WorldWideScience

Sample records for based solid state

  1. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-08-27

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field ({approx}10 T) and at low temperature {approx}1 K .

  2. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-01-01

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field (∼10 T) and at low temperature ∼1 K

  3. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  4. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  5. GaN based nanorods for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Li Shunfeng; Waag, Andreas [Institute of Semiconductor Technology, Braunschweig University of Technology, 38106 Braunschweig (Germany)

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  6. Laser Based Phosphor Converted Solid State White Light Emitters

    Science.gov (United States)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of

  7. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  8. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  9. High-Efficiency Nitride-Based Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light

  10. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  11. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    Science.gov (United States)

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  12. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  13. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  14. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  15. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  16. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  17. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  18. Self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state

    International Nuclear Information System (INIS)

    Mulloev, N.; Nurulloev, M.; Narziev, B.N.

    1993-01-01

    Present article is devoted to self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state. The study results of self-association specified by molecular hydrogen bonds of some heterocyclic compounds based on pyrrol on spectres of infrared absorption of stretching vibrations of N-H group were considered.

  19. Experimental quantum ratchets based on solid state nanostructures

    International Nuclear Information System (INIS)

    Linke, H.

    1999-01-01

    Ratchets are spatially asymmetric devices in which particles can move on average in one direction in the absence of external net forces or gradients. This is made possible by the rectification of fluctuations, which also provide the energy for the process. Interest in the physics of ratchets was revived in recent years when it emerged that the ratchet principle may be a suitable physical model for 'molecular motors', which are central to many fundamental biological processes, such as intracellular transport or muscle contraction. Most ratchets studied so far have relied on classical effects, but recently 'quantum ratchets', involving quantum effects, have also been studied. In the present article it is pointed out that semiconductor or metal nanostructures are very suitable systems for the realisation of experimental quantum ratchets. Recent experimental studies of a quantum ratchet based on an asymmetric quantum dot are reviewed. Copyright (1999) CSIRO Australia

  20. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  1. Replacing HDDs with Solid-State Flash Disks in PXIbus-Based Systems

    International Nuclear Information System (INIS)

    Zhao, Z W; Zeng, L

    2006-01-01

    New security features, constantly decreasing prices, solid-state Flash disks are becoming a popular alternative for replacing failure-prone mechanical Hard Disk Drives (HDDs) in PXIbus-based military systems. The key component in high-capacity solid-state Flash disks is NAND Flash, but with a specification that shows only 100,000-300,000 write/erase cycles, engineers may be concerned that the lifetime of Flash disks cannot meet their application requirements. With the right Flash management, Flash disks are able to provide the reliability and endurance that military applications need

  2. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  3. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  4. Encapsulation and solid state sequestration of gases by calix[6]arene-based molecular containers.

    Science.gov (United States)

    Lavendomme, Roy; Ajami, Daniela; Moerkerke, Steven; Wouters, Johan; Rissanen, Kari; Luhmer, Michel; Jabin, Ivan

    2017-06-13

    Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.

  5. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  6. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  7. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  8. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  9. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.

    Science.gov (United States)

    Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei

    2013-11-07

    Flexible all-solid-state supercapacitors based on graphene fibers are demonstrated in this study. Surface-deposited oxide nanoparticles are used as pseudo-capacitor electrodes to achieve high capacitance. This supercapacitor electrode has an areal capacitance of 42 mF cm(-2), which is comparable to the capacitance for fiber-based supercapacitors reported to date. During the bending and cycling of the fiber-based supercapacitor, the stability could be maintained without sacrificing the electrochemical performance, which provides a novel and simple way to develop flexible, lightweight and efficient graphene-based devices.

  10. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  11. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  12. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.

    Science.gov (United States)

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2013-05-28

    Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.

  13. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  14. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  15. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  16. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  17. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

    Science.gov (United States)

    Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin

    2012-01-24

    A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management. © 2011 American Chemical Society

  18. Fiber-based all-solid-state flexible supercapacitors for self-powered systems.

    Science.gov (United States)

    Xiao, Xu; Li, Tianqi; Yang, Peihua; Gao, Yuan; Jin, Huanyu; Ni, Weijian; Zhan, Wenhui; Zhang, Xianghui; Cao, Yuanzhi; Zhong, Junwen; Gong, Li; Yen, Wen-Chun; Mai, Wenjie; Chen, Jian; Huo, Kaifu; Chueh, Yu-Lun; Wang, Zhong Lin; Zhou, Jun

    2012-10-23

    All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.

  19. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge.

    Science.gov (United States)

    Niu, Zhiqiang; Zhou, Weiya; Chen, Xiaodong; Chen, Jun; Xie, Sishen

    2015-10-21

    Based on polyaniline-single-walled carbon nanotubes -sponge electrodes, highly compressible all-solid-state supercapacitors are prepared with an integrated configuration using a poly(vinyl alcohol) (PVA)/H2 SO4 gel as the electrolyte. The unique configuration enables the resultant supercapacitors to be compressed as an integrated unit arbitrarily during 60% compressible strain. Furthermore, the performance of the resultant supercapacitors is nearly unchanged even under 60% compressible strain. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    OpenAIRE

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from lo...

  1. Four Thermochromic o-Hydroxy Schiff Bases of α-Aminodiphenylmethane: Solution and Solid State Study

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2017-01-01

    Full Text Available More than a hundred years after the first studies of the photo- and thermochromism of o-hydroxy Schiff bases (imines, it is still an intriguing topic that fascinates several research groups around the world. The reasons for such behavior are still under investigation, and this work is a part of it. We report the solution-based and mechanochemical synthesis of four o-hydroxy imines derived from α-aminodiphenylmethane. The thermochromic properties were studied for the single crystal and polycrystalline samples of the imines. The supramolecular impact on the keto-enol tautomerism in the solid state was studied using SCXRD and NMR, while NMR spectroscopy was used for the solution state. All four imines are thermochromic, although the color changes of the single crystals are not as strong as of the polycrystalline samples. One of the imines shows negative thermochromism, and that one is in keto-amine tautomeric form, both in the solid state as in solution.

  2. A facile method to prepare a high performance solid-state flexible paper-based supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Jen-Yu; Zhang, Sheng-Hui; Wu, Cheng-Hung [Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2014-09-15

    Graphical abstract: A flexible paper-based supercapacitor was assembled into a sandwich structure, which exhibits well-retained triangular-shaped curves. The cycle life stability of this device still retains about 96% of the initial capacitance after 2000 cycles at a scan rate of 400 mV/s. An as-fabricated paper-based supercapacitor could light a red LED well after charging at constant potential of 3 V. - Highlights: • A facile approach is proposed to fabricate paper-based supercapacitors. • Apple pectin is an excellent dispersant for MWCNTs. • Paper provides a strong binding and flexible characteristic for electrode. • A paper-based supercapacitor could light a red LED after charging. • This device shows excellent electrochemical performance and cycling stability. - Abstract: We propose a low cost and simple method to prepare a paper-based supercapacitor in this study. Multi-walled carbon nanotubes (MWCNTs) were dispersed with a pectin solution under an ultrasonic homogenizer. Carbon nanotube suspension was prepared using a centrifuge to eliminate impurities. The dispersed MWCNTs suspension was dropped and dried onto the shallow surface of commercial copy paper. A paper-based conductive paper was formed as the electrodes. The electrical conductivity and dispersed morphology of the paper-based conductive paper were examined by four probes, atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The solid-state electrolyte was prepared by casting a solution of phosphoric acid and polyvinyl alcohol onto a glass plate. The paper-based supercapacitor was constructed with one solid-state electrolyte inserted between two electrodes, which were assembled into a sandwich structure by hot press. The specific capacitance and cycle-life stability of the paper-based supercapacitor was investigated by cyclic voltammetry analysis.

  3. All-Solid-State Lithium-Sulfur Battery based on a nanoconfined LiBH 4 Electrolyte

    NARCIS (Netherlands)

    Das, Supti; Ngene, Peter; Norby, Poul; Vegge, Tejs; de Jongh, P.E.; Blanchard, Didier

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4in mesoporous silica as solid electrolytes. The nano-confined LiBH4has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport

  4. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  5. A Solid State Pyranometer

    Directory of Open Access Journals (Sweden)

    Dumitrescu Anca Laura

    2015-12-01

    Full Text Available The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black, is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03, indicates a good linearity.

  6. A Solid State Pyranometer

    Science.gov (United States)

    Dumitrescu, Anca Laura; Paulescu, Marius; Ercuta, Aurel

    2015-12-01

    The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black), is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03), indicates a good linearity.

  7. Smart indoor solid state lighting based on a novel illumination model and implementation

    NARCIS (Netherlands)

    Bhardwaj, S.; Ozcelebi, T.; Lukkien, J.J.; Verhoeven, R.

    2011-01-01

    Smart lighting research traditionally focuses on conventional incandescent and fluorescent luminaries. However, in addition to its higher energy efficiency and longer lifetime, Solid State Lighting (SSL) offers better control of spectral, spatial, temporal polarization, and color properties of

  8. Wide Bandgap Semiconductor Based Solid State Smart Circuit Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced solid state power component technology is necessary for future hybrid aircraft systems with increased power demands. There is a need for adequate circuit...

  9. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  10. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  11. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  12. Characteristics of Solid-State Calcium Ion Sensors Based on Photocurable and Selfplasticising Polyacrylate Matrices

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng

    2017-11-01

    Full Text Available New membrane materials based on cross-linked poly(n-butyl acrylate (nBA, have been used successfully as calcium ion-selective membranes. These membrane materials possess selfplasticising property and hence do not require plasticisers. The photocurability and good adhesion characteristics of these polymer matrices enable workable solid-state calcium ion sensors to be fabricated by simple photocure procedures employing the calcium ionophore ETH5234 and a lipophilic additive as ion sensing components. The calcium ion-selectivity of the sensors can be controlled by varying the chemical composition of the photocured  membrane. An optimum amount of the cross-linker 2,2-hexanedioldiacrylate (HDDA and the incorporation of n-heptyl acrylate (nHA led to improvement in the calcium ion-selectivity. The best calcium ion-selectivity was obtained from a copolymer membrane with composition: nBA = 74 wt-%, nHA = 20 wt-% and HDDA = 0.1 wt-%. The selectivity coefficients of calcium over major cations were: LogKCaPot,Na= -4.4,  LogKCaPot,K = -3.6, LogKCa,PotLi = -5.9, LogKCaPot,Mg= -4.4 with a Nernstian slope (29.1 ± 0.8 mV/decade under buffered conditions. This potentiometric performance is comparable to other solid-state calcium ion sensors with various plasticised polymer membranes.

  13. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  14. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    International Nuclear Information System (INIS)

    Kang, Yu Jin; Kim, Woong; Chung, Haegeun; Han, Chi-Hwan

    2012-01-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf 2 ]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g −1 at a current density of 2 A g −1 , when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg −1 and 41 Wh kg −1 , respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications. (paper)

  15. All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes

    Science.gov (United States)

    Li, Jiantong; Mishukova, Viktoriia; Östling, Mikael

    2016-09-01

    The all-solid-state graphene-based in-plane micro-supercapacitors are fabricated simply through reliable inkjet printing of pristine graphene in interdigitated structure on silicon wafers to serve as both electrodes and current collectors, and a following drop casting of polymer electrolytes (polyvinyl alcohol/H3PO4). Benefiting from the printing processing, an attractive porous electrode microstructure with a large number of vertically orientated graphene flakes is observed. The devices exhibit commendable areal capacitance over 0.1 mF/cm2 and a long cycle life of over 1000 times. The simple and scalable fabrication technique for efficient micro-supercapacitors is promising for on-chip energy storage applications in emerging electronics.

  16. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  17. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  18. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  19. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  20. Australian - US initiative to construct a silicon-based solid state quantum computer

    International Nuclear Information System (INIS)

    Clark, R.G.

    2000-01-01

    Full text: The ability of a quantum computer to carry out calculations at the atomic level by manipulation of superpositions of quantum states is expected to provide massive parallel processing leading to unprecedented computing power in applications of commercial and national significance. An overview will be given of the Australian-US initiative to construct a (nuclear spin) solid state quantum computer (SSQC) based on a precise array of 31 P dopants (nuclear spin I = 1/2) embedded in isotopically-pure 28 Si (I=0). The main goals with respect to the engineering of a SSQC prototype are the construction and characterisation of a 2-qubit device that will form the fundamental building block of a scalable, silicon-based QC and development of an 'industrial' fabrication method which constitutes a blueprint for a practical large-scale QC. Fabrication of the SSQC prototype, and its readout and control, is being approached through proving experiments on a series of test structures achievable in the near-term. I will also outline the research programs of the Special Research Centre for Quantum Computer Technology, which involves some 50 researchers at the Universities of New South Wales, Queensland and Melbourne, and how these programs link in to the projects conducted by our partner investigators at Los Alamos National Laboratory. In the first six months of research at the Centre, we are close to achieving our three year objectives

  1. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    Science.gov (United States)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  2. All-solid-state flexible ultrathin micro-supercapacitors based on graphene.

    Science.gov (United States)

    Niu, Zhiqiang; Zhang, Li; Liu, Lili; Zhu, Bowen; Dong, Haibo; Chen, Xiaodong

    2013-08-07

    Flexible, compact, ultrathin and all-solid-state micro-supercapacitors are prepared by coating H₃PO₄/PVA gel electrolyte onto micro-patterned rGO interdigitated electrodes prepared by combining photolithography with selective electrophoretic deposition. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  4. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Aich, R.; Tran-Van, F.; Goubard, F.; Beouch, L.; Michaleviciute, A.; Grazulevicius, J.V.; Ratier, B.; Chevrot, C.

    2008-01-01

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO 2 : F/nc-TiO 2 /Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm 2 , air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I sc = 0.42 mA/cm 2 , open circuit voltage V oc = 500 mV with a fill factor of 0.35

  5. Solid-state (49/47)Ti NMR of titanium-based MCM-41 hybrid materials.

    Science.gov (United States)

    Ballesteros, Ruth; Fajardo, Mariano; Sierra, Isabel; Force, Carmen; del Hierro, Isabel

    2009-11-03

    Titanium solid-state NMR spectroscopy data for a series of organic-inorganic titanium MCM-41 based materials have been collected. These materials have been synthesized by first modifying the mesoporous silica MCM-41 in one step with a mixture of silanes: a triazine propyl triethoxysilane acting as functional linker and methyltrimethoxysilane or hexamethyldisilizane as capped agents to mask the remaining silanol groups. Second, the appropiate titanium precursor Ti(OPr(i))(4), [{Ti(OPr(i))(3)(OMent)}(2)] (OMent = 1R,2S,5R-(-)-menthoxo), Ti(OPr(i))(4), or [Ti(eta(5)-C(5)HMe(4))Cl(3)], has been immobilized by reaction with the modified MCM-41. Finally, after Ti(OPr(i))(4) immobilization onto the organomodified support the reaction with the chiral (+)-diethyl-l-tartrate was accomplished. The materials without functional linker have been also prepared by reaction in one step of the capped agent and the titanium precursor with the mesoporous silica. Relevant correlations of titanium NMR resonance chemical shifts and line widths can be inferred depending on different factors. The immobilization procedure used to prepare titanium-based MCM-41 hybrid materials and the choice of the silylating reagents employed to mask the silanol groups present on the silica surfaces produce significant differences in the Ti NMR spectra. Furthermore, depending on the electronic and sterical influence of the substituents directly attached to the titanium center, chemical shifts and line widths are modified providing novel information about titanium structure.

  6. Hydrazone based molecular glasses for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aich, R. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Ecole Electricite de Production et Methodes Industrielles, Cergy Pontoise (France); Tran-Van, F. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)], E-mail: francois.tran-van@u-cergy.fr; Goubard, F.; Beouch, L. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France); Michaleviciute, A.; Grazulevicius, J.V. [Department of Organic Technology, Kaunas University of Technology, Radvilenu Plentas 19, Kaunas LT-50254 (Lithuania); Ratier, B. [X-LIM., departement MINACOM, UMR 6172, Faculte des Sciences, 123 av. Albert Thomas 87060 Limoges cedex France (France); Chevrot, C. [Laboratoire de Physicochimie des Polymeres et des Interfaces (EA 2528), Universite de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy Pontoise (France)

    2008-08-30

    Biscarbazole and terthiophene based molecular glasses with hydrazone functional goups (named respectively 2CzMPH and 3TDPH) have been synthesized and the thermal, optical and electrochemical properties have been studied. Differential scanning calorimetry characterizations confirm the metastable amorphous properties of these molecules with glass transition temperatures at 80 deg. C for the 3TDPH and 93 deg. C for the 2CzMPH. Their electrochemical properties have been studied and showed the effect of the conjugated hydrazone groups on the electronic delocalization of the structures. The concept of solid state dye-sensitized solar cells using hydrazone based molecular glasses has been verified with the elaboration of a SnO{sub 2}: F/nc-TiO{sub 2}/Ru-dye/2CzMPH /Au devices. Under full sunlight (98 mW/cm{sup 2}, air mass 1.5) the I-V characterization of the device give a short circuit photocurrents I{sub sc} = 0.42 mA/cm{sup 2}, open circuit voltage V{sub oc} = 500 mV with a fill factor of 0.35.

  7. Design and fabrication of a foldable 3D silicon based package for solid state lighting applications

    International Nuclear Information System (INIS)

    Sokolovskij, R; Liu, P; Van Zeijl, H W; Mimoun, B; Zhang, G Q

    2015-01-01

    Miniaturization of solid state lighting (SSL) luminaires as well as reduction of packaging and assembly costs are of prime interest for the SSL lighting industry. A novel silicon based LED package for lighting applications is presented in this paper. The proposed design consists of 5 rigid Si tiles connected by flexible polyimide hinges with embedded interconnects (ICs). Electrical, optical and thermal characteristics were taken into consideration during design. The fabrication process involved polyimide (PI) application and patterning, aluminium interconnect integration in the flexible hinge, LED reflector cavity formation and metalization followed by through wafer DRIE etching for chip formation and release. A method to connect chip front to backside without TSVs was also integrated into the process. Post-fabrication wafer level assembly included LED mounting and wirebond, phosphor-based colour conversion and silicone encapsulation. The package formation was finalized by vacuum assisted wrapping around an assembly structure to form a 3D geometry, which is beneficial for omnidirectional lighting. Bending tests were performed on the flexible ICs and optical performance at different temperatures was evaluated. It is suggested that 3D packages can be expanded to platforms for miniaturized luminaire applications by combining monolithic silicon integration and system-in-package (SiP) technologies. (paper)

  8. New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber.

    Science.gov (United States)

    Lee, Sangyool; Lee, Youngkwan; Cho, Mi-Suk; Nam, Jae-Do

    2008-09-01

    Solid state redox supercapacitors were fabricated using a solid polymer electrolyte, nitrile butadiene rubber (NBR)-KCI and chemically deposited polypyrrole (PPy) as the conducting polymer electrodes on both surfaces of a NBR film. The optimal conditions for the preparation of the PPy/NBR electrode were confirmed as functions of the uptake of pyrrole monomer into the NBR matrix as well as the immersion time in an oxidant solution. The morphology of the PPy-NBR-KCI capacitor was observed using scanning electron microscopy. The performance of the capacitors was characterized using a galvanostatic charge-discharge technique.

  9. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  10. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  11. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    Science.gov (United States)

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  12. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    Science.gov (United States)

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  13. New thermal neutron solid-state electronic detector based on HgI2 crystals

    International Nuclear Information System (INIS)

    Melamud, M.; Burshtein, Z.

    1983-07-01

    We describe the development of a new solid-state electronic neutron detector, based on HgI 2 single crystals. Incident neutrons are absorbed in high neutron absorbing foils, such as cadmium or gadolinium, which are placed in front of a HgI 2 detector. Gamma rays, emitted as a result of the neutron absorbtion, are then absorbed in the HgI 2 , generating free charge carriers, which are collected by the electric field. The advantage of this system lies in it's manufacturing simplicity, low weight and small physical dimensions, compared to gas-filled conventional neutron detectors. The disadvantage is that the system does not discriminate between gamma rays and neutrons. A method to minimize this disadvantage is pointed out. It is as well possible to count neutrons by direct exposure of the HgI 2 to neutrons. The neutron-to-gamma transformation in that case takes place by the material nuclei themselves. This method, however, is impractical due to the interference of delayed radioactivity whose origin are 129 I nuclei. They are generated from 128 I by absorbing a neutron, and decay with a 25 min half lifetime involving gamma emissions. (author)

  14. Enzymatic logic calculation systems based on solid-state electrochemiluminescence and molecularly imprinted polymer film electrodes.

    Science.gov (United States)

    Lian, Wenjing; Liang, Jiying; Shen, Li; Jin, Yue; Liu, Hongyun

    2018-02-15

    The molecularly imprinted polymer (MIP) films were electropolymerized on the surface of Au electrodes with luminol and pyrrole (PY) as the two monomers and ampicillin (AM) as the template molecule. The electrochemiluminescence (ECL) intensity peak of polyluminol (PL) of the AM-free MIP films at 0.7V vs Ag/AgCl could be greatly enhanced by AM rebinding. In addition, the ECL signals of the MIP films could also be enhanced by the addition of glucose oxidase (GOD)/glucose and/or ferrocenedicarboxylic acid (Fc(COOH) 2 ) in the testing solution. Moreover, Fc(COOH) 2 exhibited cyclic voltammetric (CV) response at the AM-free MIP film electrodes. Based on these results, a binary 3-input/6-output biomolecular logic gate system was established with AM, GOD and Fc(COOH) 2 as inputs and the ECL responses at different levels and CV signal as outputs. Some functional non-Boolean logic devices such as an encoder, a decoder and a demultiplexer were also constructed on the same platform. Particularly, on the basis of the same system, a ternary AND logic gate was established. The present work combined MIP film electrodes, the solid-state ECL, and the enzymatic reaction together, and various types of biomolecular logic circuits and devices were developed, which opened a novel avenue to construct more complicated bio-logic gate systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  16. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  17. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  18. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  19. Evaluation of Productivity of Zymotis Solid-State Bioreactor Based on Total Reactor Volume

    Directory of Open Access Journals (Sweden)

    Oscar F. von Meien

    2002-01-01

    Full Text Available In this work a method of analyzing the performance of solid-state fermentation bioreactors is described. The method is used to investigate the optimal value for the spacing between the cooling plates of the Zymotis bioreactor, using simulated fermentation data supplied by a mathematical model. The Zymotis bioreactor has good potential for those solid-state fermentation processes in which the substrate bed must remain static. The current work addresses two design parameters introduced by the presence of the internal heat transfer plates: the width of the heat transfer plate, which is governed by the amount of heat to be removed and the pressure drop of the cooling water, and the spacing between these heat transfer plates. In order to analyze the performance of the bioreactor a productivity term is introduced that takes into account the volume occupied within the bioreactor by the heat transfer plates. As part of this analysis, it is shown that, for logistic growth kinetics, the time at which the biomass reaches 90 % of its maximum possible value is a good estimate of the optimum harvesting time for maximizing productivity. Application of the productivity analysis to the simulated fermentation results suggests that, with typical fast growing fungi ( = 0.324 h–1, the optimal spacing between heat transfer plates is of the order of 6 cm. The general applicability of this approach to evaluate the productivity of solid-state bioreactors is demonstrated.

  20. Solid State Studies Section

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-12-31

    Research is summarized on fuel, fertile, and cladding materials. Results of studies in the field of solid state sciences are also reported. It was found during the studies on the thermal diffusion release of /sup 133/Xe from irradiated thoria--urania powders that during prolonged annealing at high temperatures, there were several sudden burst releases of /sup 133/Xe as a function of time. These sudden bursts appear to be related to the particle size of the powders. Studies on the phase composition of U/sub 3/O/sub 8//su established that the phase obtained at room temperature after heating at 850 deg K is always oxygen deficient. Results of studies on the different modifications of U/sub 3/O/sub 8/ indicated that the so-called delta-phase has a crystal structure almost identical with the beta-phase, yet there were differences in the heats of transition of each of these phases to the alpha-U/sub 3/O/sub 8/ phase at 130 deg C. Studies on fast neutron damage in stainless steel were initiated and results related to damage by void formation were obtained even when the fluencies were only moderately high. Studies on the phase transformations in solids brought out the unusual phase transition behavior of KNO/sub 3/. It was established that the phase transformation attributed to the orthorhombic (II) to the trigonal (I) transition at 129 deg C is essentially a 2-step transition. Results of differential scanning colorimeter (DSC) studies also revealed a peculiar feature which is as yet not understood, namely that on cooling, differential thermal analysis (DTA) showed a III to II phase transition; this is not seen in the DSC. The capabilities of the DSC technique to delineate temperatures of magnetic transitions were demonstrated by studying the transitions in a number of standard substances (metals, alloys, and compounds). In studies on KMnF/sub 3/, it was further demonstrated that the DSC technique is superior in measuring and detecting the heats of crystallographic and

  1. Efficient all solid-state UV source for satellite-based lidar applications.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2003-07-01

    A satellite-based UV-DIAL measurement system would allow continuous global monitoring of ozone concentration in the upper atmosphere. However such systems remain difficult to implement because aerosol-scattering return signals for satellite-based lidars are very weak. A suitable system must produce high-energy UV pulses at multiple wavelengths with very high efficiency. For example, a nanosecond system operating at 10 Hz must generate approximately 1 J per pulse at 308-320 nm. An efficient space-qualified wavelength-agile system based on a single UV source that can meet this requirement is probably not available using current laser technology. As an alternative, we're pursuing a multi-source approach employing all-solid-state modules that individually generate 300-320 nm light with pulse energies in the range of 50-200 mJ, with transform-limited bandwidths and good beam quality. Pulses from the individual sources can be incoherently summed to obtain the required single-pulse energy. These sources use sum-frequency mixing of the 532 nm second harmonic of an Nd:YAG pump laser with 731-803 nm light derived from a recently-developed, state-of-the-art, nanosecond optical parametric oscillator. Two source configurations are under development, one using extra-cavity sum-frequency mixing, and the other intra-cavity sum-frequency mixing. In either configuration, we hope to obtain sum-frequency mixing efficiency approaching 60% by carefully matching the spatial and temporal properties of the laser and OPO pulses. This ideal balance of green and near-IR photons requires an injection-seeded Nd:YAG pump-laser with very high beam quality, and an OPO exhibiting unusually high conversion efficiency and exceptional signal beam quality. The OPO employs a singly-resonant high-Fresnel-number image-rotating self-injection-seeded nonplanar-ring cavity that achieves pump depletion > 65% and produces signal beams with M{sup 2} {approx} 3 at pulse energies exceeding 50 mJ. Pump beam

  2. All solid-state V2O5-based flexible hybrid fiber supercapacitors

    Science.gov (United States)

    Li, Huan; He, Jin; Cao, Xin; Kang, Liping; He, Xuexia; Xu, Hua; Shi, Feng; Jiang, Ruibin; Lei, Zhibin; Liu, Zong-Huai

    2017-12-01

    Vanadium pentoxide/single-walled carbon nanotube (V2O5-SWCNT) hybrid fibers with good electrochemical performance and flexibility are firstly prepared by using wet-spinning method. V2O5 nanobelt suspension is obtained by mixing V2O5 bulk, 30% H2O2, H2O and followed by hydrothermally treating at 190 °C for 15 h. SWCNT suspension is suspended into V2O5 nanobelt suspension under vigorous stirring, the V2O5-SWCNT homogenous suspension is obtained. It is injected into a coagulation bath composed of 5 wt % CaCl2 ethanol-water solution using syringe pump, V2O5-SWCNT hybrid fibers are prepared by washing with deionized water and drying at room temperature. Reduced graphene oxide (RGO)-SWCNT hybrid fibers are also prepared by the similar wet-spinning approach and followed by reducing GO-SWCNT hybrid fibers in an aqueous solution of hydriodic acid. All solid-state asymmetric V2O5/SWCNT//RGO/SWCNT fiber supercapacitors are assembled with V2O5-SWCNT fiber as positive electrode and RGO-SWCNT fiber as negative electrode by using PVA-H3PO4 as gel electrolyte. The assembled device not only shows maximum volumetric energy density of 1.95 mW h cm-3 at a volumetric power density of 7.5 mW cm-3, superior rate performance and cycling stability, but also exhibits remarkable flexibility to tolerate long-term and repeated bending. This work will open a new application filed of V2O5-based fibers in wearable energy storage devices.

  3. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  4. Nickel Oxide (NiO nanoparticles prepared by solid-state thermal decomposition of Nickel (II schiff base precursor

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2015-06-01

    Full Text Available In this paper, plate-like NiO nanoparticles were prepared by one-pot solid-state thermal decomposition of nickel (II Schiff base complex as new precursor. First, the nickel (II Schiff base precursor was prepared by solid-state grinding using nickel (II nitrate hexahydrate, Ni(NO32∙6H2O, and the Schiff base ligand N,N′-bis-(salicylidene benzene-1,4-diamine for 30 min without using any solvent, catalyst, template or surfactant. It was characterized by Fourier Transform Infrared spectroscopy (FT-IR and elemental analysis (CHN. The resultant solid was subsequently annealed in the electrical furnace at 450 °C for 3 h in air atmosphere. Nanoparticles of NiO were produced and characterized by X-ray powder diffraction (XRD at 2θ degree 0-140°, FT-IR spectroscopy, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The XRD and FT-IR results showed that the product is pure and has good crystallinity with cubic structure because no characteristic peaks of impurity were observed, while the SEM and TEM results showed that the obtained product is tiny, aggregated with plate-like shape, narrow size distribution with an average size between 10-40 nm. Results show that the solid state thermal decomposition method is simple, environmentally friendly, safe and suitable for preparation of NiO nanoparticles. This method can also be used to synthesize nanoparticles of other metal oxides.

  5. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  6. The application of state machine based on labview for solid target transfer control system at BATAN’s cyclotron

    International Nuclear Information System (INIS)

    Heranudin; Rajiman; Parwanto; Edy Slamet R

    2015-01-01

    Software programming for the new solid target transfer control system referred to the working principle of the whole each sub system. System modeling with state machine diagram was chosen because this simplified a complex design of the control system. State machine implementation of this system was performed by creating basic state drawn from the working system of each sub system. All states with their described inputs, outputs and algorithms were compiled in the sequential state machine diagram. In order to ease the operation, three modes namely automatic, major states and micro states were created. Testing of the system has been conducted and as a result, the system worked properly. The implementation of State machine based on LabView has several advantages such as faster, easier programming and the capability for further developments. (author)

  7. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4 in mesoporous silica as solid electrolytes. The nano-confined LiBH4 has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport...... number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...

  8. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints

    Science.gov (United States)

    Li, Feng; Li, Hongren; Cui, Tianfang

    2017-11-01

    Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.

  10. Study of storage capacity in various carbon/graphene-based solid-state supercapacitors

    Science.gov (United States)

    Subramaniam, C. K.; Boopalan, G.

    2014-09-01

    Solid-state electrochemical double-layer capacitor (SEDLC) forms excellent energy storage device for high-power applications. They are highly reliable, with no electrolyte leaks, and can be packaged to suit various applications. The electrode material can be activated carbon to graphene. These can have a range of particle size, surface area, pore size and pore distribution for charge storage. The emphasis will be to optimize the graphene to carbon blend in the electrodes which would provide appreciable storage density of the SEDLC. We can use perfluorosulfonic acid polymer as the solid electrolyte in the SEDLC assembly. They have high ionic conductivity, good thermal stability, and mechanical strength. They also have excellent long-term chemical stability. Carbon is widely used for many practical applications, especially for the adsorption of ions and molecules, as it is possible to synthesize one-, two- or three-dimensional (1-, 2-, or 3-D) carbons. Some of the problems in activated carbon like varying micro or mesopores, poor ion mobility due to varying pore distribution, low electrical conductivity, can be overcome using graphene and blends of graphene with carbon of the right pore dimension and distribution. Graphene in various structural nomenclatures have been used by various groups for charge storage. Graphene nanoplates (GNP), with narrow mesopore distributions have been effectively used for SEDLCs. SEDLCs assembled with GNP and blends of GNP with Vulcan XC and solid polymer electrolyte like Nafion show exceptional performance. The cyclic voltammetric studies show that they support high scan rates with substantial smaller capacitance drop as we increase scan rates. Optimization of the electrode structure in terms of blend percentage, binder content and interface character in the frequency and time domain provides excellent insight into the double-layer interface.

  11. Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Amedeo; Petris, Milo; Palade, Petru; Sartori, Sabrina; Principi, Giovanni [Settore Materiali and CNISM, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Settimo, Eliseo [Celco-Profil, via dell' Artigianato 4, 30030 Vigonovo (Venezia) (Italy); Molinas, Bernardo [Venezia Tecnologie, via delle Industrie 39, 30175 Marghera (Venezia) (Italy); Lo Russo, Sergio [Dipartimento di Fisica and CNISM, Universita di Padova, via Marzolo 8, 35131 Padova (Italy)

    2006-11-15

    Powders mixtures of nanosized MgH{sub 2} and suitable additives, obtained by high energy milling, have been studied as materials to be used in a functional solid state hydrogen reservoir. A prototype of a two stages reservoir is under development (patent pending). The hydrogen release from the main stage, with high capacity Mg-based hydrides, is primed by a primer stage containing commercial hydrides able to operate at room temperature. (author)

  12. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  13. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  14. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  15. All-solid state flexible supercapacitors based on graphene/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Won; Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr

    2015-06-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated.

  16. All-solid state flexible supercapacitors based on graphene/polymer composites

    International Nuclear Information System (INIS)

    Kim, Jung Won; Choi, Bong Gill

    2015-01-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated

  17. Immobilizing Organic-Based Molecular Switches into Metal-Organic Frameworks: A Promising Strategy for Switching in Solid State.

    Science.gov (United States)

    Gui, Bo; Meng, Yi; Xie, Yang; Du, Ke; Sue, Andrew C-H; Wang, Cheng

    2018-01-01

    Organic-based molecular switches (OMS) are essential components for the ultimate miniaturization of nanoscale electronics and devices. For practical applications, it is often necessary for OMS to be incorporated into functional solid-state materials. However, the switching characteristics of OMS in solution are usually not transferrable to the solid state, presumably because of spatial confinement or inefficient conversion in densely packed solid phase. A promising way to circumvent this issue is harboring the functional OMS within the robust and porous environment of metal-organic frameworks (MOFs) as their organic components. In this feature article, recent research progress of OMS-based MOFs is briefly summarized. The switching behaviors of OMS under different stimuli (e.g., light, redox, pH, etc.) in the MOF state are first introduced. After that, the technological applications of these OMS-based MOFs in different areas, including CO 2 adsorption, gas separation, drug delivery, photodynamic therapy, and sensing, are outlined. Finally, perspectives and future challenges are discussed in the conclusion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    Paul T. Fini; Shuji Nakamura

    2005-01-01

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  19. Development of neutron personnel monitoring system based on CR-39 solid state nuclear track detector

    International Nuclear Information System (INIS)

    Massand, O.P.; Kundu, H.K.; Marathe, P.K.; Supe, S.J.

    1990-01-01

    Personnel neutron monitoring aims at providing a method to evaluate the magnitude of the detrimental effects on the personnel exposed to neutrons. Neutron monitoring is done for a small though growing number of personnel working with neutrons in a wide range of situations. Over the years, many solid state nuclear track detectors (SSNTD) have been tried for neutron personnel monitoring. CR-39 SSNTD is a proton sensitive polymer and offers a lot of promise for neutron personnel monitoring due to its high sensitivity and lower energy threshold for neutron detection. This report presents the mechanism of track formation in this polymer, the development of this neutron personnel monitoring system in our laboratory, its various characteristics and its promise as a routine personnel neutron monitor. (author). 1 tab., 7 figs

  20. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  1. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  2. Transport and solid state battery characteristic studies of silver based super ion conducting glasses

    International Nuclear Information System (INIS)

    Jayaseelan, S.; Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N.

    2005-01-01

    Silverarsenotellurite (SAT), silverphosphotellurite (SPT) and silvervanadotellurite (SVT) quaternary glass systems were prepared with various formers compositions by a melt quenching method. Glass nature, glass transition temperature (T g ) and structure of the prepared glasses were identified respectively by X-ray diffraction (XRD), differential scanning calorimetric (DSC) and Fourier transform infrared (FT-IR) technique. Electrical conductivity studies were carried out by impedance measurement in the frequency range 40 Hz to 100 KHz at different temperatures for all three sets of AgI-Ag 2 O-[TeO 2 -M 2 O 5 ] (M 2 O 5 = As 2 O 5 , P 2 O 5 , V 2 O 5 ) glasses. The high conducting compositions of SAT, SPT and SVT glass samples were fixed from the results of total conductivity (σ t ). Electronic conductivity (σ e ) studies were made on high conducting composition of each glass system by Wagner's polarization method. Total current (i t ) is due to ion and electron. Electronic current (i e ) due to electron were estimated through mobility studies. Ionic conductivity (σ i ) and ionic current (i i ) were calculated respectively using the conductivity (σ t and σ e ) and current (i t and i e ) results for the SAT, SPT and SVT glasses. Transport numbers due to ion (t i ) and electron (t e ) were calculated using the conductivity and mobility results for each glass system. The high conducting composition of the SAT, SPT and SVT glasses were used as solid electrolytes with silver metal as an anode and iodine:graphite (I:C) as a cathode for the fabrication of solid state batteries (SSBs). All the fabricated batteries were characterized by measuring the open circuit voltage (OCV) and polarization properties and estimated the batteries performances

  3. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  4. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  5. Solid State Theory An Introduction

    CERN Document Server

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  6. Solid-state transformer-based new traction drive system and control

    Science.gov (United States)

    Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao

    2017-11-01

    A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.

  7. Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals

    Science.gov (United States)

    Peng, Shaomin; Yu, Lin; Lan, Bang; Sun, Ming; Cheng, Gao; Liao, Shuhuan; Cao, Han; Deng, Yulin

    2016-12-01

    We present a facile method for the fabrication of hematite nanocrystal-carbon cloth (Fe2O3-CC) composite. Hierarchical manganite is chosen as the sacrificial precursor, that does not contribute to the component of final iron oxide but can be in situ dissolved by the acid produced from the Fe3+ hydrolysis. This method effectively enhances the specific surface area and conductivity of hematite (Fe2O3) by attaching Fe2O3 nanocrystals (around 5 nm) firmly on the surface of carbon fibers. The obtained Fe2O3-CC can be directly used as a binder-free electrode for a supercapacitor. Interestingly, the composite electrode exhibits synergistic electrochemical capacitance (electrochemical double-layer capacitance and pseudo-capacitance). It manifests a very high areal capacitance of 1.66 F cm-2 (1660 F g-1) at 2 mA cm-2 and excellent cycling performance at large current densities (88.6% retention at 30 mA cm-2 after 5000 cycles) in a three-electrode testing system, which is among the best performances reported in the literature. Importantly, when fabricated as a solid-state flexible symmetric supercapacitor it still shows a maximum energy density of 8.74 mW h cm-3 and power density of 253.9 mW cm-3. Additionally, its good flexibility makes it suitable for portable devices.

  8. Monitoring of bentonite pore water with a probe based on solid-state microsensors

    International Nuclear Information System (INIS)

    Orozco, Jahir; Baldi, Antoni; Martin, Pedro L.; Bratov, Andrei; Jimenez, Cecilia

    2006-01-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises Natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented

  9. Solid State pH Sensor Based on Light Emitting Diodes (LED As Detector Platform

    Directory of Open Access Journals (Sweden)

    Dermot Diamond

    2006-08-01

    Full Text Available A low-power, high sensitivity, very low-cost light emitting diode (LED-baseddevice developed for low-cost sensor networks was modified with bromocresol greenmembrane to work as a solid-state pH sensor. In this approach, a reverse-biased LEDfunctioning as a photodiode is coupled with a second LED configured in conventionalemission mode. A simple timer circuit measures how long (in microsecond it takes for thephotocurrent generated on the detector LED to discharge its capacitance from logic 1 ( 5 Vto logic 0 ( 1.7 V. The entire instrument provides an inherently digital output of lightintensity measurements for a few cents. A light dependent resistor (LDR modified withsimilar sensor membrane was also used as a comparison method. Both the LED sensor andthe LDR sensor responded to various pH buffer solutions in a similar way to obtainsigmoidal curves expected of the dye. The pKa value obtained for the sensors was found toagree with the literature value.

  10. An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte

    Directory of Open Access Journals (Sweden)

    Ali eaabouimrane

    2015-08-01

    Full Text Available A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C4H94NPF6, (10 molar % with succinonitrile, SCN, (N C−CH2−CH2−C N, [SCN-10%TBA-PF6]. The resultant waxy material shows a plastic crystalline phase that extend from -36 °C up to its melting at 23 °C. It shows a high ionic conductivity reaching 4 × 10−5 S/cm in the plastic crystal phase (15 °C and ~ 3 × 10−3 S/cm in the molten state (25 °C. These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC. The EDLC was assembled and its performance was tested by cyclic voltammetry, AC impedance spectroscopy and galvanostatic charge-discharge methods. Specific capacitance values in the range of 4-7 F/g. (of electrode active material were obtained in the plastic crystal phase at 15 °C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  11. A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles

    Science.gov (United States)

    Wang, Lu; Arif, Muhammad; Duan, Guorong; Chen, Shenming; Liu, Xiaoheng

    2017-07-01

    Mixed metal or transition metal oxides hold an unveiled potential as one of the most promising energy storage material because of their excellent stability, reliable conductivity, and convenient use. In this work, CuMnO2 nanoparticles are successfully prepared by a facile hydrothermal process with the help of dispersing agent cetyltrimethylammonium bromide (CTAB). CuMnO2 nanoparticles possess a uniform quadrilateral shape, small size (approximately 25 × 25 nm-35 × 35 nm), excellent dispersity, and large specific surface specific (56.9 m2 g-1) with an interparticle mesoporous structure. All these characteristics can bring benefit for their application in supercapacitor. A quasi-solid-state symmetric supercapacitor device is assembled by using CuMnO2 nanoparticles as both positive electrode and negative electrode. The device exhibits good supercapacitive performance with a high specific capacitance (272 F g-1), a maximum power density of 7.56 kW kg-1 and a superior cycling stability of 18,000 continuous cycles, indicating an excellent potential to be used in energy storage device.

  12. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Belharouak, Ilias [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Abu-Lebdeh, Yaser A., E-mail: yaser.abu-lebdeh@nrc.gc.ca [Energy, Mining and Environment Portfolio and Automotive and Surface Transportation Portfolio, National Research Council of Canada, Ottawa, ON (Canada)

    2015-08-18

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C{sub 4}H{sub 9}){sub 4}-NPF{sub 6}, (10 molar %) with succinonitrile, SCN, (N≡C−CH{sub 2}−CH{sub 2}−C≡N), [SCN-10%TBA-PF{sub 6}]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10{sup -5} S/cm in the plastic crystal phase (15°C) and ~ 3 × 10{sup -3} S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  13. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    International Nuclear Information System (INIS)

    Abouimrane, Ali; Belharouak, Ilias; Abu-Lebdeh, Yaser A.

    2015-01-01

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C 4 H 9 ) 4 -NPF 6 , (10 molar %) with succinonitrile, SCN, (N≡C−CH 2 −CH 2 −C≡N), [SCN-10%TBA-PF 6 ]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10 -5 S/cm in the plastic crystal phase (15°C) and ~ 3 × 10 -3 S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  14. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Hong-Yan; Lin, Ling; Yu, Xiao-Yun; Qiu, Kang-Qiang; Lü, Xian-Yong; Kuang, Dai-Bin; Su, Cheng-Yong

    2013-01-01

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO 2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO 2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm −2 ) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  15. A novel solid-state electrochemiluminescence quenching sensor for detection of aniline based on luminescent composite nanofibers

    International Nuclear Information System (INIS)

    Wang, Xiaoying; Yang, Yu; Gao, Huiwen

    2014-01-01

    A novel solid-state electrochemiluminescence (ECL) quenching sensor based on the luminescent composite nanofibers for detection of aniline has been developed. The gold nanoparticles (AuNPs) and Ruthenium (II) tris-(bipyridine) (Ru(bpy) 3 2+ ) doped nylon 6 (PA6) luminescent composite nanofibers (Ru–AuNPs–PA6) were successfully deposited to the bare glassy carbon (GC) electrode by a one-step electrospinning technique. The Ru–AuNPs–PA6 nanofibers maintained the photoelectric properties of the Ru(bpy) 3 2+ ions completely and exhibited excellent ECL behaviors. A high quenching effect on the ECL signal of the Ru–AuNPs–PA6/C 2 O 4 2− system was obtained with the presence of low concentration aniline compounds. The potential of analytical application was explored by use of the inhibited ECL. The quenching efficiencies of the five kinds of aniline compounds were compared by monitoring the aniline-dependent ECL intensity change. The magnitude of quenching depended linearly upon the concentration of aniline in the investigated concentration range of 10–10 µM. The detection limit for aniline is 5.0 nM, which is comparable or better than that in the reported assays. The solid-state ECL quenching sensor exhibited high sensitivity and good stability. This study may provide new insight into the design of advanced electrospun nanofibers-based ECL sensors for detection and analysis of a variety of active molecules. - Highlights: • The Ru–AuNPs–PA6 nanofibers were first prepared by one-step electrospinning technique. • The Ru–AuNPs–PA6 nanofibers exhibited excellent ECL behaviors on GC electrodes. • It is the first solid-state ECL sensor based on nanofibers for aniline detection. • The quenching efficiencies of the five kinds of aniline compounds were compared. • The strategy could be extended to develop various nanofibers-based ECL sensors

  16. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  17. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  18. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  19. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao; Zhang, Liling [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Hu, Nantao, E-mail: hunantao@sjtu.edu.cn [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Yang, Zhi; Wei, Hao [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Wang, Yanyan, E-mail: yywang@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006 (China); Zhang, Yafei, E-mail: yfzhang@sjtu.edu.cn [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China)

    2016-11-30

    Highlights: • The addition of methyl orange can affect the size of polypyrrole nanoparticles. • The flexible hybrid paper has a highly-interconnected sandwich framework. • The hybrid paper shows a high areal and volumetric specific capacitance. • Flexible all-solid-state supercapacitor exhibits excellent capacitive performances. - Abstract: Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It’s a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm{sup 2} and 94.9 F/cm{sup 3} at 0.5 mA/cm{sup 2}. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm{sup 2} and 26.4 mWh/cm{sup 3} are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  20. Evaluation of apple pomace based reconstituted feed in rats after solid state fermentation and ethanol recovery

    Directory of Open Access Journals (Sweden)

    A. Devrajan

    2004-03-01

    Full Text Available To utilize apple pomace in an economical and effective way, a feed was developed by solid state fermentation (SSF using sequential interactive co-culture of Candida utilis and Kloeckera. Removal of ethanol and drying of the left - over residue. Feeding trial was conducted in white albino rats before and after reconstitution of apple pomace feed in the choice and no choice study. Feeding of apple pomace feed in the rats before reconstitution indicated that neither in fermented nor in unfermented form it was acceptable. In the no choice study both in 100% fermented and unfermented apple pomace group feed intake decreased continuously resulting in death of rats apparently due to decreased digestibility owing to high fibre content. Further, fermented or unfermented apple pomace based feed had lower digestibility and efficiency of conversion than the standard rat feed. Compared to the standard feed group, growth rates in all the feed groups were negative. The results of choice study of different feeds corroborated with the no-choice study mentioned earlier. Incorporation of fermented apple pomace into standard rat feed in the ratio of 1:1 gave better acceptability and digestibility. Reconstituted feed with 10% jaggery, 2% groundnut oil, 0.01% mixed flavour and 1% salt was the most acceptable. The post-mortem examination of the rats that died during the feeding trial revealed generalized oedema, probably due to some hepatotoxin in the feed. The blood glucose level in the apple pomace feed group except that was reconstituted with jaggery, showed a general hypoglycemia, though falling in the range. The increased ALT and AST levels in the serum also suggest damage to the liver. The mortality rate, post-mortem examination of the rats that died during the feeding trial and blood biochemical analysis of rat serum suggest a more elaborative study for extended period of time.Para utilizar bagaço de maçã de uma maneira econômica e eficaz, foi desenvolvido

  1. Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries

    Science.gov (United States)

    Tsukasaki, Hirofumi; Otoyama, Misae; Mori, Yota; Mori, Shigeo; Morimoto, Hideyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2017-11-01

    Sulfide-based all-solid-state batteries using a non-flammable inorganic solid electrolyte are promising candidates as a next-generation power source owing to their safety and excellent charge-discharge cycle characteristics. In this study, we thus focus on the positive electrode and investigated structural stabilities of the interface between the positive electrode active material LiNi1/3Mn1/3Co1/3O2 (NMC) and the 75Li2S·25P2S5 (LPS) glass electrolyte after charge-discharge cycles via transmission electron microscopy (TEM). To evaluate the thermal stability of the fabricated all-solid-state cell, in-situ TEM observations for the positive electrode during heating are conducted. As a result, structural and morphological changes are detected in the LPS glasses. Thus, exothermal reaction present in the NMC-LPS composite positive electrode after the initial charging is attributable to the crystallization of LPS glasses. On the basis of a comparison with crystallization behavior in single LPS glasses, the origin of exothermal reaction in the NMC-LPS composites is discussed.

  2. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  3. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  4. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei

    2016-11-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  5. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  6. Studies in solid state ionics

    International Nuclear Information System (INIS)

    Jakes, D.; Rosenkranz, J.

    1987-01-01

    Studies performed over 10 years by the high temperature chemistry group are reviewed. Attention was paid to different aspects of ionic solids from the point of view of practical as well as theoretical needs of nuclear technology. Thus ceramic fuel compound like uranates, urania-thoria system, solid electrolytes based on oxides and ionics transformations were studied under reactor irradiation. (author) 13 figs., 3 tabs., 46 refs

  7. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  8. An all-solid-state screen-printed carbon paste reference electrode based on poly(3,4-ethylenedioxythiophene) as solid contact transducer

    International Nuclear Information System (INIS)

    Xu, Hui; Pan, Yiwen; Chen, Ying; Ye, Ying; Wang, You; Li, Guang

    2012-01-01

    The paper presents the design of an all-solid-state portable reference electrode based on a screen-printed carbon paste electrode suitable for rapid human serum testing. The electrode was covered by electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) as an internal solid contact layer and polyvinyl chloride (PVC) membrane containing lipophilic anion and cation additives. The electrochemical properties of PEDOT(PSS) and PEDOT(PSS)/PVC film on a carbon paste electrode were studied by electrochemical impedance spectroscopy and cyclic voltammetry methods. The reference electrode exhibited good potential stability (for H + , Na + , K + , Ca 2+ , Cl − and CO 2− 3 /HCO − 3 ), good reproducibility and long-term stability. The structure is applied as reference electrodes in human serum pH analysis with pH ion selective planar electrodes, forming a serum pH sensor. The response time of such a pH sensor was 15 s and the sensitivity was −52.2 ± 1.0 mV per decade. Other properties, such as repeatability, reproducibility and stability, were also evaluated. Clinical trials were carried out and compared with the results obtained from the routine hospital electrolyte analyzer, which demonstrated that their analytical performance was closely matched. (paper)

  9. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells

    Science.gov (United States)

    Docampo, Pablo; Snaith, Henry J.

    2011-06-01

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  10. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Docampo, Pablo; Snaith, Henry J

    2011-01-01

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  11. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  12. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  13. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  14. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    Science.gov (United States)

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results.

  15. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  16. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  17. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  18. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  19. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  20. Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture.

    Science.gov (United States)

    Simmons, Christopher W; Reddy, Amitha P; Vandergheynst, Jean S; Simmons, Blake A; Singer, Steven W

    2014-01-01

    The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high-solids and thermophilic conditions in the presence of 1-ethyl-3-methylimidazolium-based ILs to enrich for IL-tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL-tolerant community was grown in liquid and solid-state culture in the presence of the ILs 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) or 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL-pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid-state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL-pretreated plant biomass. © 2013 American Institute of Chemical Engineers.

  1. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  2. Introduction to solid state physics

    International Nuclear Information System (INIS)

    Hofmann, Philip

    2013-01-01

    A compact introduction to solid-state physics for students of physics, material,and engineering sciences - ideal for a one- to two-semestral course. In easily understable form the author introduces to phenomena and concepts. Thereby he avoids expensive mathematical derivations and refers to outgoing literature. The successful didactical preparation makes an easy access to the theme possible. Numerous illustrations clarify the connections and make the explained well understandable. With about 170 questions and exercise problems.

  3. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  4. All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology

    Science.gov (United States)

    Hugi, Andreas; Geiser, Markus; Villares, Gustavo; Cappelli, Francesco; Blaser, Stephane; Faist, Jérôme

    2015-01-01

    We develop a spectroscopy platform for industrial applications based on semiconductor quantum cascade laser (QCL) frequency combs. The platform's key features will be an unmatched combination of bandwidth of 100 cm-1, resolution of 100 kHz, speed of ten to hundreds of μs as well as size and robustness, opening doors to beforehand unreachable markets. The sensor can be built extremely compact and robust since the laser source is an all-electrically pumped semiconductor optical frequency comb and no mechanical elements are required. However, the parallel acquisition of dual-comb spectrometers comes at the price of enormous data-rates. For system scalability, robustness and optical simplicity we use free-running QCL combs. Therefore no complicated optical locking mechanisms are required. To reach high signal-to-noise ratios, we develop an algorithm, which is based on combination of coherent and non-coherent averaging. This algorithm is specifically optimized for free-running and small footprint, therefore high-repetition rate, comb sources. As a consequence, our system generates data-rates of up to 3.2 GB/sec. These data-rates need to be reduced by several orders of magnitude in real-time in order to be useful for spectral fitting algorithms. We present the development of a data-treatment solution, which reaches a single-channel throughput of 22% using a standard laptop-computer. Using a state-of-the art desktop computer, the throughput is increased to 43%. This is combined with a data-acquisition board to a stand-alone data processing unit, allowing real-time industrial process observation and continuous averaging to achieve highest signal fidelity.

  5. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  6. Solar-pumped solid state Nd lasers

    Science.gov (United States)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  7. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  8. Solid state electrolyte composites based on complex hydrides and metal doped fullerenes/fulleranes for batteries and electrochemical applications

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Jr., Joseph A.; Colon-Mercado, Hector R.; Greenway, Scott D.

    2018-05-01

    A LiBH4--C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.

  9. A Monte Carlo based development of a cavity theory for solid state detectors irradiated in electron beams

    International Nuclear Information System (INIS)

    Mobit, P.

    2002-01-01

    Recent Monte Carlo simulations have shown that the assumption in the small cavity theory (and the extension of the small cavity theory by Spencer-Attix) that the cavity does not perturb the electron fluence is seriously flawed. For depths beyond d max not only is there a significant difference between the energy spectra in the medium and in the solid cavity materials but there is also a significant difference in the number of low-energy electrons which cannot travel across the solid cavity and hence deposit their dose in it (i.e. stopper electrons whose residual range is less than the cavity thickness). The number of these low-energy electrons that are not able to travel across the solid state cavity increases with depth and effective thickness of the detector. This also invalidates the assumption in the small cavity theory that most of the dose deposited in a small cavity is delivered by crossers. Based on Monte Carlo simulations, a new cavity theory for solid state detectors irradiated in electron beams has been proposed as: D med (p)=D det (p) x s S-A med.det x gamma(p) e x S T , where D med (p) is the dose to the medium at point, p, D det (p) is the average detector dose to the same point, s S-A med.det is the Spencer-Attix mass collision stopping power ratio of the medium to the detector material, gamma(p) e is the electron fluence perturbation correction factor and S T is a stopper-to-crosser correction factor to correct for the dependence of the stopper-to-crosser ratio on depth and the effective cavity size. Monte Carlo simulations have been computed for all the terms in this equation. The new cavity theory has been tested against the Spencer-Attix cavity equation as the small cavity limiting case and also Monte Carlo simulations. The agreement between this new cavity theory and Monte Carlo simulations is within 0.3%. (author)

  10. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

    Science.gov (United States)

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-07-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.

  11. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    Science.gov (United States)

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  12. Eco-friendly wood-based solid-state flexible supercapacitors from wood transverse section slice and reduced graphene oxide

    Science.gov (United States)

    Lv, Shaoyi; Fu, Feng; Wang, Siqun; Huang, Jingda; Hu, La

    2015-07-01

    An interesting wood-based all-solid-state supercapacitor is produced using reduced graphene oxide (RGO) coated on wood transverse section slice (WTSS) as electrode material by means of a low-cost, eco-friendly, and simple method for the first time. The RGO-coated WTSS electrode has a porous 3D honeycomb framework due to the hierarchical cellular structure of the WTSS substrate and can function as an electrolyte reservoir. This special construction endows this novel electrode with good areal capacitance (102 mF cm-2) and excellent cyclic stability (capacitance retention of 98.9% after 5000 cycles). In addition, the supercapacitors exhibit good mechanical flexibility and preserve almost constant capacitive behavior under different bending conditions. Our study introduces a new and eco-friendly material design for electrodes in future flexible energy storage devices that closely resemble natural materials. [Figure not available: see fulltext.

  13. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  14. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  15. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  16. Solid-state emissive triarylborane-based BODIPY dyes: photophysical properties and fluorescent sensing for fluoride and cyanide ions.

    Science.gov (United States)

    Fu, Guang-Liang; Pan, Hong; Zhao, Yi-Hong; Zhao, Cui-Hua

    2011-12-07

    We disclose two novel BODIPY dyes, which contain the bulky substituent, [(4-dimesitylboryl)phenyl]ethynyl at 2- and 2,6-positions. The steric bulkiness of the boryl group is effective to suppress the intermolecular interaction in the solid state and thus these two compounds display intense fluorescence not only in solution but also in the solid state. In addition, the BODIPY dyes display sensitive fluorescence responses to fluoride and cyanide anions through the complexation with the boron center of the boryl group and the subsequent decomposition of the BODIPY core, illustrating their potential uses for the fluorescence sensing of fluoride and cyanide ions.

  17. Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability

    Science.gov (United States)

    Wu, Lingxia; Li, Ruizhi; Guo, Junling; Zhou, Cheng; Zhang, Wenpei; Wang, Chong; Huang, Yu; Li, Yuanyuan; Liu, Jinping

    2013-08-01

    Flexible solid-state symmetric supercapacitor was fabricated using MnO2 nanofilms growing directly on carbon cloth as the electrodes and PVA/H3PO4 gel as the electrolyte/separator. The device can be operated at a stable cell-voltage up to 1.4 V, obviously larger than that of conventional solid-state symmetric supercapacitors (≤1 V). It exhibited excellent rate capability with a scan rate as high as 20 V s-1 and a long cyclability (˜60000 cycles) even under severe mechanical deformation. The charge storage mechanism at different scan rates was also quantitatively analyzed.

  18. Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability

    Directory of Open Access Journals (Sweden)

    Lingxia Wu

    2013-08-01

    Full Text Available Flexible solid-state symmetric supercapacitor was fabricated using MnO2 nanofilms growing directly on carbon cloth as the electrodes and PVA/H3PO4 gel as the electrolyte/separator. The device can be operated at a stable cell-voltage up to 1.4 V, obviously larger than that of conventional solid-state symmetric supercapacitors (≤1 V. It exhibited excellent rate capability with a scan rate as high as 20 V s−1 and a long cyclability (∼60000 cycles even under severe mechanical deformation. The charge storage mechanism at different scan rates was also quantitatively analyzed.

  19. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  20. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  1. Decoherence and Noise in Spin-based Solid State Quantum Computers. Approximation-Free Numerical Simulations

    National Research Council Canada - National Science Library

    Harmon, Bruce N; Dobrovitski, Viatcheslav V

    2007-01-01

    ...) have also been developed and applied. Most recently, specific strategies for quantum control have been investigated for realistic systems in order to extend the coherence times for spin-based quantum computing implementations...

  2. ''Solid-state fusion'' effects

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1990-01-01

    The ''Solid-State Fusion'' or ''Cold Fusion'' phenomenon, including excess heat generation and the production of nuclear particles, was first reported by Professors Martin Fleischmann and B. Stanley Pons in March 1989. The phenomenon described (the anomalous effects observed when deuterium oxide (heavy water) is electrolysed using a palladium cathode and a platinum anode in the presence of lithium deuteroxide) has many fascinating facets, not least of which is the fact that investigators are unable to produce the effects ''on demand''. Many of the experimental variables which seem to be significant were described and discussed at the ''First Annual Conference on Cold Fusion'' which was held in Salt Lake City, Utah, USA, from 29th to 31st March 1990. The information presented at the conference is summarised here. Some papers addressed the excess heat effects observed, some the nuclear particles, and others the theoretical aspects. These are reviewed. At the end of the conference Fleischmann summarised all the areas where apparent evidence for solid state fusion had been obtained during the past year, namely: excess enthalpy, bursts in enthalpy; tritium, bursts in tritium; neutrons, bursts in neutrons; X-rays, gamma rays and bursts in these. He recommended that emphasis should now be concentrated on confirming reaction products, such as He 4 . New theories were emerging, but one year was too short a time in which to evaluate them fully. (author)

  3. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  4. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  5. Disturbance observer-based control of a dual output LLC converter for solid state lighting applications

    NARCIS (Netherlands)

    Roes, M.G.L.; Duarte, J.L.; Hendrix, M.A.M.

    2010-01-01

    Feedback sensor isolation is often an expensive necessity in power converters, for reasons of safety and electromagnetic compatibility. A disturbance observer-based control strategy for a dual-output resonant converter is proposed to overcome this problem. Current control of two LED loads is

  6. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall*

    Science.gov (United States)

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2015-01-01

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  7. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall.

    Science.gov (United States)

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E

    2015-05-29

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  9. Solid state radiation chemistry of co-crystallized DNA base pairs studied with EPR and ENDOR

    International Nuclear Information System (INIS)

    Nelson, W.H.; Nimmala, S.; Hole, E.O.; Sagstuen, E.; Close, D.M.

    1995-01-01

    For a number of years, the authors' group has focused on identification of radicals formed from x-irradiation of DNA components by application of EPR and ENDOR spectroscopic techniques to samples in the form of single crystals. With single crystals as samples, it is possible to use the detailed packing and structural information available from x-ray or neutron diffraction reports. This report summarizes results from two crystal systems in which DNA bases are paired by hydrogen bonding. Extensive results are available from one of these, 1-methyl-thymine:9-methyladenine (MTMA), in which the base pairing is the Hoogsteen configuration. Although this configuration is different from that found by Watson-Crick in DNA, nonetheless the hydrogen bond between T(O4) and A(NH 2 ) is present. Although MTMA crystals have been studied previously, the objective was to apply the high-resolution technique of ENDOR to crystals irradiated and studied at temperatures of 10 K or lower in the effort to obtain direct evidence for specific proton transfers. The second system, from which the results are only preliminary, is 9-ethylguanine:1-methyl-5-fluorocytosine (GFC) in which the G:C bases pair is in the Watson Crick configuration. Both crystal systems are anhydrous, so the results include no possible effects from water interactions

  10. L70 life prediction for solid state lighting using Kalman Filter and Extended Kalman Filter based models

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Wei, Junchao; Davis, Lynn

    2013-08-08

    Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life

  11. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    Science.gov (United States)

    Gao, Y.; Zhou, Y. S.; Xiong, W.; Jiang, L. J.; Mahjouri-samani, M.; Thirugnanam, P.; Huang, X.; Wang, M. M.; Jiang, L.; Lu, Y. F.

    2013-07-01

    In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ˜67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  12. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2013-07-01

    Full Text Available In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ∼67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  13. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao

    2017-02-16

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL-VLC system, its efficiency is limited by the

  14. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Leonard, John T.; Nakamura, Shuji; Speck, James S.; Denbaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL

  15. Solid-State Quantum Refrigeration

    Science.gov (United States)

    2013-03-01

    this kind of cooling. We use band deformation potential theory, K.P theory and Poisson equation to determine the self consistent band lineups and wave...calculated based on a variational method and the band lineups in presence of strain are estimated using the well known “model-solid theory” [13]. The...beam coupled back to the lens is considered. Once the above procedure is done for all rays of the cone the then the TE coupled energy ratio for the

  16. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  17. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  18. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  19. Inside Solid State Drives (SSDs)

    CERN Document Server

    Micheloni, Rino; Eshghi, Kam

    2013-01-01

    Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well ...

  20. Solid-State Examination of Conformationally Diverse Sulfonamide Receptors Based on Bis(2-anilinoethynyl)pyridine, -Bipyridine, and -Thiophene.

    Science.gov (United States)

    Berryman, Orion B; Johnson, Charles A; Vonnegut, Chris L; Fajardo, Kevin A; Zakharov, Lev N; Johnson, Darren W; Haley, Michael M

    2015-03-04

    Utilizing an induced-fit model and taking advantage of rotatable acetylenic C(sp)-C(sp 2 ) bonds, we disclose the synthesis and solid-state structures of a series of conformationally diverse bis-sulfonamide arylethynyl receptors using either pyridine, 2,2'-bipyridine, or thiophene as the core aryl group. Whereas the bipyridine and thiophene structures do not appear to bind guests in the solid state, the pyridine receptors form 2 + 2 dimers with water molecules, two halides, or one of each, depending on the protonation state of the pyridine nitrogen atom. Isolation of a related bis-sulfonimide derivative demonstrates the importance of the sulfonamide N-H hydrogen bonds in dimer formation. The pyridine receptors form monomeric structures with larger guests such as BF 4 - or HSO 4 - , where the sulfonamide arms rotate to the side opposite the pyridine N atom.

  1. Solid-State Examination of Conformationally Diverse Sulfonamide Receptors Based on Bis(2-anilinoethynyl)pyridine, -Bipyridine, and -Thiophene

    Science.gov (United States)

    Berryman, Orion B.; Johnson, Charles A.; Vonnegut, Chris L.; Fajardo, Kevin A.; Zakharov, Lev N.; Johnson, Darren W.; Haley, Michael M.

    2015-01-01

    Utilizing an induced-fit model and taking advantage of rotatable acetylenic C(sp)–C(sp2) bonds, we disclose the synthesis and solid-state structures of a series of conformationally diverse bis-sulfonamide arylethynyl receptors using either pyridine, 2,2′-bipyridine, or thiophene as the core aryl group. Whereas the bipyridine and thiophene structures do not appear to bind guests in the solid state, the pyridine receptors form 2 + 2 dimers with water molecules, two halides, or one of each, depending on the protonation state of the pyridine nitrogen atom. Isolation of a related bis-sulfonimide derivative demonstrates the importance of the sulfonamide N–H hydrogen bonds in dimer formation. The pyridine receptors form monomeric structures with larger guests such as BF4− or HSO4−, where the sulfonamide arms rotate to the side opposite the pyridine N atom. PMID:26405435

  2. Extending solid state laser performance

    Science.gov (United States)

    Miesak, Ed

    2017-02-01

    Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.

  3. Ultimate gradient in solid-state accelerators

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams

  4. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    Science.gov (United States)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  5. High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Long, Hu; Xi, Shuang; Hu, Hao; Tang, Zirong

    2014-12-01

    A simple and effective strategy is proposed to activate carbon cloth for the fabrication of flexible and high-performance supercapacitors. Firstly, the carbon cloth surface is exfoliated as nanotextures through wet chemical treatment, then an annealing process is applied at H2/N2 atmosphere to reduce the surface oxygen functional groups which are mainly introduced from the first step. The activated carbon cloth electrode shows excellent wettablity, large surface area and delivers remarkable electrochemical performance. A maximum areal capacitance of 485.64 mF cm-2 at the current density of 2 mA cm-2 is achieved for the activated carbon cloth electrode, which is considerably larger than the resported results for carbon cloth. Furthermore, the flexible all-solid-state supercapacitor, which is fabricated based on the activated carbon cloth electrodes, shows high areal capacitance, superior cycling stability as well as stable electrochemical performance even under constant bending or twisting conditions. An areal capacitance of 161.28 mF cm-2 is achieved at the current density of 12.5 mA cm-2, and 104% of its initial capacitance is retained after 30,000 charging/discharging cycles. This study would also provide an effective way to boost devices' electrochemical performance by accommodating other active materials on the activated carbon cloth.

  6. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors

    Science.gov (United States)

    Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-07-01

    Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.

  7. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    Science.gov (United States)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  8. Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers

    International Nuclear Information System (INIS)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Xin; Liu, Yichun

    2015-01-01

    Highlights: • Three-dimensional PAN@PANI nanofiberous networks as freestanding electrodes. • The novel architecture exhibits high specific capacitance of 577 F/g. • Influence of acid doping and mass loading of PANI on electrochemical properties. • Capacitor: an energy density of 12.6 Wh/kg at the power density of 2.3 kW/kg. • Excellent cycling stability: 98% capacitance retention after 1000 cycles - Abstract: Three-dimensional porous polyacrylonitrile/polyaniline core-shell (PAN@PANI) nanofibers are fabricated by electrospinning technique combining in situ chemical polymerization of aniline monomers. The obtained PAN@PANI nanofibers possess unique continuous and homogeneous core-shell nanostructures and high mass loading of PANI (∼60 wt%) as active materials, which have greatly improved the electrochemical performance with a specific capacitance up to 577 F/g at a scan rate of 5 mV/s. Moreover, the porous networks of randomly arrayed PAN@PANI nanofibers provide binder-free and freestanding electrodes for flexible solid-state supercapacitors. The obtained devices based on PAN@PANI networks present excellent electrochemical properties with an energy density of 12.6 Wh/kg at a power density of 2.3 kW/kg and good cycling stability with retaining more than 98% of the initial capacitance after 1000 charge/discharge cycles, showing the possibility for practical applications in flexible electronics

  9. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    International Nuclear Information System (INIS)

    Fiorentino, Giuseppe; Vollebregt, Sten; Ishihara, Ryoichi; Sarro, Pasqualina M; Tichelaar, F D

    2015-01-01

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al 2 O 3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm 2 to 2500 μm 2 ) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism. (paper)

  10. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances

    Science.gov (United States)

    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, F. D.; Ishihara, Ryoichi; Sarro, Pasqualina M.

    2015-02-01

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm2 to 2500 μm2) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism.

  11. Integrated on-chip solid state capacitor based on vertically aligned carbon nanofibers, grown using a CMOS temperature compatible process

    Science.gov (United States)

    Saleem, Amin M.; Andersson, Rickard; Desmaris, Vincent; Enoksson, Peter

    2018-01-01

    Complete miniaturized on-chip integrated solid-state capacitors have been fabricated based on conformal coating of vertically aligned carbon nanofibers (VACNFs), using a CMOS temperature compatible microfabrication processes. The 5 μm long VACNFs, operating as electrode, are grown on a silicon substrate and conformally coated by aluminum oxide dielectric using atomic layer deposition (ALD) technique. The areal (footprint) capacitance density value of 11-15 nF/mm2 is realized with high reproducibility. The CMOS temperature compatible microfabrication, ultra-low profile (less than 7 μm thickness) and high capacitance density would enables direct integration of micro energy storage devices on the active CMOS chip, multi-chip package and passives on silicon or glass interposer. A model is developed to calculate the surface area of VACNFs and the effective capacitance from the devices. It is thereby shown that 71% of surface area of the VACNFs has contributed to the measured capacitance, and by using the entire area the capacitance can potentially be increased.

  12. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna [Univ. of South Carolina, Columbia, SC (United States)

    2017-09-29

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron (10B) and enriched lithium (6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (tg ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  13. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    International Nuclear Information System (INIS)

    Mandal, Krishna

    2017-01-01

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3 He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3 He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10 B) and enriched lithium ( 6 Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2 ), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  14. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    Science.gov (United States)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  15. Solid-state deep blue and UV fluorescent dyes based on para-bis(2-thienyl)phenylene

    Energy Technology Data Exchange (ETDEWEB)

    Krajčovič, Jozef; Kovalenko, Alexander, E-mail: kovalenko.alx@gmail.com; Heinrichová, Patricie; Vala, Martin; Weiter, Martin

    2015-11-15

    Despite the general rule of strong acceptor substituents having a tendency to quench fluorescence due to molecular stacking, it is shown how tetra-fluorination of the central phenylene unit of para-bis(2-thienyl)phenylene can augment the quantum yields of solid state fluorescent dyes. Another significant part of the present research was the study of the influence of the position of the solubilization alkyl chains position on the fluorescent properties of the abovementioned non- and tetra-fluorinated materials. Tenfold augmentation of quantum yields, depending on the position of the alkyl chains is reported. - Highlights: • Solid state luminescence was observed in para-bis(2-thienyl)phenylene molecules. • Quantum yields was augmented by polyfluorination of the central phenylene unit. • Tenfold augmentation of luminescence was observed by changing alkyls position. • Possibilities of steric hindrance and charge transfer were studied.

  16. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  17. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    Science.gov (United States)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  18. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.

    Science.gov (United States)

    Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao

    2017-11-30

    Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.

  19. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  20. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles

    International Nuclear Information System (INIS)

    Khosrozadeh, A.; Xing, M.; Wang, Q.

    2015-01-01

    Highlights: • The solid-state supercapacitor has high energy density and good cyclic stability. • The electrode is a freestanding composite film of polyaniline and carbon particles. • The impregnation of electrodes with gel electrolyte facilitates high capacitance. • The supercapacitor is lightweight, thin, flexible, and environmental friendly. - Abstract: Polyaniline tends to degrade with cycling in aqueous electrolytes and it can be alleviated using gel electrolytes. A low-cost solid-state supercapacitor of high energy density and good cyclic stability is fabricated with a facile method. The electrodes of the supercapacitor are made of a freestanding composite film of polyaniline and acid-treated carbon particles using phytic acid as a crosslinker, and the gel electrolyte is composed of sulfuric acid and polyvinyl alcohol. The electrochemical performances of the as-fabricated supercapacitor are investigated with cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Our results show that a maximum capacitance of 272.6 F/g (3.63 F/cm 2 ) at a current density of 0.63 A/g can be achieved by the supercapacitor, which is significantly higher than most solid-state ones reported in the literature. The ability to achieve a high-capacitance supercapacitor with good cyclic stability is mainly attributed to excellent infiltration of the gel electrolyte into the electrodes. The developed lightweight, thin, flexible, and environmental friendly supercapacitor would have potential applications in various energy storage devices, such as wearable electronics and hybrid electric vehicles

  1. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  2. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  3. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  4. optimisation of solid optimisation of solid state fermentation

    African Journals Online (AJOL)

    eobe

    from banana peels via solid state fermentation using Aspergillus niger. ermentation ... [7,8], apple pomace [9], banana peels [4], date palm. [10], carob ... powder, jams, juice, bar, biscuits, wine etc results in ... Yeast extract was taken as nitrogen.

  5. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  6. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  7. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    International Nuclear Information System (INIS)

    Wang, Junfeng; Lu, Cong; Li, Shiqi

    2016-01-01

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  8. Present status of fast neutron personnel dosimetry system based on CR-39 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Pal, Rupali; Sathian, Deepa; Jayalakshmi, V.; Bakshi, A.K.; Chougaonkar, M.P.; Mayya, Y.S.; Kumar, Valli; Babu, Rajesh; Kar, S.; Joshi, V.M.

    2011-08-01

    Neutron sources are of different types depending upon the method of production such as nuclear reactors, particle accelerators and laboratory sources. Neutron sources depending upon their energy, flux, size etc. are used for variety of applications in basic and applied sciences, neutron scattering experiments and in industry such as oil well - digging, coal mining and processing, ore processing etc. Personnel working in nuclear installations such as reactors, accelerators, spent fuel processing plants, nuclear fuel cycle operations and those working in various industries such as oil refining, oil well-digging, coal mining and processing, ore processing, etc. need to be monitored for neutron exposures, if any. Neutron monitoring is especially necessary in view of the fact that the radiation weighting factor for neutron is much higher than gamma rays and also it varies with energy. Radiological Physics and Advisory Division is involved in monitoring of personnel working in neutron fields. Around 2100 workers from 70 institutions (DAE and Non-DAE) are monitored on a quarterly basis. Neutron personnel monitoring, carried out in the country is based on Solid State Nuclear Track Detection (SSNTD) technique. In this technique, neutrons interact with hydrogen in CR-39 polymer to produce recoil protons. These protons create damages in the polymer, which are enlarged and appear as tracks when subjected to electrochemical etching (ECE). These tracks are counted in an optical system to evaluate the neutron dose. The neutron dosimetry system based on SSNTD has undergone a significant development, since it was started in 1990. The development includes upgradation of image analysis system for counting tracks, introduction of chemical etching (CE) at elevated temperatures for evaluation of dose equivalents above 10 mSv and use of carbon laser for cutting of CR-39 detectors. The entire dose evaluation process has been standardized, which includes calibration and performance tests

  9. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Lu, Cong; Li, Shiqi, E-mail: sqli@hust.edu.cn

    2016-11-15

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  10. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  11. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Young [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Tae Ho [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Kim, Dong Young; Park, Nam-Gyu [Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Ahn, Kwang-Duk [Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2008-01-03

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4-tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm{sup -2}). (author)

  12. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).

  13. Solid state characterization and crystal structure from X-ray powder diffraction of two polymorphic forms of ranitidine base.

    Science.gov (United States)

    de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van Gyseghem, Elke; Martens, Johan; Van Haele, Gerrit; Van Den Mooter, Guy

    2009-01-01

    Ranitidine hydrochloride (RAN-HCl), a known anti-ulcer drug, is the product of reaction between HCl and ranitidine base (RAN-B). RAN-HCl has been extensively studied; however this is not the case of the RAN-B. The solid state characterization of RAN-B polymorphs has been carried out using different analytical techniques (microscopy, thermal analysis, Fourier transform infrared spectrometry in the attenuated total reflection mode, (13)C-CPMAS-NMR spectroscopy and X-ray powder diffraction). The crystal structures of RAN-B form I and form II have been determined using conventional X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined using rigid-body Rietveld refinement. RAN-B form I is a monoclinic polymorph with cell parameters: a = 7.317(2), b = 9.021(2), c = 25.098(6) A, beta = 95.690(1) degrees and space group P2(1)/c. The form II is orthorhombic: a = 31.252(4), b = 13.052(2), c = 8.0892(11) A with space group Pbca. In RAN-B polymorphs, the nitro group is involved in a strong intramolecular hydrogen bond responsible for the existence of a Z configuration in the enamine portion of the molecules. A tail to tail packing motif can be denoted via intermolecular hydrogen bonds. The crystal structures of RAN-B forms are compared to those of RAN-HCl polymorphs. RAN-B polymorphs are monotropic polymorphic pairs. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  14. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    International Nuclear Information System (INIS)

    Hirschfeld, Julian Arndt

    2012-01-01

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  15. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  16. All-solid-state thin film battery based on well-aligned slanted LiCoO{sub 2} nanowires fabricated by glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Miyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Seunghwan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Daehee [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Joosun, E-mail: joosun@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Moon, Jooho, E-mail: jmoon@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-08-01

    Graphical abstract: We successfully fabricated well-aligned slanted LiCoO{sub 2} nanowires as a one-dimensional nanostructured cathode by glancing angle deposition to enhance the electrochemical performance of all-solid-state thin film batteries. - Highlights: • Well-aligned slanted LiCoO{sub 2} nanowires are fabricated by glancing angle deposition. • One-dimensional nanostructured LiCoO{sub 2} cathode enlarges the contact area. • All-solid-state thin film battery exhibits enhances rate capability and cycling stability. - Abstract: We fabricated all-solid-state thin film batteries based on well-aligned slanted LiCoO{sub 2} nanowires by glancing angle deposition, as a facile template-free method in order to increase the electrochemically active site, i.e., the contact area between the solid electrolyte and the electrode. A highly porous thin film composed of well-separated slanted LiCoO{sub 2} nanowires not only facilitates the penetration of solid electrolyte phase into the cathode, but also alleviates the thermally and mechanically induced stresses during post-annealing and electrochemical cycling. The all-solid-state thin film battery based on the well-aligned slanted LiCoO{sub 2} nanowires, whose contact area between electrolyte and electrode was three times as high as that of a dense thin film, could provide additional migration pathways for lithium ion diffusion due to the enlarged reaction sites. This resulted in enhanced electrochemical kinetics, thereby leading to better rate capability and long-term cyclic stability as compared to the dense LiCoO{sub 2} thin film.

  17. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  18. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  19. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  20. Studies of solid-state electrochromic devices based on Peo/siliceous hybrids doped with lithium perchlorate

    International Nuclear Information System (INIS)

    Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Goncalves, A.; Fortunato, E.

    2007-01-01

    Sol-gel hybrid organic-inorganic networks, doped with a lithium salt, have been used as electrolytes in prototype smart windows. The work described in this presentation is focused on the application of these networks as dual-function electrolyte/adhesive components in solid-state electrochromic devices. The performance of multi-layer electrochromic devices was characterized as a function of the choice of precursor used to prepare the polymer electrolyte component and the guest salt concentration. The prototype devices exhibited good open-circuit memory, coloration efficiency, optical contrast and stability

  1. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  2. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  3. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  4. Microelectronics: Atoms diffusion in solid state. Part 1

    International Nuclear Information System (INIS)

    Lopez Higuera, J.M.

    1988-01-01

    The fundamentals on which the technology for the diffusion of impurities in solid state is based, is presented. This technology is widely used to produce controlled and localized concentrations of atoms of the mentioned impurities in base solids in order to obtain those characteristics which may lead to the implementation of electronic, optoelectronic and electrooptic devices. (Author)

  5. Applications of solid state ionics for batteries

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.G.

    1988-09-01

    An overview is presented of solid state battery systems, especially those based on inorganic materials such as AgI, CuI and LiI. Emphasis is focussed on the structural and other modifications that are required to produce room temperature, compacted powder electrolytes with enhanced conductivity. The implications for primary batteries of discharge-induced changes of the local structure surrounding the mobile species are considered with reference to cuprous electrolytes. The use of these materials for other applications is discussed.

  6. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  7. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    Science.gov (United States)

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  8. Exciton dynamics in an energy up-converting solid state system based on diphenylanthracene doped with platinum octaethylporphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Karpicz, R., E-mail: renata.karpicz@ftmc.lt [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius (Lithuania); Puzinas, S.; Gulbinas, V. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius (Lithuania); Vakhnin, A. [Institute of Physics, National Academy of Sciences of Ukraine, 03028 Kyiv (Ukraine); Kadashchuk, A. [Institute of Physics, National Academy of Sciences of Ukraine, 03028 Kyiv (Ukraine); IMEC, Kapeldreef 75, B-3001 Heverlee-Leuven (Belgium); Rand, B.P. [IMEC, Kapeldreef 75, B-3001 Heverlee-Leuven (Belgium); Department of Electrical Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544 (United States)

    2014-01-31

    Highlights: • We study exciton dynamics by ultrafast spectroscopies in DPA:PtOEP host–guest films. • Aggregation of PtOEP affects considerably the triplet energy transfer to DPA host. • No significant triplet loss due to TTA occurs within PtOEP aggregates. • Triplet energy transfer from PtOEP to DPA is slow and thermally activated process. • The ISC time in PtOEP is shorter than 100 fs. - Abstract: Photophysics of composite solid films based on 9,10-diphenylanthracene (DPA) doped with Pt(II)octaethylporphyrin (PtOEP) has been investigated by means of transient absorption and luminescence spectroscopy. The DPA:PtOEP host:guest system is a benchmark for incoherent energy up-conversion via triplet fusion in solution and we focus here on photophysical processes of this system in solid films. The triplet energy transfer from PtOEP to DPA takes place during tens of ns, featuring a thermally activated behavior. This implies that, before being transferred to the host, triplets migrate within PtOEP aggregates, defining a rate limiting step for the overall energy transfer to DPA. In contrast to other porphyrin-based sensitizers, no significant triplet–triplet annihilation was found to happen during triplet migration within PtOEP aggregates, implying that such a triplet loss mechanism does not universally apply to porphyrin-based organometallic complexes.

  9. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  10. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  11. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  12. Analytic equation of state for FCC C60 solid based on analytic mean-field potential approach

    International Nuclear Information System (INIS)

    Sun Jiuxun

    2006-01-01

    The analytic mean-field approach (AMFP) was applied to the FCC C60 solid. For the intermolecular forces the Girifalco potential has been utilized. The analytic expressions for the Helmholtz free energy, internal energy and equation of state have been derived. The numerical results of thermodynamic quantities are compared with the molecular dynamic (MD) simulations and the unsymmetrized self-consistent field approach (CUSF) in the literature. It is shown that our AMFP results are in good agreement with the MD data both at low and high temperatures. The results of CUSF are in accordance with the AMFP at low temperature, but at high temperature the difference becomes prominent. Especially the AMFP predicted that the FCC C60 solid is stable upto 2202 K, the spinodal temperature, in good agreement with 2320 K from the MD simulation. However, the CUST just gives 1916 K, a temperature evidently lower than the MD data. The AMFP qualifies as a useful approach that can reasonably consider the anharmonic effects at high temperature

  13. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    Science.gov (United States)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating

  14. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065 (China)

    2015-05-22

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  15. The Design of Nanosecond Fast-switch Pulsed High Voltage Power Supply Based on Solid-state

    International Nuclear Information System (INIS)

    Chen Wenguang; Chen Wei; Rao Yihua

    2009-01-01

    The high voltage pulsed power supply is applied in the experiment of the nuclear science widely. It main consist of DC high-voltage power supply (HVPS) and pulse modulator. The high-frequency series-resonant inverter technology and IGBT series technology are used to design the HVPS and the modulator, respectively. The main circuit, control circuit, high voltage transformer and solid-state switch are illuminated in the paper. The apparatus can operate at a maximum output voltage of 6 kilovolt, which can be modulated single pulse and also be modulated by series pulse. A prototype is fabricated and tested, experimental results show that the pulsed power supply is well-designed and rising edge time to meet the nsclass; it can achieve the requirement of rapid modulation. (authors)

  16. Comparison of Australasian tertiary coals based on resolution- enhanced solid-state /sup 13/C NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R H; Davenport, S J

    1986-04-01

    /sup 13/C solid-state nuclear magnetic resonance spectroscopy was used to characterize 32 low-rank coals from New Zealand and Australia. A combination of high magnetic field (4.7 T) and resolution enhancement was used to extract spectral details beyond those seen in published spectra of coals of similar rank. Signal heights were used to characterize organic functional distributions. The spectra showed close similarities between Australian brown coals and low-rank New Zealand subbituminous coals, particularly those mined in the North Island. The spectra of New Zealand lignites all showed stronger signals from cellulose, methoxyl groups and phenols. Almost all of the New Zealand coals showed a relatively strong signal from polymethylene chains, compared with the Australian brown coals. This led to a prediction of higher alkene yields from pyrolysis of the New Zealand coals. Variations in phenolic substitution patterns were attributed to variations in the relative proportions of tannins and lignins in the depositional environments.

  17. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    Science.gov (United States)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  18. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    International Nuclear Information System (INIS)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-01-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps

  19. Solid state and materials research

    International Nuclear Information System (INIS)

    1988-01-01

    Surface and sub-surface regions of solids are modified by rapid melting and quenching, using a high-powered, pulsed (30 ns) ruby laser. The main emphasis of this work is on laser annealing, epitaxy and doping of silicon. Computer programs have been developed to calculate the heat-flow which takes place during pulsed laser irradiation. From such calculations, information can be obtained about temperature profiles, melt depths, recrystallization velocities and quench rates. 13 figs., 9 refs., 1 tab

  20. Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode

    International Nuclear Information System (INIS)

    Jian, Xuan; Yang, Hui-min; Li, Jia-gang; Zhang, Er-hui; Cao, Le-le; Liang, Zhen-hai

    2017-01-01

    Highlights: • Porous nanostructure carbon quantum dots/polypyrrole composite film was successfully synthesized by direct electrochemical method. • A flexible all-solid-state supercapacitor device was fabricated using the carbon quantum dots/polypyrrole composite electrode. • The flexible supercapacitor exhibits high specific capacitance, excellent reliability and long cycling life. - Abstract: Recently, carbon quantum dots (CQDs) as a new zero-dimensional carbon nanomaterial have become a focus in electrochemical energy storage. In this paper, flexible all-solid-state supercapacitors (ASSSs) were electrochemically synthesized by on-step co-deposition of appropriate amounts of pyrrole monomer and CQDs in aqueous solution. The different electrodeposition time plays an important role in controlling morphologies of stainless steel wire meshes (SSWM)-supported CQDs/PPy composite film. The morphologies and compositions of the obtained CQDs/PPy composite electrodes were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Furthermore, a novel flexible ASSS device was fabricated using CQDs/PPy composite as the electrode and separated by polyvinyl alcohol/LiCl gel electrolyte. Benefiting from superior electrochemical properties of CQDs and PPy, the as-prepared CQDs/PPy composite ASSSs exhibit outstanding electrochemical performance with the areal capacitance 315 mF cm −2 (corresponding to specific capacitance of 308 F g −1 ) at a current density of 0.2 mA cm −2 and long cycle life with 85.7% capacitance retention after 2 000 cycles.

  1. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes.

    Science.gov (United States)

    Fattah, N F A; Ng, H M; Mahipal, Y K; Numan, Arshid; Ramesh, S; Ramesh, K

    2016-06-06

    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g -1 , which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  2. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes

    Directory of Open Access Journals (Sweden)

    N. F. A. Fattah

    2016-06-01

    Full Text Available Solid polymer electrolyte (SPE composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene [P(VdF-HFP] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl imide [EMI-BTI] and graphene oxide (GO was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC. The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD and thermogravimetric analysis (TGA studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  3. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Jan Talbot; Kailash Mishra

    2007-12-31

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples

  4. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  5. Advanced Solid State Lighting for Human Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Lighting intensity and color have a significant impact on human circadian rhythms.  Advanced solid state lighting was developed for the Advanced Exploration System...

  6. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Department of Mechanical Engineering,. † ... A solid-state metathesis approach initiated by microwave energy has been successfully applied for ... and chemical properties of synthesized powders are determined by powder X-ray diffraction, ...

  7. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  8. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  9. Development of Solid-State Electrochemiluminescence (ECL Sensor Based on Ru(bpy32+-Encapsulated Silica Nanoparticles for the Detection of Biogenic Polyamines

    Directory of Open Access Journals (Sweden)

    Anna-Maria Spehar-Délèze

    2015-05-01

    Full Text Available A solid state electrochemiluminescence (ECL sensor based on Ru(bpy32+-encapsulated silica nanoparticles (RuNP covalently immobilised on a screen printed carbon electrode has been developed and characterised. RuNPs were synthesised using water-in-oil microemulsion method, amino groups were introduced on their surface, and they were characterised by transmission electron microscopy. Aminated RuNPs were covalently immobilised on activate screen-printed carbon electrodes to form a solid state ECL biosensor. The biosensor surfaces were characterised using electrochemistry and scanning electron microscopy, which showed that aminated nanoparticles formed dense 3D layers on the electrode surface thus allowing immobilisation of high amount of Ru(bpy32+. The developed sensor was used for ECL detection of biogenic polyamines, namely spermine, spermidine, cadaverine and putrescine. The sensor exhibited high sensitivity and stability.

  10. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2008-01-01

    Written by the 2011 Gaede Award Winner Filling a gap in the literature for a brief course in solid sate physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity. This textbook assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems with solutions as well as further supplementary material available for free to lecturers from the Wiley-VCH website. From the Contents:Chemical Bonding in So

  11. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  12. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  14. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    Science.gov (United States)

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct

  15. Influence of ion induced local Coulomb field and polarity on charge generation and efficiency in poly(3-hexylthiophene)-based solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Abrusci, Agnese; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford (United Kingdom); Santosh Kumar, R. Sai; Petrozza, Annamaria [Center for Nano Science and Technology of IIT, Milano (Italy); Al-Hashimi, Mohammed; Heeney, Martin [Department of Chemistry and Centre for Plastic Electronics, Imperial College London (United Kingdom)

    2011-07-08

    Dye-sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole-transporter materials. In order to further improve the efficiency of solid-state dye-sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3-hexylthiophene) (P3HT), to replace the more commonly used ''transparent'' 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)9,9'spiro-bifluorene (spiro-OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro-OMeTAD based solid-state DSSC, the P3HT-based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li-TFSI), although the precise role of these additives has not yet been clarified in solid-state DSCs. Here, we present a thorough study on the effect of Li-TFSI in P3HT based solid-state DSSC incorporating an indolene-based organic sensitizer termed D102. Employing ultrafast transient absorption and cw-emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO{sub 2}. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO{sub 2} conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system. (Copyright copyright

  16. Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation

    Directory of Open Access Journals (Sweden)

    Heck Júlio X.

    2002-01-01

    Full Text Available In Brazil, a large amount of a fibrous residue is generated as result of soybean (Glycine max protein production. This material, which is rich in hemicellulose and cellulose, can be used in solid state cultivations for the production of valuable metabolites and enzymes. In this work, we studied the bioconversion of this residue by bacteria strains isolated from water and soil collected in the Amazon region. Five strains among 87 isolated bacteria selected for their ability to produce either celullases or xylanases were cultivated on the aforementioned residue. From strain BL62, identified as Bacillus subtilis, it was obtained a preparation showing the highest specific cellulase activity, 1.08 UI/mg protein within 24 hours of growth. Concerning xylanase, the isolate BL53, also identified as Bacillus subtilis, showed the highest specific activity for this enzyme, 5.19 UI/mg protein within 72 hours of cultivation. It has also been observed the production of proteases that were associated with the loss of cellulase and xylanase activities. These results indicated that the selected microorganisms, and the cultivation process, have great biotechnological potential.

  17. Studies of diode-pumped solid-state lasers based on Nd:KGW and Nd:YAG

    International Nuclear Information System (INIS)

    Ibrahim, Akram Yousif

    1996-01-01

    The experimental part of the thesis was dedicated to the studies of diode-pumped solid- state lasers. it includes experiments with end-pumped continuous wave (CW) Nd-doped crystals. In particular, we have concentrated to Nd:KGW, a relatively new and not studied in the literature about the laser materials. We have performed some basics measurements of this material. A fibre bundle coupled laser diode array was used as a pump source. We have investigated two main optical arrangements for the pump, allowing operation in two regimes: 1- Low pump power operation using selected output power from a single of the fibre bundle. 2- high pump power operation using the total output power from the bundle. The main parameters of the cavities we use (e.g. the cavity mode and the pumping spot size), were determined using the matrix approach and the equations for the propagation of the Gaussian beams. The highest output power obtained in this work for Nd:KGW with a transverse electromagnetic (TEM 0 0) single-mode, continuous (CW) operation, was 400 mW for 1700 mW pumping power from the diode laser. We present also data about the performance of a diode pumped Nd:YAG crystal. Our experiment shows that Nd:KGW is a promising material of low and medium pumping power levels. (Author)

  18. Guanidinium nonaflate as a solid-state proton conductor

    DEFF Research Database (Denmark)

    Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan

    2016-01-01

    Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its....... In addition, POIPC-based solid-state proton conductors are also expected to find applications in sensors and other electrochemical devices....

  19. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio

    2018-01-01

    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  20. Synchrotron radiation in solid state chemistry

    International Nuclear Information System (INIS)

    Ghigna, Paolo; Pin, Sonia; Spinolo, Giorgio; Newton, Mark A.; Chiara Tarantino, Serena; Zema, Michele

    2011-01-01

    An approach towards the reactivity in the solid state is proposed, primarily based on recognizing the crucial role played by the interfacial free energy and by the topotactical relationship between the two reactants, which in turn control formation of the new phase and its spatial and orientational relationships with respect to the parent phases. Using one of the reactants in the form of film, the ratio between bulk and interfacial free energy can be changed, and the effect of interfacial free energy is maximized. The role of Synchrotron Radiation in such an approach is exemplified by using a new developed technique for μ-XANES mapping with nanometric resolution for studying the reactivity of thin films of NiO onto differently oriented Al 2 O 3 single crystals. The result obtained allowed us to speculate about the rate determining step of the NiO+Al 2 O 3 →NiAl 2 O 4 interfacial reaction.

  1. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  2. Passivation-free solid state battery

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  3. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  4. Solid state division progress report, period ending February 29, 1980

    International Nuclear Information System (INIS)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials

  5. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  6. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  7. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries

    Science.gov (United States)

    Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel

    2018-06-01

    Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.

  8. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  9. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  10. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  11. A solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wei Di; Ryhanen, Tapani [Nokia Research Centre c/o Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF, Cambridge (United Kingdom); Unalan, Husnu Emrah; Amaratunga, Gehan [Centre of Advanced Photonics and Electronics, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA, Cambridge (United Kingdom); Han Dongxue; Zhang Qixian; Niu Li [Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130000 Changchun (China)], E-mail: di.wei@nokia.com

    2008-10-22

    This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored. It opens up the possibility of developing a continuous roll to roll processing for THE mass production of DSSCs.

  12. Estimation of DNA DSB radiation damage using a solid state nanodosimeters based on glow peak 5a in LiF:Mg,Ti (TLD-100)

    International Nuclear Information System (INIS)

    Oster, L.; Haddad, J.; Horowitz, Y.S.; Biderman, S.

    2002-01-01

    We demonstrate the viability of the concept of using existing molecular nano structures in TL solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated TC/LC pairs in the thermoluminescence of LiF:Mg, Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of DSBs to SSBs for low energy He ions. (authors)

  13. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  14. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  15. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  16. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  17. An introduction to solid state diffusion

    CERN Document Server

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  18. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solid state fermentation for foods and beverages

    NARCIS (Netherlands)

    Chen, J.; Zhu, Y.; Nout, M.J.R.; Sarkar, P.K.

    2013-01-01

    The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional

  20. Solid-state fermentation - A mini review

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M.; Rinzema, A.; Tramper, J.

    1998-01-01

    The increasing interests in biotechnology for the application of fungi on the one hand, and for cheap agricultural products on the other, can be combined in so-called solid-state fermentation (SSF). SSF resembles a close to natural habitat for filamentous microorganisms and can be applied to

  1. Depletion mode pumping of solid state lasers

    International Nuclear Information System (INIS)

    Mundinger, D.; Solarz, R.; Beach, R.; Albrecht, G.; Krupke, W.

    1990-01-01

    Depletion mode pumping of solid state lasers is a new concept which offers features that are of interest for many practical applications. In this paper the authors discuss the physical properties and mechanisms that set the design requirements, present model calculations for a practical laser design, and discuss the results of recent experiments

  2. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  3. Thermal management of solid state lighting module

    NARCIS (Netherlands)

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  4. Renormalization methods in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Nozieres, P [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1976-01-01

    Renormalization methods in various solid state problems (e.g., the Kondo effect) are analyzed from a qualitative vantage point. Our goal is to show how the renormalization procedure works, and to uncover a few simple general ideas (universality, phenomenological descriptions, etc...).

  5. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  6. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  7. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  8. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  9. Solid-State Spectroscopy An Introduction

    CERN Document Server

    Kuzmany, Hans

    2009-01-01

    Spectroscopic methods have opened up a new horizon in our knowledge of solid-state materials. Numerous techniques using electromagnetic radiation or charged and neutral particles have been invented and worked out to a high level in order to provide more detailed information on the solids. The text presented here is an updated description of such methods as they were originally presented in the first edition. It covers linear response of solids to electromagnetic radiation in a frequency range extending from megahertz or gigahertz as used in spin resonance spectroscopy, to infrared spectroscopy and various forms of spectroscopy in the visible and near visible spectral range. It extends to spectroscopy in the UV and x-ray spectral range and eventually several spectroscopic methods are addressed in the frequency range of g radiation. Likewise linear response to irradiation with particles such as electrons, positrons, muons, neutrons, and atoms is discussed. Instrumental and technical background is provided as we...

  10. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  11. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  12. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  13. Self-association of an indole based guanidinium-carboxylate-zwitterion: formation of stable dimers in solution and the solid state

    Directory of Open Access Journals (Sweden)

    Carolin Rether

    2010-01-01

    Full Text Available The indole based zwitterion 2 forms stable dimers held together by H-bond assisted ion pairs. Dimerisation was confirmed in the solid state and studied in solution using dilution NMR experiments. Even though zwitterion 2 forms very stable dimers even in DMSO, their stability is lower than of an analogous pyrrole based zwitterion 1. As revealed by the X-ray crystal structure the two binding sites in 2 cannot be planar due to steric interactions between the guanidinium group and a neighbouring aromatic CH. Hence the guanidinium moiety is twisted out of planarity from the rest of the molecule forcing the two monomers in dimer 2·2 to interact in a non-ideal orientation. Furthermore, the acidity of the NHs is lower than in 1 (as determined by UV-pH-titration also leading to less efficient binding interactions.

  14. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  15. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  16. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Black, Hayden T; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  17. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  18. Research on IGBT solid state switch

    International Nuclear Information System (INIS)

    Gan Kongyin; Tang Baoyin; Wang Xiaofeng; Wang Langping; Wang Songyan; Wu Hongchen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 μs waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  19. Research on IGBT solid state switch

    CERN Document Server

    Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  20. A High Power Linear Solid State Pulser

    International Nuclear Information System (INIS)

    Boris Yen; Brent Davis; Rex Booth

    1999-01-01

    Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities

  1. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  2. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  3. Rechargeable sodium all-solid-state battery

    International Nuclear Information System (INIS)

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B.

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  4. Solid-State Thyratron Replacement. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Ian [Diversified Technologies, Inc., Bedford, MA

    2017-12-12

    Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was built in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.

  5. Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO{sub 2}-based solid-state solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Joong; Graetzel, Michael; Nazeeruddin, Md. Khaja [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Leventis, Henry C.; Haque, Saif A. [Department of Chemistry, Imperial College of Science Technology and Medicine, London SW72AZ (United Kingdom); Torres, Tomas [Departamento de Quimica Organica, Universidad Autonoma de Madrid (UAM), 28049 Madrid (Spain)

    2011-01-01

    In pursuit of panchromatic sensitizers for mesoporous TiO{sub 2}-based solid-state solar cells, a near-IR absorbing zinc phthalocyanine dye (coded TT1) was firstly adsorbed over relatively thin ({proportional_to}1 {mu}m) TiO{sub 2} mesoporous films and then a visible-light absorbing polymer [regioregular poly(3-hexylthiophene), P3HT] was incorporated into the mesopores as both a second sensitizer and a solid hole conductor. After optimizing some experimental parameters, these hybrid solid-state cells exhibited a clear panchromatic response, and an overall conversion efficiency of around 1% at full sun intensity. (author)

  6. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  7. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.

    Science.gov (United States)

    Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei

    2012-12-01

    We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.

  8. BOOK REVIEW: Solid State Physics: An Introduction

    Science.gov (United States)

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  9. Solid-State Modulators for RF and Fast Kickers

    CERN Document Server

    Cook, Edward; Brooksby, Craig A; Cassel, Richard; De Lamare, Jeffrey E; Gower, Edward J; Hawkins, Steven; Hickman, Bradley C; Nguyen, Minh N; Pappas, Chris

    2005-01-01

    As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  10. Solid-State Modulators for RF And Fast Kickers

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E.G.; Akana, G.L.; Gower, E.J.; Hawkins, S.A.; Hickman, B.C.; /LLNL, Livermore; Brooksby, C.A.; /NONE - BECHTEL NEVADA LAS VEGAS; Cassel, R.L.; de Lamare, J.E.; Nguyen, M.N.; Pappas, G.C.; /SLAC

    2006-03-14

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  11. SOLID-STATE MODULATORS FOR RF AND FAST KICKERS

    International Nuclear Information System (INIS)

    Cook, E G; Akana, G; Gower, E J; Hawkins, S A; Hickman, B C; Brooksby, C A; Cassel, R L; De Lamare, J E; Nguyen, M N; Pappas, G C

    2005-01-01

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems

  12. SOLID-STATE MODULATORS FOR RF AND FAST KICKERS

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E G; Akana, G; Gower, E J; Hawkins, S A; Hickman, B C; Brooksby, C A; Cassel, R L; De Lamare, J E; Nguyen, M N; Pappas, G C

    2005-05-05

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  13. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  14. Equations of state for the fully flexible WCA chains in the fluid and solid phases based on Wertheims-TPT2

    Science.gov (United States)

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2018-03-01

    Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.

  15. Equations of state for the fully flexible WCA chains in the fluid and solid phases based on Wertheims-TPT2.

    Science.gov (United States)

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2018-03-14

    Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.

  16. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries

    Science.gov (United States)

    Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua

    2018-06-01

    Garnet Li7La3Zr2O12 (LLZO) solid electrolytes recently have attracted tremendous interest as they have the potential to enable all solid-state lithium batteries (ASSLBs) owing to high ionic conductivity (10-3 to 10-4 S cm-1), negligible electronic transport, wide potential window (up to 9 V), and good chemical stability. Here we present the key issues and challenges of LLZO in the aspects of ion conduction property, interfacial compatibility, and stability in air. First, different preparation methods of LLZO are reviewed. Then, recent progress about the improvement of ionic conductivity and interfacial property between LLZO and electrodes are presented. Finally, we list some emerging LLZO-based solid-state batteries and provide perspectives for further research. The aim of this review is to summarize the up-to-date developments of LLZO and lead the direction for future development which could enable LLZO-based ASSLBs.

  17. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  18. A thermogravimetric analysis (TGA) method developed for estimating the stoichiometric ratio of solid-state {alpha}-cyclodextrin-based inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuxiang; Wang, Jinpeng; Bashari, Mohanad; Hu, Xiuting [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Feng, Tao [School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418 (China); Xu, Xueming [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Jin, Zhengyu, E-mail: jinlab2008@yahoo.com [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Tian, Yaoqi, E-mail: yqtian@jiangnan.edu.cn [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We develop a TGA method for the measurement of the stoichiometric ratio. Black-Right-Pointing-Pointer A series of formulas are deduced to calculate the stoichiometric ratio. Black-Right-Pointing-Pointer Four {alpha}-CD-based inclusion complexes were successfully prepared. Black-Right-Pointing-Pointer The developed method is applicable. - Abstract: An approach mainly based on thermogravimetric analysis (TGA) was developed to evaluate the stoichiometric ratio (SR, guest to host) of the guest-{alpha}-cyclodextrin (Guest-{alpha}-CD) inclusion complexes (4-cresol-{alpha}-CD, benzyl alcohol-{alpha}-CD, ferrocene-{alpha}-CD and decanoic acid-{alpha}-CD). The present data obtained from Fourier transform-infrared (FT-IR) spectroscopy showed that all the {alpha}-CD-based inclusion complexes were successfully prepared in a solid-state form. The stoichiometric ratios of {alpha}-CD to the relative guests (4-cresol, benzyl alcohol, ferrocene and decanoic acid) determined by the developed method were 1:1, 1:2, 2:1 and 1:2, respectively. These SR data were well demonstrated by the previously reported X-ray diffraction (XRD) method and the NMR confirmatory experiments, except the SR of decanoic acid with a larger size and longer chain was not consistent. It is, therefore, suggested that the TGA-based method is applicable to follow the stoichiometric ratio of the polycrystalline {alpha}-CD-based inclusion complexes with smaller and shorter chain guests.

  19. A thermogravimetric analysis (TGA) method developed for estimating the stoichiometric ratio of solid-state α-cyclodextrin-based inclusion complexes

    International Nuclear Information System (INIS)

    Bai, Yuxiang; Wang, Jinpeng; Bashari, Mohanad; Hu, Xiuting; Feng, Tao; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2012-01-01

    Highlights: ► We develop a TGA method for the measurement of the stoichiometric ratio. ► A series of formulas are deduced to calculate the stoichiometric ratio. ► Four α-CD-based inclusion complexes were successfully prepared. ► The developed method is applicable. - Abstract: An approach mainly based on thermogravimetric analysis (TGA) was developed to evaluate the stoichiometric ratio (SR, guest to host) of the guest–α-cyclodextrin (Guest-α-CD) inclusion complexes (4-cresol-α-CD, benzyl alcohol-α-CD, ferrocene-α-CD and decanoic acid-α-CD). The present data obtained from Fourier transform-infrared (FT-IR) spectroscopy showed that all the α-CD-based inclusion complexes were successfully prepared in a solid-state form. The stoichiometric ratios of α-CD to the relative guests (4-cresol, benzyl alcohol, ferrocene and decanoic acid) determined by the developed method were 1:1, 1:2, 2:1 and 1:2, respectively. These SR data were well demonstrated by the previously reported X-ray diffraction (XRD) method and the NMR confirmatory experiments, except the SR of decanoic acid with a larger size and longer chain was not consistent. It is, therefore, suggested that the TGA-based method is applicable to follow the stoichiometric ratio of the polycrystalline α-CD-based inclusion complexes with smaller and shorter chain guests.

  20. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  1. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  2. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  3. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  4. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    Science.gov (United States)

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  5. Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix.

    Science.gov (United States)

    Wang, Zhihua; Teng, Xu; Lu, Chao

    2013-02-19

    In this work, a universal chemiluminescence (CL) flow-through device suitable for various CL resonance energy transfer (CRET) systems has been successfully fabricated. Highly efficient CRET in solid-state photoactive organic molecules can be achieved by assembling them on the surface of layered double hydroxides (LDHs). We attribute these observations to the suppression of the intermolecular π-π stacking interactions among aromatic rings and the improvement of molecular orientation and planarity in the LDH matrix, enabling a remarkable increase in fluorescence lifetime and quantum yield of organic molecules. Under optimal conditions, using peroxynitrous acid-fluorescein dianion (FLUD) as a model CRET system, trace FLUD (10 μM) was assembled on the surface of LDHs. Peroxynitrous acid/nitrite could be assayed in the range of 1.0-500 μM, and the detection limit for peroxynitrous acid/nitrite (S/N = 3) was 0.6 μM. This CL flow-through device exhibited operational stability, high reproducibility, and long lifetime. While LDHs were immobilized in a flow-through device in the absence of FLUD, the detection limit for peroxynitrous acid/nitrite was 100 μM. On the other hand, FLUD at the same concentration can not enhance the CL intensity of peroxynitrous acid system. This fabricated CL flow-through column has been successfully applied to determine nitrite in sausage samples with recoveries of 98-102%. These satisfactory results demonstrated that our studies pave a novel way toward flow-through column-based CRET using solid-state organic molecules as acceptors for signal amplification.

  6. Pulsed, all solid-state light source in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Andersen, Martin; Johansson, Sandra

    We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser.......We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser....

  7. The solid-state structures of organic salts formed by calix[4]arene dihydroxyphosphonic acid with nucleic bases cations: adeninium, cytosinium, guaninium and uracilium

    KAUST Repository

    Shkurenko, Aleksander

    2018-02-19

    Calix[4]arene dihydroxyphosphonic acid has been demonstrated to possess an interesting range of biological properties, including atypical anti-cancer activity. The robustness of calix[4]arene dihydroxyphosphonic acid and its ubiquitous dimeric motif offers perspectives for pre-defined solid state complexation with small molecules. In the current article we describe co-crystals (organic salts) of calix[4]arene dihydroxyphosphonic acid with four nucleic base cations: adeninium, cytosinium, guaninium and uracilium. A number of characteristic interactions between the components in the four co-crystals are pointed out also using the Hirshfeld surface analysis. All the four co-crystals are based on layers of calix[4]arene dimers, alternating with layers of nucleic acid molecules. Two of the reported crystal structures (cytosinium and guaninium) are 1D channel-type structures, while the two others (adeninium and uracilium) represent 2D channel-type structures. In three out of four reported structures, interactions between the cations of nucleic bases are present generating 1D chains of cations. A constant motif is that the nucleic base is present in a type of cavity formed by one aromatic ring and a phosphonic acid moiety.

  8. Disturbance observer-based control of a dual-output LLC converter for solid-state lighting applications

    NARCIS (Netherlands)

    Roes, M.G.L.; Duarte, J.L.; Hendrix, M.A.M.

    2011-01-01

    Feedback sensor isolation is often an expensive necessity in power converters, for reasons of safety and electromagnetic compatibility. A disturbance observer-based control strategy for a dual-output resonant converter is proposed to overcome this problem. Current control of two LED loads is

  9. Observations on the reliability of COTS-device-based solid state data recorders operating in low-earth orbit

    International Nuclear Information System (INIS)

    Underwood, C.I.

    1999-01-01

    This paper presents the results of Surrey Space Centre's experience in using different coding schemes and hardware configurations to protect data and protect data and software stored in COTS-device (Commercial-Off-The-Shelf) based memories on-board operational spacecraft in low Earth orbit. (author)

  10. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  11. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  12. Fast-neutron solid-state dosimeter

    International Nuclear Information System (INIS)

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-01-01

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300 0 C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO 4 :Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot-pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150 0 C prior to first use dosimeters

  13. Theoretical solid state physics, v.2

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 2 deals with the electron-lattice interaction and the effect of lattice imperfections. Conductivity, semiconductors, and luminescence are discussed, with emphasis on the basic physical problems and the various phenomena derived from them. The theoretical basis of interaction between electrons and lattices is considered, along with basic concepts of conduction theory, scattering of electrons by imperfections, and radiationless transitions. This volume is comprised of 19 chapters and begins with an overview of the coupling of electrons and the crystal latt

  14. Solid State Research, 1980:4

    Science.gov (United States)

    1980-10-31

    Fetterman G. A. Koepf* P. F. Goldsmith6 B.J. Clifton D. Buhl* N. R. Eriekson" D.D. Peck N. McAvoy* P. F. Tannenwald Accepted by Science St40... Fetterman 22 **** -^m^m-i^jm^ -«%, j». ■*** REFERENCES 1. Solid State Research Report, Lincoln Laboratory, M.I.T. (1980:2), pp. 11-12. DTK? AD-A092724...17. M.G. Raymer, J. Mostowski, and J. L. Carlsten, Phys. Rev. A 19, 2304(1979). - 18. W. A.M. Blumberg, U.R. Fetterman , D.D. Peck, and P.F

  15. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  16. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    International Nuclear Information System (INIS)

    Kulkarni, A.; Bak, M. S.; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T.

    2015-01-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO 3 ) 4 ⋅ 5H 2 O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories

  17. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    Science.gov (United States)

    Kulkarni, A.; Ha, S.; Joshirao, P.; Manchanda, V.; Bak, M. S.; Kim, T.

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ṡ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  18. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Bak, M. S., E-mail: tkim@skku.edu, E-mail: moonsoo@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ha, S. [SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Joshirao, P.; Manchanda, V. [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, T., E-mail: tkim@skku.edu, E-mail: moonsoo@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  19. Particle identification in a wide dynamic range based on pulse-shape analysis with solid-state detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Hilscher, D.; Ortlepp, H.G.

    1994-04-01

    Heavy ions detected in a planar silicon detector were identified by exploiting a recently proposed combination of the pulse-shape and the time-of-flight techniques. We were able to resolve charge numbers up to Z = 16 within a wide dynamic range of ∼ 1:5, and to identify even isotopes for the elements up to Magnesium. The simple scheme of signal processing is based on conventional electronics and cheap enough to be exploited in large multidetector arrays. (orig.)

  20. Study of charge transfer processes in porphyrins- and phthalocyanins-based materials: from the liquid phase to the solid state

    International Nuclear Information System (INIS)

    Fournier, Thierry

    1994-01-01

    In order to efficiently conceive and build supramolecular materials for molecular electronics and optoelectronics, one need to have access to a large data base on the interactions between the elementary pieces of the material. Such a data base can be established only through the study of model Systems and model media. Oligomers of porphyrins and phthalocyanines constitute models of choice: due to the chemical versatility of the compounds, their physical and photophysical properties can be adjusted to produce a targeted function. The first part of this thesis is concerned with double- and triple-Decker mixed porphyrin and Phthalocyanines sandwich compounds of cerium. Then we study the photophysical properties of complexes formed by pairing in solution porphyrins and phthalocyanines bearing oppositely charged substituents. The charge transfer reactions and geminated recombinations are investigated by time-resolved absorption spectroscopy (from the femto- to millisecond time scales) for excited complexes either in solution, or confined in sol-gel matrices or in Langmuir-Blodgett films. The results obtained in the various media are compared and analysed by the Marcus theory. They allow to show that, for strongly coupled complexes, the solvent does not play any key role in the forward and backward electron transfer. We conclude this work by introducing a few targeted projects based on of the photophysical properties of these complexes, namely photodynamic therapy of cancers, nonlinear optics and the generation of photovoltage. (author) [fr

  1. Coulomb states in atoms and solids

    International Nuclear Information System (INIS)

    Ortalano, D.M.

    1988-05-01

    In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs

  2. Color Rendering Index Thermal Stability Improvement of Glass-Based Phosphor-Converted White Light-Emitting Diodes for Solid-State Lighting

    Directory of Open Access Journals (Sweden)

    Chun-Chin Tsai

    2014-01-01

    Full Text Available High color rendering index performance has been required for phosphor-converted warm-white light-emitting diodes (PC-WWLEDs in lighting industry. The characteristics of low-temperature fabricated phosphor (yellow: Ce3+:YAG, green: Tb3+:YAG, and red: CaAlClSiN3:Eu2+ doped glass were presented for applications to high color rendering index warm-white-light-emitting diodes. Color coordinates (x, y = (0.36, 0.29, quantum yield (QY = 55.6%, color rending index (CRI = 85.3, and correlated color temperature (CCT = 3923 K were characterized. Glass-based PC-WWLEDs was found able to maintain good thermal stability for long-time high-temperature operation. QY decay, CRI remenance, and chromaticity shift were also analyzed for glass- and silicone-based high-power PC-WLEDs by thermal aging at 150°C and 250°C for industrial test standard’s aging time 1008 hours. Better than the silicone’s, thermal stability of glass-based PC-WLEDs has been improved. The resulted high color rendering index (CRI glass phosphor potentially can be used as a phosphor layer for high-performance and low-cost PC-WLEDs used in next-generation indoor solid-state lighting applications.

  3. Study of a solid state micro-dosemeter based on a monolithic silicon telescope: Irradiations with low-energy neutrons and direct comparison with a cylindrical TEPC

    International Nuclear Information System (INIS)

    Agosteo, S.; Colautti, P.; Fanton, I.; Fazzi, A.; Introini, M. V.; Moro, D.; Pola, A.; Varoli, V.

    2011-01-01

    A silicon device based on the monolithic silicon telescope technology coupled to a tissue-equivalent converter was proposed and investigated for solid state microdosimetry. The detector is constituted by a DE stage about 2 μm in thickness geometrically segmented in a matrix of micrometric diodes and a residual-energy measurement stage E about 500 μm in thickness. Each thin diode has a cylindrical sensitive volume 9 μm in nominal diameter, similar to that of a cylindrical tissue-equivalent proportional counter (TEPC). The silicon device and a cylindrical TEPC were irradiated in the same experimental conditions with quasi-monoenergetic neutrons of energy between 0.64 and 2.3 MeV at the INFN-Legnaro National Laboratories (LNLINFN, Legnaro (Italy)). The aim was to study the capability of the silicon-based system of reproducing microdosimetric spectra similar to those measured by a reference micro-dosemeter. The TEPC was set in order to simulate a tissue site about 2 μm in diameter. The spectra of the energy imparted to the ΔE stage of the silicon telescope were corrected for tissue-equivalence through an optimized procedure that exploits the information from the residual energy measurement stage E. A geometrical correction based on parametric criteria for shape-equivalence was also applied. The agreement between the dose distributions of lineal energy and the corresponding mean values is satisfactory at each neutron energy considered. (authors)

  4. All-solid state, flexible, high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi2S4 nanosheets.

    Science.gov (United States)

    Moosavifard, Seyyed Ebrahim; Shamsi, Javad; Altafi, Mohammad Kazem; Moosavifard, Zeinab Sadat

    2016-11-18

    3D LSG/CoNi 2 S 4 //LSG interdigitated microelectrodes have been firstly developed by a facile, scalable and low cost process for all-solid-state, flexible integrated asymmetric micro-supercapacitors. These devices can achieve energy densities of up to 49 W h l -1 which is comparable to those of lead acid batteries.

  5. Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells.

    Science.gov (United States)

    Guo, Jinhong; Chen, Liang; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-03-01

    Portable diagnostic devices have emerged as important tools in various biomedical applications since they can provide an effective solution for low-cost and rapid clinical diagnosis. In this paper, we present a micropore-based resistive cytometer for the detection and enumeration of biological cells. The proposed device was fabricated on a silicon wafer by a standard microelectromechanical system processing technology, which enables a mass production of the proposed chip. The working principle of this cytometer is based upon a bias potential modulated pulse, originating from the biological particle's physical blockage of the micropore. Polystyrene particles of different sizes (7, 10, and 16 μm) were used to test and calibrate the proposed device. A finite element simulation was developed to predict the bias potential modulated pulse (peak amplitude vs. pulse bandwidth), which can provide critical insight into the design of this microfluidic flow cytometer. Furthermore, HeLa cells (a type of tumor cell lines) spiked in a suspension of blood cells, including red blood cells and white blood cells, were used to assess the performance for detecting and counting tumor cells. The proposed microfluidic flow cytometer is able to provide a promising platform to address the current unmet need for point-of-care clinical diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel mechanisms for solid-state processing and grain growth with microstructure alignment in alnico-8 based permanent magnets

    Science.gov (United States)

    Kassen, Aaron G.; White, Emma M. H.; Hu, Liangfa; Tang, Wei; Zhou, Lin; Kramer, Matthew J.; Anderson, Iver E.

    2018-05-01

    An estimated 750,000 new hybrid electric and plug-in battery vehicles, most with permanent magnet synchronous alternating current (PMAC) drive motors, took to the road in 2016 alone. Accompanied by 40% year over year growth in the EV market significant challenges exist in producing large quantities of permanent magnets (on the order of tens of millions) for reliable, low-cost traction motors [IE Agency, Energy Technology Perspectives (2017)]. Since the rare earth permanent magnet (REPM) market is essentially 100% net import reliant in the United States and has proven to have an unstable cost and supply structure in recent years, a replacement RE-free PM material must be designed or selected, fully developed, and implemented. Alnico, with its high saturation magnetization and excellent thermal stability, appears to be uniquely suited for this task. Further, while alnico typically has been considered a relatively low coercivity hard magnet, strides have been made to increase the coercivity to levels suitable for traction drive motors [W Tang, IEEE Trans. Magn., 51 (2015)]. If a simple non-cast approach for achieving near [001] easy axis grain aligned permanent magnets can be found, this would allow mass-produced final-shape anisotropic high energy product magnets suitable for usage in compact high RPM rotor designs. Therefore, a powder metallurgical approach is being explored that uses classic compression molding with "de-bind and sinter" methods, where a novel applied uniaxial loading, and an applied magnetic field may create final-shape magnets with highly textured resulting microstructures by two different mechanisms. Results indicate a positive correlation between applied uniaxial load and resulting texture (Fig. 1), along with benefits from using an applied magnetic field for improved texture, as well. The apparent mechanisms and resulting properties will be described using closed loop hysteresisgraph measurements, EBSD orientation mapping, and high

  7. Facilitated ion transport in all-solid-state flexible supercapacitors.

    Science.gov (United States)

    Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok

    2011-09-27

    The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society

  8. Gate errors in solid-state quantum-computer architectures

    International Nuclear Information System (INIS)

    Hu Xuedong; Das Sarma, S.

    2002-01-01

    We theoretically consider possible errors in solid-state quantum computation due to the interplay of the complex solid-state environment and gate imperfections. In particular, we study two examples of gate operations in the opposite ends of the gate speed spectrum, an adiabatic gate operation in electron-spin-based quantum dot quantum computation and a sudden gate operation in Cooper-pair-box superconducting quantum computation. We evaluate quantitatively the nonadiabatic operation of a two-qubit gate in a two-electron double quantum dot. We also analyze the nonsudden pulse gate in a Cooper-pair-box-based quantum-computer model. In both cases our numerical results show strong influences of the higher excited states of the system on the gate operation, clearly demonstrating the importance of a detailed understanding of the relevant Hilbert-space structure on the quantum-computer operations

  9. Solid state reactions and diffusion processes during rapid thermal processing of Cu-In-S based semiconductors

    International Nuclear Information System (INIS)

    Enzenhofer, T.

    2007-01-01

    In this thesis thin layers of the system Cu-In-S were studied for the photovoltaic application by means of structural and electro-optical procedures. The effect of small quantities of group II elements on the absorber and component properties could be explained by a widely appointed study. The motivation to insert extraneous elements into CuInS 2 absorber layers results from the too low zero-current voltage of CuInS 2 based solar cells. It could be shown that by addition of small quantities of Zn and/or Mg ( 2 solar cells aimed efficiencies, which were also determined for the reference system. As limiting factor in the doped system the zero-current has been proved. The intensive analysis of the absorber properties showed the the extraneous atoms effect in the bulk and on the surface different modifications

  10. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  11. Unitary transformations in solid state physics

    International Nuclear Information System (INIS)

    Wagner, M.

    1986-01-01

    The main emphasis of this book is on the practical application of unitary transformations to problems in solid state physics. This is a method used in the field of nonadiabatic electron-phonon phenomena where the Born-Oppenheimer approximation is no longer applicable. The book is intended as a tool for those who want to apply unitary transformations quickly and on a more elementary level and also for those who want to use this method for more involved problems. The book is divided into 6 chapters. The first three chapters are concerned with presenting quick applications of unitary transformations and chapter 4 presents a more systematic procedure. The last two chapters contain the major known examples of the utilization of unitary transformations in solid state physics, including such highlights as the Froehlich and the Fulton-Gouterman transformations. The book is supplemented by extended tables of unitary transformations, whose properties and peculiarities are also listed. This tabulated material is unique and will be of great practical use to those applying the method of unitary transformations in their work. (Auth.)

  12. An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Junnian; Peng, Tianyou; Shi, Wenye; Li, Renjie; Xia, Jiangbin

    2013-01-01

    A novel binary ionic liquid electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and binary ionic liquids, which is composed of 1-butyl-3-methylimidazolium iodide (BMII) and 1-butyl-3-methylimidazolium thiocyanate (BMISCN), is developed for dye-sensitized solar cells (DSSCs). It is found that incorporation of LiTFSI as charge transfer promoter with BMII has positive effect on the interfacial charge transfer of the dye/TiO 2 film, further addition of BMISCN into the above composite electrolyte can take advantage of its low viscosity to enhance the ionic conductivity and reduce the interfacial charge transfer resistance, and a photovoltaic conversion efficiency of 5.55% is obtained from the solar cell fabricated with the optimized binary ionic liquid electrolyte without iodine participation under AM 1.5 illumination at 100 mW cm −2 , with a 108.6% improvement in the efficiency with lower resistance and higher ionic conductivity as compared to the solar cell fabricated with single BMII ionic liquid-based electrolyte. The above results should be attributed to the reduced charge recombination and the effective interfacial charge transfer in the solar cell

  13. Solid state and solution photoluminescence properties of a novel meso–meso-linked porphyrin dimer Schiff base ligand and its metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tümer, Mehmet, E-mail: mtumer@ksu.edu.tr; Ali Güngör, S.; Raşit Çiftaslan, A.

    2016-02-15

    We prepared novel meso-meso linked 4-bromo-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (HL) and its Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II) transition metal complexes. Structural characterizations of the ligand (HL) and its metal complexes were done by the spectroscopic and analytical methods. The electronic absorption and photoluminescence spectra of the ligand, its metal complexes and the metal salts used for preparing of the complexes were investigated in the solid and solution state. The emission and excitation data of the CuCl{sub 2}·2H{sub 2}O in both solid and the solution state were obsrved in the longest wavelenght. On the other hand, the emission value of the ZnCl{sub 2} salt was shown at the shortest wavelenght. The emission values of the [LCu{sub 4}Cl{sub 3}(H{sub 2}O){sub 2}]H{sub 2}O and LPt{sub 4}Cl{sub 3} complexes in the solid state are bigger than the other metal salts. The ligand and its metal complexes show the very interesting absorption spectral properties in the solid state. Metal complexes have less number Q bands in the solid state. The electrochemical properties of the ligand and its metal complexes were investigated and found that they show the reversible or irreversible redox processes at the different scan rates. Thermal properties of the compopunds were investigated in the 20–900 °C temperature range.

  14. Study of the pore filling fraction of carbazole-based hole-transporting materials in solid-state dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Marwa Ben Manaa

    2016-07-01

    Full Text Available Carbazole-based molecular glasses have emerged as a promising alternative to the widely used hole-transporting materials (HTM spiro-OMeTAD in solid-state dye-sensitized solar cells (DSSCs. The pore filling fraction (PFF of the mesoporous TiO2 layer by the HTM appears as a key parameter determining the final efficiency of a DSSC. In this work, the pore-filling properties of a family of carbazole-based HTMs are investigated for the first time and the photovoltaic behavior of DSSC devices (fabricated using the D102 dye is discussed in light of the present findings. It is found that N-aryl substituted 3,6-bis(diphenylaminyl-carbazole derivatives exhibit relatively low PFF of ca. 60%. Methoxy groups on the diphenylamine moieties have little influence on the PFF, indicating that the strong enhancement in power conversion efficiency (PCE is not related to an improved filling of the pores by the HTM. N-alkylated HTMs lead to higher PFF, increasing with the alkyl chain length, up to 78%.

  15. A solid-state dielectric elastomer switch for soft logic

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Nixon [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); O' Brien, Benjamin M. [StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Anderson, Iain A. [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Department of Engineering Science, School of Engineering, The University of Auckland, Level 3, 70 Symonds Street, Auckland 1010 (New Zealand)

    2016-03-07

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  16. A solid-state dielectric elastomer switch for soft logic

    International Nuclear Information System (INIS)

    Chau, Nixon; Slipher, Geoffrey A.; Mrozek, Randy A.; O'Brien, Benjamin M.; Anderson, Iain A.

    2016-01-01

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  17. Solid state electrolytes for all-solid-state 3D lithium-ion batteries

    NARCIS (Netherlands)

    Kokal, I.

    2012-01-01

    The focus of this Ph.D. thesis is to understand the lithium ion motion and to enhance the Li-ionic conductivities in commonly known solid state lithium ion conductors by changing the structural properties and preparation methods. In addition, the feasibility for practical utilization of several

  18. Progress in solid state dye laser development

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, R.E.

    1990-01-01

    A triaxial flashlamp (15 cm) was used to optically pump laser rods prepared from an acrylate based copolymer (0.95 cm O.D. {times} 10.0 cm L.). The performance of 13 laser dyes incorporated into this polymeric solid host is reported. The best lasing performance was obtained with sulforhodamine-B, with a calculated slope efficiency of 0.52% and a maximum single pulse output energy of 580 mJ. A commercially available fluorescent polymeric material was also evaluated. 12 refs., 2 figs.

  19. Solid state gas sensors. Industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Maximilian [Siemens AG, Muenchen (Germany). Corporate Technology; Lehmann, Mirko (eds.) [Innovative Sensor Technology (IST) AG, Wattwil (Switzerland)

    2012-11-01

    Written by experts. Richly illustrated. Encourages future research and investments in the fascinating field of gas sensors. Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.

  20. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  1. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  2. Hyperbranched polymers from polymerization in solid state

    International Nuclear Information System (INIS)

    Tomaz, Vivian A.; Silva, Rafael; Muniz, Edvani C.; Rubira, Adley F.

    2009-01-01

    The macroscopic properties of polymers are directly related to the chemical characteristics of the monomeric units and also with the geometric arrangement of polymer chains. Thus, polymers were synthesized from two well-known chelators EDTA and EDA. We evaluated the conditions for the polymerization of the precursors in the solid state. The polymerization was carried out varying the proportions of reagents, aiming the polymers with different degrees of chain branching and the materials were characterized by FTIR. The materials obtained from the best condition for synthesis were purified by size-exclusion chromatography of and were subjected to characterization by FTIR and NMR of 1 H and 13 C. The content of end groups in these samples was determined by back titration. (author)

  3. Bonding, structure and solid-state chemistry

    CERN Document Server

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  4. A solid state lightning propagation speed sensor

    Science.gov (United States)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.

  5. Solid-state lighting technology perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  6. Electronically shielded solid state charged particle detector

    International Nuclear Information System (INIS)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  7. Kinetic study of solid-state processes

    International Nuclear Information System (INIS)

    Malek, Jiri; Mitsuhashi, Takefumi

    2003-01-01

    A simple method for kinetic analysis of solid-state processes has been developed and the criteria capable of classifying different processes are explored. They provide a useful tool for the determination of the most suitable kinetic model. The method has been applied to the analysis of calorimetric data corresponding to the crystallization processes in amorphous ZrO 2 . It is found that the crystallization kinetics of amorphous powder sample exhibits a complex behavior under non-isothermal conditions. A two-parameter model provides a satisfactory description of the crystallization process for isothermal and non-isothermal conditions. This enables better control of crystallization extent in fine ZrO 2 powders that is important for preparation of zirconia ceramics with defined properties. (author)

  8. Nanoengineering for solid-state lighting.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  9. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  10. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes

    Science.gov (United States)

    He, Xin; Yang, Wenyao; Mao, Xiling; Xu, Lu; Zhou, Yujiu; Chen, Yan; Zhao, Yuetao; Yang, Yajie; Xu, Jianhua

    2018-02-01

    Flexible supercapacitors that maintain electrochemical performance under deformation have attracted much attention for the potential application in the flexible electronics market. A compressible and flexible free-standing electrodes sponge and all-solid-state symmetric supercapacitors based on as-prepared electrodes are presented. The carbon nanotubes (CNTs) framework is synthesized by chemical vapor deposition (CVD) method, and then composited with poly (3,4-ethylenedioxythiophene) PEDOT by the electrodeposition. This CNTs/PEDOT sponge electrode shows highest mass-specific capacitance of 147 Fg-1 at 0.5 A g-1, tuned by the PEDOT mass loading, and exhibits good cyclic stability with the evidence that more than 95% of capacitance is remained after 3000 cycles. Furthermore, the symmetric supercapacitor shows the highest energy density of 12.6 Wh kg-1 under the power density of 1 kW kg-1 and highest power density of 10.2 kW kg-1 with energy density of 8 Wh kg-1, which exhibits both high energy density and power density. The electrochemical performance of composite electrode also indicates that the operate voltage of device could be extend to 1.4 V by the n-doping and p-doping process in different potential of PEDOT component. This flexible supercapacitor maintains stable electrochemical performance working on different bending condition, which shows promising prospect for wearable energy storage applications.

  11. Combination is the dominant free radical process initiated in DNA by ionizing radiation: an overview based on solid-state EPR studies

    International Nuclear Information System (INIS)

    Bernhard, W.A.; Mroczka, N.; Barnes, J.

    1994-01-01

    An overview of the early processes initiated in DNA by ionizing radiation is given from the perspective of studies done by solid-state EPR with the focus on radical combination. Comparisons with free radical formation and trapping in crystalline pyrimidines (1-methylcytosine, thymine, 1-methylthymine, 1-methyluracil, and cytosine monohydrate) provide insight into the processes occurring in DNA. Between 25 and 50% of low LET ionizations in fully hydrated DNA at 4 K lead to trapped free radicals, the remaining unobserved radicals are assumed to have combined. The majority of the radicals trapped in DNA at 4 K (G ∼ 0.3 μmol/J) are believed to be in clusters. Based on the value of G, it is argued that the range of holes and bound electrons in DNA at 4 K are, in the main, limited to within the cluster diameter, ∼ 4 nm. Proton transfer across hydrogen bonds promotes radical trapping and inhibits combination but is thermally reversible. Warming to room temperature mobilizes the reversibly trapped radicals and gives additional combination (50-80% of those trapped at 4 K). The yield of free radicals, after anneal, is sufficient to account for the yield of single-strand breaks produced by direct effects. (Author)

  12. In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite

    Science.gov (United States)

    Lin, Yingxi; Zhang, Haiyan; Deng, Wentao; Zhang, Danfeng; Li, Na; Wu, Qibai; He, Chunhua

    2018-04-01

    For the development of wearable electronic devices, it is crucial to develop energy storage components combining high-capacity and flexibility. Herein, an all-solid-state supercapacitor is prepared through an in-situ "growth and wrapping" method. The electrode contains polyaniline deposited on a carbon woven fabric and wrapped with a graphene-based envelop. The hybrid electrode exhibits excellent mechanical and electrochemical performance. The optimized few layer graphene wrapping layer provides for a conductive network, which effectively enhances the cycling stability as 88.9% of the starting capacitance is maintained after 5000 charge/discharge cycles. Furthermore, the assembled device delivers a high areal capacity (of 790 F cm-2) at the current density of 1 A cm-2, a high areal energy (28.21 uWh cm-2) at the power densities of 0.12 mW cm-2 and shows no significant decrease in the performance with a bending angle of 180°. This unique flexible supercapacitor thus exhibits great potential for wearable electronics.

  13. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...

  14. Peakr: simulating solid-state NMR spectra of proteins

    International Nuclear Information System (INIS)

    Schneider, Robert; Odronitz, Florian; Hammesfahr, Bjorn; Hellkamp, Marcel; Kollmar, Martin

    2013-01-01

    When analyzing solid-state nuclear magnetic resonance (NMR) spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, for example, chemical shift predictions and structural models can be of considerable help. Existing solutions are typically limited in the type of experiment they can consider and difficult to adapt to different settings. Here, we present Peakr, a software to simulate solid-state NMR spectra of proteins. It can generate simulated spectra based on numerous common types of internuclear correlations relevant for assignment and structure elucidation, can compare simulated and experimental spectra and produces lists and visualizations useful for analyzing measured spectra. Compared with other solutions, it is fast, versatile and user friendly. (authors)

  15. 2006 Fundamental Research Underlying Solid-State Lighting: Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kini, Arvind [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kelley, Dick [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-02-01

    This volume highlights the scientific content of the 2006 Fundamental Research Underlying Solid-State Lighting Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) in the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). This meeting is the second in a series of research theme-based Contractors Meetings and will focus on BES/DMS&E-funded research that underpins solid-state lighting technology. The meeting will feature research that cuts across several DMS&E core research program areas. The major programmatic emphasis is on developing a fundamental scientific base, in terms of new concepts and new materials that could be used or mimicked in designing novel materials, processes or devices.

  16. Assessment of all-solid-state lithium-ion batteries

    Science.gov (United States)

    Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.

    2018-07-01

    All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.

  17. In Situ Lipolysis and Synchrotron Small-Angle X-ray Scattering for the Direct Determination of the Precipitation and Solid-State Form of a Poorly Water-Soluble Drug During Digestion of a Lipid-Based Formulation

    DEFF Research Database (Denmark)

    Khan, Jamal; Hawley, Adrian; Rades, Thomas

    2016-01-01

    In situ lipolysis and synchrotron small-angle X-ray scattering (SAXS) were used to directly detect and elucidate the solid-state form of precipitated fenofibrate from the digestion of a model lipid-based formulation (LBF). This method was developed in light of recent findings that indicate variab...... on drugs, and experimental conditions, which are anticipated to produce altered solid-state forms upon the precipitation of drug (i.e., polymorphs, amorphous forms, and salts). © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci....

  18. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  19. Study of the optical properties and the carbonaceous clusters in thermally-annealed CR-39 and Makrofol-E polymer-based solid-state nuclear track detectors

    International Nuclear Information System (INIS)

    El Ghazaly, M.

    2012-01-01

    The induced modifications in the optical properties of CR-39 and Makrofol-E polymer-based solid state nuclear track detectors were investigated after thermal annealing at a temperature of 200 .deg. C for different durations. The optical properties were studied using an UV-visible spectrophotometer. From the UV-visible spectra, the direct and the indirect optical band gaps, Urbach's energies, and the number of carbon atoms in a cluster were determined. The absorbance of CR-39 plastic detector was found to decrease with increasing annealing time while the absorbance of Makrofol-E decreased with increasing annealing time. The width of the tail of localized states in the band gap ΔE was evaluated with the Urbach method. The optical energy band gaps were obtained from the direct and the indirect allowed transitions in K-space. Both of the direct and the indirect band gaps of the annealed CR-39 detector decrease with increasing annealing time while in Makrofol-E, they decreased after an annealing time of 15 minute and then showed no remarkable changes for a prolonged annealing times. Urbach's energy decreased significantly for both CR-39 and Makrofol-E with increasing annealing time. The number of carbon atoms in a cluster increased in the CR-39 detector with increasing annealing time while it decreased with increasing annealing time for Makrofol-E. We may conclude that the CR-39 detector undergoes greater modifications than the Makrofol-E detector upon thermal annealing at 200 .deg. C. In conclusion, the induced modifications in the optical properties of CR-39 and Makrofol-E are correlated with the temperature and the duration of annealing.

  20. State of the art of solid state dosimetry

    International Nuclear Information System (INIS)

    Souza, Susana O.; Yamamoto, Takayoshi; D'Errico, Francesco

    2014-01-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed

  1. Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors

    Science.gov (United States)

    Pendashteh, Afshin; Senokos, Evgeny; Palma, Jesus; Anderson, Marc; Vilatela, Juan J.; Marcilla, Rebeca

    2017-12-01

    Supercapacitors capable of providing high voltage, energy and power density but yet light, low volume occupying, flexible and mechanically robust are highly interesting and demanded for portable applications. Herein, freestanding flexible hybrid electrodes based on MnO2 nanoparticles grown on macroscopic carbon nanotube fibers (CNTf-MnO2) were fabricated, without the need of any metallic current collector. The CNTf, a support with excellent electrical conductivity, mechanical stability, and appropriate pore structure, was homogeneously decorated with porous akhtenskite ɛ-MnO2 nanoparticles produced via electrodeposition in an optimized organic-aqueous mixture. Electrochemical properties of these decorated fibers were evaluated in different electrolytes including a neutral aqueous solution and a pure 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (PYR14TFSI). This comparison helps discriminate the various contributions to the total capacitance: (surface) Faradaic and non-Faradaic processes, improved wetting by aqueous electrolytes. Accordingly, symmetric supercapacitors with PYR14TFSI led to a high specific energy of 36 Wh· kgMnO2-1 (16 Wh·kg-1 including the weight of CNTf) and real specific power of 17 kW· kgMnO2-1 (7.5 kW kg-1) at 3.0 V with excellent cycling stability. Moreover, flexible all solid-state supercapacitors were fabricated using PYR14TFSI-based polymer electrolyte, exhibiting maximum energy density of 21 Wh·kg-1 and maximum power density of 8 kW kg-1 normalized by total active material.

  2. Solid state sodium cells. Faststof natriumbatterier

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. [eds.

    1989-04-15

    The report describes the results from the project: ''Secondary Sodium Cells with Intercalation Electrodes'' which was financed by the Danish Department of Energy. The work was carried out by the Solid State Electrochemistry Group at the Technical University of Denmark which is formed by collaborators from the Institute of Physical Chemistry and Physics Laboratory III. The use of sodium has several advantages in theory compared to lithium systems: Sodium is much more abundant and lower priced than lithium, it may be easier to find solid electrolytes of sufficiently high conductivity, sodium forms no alloy with aluminium thereby making it possible to use this metal for current collectors instead of the costlier and heavier nickel. The softness of sodium metal may make it easier to achieve and maintain contact to other components in the battery during repeated cycling. This might be of importance for room temperature operation especially. Results from the project have primarily been published in the form of articles in international scientific journals and as contributions to monographs. Copies of these articles form the backbone of the report together with a short commentary to each article. Also included in the report are some general observations, as well as results that are unsuited for publication (e.g. unsuccessful experiments) but which may still contain relevant information for other experimental workers. Lastly, the report includes results on several intercalation compounds that will be published at a later stage as well as some details about the experimental equipment. The report is divided into three main sections, Intercalation Cathode Materials, Polymer Electrolytes and Battery Cycling Equipment. (AB).

  3. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    Science.gov (United States)

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  4. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  5. Electron correlations in solid state physics

    International Nuclear Information System (INIS)

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t'-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t'-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a ''magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the ''magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of ''hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies

  6. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  7. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  8. Solid-State Ultracapacitor for Improved Energy Storage

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  9. Performance of a 229Thorium solid-state nuclear clock

    International Nuclear Information System (INIS)

    Kazakov, G A; Schreitl, M; Winkler, G; Schumm, T; Litvinov, A N; Romanenko, V I; Yatsenko, L P; Romanenko, A V

    2012-01-01

    The 7.8 eV nuclear isomer transition in 229 thorium has been suggested as a clock transition in a new type of optical frequency standard. Here we discuss the construction of a ‘solid-state nuclear clock’ from thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of calcium fluoride. At liquid nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the thorium nuclei to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose clock stabilization based on a fluorescence spectroscopy method and present optimized operation parameters. Taking advantage of the large number of quantum oscillators under continuous interrogation, a fractional instability level of 10 −19 might be reached within the solid-state approach. (paper)

  10. Modular compact solid-state modulators for particle accelerators

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  11. UV sensitivity of various solid state detectors

    International Nuclear Information System (INIS)

    Knezevic, Zeljka; Ranogajec-Komor, Maria; Miljanic, Saveta

    2008-01-01

    Full text: The light sensitivity is an important characteristic of solid state passive dosimeters used in individual, clinical and environmental dosimetry. Light sensitivity stands for the response directly induced by visible or UV light in a fully annealed material. For the above mentioned applications a negligible light sensitivity is an advantage. However, high light sensitivity and linear response allows the use of detectors as UV dosimeters. For this purpose various TL detectors and the glass element of the RPL dosemeter type SC-1 were systematically investigated after exposure to UV light (254 and 366 nm) as a function of time. The following solid state detectors were investigated relative to TLD-100: Li 2 B 4 O 7 :Cu,Ag,P LiF:Mg,Cu,P, LiF:Mg,Cu,Si, Al 2 O 3 :C and the glass element of RPL dosimeter. UV irradiations were performed with Camag UV lamp at 254 nm and at 366 nm. The illumination times were 5, 10 and 20 minutes. Day light illumination was also carried out at room temperature over time period of several hours up to 2 weeks. The UV light response of each detector was compared to the response obtained after irradiation with 137 Cs. Al 2 O 3 :C, showed high light sensitivity; after 10 minutes illumination with 254 nm UV light the response was equivalent to 130 mGy 137 Cs gamma irradiation. The 254 nm UV response of LiF:Mg,Cu,P (GR-200 A), as well as TLD-700H and Li 2 B 4 O 7 :Cu,Ag,P were proportional to the time of illumination. The responses after 10 min UV illumination were equivalent to 0.001 mGy, 0.01 mGy and 0.1 mGy 137 Cs gamma irradiation, respectively. The complete SC-1 RPL dosimeter is insensitive to light because the glass element is encapsulated in light protected holder throughout the automatic evaluation process following the annealing (irradiation, preheat, readout). The responses of the previously annealed glass element after 20 min illumination with 254 nm and 366 nm UV light were equivalent to 45μSv and 3 μSv of 137 Cs gamma

  12. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  13. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m 2 g −1 ) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10 −3 S cm −1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g −1 , ∼39 Wh kg −1 and ∼19 kW kg −1 , respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10 4 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel.

  14. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  15. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Khudaish, Emad A.; Al-Ajmi, Khawla Y.; Al-Harthi, Salim H.

    2014-01-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy) 3 ] 3+/2+ couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage

  16. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Khudaish, Emad A., E-mail: ejoudi@squ.edu.om [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Ajmi, Khawla Y. [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Harthi, Salim H. [Sultan Qaboos University, College of Science, Department of Physics, PO Box 36, PC 123 Muscat (Oman)

    2014-08-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy){sub 3}]{sup 3+/2+} couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage.

  17. A risk-based statistical investigation of the quantification of polymorphic purity of a pharmaceutical candidate by solid-state 19F NMR.

    Science.gov (United States)

    Barry, Samantha J; Pham, Tran N; Borman, Phil J; Edwards, Andrew J; Watson, Simon A

    2012-01-27

    The DMAIC (Define, Measure, Analyse, Improve and Control) framework and associated statistical tools have been applied to both identify and reduce variability observed in a quantitative (19)F solid-state NMR (SSNMR) analytical method. The method had been developed to quantify levels of an additional polymorph (Form 3) in batches of an active pharmaceutical ingredient (API), where Form 1 is the predominant polymorph. In order to validate analyses of the polymorphic form, a single batch of API was used as a standard each time the method was used. The level of Form 3 in this standard was observed to gradually increase over time, the effect not being immediately apparent due to method variability. In order to determine the cause of this unexpected increase and to reduce method variability, a risk-based statistical investigation was performed to identify potential factors which could be responsible for these effects. Factors identified by the risk assessment were investigated using a series of designed experiments to gain a greater understanding of the method. The increase of the level of Form 3 in the standard was primarily found to correlate with the number of repeat analyses, an effect not previously reported in SSNMR literature. Differences in data processing (phasing and linewidth) were found to be responsible for the variability in the method. After implementing corrective actions the variability was reduced such that the level of Form 3 was within an acceptable range of ±1% ww(-1) in fresh samples of API. Copyright © 2011. Published by Elsevier B.V.

  18. Solid-state physics for electronics

    National Research Council Canada - National Science Library

    Moliton, André

    2009-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Quantum mechanics: some basics . . . . . . . . . . . . . . . . . . . . . . 1.2.1. The wave equation in solids: from Maxwell's to Schrödinger's equation via...

  19. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  20. Automatic measurement for solid state track detectors

    International Nuclear Information System (INIS)

    Ogura, Koichi

    1982-01-01

    Since in solid state track detectors, their tracks are measured with a microscope, observers are forced to do hard works that consume time and labour. This causes to obtain poor statistic accuracy or to produce personal error. Therefore, many researches have been done to aim at simplifying and automating track measurement. There are two categories in automating the measurement: simple counting of the number of tracks and the requirements to know geometrical elements such as the size of tracks or their coordinates as well as the number of tracks. The former is called automatic counting and the latter automatic analysis. The method to generally evaluate the number of tracks in automatic counting is the estimation of the total number of tracks in the total detector area or in a field of view of a microscope. It is suitable for counting when the track density is higher. The method to count tracks one by one includes the spark counting and the scanning microdensitometer. Automatic analysis includes video image analysis in which the high quality images obtained with a high resolution video camera are processed with a micro-computer, and the tracks are automatically recognized and measured by feature extraction. This method is described in detail. In many kinds of automatic measurements reported so far, frequently used ones are ''spark counting'' and ''video image analysis''. (Wakatsuki, Y.)

  1. NASA developments in solid state power amplifiers

    Science.gov (United States)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  2. NLC Hybrid Solid State Induction Modulator

    CERN Document Server

    Cassel, R L; Pappas, G C; Delamare, J E

    2004-01-01

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X-band klystrons. The original NLC envisions a solid state induction modulator design to drive up to 8 klystrons to 500 kV for 3 μs at 120 PPS with one modulator delivering greater than 1,000 MW pulse, at 500 kW average. A change in RF compression techniques resulted in only two klystrons needed pulsing per modulator at a reduced pulse width of 1.6 μsec or approximately 250 MW of the pulsed power and 80 kW of average powers. A prototype Design for Manufacturability (DFM) 8-pack modulator was under construction at the time of the change, so a redirection of modulator design was in order. To utilities the equipment which had already be fabricated, a hybrid modulator was designed and constructed using the DFM induction modulator parts and a conventional pulse transformer. The construction and performance of this hybrid two klystron Induction modul...

  3. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  4. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  5. Solid State Pathways towards Molecular Complexity in Space

    Science.gov (United States)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  6. A Quasi-Solid-State Li-Ion Capacitor Based on Porous TiO2 Hollow Microspheres Wrapped with Graphene Nanosheets.

    Science.gov (United States)

    Wang, Faxing; Wang, Chun; Zhao, Yujuan; Liu, Zaichun; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Zhao, Dongyuan

    2016-12-01

    The quasi-solid-state Li-ion capacitor is demonstrated with graphene nanosheets prepared by an electrochemical exfoliation as the positive electrode and the porous TiO 2 hollow microspheres wrapped with the same graphene nanosheets as the negative electrode, using a Li-ion conducting gel polymer electrolyte. This device may be the key to bridging the gap between conventional lithium-ion batteries and supercapacitors, meanwhile meeting the safety demands of electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  8. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  9. Transire, a Program for Generating Solid-State Interface Structures

    Science.gov (United States)

    2017-09-14

    ARL-TR-8134 ● SEP 2017 US Army Research Laboratory Transire, a Program for Generating Solid-State Interface Structures by...Program for Generating Solid-State Interface Structures by Caleb M Carlin and Berend C Rinderspacher Weapons and Materials Research Directorate, ARL...

  10. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  11. Solid state protein monolayers: Morphological, conformational, and functional properties

    Science.gov (United States)

    Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.

    2004-12-01

    We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.

  12. Solid state nuclear magnetic resonance of fossil fuels

    International Nuclear Information System (INIS)

    Axelson, D.E.

    1985-01-01

    This book contains the following chapters: Principles of solid state NMR; Relaxation processes: Introduction to pulse sequences; Quantitative analysis; Removal of artifacts from CPMAS FT experiments; Line broadening mechanisms; Resolution enhancement of solid state NMR spectra; and /sup 13/C CPMAS NMR of fossil fuels--general applications

  13. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  14. Harwell's atomic, molecular and solid state computer programs

    International Nuclear Information System (INIS)

    Harker, A.H.

    1976-02-01

    This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)

  15. SOLID-STATE STORAGE DEVICE FLASH TRANSLATION LAYER

    DEFF Research Database (Denmark)

    2017-01-01

    Embodiments of the present invention include a method for storing a data page d on a solid-state storage device, wherein the solid-state storage device is configured to maintain a mapping table in a Log-Structure Merge (LSM) tree having a C0 component which is a random access memory (RAM) device...

  16. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Murray, D.W.

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  17. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  18. The Galileo Solid-State Imaging experiment

    Science.gov (United States)

    Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; Bolef, L.K.; Townsend, T.E.; Greenberg, R.; Head, J. W.; Neukum, G.; Pilcher, C.B.; Veverka, J.; Gierasch, P.J.; Fanale, F.P.; Ingersoll, A.P.; Masursky, H.; Morrison, D.; Pollack, James B.

    1992-01-01

    The Solid State Imaging (SSI) experiment on the Galileo Orbiter spacecraft utilizes a high-resolution (1500 mm focal length) television camera with an 800 ?? 800 pixel virtual-phase, charge-coupled detector. It is designed to return images of Jupiter and its satellites that are characterized by a combination of sensitivity levels, spatial resolution, geometric fiedelity, and spectral range unmatched by imaging data obtained previously. The spectral range extends from approximately 375 to 1100 nm and only in the near ultra-violet region (??? 350 nm) is the spectral coverage reduced from previous missions. The camera is approximately 100 times more sensitive than those used in the Voyager mission, and, because of the nature of the satellite encounters, will produce images with approximately 100 times the ground resolution (i.e., ??? 50 m lp-1) on the Galilean satellites. We describe aspects of the detector including its sensitivity to energetic particle radiation and how the requirements for a large full-well capacity and long-term stability in operating voltages led to the choice of the virtual phase chip. The F/8.5 camera system can reach point sources of V(mag) ??? 11 with S/N ??? 10 and extended sources with surface brightness as low as 20 kR in its highest gain state and longest exposure mode. We describe the performance of the system as determined by ground calibration and the improvements that have been made to the telescope (same basic catadioptric design that was used in Mariner 10 and the Voyager high-resolution cameras) to reduce the scattered light reaching the detector. The images are linearly digitized 8-bits deep and, after flat-fielding, are cosmetically clean. Information 'preserving' and 'non-preserving' on-board data compression capabilities are outlined. A special "summation" mode, designed for use deep in the Jovian radiation belts, near Io, is also described. The detector is 'preflashed' before each exposure to ensure the photometric linearity

  19. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  20. Highly flexible and all-solid-state paperlike polymer supercapacitors.

    Science.gov (United States)

    Meng, Chuizhou; Liu, Changhong; Chen, Luzhuo; Hu, Chunhua; Fan, Shoushan

    2010-10-13

    In recent years, much effort have been dedicated to achieve thin, lightweight and even flexible energy-storage devices for wearable electronics. Here we demonstrate a novel kind of ultrathin all-solid-state supercapacitor configuration with an extremely simple process using two slightly separated polyaniline-based electrodes well solidified in the H(2)SO(4)-polyvinyl alcohol gel electrolyte. The thickness of the entire device is much comparable to that of a piece of commercial standard A4 print paper. Under its highly flexible (twisting) state, the integrate device shows a high specific capacitance of 350 F/g for the electrode materials, well cycle stability after 1000 cycles and a leakage current of as small as 17.2 μA. Furthermore, due to its polymer-based component structure, it has a specific capacitance of as high as 31.4 F/g for the entire device, which is more than 6 times that of current high-level commercial supercapacitor products. These highly flexible and all-solid-state paperlike polymer supercapacitors may bring new design opportunities of device configuration for energy-storage devices in the future wearable electronic area.

  1. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  2. Solid state crystallisation of oligosaccharide ester derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Elaine Ann

    2002-07-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-({beta}-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and {beta} = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores

  3. Solid state crystallisation of oligosaccharide ester derivatives

    International Nuclear Information System (INIS)

    Wright, Elaine Ann

    2002-01-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(β-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2 1 2 1 2 1 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and β = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores which allows diffusion of

  4. Solid state silicon based condenser microphone for hearing aid, has transducer chip and IC chip between intermediate chip and openings on both sides of intermediate chip, to allow sound towards diaphragm

    DEFF Research Database (Denmark)

    2000-01-01

    towards diaphragm. Surface of the chip (2) has electrical conductors (14) to connect chip with IC chip (3). USE - For use in miniature electroacoustic devices such as hearing aid. ADVANTAGE - Since sound inlet is covered by filter, dust, moisture and other impurities do not obstruct interior and sound...... inlet of microphone. External electrical connection can be made economically reliable and the thermal stress is avoided with the small size solid state silicon based condenser microphone....

  5. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  6. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  7. A new polarimeter scheme based on solid state semiconductors Un nuevo esquema para polarímetros basado en semiconductor de estado sólido

    Directory of Open Access Journals (Sweden)

    Heiner Castro Gutierrez

    2012-12-01

    Full Text Available A new kind of polarimeter scheme is suggested using solid state semiconductors. The new approach is based on the modulation over the intensities of the diffracted beams through a two-dimensional chiral grating, reported recently. It will be demonstrated that at least four intensity measurements of no equivalent diffracted beams are needed in order to estimate the polarization state of the incident beam. The incident beam azimuth was varied by routing a linear polarizer lens mounting in a stepped motor. The intensities of four diffracted beams were measured using a screen, a CCD camera and some algorithms running in a computer. The LabVIEW development environment software was used for controlling the hardware and for presenting the results. MATLAB© was used for calculating the intensities of the diffracted beams and computing the azimuth of the incident beam. Although both the azimuth and ellipticity should be estimated, the experiments show that only the azimuth estimation yields accurate results. The ellipticity cannot be estimated with precision. The error on the azimuth estimation depends on the variation in the power of the incident beam. It was found that the azimuth estimation is accurate between [0,140 and (150,180] degrees. The cause of huge errors in the azimuth found between 140 and 150 degrees are kept unknown.Un nuevo esquema de polarímetro es sugerido usando semiconductores de estado sólido. La nueva aproximación está basada en la modulación sobre las intensidades de los rayos difractados a través de una rejilla quiral de dos dimensiones reportado recientemente. Será demostrado que al menos cuatro mediciones de intensidades de rayos difractados no equivalentes son necesarios para estimar el estado de polarización del rayo incidente. El azimut del rayo incidente es variado, rotando un lente polarizador lineal montado en un motor paso a paso. La intensidad de cuatro rayos difractados es medida por medio de una peque

  8. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Unknown

    Li+, its lower weight, ease of handling and its poten- tial use in high energy density batteries. Li2SiO4 is one of the .... that influence the ionic conductivity of a crystal the activation energy is of utmost importance since the .... fraction techniques are commonly employed to elu- cidate the structure features of superionic solids.

  9. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  10. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  11. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  12. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  13. FT-IR and FT-Raman spectra of 5-chlorocytosine: Solid state simulation and tautomerism. Effect of the chlorine substitution in the Watson-Crick base pair 5-chlorodeoxycytidine-deoxyguanosine

    Science.gov (United States)

    Alcolea Palafox, M.; Rastogi, V. K.; Singh, S. P.

    2018-01-01

    The laser Raman and IR spectra of 5-chlorocytosine have been recorded and accurately assigned in the solid state using Density functional calculations (DFT) together with the linear scaling equation procedure (LSE) and the solid state simulation of the crystal unit cell through a tetramer form. These results remarkably improve those reported previously by other authors. Several new scaling equations were proposed to be used in related molecules. The six main tautomers of the biomolecule 5-chlorocytosine were determined and optimized at the MP2 and CCSD levels, using different basis sets. The relative stabilities were compared with those obtained in cytosine and their 5-halo derivatives. Several relationships between energies, geometric parameters and NBO atomic charges were established. The effect of the chlorine substitution in the fifth position was evaluated through the stability of the Watson-Crick (WC) base pair of 5-chlorodeoxycytidine with deoxyguanosine, and through their vibrational spectra.

  14. Atomic and solid state physics with the 14UD

    International Nuclear Information System (INIS)

    Newton, C.S.

    1975-02-01

    The use of energetic heavy ions in atomic and solid state physics is discussed. Topics that are discussed include: 1) Properties of excited ions, 2) radiation damage studies by channeling, 3) energy loss of ions and range measurements, 4) oscillating effects in channeling, 5) x-ray production in solids, 6) coherence effects in channeling and 7) formation of united atoms. (author)

  15. Spring meeting of the DPG Working Group 'Solid state physics'

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains abstracts of the contributions to the Spring Meeting of the Solid State Physics Section with the topics dielectric solids, thin films, dynamics and statistical physics, semiconductor physics, magnetism, metal physics, surface physics, low temperature physics, vacuum physics and engineering, chemical physics. (MM)

  16. Solid state photodimerization in an organic salt of 1,2-bis(4-pyridyl ...

    Indian Academy of Sciences (India)

    Abdul Malik P Peedikakkal

    compound 1 undergoes photodimerization reaction in solid state to produce stereo-specific rctt-tetrakis(4- pyridyl)cyclobutane .... of isomers was calculated based on the integrated intensity of 1H NMR signals .... A combinatorial math- ematical ...

  17. Synthesisofc-lifepo4 composite by solid state reaction method

    Science.gov (United States)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.

    2017-02-01

    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  18. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  19. Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery.

    Science.gov (United States)

    Sepúlveda, Alfonso; Speulmanns, Jan; Vereecken, Philippe M

    2018-01-01

    The growing demand of flexible electronic devices is increasing the requirements of their power sources. The effect of bending in thin-film batteries is still not well understood. Here, we successfully developed a high active area flexible all-solid-state battery as a model system that consists of thin-film layers of Li 4 Ti 5 O 12 , LiPON, and Lithium deposited on a novel flexible ceramic substrate. A systematic study on the bending state and performance of the battery is presented. The battery withstands bending radii of at least 14 mm achieving 70% of the theoretical capacity. Here, we reveal that convex bending has a positive effect on battery capacity showing an average increase of 5.5%, whereas concave bending decreases the capacity by 4% in contrast with recent studies. We show that the change in capacity upon bending may well be associated to the Li-ion diffusion kinetic change through the electrode when different external forces are applied. Finally, an encapsulation scheme is presented allowing sufficient bending of the device and operation for at least 500 cycles in air. The results are meant to improve the understanding of the phenomena present in thin-film batteries while undergoing bending rather than showing improvements in battery performance and lifetime.

  20. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  1. Majorana Fermions in Particle Physics, Solid State and Quantum Information

    Science.gov (United States)

    Borsten, L.; Duff, M. J.

    This review is based on lectures given by M. J. Duff summarising the far reaching contributions of Ettore Majorana to fundamental physics, with special focus on Majorana fermions in all their guises. The theoretical discovery of the eponymous fcrmion in 1937 has since had profound implications for particlc physics, solid state and quantum computation. The breadth of these disciplines is testimony to Majorana's genius, which continues to permeate physics today. These lectures offer a whistle-stop tour through some limited subset of the key ideas. In addition to touching on these various applications, we will draw out some fascinating relations connecting the normed division algebras R, ℂ, H, O to spinors, trialities. K-theory and the classification of stable topological states of symmetry-protected gapped free-fermion systems.

  2. Theoretical approaches to control spin dynamics in solid-state ...

    Indian Academy of Sciences (India)

    We present fundamental theories in the history of NMR, namely, the average Hamiltonian and Floquet theories. We also ..... The results are better illustrated in a double ...... Matter 17 4501. 94. Ernst M 2006 Germany: Solid-State NMR Summer.

  3. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  4. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  5. Electrochemical Impedance Spectroscopy in Solid State Ionics: Recent Advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2004-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another

  6. Advanced Solid State Lighting for AES Deep Space Hab

    Data.gov (United States)

    National Aeronautics and Space Administration — The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in...

  7. The distribution choice for the threshold of solid state relay

    International Nuclear Information System (INIS)

    Sun Beiyun; Zhou Hui; Cheng Xiangyue; Mao Congguang

    2009-01-01

    Either normal distribution or Weibull distribution can be accepted as sample distribution of the threshold of solid state relay. By goodness-of-fit method, bootstrap method and Bayesian method, the Weibull distribution is chosen later. (authors)

  8. A Low Power, Solid State, Method of Oxygen Supply

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of the work prior to the start of this project is the planar monolith - allowing for solid state oxygen production at pressures up to 300 psig....

  9. Solid state conformational classification of eight-membered rings

    DEFF Research Database (Denmark)

    Pérez, J.; García, L.; Kessler, M.

    2005-01-01

    A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations...

  10. Solid state dye-sensitized solar cells. Current state of the art. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Olson, C.L.; Goris, M.J.A.A.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands)

    2008-09-15

    The first generation of dye-sensitized solar cell technology is based on a liquid electrolyte component. Today, this technology is on the verge of commercialization. The step towards the market and real applications is supported by the prospect of low manufacturing costs, good efficiency as well as the expectation that the current stability level of this technology is at least sufficient for applications in mobile electronics. These favorable developments may be reinforced and accelerated even further, if the corrosive liquid electrolyte could be replaced by a non-corrosive solid, since this would ease a number of stringent requirements in the production process. A successful exchange of the liquid electrolyte by a solid-state holeconductor requires to at least maintain, preferably improve, the most relevant technical parameters of the solar cell (efficiency, stability, cost). First pioneering work with solid-state hole conductors was carried out 10 years ago with an initial efficiency level below 1%. Until 2007, the record efficiency could be improved to 5%. This paper gives an overview of the solid-state concept as an early stage approach with good perspectives for the mid-term future (5-10 years)

  11. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  12. Solid State Division progress report, September 30, 1981

    International Nuclear Information System (INIS)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed

  13. Solid-state resistor for pulsed power machines

    Science.gov (United States)

    Stoltzfus, Brian; Savage, Mark E.; Hutsel, Brian Thomas; Fowler, William E.; MacRunnels, Keven Alan; Justus, David; Stygar, William A.

    2016-12-06

    A flexible solid-state resistor comprises a string of ceramic resistors that can be used to charge the capacitors of a linear transformer driver (LTD) used in a pulsed power machine. The solid-state resistor is able to absorb the energy of a switch prefire, thereby limiting LTD cavity damage, yet has a sufficiently low RC charge time to allow the capacitor to be recharged without disrupting the operation of the pulsed power machine.

  14. Proceedings of the DAE solid state physics symposium. V. 51

    International Nuclear Information System (INIS)

    Bhushan, K.G.; Gupta, S.K.

    2006-01-01

    DAE Solid State Physics Symposium, sponsored by the Board of Research in Nuclear Sciences, Department of Atomic Energy, is organized annually. The topics covered are phase transitions, soft condensed matter, nano-materials, experimental techniques, instrumentation and solid state devices, superconductivity, magnetism, electronic structure and phonons, semiconductor physics, transport properties, surface - interface and thin films, liquids, glasses and amorphous systems, etc. Papers relevant to INIS are indexed separately

  15. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  16. Synergies Connecting the Photovoltaics and Solid-State Lighting Industries

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2003-05-01

    Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

  17. Photoemission from solids: the transition from solid-state to atomic physics

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1980-08-01

    As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range hν = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission

  18. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  19. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  20. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons.

    Science.gov (United States)

    Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-11-15

    An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  2. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  3. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    Science.gov (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  4. Templated Solid-State Dewetting of Thin Silicon Films.

    Science.gov (United States)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-11-01

    Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solid-State Photomultiplier with Integrated Front End Electronics

    Science.gov (United States)

    Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory

    2009-10-01

    The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.

  6. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    Science.gov (United States)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  7. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    Science.gov (United States)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  8. Optimized control strategy for crowbarless solid state modular power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Badapanda, M.K.; Tripathi, A.; Hannurkar, P.R.; Pithawa, C.K.

    2009-01-01

    Solid state modular power supply with series connected IGBT based power modules have been employed as high voltage bias power supply of klystron amplifier. Auxiliary compensation of full wave inverter bridge with ZVS/ZCS operations of all IGBTs over entire operating range is incorporated. An optimized control strategy has been adopted for this power supply needing no output filter, making this scheme crowbarless and is presented in this paper. DSP based fully digital control with same duty cycle for all power modules, have been incorporated for regulating this power supply along with adequate protection features. Input to this power supply is taken directly from 11 kV line and the input system is intentionally made 24 pulsed to reduce the input harmonics, improve the input power factor significantly, there by requiring no line filters. Various steps have been taken to increase the efficiency of major subsystems, so as to improve the overall efficiency of this power supply significantly. (author)

  9. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    Science.gov (United States)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  10. A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Andre OHARA

    2018-01-01

    Full Text Available Abstract This study reports the use of statistical mixture design as a tool for the simultaneous production of lipase, CMCase, α-amylase, and β-glucosidase by Aspergillus niger under solid-state fermentation. Wheat bran, soybean meal, cottonseed meal, and orange peel were used as substrates, either individually or combined in different formulations, to study their synergistic or antagonistic effects on production of the enzymes. The highest lipase (323 U g-1 and CMCase (10 U g-1 activities were detected after 48 h, while the maximum activities of α-amylase (18 U g-1 and β-glucosidase (15 U g-1 occurred at 72 and 96 h, respectively. Considering the substrate formulation, the ternary mixture of wheat bran (1/3, soybean meal (1/3, and cottonseed meal (1/3 was the most versatile, showing production of CMCase (>5 U g-1 and α-amylase (>8 U g-1 at 24 h, lipase (>320 U g-1 at 72 h, and β-glucosidase (>10 U g-1 at 48 h.

  11. A parallel model for SQL astronomical databases based on solid state storage. Application to the Gaia Archive PostgreSQL database

    Science.gov (United States)

    González-Núñez, J.; Gutiérrez-Sánchez, R.; Salgado, J.; Segovia, J. C.; Merín, B.; Aguado-Agelet, F.

    2017-07-01

    Query planning and optimisation algorithms in most popular relational databases were developed at the times hard disk drives were the only storage technology available. The advent of higher parallel random access capacity devices, such as solid state disks, opens up the way for intra-machine parallel computing over large datasets. We describe a two phase parallel model for the implementation of heavy analytical processes in single instance PostgreSQL astronomical databases. This model is particularised to fulfil two frequent astronomical problems, density maps and crossmatch computation with Quad Tree Cube (Q3C) indexes. They are implemented as part of the relational databases infrastructure for the Gaia Archive and performance is assessed. Improvement of a factor 28.40 in comparison to sequential execution is observed in the reference implementation for a histogram computation. Speedup ratios of 3.7 and 4.0 are attained for the reference positional crossmatches considered. We observe large performance enhancements over sequential execution for both CPU and disk access intensive computations, suggesting these methods might be useful with the growing data volumes in Astronomy.

  12. Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2016-02-01

    Full Text Available Solid-state dye-sensitized solar cells (ssDSSC constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2 electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.

  13. Interim report on the state-of-the-art of solid-state motor controllers. Part 4. Failure-rate and failure-mode data

    International Nuclear Information System (INIS)

    Jaross, R.A.

    1983-09-01

    An assessment of the reliability of solid-state motor controllers for nuclear power plants is made. Available data on failure-rate and failure-mode data for solid-state motor controllers based on industrial operating experience is meager; the data are augmented by data on other solid-state power electronic devices that are shown to have components similar to those found in solid-state motor controllers. In addition to large nonnuclear solid-state adjustable-speed motor drives, the reliability of nuclear plant inverter systems and high-voltage solid-state dc transmission-line converters is assessed. Licensee Event Report analyses from several sources, the open literature, and personal communications are used to determine the realiability of solid-state devices typical of those expected to be used in nuclear power plants in terms of failures per hour

  14. Exploration of solids based on representation systems

    Directory of Open Access Journals (Sweden)

    Publio Suárez Sotomonte

    2011-01-01

    Full Text Available This article refers to some of the findings of a research project implemented as a teaching strategy to generate environments for the learning of platonic and archimedean solids, with a group of eighth grade students. This strategy was based on the meaningful learning approach and on the use of representation systems using the ontosemiotic approach in mathematical education, as a framework for the construction of mathematical concepts. This geometry teaching strategy adopts the stages of exploration, representation-modeling, formal construction and study of applications. It uses concrete, physical and tangible materials for origami, die making, and structures for the construction of threedimensional solids considered external tangible solid representation systems, as well as computer based educational tools to design dynamic geometry environments as intangible external representation systems.These strategies support both the imagination and internal systems of representation, fundamental to the comprehension of geometry concepts.

  15. Solid-state 13C NMR characterization of polyanilines

    International Nuclear Information System (INIS)

    Kaplan, S.

    1988-01-01

    13 C solid-state nuclear magnetic resonance measurements are reported for the leucoemeraldine base, emeraldine base, and emeraldine hydrochloride forms of polyaniline in order to characterize the structures of these three distinct polymers. Chemical shift assignments are facilitated by use of the cross-depolarization technique to distinguish carbons with and without directly bonded hydrogens. Comparison of the spectra of emeraldine base with those of leucoemeraldine base and air-oxidized leucoemeraldine (which partially converts to emeraldine base) establishes that emeraldine base is essentially an alternating copolymer of reduced 1A (-(C 6 H 4 )N(H)(C 6 H 4 )N(H)-) and oxidized 2A (-(C 6 H 4 )N double-bond(C 6 H 4 )double-bond N-) repeat units. The 8-12 ppm spectral line widths measured for both emeraldine base and leucoemeraldine base are attributed to local fluctuations in conformational and configurational geometries, a distribution in chain packing, and compositional defects. 13 C spin-echo measurements establish that the 60 ppM wide line from the conducting emeraldine hydrochloride is inhomogeneously broadened. It is postulated that this line width is due to local variations in charge density along the polymer backbone arising from polymer structural heterogeneity. 47 refs., 5 figs., 1 tab

  16. Development of hydrazinium nitroformate based solid propellants

    NARCIS (Netherlands)

    Schöyer, H.F.R.; Schnorhk, A.J.; Korting, P.A.O.G.; Lit, P.J. van; Mul, J.M.; Gadiot, G.; Meulenbrugge, J.J.

    1995-01-01

    The development of new high-performance propellant combinations requires the establishment of safety and handling characteristics and thermodynamic decomposition and explosive properties. This paper addresses the early development phases of a new composite solid propellant based on HNF as oxidizer

  17. Quantum technologies for solid state physics using cold trapped ions

    International Nuclear Information System (INIS)

    Ferdinand Schmidt-Kaler

    2014-01-01

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  18. Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy)32+ nanoparticles for pharmaceutical drugs detection

    Science.gov (United States)

    Al-Hetlani, Entesar; Amin, Mohamed O.; Madkour, Metwally

    2018-02-01

    This work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy)32+-Ce(IV). Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs). Mesoporous TiO2-Ru(bpy)32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy)32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES), Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy)32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL) response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs ( 149.6 m2/g). The amount of TiO2-Ru(bpy)32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1-100 pm with limits of detection (LOD) of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

  19. Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy32+ nanoparticles for pharmaceutical drugs detection

    Directory of Open Access Journals (Sweden)

    Al-Hetlani Entesar

    2018-02-01

    Full Text Available This work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy32+-Ce(IV. Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs. Mesoporous TiO2-Ru(bpy32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES, Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs (~149.6 m2/g. The amount of TiO2-Ru(bpy32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1–100 pm with limits of detection (LOD of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

  20. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  1. Annealing effects in solid-state track recorders

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.

    1981-01-01

    Current analyses of the annealing process in Solid State Track Recorders (SSTR) reveal fundamental misconceptions. The use of the Arrhenius equation to describe the decrease in track density resulting from annealing is shown to be incorrect. To overcome these deficiencies, generalized reaction rate theory is used to describe the annealing process in SSTR. Results of annealing experiments are used to guide this theoretical formulation. Within this framework, the concept of energy per etchable defect for SSTR is introduced. A general correlation between sensitivity and annealing susceptibility in SSTR is deduced. In terms of this general theory, the apparent correlation between fission track size and fission track density observed under annealing is readily explained. Based on this theoretical treatment of annealing phenomena, qualitative explanations are advanced for current enigmas in SSTR cosmic ray work

  2. Solid State Energy Conversion Energy Alliance (SECA)

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Daniel [Delphi Automotive Systems, LLC, Troy, MI (United States); Sibisan, Rodica [Delphi Automotive Systems, LLC, Troy, MI (United States); Rasmussen, Mike [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2011-09-12

    The overall objective is to develop a solid oxide fuel cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of 30 percent (DC/LHV) and a factory cost of ≤$400/kW.

  3. Solid State Energy Conversion Energy Alliance (SECA)

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Daniel [Delphi Automotive Systems, LLC, Troy, MI (United States); Sibisan, Rodica [Delphi Automotive Systems, LLC, Troy, MI (United States); Rasmussen, Mike [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2011-09-12

    The overall objective is to develop a Solid Oxide Fuel Cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of ≥ 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥ 40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥ 30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of ≥ 30 percent (DC/LHV) and a factory cost of ≤ $400/kW.

  4. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  5. Solid state theory. An introduction. 2. rev. and ext. ed.

    International Nuclear Information System (INIS)

    Roessler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields. (orig.)

  6. Solid State Division Progress Report for period ending March 31, 1986

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials

  7. Solid State Division Progress Report for period ending March 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

  8. 20th International Conference on Solid State Ionics (SSI 20)

    Science.gov (United States)

    2016-05-20

    Italy; 2CNST @PoliMI, Istituto Italiano di Tecnologia , Milano, Italy; 3Physical Chemistry of Solids, Max Planck Institute for Solid State Research...Coughlin5; 1Chemical Sciences, University of Padova, Padova, Italy; 2Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali...Germany; 2Instituto de Tecnologia Quimica , Valencia, Spain; 3Ernst Ruska Center, Jülich, Germany. 4:50 PM J5.05 Hydrogen Permeation through CO2-Stable

  9. LOW-TEMPERATURE EQUATION OF STATE OF SOLID METHANE

    Directory of Open Access Journals (Sweden)

    L. N. Yakub

    2016-02-01

    Full Text Available The theoretical equation of state for solid methane, developed within the framework of perturbation theory, with the crystal consisting of spherical molecules as zero-order approximation, and octupole – octupole interaction of methane molecules as a perturbation, is proposed. Thermodynamic functions are computed on the sublimation line up to the triple point. The contribution of the octupole – octupole interaction to the thermodynamic properties of solid methane is estimated.

  10. Energy-saving approaches to solid state street lighting

    Science.gov (United States)

    Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras

    2011-10-01

    We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.

  11. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  12. 43Ca NMR in solid state

    Science.gov (United States)

    Bellot, P.-V.; Trokiner, A.; Zhdanov, Yu.; Yakubovskii, A.

    1998-02-01

    In this paper we show that 43Ca is a suitable NMR probe to study the properties of high-Tc superconducting oxides. In the normal state, we report the temperature and doping dependencies of the spin susceptibility measured by 43Ca NMR. In the superconducting state and more exactly in the mixed state, by analysing 43Ca NMR linewidth, we have studied the magnetic induction distribution due to the presence of vortices and deduced λ, the penetration depth. Dans cet article, on montre que l'isotope 43 du calcium est une bonne sonde RMN pour l'étude des propriétés des oxydes supraconducteurs à haute température. Dans l'état normal, par la détermination du déplacement de la raie, en fonction de la température, on accède à la variation thermique de la susceptibilité de spin. Dans l'état supraconducteur et plus particulièrement dans l'état mixte, la largeur de raie RMN permet d'étudier la distribution d'induction magnétique due à la présence des vortex et de déterminer λ, la longueur de pénétration.

  13. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    . M. Brahmanandhan ... [et al.]. Effect of filler addition on plasticized polymer electrolyte systems / M. Sundar, S. Selladurai. Ionic motion in PEDOT and PPy conducting polymer bilayers / U. L. Zainudeen, S. Skaarup, M. A. Careem. Film formation mechanism and electrochemical characterization of V[symbol]O[symbol] xerogel intercalated by polyaniniline / Q. Zhu ... [et al.]. Effect of NH[symbol]NO[symbol] concentration on the conductivity of PVA based solid polymer electrolyte / M. Hema ... [et al.]. Dielectric and conductivity studies of PVA-KSCN based solid polymer electrolytes / J. Malathi ... [et al.] -- pt. IV. Emerging applications. Invited papers. The use of solid state ionic materials and devices in medical applications / R. Linford. Development of all-solid-state lithium batteries / V. Thangadurai, J. Schwenzei, W. Weppner. Reversible intermediate temperature solid oxide fuel cells / B.-E. Mellander, I. Albinsson. Nano-size effects in lithium batteries / P. Balaya, Y. Hu, J. Maier. Electrochromics: fundamentals and applications / C. G. Granqvist. Electrochemical CO[symbol] gas sensor / K. Singh. Polypyrrole for artificial muscles: ionic mechanisms / S. Skaarup. Development and characterization of polyfluorene based light emitting diodes and their colour tuning using Forster resonance energy transfer / P. C. Mattur ... [et al.]. Mesoporous and nanoparticulate metal oxides: applications in new photocatalysis / C. Boxall. Proton Conducting (PC) perovskite membranes for hydrogen separation and PC-SOFC electrodes and electrolytes / H. Jena, B. Rambabu. Contributed papers. Electroceramic materials for the development of natural gas fuelled SOFC/GT plant in developing country (Trinidad and Tobogo (T&T)) / R. Saunders, H. Jena, B. Rambabu. Thin film SOFC supported on nano-porous substrate / J. Hoon Joo, G. M. Choi. Characterization and fabrication of silver solid state battery Ag/AGI-AgPO[symbol]/I[symbol], C / E. Kartini ... [et al.]. Performance of lithium polymer

  14. Solid-state physics for electronics

    CERN Document Server

    Moliton, Andre

    2009-01-01

    Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered ma

  15. Solid State Research, 1980:1.

    Science.gov (United States)

    1980-02-15

    of Methane A.S. Pine 4932 Electron Paramagnetic R.S. Rubins* J. Chem. Phys. 71, 5163 Resonance in Ferrous H.R. Fetterman (1979) Fluosilicate at...Applied to the Excited State H. R. Fetterman 582 (1979) Rotational Spectroscopy and D. D. Peck Kinetics of CH3 F P. F. Goldsmith* 4978 Subtraction of...by J. Mol. vt + v3 Combination Band M. Dang-Nhu* Spectrosc. of SO2 Meeting Speeches’ MS No. 4584B Schottky Diodes and Their H. R. Fetterman Seminar

  16. Colour-rendition properties of solid-state lamps

    International Nuclear Information System (INIS)

    Zukauskas, A; Vaicekauskas, R; Shur, M S

    2010-01-01

    The applicability of colour-quality metrics to solid-state light sources is validated and the results of the assessment of colour-rendition characteristics of various lamps are presented. The standard colour-rendering index metric or a refined colour-quality scale metric fails to distinguish between two principle colour-rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially when the spectra of light sources contain a few narrow-band electroluminescence components. Supplementing these metrics by the known figures of merit that measure the gamut area of a small number of test colour samples does not completely resolve this issue. In contrast, the statistical approach, which is based on sorting a very large number of test colour samples in respect of just-perceivable colour distortions of several kinds, offers a comprehensive assessment of colour-rendition properties of solid-state light sources. In particular, two statistical indices, colour-fidelity index (CFI) and colour-saturation index (CSI), which are the relative numbers of object colours rendered with high fidelity and increased saturation, respectively, are sufficient to reveal and assess three distinct types of solid-state light sources. These are (i) high-fidelity lamps, which cover the entire spectrum with the spectral components present in the wavelength ranges of both 530-610 nm and beyond 610 nm (e.g. trichromatic warm white phosphor-converted (pc) light-emitting diodes (LEDs), red-amber-green-blue LED clusters, complementary clusters of white and coloured LEDs); (ii) colour-saturating lamps, which lack power in the 530-610 nm wavelength range (e.g. red-green-blue or red-cyan-blue LED clusters) and (iii) colour-dulling lamps, which lack power for wavelengths longer than 610 nm (dichromatic daylight pc LEDs and amber-green-blue LED clusters). Owing to a single statistical format, CSI and CFI can be used for

  17. Colour-rendition properties of solid-state lamps

    Energy Technology Data Exchange (ETDEWEB)

    Zukauskas, A [Institute of Applied Research, Vilnius University, Sauletekio al. 9, bldg. III, Vilnius, LT-10222 (Lithuania); Vaicekauskas, R [Department of Computer Science, Vilnius University, Naugarduko g. 24, Vilnius, LT-03225 (Lithuania); Shur, M S, E-mail: arturas.zukauskas@ff.vu.l [Department of Electrical, Computer, and System Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2010-09-08

    The applicability of colour-quality metrics to solid-state light sources is validated and the results of the assessment of colour-rendition characteristics of various lamps are presented. The standard colour-rendering index metric or a refined colour-quality scale metric fails to distinguish between two principle colour-rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially when the spectra of light sources contain a few narrow-band electroluminescence components. Supplementing these metrics by the known figures of merit that measure the gamut area of a small number of test colour samples does not completely resolve this issue. In contrast, the statistical approach, which is based on sorting a very large number of test colour samples in respect of just-perceivable colour distortions of several kinds, offers a comprehensive assessment of colour-rendition properties of solid-state light sources. In particular, two statistical indices, colour-fidelity index (CFI) and colour-saturation index (CSI), which are the relative numbers of object colours rendered with high fidelity and increased saturation, respectively, are sufficient to reveal and assess three distinct types of solid-state light sources. These are (i) high-fidelity lamps, which cover the entire spectrum with the spectral components present in the wavelength ranges of both 530-610 nm and beyond 610 nm (e.g. trichromatic warm white phosphor-converted (pc) light-emitting diodes (LEDs), red-amber-green-blue LED clusters, complementary clusters of white and coloured LEDs); (ii) colour-saturating lamps, which lack power in the 530-610 nm wavelength range (e.g. red-green-blue or red-cyan-blue LED clusters) and (iii) colour-dulling lamps, which lack power for wavelengths longer than 610 nm (dichromatic daylight pc LEDs and amber-green-blue LED clusters). Owing to a single statistical format, CSI and CFI can be used for

  18. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    International Nuclear Information System (INIS)

    Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze

  19. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  20. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.