost synthesis and ease of preparation renders this method of great potential for its possible application in low-cost hybrid organic-inorganic photovoltaics. The figure shows the Temperature vs Mole fraction graph of two different phases (aniline and 1-octadecene) in equilibrium.

  7. MPI Programming Based on Ternary Optical Computer in Supercomputer%三值光学计算机MPI编程技术在超算集群中的使用

    Institute of Scientific and Technical Information of China (English)

    张茜; 金翊; 宋凯; 高桓

    2014-01-01

    建立MPI程序中三值光学计算机(ternary optical computer,TOC)和CPU在指令级别上协同工作的技术.在该技术中,TOC节点作为服务端,运行等待连接的进程;CPU上运行的MPI进程作为客户端,使用以SHDX为前缀的一类扩充指令来请求与TOC连接.TOC和CPU连接之后,MPI进程将指令级别上的服务要求和数据一并发送给TOC节点,TOC发挥其处理器可构成复合运算器及数据位数众多的优势来处理数据,并将计算结果回送给客户端的MPI进程.该过程实现了CPU在指令级别上调用TOC来协同工作的目的.目前,设定一个超级计算机系统可以融入10个TOC节点,每个TOC节点可以打开8个服务端口,未来的版本可能扩大这两个限制.实验结果证明了该技术的正确性.

  8. Synthesis and characterization of some binary and ternary zirconium iodides

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, D.H.

    1981-10-01

    Studies of binary ZrI/sub 4/-Zr and ternary CsI-Zr-ZrI/sub 4/ systems have produced several new compounds. The new binary compounds include two polymorphs of ZrI/sub 2/ (..cap alpha.. and ..beta..) as well as a phase described earlier as ZrI/sub 1/ /sub 8/. ..cap alpha..-ZrI/sub 2/ forms as black lath-like crystals by vapor phase transport reactions between Zr and ZrI/sub 4/ from 700 to 825/sup 0/C. Its structure is monoclinic space group P2/sub 1//m with a = 6.821(2), b = 3.741(1), c = 14.937(3) A and ..beta.. = 95.66(3)/sup 0/, Z = 4 (R = 0.064). ..beta..-ZrI/sub 2/ is formed as black gem-like crystals between 800 to 975/sup 0/C, crystallizing in the trigonal space group R anti 3 with hexagonal axes a = 14.502(2) and c = 9.996(2) A, Z = 18 (R = 0.109). This phase contains a Zr/sub 6/I/sub 12/ cluster. Guinier x-ray powder diffraction data previously reported for ZrI/sub 1/ /sub 8/ has now been found to arise from ..cap alpha..-ZrI/sub 2/ intergrown with an orthorhombic ZrI/sub 2/ phase (perhaps isostructural with WTe/sub 2/ plus an unknown phase. The ternary compounds include Cs/sub 2/ZrI/sub 6/, Cs/sub 3/Zr/sub 2/T/sub 9/ and CsZr/sub 6/I/sub 14/. The first is isostructural with K/sub 2/PtCl/sub 6/. Cs/sub 3/Zr/sub 2/I/sub 9/ is formed from the reaction of CsI, ZrI/sub 4/ and Zr between 700 to 900/sup 0/C as black gem-like crystals which crystallize in the space group P6/sub 3//mmc with a = 8.269(1) and c = 19.908(3) A, z = 2. This phase was found to have a Cs/sub 3/Cr/sub 2/Cl/sub 9/-type structure, d/sub Zr-Zr/ = 3.134(4) A (R = 0.087). CsZr/sub 6/I/sub 14/ forms both rod and gem crystals by the same reaction with more metal between 900 to 950/sup 0/C. It crystallizes in the orthorhombic space group Ccmb with a = 14.275(4), b = 15.880(4) and c = 12.953 (4) A (R = 0.062). This phase also contains a Zr/sub 6/I/sub 12/ cluster.

  9. Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds.

    Science.gov (United States)

    Liu, Yupu; Chen, Junchen; Li, Wei; Shen, Dengke; Zhao, Yujuan; Pal, Manas; Yu, Haijun; Tu, Bo; Zhao, Dongyuan

    2016-09-01

    Indoor organic gaseous pollution is a global health problem, which seriously threats the health and life of human all over the world. Hence, it is important to fabricate new sensing materials with high sensitivity and efficiency for indoor volatile organic compounds. In this study, a series of ordered mesoporous silica-based nanocomposites with uniform carbon coatings on the internal surface of silica mesopore channels were synthesized through a simple template-carbonization strategy. The obtained mesoporous silica-carbon nanocomposites not only possess ordered mesostructures, high surface areas (up to ∼759m(2)g(-1)), large and tunable pore sizes (2.6-10.2nm), but also have the improved hydrophobicity and anti-interference capability to environmental humidity. The sensing performances of the mesoporous silica-carbon nanocomposites to volatile organic compounds, such as ethylbenzene, methylbenzene, benzene, methanol, acetone, formaldehyde, dichloromethane and tetrahydrofuran, were systematically investigated. The relationships between the sensing performances and their properties, including mesostructures, surface areas, pore sizes, carbon contents and surface hydrophilic/hydrophobic interactions, have been achieved. The mesoporous silica-carbon nanocomposites with hexagonal mesostructure exhibit outstanding performance at room temperature to benzene and acetone with high responses, short response (2-3s) and recovery (16-19s) time, strong anti-interference to environmental humidity, and long-term stability (less than ∼5% loss of the frequency shifts after 42days). Therefore, the obtained mesoporous silica-carbon nanocomposites have a hopeful prospect in the field of environmental air quality monitoring. PMID:27240244

  10. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  11. Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups

    Indian Academy of Sciences (India)

    Afsar Ali; Deepak Bansal; Nagendra K Kaushik; Neha Kaushik; Neha Kaushik; Eun Ha Choi; Rajeev Gupta

    2014-07-01

    Several pyridine-amide compounds appended with phenol/catechol groups are synthesized. These compounds consist of protected or deprotected phenol/catechol groups and offer pyridine, amide, and phenol/catechol functional groups. All compounds have been well-characterized by various spectroscopic methods, elemental analysis, thermal studies, and crystallography. The biological activities of all compounds were investigated while a few compounds significantly decreased the metabolic viability, growth and clonogenicity of T98G cells in dose dependent manner. Accumulation of ROS was observed in T98G cells, which displayed a compromised redox status as evident from increased cellular Caspase 3/7 activity and formation of micronuclei. The in silico pharmacokinetic studies suggest that all compounds have good bioavailability, water solubility and other drug-like parameters. A few compounds were identified as the lead molecules for future investigation due to their: (a) high activity against T98G brain, H-460 lung, and SNU-80 thyroid cancer cells; (b) low cytotoxicity in non-malignant HEK and MRC-5 cells; (c) low toxic risks based on in silico evaluation; (d) good theoretical oral bioavailability according to Lipinski ‘rule of five’ pharmacokinetic parameters; and (e) better drug-likeness and drug-score values.

  12. The quasi-ternary system Cu{sub 2}Se-CdSe-In{sub 2}Se{sub 3} and the crystal structure of the Cu{sub 0.6}Cd{sub 0.7}In{sub 6}Se{sub 10} compound

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, I.A. [Department of General and Inorganic Chemistry, Volyn State University, 13 Voli Ave, 43009 Lutsk (Ukraine)]. E-mail: iva@univer.lutsk.ua; Gulay, L.D. [Department of General and Inorganic Chemistry, Volyn State University, 13 Voli Ave, 43009 Lutsk (Ukraine); Zmiy, O.F. [Department of General and Inorganic Chemistry, Volyn State University, 13 Voli Ave, 43009 Lutsk (Ukraine); Olekseyuk, I.D. [Department of General and Inorganic Chemistry, Volyn State University, 13 Voli Ave, 43009 Lutsk (Ukraine)

    2005-05-17

    The CuInSe{sub 2}-CdIn{sub 2}Se{sub 4}-In{sub 2}Se{sub 3} part of the quasi-ternary Cu{sub 2}Se-CdSe-In{sub 2}Se{sub 3} system was investigated by differential thermal analysis (DTA) and X-ray diffraction analysis. The phase diagrams of six vertical sections, the liquidus surface projection and isothermal section were constructed. The character and temperature of mono-variant and invariant processes of the In{sub 2}Se{sub 3} reach part of the system were determined. The existence of a new quaternary Cu{sub 0.6}Cd{sub 0.7}In{sub 6}Se{sub 10} phase which melts incongruently at 1118K was established. Its crystal structure (space group P3-bar m1, a=0.40498(2), c=3.2886(2)nm) was determined using X-ray powder diffraction.

  13. Yb-based heavy fermion compounds and field tuned quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Eundeok [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in ρ(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT2Zn20 and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, TK, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum

  14. Yb-based heavy fermion compounds and field tuned quantum criticality

    International Nuclear Information System (INIS)

    The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in ρ(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT2Zn20 and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, TK, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum criticality in Yb-based systems.

  15. Implications of non-carcinogenic pah-free extender oils in natural rubber based tire compounds

    OpenAIRE

    Petchkaew, Anida

    2015-01-01

    The oils are generally added in the rubber compounds to improve processing properties, low temperature properties, dispersion of fillers, and to reduce cost. The conventionally widely used oils in tire compounds are Distillate Aromatic Extract (DAE) oils, which contain a high concentration of Polycyclic Aromatic Hydrocarbons (PAHs). PAHs that can be released from tires by tire wear are harmful to health and environment, so safe process oils are needed to replace aromatic oil in tire compounds...

  16. The Mapping Synthesis of Ternary Functions under Fixed Polarities

    Institute of Scientific and Technical Information of China (English)

    陈偕雄; 吴浩敏

    1993-01-01

    This paper proposes a mapping method simplifying the Reed-Muller expansion(“RM expansion”)of a ternary function under fixed polarities and the transformation of the RM expansion coefficients with different fixed polarities.

  17. On Extremal Self-Dual Ternary Codes of Length 48

    Directory of Open Access Journals (Sweden)

    Gabriele Nebe

    2012-01-01

    Full Text Available All extremal ternary self-dual codes of length 48 that have some automorphism of prime order ≥5 are equivalent to one of the two known codes, the Pless code or the extended quadratic residue code.

  18. Crystal structures of Two Potential Tumor Imaging Agents and Therapeutic Agents-Copper(II)Ternary Complexes With Salicylidene-tyrosinato Schiff Base and Nitrogen-donor Chelating Lewis Base

    Institute of Scientific and Technical Information of China (English)

    Ming Zhao WANG; Guan Liang CAI; Ling XIA; Jun Jian YAO; Hong Yan CHEN; Zhao Xing MENG; Bo Li LIU

    2004-01-01

    The crystal structures of two potential tumor imaging agents and therapeutic agents -copper(II) complexes with salicylidene-tyrosinato Schiff base and nitrogen-donor chelating Lewis base,[Cu(sal-tyr)(bipy)] 1 and [Cu(sal-tyr)(phen)]·2CH3OH 2, are presented. Our work is helpful to get deep understanding of novel 64Cu tumor imaging agents and therapeutic agents.

  19. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.

    Science.gov (United States)

    Fraiwan, Arwa; Lee, Hankeun; Choi, Seokheun

    2016-09-01

    Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA. PMID:27343578

  20. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds

    International Nuclear Information System (INIS)

    The industrial release of hydrocarbons and chlorine-containing organic molecules into the environment continues to attract considerable public concern, which in turn has led to governmental attempts to control such emissions. The challenge is to reduce pollution without stifling economic growth. Chlorine-containing pollutants are known to be particularly stable, and at present the main industrial process for their destruction involves thermal oxidation at 1,000oC, an expensive process that can lead to the formation of highly toxic by-products such as dioxins and dibenzofurans. Catalytic combustion at lower temperatures could potentially destroy pollutants more efficiently (in terms of energy requirements) and without forming toxic by-products. Current industrial catalysts are based on precious metals that are deactivated rapidly by organochlorine compounds. Here we report that catalysts based on uranium oxide efficiently destroy a range of hydrocarbon and chlorine-containing pollutants, and that these catalysts are resistant to deactivation. We show that benzene, toluene, chlorobutane and chlorobenzene can be destroyed at moderate temperatures (oC) and industrially relevant flow rates. (Author)

  1. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection.

    Science.gov (United States)

    Xu, Fang-Qian; Wang, Wen; Xue, Xu-Feng; Hu, Hao-Liang; Liu, Xin-Lu; Pan, Yong

    2015-01-01

    A new wireless and passive surface acoustic wave (SAW)-based chemical sensor for organophosphorous compound (OC) detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs) and three shorted reflectors was fabricated on YZ LiNbO₃ piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA) film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM) and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW)-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP) detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally. PMID:26633419

  2. Site-specific acid-base properties of pholcodine and related compounds.

    Science.gov (United States)

    Kovács, Z; Hosztafi, S; Noszál, B

    2006-11-01

    The acid-base properties of pholcodine, a cough-depressant agent, and related compounds including metabolites were studied by 1H NMR-pH titrations, and are characterised in terms of macroscopic and microscopic protonation constants. New N-methylated derivatives were also synthesized in order to quantitate site- and nucleus-specific protonation shifts and to unravel microscopic acid-base equilibria. The piperidine nitrogen was found to be 38 and 400 times more basic than its morpholine counterpart in pholcodine and norpholcodine, respectively. The protonation data show that the molecule of pholcodine bears an average of positive charge of 1.07 at physiological pH, preventing it from entering the central nervous system, a plausible reason for its lack of analgesic or addictive properties. The protonation constants of pholcodine and its derivatives are interpreted by comparing with related molecules of pharmaceutical interest. The pH-dependent relative concentrations of the variously protonated forms of pholcodine and morphine are depicted in distribution diagrams.

  3. Improvement of Bioactive Compound Classification through Integration of Orthogonal Cell-Based Biosensing Methods

    Directory of Open Access Journals (Sweden)

    Goran N. Jovanovic

    2007-01-01

    Full Text Available Lack of specificity for different classes of chemical and biological agents, and false positives and negatives, can limit the range of applications for cell-based biosensors. This study suggests that the integration of results from algal cells (Mesotaenium caldariorum and fish chromatophores (Betta splendens improves classification efficiency and detection reliability. Cells were challenged with paraquat, mercuric chloride, sodium arsenite and clonidine. The two detection systems were independently investigated for classification of the toxin set by performing discriminant analysis. The algal system correctly classified 72% of the bioactive compounds, whereas the fish chromatophore system correctly classified 68%. The combined classification efficiency was 95%. The algal sensor readout is based on fluorescence measurements of changes in the energy producing pathways of photosynthetic cells, whereas the response from fish chromatophores was quantified using optical density. Change in optical density reflects interference with the functioning of cellular signal transduction networks. Thus, algal cells and fish chromatophores respond to the challenge agents through sufficiently different mechanisms of action to be considered orthogonal.

  4. Strongly correlated electron phenomena in Pr-based filled skutterudite compounds

    International Nuclear Information System (INIS)

    Recent experiments on the Pr-based filled skutterudite arsenides and antimonides PrOs4Sb12, Pr(Os1-xRux)4Sb12, Pr1-xNdxOs4Sb12, PrFe4As12, PrRu4As12, and PrOs4As12 are reviewed. The heavy fermion compound PrOs4Sb12 exhibits unconventional strong-coupling superconductivity below Tc=1.85K that breaks time reversal symmetry, apparently consists of several distinct superconducting phases, and may involve triplet spin pairing of electrons. Studies of the alloy systems Pr(Os1-xRux)4Sb12 and Pr1-xNdxOs4Sb12 revealed rich T-x phase diagrams and a strong suppression of the high field ordered phase and the unconventional superconductivity of PrOs4Sb12 with Ru substitution. Among the three Pr-based filled skutterudite arsenides, PrFe4As12 has a ferromagnetic ground state, PrRu4As12 exhibits conventional BCS superconductivity, and PrOs4As12 is an antiferromagnet

  5. Strongly correlated electron phenomena in Pr-based filled skutterudite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maple, M.B. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA (United States)]. E-mail: mbmaple@physics.ucsd.edu; Henkie, Z. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Yuhasz, W.M. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA (United States); Ho, P.-C. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA (United States); Yanagisawa, T. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA (United States); Sayles, T.A. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA (United States); Butch, N.P. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA (United States); Jeffries, J.R. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA (United States); Pietraszko, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)

    2007-03-15

    Recent experiments on the Pr-based filled skutterudite arsenides and antimonides PrOs{sub 4}Sb{sub 12}, Pr(Os{sub 1-x}Ru{sub x}){sub 4}Sb{sub 12}, Pr{sub 1-x}Nd{sub x}Os{sub 4}Sb{sub 12}, PrFe{sub 4}As{sub 12}, PrRu{sub 4}As{sub 12}, and PrOs{sub 4}As{sub 12} are reviewed. The heavy fermion compound PrOs{sub 4}Sb{sub 12} exhibits unconventional strong-coupling superconductivity below T{sub c}=1.85K that breaks time reversal symmetry, apparently consists of several distinct superconducting phases, and may involve triplet spin pairing of electrons. Studies of the alloy systems Pr(Os{sub 1-x}Ru{sub x}){sub 4}Sb{sub 12} and Pr{sub 1-x}Nd{sub x}Os{sub 4}Sb{sub 12} revealed rich T-x phase diagrams and a strong suppression of the high field ordered phase and the unconventional superconductivity of PrOs{sub 4}Sb{sub 12} with Ru substitution. Among the three Pr-based filled skutterudite arsenides, PrFe{sub 4}As{sub 12} has a ferromagnetic ground state, PrRu{sub 4}As{sub 12} exhibits conventional BCS superconductivity, and PrOs{sub 4}As{sub 12} is an antiferromagnet.

  6. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection

    Directory of Open Access Journals (Sweden)

    Fang-Qian Xu

    2015-12-01

    Full Text Available A new wireless and passive surface acoustic wave (SAW-based chemical sensor for organophosphorous compound (OC detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs and three shorted reflectors was fabricated on YZ LiNbO3 piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally.

  7. Site-specific acid-base properties of pholcodine and related compounds.

    Science.gov (United States)

    Kovács, Z; Hosztafi, S; Noszál, B

    2006-11-01

    The acid-base properties of pholcodine, a cough-depressant agent, and related compounds including metabolites were studied by 1H NMR-pH titrations, and are characterised in terms of macroscopic and microscopic protonation constants. New N-methylated derivatives were also synthesized in order to quantitate site- and nucleus-specific protonation shifts and to unravel microscopic acid-base equilibria. The piperidine nitrogen was found to be 38 and 400 times more basic than its morpholine counterpart in pholcodine and norpholcodine, respectively. The protonation data show that the molecule of pholcodine bears an average of positive charge of 1.07 at physiological pH, preventing it from entering the central nervous system, a plausible reason for its lack of analgesic or addictive properties. The protonation constants of pholcodine and its derivatives are interpreted by comparing with related molecules of pharmaceutical interest. The pH-dependent relative concentrations of the variously protonated forms of pholcodine and morphine are depicted in distribution diagrams. PMID:17004059

  8. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds.

    Science.gov (United States)

    Tan, Cai-Ping; Lu, Yi-Ying; Ji, Liang-Nian; Mao, Zong-Wan

    2014-05-01

    Since the discovery of cisplatin more than 40 years ago, enormous research efforts have been dedicated to developing metal-based anticancer agents and to elucidating the mechanisms involved in the action of these compounds. Abnormal metabolism and the evasion of apoptosis are important hallmarks of malignant transformation, and the induction of apoptotic cell death has been considered to be a main pathway by which cytotoxic metal complexes combat cancer. However, many cancers have cellular defects involving the apoptotic machinery, which results in an acquired resistance to apoptotic cell death and therefore reduced chemotherapeutic effectiveness. Over the past decade, it has been revealed that a growing number of cell death pathways induced by metal complexes are not dependent on apoptosis. Metal complexes specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. In this review, we discuss recent examples of metallomics studies on the different types of cell death induced by metal-based anticancer drugs, especially on the three major forms of programmed cell death (PCD) in mammalian cells: apoptosis, autophagy and regulated necrosis, also called necroptosis.

  9. Zeolite based microconcentrators for volatile organic compounds sensing at trace-level: fabrication and performance

    Science.gov (United States)

    Almazán, Fernando; Pellejero, Ismael; Morales, Alberto; Urbiztondo, Miguel A.; Sesé, Javier; Pina, M. Pilar; Santamaría, Jesús

    2016-08-01

    A novel 6-step microfabrication process is proposed in this work to prepare microfluidic devices with integrated zeolite layers. In particular, microfabricated preconcentrators designed for volatile organic compounds (VOC) sensing applications are fully described. The main novelty of this work is the integration of the pure siliceous MFI type zeolite (silicalite-1) polycrystalline layer, i.e. 4.0  ±  0.5 μm thick, as active phase, within the microfabrication process just before the anodic bonding step. Following this new procedure, Si microdevices with an excellent distribution of the adsorbent material, integrated resistive heaters and Pyrex caps have been obtained. Firstly, the microconcentrator performance has been assessed by means of the normal hexane breakthrough curves as a function of sampling and desorption flowrates, temperature and micropreconcentrator design. In a step further, the best preconcentrator device has been tested in combination with downstream Si based microcantilevers deployed as VOC detectors. Thus, a preliminar evaluation of the improvement on detection sensitivity by silicalite-1 based microconcentrators is presented.

  10. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves

    International Nuclear Information System (INIS)

    The ionic liquids based simultaneous ultrasonic and microwave assisted extraction (IL-UMAE) technique was first proposed and applied to isolate compounds. The ionic liquids comprising a range of four anions, five 1-alkyl-3-methylimidazolium derivatives were designed and prepared. The results suggested that varying the anion and cation both had apparent effects on the extraction of phenolics. The results also showed that irradiation power, time and solid–liquid ratio significantly affected the yields. The yields of caffeic acid and quercetin obtained by IL-UMAE were higher than those by regular UMAE. Compared with conventional heat-reflux extraction (HRE), the proposed approach exhibited higher efficiency (8–17% enhanced) and shorter extraction time (from 5 h to 30 s). The results indicated ILUMAE to be a fast and efficient extraction technique. Moreover, the proposed method was validated by the reproducibility and recovery experiments. The ILUMAE method provided good recoveries (from 96.1% to 105.3%) with RSD lower than 5.2%, which indicated that the proposed method was credible. Based on the designable nature of ionic liquids, and the rapid and highly efficient performance of the proposed approach, ILUMAE provided a new alternative for preparation of various useful substances from solid samples.

  11. Theoretical studies of surface phonon polariton in wurtzite AlInN ternary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P.K., E-mail: pkooi11@yahoo.com; Lee, S.C.; Ng, S.S.; Hassan, Z.; Hassan, H. Abu

    2011-06-01

    In this study, we report the surface phonon polariton (SPP) characteristics of wurtzite structure aluminium indium nitride (Al{sub x}In{sub 1-x}N) ternary alloys over the whole Al composition range. An anisotropic model is used to simulate the surface polariton (SP) dispersion curves of the Al{sub x}In{sub 1-x}N ternary alloys. The characteristics of these dispersion curves are discussed in detail and the effects of the composition dependence of the Al{sub x}In{sub 1-x}N on the SPs are illustrated and explained. Moreover, the relevant experimental information from the attenuated total reflection (ATR) method is also presented, namely, the corresponding ATR spectra are simulated based on the standard matrix formulation. Through this study, it has been found that the SPP mode of the wurtzite Al{sub x}In{sub 1-x}N exhibits mixed-mode behaviour.

  12. Calculation of activity coefficients for components in ternary Ti alloys and intermetallics as matrix of composites

    Institute of Scientific and Technical Information of China (English)

    朱艳; 杨延清; 孙军

    2004-01-01

    Based on Kohler's ternary solution model and Miedema's model for calculating the formation heat of binary solution, the integral equation was established for calculating the activity coefficients in ternary alloys and intermetallics. The activity coefficients for components in alloy Ti-5Al-2.5Sn, Ti-6Al-4V and intermetallics TiAl, Ti3 Al and Ti2 AlNb were calculated with the equations. The calculated data coincide well with the experimental ones found in literatures. According to the calculated activity coefficients and activities, it can be predicted that the interfacial reaction in SiC/Ti3 Al composite is more severe than that in composites SiC/Ti2 AlNb and SiC/TiAl.

  13. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Science.gov (United States)

    Pandey, G. N.; Kumar, Narendra; Thapa, Khem B.; Ojha, S. P.

    2016-05-01

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  14. Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization.

    Science.gov (United States)

    Agrawal, Gaurav; Kawajiri, Yoshiaki

    2012-05-18

    Over the past decade, many modifications have been proposed in simulated moving bed (SMB) chromatography in order to effectively separate a binary mixture. However, the separation of multi-component mixtures using SMB is still one of the major challenges. In addition, the performance of SMB system highly depends on its operating conditions. Our study address this issue by formulating a multi-objective optimization problem that maximizes the productivity and purity of intermediate eluting component at the same time. A number of optimized isocractic ternary SMB operating schemes are compared both in terms of productivity and amount of desorbent to feed ratio. Furthermore, we propose a generalized full cycle (GFC) formulation based on superstructure formulation encompassing numerous operating schemes proposed in the literature. We also demonstrate that this approach has a potential to find the best ternary separation strategy among various alternatives. PMID:22498352

  15. First-Principle Study of the Structural, Electronic, and Optical Properties of Cubic InNxP1-x Ternary Alloys under Hydrostatic Pressure

    Science.gov (United States)

    Hattabi, I.; Abdiche, A.; Moussa, R.; Riane, R.; Hadji, K.; Soyalp, F.; Varshney, Dinesh; Syrotyuk, S. V.; Khenata, R.

    2016-09-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InNxP1-x in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InNxP1-x compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  16. Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors

    International Nuclear Information System (INIS)

    Highlights: ► Preparation of ternary nanocomposites (ACTB/PANI) consisting of polyaniline (PANI), activated carbon, and TiO2(B) nanowires. ► Structural and electrochemical characterizations of ternary ACTB/PANI nanocomposites. ► Excellent cycle stability of ACTB/PANI based electrode. ► Tailoring the electrochemical performance by means of a composite construction. -- Abstract: We herein report the synthesis of ternary nanocomposites consisting of polyaniline (PANI), activated carbon, and TiO2(B) components, which involves the preparation of activated carbon/TiO2(B) nanowires (ACTB) using sonochemical–hydrothermal method, and their subsequent composites with PANI via in situ polymerization. The morphology and structure of ACTB/PANI ternary nanocomposites are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Morphology analysis shows that the porous network layer of PANI homogeneously coated on the outer surface of ACTB support. The electrochemical properties of the ternary nanocomposite as the electrode material for electrochemical capacitors are examined by cyclic voltammetry and galvanostatic charge/discharge test in an organic electrolyte (1.0 M LiClO4 in propylene carbonate). The results show that the ternary nanocomposites have a specific capacitance as large as 286 F g−1 in the potential range from −3 to 3 V (vs. SCE) at a charge–discharge current density of 1.0 A g−1, which is a significant improvement compared to those of the three separate components, demonstrating that the ACTB/PANI nanocomposites are promising materials for supercapacitor electrode

  17. Vapour pressure osmometry determination of water activity of binary and ternary aqueous (polymer + polymer) solutions

    International Nuclear Information System (INIS)

    Highlights: • VPO determination of water activity for binary and ternary aqueous polymer solutions. • Vapour pressure of binary and ternary aqueous polymer solutions were determined. • Water activities were correlated using the segment-based NRTL and Wilson models. • Molar Gibbs free energy changes due to mixing were determined. - Abstract: Precise water activity measurements at T = 308.15 K were carried out on several binary (water + polymer) and ternary {water + polymer (1) + polymer (2)} systems using the vapour pressure osmometry (VPO) technique. Polymers were polyethylene glycol 400 (PEG400), polyethylene glycol 6000 (PEG6000), polypropylene glycol 400 (PPG400), polyvinylpyrrolidone (PVP) and dextran (DEX). The water activity results obtained were used to calculate the vapour pressure of solutions as a function of concentration and the segment-based local composition models, NRTL and Wilson, were used to correlate the experimental water activity values. It was found that, for the polymer concentration range studied here, the values of the water activity obtained for the binary (water + polymer) solutions decrease in the order DEX > PVP > PEG6000 > PPG400 > PEG400. Furthermore, water activities of solutions of each polymer in the aqueous solutions of (5, 10, 15 and 20)% (w/w) other polymers investigated were also measured at T = 308.15 K. The ability of polymer (1) in decreasing the water activity of binary {water + polymer (2)} solutions was discussed on the basis of the (polymer + water) and {polymer (1) + polymer (2)} interactions

  18. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  19. Implications of non-carcinogenic pah-free extender oils in natural rubber based tire compounds

    NARCIS (Netherlands)

    Petchkaew, Anida

    2015-01-01

    The oils are generally added in the rubber compounds to improve processing properties, low temperature properties, dispersion of fillers, and to reduce cost. The conventionally widely used oils in tire compounds are Distillate Aromatic Extract (DAE) oils, which contain a high concentration of Polycy

  20. SEURAT-1 liver gold reference compounds: a mechanism-based review.

    Science.gov (United States)

    Jennings, Paul; Schwarz, Michael; Landesmann, Brigitte; Maggioni, Silvia; Goumenou, Marina; Bower, David; Leonard, Martin O; Wiseman, Jeffrey S

    2014-12-01

    There is an urgent need for the development of alternative methods to replace animal testing for the prediction of repeat dose chemical toxicity. To address this need, the European Commission and Cosmetics Europe have jointly funded a research program for 'Safety Evaluation Ultimately Replacing Animal Testing.' The goal of this program was the development of in vitro cellular systems and associated computational capabilities for the prediction of hepatic, cardiac, renal, neuronal, muscle, and skin toxicities. An essential component of this effort is the choice of appropriate reference compounds that can be used in the development and validation of assays. In this review, we focus on the selection of reference compounds for liver pathologies in the broad categories of cytotoxicity and lipid disorders. Mitochondrial impairment, oxidative stress, and apoptosis are considered under the category of cytotoxicity, while steatosis, cholestasis, and phospholipidosis are considered under the category of lipid dysregulation. We focused on four compound classes capable of initiating such events, i.e., chemically reactive compounds, compounds with specific cellular targets, compounds that modulate lipid regulatory networks, and compounds that disrupt the plasma membrane. We describe the molecular mechanisms of these compounds and the cellular response networks which they elicit. This information will be helpful to both improve our understanding of mode of action and help in the selection of appropriate mechanistic biomarkers, allowing us to progress the development of animal-free models with improved predictivity to the human situation. PMID:25395007