WorldWideScience

Sample records for based solid polymer

  1. Solid polymer MEMS-based fuel cells

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  2. Micro-fabricated solid state dye lasers based on a photo-definable polymer

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Balslev, Søren; Gregersen, Misha Marie;

    2005-01-01

    We present a solid polymer dye laser based on a single-mode planar waveguide. The all-polymer device is self-contained in the photodefinable polymer SU-8 and may therefore easily be placed on any substrate and be integrated with polymer-based systems. We use as the active medium for the laser the...

  3. Solid Particle Erosion response of fiber and particulate filled polymer based hybrid composites: A review

    Directory of Open Access Journals (Sweden)

    Yogesh M

    2016-01-01

    Full Text Available The solid particle erosion behaviour of fiber and particulate filled polymer composites has been reviewed. An overview of the problem of solid particle erosion was given with respect to the processes and modes during erosion with focus on polymer matrix composites. The new aspects in the experimental studies of erosion of fiber and particulate filled polymer composites were emphasized in this paper. Various predictions and models proposed to describe the erosion rate were listed and their suitability was mentioned. Implementation of design of experiments and statistical techniques in analyzing the erosion behaviour of composites was discussed. Recent findings on erosion response of multi-component hybrid composites were also presented. Recommendations were given on how to solve some open questions related to the structureerosion resistance relationships for polymers and polymer based hybrid composites.

  4. Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

    Indian Academy of Sciences (India)

    Natarajan Rajeswari; Subramanian Selvasekarapandian; Moni Prabu; Shunmugavel Karthikeyan; C Sanjeeviraja

    2013-04-01

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1.58 × 10-6 Scm-1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6.828 × 10-4 Scm-1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0.2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters () and () of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.

  5. Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes fro hydrogen production

    Science.gov (United States)

    Masson, J. P.; Molina, R.; Roth, E.; Gaussens, G.; Lemaire, F.

    The fabrication and testing of a polyethylene-based solid polymer electrolyte for use in hydrogen production by water electrolysis are discussed. The fabrication process involves the radiation grafting of styrene groups onto a polyethylene matrix, followed by the chemical sulphonation of the resulting polymer. The membrane produced has exhibited resistivities as low as 60 ohm cm for a 1-mm thickness, and other properties of the same order of magnitude as those of the commercially available but more expensive Nafion 014 membrane. Life tests carried out at a current density of 2 kA/sq m in single-cell modules with 10-sq cm active surface have revealed no noticeable degradation in membrane mechanical or electrical properties after 3000 hours for membranes reinforced by an organic polymer fabric. The development of an electrolyzer specifically designed for operation with a solid polymer electrolyte is currently under way.

  6. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices.

    Science.gov (United States)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-08-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.

  7. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    Science.gov (United States)

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics. PMID:26772536

  8. Abundance of polymers degrading microorganisms in a sea-based solid waste disposal site.

    Science.gov (United States)

    Ishigaki, T; Sugano, W; Ike, M; Kawagoshi, Y; Fukunaga, I; Fujita, M

    2000-01-01

    In order to assess the degradability of plastics in solid waste disposal landfill sites, microbial populations capable of degrading five kinds of plastic-constituting polymers, poly epsilon-caprolactone (PCL), polylactic acid (PLA), polyethylene glycol (PEG), poly-beta-hydroxybutyrate (PHB) and cellulose acetate (CA), in a sea-based solid waste disposal site were investigated. Enumeration of aerobic and anaerobic polymers-degrading microorganisms (PDMs) was performed against to total 8 leachate samples, which were seasonally collected from the facultative pretreatment pond and the aerated lagoon. Both aerobic and anaerobic PDMs for natural polymers, PHB and CA, were found in all of the samples, while those for chemically-synthesized polymers, PCL, PLA and PEG, could not be always detected. In most cases, the ratios of the PHB- and CA-degraders to the heterotrophic bacterial population were more than 0.1%. On the other hand, the ratios of PCL-, PLA- and PEG-degraders were often much lower. These data indicate that the plastics degradation potential is commonly present in the studied disposal site, and that the degradation potential for plastics composed of chemically-synthesized polymers is inferior to that of natural polymers. Population sizes of the PDMs correlated to those of heterotrophic bacteria, and the counts of aerobic heterotrophic bacteria and PDMs in the aerated lagoon tended to be higher than those of anaerobic ones, indicating that the aeration of the leachate resulted in the activation of growth of whole aerobic microbial community including the PDMs. PMID:10957959

  9. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    International Nuclear Information System (INIS)

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air

  10. A triarylboron-based fluorescent temperature indicator: sensitive both in solid polymers and in liquid solvents.

    Science.gov (United States)

    Liu, Xuan; Li, Shayu; Feng, Jiao; Li, Yi; Yang, Guoqiang

    2014-03-14

    A novel triarylboron compound, MPB, exhibiting reversible thermochromic dual-fluorescence in solid-state polymers and in liquid solvents was designed and synthesized. The fluorescent solid-state polymer with MPB can serve as a highly sensitive self-reference temperature indicator with a concentration independent feature. PMID:24481478

  11. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices

    Science.gov (United States)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-07-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength

  12. Solid Polymer Electrolytes Based on Cross-linkable Oligo (oxyethylene)-Branched Oligo (organophosphazenes)

    Institute of Scientific and Technical Information of China (English)

    Shuhua Zhou; Shibi Fang

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted considerable interest because of their potential application in secondary high energy density lithium batteries. The poly(ethylene oxide)(PEO) has been widely studied as the classical polymer matrix for solid polymer electrolytes. However, the poor room temperature conductivity due to its crystalline is the principal problem to be overcomed. This has prompted many researchers to attempt to modify the properties of PEO.

  13. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  14. Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    A comprehensive matrix of composite poly(ethyleneoxide) (PEO)-based solid-state electrolytes was developed in order to systematically study a number of variables and their impact upon the electrochemical properties of the resulting materials. The different parameters studied in the fabrication of these materials include: (i) the lithium electrolyte salt type, (ii) the ether oxygen to lithium ratio, (iii) the molecular weight of PEO, (iv) the type of ceramic additive used, either aluminum oxide (Al2O3), silicon oxide (SiO2), or titanium oxide (TiO2), (v) the particle size of the additives used, and (vi) the concentration of additive (wt.%). The standard lithium salt used for the preparation of these electrolytes was lithium trifluoromethanesulfonate (lithium triflate or LiSO3CF3), which served as the baseline electrolyte salt. Other lithium salts investigated include: lithium perchlorate (LiClO4) and lithium bis-trifluoromethanesulfonimide (LiN(SO2CF3)2). Conductivity measurements were performed for each electrolyte membrane over a wide temperature range (23-100 deg. C). In addition, cyclic voltammetry measurements were performed on selected PEO membranes as a function of temperature to determine the impact of various parameters upon the electrochemical stability. It was observed that the parameter that displayed the most significant effect upon the PEO-base polymer conductivity was the lithium salt type employed. The lithium triflate salt-containing PEO polymers demonstrated the best mechanical properties before and after heat treatment. Ceramic fillers also appear to enhance the mechanical properties of PEO polymer electrolytes at temperatures above the melting point of PEO (60-70 deg. C). In addition to investigating the electrochemical characteristics of the composite membrane, solid state 7Li NMR characterization was performed to study ionic mobility by measuring spectral line widths and lithium self-diffusion coefficients. It was determined that ceramic

  15. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state.

  16. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    Science.gov (United States)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  17. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    International Nuclear Information System (INIS)

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF3SO3) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10−6 S cm−1 when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm−1, carbonyl (-C=O) at 1750–1650 cm−1 and ether (-C-O-C-) at 1150–1000 cm−1 of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF3SO3 salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF3SO3

  18. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  19. Copper-ion conducting solid-polymer electrolytes based on polyacrylonitrile (PAN)

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Bandaranayake, P.W.S.K. [University of Peradeniya (Slovakia). Dept. of Physics

    2000-07-01

    Two copper-ion conducting solid-polymer electrolyte systems based on polyacrylonitrile (PAN) have been synthesized and characterized using DC polarization tests and impedance measurements. The system with 21 mol% PAN: 30 mol% EC: 45 mol% PC: 04 mol% CuCNS has a room temperature conductivity of 3.30 x 10{sup -5} S cm{sup -1} and an activation energy of 0.25 eV. The conductivity versus temperature plot obeys an Arrhenius type variation. It is predominantly an ionic conductor with negligible electronic conductivity. It has a high anionic transference number (t = 0.80) due to CNS{sup -} ions and a low cationic transference number (t{sub +} = 0.20) due to Cu{sup +} ions. The system with 20 mol% PAN: 41 mol% EC: 34 mol% PC: 5 mol% CuTf has a room temperature conductivity of 4.10 x l0{sup -3} S cm{sup -1} and an activation energy of 0.14 eV. It obeys the VTF equation. The system appears to be a mixed conductor with a cationic (Cu{sup 2+}/ Cu{sup +}) transference number of t{sub +} = 0.50 and an electronic transference number of t{sub e} = 0.50 with negligible anionic conductivity. Both systems yielded free standing stable polymer electrolyte films (Author)

  20. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte

    Science.gov (United States)

    Kammoun, M.; Berg, S.; Ardebili, H.

    2015-10-01

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method

  1. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  2. Strength Analysis of the Carbon-Fiber Reinforced Polymer Impeller Based on Fluid Solid Coupling Method

    OpenAIRE

    Jinbao Lin; Yanjuan Jin; Zhu Zhang; Xiaochao Cui

    2014-01-01

    Carbon-fiber reinforced polymer material impeller is designed for the centrifugal pump to deliver corrosive, toxic, and abrasive media in the chemical and pharmaceutical industries. The pressure-velocity coupling fields in the pump are obtained from the CFD simulation. The stress distribution of the impeller couple caused by the flow water pressure and rotation centrifugal force of the blade is analyzed using one-way fluid-solid coupling method. Results show that the strength of the impeller ...

  3. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    Science.gov (United States)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  4. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  5. All-solid state flexible supercapacitors based on graphene/polymer composites

    International Nuclear Information System (INIS)

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated

  6. All-solid state flexible supercapacitors based on graphene/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Won; Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr

    2015-06-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated.

  7. A Control Strategy for Photovoltaic-Solid Polymer Electrolysis System Based on Surface Temperature of PV Panel

    OpenAIRE

    Riza Muhida; Wahyudi; Rifki Muhida; Ahmad U. Priantoro

    2008-01-01

    Processes to produce hydrogen from solar photovoltaic powered water electrolysis using solid polymer electrolysis are reported. An alternative control of maximum power point tracking method based on analysis of PV panels surface Temperature for the PV-SPE system was designed and implemented. From this analysis an optimal voltage of PV can be obtained and was realized as a reference voltage of Dc-DC converter. By maintenance the output voltage of PV using the reference voltage control, the out...

  8. Optical Characteristics of Polystyrene Based Solid Polymer Composites: Effect of Metallic Copper Powder

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2013-01-01

    Full Text Available Solid polymer composites (SPCs were prepared by solution cast technique. The optical properties of polystyrene doped with copper powder were performed by means of UV-Vis technique. The optical constants were calculated by using UV-Vis spectroscopy. The dispersion regions were observed in both absorption and refractive index spectra at lower wavelength. However, a plateau can be observed at high wavelengths. The small extinction coefficient compared to the refractive index reveals the transparency of the composite samples. The refractive index and optical band gap were determined from the reflectance and optical absorption coefficient data, respectively. The nature of electronic transition from valence band to conduction band was determined and the energy band gaps of the solid composite samples were estimated. It was observed that, upon the addition of Cu concentration, the refractive index increased while the energy gaps are decreased. The calculated refractive indexes (low index of refraction of the samples reveal their availability in waveguide technology.

  9. PREPARATION AND CHARACTERIZATION OF PVA BASED SOLID POLYMER ELECTROLYTES FOR ELECTROCHEMICAL CELL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Anji Reddy Polu; Ranveer Kumar

    2013-01-01

    Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD,FT1R,DSC and AC impedance spectroscopic analysis.The amorphous nature of the polymer electrolyte films has been confirmed by XRD.The complex formation between PVA and Mg salt has been confirmed by FTIR.The glass transition temperature decreases with increasing the Mg salt concentration.The AC impedance studies are performed to evaluate the ionic conductivity of the polymer electrolyte films in the range of 303-383 K,and the temperature dependence seems to obey the Arrhenius behavior.Transport number measurements show that the charge transport is mainly due to ions.Electrochemical cell of configuration Mg/(PVA + Mg(NO3)2) (70:30)/(I2 + C + electrolyte) has been fabricated.The discharge characteristics of the cell were studied for a constant load of 100 kΩ.

  10. Strength Analysis of the Carbon-Fiber Reinforced Polymer Impeller Based on Fluid Solid Coupling Method

    Directory of Open Access Journals (Sweden)

    Jinbao Lin

    2014-01-01

    Full Text Available Carbon-fiber reinforced polymer material impeller is designed for the centrifugal pump to deliver corrosive, toxic, and abrasive media in the chemical and pharmaceutical industries. The pressure-velocity coupling fields in the pump are obtained from the CFD simulation. The stress distribution of the impeller couple caused by the flow water pressure and rotation centrifugal force of the blade is analyzed using one-way fluid-solid coupling method. Results show that the strength of the impeller can meet the requirement of the centrifugal pumps, and the largest stress occurred around the blades root on a pressure side of blade surface. Due to the existence of stress concentration at the blades root, the fatigue limit of the impeller would be reduced greatly. In the further structure optimal design, the blade root should be strengthened.

  11. Nanocasting Design and Spatially Selective Sulfonation of Polystyrene-Based Polymer Networks as Solid Acid Catalysts.

    Science.gov (United States)

    Richter, Felix H; Sahraoui, Laila; Schüth, Ferdi

    2016-09-12

    Nanocasting is a general and widely applied method in the generation of porous materials during which a sacrificial solid template is used as a mold on the nanoscale. Ideally, the resulting structure is the inverse of the template. However, replication is not always as direct as anticipated, so the influences of the degree of pore filling and of potential restructuring processes after removal of the template need to be considered. These apparent limitations give rise to opportunities in the synthesis of poly(styrene-co-divinylbenzene) (PSD) polymer networks of widely varying porosities (BET surface area=63-562 m(2)  g(-1) ; Vtot =0.18-1.05 cm(3)  g(-1) ) by applying a single synthesis methodology. In addition, spatially selective sulfonation on the nanoscale seems possible. Together, nanocasting and sulfonation enable rational catalyst design. The highly porous nanocast and predominantly surface-sulfonated PSD networks approach the activity of the corresponding molecular catalyst, para-toluenesulfonic acid, and exceed those of commercial ion-exchange polymers in the depolymerization of macromolecular inulin.

  12. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    Science.gov (United States)

    Javadi, Alireza

    will not only reduce cost but also improve processability due to the use of supercritical fluid. Various material properties of the solid (without the foaming agent) and microcellular components (with foaming agent) made of PHBV-based polymer blends or composites were investigated including static mechanical properties (tensile testing), dynamic mechanical properties (dynamic mechanical analysis), thermal properties (differential scanning calorimetry and thermo gravimetric analysis), crystallinity(wide angle X-ray scattering analysis), and morphology (scanning electron microscopy and transmission electron microscopy). The composition-processing-structure-property relationship of these solid and microcellular components were established.

  13. Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ileperuma, O.A.; Somasundaram, S. [University of Peradeniya (Sri Lanka). Dept. of Chemistry; Dissanayake, M.A.K.L. [University of Peradeniya (Sri Lanka). Dept. of Physics

    2002-07-05

    Novel all solid state dye-sensitised photoelectrochemical solar cells of the type, FTO-TiO{sub 2}-dye-PAN, EC, PC, Pr{sub 4}N{sup +}I{sup -}, I{sub 2}-Pt-FTO, have been fabricated and characterised using current-voltage characteristics and action spectra. Liquid electrolyte generally used for such solar cells has been successfully replaced by a quasi solid electrolyte comprised of polyacrylonitrile (PAN) with ethylene carbonate (EC) and propylene carbonate (PC) as plasticisers and Pr{sub 4}N{sup +}I{sup -}/I{sub 2} redox couple with tetrapropylammoniumiodide as the complexing salt. For the polymer electrolyte, the optimum conductivity of 2.95 x 10{sup -3} S cm{sup -1} was obtained for the electrolyte composition, PAN:EC:PC=15:35:50 (wt.%). The short circuit current density (J{sub SC}) and the open circuit voltage (V{sub OC}) obtained for an incident light intensity of 600 W m{sup -2} were 3.73 mA cm{sup -2} and 0.69 V, respectively. This corresponds to an overall quantum efficiency of 2.99%. From the action spectrum, the maximum incident photon conversion efficiency (IPCE) of 33% was obtained for incident light of wavelength 480 nm.(author)

  14. Quasi-solid-state nanocrystalline TiO2 solar cells using gel network polymer electrolytes based on polysiloxanes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A quasi-solid-state dye-sensitized nanocrystalline porous TiO2 film solar cell was fabricated using a novel gel network polymer electrolyte based on polysiloxanes with both polyethylene oxide internal plasticized side chains and quaternary ammonium groups. The cell exhibited better photoelectrical conversion performance under 60 mW/cm2 irradiation. The short photocurrent (Isc) of 5.0 mA/cm2 and open voltage (Voc) of 0.68 V were achieved, and the energy conversion efficiency (η) and fill factor (ff) were 3.4% and 0.60, respectively.

  15. Characterization of plasticized PMMA–LiBF4 based solid polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    Polymer electrolyte films prepared from poly(methyl methacrylate) and LiBF4 with different concentrations of plasticizer (DBP) are described. The formation of polymer–salt complex has been confirmed by FTIR spectral studies. The temperature dependence of conductivity of polymer films seems to obey the VTF relation. Values of conductivities of the polymer complexes are presented and discussed.

  16. A Control Strategy for Photovoltaic-Solid Polymer Electrolysis System Based on Surface Temperature of PV Panel

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2008-01-01

    Full Text Available Processes to produce hydrogen from solar photovoltaic powered water electrolysis using solid polymer electrolysis are reported. An alternative control of maximum power point tracking method based on analysis of PV panel’s surface Temperature for the PV-SPE system was designed and implemented. From this analysis an optimal voltage of PV can be obtained and was realized as a reference voltage of Dc-DC converter. By maintenance the output voltage of PV using the reference voltage control, the output PV can be optimized at its MPP operation. The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment.

  17. Solid polymer electrolyte water electrolysis

    Science.gov (United States)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  18. Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The maximum ionic conductivity value was found to be 0.2307 × 10−5 S cm−1 for PEO(90 wt%)/PVP(10 wt%)/LiClO4(8 wt%) based electrolyte at room temperature. • The structural and functional groups were studied by XRD and FTIR. • Both direct and indirect optical band gap values were evaluated from UV–vis analysis. • The change in viscosity of the polymer electrolytes was studied by photoluminescence spectra. - Abstract: A series of conducting novel solid polymer blend electrolytes (SPE) based on the fixed ratio of poly (ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) and various concentrations of salt lithium perchlorate (LiClO4) were prepared by solvent casting technique. Structural and complex formation of the prepared electrolytes was confirmed by X-ray diffraction and FTIR analyses. The maximum ionic conductivity value was found to be 0.2307 × 10−5 S cm−1 for 8 wt% of LiClO4 based system at ambient temperature. Thermal stability of the present system was studied by thermo gravimetric/differential thermal analysis (TG/DTA). Surface morphology of the sample having maximum ionic conductivity was studied by atomic force microscope (AFM). Optical properties like direct and indirect band gaps were investigated by UV–vis analysis. The change in viscosity of the polymer complexes were also identified using photoluminescence emission spectra. PEO(90)/PVP(10)/LiClO4(8) has the highest conductivity which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400–450 nm

  19. Novel All Solid-state Polymer Electrolytes for Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    Hui Jiang; Shibi Fang

    2005-01-01

    @@ 1Introduction All solid-state polymer electrolytes for lithium battery was proved to be an attractive direction. Compared with prevenient polymer electrolytes all solid-state polymer electrolytes were superiority in more broad electrochemical window, more stable/low interfacial resistance especially when situ-polymerization utilized, excellent mechanical properties and dissepiment free. A lithium secondary battery using all solid-state polymer electrolyte meet the challenge of energy source for both portable electronic devices and electric vehicles (EV) or engine/battery hybrid vehicles (HEV). All solid-state comb-like network polymer electrolytes (CNPE) based on polysiloxane with internal plasticizing chain (IPC) has been designed and synthesized. See Fig. 1.

  20. Vibrational studies of flexible solid polymer electrolyte based on PCL-EC incorporated with proton conducting NH4SCN

    Science.gov (United States)

    Woo, H. J.; Arof, A. K.

    2016-05-01

    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50 wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94 × 10- 7 Scm- 1 to 3.82 × 10- 5 Scm- 1. Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN- stretching mode (2030-2090 cm- 1). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4+ complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.

  1. Hyperbranched Polymer-Based Electrolyte for Lithium Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    Takahito Itoh

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted much attention as electrolyte materials for all solid-state recharge able lithium batteries, and poly ( ethylene oxide) ( PEO)-based polymer electrolytes are among the most intensively studied systems[1-3]. Hyperbranched polymers have unique properties such as completely amorphous, highly soluble in common organic solvent and processible because of the highly branched nature[4,5].

  2. Structure and properties of solid polymer electrolyte based on chitosan and ZrO2 nanoparticle for lithium ion battery

    Science.gov (United States)

    Sudaryanto, Yulianti, Evi; Patimatuzzohrah

    2016-02-01

    In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO2) nanoparticle and LiClO4 as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO2 and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ion transference number measurement. XRD profiles show that the addition of ZrO2 and LiClO4 disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10-4 S cm-1) was obtained when 4 wt% of ZrO2 nanoparticle and 40 wt% of LiClO4 salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.

  3. 3-V Solid-State Flexible Supercapacitors with Ionic-Liquid-Based Polymer Gel Electrolyte for AC Line Filtering.

    Science.gov (United States)

    Kang, Yu Jin; Yoo, Yongju; Kim, Woong

    2016-06-01

    State-of-the-art solid-state flexible supercapacitors with sufficiently fast response speed for AC line filtering application suffer from limited energy density. One of the main causes of the low energy density is the low cell voltage (1 V), which is limited by aqueous-solution-based gel electrolytes. In this work, we demonstrate for the first time a 3-V flexible supercapacitor for AC line filtering based on an ionic-liquid-based polymer gel electrolyte and carbon nanotube electrode material. The flexible supercapacitor exhibits an areal energy density that is more than 20 times higher than that of the previously demonstrated 1-V flexible supercapacitor (0.66 vs 0.03 μWh/cm(2)) while maintaining excellent capacitive behavior at 120 Hz. The supercapacitor shows a maximum areal power density of 1.5 W/cm(2) and a time constant of 1 ms. The improvement of the cell voltage while maintaining the fast-response capability greatly improves the potential of supercapacitors for high-frequency applications in wearable and/or portable electronics. PMID:27167760

  4. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  5. Modeling of ionic transport in solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cheang, P L; Teo, L L; Lim, T L, E-mail: plcheang@mmu.edu.my [Centre for Foundation Studies and Extension Education, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2010-05-15

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  6. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065 (China)

    2015-05-22

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  7. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    Science.gov (United States)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  8. Solid-state NMR of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mirau, P

    2001-07-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as one of the most important methods for the solid-state characterisation of polymers. The popularity of NMR is due to the fact that many molecular level features can be measured from the NMR spectra, including the polymer chain conformation, the morphology and the dynamics. The spectral features and relaxation times are affected by local interactions, so they provide information about the structure of polymers on a length scale (2-200 A) that is difficult to measure by other methods. In favourable cases, the NMR experiments provide a molecular-level explanation for the transitions observed by differential scanning calorimetry (DSC) and other methods, and the NMR properties can often be related to the bulk properties. Solid-state NMR has long been of interest in polymer science, and the first solid-state NMR studies of polymers were reported approximately a year after the discovery of nuclear resonance in bulk matter. It was reported in this initial study that the proton line width for natural rubber at room temperature is more like that of a mobile liquid than of a solid, but that the resonance broadens near the glass transition temperature (T{sub g}). This was recognised as being related to a change in chain dynamics above and below the T{sub g}. NMR methods developed rapidly after these initial observations, first for polymers in solution and, more recently, for polymers in the solid-state. Solid-state NMR studies of polymers were developed more slowly than their solution-state counterparts because solid-state NMR requires more specialised equipment. Solid-state NMR is now such an important tool that most modern spectrometers are capable of performing these studies. The interest in the NMR of solid polymers is due in part to the fact that most polymers are used in the solid state, and in many cases the NMR properties can be directly related to the macroscopic properties. Polymers have restricted mobility

  9. Investigation of Ionic Conductivity of - MgCl2 Based Solid Polymer Electrolyte

    Science.gov (United States)

    Sundar, M.; Poovizhi, P. N.; Arunkarthikeyan, J.; Selladurai, S.

    2006-06-01

    Novel solid polymeric electrolyte (SPE) consisting of Poly (ethylene oxide) PEO with magnesium chloride as the electrolyte salt has been prepared by solution casting technique. Measurements with differential scanning calorimetry (DSC) indicates the modification of PEO crystalline structure with increasing content of magnesium salt up to 20 wt% and increase in crystallinity at higher concentration. FTIR studies indicates the interaction of Mg cations with ether oxygen of PEO, Ionic conductivity increases with increase in salt content, and it is optimized at 20 wt% Mg salt. The decrease in ionic conductivity at higher salt content above 20 wt% is due to ion-ion interaction, which leads to ion pair formation and increase in relative crystallanity fraction due to recrystallization above 15wt%.

  10. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-01-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10−4 S cm−1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor. PMID:27265642

  11. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10‑4 S cm‑1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  12. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  13. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples.

    Science.gov (United States)

    Lirio, Stephen; Liu, Wan-Ling; Lin, Chen-Lan; Lin, Chia-Her; Huang, Hsi-Ya

    2016-01-01

    In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin). The Al-MOF-polymer was characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM-energy-dispersive X-ray spectroscopy (SEM-EDS) to clarify the retained crystalline structure well as the homogeneous dispersion of Al-MOF (MIL-53) in polymer monolith. The developed Al-MOF-polymer (MIL-53) monolithic column was evaluated according to its extraction recovery of penicillins. Several parameters affecting the extraction recoveries of penicillins using fabricated Al-MOF-polymer (MIL-53) monolithic column including different MIL-53 weight percentages, column length, pH, desorption solvent, and mobile phase flow rate were investigated. For comparison, different Al-based MOFs (MIL-68, CYCU-4 and DUT-5) were fabricated using the optimized condition for MIL-53-polymer (sample matrix at pH 3, 200μL desorption volume using methanol, 37.5% of MOF, 4-cm column length at 0.100mLmin(-1) flow rate). Among all the Al-MOF-polymers, MIL-53(Al)-polymer still afforded the best extraction recovery for penicillins ranging from 90.5 to 95.7% for intra-day with less than 3.5% relative standard deviations (RSDs) and inter-day precision were in the range of 90.7-97.6% with less than 4.2% RSDs. Meanwhile, the recoveries for column-to-column were in the range of 89.5-93.5% (<3.4% RSDs) while 88.5-90.5% (<5.8% RSDs) for batch-to-batch (n=3). Under the optimal conditions, the limit of detections were in the range of 0.06-0.26μgL(-1) and limit of quantifications between 0.20 and 0.87

  14. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples.

    Science.gov (United States)

    Lirio, Stephen; Liu, Wan-Ling; Lin, Chen-Lan; Lin, Chia-Her; Huang, Hsi-Ya

    2016-01-01

    In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin). The Al-MOF-polymer was characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM-energy-dispersive X-ray spectroscopy (SEM-EDS) to clarify the retained crystalline structure well as the homogeneous dispersion of Al-MOF (MIL-53) in polymer monolith. The developed Al-MOF-polymer (MIL-53) monolithic column was evaluated according to its extraction recovery of penicillins. Several parameters affecting the extraction recoveries of penicillins using fabricated Al-MOF-polymer (MIL-53) monolithic column including different MIL-53 weight percentages, column length, pH, desorption solvent, and mobile phase flow rate were investigated. For comparison, different Al-based MOFs (MIL-68, CYCU-4 and DUT-5) were fabricated using the optimized condition for MIL-53-polymer (sample matrix at pH 3, 200μL desorption volume using methanol, 37.5% of MOF, 4-cm column length at 0.100mLmin(-1) flow rate). Among all the Al-MOF-polymers, MIL-53(Al)-polymer still afforded the best extraction recovery for penicillins ranging from 90.5 to 95.7% for intra-day with less than 3.5% relative standard deviations (RSDs) and inter-day precision were in the range of 90.7-97.6% with less than 4.2% RSDs. Meanwhile, the recoveries for column-to-column were in the range of 89.5-93.5% (polymer was applied for the extraction of penicillin in river water and milk by spiking trace-level penicillin for as low as 50μgL(-1) and 100μgL(-1) with recoveries ranging from 80.8% to 90.9% (<6.7% RSDs) in

  15. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  16. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  17. Solid State Nuclear Magnetic Resonance Investigation of Polymer Backbone Dynamics in Poly(Ethylene Oxide) Based Lithium and Sodium Polyether-ester-sulfonate Ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-01-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ≳ 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for

  18. On the theory of proton solid echo in polymer melts

    CERN Document Server

    Fatkullin, N; Mattea, C; Stapf, S

    2015-01-01

    Based on a modified Anderson-Weiss approximation (N. Fatkullin, A. Gubaidullin, C. Mattea, S.Stapf, J. Chem. Phys. 137 (2012), 224907) an improved theory of proton spin solid echo in polymer melts is formulated, taking into account contribution from intermolecular magnetic dipole-dipole interactions. The solid echo build-up function defined by the relation , where , and are the respective signals arising from ( ),( ) and ( ) spin echo experiments, where is an operator rotating the spin system on the angle relatively axis , is investigated. It is shown that the intermolecular part of this function at short times , where is a characteristic time for flip-flop transitions between proton spins, contains information about the relative mean squared displacements of polymer segments at different macromolecules, opening up a new opportunity for obtaining information about polymer dynamics in the millisecond regime.

  19. A polymer-based magnetic resonance tracer for visualization of solid tumors by 13C spectroscopic imaging.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Suzuki

    Full Text Available Morphological imaging precedes lesion-specific visualization in magnetic resonance imaging (MRI because of the superior ability of this technique to depict tissue morphology with excellent spatial and temporal resolutions. To achieve lesion-specific visualization of tumors by MRI, we investigated the availability of a novel polymer-based tracer. Although the 13C nucleus is a candidate for a detection nucleus because of its low background signal in the body, the low magnetic resonance sensitivity of the nucleus needs to be resolved before developing a 13C-based tracer. In order to overcome this problem, we enriched polyethylene glycol (PEG, a biocompatible polymer, with 13C atoms. 13C-PEG40,000 (13C-PEG with an average molecular weight of 40 kDa emitted a single 13C signal with a high signal-to-noise ratio due to its ability to maintain signal sharpness, as was confirmed by in vivo investigation, and displayed a chemical shift sufficiently distinct from that of endogenous fat. 13C-PEG40,000 intravenously injected into mice showed long retention in circulation, leading to its effective accumulation in tumors reflecting the well-known phenomenon that macromolecules accumulate in tumors because of leaky tumor capillaries. These properties of 13C-PEG40,000 allowed visualization of tumors in mice by 13C spectroscopic imaging. These findings suggest that a technique based on 13C-PEG is a promising strategy for tumor detection.

  20. PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

    Indian Academy of Sciences (India)

    Nirbhay K Singh; Mohan L Verma; Manickam Minakshi

    2015-10-01

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93 (Al2O3)7 and (PEO70AgI30)95 (SiO2)5 used in the (PEO70AgI30)70 (AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

  1. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  2. Solid polymer electrolyte from phosphorylated chitosan

    International Nuclear Information System (INIS)

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10−6 S/cm up to 6.01 × 10−4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10−3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications

  3. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    OpenAIRE

    Luca Porcarelli; Claudio Gerbaldi; Federico Bella; Jijeesh Ravi Nair

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene o...

  4. Solid state NMR of biopolymers and synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jelinski, Lynn W. [Cornell Univ., Geneva, NY (United States)

    1995-12-31

    Solid state NMR has been invaluable in evaluating the structure, phase separation, and dynamics of polymers. Because polymers are generally used in the solid state, solid state NMR is especially powerful because it provides information about the materials in their native state. This review gives a general overview of solid state NMR, concentrating on solid state {sup 13} C and {sup 2} H NMR. It then focuses on two examples: the biopolymer spider silka and the engineering material polyurethane. It illustrates how solid state NMR can provide new information about synthetic and bio-polymers. (author) 11 refs., 5 figs., 3 tabs.

  5. Interpenetrating Polymer Networks as Binders for Solid Composite Propellants

    Directory of Open Access Journals (Sweden)

    S. Parthiban

    1992-07-01

    Full Text Available A new family of polymeric binders for solid composite propellants is proposed, based on two component interpenetrating polymer networks (IPNs. These networks comprise two different polyurethanes based on hydroxy terminated polybutadiene and ISRO polyol interpenetrated with two different vinyl polymers, viz poly methyl methacrylate and polystyrene. the networks synthesized by the simultaneous interpenetrating technique have been characterized for their properties, such as stress-strain, density, viscosity, thermal degradation, and heat of combustion. Phase morphologies have been determined using electron microscopy. Suitable explanations have been adduced to rationalize the properties of IPNs in terms of their structures and chain interactions. A study of the mechanical properties and burning rates of the ammonium perchlorate (AP-based solid propellant using the newly synthesised IPNs as binders, has been carried out. The results show that both mechanical strength and burning rate of solid propellants could be suitably modified by simply changing the nature and/or the ratio of the two interpenetrating polymer components.

  6. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  7. Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes

    Science.gov (United States)

    Abreha, Merhawi; Subrahmanyam, A. R.; Siva Kumar, J.

    2016-08-01

    Polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and various concentrations of lithium triflate were prepared to determine the optimal polymer-salt composition for maximum ionic conductivity. Complex formation was ascertained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) studies. The conductivity measurements reveal that the ionic conductivity of the polymer electrolytes containing various salt concentrations increases with temperature and obeys the Arrhenius rule. It is found that the electrolyte containing 25 wt.% of lithium triflate exhibits the highest room temperature conductivity. Moreover, Ionic transference measurements show predominance of ionic motion.

  8. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders;

    2014-01-01

    -binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis......We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible......-binding buffer, respectively....

  9. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  10. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  11. Structure and properties of solid polymer electrolyte based on chitosan and ZrO{sub 2} nanoparticle for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sudaryanto,, E-mail: dryanto@batan.go.id; Yulianti, Evi, E-mail: yulianti@batan.go.id [Center for Sains and Technology Advanced Materials – BATAN Kawasan Puspiptek Serpong, Tangerang Selatan, BantenV 15314 (Indonesia); Patimatuzzohrah, E-mail: pzohrah@yahoo.com [Department Of Physics, Mataram University, Jl. Majapahit 62, Mataram, NTB 83125 (Indonesia)

    2016-02-08

    In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO{sub 2}) nanoparticle and LiClO{sub 4} as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO{sub 2} and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ion transference number measurement. XRD profiles show that the addition of ZrO{sub 2} and LiClO{sub 4} disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10{sup −4} S cm{sup −1}) was obtained when 4 wt% of ZrO{sub 2} nanoparticle and 40 wt% of LiClO{sub 4} salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.

  12. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  13. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here. PMID:26687811

  14. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-01-01

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm-3 at an energy density of 9 mW h cm-3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds. © The Royal Society of Chemistry 2015.

  15. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  16. Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.

    Science.gov (United States)

    Jang, Hyounguk; Pfefer, T Joshua; Chen, Yu

    2015-09-15

    Stable tissue phantoms that incorporate the spectral absorption properties of hemoglobin would benefit a wide range of biophotonic technologies. Toward this end, we have developed and validated a novel polymer material incorporating hemoglobin. Our solid hemoglobin-polymer (SHP) material is fabricated by mixing liquid silicone base with a hemoglobin solution, followed by sonication and low temperature curing. The optical properties of samples were determined over 450-1000 nm using the inverse adding-doubling method and the Beer-Lambert law. Measurements indicated SHP optical stability over four months. Near-infrared spectroscopy and hyperspectral imaging measurements of SHP samples were performed to demonstrate the utility of this approach. SHP materials have the potential to improve tissue-simulating phantoms used for development, evaluation, and standardization of optical devices for oximetry and other applications. PMID:26371926

  17. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  18. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik

    2014-09-29

    The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220 Wh/kg. The development work was focused on establishing a dual electrolyte system, coated cathode particle techniques, various types of additives, and different conductive salts. The program had a duration of three years, with Seeo delivering the final cells at the end of 2014 for evaluation by a DOE laboratory.

  19. A novel solid-phase microextraction method based on polymer monolith frit combining with high-performance liquid chromatography for determination of aldehydes in biological samples.

    Science.gov (United States)

    Xu, Hui; Wang, Shuyu; Zhang, Ganbing; Huang, Shiqiang; Song, Dandan; Zhou, Yanping; Long, Guangdou

    2011-03-25

    In this work, a polypropylene frit with porous network structure (20 μm pole size) was first utilized as the mould of polymer monolithic material, poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolith was synthesized within channels and macropores of the frit. A simple and sensitive solid-phase microextraction method based on polymer monolith frit coupled with high-performance liquid chromatography (HPLC) was established and applied to analysis of hexanal and heptanal in biological samples (human urine and serum). In the method, small molecule metabolites (aldehydes) in biological samples derivatized with 2,4-dinitrophenylhydrazine (DNPH), and the formed hydrazones were extracted simultaneously on the monolithic frit and thereafter ultrasound-assisted desorbed with acetonitrile as elution solvent. The experimental parameters with regard to polymerization, derivatization and extraction were investigated. Under the optimal conditions, the linearity was in the range of 0.02-5.0 μmol L(-1) (r=0.9994) for both hexanal and heptanal and the limits of detection (S/N=3) were 0.81 nmol L(-1) for hexanal and 0.76 nmol L(-1) for heptanal. The relative standard deviations (RSDs, n=5) were less than 6.5% for the same monolithic frit and less than 8.9% for the different monolithic frits. Satisfactory recoveries ranging from 70.71% to 88.73% were obtained for the urine samples. The method possesses many advantages including simple setup, fast analysis, low cost, sufficient sensitivity, good biological compatibility and less organic solvent consumption. The proposed method is a useful assistant tool in the clinical early diagnosis of lung disease by monitoring aldehyde biomarker candidates in complex biological samples. PMID:21414440

  20. Design of molecularly imprinted polymers for sensors and solid phase extraction

    OpenAIRE

    Subrahmanyam, Sreenath

    2002-01-01

    This thesis presents broadly the applications of molecularly imprinted polymers in sensors and solid phase extraction. Sensors for creatine and creatinine have been reported using a novel method of rational design of molecularly imprinted polymers (MIPs), and solid phase extraction of aflatoxin-B 1 has also been described in the thesis. A method for the selective detection of creataine and creatinine is reported in this thesis, which is based on the reaction between polymeri...

  1. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  2. From Spheric to Aspheric Solid Polymer Lenses: A Review

    Directory of Open Access Journals (Sweden)

    Kuo-Yung Hung

    2011-01-01

    Full Text Available This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm, and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA, and cyclic olefin copolymer (COC. Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.

  3. Polymer based amperometric hydrogen sensor

    International Nuclear Information System (INIS)

    A polymer based amperometric hydrogen sensor has been developed for measuring hydrogen in argon. Polyvinyl alcohol-phosphoric acid serves as the solid electrolyte for proton conduction. The electrolyte is sandwiched between two palladium films. Short circuit current between the film at room temperature is measured and is found to be linearly dependant on hydrogen concentration in argon to which one side of the film is exposed. The other side is exposed to air. The response time of the sensor is found to be improved on application of a D.C. potential of 200 mV in series. The sensitivity of the sensor is in ppm range. This may be sufficient for monitoring cover gas hydrogen in FBTR. Work is underway to improve the long-term stability of the sensor. (author)

  4. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  5. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  6. Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Jannasch, P.; Hvilsted, Søren

    2004-01-01

    Novel triblock copolymers based on central poly( ethylene glycol) ( PEG) or poly( ethylene glycol-co-propylene glycol) (PEGPG) blocks with poly( pentafluorostyrene) (PFS) outer blocks were prepared by Atom Transfer Radical Polymerization (ATRP) with polydispersities on the order of 1.2 - 1...

  7. Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2)-Based Solid Polymer Electrolyte Water Electrolyser

    OpenAIRE

    E.L.Santhi priyaa ,; V. Himabindu

    2015-01-01

    In the present study, Composite materials based on perfluorinated cation-exchange membrane incorporating particles of Zirconium and Nafion is synthesized .With this membrane the performance of the electrolysis cell improved considerably at room temperature and atmospheric pressure. In addition, by using catalysts and membranes, the performance of this Composite membrane is studied by varying voltage range with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, an...

  8. Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2-Based Solid Polymer Electrolyte Water Electrolyser

    Directory of Open Access Journals (Sweden)

    E.L.Santhi priyaa ,

    2015-05-01

    Full Text Available In the present study, Composite materials based on perfluorinated cation-exchange membrane incorporating particles of Zirconium and Nafion is synthesized .With this membrane the performance of the electrolysis cell improved considerably at room temperature and atmospheric pressure. In addition, by using catalysts and membranes, the performance of this Composite membrane is studied by varying voltage range with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2 , With a Nafion 115 membrane as a reference electrolyte. Experiments have shown that 99.9% purity of hydrogen Gas is evolved The physicochemical properties of the composite membranes such as thermogravimetric analyzer (TGA, Scanning Electron Microscope (SEM, XRD (X-ray powder diffraction, Fourier transform infrared spectroscopyand and Ion Exchange Capacity is determined. The fabricated composite membranes have shown the significant improvement of all tested properties compared to that of pure Nafion membrane.

  9. Solid state white light emitting systems based on CeF3: RE3+ nanoparticles and their composites with polymers.

    Science.gov (United States)

    Sayed, Farheen N; Grover, V; Dubey, K A; Sudarsan, V; Tyagi, A K

    2011-01-15

    A series of doped CeF(3): RE(3+) (RE(3+): Tb(3+), Eu(3+) and Dy(3+)) nanoparticles were synthesized, with the aim of obtaining a white light emitting composition, by a simple polyol route at 160°C and characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. Uniformly distributed and highly water-dispersible rectangular nanoparticles (length ~15-20 nm, breadth ~5-10 nm) were obtained. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Lifetime studies revealed that optimum luminescence is observed for 2.5 mol% Dy(3+) and 7.5 mol% Tb(3+). The energy transfer efficiencies (Ce(3+) to activators) were found to be 89% for CeF(3): Tb(3+) (7.5 mol%) nanoparticles and 60% for CeF(3): Dy(3+) (2.5 mol%) nanoparticles. Different concentrations of Tb(3+), Eu(3+) and Dy(3+) were doped to achieve a white light emitting phosphor for UV-based LEDs (light emitting diodes). Finally CeF(3), triply doped with 2.0 mol%Tb(3+), 4.5 mol% Eu(3+) and 3.5 mol% Dy(3+), was found to have impressive chromaticity co-ordinates, close to broad day light. The colloidal solutions of doped CeF(3) nanoparticles emitted bright green (Tb(3+)), blue (Dy(3+)) and white (triply doped) luminescence upon host excitation. Composites of poly methyl methacrylate (PMMA) and poly vinyl alcohol (PVA) were made with CeF(3): 5.0 mol%Tb(3+), CeF(3): 5.0 mol% Dy(3+) and triply doped white light emitting composition. The CeF(3)/PMMA (PVA) nanocomposite films, so obtained, are highly transparent (in the visible spectral range) and exhibit strong photoluminescence upon UV excitation. PMID:20980015

  10. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  11. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  12. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m2 g−1) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10−3 S cm−1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g−1, ∼39 Wh kg−1 and ∼19 kW kg−1, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼104 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel. • Highest

  13. Polymer-based solar cells

    Directory of Open Access Journals (Sweden)

    Alex C. Mayer

    2007-11-01

    Full Text Available A significant fraction of the cost of solar panels comes from the photoactive materials and sophisticated, energy-intensive processing technologies. Recently, it has been shown that the inorganic components can be replaced by semiconducting polymers capable of achieving reasonably high power conversion efficiencies. These polymers are inexpensive to synthesize and can be solution-processed in a roll-to-roll fashion with high throughput. Inherently poor polymer properties, such as low exciton diffusion lengths and low mobilities, can be overcome by nanoscale morphology. We discuss polymer-based solar cells, paying particular attention to device design and potential improvements.

  14. Development of a group selective molecularly imprinted polymers based solid phase extraction of malachite green from fish water and fish feed samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yahui; Yang Tao; Qi Xiaoling; Qiao Yuwei [College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064 (China); Deng Anping [College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064 (China)], E-mail: denganping6119@yahoo.com.cn

    2008-08-29

    A group selective molecularly imprinted solid phase extraction (MISPE) for malachite green (MG) from fish water and fish feed samples was developed. Using MG as template molecule, methacrylic acid as functional monomer, ethylene glycoldimethacrylate as linking agent and bulk polymerization as synthetic method, the molecularly imprinted polymers (MIPs) were synthesized and characterized with rebinding experiment. The Scatchard polt's analysis revealed that the template-polymer system showed the two-site binding behavior with dissociation constants of 0.3194 {mu}mol L{sup -1} and 15.70 {mu}mol L{sup -1}, respectively. MG and two structurally related compounds, leucomalachite green (LMG) and crystal violet (CV) were employed for selectivity test. The MIPs exhibited the highest selective rebinding to MG, but also displayed 83.0% and 87.5% of cross-reactivity with LMG and CV, demonstrating that MIPs could be used as group recognition sorbents in solid phase extraction. The extraction conditions of MISPE column for MG were optimized. Tap water samples spiked with MG at concentration of 0.5-10 ng mL{sup -1} were extracted by MISPE column and analyzed by high performance liquid chromatography. The recoveries of MISPE column for MG extraction were found to be 76.8-93.7% with the relative standard deviations of 2.12-10.09%, indicating the feasibility of the prepared MIPs for MG extraction. No detectable MG was observed in one fish farming water sample and two fish feed samples; while the MG concentrations in two pet fishpond water samples were found at 1.50 ng mL{sup -1} and 0.67 ng mL{sup -1}, respectively.

  15. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples.

    Science.gov (United States)

    Hu, Xiaogang; Pan, Jialiang; Hu, Yuling; Huo, Yin; Li, Gongke

    2008-04-25

    Molecularly imprinted polymer (MIP) is widely used in many fields because of its characteristics of high selectivity, chemical stability and easy preparation. To enhance the selectivity and applicability of solid-phase microextraction (SPME), a novel MIP-coated SPME fiber was firstly prepared by multiple co-polymerization method with tetracycline as template. It could be coupled directly to high-performance liquid chromatography (HPLC) and used for trace analysis of tetracyclines (TCs) in complicated samples. The characteristics and application of the fibers were investigated. The electron microscope provided a crosslinked and porous surface, and the average thickness of the MIP coating was 19.5 microm. Compared with the non-imprinted polymer (NIP) coated fibers, the special selectivity to tetracycline and structure-similar oxytetracycline, doxycycline, chlortetracycline were discovered with the MIP-coated fibers. The adsorption and desorption of TCs with the MIP-coated fiber could be achieved quickly. A method for the fluorimetric determination of four TCs by the MIP-coated SPME coupled with HPLC was developed. The optimized extraction conditions such as extraction solvent, desorption solvent, and stirring speed were studied. Linear ranges for the four TCs were 5.00-200 microg/L and detection limits were within the range of 1.0-2.3 microg/L. The method was applied to simultaneous multi-residue analysis of four TCs in the spiked chicken feed, chicken muscle, and milk samples with the satisfactory recoveries. PMID:18325526

  16. Polymer compositions based on PXE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  17. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview

    International Nuclear Information System (INIS)

    Polymer electrolytes are promising materials for electrochemical device applications, namely, high energy density rechargeable batteries, fuel cells, supercapacitors, electrochromic displays, etc. The area of polymer electrolytes has gone through various developmental stages, i.e. from dry solid polymer electrolyte (SPE) systems to plasticized, gels, rubbery to micro/nano-composite polymer electrolytes. The polymer gel electrolytes, incorporating organic solvents, exhibit room temperature conductivity as high as ∼10-3 S cm-1, while dry SPEs still suffer from poor ionic conductivity lower than 10-5 S cm-1. Several approaches have been adopted to enhance the room temperature conductivity in the vicinity of 10-4 S cm-1 as well as to improve the mechanical stability and interfacial activity of SPEs. In this review, the criteria of an ideal polymer electrolyte for electrochemical device applications have been discussed in brief along with presenting an overall glimpse of the progress made in polymer electrolyte materials designing, their broad classification and the recent advancements made in this branch of materials science. The characteristic advantages of employing polymer electrolyte membranes in all-solid-state battery applications have also been discussed. (topical review)

  18. Conductive polymer-based material

    Science.gov (United States)

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  19. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  20. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    Science.gov (United States)

    Moore, Carleton J.

    1988-01-01

    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  1. Bonding Properties of Solid Polymer Electrolyte Based on PEO%PEO 基聚合物固体电解质的键合性能

    Institute of Scientific and Technical Information of China (English)

    阴旭; 刘翠荣; 赵为刚

    2014-01-01

    为了促进微机电系统封装技术的发展,设计了应用聚氧化乙烯(polyethylene oxide,PEO)作为主体材料,通过掺杂不同的锂盐获得聚合物固体电解质用于阳极键合进行封装。阳极键合对材料的要求主要是具有离子导电性,因此采用 X 射线小角衍射(small-angle X-ray scattering, SAXS)和傅里叶红外光谱( Fouriex transform infrared radiation spectroscopy, FTIR)对设计的高分子固体电解质的导电机理进行分析。研究结果表明:LiClO4的离解能更小;锂离子的迁移数更多;随着其质量分数的增加,电导率更高;通过键合结果发现,PEO-LiClO4和金属铝键合界面过渡层的产生是两者得以焊合的关键。%To promote the development of micro-electro-mechanical system packaging technology, design the application of polyethylene oxide(PEO) as the main material, different lithium were doped into PEO to obtain polymer solid electrolyte material for anodic bonding package. Anodic bonding requirements of the material are mainly with ionic conductivity; therefore, small-angle X-ray scattering ( SAXS) and Fourier transform infrared radiation spectroscopy (FTIR) are used to analyze conductive mechanism of polymer solid electrolyte material. Results show that: dissociation energy of LiClO4 is small; the transport number of lithium ions is more; with the increase of the content, the electrical conductivity increases. Bonding shows that PEO-LiClO4 and aluminum bonding interface between the transition layers is the key to bond together.

  2. New paradigm for stabilization of liquid polymer films on solids

    Science.gov (United States)

    Koga, Tad; Jiang, Naisheng; Wang, Jiaxun; di, Xiaoyu; Cheung, Justin; Endoh, Maya

    2015-03-01

    We report that wetting/dewetting behavior of liquid polymer films on solids can be controlled by nanoscale architectures of polymer chains irreversibly adsorbed on the impenetrable surfaces. Monodisperse polystyrene (PS) ultrathin films (20 nm in thickness) with different molecular weights on silicon (Si) substrates with a natural amorphous Si dioxide layer were used as models. The PS thin films were annealed at high temperatures at T>Tg (Tg is the bulk glass transition temperature) for several days, and the surface structures were studied by using optical and atomic force microscopes. At the same time, the annealed PS films were further leached with a good solvent and the residue films (i.e., irreversibly adsorbed layers) were characterized by x-ray reflectivity. The experimental data reveals a strong correlation between the conformations of the adsorbed polymer chains and the stability of the liquid films on top. T. K. acknowledges the partial financial support from NSF Grant No. CMMI-1332499.

  3. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.;

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries in ......Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil...

  4. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    Science.gov (United States)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  5. Study of Hydrophobic and Ionizable Hydrophilic Copolymers at Polymer/Solid and Polymer/Liquid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perahia, Dvora

    2011-11-01

    Joint experimental-computational efforts were set to characterize the interfacial effects on the structure and dynamics of polymers consisting of highly rigid hydrophilic-ionizable and hydrophobic sub-units within one polymeric chain casted into thin films of several molecular dimensions. Focusing on the ultra thin film region we separate out the interfacial effects from bulk characteristics. Specifically, the study sought to: identify the parameters that control the formation of a stable polymer-solid interface. The study consists of two components, experimental investigations and computational efforts. The experimental component was designed to derive empirical trends that can be used to correlate the set of coupled polymer molecular parameters with the interfacial characteristics of these polymers, and their response to presence of solvents. The computational study was designed to provide molecular insight into the ensemble averages provided by the experimental efforts on multiple length scales from molecular dimensions, to the nanometer lengths to a macroscopic understanding of solvent interactions with structured polymers. With the ultimate goal of correlating molecular parameters to structure, dynamics and properties of ionic polymers, the first stage of the research began with the study of two systems, one which allowed tailoring the flexibility of the backbone without the presence of ionic groups, but with a potential to sulfonate groups at a later stage, and a polymer whose backbone is rigid and the density of the ionic group can be varied. The combined experimental and computational studies significantly extended the understanding of polymers at interfaces from model systems to polydispersed copolymers with blocks of varying nature and complexity. This new insight directly affects the design of polymers for sustainable energy applications from batteries and fuel cells to solar energy.

  6. Solid state structure and gas transport behavior of semicrystalline poly(ethylene terephthalate) and barrier coatings based on polyhydroxylated dendritic polymers

    Science.gov (United States)

    Lin, Jun

    HBPs of different generations. Due to the plasticization of the polymers by moisture, both diffusivity and solubility coefficients increased for all HBPs at 50% RH. With highest hydroxyl group density, H20 showed largest increase in both diffusivity and solubility coefficients at 50% RH. The mechanical properties of HBPs were significantly improved by crosslinking. The polarity index calculated based on the concentration of hydroxyl and amine groups was found to be a good predictor of the diffusivity of crosslinked H40: higher the polarity index, lower the oxygen diffusivity coefficients. The oxygen sorption of crosslinked H40 showed similar behavior as that of neat H40, and it is related with the Tg of crosslinked H40. A dynamic gas permeation system using mass-spectrometer (DGPS-MS) was successfully developed, based on the principles of the dynamic differential approach. The permeation results of various gases through different polymer membranes demonstrated that DGPS-MS has the capability to measure from very fast (no more than a few minutes) to slow (a couple of days) diffusion of different gases, and gas mixtures as well. The data obtained from DGPS-MS agreed well with the literature value.

  7. Role of Hard-Acid/Hard-Base Interaction on Structural and Dielectric Behavior of Solid Polymer Electrolytes Based on Chitosan-XCF3SO3 (X = Li+, Na+, Ag+

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2014-01-01

    Full Text Available Solid films of pure chitosan, chitosan-LiCF3SO3, chitosan-NaCF3SO3, and chitosan-AgCF3SO3 were prepared using solution cast technique. The influence of cation size on the chitosan structure has been investigated by X-ray diffraction technique. The interaction between the alkali metal ions and the donor atoms of chitosan polymer is a strong hard-acid/hard-base interaction. It was found that the intensity of crystalline peaks of chitosan decreases with increase of cation size. The impedance analysis shows that ionic transport is high for the high amorphous system. The second semicircle in Z′′-Z′ plots and the surface plasmonic resonance (SPR peaks in chitosan-AgCF3SO3 sample system reveal the formations of silver metal nanoparticles. It was found that the high amorphous sample exhibits the high dielectric constant and dielectric loss values. The increase of dielectric constant and dielectric loss with temperature for chitosan-salt membranes indicated an increase of charge carrier concentration.

  8. Solid oxide MEMS-based fuel cells

    Science.gov (United States)

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  9. Preparation and Characterization of Lithium Ion Conducting Solid Polymer Electrolytes from Biodegradable Polymers Starch And PVA

    Directory of Open Access Journals (Sweden)

    B. Chatterjee,

    2015-06-01

    Full Text Available Solid Polymer electrolyte films have been prepared from Starch-Poly vinyl alcohol (PVA blend a well acknowledged biodegradable material. Solution cast technique was employed for the preparation of solid polymer electrolyte films added with Lithium Bromide (LiBr salt. X-ray diffraction (XRD studies of the prepared films portrayed the evolution of an amorphous structure with increasing content of salt which is an important factor that leads to the augmentation of conductivity. Electrochemical impedance spectroscopic analysis revealed noticeable ionic conductivity ~ 5x 10-3 S/cm for 20 wt% of salt at ambient conditions. Ionic conductivity showed an increasing trend with salt content at ambient conditions. Transference number measurements confirmed the ionic nature of the prepared solid polymer electrolyte films. Dielectric studies revealed a sharp increase in the number of charge carriers which contributed to enhancement in conductivity. Low values of activation energy extracted from temperature dependent conductivity measurements could be favorable for device applications. For the composition with highest conductivity a temperature independent relaxation mechanism was confirmed by electric modulus scaling.

  10. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Science.gov (United States)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  11. All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics

    OpenAIRE

    Tapani Ryhänen; Darryl Cotton; Di Wei

    2012-01-01

    A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene) (PEDOT) nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or second...

  12. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  13. Automated Solid-Phase Radiofluorination Using Polymer-Supported Phosphazenes

    DEFF Research Database (Denmark)

    Mathiessen, Bente; Zhuravlev, Fedor

    2013-01-01

    The polymer supported phosphazene bases PS-P2tBu and the novel PS-P2PEG allowed for efficient extraction of [18F]F− from proton irradiated [18O]H2O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic...

  14. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  15. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber

    CERN Document Server

    Zito, Gianluigi

    2013-01-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a pre-polymer/LC solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG are discussed. Experimental data here presented, demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, while further discussed.

  16. Synthesis of cyanopyridine based conjugated polymer

    Directory of Open Access Journals (Sweden)

    B. Hemavathi

    2016-06-01

    Full Text Available This data file contains the detailed synthetic procedure for the synthesis of two new cyanopyridine based conjugated polymer P1 and P2 along with the synthesis of its monomers. The synthesised polymers can be used for electroluminescence and photovoltaic (PV application. The physical data of the polymers are provided in this data file along with the morphological data of the polymer thin films. The data provided here are in association with the research article entitled ‘Cyanopyridine based conjugated polymer-synthesis and characterisation’ (Hemavathi et al., 2015 [3].

  17. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S.

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  18. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    Science.gov (United States)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10‑4 S cm‑1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  19. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    Directory of Open Access Journals (Sweden)

    Sandip Sapkal

    2013-05-01

    Full Text Available Natural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are most extensively studied and used. This reviewdiscusses about the majority of these natural polymers, its uses and some recent investigationsabout modification of natural polymer in solid dispersion systems

  20. Polymer-Based Carbon Monoxide Sensors

    Science.gov (United States)

    Homer, M. L.; Shevade, A. V.; Zhou, H.; Kisor, A. K.; Lara, L. M.; Yen, S.-P. S.; Ryan, M. A.

    2010-01-01

    Polymer-based sensors have been used primarily to detect volatile organics and inorganics; they are not usually used for smaller, gas phase molecules. We report the development and use of two types of polymer-based sensors for the detection of carbon monoxide. Further understanding of the experimental results is also obtained by performing molecular modeling studies to investigate the polymer-carbon monoxide interactions. The first type is a carbon-black-polymer composite that is comprised of a non-conducting polymer base that has been impregnated with carbon black to make it conducting. These chemiresistor sensors show good response to carbon monoxide but do not have a long lifetime. The second type of sensor has a non-conducting polymer base but includes both a porphyrin-functionalized polypyrrole and carbon black. These sensors show good, repeatable and reversible response to carbon monoxide at room temperature.

  1. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion.

    Science.gov (United States)

    Gumaste, Suhas G; Gupta, Simerdeep Singh; Serajuddin, Abu T M

    2016-09-01

    In a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied. Then, polymer-drug-surfactant miscibility was determined using itraconazole as the model drug, and ternary phase diagrams were constructed. The casted films were examined by DSC, PXRD and polarized light microscopy for any crystallization or phase separation of surfactant, drug or both in freshly prepared films and after exposure to 40°C/75% RH for 7, 14, and 30 days. The miscibility of poloxamer 188 with Soluplus® was <10% w/w, while its miscibility with HPMCAS was at least 30% w/w. Although itraconazole by itself was miscible with Soluplus® up to 40% w/w, the presence of poloxamer drastically reduced its miscibility to <10%. In contrast, poloxamer 188 had minimal impact on HPMCAS-itraconazole miscibility. For example, the phase diagram showed amorphous miscibility of HPMCAS, itraconazole, and poloxamer 188 at 54, 23, and 23% w/w, respectively, even after exposure to 40°C/75% RH for 1 month. Thus, a relatively simple and practical method of screening miscibility of different components and ultimately physical stability of SD is provided. The results also identify the HPMCAS-poloxamer 188 mixture as an optimal surface-active carrier system for SD. PMID:27301752

  2. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  3. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids

    Directory of Open Access Journals (Sweden)

    Anne Linhardt

    2016-04-01

    Full Text Available A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior.

  4. Crack detection and monitoring in viscoelastic solids using polymer optical fiber sensors

    Science.gov (United States)

    Chen, Tao; Li, Zhihong; Song, Xiaochun; Zhou, Yanming; Guo, Haiyan; Xie, Zhong

    2016-03-01

    Detecting and monitoring of crack in viscoelastic solids, as a result of large and time-dependent deformations, are of great importance but have not been carried out sufficiently well. In this paper, polymer optical fibers (POFs) are employed to detect and monitor cracks in viscoelastic solids subjected to tensile loading. The sensor system is developed based on the variation of light intensity within the POFs when the POF sensors are loaded. The sensors show good stability, cost-effective, and large enough strain range (60%). The results demonstrate that in addition to monitoring the strain state of viscoelastic solids, the POFs strain sensors can detect initial cracks and monitor cracks propagation up to ultimate failure.

  5. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Natalia Abramova

    2015-06-01

    Full Text Available Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  6. New Biodegradable Peptide-based Polymer Constructs

    NARCIS (Netherlands)

    van Dijk, M.

    2009-01-01

    Peptide-based polymers are of increasing interest, since they can be applied for a variety of purposes such as drug delivery devices, scaffolds for tissue engineering and -repair, and as novel biomaterials. Peptide-based polymers are common in nature and often exhibit special characteristics. Howeve

  7. Polymer-based photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edrington, A.C.; Urbas, A.M.; Fink, Y.; Thomas, E.L. [Massachusetts Inst. of Tech., Cambridge (United States). Dept. of Materials Science and Engineering; DeRege, P. [Firmenich, Inc., Port Newark, NJ (United States); Chen, C.X.; Swager, T.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry; Hadjichristidis, N. [Athens Univ. (Greece). Dept. of Chemistry; Xenidou, M.; Fetters, L.J. [ExxonMobil Research Corp., Annandale, NJ (United States); Joannopoulos, J.D. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

    2001-03-16

    The development of polymers as photonic crystals is highlighted, placing special emphasis on self-assembled block copolymers. 1D self-assembled multilayers as well as 2D and 3D self-assembled structures are examined, then intricate block polymer structures such as that shown in the Figure are discussed as are birefringent multilayer and elastomeric films. (orig.)

  8. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Science.gov (United States)

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  9. Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1- x):AgI x (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites

    Science.gov (United States)

    Aziz, Shujahadeen B.

    2016-07-01

    This paper reports on the investigation of electrical percolation threshold and ion transport mechanism for ion-conducting solid polymer composites based on chitosan. The composite samples were prepared by solution cast technique. The result of DC conductivity versus percolation threshold (Φ^{ - 1/3} ) confirmed that at low AgI concentration, the tunneling effect governs ionic conduction mechanism. Nevertheless, at high filler concentration, the DC conductivity showed a plateau behavior. The DC conductivity as a function of reciprocal temperature revealed that the ion conduction mechanism is slightly temperature dependent and the ion-ion correlational effect is dominant. A steep increase in DC conductivity above 323 K is observed, which indicated the existence of some phase transition near the beta (β)-phase. The drop of DC conductivity at high temperatures is anticipated from the impedance plots. The AC conductivity spectrum exhibited three distinct regions at low temperatures. The high-frequency regions of AC conductivity spectra were almost temperature independent at low temperatures (303-323 K) and obeyed the Jonscher's power law. The variation in frequency exponent versus temperature reveals that ion conduction mechanism follows QMT and CBH models at low and high temperatures, respectively. The valuable achievement of this work is that the temperature dependence of DC conductivity and the frequency exponent ( s) is correlated to interpret the Ag+ ion dynamic and ion-ion correlational effect. The Argand plots were used to explain the relaxation processes.

  10. Void damage model and service life prediction for solid high polymer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analysis of three void damage variety models, this note presents ( i ) a method that regards the void content as a damage variation of the grain and ( ii ) a geometric model for micro-unit of void damage. Equations of the void damage variety containing void content are analyzed. This work is focused on the measurement of internal damage level and the damage variety estimation is directly related to the life predication in the practical engineering applications. Nowadays, the critical service life of the solid grain/polymers is usually presumed at domestic and international level. The strength or strain reduction of 20%or the stabilizer consumption of 50% is generally regarded as a critical storage life of the solid grain/polymers, and the service life is predicted by the extrapolation method on Anhenius formula. The applications, however, show that the above method is unreliable and has significant errors. With the aid of the discontiguous automatic measuring device of real time volume deformation and void content, the master curve of void damage variety, the storage service life and the surplus life of a solid rocket grain are obtained. Since the critical storage life has been measured, and the accuracy of the service life prediction has been greatly increased. It is a novel ideal and a break-through technique.

  11. Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide.

    Science.gov (United States)

    Kim, Dong-Min; Cho, Seong Je; Cho, Chul-Ho; Kim, Kwang Bok; Kim, Min-Yeong; Shim, Yoon-Bo

    2016-05-15

    Poly(terthiophene benzoic acid) (pTBA) layered-AuZn alloy oxide (AuZnOx) deposited on the screen printed carbon electrode (pTBA/AuZnOx/SPCE) was prepared to create a disposable all-solid-state pH sensor at first. Further, FAD-glucose oxidase (GOx) was immobilized onto the pTBA/AuZnOx/SPCE to fabricate a glucose sensor. The characterizations of the sensor probe reveal that AuZnOx forms a homogeneous hierarchical structure, and that the polymerized pTBA layer on the alloy oxide surface captures GOx covalently. The benzoic acid group of pTBA coated on the probe layer synergetically improved the pH response of the alloy oxide and provide chemical binding sites to enzyme, which resulted in a Nernstian behavior (59.2 ± 0.5 mV/pH) in the pH range of 2-13. The experimental parameters affecting the glucose analysis were studied in terms of pH, temperature, humidity, and interferences. The sensor exhibited a fast response time <1s and a dynamic range between 30 and 500 mg/dL glucose with a detection limit of 17.23 ± 0.32 mg/dL. The reliabilities of the disposable pH and glucose sensors were examined for biological samples. PMID:26703994

  12. A New Molecularly Imprinted Polymer for Solid-phase Extraction of Cotinine from Human Urine

    Institute of Scientific and Technical Information of China (English)

    Jun YANG; Xiao Lan ZHU; Ji Bao CAI; Qing De SU; Yun GAO; Liang ZHANG

    2005-01-01

    A molecularly imprinted polymer (MIP), prepared around a cotinine template, has been synthesized. The feasibility of using the polymer for solid-phase extraction (SPE) of cotinine from biological samples has been investigated. The results show that cotinine can be quantitatively retained and eluted from the polymer. Experiments with human urine samples indicate that clean target analyte is obtained for HPLC with UV detection using the protocol.

  13. Solid-liquid separation of dairy manure with PAM and chitosan polymers

    Science.gov (United States)

    Organic polymers are useful to increase separation of suspended solids and carbon compounds from liquid swine manure, but experiences with dairy manure are limited. In this experiment, two polymers, a synthetic polyacrylamide (PAM) and a natural chitosan were used to increase separation of suspended...

  14. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    International Nuclear Information System (INIS)

    Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10−11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10−5 S/cm

  15. Cellulose acetate-lithium bis(trifluoromethanesulfonyl)imide solid polymer electrolyte: ATR-FTIR and ionic conductivity behavior

    Science.gov (United States)

    Mohd Razalli, Siti Masyitah; Sheikh Mohd Saaid, Siti Irma Yuana; Marwan Ali, Ab Malik; Hassan, Oskar Hasdinor; Yahya, Muhd Zu Azhan

    2015-05-01

    Solid polymer electrolytes (SPEs) based on cellulose acetate (CA) doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt are prepared by solution cast technique. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy of the polymer salt complexes are recorded in the frequency range between 400 cm-1 and 4000 cm-1. The shifting of carbonyl band (C=O) at 1737 cm-1 to a lower wavenumber confirms the occurrence of complexation between the polymer and the salt. The electrochemical impedance spectroscopy (EIS) analysis discovered that the film with 25 wt.% of salt shows the highest ionic conductivity at room temperature. The change in real dielectric permittivity (ɛr) as a function of frequency at different salt concentrations which exhibits a dispersive behavior at low frequencies and decays at higher frequencies, shows the electrode polarization and space charge effect. The real modulus formalism (Mr) analysis shows that the polymer electrolytes in this work are ionic conductors.

  16. Solid State NMR and Fluorescence Studies of Conjugated Polymer Nanocomposties

    Institute of Scientific and Technical Information of China (English)

    Chao Jun JING; Liu Sheng CHEN; Yi SHI; Xi Gao JIN

    2005-01-01

    13C spin-lattice relaxation times (T1) of a conjugated polymer MEH-PPV in polymer/layered silicate nanocomposites together with the steady state fluorescence emission and transient fluorescence decay measurements have been investigated. The T1 values of the conjugated carbons decrease dramatically according to the reduction of polymer concentration in the nano composites, while the fluorescence life times (τ) show a linear prolonging tendency. The results are explained from the point of view of molecular dynamics.

  17. Friction and wear in polymer-based materials

    CERN Document Server

    Bely, V A; Petrokovets, M I

    1982-01-01

    Friction and Wear in Polymer-Based Materials discusses friction and wear problems in polymer-based materials. The book is organized into three parts. The chapters in Part I cover the basic laws of friction and wear in polymer-based materials. Topics covered include frictional interaction during metal-polymer contact and the influence of operating conditions on wear in polymers. The chapters in Part II discuss the structure and frictional properties of polymer-based materials; the mechanism of frictional transfer when a polymer comes into contact with polymers, metals, and other materials; and

  18. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  19. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  20. A solid state NMR investigation of char forming processes in polymer degradation

    CERN Document Server

    Dick, C M

    2002-01-01

    A detailed knowledge of the condensed phase chemistry occurring in polymers exposed to elevated temperatures is crucial to understanding the behaviour of polymers exposed to fire. This is particularly true when trying to reduce polymer flammability by means of promoting char-forming reactions. Until recently, however, structural information on highly crosslinked chars and their precursors has been difficult to obtain, and as a consequence many degradation workers have merely labelled degradation residues as 'intractable'. However, the application of solid state NMR techniques developed in our laboratories for the structural characterisation of coals has provided a considerable insight into the structure and chemistry of polymer chars formed under both oxidative and non-oxidative conditions. A series of polymers including poly(vinyl chloride), poly(vinyl acetate), polyurethanes, polychloropene, cis and trans polyisoprene have been studied. These polymers have been used to describe the application of quantitati...

  1. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2013-07-01

    Full Text Available The objective of the study was to prepare solid dispersions containing a thermally unstable drug by hot-melt extrusion (HME. Carbamazepine (CBZ was selected as model drug and combinations of Kollidon VA64 (VA64, Soluplus (SOL and Eudragit EPO (EPO were utilized as carriers. Preformulation was conducted to identify the suitability of polymer combinations based on solubility parameters, differential scanning calorimetry (DSC, hot stage microscopy and thermogravimetric analysis. Physicochemical properties of solid dispersions were determined by DSC, X-ray diffraction, fourier transform infrared spectroscopy, dissolution and accelerated stability testing. The results show that drug-polymer miscibility at temperatures below the melting point (Tm of CBZ was improved by combining EPO with VA64 or SOL. With 30% drug loading in a solid dispersion in SOL:EPO (1:1, w/w, CBZ was mainly present in an amorphous form accompanied by a small amount of a microcrystalline form. The dissolution rate of the solid dispersion was significantly increased (approximately 90% within 5 min compared to either the pure drug (approximately 85% within 60 min or the corresponding physical mixture (approximately 80% within 60 min before and after storage. The solid dispersion in SOL:EPO (1:1, w/w was relatively stable at 40 °C/75% RH under CBZ tablet packaging conditions for at least 3 months. In conclusion, polymer combinations that improve drug-polymer miscibility at an HME processing temperature below the Tm of a drug appear to be beneficial in the preparation of solid dispersions containing thermally unstable drugs.

  2. Lithium dendrite growth through solid polymer electrolyte membranes

    Science.gov (United States)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  3. Polymer blends formed by the solid state mechanical alloying process

    OpenAIRE

    Farrell, Michael P.

    1994-01-01

    In the early 1970's a new processing technique to produce metallic alloys was developed by Benjamin and co-workers. This novel technique, called Mechanical Alloying (MA), involves the repeated welding, working hardening, and fracture of metallic powders to form an alloy. The research presented in this thesis describes the use of the MA process to form polymer blends. Until recently there has been no published work discussing the possibility of using this technique with polymers...

  4. Cellulose based Lithium ion polymer electrolytes for Lithium batteries

    OpenAIRE

    Chelmecki, Marcin

    2004-01-01

    The separator membrane in batteries and fuel cells is of crucial importance for the function of these devices. In lithium ion batteries the separator membrane as well as the polymer matrix of the electrodes consists of polymer electrolytes which are lithium ion conductors. To overcome the disadvantage of currently used polymer electrolytes which are highly swollen with liquids and thus mechanically and electrochemically unstable, the goal of this work is a new generation of solid polymer e...

  5. Solid state drug-polymer miscibility studies using the model drug ABT-102.

    Science.gov (United States)

    Jog, Rajan; Gokhale, Rajeev; Burgess, Diane J

    2016-07-25

    Amorphous solid dispersions typically suffer storage stability issues due to: their amorphous nature, high drug loading, uneven drug:stabilizer ratio and plasticization effects as a result of hygroscopic excipients. An extensive solid state miscibility study was conducted to aid in understanding the mechanisms involved in drug/stabilizer interactions. ABT-102 (model drug) and nine different polymers with different molecular weights and viscosities were selected to investigate drug/polymer miscibility. Three different polymer:drug ratios (1:3, 1:1 and 3:1, w/w) were analyzed using: DSC, FTIR and PXRD. Three different techniques were used to prepare the amorphous solid dispersions: serial dilution, solvent evaporation and spray drying. Spray drying was the best method to obtain amorphous solid dispersions. However, under certain conditions amorphous formulations could be obtained using solvent evaporation. Melting point depression was used to calculate interaction parameters and free energy of mixing for the various drug polymer mixtures. The spray dried solid dispersions yielded a negative free energy of mixing which indicated strong drug-polymer miscibility compared to the solvent evaporation and serial dilution method. Soluplus was the best stabilizer compared to PVP and HPMC, which is probably a consequence of strong hydrogen bonding between the two CO moieties of soluplus and the drug NH moieities.

  6. Solid state drug-polymer miscibility studies using the model drug ABT-102.

    Science.gov (United States)

    Jog, Rajan; Gokhale, Rajeev; Burgess, Diane J

    2016-07-25

    Amorphous solid dispersions typically suffer storage stability issues due to: their amorphous nature, high drug loading, uneven drug:stabilizer ratio and plasticization effects as a result of hygroscopic excipients. An extensive solid state miscibility study was conducted to aid in understanding the mechanisms involved in drug/stabilizer interactions. ABT-102 (model drug) and nine different polymers with different molecular weights and viscosities were selected to investigate drug/polymer miscibility. Three different polymer:drug ratios (1:3, 1:1 and 3:1, w/w) were analyzed using: DSC, FTIR and PXRD. Three different techniques were used to prepare the amorphous solid dispersions: serial dilution, solvent evaporation and spray drying. Spray drying was the best method to obtain amorphous solid dispersions. However, under certain conditions amorphous formulations could be obtained using solvent evaporation. Melting point depression was used to calculate interaction parameters and free energy of mixing for the various drug polymer mixtures. The spray dried solid dispersions yielded a negative free energy of mixing which indicated strong drug-polymer miscibility compared to the solvent evaporation and serial dilution method. Soluplus was the best stabilizer compared to PVP and HPMC, which is probably a consequence of strong hydrogen bonding between the two CO moieties of soluplus and the drug NH moieities. PMID:27265312

  7. Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level

    OpenAIRE

    Rubinova, Nastassia; Chumbimuni-Torres, Karin; Bakker, Eric

    2006-01-01

    In recent years, ion-selective electrodes based on polymer membranes have been shown to exhibit detection limits that are often in the nanomolar concentration range, and thus drastically lower than traditionally accepted. Since potentiometry is less dependent on scaling laws that other established analytical techniques, their performance in confined sample volumes is explored here. Solid-contact silver-selective microelectrodes, with a sodium-selective microelectrode as a reference, were inse...

  8. Mechanisms of Hydrocarbon Based Polymer Etch

    Science.gov (United States)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  9. Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, P.C.; Rodrigues, L.C. [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Silva, M.M., E-mail: nini@quimica.uminho.p [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Smith, M.J. [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Parola, A.J.; Pina, F. [Requimte, Dep. Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pinheiro, Carlos, E-mail: carlosp@dq.fct.unl.p [Requimte, Dep. Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); YDreams, Madan Parque, Quinta da Torre, 2829-516 Caparica (Portugal)

    2010-01-25

    Flexible, transparent and self-supporting electrolyte films based on poly(trimethylene carbonate)/poly(ethylene oxide) (p(TMC)/PEO) interpenetrating networks doped with LiClO{sub 4} were prepared by the solvent casting technique. These novel solid polymer electrolyte (SPE) systems were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry. The incorporation of solid electrolytes as components of electrochromic devices can offer certain operational advantages in real-world applications. In this study, all-solid-state electrochromic cells were characterized, using Prussian blue (PB) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as complementary electrochromic compounds on poly(ethyleneterphthalate) (PET) coated with indium tin oxide (ITO) as flexible electrodes. Assembled devices with PET/ITO/PB/SPE/PEDOT/ITO/PET 'sandwich-like' structure were assembled and successfully cycled between light and dark blue, corresponding to the additive optical transitions for PB and PEDOT electrochromic layers. The cells required long cycle times (>600 s) to reach full color switch and have modest stability towards prolonged cycling tests. The use of short duration cycling permitted the observation of changes in the coloration-bleaching performance in cells with different electrolyte compositions.

  10. Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes

    International Nuclear Information System (INIS)

    Flexible, transparent and self-supporting electrolyte films based on poly(trimethylene carbonate)/poly(ethylene oxide) (p(TMC)/PEO) interpenetrating networks doped with LiClO4 were prepared by the solvent casting technique. These novel solid polymer electrolyte (SPE) systems were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry. The incorporation of solid electrolytes as components of electrochromic devices can offer certain operational advantages in real-world applications. In this study, all-solid-state electrochromic cells were characterized, using Prussian blue (PB) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as complementary electrochromic compounds on poly(ethyleneterphthalate) (PET) coated with indium tin oxide (ITO) as flexible electrodes. Assembled devices with PET/ITO/PB/SPE/PEDOT/ITO/PET 'sandwich-like' structure were assembled and successfully cycled between light and dark blue, corresponding to the additive optical transitions for PB and PEDOT electrochromic layers. The cells required long cycle times (>600 s) to reach full color switch and have modest stability towards prolonged cycling tests. The use of short duration cycling permitted the observation of changes in the coloration-bleaching performance in cells with different electrolyte compositions.

  11. Tactile Sensors Based on Conductive Polymers

    OpenAIRE

    Macicior, Haritz; Sikora, Tomasz; Ochoteco, Estíbalitz; Castellanos Ramos, Julián; Navas González, Rafael Jesús; Vidal Verdú, Fernando

    2010-01-01

    This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive mate¬rial. Specifically, a conductive water-based ink of this polymer is deposited by spin coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The ...

  12. Polymer-Based Cantilevers with Integrated Electrodes

    OpenAIRE

    Mouaziz, S.; Boero, G.; Popovic, R; J. Brugger

    2006-01-01

    An innovative release method of polymer cantilevers with embedded integrated metal electrodes is presented. The fabrication is based on the lithographic patterning of the electrode layout on a wafer surface, covered by two layers of SU-8 polymer: a 10-um-thick photo-structured layer for the cantilever, and a 200-um-thick layer for the chip body. The releasing method is based on dry etching of a 2-um-thick sacrificial polysilicon layer. Devices with complex electrode layout embedded in free-st...

  13. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  14. FLUORENE-BASED LIGHT-EMITTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Wang-Lin Yu; Bin Liu; Jian Pei; Gang Zeng; Wei Huang

    2001-01-01

    Several series of fluorene-based light-emitting polymers with the emphasis on achieving efficient and stable blue light emission are reported. Spiro-functionalization may narrow the emission spectra (with smaller tail at longer wavelengths)of fluorene homopolymers to provide purer blue emission. The thermal spectral stability of the polymers could also be improved because of the elevation of the glass transition temperature caused by the spiro-functionalization. However, the excimer emission in fluorene homopolymers is not suppressed by the spiro-functionalization. Alternate copolymers of 9,9-dihexylfluorene and substituted phenylenes may emit efficient blue light both in solution and in film. The optical properties are dependent on the substitution on the phenylene ring. The alkoxy-substituted polymers displayed efficient PL and EL and good thermal spectral stability. The HOMO and LUMO energy levels of the polymers based on the backbone structure could be tuned in a wide range by attaching different functional groups on the phenylene ring. By attaching europium(III) complex at the ends of the side chains in the alternate copolymers, we have demonstrated a new approach to achieving red emission with a very narrow spectrum. The copolymers of 9,9-dihexylfluorene and thiophene and bithiophene with different substitutions were also synthesized to study the effect of substitution and regioregularity on the optical and other physical properties of the polymers.

  15. A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper

    KAUST Repository

    Kurra, Narendra

    2014-08-19

    In this study, a thin nucleation layer is used to tune the morphology of conducting polymer electrodes and to optimize the performance of paper based solid-state supercapacitors. It is found that using an acid-treated poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) nucleation layer, prior to poly(3,4-ethylenedioxythiophene), PEDOT, electrochemical deposition, gives 5-6 times higher areal capacitance compared to a gold metal nucleation layer. Specifically, PEDOT supercapacitors with a high volumetric capacitance of 327 F cm-3, higher than any other PEDOT based supercapacitors reported in the literature, is achieved on the PEDOT:PSS nucleation layer; for the same devices, an areal capacitance of 242 mF cm-2 and an energy density of 14.5 mW h cm-3 at a power density of 350 mW cm-3 are obtained. Furthermore, these optimized PEDOT/PEDOT:PSS/paper electrodes are employed to fabricate solid-state supercapacitors using aqueous and ion gel electrolytes, with 32 and 11 mF cm-2 cell capacitance, respectively. The solid-state PEDOT device showed an energy density of 1.5 mW h cm-3 (normalised to the volume of the whole cell, including both the electrodes and the electrolyte), which is higher than the best reported ppy/paper (E = 1 mW h cm-3) and PAni/pencil/paper (E = 0.32 mW h cm-3) solid-state devices. The cycling performance showed that capacitance retention up to 80% is achieved after 10000 cycles. This journal is

  16. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    Science.gov (United States)

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. PMID:27142455

  17. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  18. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jérôme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Luikasz; Daussin, Raphaël; Saib, Aimad; Baudouin, Anne-Christine; Laloyaux, Xavier

    2007-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt % to 6 wt % carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loa...

  19. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jérôme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Lucasz; Daussin, Raphaël; Saib, Aimad

    2006-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 to 6 wt% carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loads. Th...

  20. Luminescent polymer electrolytes based on chitosan and containing europium triflate

    Institute of Scientific and Technical Information of China (English)

    R Alves; ASS de Camargo; A Pawlicka; MM Silva

    2016-01-01

    Solid polymer electrolytes based on chitosan and europium triflate were prepared by solvent casting and characterized by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), and photoluminescence spectroscopy. The X-ray diffraction exhibited that the samples were essentially amorphous with organized regions over the whole range of the salt content studied. The AFM analysis demonstrated that the smoother sample had roughness of 4.39 nm. Surface visualization through SEM revealed good homogeneity without any phase separation for more conductive samples and the less conductive showed some im-perfections on the surface. The emission and excitation spectra displayed the characteristic bands of Eu(CF3SO3)3 in addition to broad bands corresponding to the polymer host. The excited state5D0 lifetime values ranged from 0.29–0.37 ms for the studied samples.

  1. Synthesis of f metal coordination polymers: properties and conversion into inorganic solids

    International Nuclear Information System (INIS)

    Coordination polymers (CP) are of great academic and industrial interest due to flexible structure and composition and offer prospects for original chemical (catalysis, soft-hard materials conversion..) and physical properties (magnetism, optics..). The major interest of these studies is to check the transfer of the structure, meso-structure and composition from the CP to the ceramic via a thermal treatment. In this context, this thesis describes studies on conversion of coordination polymers obtained by self-assembly of 4f and 5f metal ions with 2,5-dihydroxy-1,4-benzoquinone (DHBQ). Aqueous and anhydrous synthetic ways were developed, which yielded different kinds of CPs (4f, 4f-4f, 4f-5f); solid solutions were obtained with the mixed compounds. The products were characterized and their behaviour under thermal treatment was studied. The main results show that the DHBQ-based precursors obtained by aqueous way have a micrometric meso-structure, formed by the assembly of micro-crystalline subunits which all posses the same crystallographic structure. The study of the assembly of the meso-structure allowed controlling the morphology of the elementary grain (cylinder, cube, disk...) with very good size distribution. The implementation of anhydrous systems in a controlled atmosphere allowed yielded a wider range of micro-structural parameters (surface area, porosity...). For all CP-type compounds, the thermal conversion to ceramic has barely altered the morphology of the materials. The microstructural aspects could be controlled via the method of synthesis. (author)

  2. Flexible polymers at a solid-liquid interface

    OpenAIRE

    Cohen Stuart, M. A.

    1980-01-01

    We undertook the present study in order to evaluate techniques which are devised to assess the comformations of adsorbed macromolecules. Since recent theories deal with these conformations, we also wanted to investigate to what extent these theories are supported by experimental data.In chapter 1 we outline the scope of this study and we give reasons for using polyvinyl pyrrolidone / silica as the model system.Chapter 2 deals with the general aspects of polymer adsorption. Some trends found f...

  3. From discrete molecule, to polymer, to MOF: mapping the coordination chemistry of Cd(II) using (113)Cd solid-state NMR.

    Science.gov (United States)

    Frost, Jamie M; Kobera, Libor; Pialat, Amélie; Zhang, Yixin; Southern, Scott A; Gabidullin, Bulat; Bryce, David L; Murugesu, Muralee

    2016-08-23

    Studies of three related Cd(II) systems (a discrete [Cd(II)2] unit, a one-dimensional [Cd(II)2]n coordination polymer and a Cd(II)-based MOF) all derived from the ligand 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine, reveal an exceptionally rare example of (113)Cd-(113)Cd J coupling in the polymer that is detectable by solid-state NMR ((2)JCd-Cd = ∼65 Hz).

  4. Solid mesostructured polymer-surfactant films at the air-liquid interface.

    Science.gov (United States)

    Pegg, Jonathan C; Eastoe, Julian

    2015-08-01

    Pioneering work by Edler et al. has spawned a new sub-set of mesostructured materials. These are solid, self-supporting films comprising surfactant micelles encased within polymer hydrogel; composite polymer-surfactant films can be grown spontaneously at the air-liquid interface and have defined and controllable mesostructures. Addition of siliconalkoxide to polymer-surfactant mixtures allows for the growth of mesostructured hybrid polymer-surfactant silica films that retain film geometry after calcinations and exhibit superior mechanical properties to typically brittle inorganic films. Growing films at the air-liquid interface provides a rapid and simple means to prepare ordered solid inorganic films, and to date the only method for generating mesostructured films thick enough (up to several hundred microns) to be removed from the interface. Applications of these films could range from catalysis to encapsulation of hydrophobic species and drug delivery. Film properties and mesostructures are sensitive to surfactant structure, polymer properties and polymer-surfactant phase behaviour: herein it will be shown how film mesostructure can be tailored by directing these parameters, and some interesting analogies will be drawn with more familiar mesostructured silica materials. PMID:25127447

  5. Compact reformer for the solid polymer fuel cell policy and best

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, P.S.; Deegan, M.; Gough, A. [Newcastle University (United Kingdom)

    1998-07-01

    This report summarises the results of a study investigating the feasibility of the Compact Reformer concept, and examining its design and manufacture. The development and testing of a hybrid reformer and thin coat catalyst systems are described, and details of the modeling of the reactor, and the optimisation and costing of the solid polymer fuel cell are given. (UK)

  6. An update of solid polymer electrolyte water electolysis programs at General Electric

    Science.gov (United States)

    Russell, J. H.

    At the previous two world hydrogen energy conferences in 1976 and 1978 the status of General Electric solid polymer electrolyte water electrolysis development program for large scale hydrogen generator was presented (Nuttall 1976, 1978). This paper updates the progress of this ongoing development program and also describes several new associated programs aimed at gaining early field experience on prototype systems.

  7. Status of the development of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    Science.gov (United States)

    Russell, J. H.

    1982-02-01

    Solid polymer electrolyte water electrolysis for large scale hydrogen generation is reported. The program was aimed at performance improvement. Reductions in cell impedance were demonstrated which improve cell performance by over 100 mV. A prototype 500 SCFH system for field evaluation was developed.

  8. A lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces

    NARCIS (Netherlands)

    Bitsanis, Ioannis A.; Brinke, Gerrit ten

    1993-01-01

    In this paper we present a comprehensive lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces. Segmental scale interfacial features, like the bond orientational distribution were found to be independent of surface-segment energetics, and statistically identical with

  9. [Some aspects of water electrolysis with the use of a solid polymer electrolyte].

    Science.gov (United States)

    Zorina, N G

    2006-01-01

    Electrochemical process in cells with a solid polymer electrolyte is dependent on catalyst durability in harsh environments and catalyst sputtering technology to ensure efficient power consumption. Active polymer electrolytes will permit to reduce substantially non-productive layouts and design a cost-effective, compact and safe system generator of high-purity oxygen and hydrogen. The existing designs of combined oxide systems integrating rear-earth and earth metals with a structure of Ln3+x Me2+1-x CoO3 containing perofskites were shown to be active catalysts in cells with a solid polymer electrolyte, and the sputtering technology was proven to reduce non-productive layouts in 2 or 2.5 times. PMID:17405280

  10. All-solid-state proton battery using gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kuldeep, E-mail: mishkuldeep@gmail.com [Department of Applied Science and Humanities, ABES Engineering College, Ghaziabad-201009, India and Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India); Pundir, S. S.; Rai, D. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India)

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm{sup −1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}⋅7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain.

  11. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Marín, Ana M. [Departamento de Química y Petróleos, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Hernández-Ortíz, Juan P., E-mail: jphernandezo@unal.edu.co [Departamento de Materiales, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Biotechnology Center, University of Wisconsin–Madison, Madison, WI (United States)

    2014-09-24

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments.

  12. Structure Elucidation of Poly-Faldaprevir: Polymer Backbone Solved Using Solid-State and Solution Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Gonnella, Nina C; Busacca, Carl A; Zhang, Li; Saha, Anjan; Wu, Jiang-Ping; Li, Guisheng; Davis, Mark; Offerdahl, Thomas; Jones, Paul-James; Herfurth, Lars; Reddig, Tim; Wagner, Klaus; Niemann, Michael; Werthmann, Ulrike; Grupe, Julia; Roos, Helmut; Reckzügel, Gaby; Ding, Andreas

    2016-06-01

    A large-scale synthesis of the hepatitis C virus drug Faldaprevir revealed precipitation of an unknown insoluble solid from methanol solutions of the drug substance. The unknown impurity was determined to be a polymer of Faldaprevir based on analytical methods that included size exclusion chromatography in combination with electrospray ionization mass spectrometry, solution nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization-time of flight, ultracentrifugation, elemental analysis, and sodium quantitation by atom absorption spectroscopy. Structure elucidation of the polymeric backbone was achieved using solid-state NMR cross-polarization/magic angle spinning (CP/MAS), cross polarization-polarization inversion, and heteronuclear correlation (HETCOR) experiments. The polymerization was found to occur at the vinyl cyclopropane via a likely free radical initiation mechanism. Full proton and carbon chemical shift assignments of the polymer were obtained using solution NMR spectroscopy. The polymer structure was corroborated with chemical synthesis of the polymer and solution NMR analysis. PMID:27238486

  13. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  14. Spontaneous, Solvent-Free, Polymer-Templated, Solid-Solid Transformation of Thin Metal Films into Nanoparticles.

    Science.gov (United States)

    Hernández-Cruz, Olivia; Avila-Gutierrez, Lizeth; Zolotukhin, Mikhail G; Gonzalez, Gonzalo; Monroy, B Marel; Montiel, Raúl; Vera-Graziano, Ricardo; Romero-Ibarra, Josue E; Novelo-Peralta, Omar; Massó Rojas, Felipe Alonso

    2016-09-14

    Metal nanoparticles have unusual optical, electronic, sensing, recognition, catalytic, and therapeutic properties. They are expected to form the basis of many of the technological and biological innovations of this century. A prerequisite for future applications using nanoparticles as functional entities is control of the shape, size, and homogeneity of these nanoparticles and of their interparticle spacing and arrangement on surfaces, between electrodes, or in devices. Here, we demonstrate that thin films of gold, silver, and copper sputter-deposited onto the surface of an organic polymer poly[[1,1':4',1″-terphenyl]-4,4″-diyl(2-bromo-1-carboxyethylidene)] (PTBC) undergo spontaneous solid-solid transformation into nanoparticles. Furthermore, we show that, by varying the thickness of the films, the volume-to-surface ratio of the polymer substrate, and the amount of plasticizer, it is possible to control the rate of transformation and the morphology of the nanoparticles formed. PTBC containing Au nanoparticles was found to enhance the cell adhesion and proliferation. To the best of our knowledge, our findings constitute the first experimental evidence of spontaneous, room-temperature, solid-solid transformation of metal films sputtered onto the surface of an organic polymeric substrate into nanoparticles (crystals).

  15. Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rasten, Egil

    2001-10-01

    Development and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm{sub 3} H{sub 2}) has been obtained at practical operation conditions of the electrolysis cell (10 kA . m2, 90{sup o}C) using a total noble metal loading of less than 2.4 mg.cm{sub 2} and a Nafion -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work. The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be tailored by preparation and annealing conditions of the metal oxide catalysts. Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA.m{sub 2} or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA.m{sub 2}. Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity. Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low

  16. The Production of Solid Dosage Forms from Non-Degradable Polymers.

    Science.gov (United States)

    Major, Ian; Fuenmayor, Evert; McConville, Christopher

    2016-01-01

    Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry.

  17. Nanometrization of Lanthanide-Based Coordination Polymers.

    Science.gov (United States)

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers.

  18. Nanometrization of Lanthanide-Based Coordination Polymers.

    Science.gov (United States)

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. PMID:26471940

  19. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte

    Science.gov (United States)

    Sato, Takaya; Marukane, Shoko; Morinaga, Takashi; Kamijo, Toshio; Arafune, Hiroyuki; Tsujii, Yoshinobu

    2015-11-01

    We designed and fabricated a bipolar-type electric double layer capacitor (EDLC) with a maximum 7.5 V operating voltage using a new concept in solid electrolytes. A cell having a high operating voltage, that is free from liquid leakage and is non-flammable is achieved by a bipolar design utilizing a solid polymer electrolyte made up of particles in a three-dimensional array, such as crystals composed of 75 wt% of hybrid particles decorated with a concentrated ionic liquid polymer brush (PSiP) and 25wt% of an ionic liquid (IL). The resulting solid film had sufficient physical strength and a high enough ionic conductivity to function as an electrolyte. Solidification as well as ionic conduction is due to the regular array of PSiPs, thereby producing a high ion-conductivity from a networked path between cores containing an appropriate amount of IL as a plasticizer. The demonstration cell shows a relatively good cycle durability and rate properties up to a 10C discharge process. It also has a very small leakage current in continuous charging and better self-discharge properties, even at 60 °C, compared with conventional cells. This paper demonstrates the first successful fabrication of a bipolar EDLC in a simple structure using this novel polymer solid electrolyte.

  20. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  1. Polymer gratings based on photopolymerization for low-order distributed feedback polymer lasers

    Institute of Scientific and Technical Information of China (English)

    Xuanke Zhao; Qingwu Zhao; Qinghua Zhang

    2008-01-01

    Novel polymer distributed feedback(DFB)gratings are fabricated based on photopolymerization to reduce lasing threshold of polymer lasers.A photopolymer formulation sensitive to 355-nm ultraviolet(UV)light is proposed for the fabrication of polymer gratings and it can be used to form polymer films by spin-coating process.A very low surface-relief depth ranging from 12.5 to about 1.0 nm has been demonstrated with a refractive-index modulation of about 0.012.The experimental results indicate that such polymer gratings have promising potentials for the fabrication of low-order DFB organic semiconductor lasers.

  2. Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach.

    Science.gov (United States)

    Inukai, Munehiro; Fukushima, Tomohiro; Hijikata, Yuh; Ogiwara, Naoki; Horike, Satoshi; Kitagawa, Susumu

    2015-09-30

    Rational design to control the dynamics of molecular rotors in crystalline solids is of interest because it offers advanced materials with precisely tuned functionality. Herein, we describe the control of the rotational frequency of rotors in flexible porous coordination polymers (PCPs) using a solid-solution approach. Solid-solutions of the flexible PCPs [{Zn(5-nitroisophthalate)x(5-methoxyisophthalate)1-x(deuterated 4,4'-bipyridyl)}(DMF·MeOH)]n allow continuous modulation of cell volume by changing the solid-solution ratio x. Variation of the isostructures provides continuous changes in the local environment around the molecular rotors (pyridyl rings of the 4,4'-bipyridyl group), leading to the control of the rotational frequency without the need to vary the temperature. PMID:26368067

  3. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  4. Guidelines for using HEC polymers for increasing viscosity of solids-free completion and workover brines

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerman, R.F.

    1983-02-01

    Solids-free brines are used increasingly in well completion and workover operations. One technique to minimize downhole losses of expensive, high-density brine is to spot a pill of thickened brine across the thief zone. Hydroxyethylcellulose (HEC) is the polymer used most frequently for this purpose. This report discusses the properties of HEC-thickened brines and presents guidelines for their use for completion and workover fluid-loss control.

  5. Guidelines for using HEC polymers for viscosifying solids free completion and workover brines

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerman, R.F.

    1982-01-01

    Solids free brines are increasingly used in well completion and workover operations. One technique to minimize downhole losses of expensive, high density brine is to spot a pill of viscosified brine across the thief zone. Hydroxyethylcellulose (HEC) is the polymer most frequently used for this purpose. This report discusses the properties of HEC thickened brines and presents guidelines for their use for completion and workover fluid loss control. 2 refs.

  6. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    Science.gov (United States)

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  7. Tactile sensors based on conductive polymers

    Science.gov (United States)

    Castellanos-Ramos, Julian; Navas-Gonzalez, Rafael; Macicior, Haritz; Ochoteco, Estibalitz; Vidal-Verdú, Fernando

    2009-05-01

    This paper presents results from a few tactile sensors we have designed and fabricated. These sensors are based on a common approach that consists of placing a sheet of piezoresistive material on the top of a set of electrodes. If a force is exerted against the surface of the so obtained sensor, the contact area between the electrodes and the piezoresistive material changes. Therefore, the resistance at the interface changes. This is exploited as transconduction principle to measure forces and build advanced tactile sensors. For this purpose, we use a thin film of conductive polymers as the piezoresistive material. Specifically, a conductive water-based ink of these polymers is deposited by spin coating on a flexible plastic sheet, giving as a result a smooth, homogeneous and conducting thin film on it. The main interest in this procedure is it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made with two technologies. First, we have used a Printed Circuit Board technology to fabricate the set of electrodes and addressing tracks. Then we have placed the flexible plastic sheet with the conductive polymer film on them to obtain the sensor. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with a screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. There is a very interesting difference with the other sensors, that consists of the use of an elastomer as insulation material between conductive layers. Besides of its role as insulator, this elastomer allows the modification of the force versus resistance relationship. It also improves the dynamic response of the sensor because it implements a restoration force that helps the sensor to relax quicker when the force is taken off.

  8. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm-2) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO2/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  9. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Miao [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lin Yuan [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: linyuan@iccas.ac.cn; Zhou Xiaowen; Xiao Xurui [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Yang Lei [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng Shujing; Li Xueping [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-01-15

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm{sup -2}) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO{sub 2}/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells.

  10. Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system

    Science.gov (United States)

    Jaipal Reddy, M.; Chu, Peter P.

    In poly(ethylene oxide) (PEO) based solid polymer electrolytes, the interaction between cations and the ether oxygen plays a major role in ion conductivity. Measurements with differential scanning calorimetry (DSC) illustrated clearly the modification of the PEO crystalline structure with increasing content of magnesium salt. FTIR spectral studies suggest interaction of Mg 2+ cations with the ether oxygen of PEO, where a 1100 cm -1 broad band corresponds to COC stretching and severe deformation occurs. A spectral band at ˜623 cm -1 corresponds to the ClO 4- anion and shows the growth of a shoulder at a higher wave number with increasing salt content. The apparent new envelope at ˜634.5 cm -1 clearly indicates ClO 4--Mg 2+ ion pairing. Ionic conductivity increases with salt content, and is optimized at 15 wt.% Mg salt (O:Mg ratio 28:1). The decrease in ion conductivity at higher salt contents is due to ion-ion association, which leads to ion pair formation (i.e. aggregation of ionic salt) and retards the motion of ions.

  11. Photo-polymerized films of lithium ion conducting solid polymer electrolyte for electrochromic windows (ECWs)

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, P.; Deepa, M.; Agnihotry, S.A. [Electronic Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Ho, K.C. [National Taiwan University, Taipei ROC-10617 (Taiwan)

    2003-09-30

    Films of solid polymer electrolyte (spe) have been prepared by the photo-polymerization of the monomer: 2-hydroxyethylmethacrylate (HEMA) simultaneously accompanied by chemical crosslinking with neopentyl glycol which is dissolved in a liquid electrolyte, namely, 1M LiClO{sub 4} in EC:PC binary solvent mixed in two different volume ratios. The spe films exhibit ionic conductivities greater than 10{sup -3}Scm{sup -1} at 25C. Thermal and structural characteristics of the films have been determined by DSC and XRD, respectively. The electrochemical redox behavior of an electrochromic device (PWECD) fabricated with an electrodeposited tungsten oxide film as the primary electrode, a prussian blue film as the counter electrode and a poly(HEMA) based electrolyte film as well as that of the individual components of the device has been examined by cyclic voltammetry. Transmission modulation of =60% ({lambda}=650nm) shown by the PWECD renders it to be a promising candidate for electrochromic window applications.

  12. Polymer Sensitized Quasi Solid-State Photovoltaic Cells Using Derivatives of Polythiophene

    Institute of Scientific and Technical Information of China (English)

    G.K.R.Senadeera; J.M.R.C. Fernando

    2006-01-01

    Substituted thiophene sensitized, nanocrystalline TiO2-based quasi solid-state solar cells were fabricated by using either poly (3-thiophene acetic acid) (P3TAA) or a copolymer with poly (3-thiophene acetic acid)-poly (hexyl thiophene) (P3TAA-PHT) polymers and copper iodide (Cul) as a hole conducting material together with an ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide and lithium bis (trifluoromethanesulfone) imide as additives for charge transport promotion. Dramatic enhancements in the cell performances were observed with the additives in Cul. While the cell sensitized with P3TAA generated a conversion efficiency of ~0.3% under simulated full sunlight of 100 mW.cm-2 (air mass: 1.5), the cell sensitized with copolymer P3TAA-PHT delivered ~0.25% efficiency under the same conditions with ~1.23 mA.cm-2 as photocurrent and ~371 mV as photovoltage.

  13. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions.

    Science.gov (United States)

    Sun, Mengchi; Wu, Chunnuan; Fu, Qiang; Di, Donghua; Kuang, Xiao; Wang, Chao; He, Zhonggui; Wang, Jian; Sun, Jin

    2016-04-30

    The solvent-shift strategy was used to identify appropriate polymers that inhibit humidity-induced solid-state crystallization of amorphous solid dispersions (ASDs). Lacidipine with the polymers, PVP-K30, HPMC-E5 or Soluplus, were combined to form amorphous solid dispersions prepared by solvent evaporation. The formulations were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) and were subjected to in vitro dissolution testing. The moisture had a significant impact on the amount dissolved for the solid dispersions. Molecular docking studies established that hydrogen bonding was critical for the stabilization of the solid dispersions. The rank order of the binding energy of the drug-polymer association was Soluplus (-6.21 kcal/mol)>HPMC-E5 (-3.21 kcal/mol)>PVP-K30 (-2.31 kcal/mol). PVP-K30 had the highest water uptake among the polymers, as did ASD system of lacidipine-PVP-K30 ASDs. In the Soluplus ASDs, with its strong drug-polymer interactions and low water uptake, moisture-induced solid-state crystallization was not observed.

  14. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Science.gov (United States)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  15. Determination of homogenized viscoelastic properties of porous frame structures based on the microstructure geometry and solid constituent viscoelastic properties

    OpenAIRE

    Narayana Srinivasa, Prasanth

    2011-01-01

    Polymer based porous materials largely exhibit viscoelastic properties which is a consequence of the viscoelastic nature of the constituent solid. If the constitutive relation for the constituent solid is known, then it is of interest to investigate how this constitutive relation of the solid at the microscale influences the macroscopic properties of the porous structure. In the present work porous structures are studied with the assumption that the constitutive solid is isotropic and that it...

  16. ACID-BASE INTERACTIONS BETWEEN POLYMERS AND FILLERS

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli

    1987-01-01

    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  17. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  18. PREPARATION, CHARACTERIZATION AND IN VITRO EVALUATION OF REPAGLINIDE BINARY SOLID DISPERSIONS WITH HYDROPHILIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Patel Manvi

    2010-09-01

    Full Text Available In the present study, the practically insoluble drug, repaglinide, employs formation of solid dispersions as a means to enhance the dissolution rate, thus enhancing bioavailability of repaglinide, typically employs hydrophilic polymer systems (Lutrol F127, PEG 6000 and Gelucire 44/14 with different ratios prepared using the melting, solvent and melting solvent methods. The formulations were evaluated for various in vitro parameters (Drug content, Drug release, FTIR, DSC, and XRD. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. Good uniformity of drug content was observed with all formulations and ranged from 95.52 and 99.0%. All the solid dispersions showed dissolution improvement compare to pure drug. Solid state characterization of the drug?polymer binary systems using XRD, DSC and FTIR techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate. The stability studies indicated, the best formulation LMS17 was stable for period of 6 months. The solid dispersion techniques provide a promising way to increase the solubility and dissolution rate of poorly soluble drugs.

  19. A merocyanine-based conductive polymer

    OpenAIRE

    Wagner, Klaudia; Zanoni, Michele; Elliott, Anastasia B. S.; Wagner, Pawel; Byrne, Robert; Florea, Larisa; Diamond, Dermot; Gordon, Keith; Wallace, Gordon; Officer, David

    2013-01-01

    We report the first example of a conducting polymer with a merocyanine incorporated into the polymer backbone by electropolymerisation of a spiropyran moiety covalently linked between two alkoxythiophene units. Utilising the known metal coordination capabilities of merocyanines, introduction of cobalt ions into the electropolymerisation led to an enhancement of the conductivity, morphology and optical properties of the polymer films.

  20. Mercury speciation in seawater by liquid chromatography-inductively coupled plasma-mass spectrometry following solid phase extraction pre-concentration by using an ionic imprinted polymer based on methyl-mercury-phenobarbital interaction.

    Science.gov (United States)

    Rodríguez-Reino, María Pilar; Rodríguez-Fernández, Roi; Peña-Vázquez, Elena; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2015-04-24

    Trace levels of inorganic mercury, methyl-mercury and ethyl-mercury have been assessed in seawater by high performance liquid chromatography (HPLC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) after solid phase extraction (SPE) pre-concentration with a novel synthesized ionic imprinted polymer. The adsorbent material was prepared by trapping a non-vinylated chelating ligand (phenobarbital) via imprinting of a ternary mixed ligand complex of the non-vinylated chelating agent, the template (methyl-mercury), and the vinyl ligand (metacrylic acid, MAA). Ethylene dimetacrylate (EDMA) and 2,2'-azobisisobutyronitrile (AIBN) were used as cross-linker and initiator reagents, respectively; and the precipitation polymerization technique was used in a porogen of acetonitrile/water (4:1). The best retention properties for methyl-mercury, inorganic mercury and ethyl-mercury species from seawater were obtained when loading 200 mL of sample adjusted to pH 8.0 and at a flow rate of 2.0 mL min(-1) on a column-packed with 200mg of the material. Quantitative mercury species recoveries were obtained using 4 mL of an eluting solution consisting of 0.8% (v/v) 2-mercaptoethanol and 20% (v/v) methanol (pH adjusted to 4.5) pumped at a flow rate of 2.0 mL min(-1). Mercury species separation was achieved on a Kinetex C18 column working under isocratic conditions (0.4% (v/v) 2-mercaptoethanol, 10% (v/v) methanol, pH 2.5, flow rate 0.7 mL min(-1)). ICP-MS detection was performed by monitoring the mercury mass to charge ratio of 202. The limits of quantification of the method were 11, 6.7, and 12 ng L(-1), for inorganic mercury, methyl-mercury and ethyl-mercury, respectively (pre-concentration factor of 50); whereas, analytical recoveries ranged from 96 to 106%. The developed method was successfully applied to several seawater samples from unpolluted areas.

  1. Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers

    Science.gov (United States)

    Kaneto, K.

    2016-04-01

    Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.

  2. Tailoring the physical properties of homopolymers and polymer nanocomposites via solid-state processing

    Science.gov (United States)

    Pierre, Cynthia

    Numerous approaches can be used to modify polymer properties. In this thesis, it is demonstrated that an innovative, continuous, industrially scalable process called solid-state shear pulverization (SSSP) can be used to enhance polymer properties with and without the addition of nanofillers. The SSSP process employs a modified twin-screw extruder in which the barrel is cooled rather than heated, resulting in the polymer being processed at a temperature below its glass transition temperature, if the polymer is amorphous, or its melt transition temperature, if the polymer is semi-crystalline. The material processed via SSSP experiences high levels of shear and compressive stresses, resulting in many repeated fragmentation and fusion steps during pulverization, which can lead to mechanochemistry. This research provides the first in-depth study on the effect of SSSP processing on the molecular structure as well as physical properties of homopolymers. Rheological characterization has demonstrated an increase in the melt viscosity of pulverized poly(ethylene terephthalate) (PET), which can be ascribed to the in situ formation of lightly branched PET. Further evidence of branched PET is provided via a dramatic increase in the rate of crystallization of the pulverized samples. These results suggest that SSSP processing can enhance the reuse and recyclability of PET. While SSSP processing has dramatic effects on the structure of polyesters and consequently their properties, a mild effect is observed for polyolefins. This thesis also demonstrates via a combination of methods that the well-exfoliated state can be achieved via SSSP processing of various polymer nanocomposites, using as-received, unmodified fillers. For example, extensive comparisons are made concerning the thermal stability in air or nitrogen atmosphere of polypropylene (PP)/clay, PP/graphite, and PP/carbon nanotube (CNT) nanocomposites made by SSSP. These comparisons suggest that the mechanism by which CNTs

  3. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    Science.gov (United States)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  4. Molecular interaction between glimepiride and Soluplus®-PEG 4000 hybrid based solid dispersions: Characterisation and anti-diabetic studies.

    Science.gov (United States)

    Reginald-Opara, Joy Nneji; Attama, Anthony; Ofokansi, Kenneth; Umeyor, Chukwuebuka; Kenechukwu, Frankline

    2015-12-30

    The objective of this study was to evaluate a novel blend of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol 6000 grafted copolymer (Soluplus®) and polyethylene glycol (PEG) 4000 for solubility enhancement, physicochemical stability and anti-diabetic efficacy of the produced solid dispersions containing glimepiride, a biopharmaceutics classification system (BCS) class II sulphonylurea. Different batches of glimepiride solid dispersions (SD) were prepared by the solvent evaporation method using the individual polymers and blends of the polymers at different ratios. The Soluplus®-PEG 4000 (sol-PEG) hybrid polymer based glimepiride solid dispersions were characterized by differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy, micromeritics and dissolution studies. In vivo anti-diabetic activity was determined by measuring the changes in blood glucose concentrations in albino rats. The solid dispersions showed good flow properties and excellent practical yield. Drug content and release from the different formulations increased when Soluplus® was used as the main matrix polymer. The kinetics of drug release from all the solid dispersions followed first order. Solid state characterization confirmed the formation of amorphous glimepiride solid dispersions in the Sol-PEG hybrid polymer and no strong drug-polymer interaction was observed. The blood glucose reduction in albino rats by the Sol-PEG-Glim SDs was significantly (pglimepiride. PMID:26581773

  5. Photovoltaic Performance of Polymers Based on Dithienylthienopyrazines Bearing Thermocleavable Benzoate Esters

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    , and a second weight loss above 400 °C, corresponding to loss of CO2 and decomposition. Upon thermocleavage the power conversion efficiency decreased for all the polymers while the polymer films became insoluble which was desired in the context of multilayer film processing. Thermocleavable low......Thermocleavable low-band-gap polymers based on dithienylthienopyrazines were prepared and copolymerized with different donor units like dialkoxybenzene, fluorene, thiophene, and cyclopentadithiophene (CPDT) using both Stille and Suzuki cross-coupling reactions. In the solid state the band gaps...... are in the range of 1.17−1.37 eV. The polymers were explored as donor materials in bulk heterojunction solar cells together with PCBM as the acceptor material where they were shown to exhibit a photoresponse in the full absorption range up to 900 nm and power conversion efficiencies of up to 1.21% under 1 sun...

  6. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion.

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility. PMID:27159015

  7. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Zhao, Yanran; Wu, Chuan; Peng, Gang; Chen, Xiaotian; Yao, Xiayin; Bai, Ying; Wu, Feng; Chen, Shaojie; Xu, Xiaoxiong

    2016-01-01

    Li10GeP2S12 (LGPS) is incorporated into polyethylene oxide (PEO) matrix to fabricate composite solid polymer electrolyte (SPE) membranes. The lithium ion conductivities of as-prepared composite membranes are evaluated, and the optimal composite membrane exhibits a maximum ionic conductivity of 1.21 × 10-3 S cm-1 at 80 °C and an electrochemical window of 0-5.7 V. The phase transition behaviors for electrolytes are characterized by DSC, and the possible reasons for their enhanced ionic conductivities are discussed. The LGPS microparticles, acting as active fillers incorporation into the PEO matrix, have a positive effect on the ionic conductivity, lithium ion transference number and electrochemical stabilities. In addition, two kinds of all-solid-state lithium batteries (LiFeO4/SPE/Li and LiCoO2/SPE/Li) are fabricated to demonstrate the good compatibility between this new SPE membrane and different electrodes. And the LiFePO4/Li battery exhibits fascinating electrochemical performance with high capacity retention (92.5% after 50 cycles at 60 °C) and attractive capacities of 158, 148, 138 and 99 mAh g-1 at current rates of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C, respectively. It is demonstrated that this new composite SPE should be a promising electrolyte applied in solid state batteries based on lithium metal electrode.

  8. Force response of actively deformed polymer microdroplets: dependence on the solid/liquid boundary condition

    Science.gov (United States)

    Heppe, Jonas; McGraw, Joshua D.; Bennewitz, Roland; Jacobs, Karin

    2015-03-01

    In fluid dynamics, the solid/liquid boundary condition can play a major role in the flow behavior of a liquid. For example, in the dewetting of identical polymer films on weak slip or strong slip substrates, large qualitative and quantitative differences are observed. Therefore, when applying an external load to a liquid resting on such substrates, the measured reaction forces and the ensuing flow should also depend on the boundary condition. We present atomic force microscopy measurements in which the reaction force of a cantilever is measured as the tip pierces liquid polymer micron sized droplets and films. These indentations are done on substrates with tuned slip. Accessing the size, depth and rate dependence of the resulting force distance curves, we show an influence of the slip condition on the dissipated energy and adhesion.

  9. Solid-supported polymer bilayers formed by coil-coil block copolymers.

    Science.gov (United States)

    Yang, Yan-Ling; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-08-14

    The formation and physical properties of solid-supported polymer bilayers (SPBs) on an adhesive substrate have been explored by dissipative particle dynamics simulations. A SPB is developed by the adsorption of vesicles formed by diblock copolymers in a selective solvent. The adsorbed vesicle can remain intact or become ruptured into a SPB, depending on the interaction between solvophobic blocks and solvent and the interaction between solvophilic blocks and the substrate. The morphological phase diagram of adsorbed vesicles is acquired. The influence of polymer adhesion strength and solvophobicity on the geometrical and mechanical properties of a SPB is systematically studied as well. It is found that vesicular disruption is easily triggered for strong adhesion strength. Moreover, for strong adhesion strength and weak solvophobicity, the fluctuation of membrane height is impeded while the area of fluctuation is enhanced. PMID:27418114

  10. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  11. A solid-state NMR method to determine domain sizes in multi-component polymer formulations

    Science.gov (United States)

    Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon

    2015-12-01

    Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).

  12. Reduced Crystallization Temperature Methodology for Polymer Selection in Amorphous Solid Dispersions: Stability Perspective.

    Science.gov (United States)

    Bhugra, Chandan; Telang, Chitra; Schwabe, Robert; Zhong, Li

    2016-09-01

    API-polymer interactions, used to select the right polymeric matrix with an aim to stabilize an amorphous dispersion, are routinely studied using spectroscopic and/or calorimetric techniques (i.e., melting point depression). An alternate selection tool has been explored to rank order polymers for formation of stable amorphous dispersions as a pragmatic method for polymer selection. Reduced crystallization temperature of API, a parameter introduced by Zhou et al.,1 was utilized in this study for rank ordering interactions in API-polymeric systems. The trends in reduced crystallization temperature monitored over polymer concentration range of up to 20% polymer loading were utilized to calculate "crystallization parameter" or CP for two model systems (nifedipine and BI ABC). The rank order of CP, i.e., a measure of API-polymer interaction, for nifedipine followed the order PVP > PVP-VA > Soluplus > HPMCAS > PV Ac > PAA. This rank ordering was correlated to published results of molecular interactions and physical stability for nifedipine. A different rank ordering was observed for BI ABC: PAA > PVP > HPMCAS > Soluplus > PVPV-VA > PVAc. Interactions for BI ABC were not as differentiated when compared to nifedipine based on CP trends. BI ABC dispersions at drug loadings between 40 and 60% were physically stable for prolonged periods under ICH conditions as well as accelerated stress. We propose that large CP differences among polymers could be predictive of stability outcomes. Acceptable stability at pharmaceutically relevant drug loadings would suggest that the relative influence of downstream processes, such as polymer solubility in various solvents, process suitability and selection, and more importantly supersaturation potential, should be higher compared to stability considerations while developing compounds like BI ABC. PMID:27414755

  13. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  14. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  15. Development status of the General Electric solid polymer electrolyte water electrolysis technology

    Science.gov (United States)

    Nuttall, L. J.

    The solid polymer electrolyte used by the considered technology is a thin sheet (5 to 10 mil thickness) of a sulfonated fluoropolymer. It is a high strength plastic material which serves as the sole electrolyte, and also forms a rugged barrier between the hydrogen and oxygen chambers. The electrodes consist of a thin catalyst layer bonded to the surfaces of the plastic sheet. A description is presented of a 60-cell module, operating at the normal design point of 1000 amps per square foot. The module generates more than 2000 standard cubic feet per hour of hydrogen at a pressure of approximately 100 psig. Performance and cost projections are discussed.

  16. Development status of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    Science.gov (United States)

    Russell, J. H.

    1981-03-01

    Solid polymer water electrolysis technology for large scale hydrogen generation is reviewed. A hydrogen generator module, capable of producing 2000 SCFH, was operated successfully for over 700 hours in the 200 kW system. Test results and further information are presented. Technology development was continued in support of improving both capital cost and conversion efficiency. Progress made in the development of the 10 sq ft active area cell included completion of the initial design, the beginning of fabrication development, and installation of new facilities for cell manufacture.

  17. Radon diffusion in polymer vessels using CR-39 solid state nuclear track detector

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Andre Cavalcanti; Menezes, Maria Angela de B.C.; Rocha, Zildete; Pereira, Marcio Tadeu, E-mail: andreccarneiro@gmail.com, E-mail: menezes@cdtn.br, E-mail: zildete@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Santos, Talita de Oliveira; Lara, Evelise Gomes; Braga, Mario Roberto Martins S.S., E-mail: mariomartins@gmail.com, E-mail: evelise.lara@gmail.com, E-mail: talitaolsantos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2015-07-01

    At CDTN/CNEN, the method to determine {sup 226}Ra in several matrices by gamma spectrometry is already established; however, the method should be improved. This paper is about the first step of this improvement. Several polymer vessels were studied verifying the effect of radiolysis on the walls of the vessel. A test about the diffusion of {sup 222}Rn through the walls was carried out using the CR-39 solid state nuclear track detector. The results pointed out that the vessel made up by acrylic material is the best candidate to replace the vessel actually used. (author)

  18. Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif.

    Science.gov (United States)

    Kim, Yu Jin; Lee, Yun-Ji; Kim, Yun-Hi; Park, Chan Eon

    2016-07-21

    Donor molecular structures, and their packing aspects in donor:acceptor active blends, play a crucial role in the photovoltaic performance of polymer solar cells. We systematically investigated a series of isoindigo-based donor polymers within the framework of a three-dimensional (3D) crystalline motif by modifying their chemical structures, thereby affecting device performances. Although our isoindigo-based polymer series contained polymers that differed only by their alkyl side chains and/or donating units, they showed quite different nanoscale morphological properties, which resulted in significantly different device efficiencies. Notably, blends of our isoindigo-based donor polymer systems with an acceptor compound, whereby the blends had more intermixed network morphologies and stronger face-on orientations of the polymer crystallites, provided better-performing photovoltaic devices. This behavior was analyzed using atomic force microscopy (AFM) and two-dimensional grazing incidence wide angle X-ray diffraction (2D-GIWAXD). To the best of our knowledge, no correlation has been reported previously between 3D nano-structural donor crystallites and device performances, particularly for isoindigo-based polymer systems. PMID:27326694

  19. Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif.

    Science.gov (United States)

    Kim, Yu Jin; Lee, Yun-Ji; Kim, Yun-Hi; Park, Chan Eon

    2016-07-21

    Donor molecular structures, and their packing aspects in donor:acceptor active blends, play a crucial role in the photovoltaic performance of polymer solar cells. We systematically investigated a series of isoindigo-based donor polymers within the framework of a three-dimensional (3D) crystalline motif by modifying their chemical structures, thereby affecting device performances. Although our isoindigo-based polymer series contained polymers that differed only by their alkyl side chains and/or donating units, they showed quite different nanoscale morphological properties, which resulted in significantly different device efficiencies. Notably, blends of our isoindigo-based donor polymer systems with an acceptor compound, whereby the blends had more intermixed network morphologies and stronger face-on orientations of the polymer crystallites, provided better-performing photovoltaic devices. This behavior was analyzed using atomic force microscopy (AFM) and two-dimensional grazing incidence wide angle X-ray diffraction (2D-GIWAXD). To the best of our knowledge, no correlation has been reported previously between 3D nano-structural donor crystallites and device performances, particularly for isoindigo-based polymer systems.

  20. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance

    International Nuclear Information System (INIS)

    Highlights: • The cathode possesses higher tolerance for the Fe3+ contamination than the anode. • Fe3+ are mostly reduced to Fe2+ rather than occur underpotential deposition. • Increased electrolysis voltage was mainly attributed to ohmic overpotential. • Voltage lags behind current for minutes in the multi-current-step test. • Poisoned electrolyser is mostly recovered by 0.5 M H2SO4 solution treatment for 13 h. - Abstract: Fe3+ is a sort of common metal ion contaminant for the solid polymer electrolyte (SPE) water electrolyser. In this paper, the effect of Fe3+ on the performance of SPE water electrolyser has been investigated by both in-situ and ex-situ characterizations. The electron probe microanalysis and ultraviolet test results showed that Fe3+ could migrate from the anode to the cathode and mostly be reduced to Fe2+ in the cathode rather than occurred underpotential deposition as described in the previous report. The in-situ dynamic contamination test showed that the anode voltage increased sharply as soon as the Fe3+ was fed into the anode, while the cathode voltage kept constant until the contamination time was over 30 minutes, indicating the higher tolerance of the cathode than the anode for the Fe3+ contamination. The calculation results based on the electrochemistry impedance spectroscopy test results revealed that the striking increase of the electrolysis voltage was mainly attributed to the ohmic overpotential, which was due to the replacement of H+ by Fe3+ in the Nafion resin. Interestingly, the voltage lagged behind the current for several minutes in the multi-current-step test for the contaminated electrolyser, which phenomenon may be used for judging whether the SPE water electrolyser performance degradation is due to the metal ions contamination. Furthermore, recovery strategy has been developed, and it was found that the contaminated electrolyser could be mostly recovered by 0.5 M H2SO4 solution treatment for 13 h

  1. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    OpenAIRE

    Salmiah Ibrahim; Azizan Ahmad; Nor Sabirin Mohamed

    2015-01-01

    Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurem...

  2. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    Directory of Open Access Journals (Sweden)

    Hyeonseok Yoon

    2013-08-01

    Full Text Available Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement.

  3. Molecular dynamics of neutral polymer bonding agent (NPBA) as revealed by solid-state NMR spectroscopy.

    Science.gov (United States)

    Hu, Wei; Su, Yongchao; Zhou, Lei; Pang, Aimin; Cai, Rulin; Ma, Xingang; Li, Shenhui

    2014-01-22

    Neutral polymer bonding agent (NPBA) is one of the most promising polymeric materials, widely used in nitrate ester plasticized polyether (NEPE) propellant as bonding agent. The structure and dynamics of NPBA under different conditions of temperatures and sample processing are comprehensively investigated by solid state NMR (SSNMR). The results indicate that both the main chain and side chain of NPBA are quite rigid below its glass transition temperature (Tg). In contrast, above the Tg, the main chain remains relatively immobilized, while the side chains become highly flexible, which presumably weakens the interaction between bonding agent and the binder or oxidant fillers and in turn destabilizes the high modulus layer formed around the oxidant fillers. In addition, no obvious variation is found for the microstructure of NPBA upon aging treatment or soaking with acetone. These experimental results provide useful insights for understanding the structural properties of NPBA and its interaction with other constituents of solid composite propellants under different processing and working conditions.

  4. Electrochemical Performance of Solid Polymer Electrolyte PEO20-LiTf-Urea1.s

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding; YAN Hui; ZHANG Huan; QI Lu

    2011-01-01

    A new solid polymer electrolyte PEO20-LiTf-Urea1.5 was prepared by solution casting technique. The energy of frontier orbitals for the components of the electrolyte was predicted by quantum chemistry calculations, and TG stability and electrochemical features were measured. Urea exhibited a lower HOMO energy than PEO, implying its enhanced stability against electrochemical oxidation. Experimentally addition of urea increases the ionic conductivity, which guarantees conductivity requirement for lithium ion batteries. It also results in significant improved electrochemical stability with good thermal stability. Favorable lithium stripping/plating performance is yielded, and it confirms the good stability of the solid electrolyte interphase for the PEO20-LiTf-Urea1.5 system.

  5. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Directory of Open Access Journals (Sweden)

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  6. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    Science.gov (United States)

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  7. Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma-Liquid Interface.

    Science.gov (United States)

    Tran, Quoc Chinh; Bui, Van-Tien; Dao, Van-Duong; Lee, Joong-Kee; Choi, Ho-Suk

    2016-06-29

    We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices.

  8. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  9. Study of a thiophene-based polymer for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cheylan, S. [ICFO, Institut de Ciencies Fotoniques, Edificio NEXUS II, c. Jordi Girona 29, 08034 Barcelona (Spain)]. E-mail: Stephanie.cheylan@icfo.es; Fraleoni-Morgera, A. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy); Puigdollers, J. [Departamento de Ingenieria Electronica, Universidad Politecnica de Cataluna, UPC, Campus Nord Edifici C4, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Voz, C. [Departamento de Ingenieria Electronica, Universidad Politecnica de Cataluna, UPC, Campus Nord Edifici C4, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Setti, L. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy); Alcubilla, R. [Departamento de Ingenieria Electronica, Universidad Politecnica de Cataluna, UPC, Campus Nord Edifici C4, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Badenes, G. [ICFO, Institut de Ciencies Fotoniques, Edificio NEXUS II, c. Jordi Girona 29, 08034 Barcelona (Spain); Costa-Bizzarri, P. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy); Lanzi, M. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy)

    2006-02-21

    A thiophene-based conjugated polymer bearing a cyano group (-CN) as a side chain substituent was successfully synthesized. The polymer evidences an excellent film ability from various organic solvents as well as an enhanced photoluminescence. The polymer has been characterized optically (Fourier Transformed Infrared spectroscopy, absorption and photoluminescence) in solution and in film, while X-ray diffraction measurements (XRD) of thin films were performed to investigate its bulk morphological features. From the absorption edge of the spectrum of a thin polymer film, the optical band gap of the polymer is estimated to be 2.0 eV, which corresponds to orange emission. Furthermore, a single layer light emitting diode (LED) was fabricated. The device produced bright stable electroluminescence at room temperature. All of the results indicate that this polymer is a promising emissive material for application in polymeric LEDs.

  10. Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn.

    Science.gov (United States)

    Li, Guizhen; Tang, Weiyang; Cao, Weimin; Wang, Qian; Zhu, Tao

    2015-08-01

    Molecularly imprinted polymers (MIPs) with caffeic acid as template and non-imprinted polymers (NIPs) materials were prepared in the same procedure. Field emission scanning electron microscopy (FE-SEM) and adsorption capacity test were used to evaluate characteristic of the new materials. MIPs, NIPs and C18 were used for rapid purification of caffeic acid from hawthorn with solid-phase extraction ( SPE) , and extract yields of caffeic acid with the proposed materials were 3.46 µg/g, 1.01 µg/g and 1.17 µg/g, respectively. To optimize the MIPs-SPE procedures, different kinds of elution solutions were studied. Deep eutectic solvents (DESs) were prepared by choline chloride (ChCl)-glycerol (1/2, n/n) and choline chloride-urea (1/ 2, n/n). Methanol was mixed with the two kinds of DESs (glycerol-based DESs, urea-based DESs) in different ratios (0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, v/v), and they were used to investigated as elution solutions in the above MIPs-SPE procedures. The results showed that MIPs were potential SPE materials, and methanol/ glycerol-based DESs (3 :1, v/v) had the best elution capability with the recovery of 82.32%. PMID:26749853

  11. Polymer based interfaces as bioinspired 'smart skins'.

    Science.gov (United States)

    De Rossi, Danilo; Carpi, Federico; Scilingo, Enzo Pasquale

    2005-11-30

    This work reports on already achieved results and ongoing research on the development of complex interfaces between humans and external environment, based on organic synthetic materials and used as smart 'artificial skins'. They are conceived as wearable and flexible systems with multifunctional characteristics. Their features are designed to mimic or augment a broad-spectrum of properties shown by biological skins of humans and/or animals. The discussion is here limited to those properties whose mimicry/augmentation is achievable with currently available technologies based on polymers and oligomers. Such properties include tactile sensing, thermal sensing/regulation, environmental energy harvesting, chromatic mimetism, ultra-violet protection, adhesion and surface mediation of mobility. Accordingly, bioinspired devices and structures, proposed as suitable functional analogous of natural architectures, are analysed. They consist of organic piezoelectric sensors, thermoelectric and pyroelectric sensors and generators, photoelectric generators, thermal and ultra-violet protection systems, electro-, photo- and thermo-chromic devices, as well as structures for improved adhesion and reduced fluid-dynamic friction.

  12. Supramolecular ionics: electric charge partition within polymers and other non-conducting solids

    Directory of Open Access Journals (Sweden)

    GALEMBECK FERNANDO

    2001-01-01

    Full Text Available Electrostatic phenomena in insulators have been known for the past four centuries, but many related questions are still unanswered, for instance: which are the charge-bearing species in an electrified organic polymer, how are the charges spatially distributed and which is the contribution of the electrically charged domains to the overall polymer properties? New scanning probe microscopies were recently introduced, and these are suitable for the mapping of electric potentials across a solid sample thus providing some answers for the previous questions. In this work, we report results obtained with two of these techniques: scanning electric potential (SEPM and electric force microscopy (EFM. These results were associated to images acquired by using analytical electron microscopy (energy-loss spectroscopy imaging in the transmission electron microscope, ESI-TEM for colloid polymer samples. Together, they show domains with excess electric charges (and potentials extending up to hundreds of nanometers and formed by large clusters of cations or anions, reaching supramolecular dimensions. Domains with excess electric charge were also observed in thermoplastics as well as in silica, polyphosphate and titanium oxide particles. In the case of thermoplastics, the origin of the charges is tentatively assigned to their tribochemistry, oxidation followed by segregation or the Mawell-Wagner-Sillars and Costa Ribeiro effects.

  13. Assessment of polymer-based nanocomposites biodegradability

    OpenAIRE

    Machado, A.V.; Araújo, Andreia Isabel Silva; Oliveira, Manuel

    2015-01-01

    The management of solid waste is a growing concern in many countries. Municipal solid waste is a major component of the total solid waste generated by society, and the composting of municipal solid waste has gained some attention even though a composting treatment for it is not yet widespread. It may not be realistic to replace large portions of these plastics with biodegradable materials, and it may be more important to separate plastics unsuitable for the composting process at the generatin...

  14. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    Science.gov (United States)

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  15. Overcoming sustainability and energy challenges in polymer science via solid-state shear pulverization

    Science.gov (United States)

    Brunner, Philip

    Solid-state shear pulverization (SSSP) is an innovative, continuous, environmentally benign, and industrially scalable process used to make materials that cannot be made via conventional processing techniques, reduce material cost by eliminating processing steps, and/or produce materials with superior properties as a result of better break-up and dispersion of additives. The SSSP process employs a modified twin-screw extruder in which the barrels are cooled rather than heated. This allows for high shear and compressive forces on the material during operation, which results in repeated fragmentation and fusion steps in the solid state. Technologically, this thesis provides the first in-depth study of the concept of specific energy in SSSP and how this variable can be tailored to optimize the end-properties while lowering costs for processing homopolymer, blend, or polymer composite systems. Furthermore, this thesis demonstrates the successful injection molding of SSSP-processed materials. An 80/20 wt% polypropylene (PP) and microcrystalline cellulose composite was manufactured with SSSP and injection molded into a bottle cap. These caps showed major benefits over neat PP such as increased stiffness and reduction in oxygen permeability. Finally, a description is provided of how SSSP can be used as a one-step solid-state compounding process that can add color, UV stabilizers, anti-statics, and other processing aids to polymer and uniformly and effectively disperses them in the polymer while pulverizing to a fine powder for roto-molding. Scientifically, process-structure-property relationships are investigated in detail with several homopolymers. The SSSP process is used to disperse heterogeneous nucleation agents (naturally found in commercial pellets) in the polymer. This led to major structural changes such as an increase in crystallizability and crystallinity for poly(lactic acid) (PLA) and in rigid amorphous fraction (RAF) at constant crystallinity for Nylon 11

  16. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    . The main emphasis will be on the following subjects: (a) electronic conductivity of cermets, (b) dimensional and thermodynamic stability including redox cycling, © thermal expansion coefficient matching, (d) chemical compatibility with stack components and gaseous reactants and (e) electrode reaction......This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  17. Solid protein solder-doped biodegradable polymer membranes for laser-assisted tissue repair

    Science.gov (United States)

    Hodges, Diane E.; McNally-Heintzelman, Karen M.; Welch, Ashley J.

    2000-05-01

    Solid protein solder-doped polymer membranes have been developed for laser-assisted tissue repair. Biodegradable polymer films of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) using a solvent-casting and particulate-leaching technique. The films provided a porous scaffold that readily absorbed the traditional protein solder mix composed of bovine serum albumin (BSA) and indocyanine green (ICG) dye. In vitro investigations were conducted to assess the influence of various processing parameters on the strength of tissue repairs formed using the new membranes. These parameters included the PLGA copolymer and PLGA/PEG blend ratio, the salt particle size, the initial bovine serum albumin (BSA) weight fraction, and the laser irradiance used to denature the solder. Altering the PLGA copolymer ratio had little effect on repair strength, however, it influenced the membrane degradation rate. Repair strength increased with increased membrane pore size and BSA concentration. The addition of PEG during the film casting stage increased the flexibility of the membranes but not necessarily the repair strength. The repair strength increased with increasing irradiance from 12 W/cm2 to 15 W/cm2. The new solder-doped polymer membranes provide all of the benefits associated with solid protein solders including high repair strength and improved edge coaptation. In addition, the flexible and moldable nature of the new membranes offer the capability of tailoring the membranes to a wide range of tissue geometries, and consequently, improved clinical applicability of laser- assisted tissue repair.

  18. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  19. Interfacial Aspects of Polymer Based Photovoltaic Structures

    Science.gov (United States)

    Russell, Thomas

    2011-03-01

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. Poly(3- hexylthiophene) and [6,6]-penyl-C61 butyric acid methyl ester (P3HT:PCBM) based solar cell performance is dictated by nanostructure of the active layer, the interfaces between the active layer and the electrodes, and the P3HT chain orientation in the thin film. The above parameters were systematically studied by scanning transmission electron microscopy, scanning force microscopy, optical microscopy, grazing incident angle x- ray diffraction., dynamic secondary ion mass spectroscopy and near edge x-ray absorption fine structure analysis. The influence of thermal annealing on the morphology, interfaces and crystal structure was investigated in films that were either initially confined by two electrodes or confined by only one electrode. While the bulk morphology in these films were identical, significant differences in the concentration of components at the electrode interfaces were found, giving rise to a marked difference in performance. In addition, a model was established, based on the crystallization of the P3HTand the diffusion of the PCBM to describe the origins of the nanoscale morphology found in the active layer. The device performance parameters were quantitatively studied. In collaboration with D. Chen, H. Liu, Y. Gu and F. Lu at UMass Amherst, A. Nakahara at Kuraray Co., D. Wei at Carl Zeiss NTS LLC, D. Nordlund at SSRL and supported by the DOE-supported EFRC at the UMass Amherst (DE-PS02-08ER15944).

  20. Polymer microarrays for cell based applications

    OpenAIRE

    Hansen, Anne Klara Brigitte

    2012-01-01

    The development and identification of new biomaterials that can replace specific tissues and organs is desirable. In the presented PhD thesis polymer microarrays were applied for the screening of polyacrylates and polyurethanes and evaluation for material discovery for applications in the life sciences. In the first part of the thesis, the largest polymer microarray ever made with more than 7000 features was fabricated and subsequently used for the screening of polyacrylates...

  1. Nanostructures for polymer-based organic photovoltaics

    OpenAIRE

    Guo, Shuai

    2014-01-01

    In this thesis, the influence of external parameters during the processing procedures on the active layer morphology of the polymer:fullerene PTB7:PCBM bulk heterojunction system are thoroughly investigated. It is ascertained that the power conversion efficiency can be easily manipulated by varying these external parameters (a slight chemical modification of the used polymer, the usage of host solvent, or an additional solvent treatment). The focus of the present work is to elucidate the rela...

  2. Effect of Zirconium Oxide Nanofiller and Dibutyl Phthalate Plasticizer on Ionic Conductivity and Optical Properties of Solid Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Siti Mariah Mohd Yasin

    2014-01-01

    Full Text Available New solid polymer electrolytes (SPE based on poly(ethylene oxide (PEO doped with lithium trifluoromethanesulfonate (LiCF3SO3, dibutyl phthalate (DBP plasticizer, and zirconium oxide (ZrO2 nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP plasticizer and ZrO2 nanofiller with maximum conductivity (1.38×10-4 Scm-1. The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.

  3. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    OpenAIRE

    Ayan Ghosh; Juchen Guo; Brown, Adam D; Elizabeth Royston; Chunsheng Wang; Peter Kofinas; Culver, James N.

    2012-01-01

    High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide) (PEO) based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The ...

  4. Haptics-based dynamic implicit solid modeling.

    Science.gov (United States)

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback. PMID:15794139

  5. Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation

    KAUST Repository

    Chen, Mark S.

    2013-12-26

    Efficient charge carrier transport in organic field-effect transistors (OFETs) often requires thin films that display long-range order and close π-π packing that is oriented in-plane with the substrate. Although some polymers have achieved high field-effect mobility with such solid-state properties, there are currently few general strategies for controlling the orientation of π-stacking within polymer films. In order to probe structural effects on polymer-packing alignment, furan-containing diketopyrrolopyrrole (DPP) polymers with similar optoelectronic properties were synthesized with either linear hexadecyl or branched 2-butyloctyl side chains. Differences in polymer solubility were observed and attributed to variation in side-chain shape and polymer backbone curvature. Averaged field-effect hole mobilities of the polymers range from 0.19 to 1.82 cm2/V·s, where PDPP3F-C16 is the least soluble polymer and provides the highest maximum mobility of 2.25 cm2/V·s. Analysis of the films by AFM and GIXD reveal that less soluble polymers with linear side chains exhibit larger crystalline domains, pack considerably more closely, and align with a greater preference for in-plane π-π packing. Characterization of the polymer solutions prior to spin-coating shows a correlation between early onset nanoscale aggregation and the formation of films with highly oriented in-plane π-stacking. This effect is further observed when nonsolvent is added to PDPP3F-BO solutions to induce aggregation, which results in films with increased nanostructural order, in-plane π-π orientation, and field-effect hole mobilities. Since nearly all π-conjugated materials may be coaxed to aggregate, this strategy for enhancing solid-state properties and OFET performance has applicability to a wide variety of organic electronic materials. © 2013 American Chemical Society.

  6. Superionic solid-state polymer electrolyte membrane for high temperature applications

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Cao, Jinwei

    2015-03-01

    Completely amorphous, flexible, solid-state polymer electrolyte membranes (ss-PEM) consisted of polyethylene glycol diacrylate /succinonitrile plasticizer (SCN)/lithium trifluorosulfonyl imide were fabricated via UV polymerization. The room temperature ionic conductivity of our ss-PEM is extremely high (i.e., 10-3S/cm), which is already in the superionic conductor range of inorganic and/or liquid electrolyte counterparts. Of particular interest is that our ss-PEM is thermally stable up to 140°C, which is superior to the liquid electrolyte counterpart that degrades above 80°C. The ss-PEM exhibits cyclic stability in both LiFePO4/Li and Li4Ti5O12 /Li half-cells up to 50 cycles tested. The trend of conductivity enhancement with temperature is reproducible in the repeated cycles, showing melting transitions of the SCN plastic crystals. In the compositions close to the solid (SCN plastic crystal)-liquid coexistence line, polymerization-induced crystallization occurs during photo-curing. The effect of solid-liquid segregation on ionic conductivity behavior is discussed. Supported by NSF-DMR 1161070.

  7. All Solid-State Lithium Metal Batteries Using Cross-linked Polymer Electrolytes

    Science.gov (United States)

    Pan, Qiwei; Li, Christopher; Soft Materials Team

    Nowadays, to prepare all solid-state lithium metal batteries with high rate capability and stability using solid polymer electrolytes (SPEs) is still a grand challenge because of the interfaces between the SPE and the electrodes. In this presentation, we report a series of hybrid SPEs with controlled network structures by using POSS as cross-linker. These hybrid network SPEs show promising ionic conductivity, mechanical properties, and lithium dendrite growth resistance. All solid-state LiFePO4/Li batteries were also prepared using these SPEs as the electrolytes to study the effect of conductivity and mechanical properties of the SPEs on the performance of the batteries. At 90 °C, the prepared cells show high rate capability and stability. Capacity up to 160 mAh/g can be obtained at a C/2 rate during the galvanostatic cycling. Capacity retention of the cells is higher than 80% after 250 cycles. Battery performance at 60 °C and decay mechanism of the batteries will also be discussed.

  8. Chain Dynamics in Solid Polymers and Polymerizing Systems as Revealed by Broadband Dielectric Spectroscopy

    Science.gov (United States)

    Williams, Graham

    2008-08-01

    A number of techniques are used to study the chain-dynamics of solid polymers, including those of dielectric relaxation [1-4], dynamic mechanical thermal analysis (DMTA) [1, 5], multinuclear NMR relaxations [6], quasi-elastic dynamic light scattering [7] and neutron scattering [8] (QELS & QENS) and transient fluorescence depolarization (TFD) [9]. Each technique has its own particular probe of the dynamics in a material. e.g. dielectric relaxation gives information on the angular motions of molecular chain-dipoles (for dipole relaxation) and the translational motions of ions (for f-dependent electrical conduction); NMR relaxations relate to the angular motions of chemical bonds; QELS relates to fluctuations in local refractive index; QENS to the time-dependent van Hove correlation function (suitably-defined) for proton-containing groups; TFD to the angular motions of fluorescent groups in a chain. Due to its relevance to practical applications of materials, DMTA is pre-eminent among the many physical techniques applied to solid polymers, but interpretations of behaviour in terms of molecular properties remain difficult since the direct link between an applied macroscopic stress and the molecular response of polymer chains in a bulk material remains an unsolved problem. Of the above techniques, Broadband Dielectric Spectroscopy (BDS) offers several advantages. (a) Materials may be studied in the frequency range 10-6 to 1010 Hz, over wide ranges of temperature and applied pressure, using commercially-available instrumentation. (b) Since the electrical capacitance of a film is inversely proportional its thickness, free-standing and supported films may be studied down to nm-thicknesses, giving e.g. information on the behaviour of the dynamic Tg as sample thickness approaches molecular dimensions. (c) Theoretical interpretations of dielectric relaxation and a.c. conduction are well-established in terms of Fourier transforms of molecular time correlation functions (TCFs

  9. Anion-controlled assembly of silver-di(aminophenyl)sulfone coordination polymers: Syntheses, crystal structures, and solid state luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Long, E-mail: gzuqlzhang@126.com [Department of Chemistry, Guiyang Medical College, Guiyang 550004 (China); Hu, Peng [Department of Chemistry, Guiyang Medical College, Guiyang 550004 (China); Zhao, Yi [Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025 (China); Feng, Guang-Wei [Department of Chemistry, Guiyang Medical College, Guiyang 550004 (China); Zhang, Yun-Qian; Zhu, Bi-Xue; Tao, Zhu [Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025 (China)

    2014-02-15

    Five silver coordination polymers, namely, ([Ag(3,3′-daps){sub 2}]·BF{sub 4}){sub n} (1), ([Ag(3,3′-daps){sub 2}]·NO{sub 3}){sub n} (2), [Ag(3,3′-daps)(CF{sub 3}SO{sub 3})]{sub n} (3), ([Ag(4,4′-daps)]·CF{sub 3}SO{sub 3}){sub n} (4), and ([Ag(4,4′-daps)]·ClO{sub 4}){sub n} (5) (3,3′-daps=di(3′-aminodiphenyl)sulfone, and 4,4′-daps=di(4′-aminodiphenyl)sulfone) have been synthesized and structural characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction analyses. Complex 1 displays a 1D ladder-like chain with four-connected Ag ions and bridged 3,3′-daps. Complex 2 shows other 1D ladder chain modified by tentacles. Complex 3 is a 2D layer structure with both Ag ions and 3,3′-daps are 3-connected nodes. Complex 4 is another 1D ladder chain with three-connected Ag ions and 4,4′-daps. Complex 5 shows a 2D 4{sup 4}-sql net with Ag ions and 4,4′-daps as 4-connected nodes. Moreover, their solid state luminescence and thermal stabilities also have been investigated. - Graphical abstract: Pictogram: Synthetic procedures of the five anion controlled silver coordination polymers. We reported the synthetic procedures, structure, and luminescence property of the five anion controlled silver coordination polymers based on two novel di(aminophenyl)sulfone V-shaped ligands. Display Omitted - Highlights: • Five new silver coordination polymers were synthesized and characterized. • Two novel designed V-shaped di(aminophenyl)sulfone ligands were first introduced to coordination chemistry. • Anions play important roles in determining the five silver coordination polymers. • The structural diversity and photoluminescence property were also discussed.

  10. Alternating current organic light emitting diodes based on polymer heterojunction

    Institute of Scientific and Technical Information of China (English)

    Yewen Jiang(蒋业文); Haishu Tan(谭海曙); Jianquan Yao(姚建铨)

    2003-01-01

    Most alternating current (ac) polymer EL (electroluminescent) devices to date are based on symmetricalstructure. Here novel alternating current EL devices with asymmetric structure are successfully fabricatedby using a hole type polymer PDDOPV [poly (2,5-bis (dodecyloxy)-phenylenevinylene)] and an electrontype polymer PPQ [poly (phenyl quinoxaline)]. We report that performance of polymer devices withheterojunction in ac operation is not so sensitive to thickness of the two polymer layers as in direct current(dc) operation. This new advantage of ac operation mode over dc means easy production and cheapfacilities in large-scale production in the near future. Different emission spectra are obtained when ourac devices operate in ac mode, forward and reverse bias. Emission spectrum at reverse bias includes twoparts: one is from PDDOPV, the other is from PPQ.

  11. Microstructure of Steel Fiber Reinforced Polymer-cement-based Composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite.The results indicate that the large pore volume decreases by 57.8%-51.2% and by 87.1%-88% with the addition of steel fibers and polymers respectively.When both steel fibers and polymers are simultaneously added,the large pore volume decreases by 88.3%-90.1%.As a surface active material,polymer has a favorable water-reduced and forming-film effect,which is contributed to the decrease of the thickness of water film and the improvement of the conglutination between the fibers and the matrix.Polymers could form a microstructure network.This network structure and the bone structure of cement hydration products penetrate each other and thus the interpenetrating network with sticky aggregate and steel fiber inside forms.

  12. PMMA-based Gel Polymer Electrolytes with Crosslinking Network

    Institute of Scientific and Technical Information of China (English)

    H.P. Zhang; Y. P. Wu; H. Q. Wu; M. Sun

    2005-01-01

    @@ 1Introduction The lithium-ion battery has a good rate capability and low-temperature performance, but its safety is relatively low due to the possibility of leakage of liquid electrolyte. The use of a solid or gel type electrolyte can lower the probability of leakage liquid electrolyte, and the electrochemical performance of gel electrolyte doesn't decrease so markedly as the solid electrolyte. Now, new types of advanced lithium-ion battery with gel polymer electrolytes are under developing which can be used in the future.

  13. From Polymer to Small Organic Molecules: A Tight Relationship between Radical Chemistry and Solid-Phase Organic Synthesis

    OpenAIRE

    Danilo Mirizzi; Maurizio Pulici

    2011-01-01

    Since Gomberg’s discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual “in-solution” radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the dev...

  14. Sensor-actuator coupled device for active tracheal tube using solid polymer electrolyte membrane

    Science.gov (United States)

    Ihara, Tadashi; Nakamura, Taro; Mukai, Toshiharu; Asaka, Kinji

    2007-04-01

    A sensor-actuator coupled device was developed using solid polymer electrolyte membrane (SPM) as an active tracheal tube for ventilator. Active tracheal tube is a novel type of tube for ventilator that removes patient's phlegm automatically upon sensing the narrowing of trachea by phlegm. This type of active tube is extremely useful in clinical settings as currently the sole measure to remove phlegm from patient's tube is to do it manually by a nurse every few hours. As SPM works both as a sensor and an actuator, an effective compact device was developed. SPM based sensor-actuator coupled device was fabricated with modified gold plating method. Prepared SPM was fixed as an array on a plastic pipe of diameter 22 mm and was connected to a ventilator circuit and driven by a ventilator with a volume control ventilation (VCV) mode. SPM was connected both to a sensing unit and an actuation unit. Generated voltage developed by the membrane with the setting of the maximum pressure from 5 cmH IIO to 20 cmH IIO was in order of several hundred μV. SPM sensor demonstrated a biphasic response to the ventilator flow. The sensor data showed nearly linearly proportional voltage development to the intra-tracheal pressure. The sensed signal was filtered and digitized with an A/D converting unit on a PC board. A real time operating program was used to detect the sensed signal that indicates the narrowing of trachea. The program then activated a driving signal to control the actuation of the membrane. The signal was sent to a D/A converting unit. The output of the D/A unit was sent to an amplifier and the galvanostat unit which drives the membrane with constant current regardless of the change in the load. It was demonstrated that the sensor-actuator unit detects the narrowing of trachea within several hundreds milli-seconds and responds by actuating the same membrane with the driving voltage of 3-4 V and driving current of several hundred milli-ampere for each membrane. SPM array

  15. Polymers based on renewable raw materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2002-01-01

    Full Text Available The basic raw materials for the chemical industry, which also means for polymer production, are mineral oil and natural gas. Mineral oil and natural gas resources are limited so that sooner or later they will be consumed. For this reason alternative, renewable raw materials for the chemical industry have become the object of intensive investigation all over the world. Some of the results of these investigations concerning renewable raw materials for the production of polymer materials are presented in this paper.

  16. Polymer composites based on gypsum matrix

    Science.gov (United States)

    Mucha, Maria; Mróz, Patrycja; Kocemba, Aleksandra

    2016-05-01

    The role of polymers as retarder additives is to prolong the workability connected with setting time of gypsum. Various cellulose derivatives, soluble in water in concentration up to 1,5% by weight were applied taking different water/binder ratio. The hydration process of calcium sulfate hemihydrate (gypsum binder) into dihydrate (gypsum plaster) was observed by setting and calorimetric techniques. Scanning electron microscopy confirmed that the gypsum microstructure was varied when polymers are used. The mechanical properties of gypsum plasters were studied by bending strength test and they are correlated with sample microstructure

  17. Characterization of Chemical and Mechanical Properties of Polymer Based Nanocomposites

    OpenAIRE

    Wafy, Tamer

    2013-01-01

    Characterization of Chemical and Mechanical Properties of Polymer Based NanocompositesThe University of ManchesterTamer Wafy Doctor of Philosophy17 January, 2013One of the most significant issues in nanocomposite performance is improving the dispersion of carbon nanotubes (CNTs) in thermosetting or thermoplastic polymers in order to gain good mechanical properties. Several studies have investigated the fabrication of nanocomposites based on carbon nanotubes and analysed properties, but there ...

  18. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo......The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...

  19. DNA-sensors based on functionalized conducting polymers and quantum dots

    Science.gov (United States)

    Kjällman, Tanja; Peng, Hui; Travas-Sejdic, Jadranka; Soeller, Christian

    2007-12-01

    The availability of rapid and specific biosensors is of great importance for many areas of biomedical research and modern biotechnology. This includes a need for DNA sensors where the progress of molecular biology demands routine detection of minute concentrations of specific gene fragments. A promising alternative approach to traditional DNA essays utilizes novel smart materials, including conducting polymers and nanostructured materials such as quantum dots. We have constructed a number of DNA sensors based on smart materials that allow rapid one-step detection of unlabeled DNA fragments with high specificity. These sensors are based on functionalized conducting polymers derived from polypyrrole (PPy) and poly(p-phenylenevinylene) (PPV). PPy based sensors provide intrinsic electrical readout via cyclic voltammetry and electrochemical impedance spectroscopy. The performance of these sensors is compared to a novel self-assembled monolayer-PNA construct on a gold electrode. Characterization of the novel PNA based sensor shows that it has comparable performance to the PPy based sensors and can also be read out effectively using AC cyclic voltammetry. Complementary to such solid substrate sensors we have developed a novel optical DNA essay based on a new PPV derived cationic conducting polymer. DNA detection in this essay results from sample dependent fluorescence resonance energy transfer changes between the cationic conducting polymer and Cy3 labeled probe oligonucleotides. As an alternative to such fluorochrome based sensors we discuss the use of inorganic nanocrystals ('quantum dots') and present data from water soluble CdTe quantum dots synthesized in an aqueous environment.

  20. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-01

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  1. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  2. Characteristics of solid-state lasers with passive q-switching by polymer saturable absorbers

    International Nuclear Information System (INIS)

    The characteristics of miniaturized diode-pumped compact passively Q-switched Nd:YAG and Nd: YVO4 lasers have been studied. Lasing at a wavelength of 1.064 μm with a pulse repetition rate of up to 25 kHz, a pulse duration of 2-5 ns, an average power of 130 mW, and a pump power of 3.5 W was realized with the use of a polymer Q-switch on the basis of polyurethane doped with the bis-(4-dimethylaminodithiobenzyl)-nickel dye. Diode-pumped solid-state mini lasers with passive Q switching by sandwich-type modulators are efficient compact sources of short powerful light pulses with a high optical quality of the beam.

  3. Solid phase extraction of uranium(VI) on phosphorus-containing polymer grafted 4-aminoantipyrine

    International Nuclear Information System (INIS)

    Phosphorus-containing polymer grafted 4-aminoantipyrine has been synthesized and used for solid phase extraction of U(VI) prior to its UV-Visible spectrophotometric determination by using arsenazo(III). The adsorbent was characterized by using FT-IR and SEM analysis. The influence of parameters including pH, adsorbent dose, amount of complexing reagent, sample volume and matrix effect have been optimized. The detection limit was determined as 1.4 μg L-1 with preconcentration factor of 30 and RSD of 1.4 %. The accuracy was checked by the analysis of GBW07424 soil and TMDA-64.2 environmental water certified reference materials. The method was applied to natural water and soil samples. (author)

  4. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    Science.gov (United States)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  5. Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk.

    Science.gov (United States)

    Lata, Kiran; Sharma, Rajan; Naik, Laxmana; Rajput, Y S; Mann, Bimlesh

    2015-10-01

    Molecular imprinted polymer (MIP) against cephalexin was synthesized by co-polymerization of functional monomer, cross-linker, radical initiator, along with target molecule (cephalexin) in a porogenic material. Binding of cephalexin towards prepared MIP was studied in different solvents (water, methanol, 1M NaCl, acetone and acetonitrile) and best binding was observed in methanol. Partition coefficient and selectivity of prepared imprint and non-imprint was also studied. Cross reactivity in terms of binding efficiency was also assessed with other antibiotics. Chromatographic study of MIP was carried out by packing prepared imprint into glass column. MIP was used as matrix in solid phase extraction (SPE) for recovery of cephalexin from spiked milk samples for further estimation by high performance liquid chromatography. No interference was observed from milk components after elution of cephalexin from MIP, indicating selectivity and affinity of MIP. On the other hand, interference was observed in eluate obtained from C18 SPE column. PMID:25872441

  6. IONIC CONDUCTIVITY AND ELECTRICAL PROPERTIES OF CARBOXYMETHYL CELLULOSE - NH4Cl SOLID POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    N. H. AHMAD

    2016-06-01

    Full Text Available In this present work, carboxymethyl cellulose (CMC – ammonium chloride (NH4Cl solid polymer electrolyte (SPE films were prepared by solution casting method. The ionic conductivity and electrical properties of SPE films were investigated using Electrical Impedance Spectroscopy. SPE film containing 16 wt. % NH4Cl exhibited the highest ionic conductivity of 1.43 x 10-3 S/cm at ambient temperature, 303K. The temperature dependence SPE films showed an Arrhenius-type relation where the regression values obtained from the log conductivity versus reciprocal temperature is close to unity (R2≈1. The electrical properties have been measured as a function of frequency of Ԑr,Ԑi, Mr, Mi shown a non-Debye type behavior

  7. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  8. Facile synthesis of stereoregular carbon fiber precursor polymers by template assisted solid phase polymerization

    Directory of Open Access Journals (Sweden)

    G. Santhana Krishnan

    2012-09-01

    Full Text Available Predominantly isotactic stereoregular polyacrylonitrile copolymers (PAC were prepared by solid phase polymerization techniques using hexagonal crystalline metal salts as template compounds. Stereoregular distributions of the prepared polymer were studied using high resolution 13C nuclear magnetic resonance spectroscopy (13C NMR spectra. The extent of isotacticity was directly determined from the peak intensity of the methine carbon (CH. The triad tacticity from the intensities of methine carbon peaks were examined by statistical methods. It was found that the PAC was predominantly isotactic in stereoregularity, and its sequence distribution obeys Bernoulli statistics. The optimum polymerization conditions ensuring isotactic content over 50% were disclosed experimentally. The chemical composition of PAC was confirmed with 1H NMR data. The obtained polyacrylonitrile copolymers were also characterized for molecular parameters such as viscosity average molecular weight (Mv, number average molecular weight (Mn, weight average molecular weight (Mw and polydispersity index.

  9. The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Katsunori [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Sakamoto, Kiyoshi [Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Hayakawa, Teruaki; Kakimoto, Masa-aki [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-04-15

    An aluminum solid electrolytic capacitor, using poly-(3,4-ethylenedioxythiophene) (PEDOT) as a counter electrode, was prepared with hyperbranched poly(siloxysilane)s (HBPSi) that has a large number of vinyl groups to improve the interfacial properties between aluminum oxide and PEDOT. Capacitance and equivalent series resistance (Rs) were significantly improved compared to untreated oxide film and vinyl terminated polydimethylsiloxane coated interfaces. From electrochemical measurement of the withstand voltage, damage to the oxide film from chemical polymerization of PEDOT was less with the HBPSi treatment. Frequency characteristics and electrical conductivity measurements of the polymer indicated that the resistance inside the etched porous layer was greatly reduced. These results show that the HBPSi pre-coating layer inhibited degradation of the oxide film by chemical polymerization of PEDOT and the conductivity of PEDOT in the etched porous oxide layer, and also enlarges the contact area by improving interfacial adhesion. (author)

  10. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    Science.gov (United States)

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  11. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  12. All-Optical Switching Based on Azo Polymer Material

    Institute of Scientific and Technical Information of China (English)

    DENG Yan; LUO Yan-Hua; WANG Pei; LU Yong-Hua; MING Hai; ZhANG Qi-Jing

    2007-01-01

    Conventional all-optical switches based on azo polymer films and the all-optical switches based on the attenuated total reflection (ATR) geometry are investigated. A conventional switch system, including a pump beam of 532nm and a probe beam of 650nm, is based on the photoinduced birefringence effect of azo polymer. An ATR switch in a prism-multilayer configuration is achieved by changing the reflectance of the probe beam with an external pump beam. The ATR method provides the substantial improvement of the speed and the efficiency of the modulation over the conventional method. Although the azo polymer response still remains relatively slow,an enhanced nonlinear refractive index of the azo polymer film can effectively increase the modulation.

  13. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  14. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Neha; Kumar, Sanjukta A.; Wagh, D.N. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Sadananda; Pandey, Ashok K. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Sangita D., E-mail: sangdk@barc.gov.in [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Reddy, A.V.R. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Th complexed with poly (bis[2-(methacryloyloxy)-ethyl]phosphate) as tailored polymer membranes. Black-Right-Pointing-Pointer Membranes offered high capacity and selectivity for fluoride in aqueous media. Black-Right-Pointing-Pointer Quantitative uptake (80 {+-} 5%) of fluoride. Black-Right-Pointing-Pointer Fast sorption kinetics. Black-Right-Pointing-Pointer Reusability of polymer membranes. - Abstract: Fluoride related health hazards (fluorosis) are a major environmental problem in many regions of the world. It affects teeth; skeleton and its accumulation over a long period can lead to changes in the DNA structure. It is thus absolutely essential to bring down the fluoride levels to acceptable limits. Here, we present a new inorganic-organic hybrid polymer sorbent having tailored fixed-sites for fluoride sorption. The matrix supported poly (bis[2-(methacryloyloxy)-ethyl]phosphate) was prepared by photo-initiator induced graft-polymerization in fibrous and microporous (sheet) host poly(propylene) substrates. These substrates were conditioned for selective fluoride sorption by forming thorium complex with phosphate groups on bis[2-methacryloyloxy)-ethyl] phosphate (MEP). These tailored sorbents were studied for their selectivity towards fluoride in aqueous media having different chemical conditions. The fibrous sorbent was found to take up fluoride with a faster rate (15 min for Almost-Equal-To 76% sorption) than the sheet sorbent. But, the fluoride loading capacity of sheet sorbent (4320 mg kg{sup -1}), was higher than fibrous and any other sorbent reported in the literature so far. The sorbent developed in the present work was found to be reusable after desorption of fluoride using NaOH solution. It was tested for solid phase extraction of fluoride from natural water samples.

  15. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...

  16. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Science.gov (United States)

    Praveen, D.; Damle, Ramakrishna

    2016-05-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO4)2, NH4I etc., have already been tried in the past with some success. Also various nanoparticles like Al2O3, TiO2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  17. Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants.

    Science.gov (United States)

    Liu, Shuqin; Hu, Qingkun; Zheng, Juan; Xie, Lijun; Wei, Songbo; Jiang, Ruifen; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2016-06-10

    A series of knitting aromatic polymers (KAPs) were successfully synthesized using a simple one-step Friedel-Crafts alkylation of aromatic monomers and were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then, as-synthesized KAPs with large surface areas, unique pore structures and high thermal stability were prepared as solid-phase microextraction (SPME) coatings that exhibited good extraction abilities for a series of benzene compounds (i.e., benzene, toluene, ethylbenzene and m-xylene, which are referred to as BTEX) and polycyclic aromatic hydrocarbons (PAHs). Under the optimized conditions, the methodologies established for the determination of BTEX and PAHs using the KAPs-triPB and KAPs-B coatings, respectively, possessed wide linear ranges, low limits of detection (LODs, 0.10-1.13ngL(-1) for BTEX and 0.05-0.49ngL(-1) for PAHs) and good reproducibility. Finally, the proposed methods were successfully applied to the determination of BTEX and PAHs in environmental water samples, and satisfactory recoveries (93.6-124.2% for BTEX and 77.2-113.3% for PAHs) were achieved. This study provides a benchmark for exploiting novel microporous organic polymers (MOPs) for SPME applications. PMID:27155913

  18. Flower solid modeling based on sketches

    Institute of Scientific and Technical Information of China (English)

    Zhan DING; Shu-chang XU; Xiu-zi YE; Yin ZHANG; San-yuan ZHANG

    2008-01-01

    In this paper we propose a method to model flowers of solid shape. Based on (Ijiri et al., 2005)'s method, we separate individual flower modeling and inflorescence modeling procedures into structure and geometry modeling. We incorporate interactive editing gestures to allow the user to edit structure parameters freely onto structure diagram. Furthermore, we use free-hand sketching techniques to allow users to create and edit 3D geometrical elements freely and easily. The final step is to automatically merge all independent 3D geometrical elements into a single waterproof mesh. Our experiments show that this solid modeling approach is promising. Using our approach, novice users can create vivid flower models easily and freely. The generated flower model is waterproof. It can have applications in visualization, animation, gaming, and toys and decorations if printed out on 3D rapid prototyping devices.

  19. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  20. Development of a solid polymer electrolyte electrolysis cell module and ancillary components for a breadboard water electrolysis system

    Science.gov (United States)

    Porter, F. J., Jr.

    1972-01-01

    Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.

  1. Development of an Ion Sensitive Field Effect Transistor Based Urea Biosensor with Solid State Reference Systems

    OpenAIRE

    Kow-Ming Chang; Chih-Tien Chang; Kun-Mou Chan

    2010-01-01

    Ion sensitive field-effect transistor (ISFET) based urease biosensors with solid state reference systems for single-ended and two-ended differential readout electronics were investigated. The sensing membranes of the biosensors were fabricated with urease immobilized in a conducting polymer-based matrix. The responses of 12.9~198.1 mV for the urea concentrations of 8~240 mg/dL reveal that the activity of the enzyme was not significantly decreased. Biosensors combined with solid state referenc...

  2. PM567-Doped solid dye lasers based on PMMA

    Institute of Scientific and Technical Information of China (English)

    Li Xiao-Hui; Fan Rong-Wei; Xia Yuan-Qin; Liu Wei; Chen De-Ying

    2007-01-01

    Polymers are a kind of attractive hosts for laser dyes due to their high transparency in both pumping and lasing ranges and superior optical homogeneity. In this paper solid dye samples based on polymethyl methacrylate (PMMA)doped with different concentrations of 1, 3, 5, 7, 8 -pentamethyl-2, 6-diethylpyrromethene-BF2 (PM567) are prepaed.The absorption, fluorescence and lasing spectra of the samples are obtained. Wide absorption and fluorescence bands are obtained and a red shift of the maxima of the lasing emission spectra is observed. With the second-harmonic generation of Q-switched Nd:YAG laser (532 nm, ~20 ns) pumping the samples longitudinally, the slope efficiencies of the samples are obtained. There is an optimal dye concentration for the highest slope efficiency when the pumping energy is lower than some typical value (~250 m J), and the highest slope efficiency 35.6% is obtained in the sample with a dye concentration of 2 × 10-4 mol/L. Pumping the samples at a rate of 10Hz with a pulse energy as high as 200 mJ (the fluence is 0.2J/cm2), the output energy drops to one-half of its initial value after approximate 15500 pulses and the normalized photostability is 5.17GJ/mol. A kind of solid dye laser which could have some applications is built.

  3. Cross-linking of Ordered Pluronic/Ionic Liquid Blends for Solid Polymer Electrolytes

    Science.gov (United States)

    Miranda, Daniel; Versek, Craig; Tuominen, Mark; Watkins, James; Russell, Thomas

    2012-02-01

    Ion gels were fabricated by cross-linking PPO-PEO-PPO triblock copolymers swollen in a room temperature ionic liquid (IL). The copolymers are modified by esterification to replace the terminal hydroxyl endgroups with methacrylate endgroups. This allows the copolymer/IL blends to be cross-linked by a UV cure, forming a gel. The strong interaction of the IL with the PEO block suppresses PEO crystallization which is necessary for good ion conduction. In addition, the interaction between the IL and PEO is strongly selective for PEO, strengthening microphase separation. Despite this, the low molecular weight copolymers remain disordered in the melt even when blended with the IL. However, high molecular weight copolymers are capable of microphase separating into highly ordered block copolymer morphologies. This difference allows the effect of microphase separation on ion transport to be studied. The effect of block copolymer composition is also studied, by varying the PEO fraction of the copolymer. The resultant gels show high ionic conductivity and solid-like behavior, indicating that these materials may be effective as solid polymer electrolytes.

  4. Molecular Dynamics of Neutral Polymer Bonding Agent (NPBA as Revealed by Solid-State NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2014-01-01

    Full Text Available Neutral polymer bonding agent (NPBA is one of the most promising polymeric materials, widely used in nitrate ester plasticized polyether (NEPE propellant as bonding agent. The structure and dynamics of NPBA under different conditions of temperatures and sample processing are comprehensively investigated by solid state NMR (SSNMR. The results indicate that both the main chain and side chain of NPBA are quite rigid below its glass transition temperature (Tg. In contrast, above the Tg, the main chain remains relatively immobilized, while the side chains become highly flexible, which presumably weakens the interaction between bonding agent and the binder or oxidant fillers and in turn destabilizes the high modulus layer formed around the oxidant fillers. In addition, no obvious variation is found for the microstructure of NPBA upon aging treatment or soaking with acetone. These experimental results provide useful insights for understanding the structural properties of NPBA and its interaction with other constituents of solid composite propellants under different processing and working conditions.

  5. Recent progress in polymer-based gene delivery vectors

    Institute of Scientific and Technical Information of China (English)

    HUANG Shiwen; ZHUO Renxi

    2003-01-01

    The gene delivery system is one of the three components of a gene medicine, which is the bottle neck of current gene therapy. Nonviral vectors offer advantages over the viral system of safety, ease of manufacturing, etc. As important nonviral vectors, polymer gene delivery systems have gained increasing attention and have begun to show increasing promising. In this review, the fundamental and recent progress of polymer-based gene delivery vectors is reviewed.

  6. Investigation on poly (vinylidene fluoride) based gel polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; P Sivakumar; Ravi Shanker Babu

    2006-12-01

    An investigation is carried out on gel polymer electrolytes consisting of poly (vinylidene fluoride) (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate (LiCF3SO3) as salts and mixture of ethylene carbonate (EC) and propylene carbonate (PC) as plasticizers. Polymer thin films were prepared by solvent casting technique and the obtained films were subjected to different characterizations, to confirm their structure, complexation and thermal changes. X-ray diffraction revealed that the salts and plasticizers disrupted the crystalline nature of PVdF based polymer electrolytes and converted them into an amorphous phase. TG/DTA studies showed the thermal stability of the polymer electrolytes. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. Room temperature (28°C) conductivity of 2.786 × 10-3 Scm-1 was observed in PVdF (24)–EC/PC (68)–LiCF3SO3 (2)/LiClO4 (6) polymer system.

  7. Solid drop based liquid-phase microextraction.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Sobhi, Hamid Reza; Farahani, Hadi; Norouzi, Parviz; Dinarvand, Rassoul; Kashtiaray, Amir

    2010-04-16

    Solid drop based liquid-phase microextraction (SDLPME) is a novel sample preparation technique possessing obvious advantages of simple operation with a high pre-concentration factor, low cost and low consumption of organic solvent. SDLPME coupled with gas chromatography (GC), high-performance liquid chromatography (HPLC), and atomic absorption spectrometry (AAS) has been widely applied to the analyses of a different variety of samples. The basic principles, parameters affecting the extraction efficiency, and the latest applications of SDLPME are reviewed in this article. PMID:19962710

  8. Estimation of critical conditions of polymers based on monitoring the polymer recovery.

    Science.gov (United States)

    Bhati, S S; Macko, T; Brüll, R

    2016-06-17

    Liquid chromatography at critical conditions (LCCC) is a very attractive chromatographic technique on the border between the size exclusion and liquid adsorption mode of the liquid chromatography. The strong interest in LCCC arises from the fact that it is well suited to analyze the block lengths in segmented copolymers or the heterogeneities with regard to end groups present, for example, in functionalized polymers e.g., telechelics. In this paper a new method for identification of the critical conditions of synthetic polymers is proposed, which requires only one polymer sample with higher molar mass. The method is based on monitoring the recovery of the polymer sample from a column. The composition of the mobile phase is modified until the polymer sample is fully recovered from the column. The corresponding composition of the mobile phase is composition corresponding to LCCC. This new method was applied for the determination of critical conditions for polyethylene, syndiotactic polypropylene and isotactic polypropylene. The results of the new method will be compared to those of classical approaches and advantages will be pointed out.

  9. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates.

    Science.gov (United States)

    Jiang, Yanyan; Stenzel, Martina

    2016-06-01

    Albumin has been a popular building block to create nanoparticles for drug delivery purposes. The performance of albumin as a drug carrier can be enhanced by combining protein with polymers, which allows the design of carriers to encompass a broader spectrum of drugs while features unique to synthetic polymers such as stimuli-responsiveness are introduced. Nanoparticles based on polymer-albumin hybrids can be divided into two classes: one that carries album as a bioactive surface coating and the other that uses albumin as biocompatible, although nonbioactive, building block. Nanoparticles with bioactive albumin surface coating can either be prepared by self-assembly of albumin-polymer conjugates or by postcoating of existing nanoparticles with albumin. Albumin has also been used as building block, either in its native or denatured form. Existing albumin nanoparticles are coated with polymers, which can influence the degradation of albumin or impact on the drug release. Finally, an alternative way of using albumin by denaturing the protein to generate a highly functional chain, which can be modified with polymer, has been presented. These albumin nanoparticles are designed to be extremely versatile so that they can deliver a wide variety of drugs, including traditional hydrophobic drugs, metal-based drugs and even therapeutic proteins and siRNA. PMID:26947019

  10. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates.

    Science.gov (United States)

    Jiang, Yanyan; Stenzel, Martina

    2016-06-01

    Albumin has been a popular building block to create nanoparticles for drug delivery purposes. The performance of albumin as a drug carrier can be enhanced by combining protein with polymers, which allows the design of carriers to encompass a broader spectrum of drugs while features unique to synthetic polymers such as stimuli-responsiveness are introduced. Nanoparticles based on polymer-albumin hybrids can be divided into two classes: one that carries album as a bioactive surface coating and the other that uses albumin as biocompatible, although nonbioactive, building block. Nanoparticles with bioactive albumin surface coating can either be prepared by self-assembly of albumin-polymer conjugates or by postcoating of existing nanoparticles with albumin. Albumin has also been used as building block, either in its native or denatured form. Existing albumin nanoparticles are coated with polymers, which can influence the degradation of albumin or impact on the drug release. Finally, an alternative way of using albumin by denaturing the protein to generate a highly functional chain, which can be modified with polymer, has been presented. These albumin nanoparticles are designed to be extremely versatile so that they can deliver a wide variety of drugs, including traditional hydrophobic drugs, metal-based drugs and even therapeutic proteins and siRNA.

  11. Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Hashemi, Beshare; Dehdashtian, Sara; Mohammadi, Moslem; Gholivand, Mohammad Bagher [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Garau, Alessandra; Lippolis, Vito [Dipartimento di Scienze Chimiche e Geologiche, Universita' degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, CA (Italy)

    2014-12-10

    Highlights: • Preparation of Ag{sup +} imprinted polymeric nanobeads via precipitation polymerization. • Use of a mixed aza-thioether crown containing a 1,10-phenanthroline subunit a selective host for Ag{sup +} ion. • Highly selective, sensitive and fast recognition of traces of Ag{sup +} ions. • Use of the prepared Ag{sup +}-IIP for preparation of an Ag{sup +}-voltammetric sensor with LOD of 9.0 × 10{sup −10} M. • Use of the prepared Ag{sup +}-IIP for preparation of Ag{sup +}-ISEs with LOD of 1.2 × 10{sup −9} M 9.0 × 10{sup −10} M. - Abstract: A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag{sup +} and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO{sub 3} solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag{sup +} was 18.08 μmol g{sup −1}. The relative standard deviation and limit of detection (LOD = 3S{sub b}/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10{sup −8} M, respectively. The new Ag{sup +}-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10{sup −10} and 1.2 × 10{sup −9} M, respectively.

  12. Inference-based procedural modeling of solids

    KAUST Repository

    Biggers, Keith

    2011-11-01

    As virtual environments become larger and more complex, there is an increasing need for more automated construction algorithms to support the development process. We present an approach for modeling solids by combining prior examples with a simple sketch. Our algorithm uses an inference-based approach to incrementally fit patches together in a consistent fashion to define the boundary of an object. This algorithm samples and extracts surface patches from input models, and develops a Petri net structure that describes the relationship between patches along an imposed parameterization. Then, given a new parameterized line or curve, we use the Petri net to logically fit patches together in a manner consistent with the input model. This allows us to easily construct objects of varying sizes and configurations using arbitrary articulation, repetition, and interchanging of parts. The result of our process is a solid model representation of the constructed object that can be integrated into a simulation-based environment. © 2011 Elsevier Ltd. All rights reserved.

  13. Molecular interaction between glimepiride and Soluplus®-PEG 4000 hybrid based solid dispersions: Characterisation and anti-diabetic studies.

    Science.gov (United States)

    Reginald-Opara, Joy Nneji; Attama, Anthony; Ofokansi, Kenneth; Umeyor, Chukwuebuka; Kenechukwu, Frankline

    2015-12-30

    The objective of this study was to evaluate a novel blend of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol 6000 grafted copolymer (Soluplus®) and polyethylene glycol (PEG) 4000 for solubility enhancement, physicochemical stability and anti-diabetic efficacy of the produced solid dispersions containing glimepiride, a biopharmaceutics classification system (BCS) class II sulphonylurea. Different batches of glimepiride solid dispersions (SD) were prepared by the solvent evaporation method using the individual polymers and blends of the polymers at different ratios. The Soluplus®-PEG 4000 (sol-PEG) hybrid polymer based glimepiride solid dispersions were characterized by differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy, micromeritics and dissolution studies. In vivo anti-diabetic activity was determined by measuring the changes in blood glucose concentrations in albino rats. The solid dispersions showed good flow properties and excellent practical yield. Drug content and release from the different formulations increased when Soluplus® was used as the main matrix polymer. The kinetics of drug release from all the solid dispersions followed first order. Solid state characterization confirmed the formation of amorphous glimepiride solid dispersions in the Sol-PEG hybrid polymer and no strong drug-polymer interaction was observed. The blood glucose reduction in albino rats by the Sol-PEG-Glim SDs was significantly (p<0.05) higher and more sustained when compared with the plain drug sample and commercially available product. Optimized SD batches (SP1 and SP3) showed a reduction in blood glucose level from 100% to 9.81% and 8.97%, respectively, at Tmax of 3h. The Sol-PEG-Glim SD was found to be stable over a period of 6 months (at 40°C, 70% RH) with no significant changes in the drug content. Thus, the Sol-PEG polymeric hybrids represent a promising tool for enhanced delivery of glimepiride.

  14. fd Virus as a Model Stiff Polymer for Translocation Experiments with Solid-State Nanopores

    Science.gov (United States)

    McMullen, Angus; Liu, Xu; Mihovilovic, Mirna; Stein, Derek; Tang, Jay

    2012-02-01

    We report preliminary experimental results of the translocation of the filamentous virus fd through a solid-state nanopore. fd virus is suitable for translocation and detection in a voltage-biased nanopore because it is highly charged, 880 nm long, and 6.6 nm in diameter. Importantly, fd has a persistence length of ˜2 μm, a forty-fold increase over dsDNA, making fd a model stiff polymer for testing theories of polymer translocation dynamics. fd cannot coil in solution, therefore the dispersion of fd translocation times can test a model by Lu et al. that ascribes DNA translocation velocity fluctuations to the distribution of initial conformations of the DNA coil. That picture is in contrast with an alternative model by Li et al., which attributes the spread of DNA translocation times to thermal velocity fluctuations. The physics of fd capture by a nanopore also differs significantly from DNA since the ends of the virus cannot diffusively search for the pore independently of the middle. As a result, the rate of fd capture from solution may not increase monotonically with the applied voltage across the pore; it is possible for fd to become kinetically trapped against the nanopore membrane by the electric field. We will compare the distribution of translocation times of fd virus to distributions for DNA and discuss the influence of the virus's orientation and interactions with the nanopore on the translocation speed and the measured current blockage. We will also examine the dependence of capture rate on the applied voltage.

  15. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil.

    Science.gov (United States)

    Wlodarski, K; Sawicki, W; Haber, K; Knapik, J; Wojnarowska, Z; Paluch, M; Lepek, P; Hawelek, L; Tajber, L

    2015-08-01

    To improve solubility of tadalafil (Td), a poorly soluble drug substance (3μg/ml) belonging to the II class of the Biopharmaceutical Classification System, its six different solid dispersions (1:1, w/w) in the following polymers: HPMC, MC, PVP, PVP-VA, Kollicoat IR and Soluplus were successfully produced by freeze-drying. Scanning electron microscopy showed a morphological structure of solid dispersions typical of lyophilisates. Apparent solubility and intrinsic dissolution rate studies revealed the greatest, a 16-fold, increase in drug solubility (50μg/ml) and a significant, 20-fold, dissolution rate enhancement for the Td/PVP-VA solid dispersion in comparison with crystalline Td. However, the longest duration of the supersaturation state in water (27μg/ml) over 24h was observed for the Td solid dispersion in HPMC. The improved dissolution of Td from Td/PVP-VA was confirmed in the standard dissolution test of capsules filled with solid dispersions. Powder X-ray diffraction and thermal analysis showed the amorphous nature of these binary systems and indicated the existence of dispersion at the molecular level and its supersaturated character, respectively. Nevertheless, as evidenced by film casting, the greatest ability to dissolve Td in polymer was determined for PVP-VA. The crystallization tendency of Td dispersed in Kollicoat IR could be explained by the low Tg (113°C) of the solid dispersion and the highest difference in Hansen solubility parameters (6.8MPa(0.5)) between Td and the polymer, although this relationship was not satisfied for the partially crystalline dispersion in PVP. Similarly, no correlation was found between the strength of hydrogen bonds investigated using infrared spectroscopy and the physical stability of solid dispersions or the level of supersaturation in aqueous solution. PMID:25998701

  16. Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications.

    Science.gov (United States)

    Gedefaw, Desta; Tessarolo, Marta; Bolognesi, Margherita; Prosa, Mario; Kroon, Renee; Zhuang, Wenliu; Henriksson, Patrik; Bini, Kim; Wang, Ergang; Muccini, Michele; Seri, Mirko; Andersson, Mats R

    2016-01-01

    Two high bandgap benzodithiophene-benzotriazole-based polymers were synthesized via palladium-catalysed Stille coupling reaction. In order to compare the effect of the side chains on the opto-electronic and photovoltaic properties of the resulting polymers, the benzodithiophene monomers were substituted with either octylthienyl (PTzBDT-1) or dihexylthienyl (PTzBDT-2) as side groups, while the benzotriazole unit was maintained unaltered. The optical characterization, both in solution and thin-film, indicated that PTzBDT-1 has a red-shifted optical absorption compared to PTzBDT-2, likely due to a more planar conformation of the polymer backbone promoted by the lower content of alkyl side chains. The different aggregation in the solid state also affects the energetic properties of the polymers, resulting in a lower highest occupied molecular orbital (HOMO) for PTzBDT-1 with respect to PTzBDT-2. However, an unexpected behaviour is observed when the two polymers are used as a donor material, in combination with PC61BM as acceptor, in bulk heterojunction solar cells. Even though PTzBDT-1 showed favourable optical and electrochemical properties, the devices based on this polymer present a power conversion efficiency of 3.3%, considerably lower than the efficiency of 4.7% obtained for the analogous solar cells based on PTzBDT-2. The lower performance is presumably attributed to the limited solubility of the PTzBDT-1 in organic solvents resulting in enhanced aggregation and poor intermixing with the acceptor material in the active layer.

  17. Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications

    Science.gov (United States)

    Gedefaw, Desta; Tessarolo, Marta; Bolognesi, Margherita; Prosa, Mario; Kroon, Renee; Zhuang, Wenliu; Henriksson, Patrik; Bini, Kim; Wang, Ergang; Muccini, Michele

    2016-01-01

    Summary Two high bandgap benzodithiophene–benzotriazole-based polymers were synthesized via palladium-catalysed Stille coupling reaction. In order to compare the effect of the side chains on the opto-electronic and photovoltaic properties of the resulting polymers, the benzodithiophene monomers were substituted with either octylthienyl (PTzBDT-1) or dihexylthienyl (PTzBDT-2) as side groups, while the benzotriazole unit was maintained unaltered. The optical characterization, both in solution and thin-film, indicated that PTzBDT-1 has a red-shifted optical absorption compared to PTzBDT-2, likely due to a more planar conformation of the polymer backbone promoted by the lower content of alkyl side chains. The different aggregation in the solid state also affects the energetic properties of the polymers, resulting in a lower highest occupied molecular orbital (HOMO) for PTzBDT-1 with respect to PTzBDT-2. However, an unexpected behaviour is observed when the two polymers are used as a donor material, in combination with PC61BM as acceptor, in bulk heterojunction solar cells. Even though PTzBDT-1 showed favourable optical and electrochemical properties, the devices based on this polymer present a power conversion efficiency of 3.3%, considerably lower than the efficiency of 4.7% obtained for the analogous solar cells based on PTzBDT-2. The lower performance is presumably attributed to the limited solubility of the PTzBDT-1 in organic solvents resulting in enhanced aggregation and poor intermixing with the acceptor material in the active layer. PMID:27559416

  18. Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications.

    Science.gov (United States)

    Gedefaw, Desta; Tessarolo, Marta; Bolognesi, Margherita; Prosa, Mario; Kroon, Renee; Zhuang, Wenliu; Henriksson, Patrik; Bini, Kim; Wang, Ergang; Muccini, Michele; Seri, Mirko; Andersson, Mats R

    2016-01-01

    Two high bandgap benzodithiophene-benzotriazole-based polymers were synthesized via palladium-catalysed Stille coupling reaction. In order to compare the effect of the side chains on the opto-electronic and photovoltaic properties of the resulting polymers, the benzodithiophene monomers were substituted with either octylthienyl (PTzBDT-1) or dihexylthienyl (PTzBDT-2) as side groups, while the benzotriazole unit was maintained unaltered. The optical characterization, both in solution and thin-film, indicated that PTzBDT-1 has a red-shifted optical absorption compared to PTzBDT-2, likely due to a more planar conformation of the polymer backbone promoted by the lower content of alkyl side chains. The different aggregation in the solid state also affects the energetic properties of the polymers, resulting in a lower highest occupied molecular orbital (HOMO) for PTzBDT-1 with respect to PTzBDT-2. However, an unexpected behaviour is observed when the two polymers are used as a donor material, in combination with PC61BM as acceptor, in bulk heterojunction solar cells. Even though PTzBDT-1 showed favourable optical and electrochemical properties, the devices based on this polymer present a power conversion efficiency of 3.3%, considerably lower than the efficiency of 4.7% obtained for the analogous solar cells based on PTzBDT-2. The lower performance is presumably attributed to the limited solubility of the PTzBDT-1 in organic solvents resulting in enhanced aggregation and poor intermixing with the acceptor material in the active layer. PMID:27559416

  19. Effect of intrachain sulfonic acid dopants on the solid-state charge mobility of a model radical polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Holly; Wang, Yucheng; Boudouris, Bryan W., E-mail: boudouris@purdue.edu

    2015-02-27

    Radical polymers are an emerging class of non-conjugated, charge-conducting macromolecules that are capable of transporting charge through localized oxidation–reduction (redox) reactions that occur at the stable radical groups present as the pendant groups of the macromolecular chains. The chemical nature and oxidation state of these pendant radical groups are critical to the charge transporting abilities of radical polymers in the solid state. To date, however, the control of this chemistry has been limited to external oxidizing agents, and the concept of intramolecular dopants has not been explored fully. To this end, we have synthesized poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-co-poly(vinylsulfonic acid sodium salt) (PTMA-co-PVS). Then, electron paramagnetic resonance spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy are implemented to evaluate the exact chemical nature of the pendant groups as a function of the PVS intramolecular dopants and exposure of the materials to external oxidation reactions. We correlate these changes in pendant group chemistry to charge transport ability, and we establish that the inclusion of a moderate amount of PVS dopants can improve the solid-state hole mobility of the material. Conversely, a large amount of sulfonic acidic dopants can be detrimental to the transport of the polymer relative to the homopolymer PTMA. Therefore, refinement of pendant group chemistry and careful addition of intramolecular dopants can enhance the solid-state transport ability of a radical polymer system. These fundamental principles, in turn, provide a vital foothold by which to optimize the solid-state charge transporting ability of current and next-generation radical polymer designs. - Highlights: • Sulfonic acid groups are copolymerized within the backbone of radical polymer chain. • Addition of the sulfonic acid groups alters the pendant group oxidation state. • Exact oxidation states are

  20. Phenothiazine based polymers for energy and data storage application

    Energy Technology Data Exchange (ETDEWEB)

    Golriz, Seyed Ahmad Ali

    2013-03-15

    charge and discharge cycles. In addition to applications in batteries the bistability of phenothiazine polymers for high density data storage purposes was studied. Using the conductive mode of scanning force microscopy (SFM), nano-scaled patterning of spin-coated polymer films induced by electrochemical oxidation was successfully demonstrated. The scanning probe experiments revealed differences in the conductive states of written patterns before and after oxidation with no significant change in topography. Remarkably, the patterns were stable with respect to the storage time as well as mechanical wear. Finally, new synthetic approaches towards mechanically nanowear stable and redox active surfaces were established. Via grafting from methods based on Atom Transfer Radical Polymerization (ATRP), redox active polymer brushes with phenothiazine moieties were prepared and characterized by SFM and X-ray techniques. In particular, a synthetic route based on polymer brush structures with activated ester functionality appeared as a very promising and versatile fabrication method. The activated ester brushes were used for attachment of phenothiazine moieties in a successive step. By using crosslinkable diamine moieties, polymer brushes with redox functionalities and with increased surface wear resistance were successfully synthesized. In summary, this work offers deep insights into the electronic properties of polymers with phenothiazine redox active moieties. Furthermore, the applicability of phenothiazine polymers for electronic devices was explored and improved from synthetic polymer chemistry point of view.

  1. Recent developments in polyurethane-based conducting polymer composites

    OpenAIRE

    Njuguna, James A. K.; Pielichowski, Krzysztof

    2004-01-01

    Polyurethane-based conducting composites with polyaniline, polythiophene or polypyrrole are in the class of modern macromolecular materials that combine the toughness and elasticity of polyurethane matrix with conductivity of intrinsically conducting polymers. Since the methods of preparation strongly influence the structure and properties of resulting composite/blend, this works aim at systematic description of polyurethane based conducting composites. This review has been ...

  2. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    CERN Document Server

    Webster, M I

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) sub 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) sub 1 sub 0 and LiClO sub 4.P(EO) sub 1 sub 0 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stabl...

  3. Drug-polymer miscibility across a spray dryer: a case study of naproxen and miconazole solid dispersions.

    Science.gov (United States)

    Worku, Zelalem Ayenew; Aarts, Jolie; Singh, Abhishek; Van den Mooter, Guy

    2014-04-01

    The structural and physical stability of solid dispersions have not been adequately explored during spray drying manufacturing processes. In this study a wide range of compositions of naproxen/PVP-VA 64 (poly(1-vinylpyrrolidone-co-vinyl acetate)) and miconazole/PVP-VA 64 solid dispersions prepared by different laboratory spray dryers were collected from various selected locations and used to investigate the drug-polymer mixing across spray dryers. Spray-dried dispersions with 30% (w/w) naproxen collected from the transport tube of the Pro-C-epT Microspray dryer showed the narrowest glass transition width, which apparently indicates the highest degree of drug-polymer mixing compared to the other locations. The intensity of the naproxen-PVP-VA 64 interaction peak at 1654 cm(-1) of IR spectra differs for solid dispersions (SDs) from the collector and transport tube of Pro-C-epT Microspray dryer with a higher intensity for the latter. Samples with 50% (w/w) naproxen loading collected from the cyclone and the cyclone steel part of the Buchi mini spray dryer showed a melting endotherm (Tm at 112.2 ± 0.8 °C and ΔHf between 0.7 and 1.8 J/g), whereas samples from the cyclone tube to the drying chamber were devoid of crystalline material. The variations in drug-polymer mixing extend to miconazole/PVP-VA solid dispersions where 20% drug loading showed location-dependent drug-polymer mixing. This study clearly showed that the variation in drug-polymer miscibility and solid form of the drug in solid dispersions can occur across spray dryer in small-scale manufacturing processes. The optimization of formulation parameters and spray drying process parameters is imperative to diminish these variations to enhance homogeneity of solid dispersions in laboratory scale spray dryers. The same problem can occur in geometrically large spray drying manufacturing equipment, and the robustness of the processes should be carefully assessed. PMID:24533891

  4. Eco-Challenges of Bio-Based Polymer Composites

    Directory of Open Access Journals (Sweden)

    Anita Grozdanov

    2009-08-01

    Full Text Available In recent years bio-based polymer composites have been the subject of many scientific and research projects, as well as many commercial programs. Growing global environmental and social concern, the high rate of depletion of petroleum resources and new environmental regulations have forced the search for new composites and green materials, compatible with the environment. The aim of this article is to present a brief review of the most suitable and commonly used biodegradable polymer matrices and NF reinforcements in eco-composites and nanocomposites, with special focus on PLA based materials.

  5. Synthesis of polyacrylic-acid-based thermochromic polymers

    Science.gov (United States)

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  6. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  7. A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, E. D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey Gloe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kropka, Jamie Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens, Mark J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

  8. Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao, Xiaohui; Shin, Chorong; Baek, Dong-Ho; Choi, Jae-Won; Manuel, James; Heo, Min-Yeong; Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea); Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14, Duckjin-dong, Jeonju 561-756 (Korea)

    2010-09-15

    Apart from PEO based solid polymer electrolytes, tailor-made gel polymer electrolytes based on blend/composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) and polyacrylonitrile are prepared by electrospinning using 14 wt% polymer solution in dimethylformamide. The membranes show uniform morphology with an average fiber diameter of 320-490 nm, high porosity and electrolyte uptake. Polymer electrolytes are prepared by soaking the electrospun membranes in 1 M lithium hexafluorophosphate in ethylene carbonate/dimethyl carbonate. Temperature dependent ionic conductivity and their electrochemical performance are studied. The blend/composite polymer electrolytes show good ionic conductivity in the range of 10{sup -3}Scm{sup -1} at ambient temperature and good electrochemical performance. All the Polymer electrolytes show an anodic stability >4.6 V with stable interfacial resistance with storage time. The prototype cell shows good charge-discharge properties and stable cycle performance with comparable capacity fade compared to liquid electrolyte under the test conditions. (author)

  9. Physicochemical characterisation, drug polymer dissolution and in vitro evaluation of phenacetin and phenylbutazone solid dispersions with polyethylene glycol 8000.

    Science.gov (United States)

    Khan, Sheraz; Batchelor, Hannah; Hanson, Peter; Perrie, Yvonne; Mohammed, Afzal R

    2011-10-01

    Poor water solubility leads to low dissolution rate and consequently, it can limit bioavailability. Solid dispersions, where the drug is dispersed into an inert, hydrophilic polymer matrix can enhance drug dissolution. Solid dispersions were prepared using phenacetin and phenylbutazone as model drugs with polyethylene glycol (PEG) 8000 (carrier), by melt fusion method. Phenacetin and phenylbutazone displayed an increase in the dissolution rate when formulated as solid dispersions as compared with their physical mixture and drug alone counterparts. Characterisation of the solid dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). DSC studies revealed that drugs were present in the amorphous form within the solid dispersions. FTIR spectra for the solid dispersions of drugs suggested that there was a lack of interaction between PEG 8000 and the drug. However, the physical mixture of phenacetin with PEG 8000 indicated the formation of hydrogen bond between phenacetin and the carrier. Permeability of phenacetin and phenylbutazone was higher for solid dispersions as compared with that of drug alone across Caco-2 cell monolayers. Permeability studies have shown that both phenacetin and phenylbutazone, and their solid dispersions can be categorised as well-absorbed compounds.

  10. Mass and Heat Transfer in Ion-Exchange Membranes Applicable to Solid Polymer Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Otteroey, M.

    1996-04-01

    In this doctoral thesis, an improved emf method for determination of transference numbers of two counter ions in ion-exchange membranes is presented. Transference numbers were obtained as a continuous function of the composition. The method avoids problems with diffusion by using a stack of membranes. Water transference coefficients in ion-exchange membranes is discussed and reversible and irreversible water transfer is studied by emf methods. Efforts were made to get data relevant to the solid polymer fuel cell. The results support the findings of other researchers that the reversible water transfer is lower than earlier predicted. A chapter on the conductivity of ion-exchange membranes establishes a method to separate the very thin liquid layers surrounding the membranes in a stack. Using the method it was found that the conductivity is obtained with high accuracy and that the liquid layer in a membrane stack can contribute significantly to the total measured resistance. A four point impedance method was tested to measure the conductivity of membranes under fuel cell conditions. Finally, there is a discussion of reversible heat effects and heat transfer in ion-exchange membranes. 155 refs., 45 figs., 13 tabs.

  11. Polymer-based vehicles for therapeutic peptide delivery.

    Science.gov (United States)

    Zhang, Jinjin; Desale, Swapnil S; Bronich, Tatiana K

    2015-01-01

    During the last decades increasing attention has been paid to peptides as potential therapeutics. However, clinical applications of peptide drugs suffer from susceptibility to degradation, rather short circulation half-life, limited ability to cross physiological barriers and potential immunogenicity. These challenges can be addressed by using polymeric materials as peptide delivery systems, owing to their versatile structures and properties. A number of polymer-based vehicles have been developed to stabilize the peptides and to control their release rates. Unfortunately, no single polymer or formulation strategy has been considered ideal for all types of peptide drugs. In this review, currently used and potential polymer-based systems for the peptide delivery will be discussed.

  12. Significantly elevated dielectric permittivity of Si-based semiconductor/polymer 2-2 composites induced by high polarity polymers

    International Nuclear Information System (INIS)

    To disclose the essential influence of polymer polarity on dielectric properties of polymer composites filled with semiconductive fillers, a series of Si-based semiconductor/polymer 2-2 composites in a series model was fabricated. The dielectric permittivity of composites is highly dependant on the polarity of polymer layers as well as the electron mobility in Si-based semiconductive sheets. The huge dielectric permittivity achieved in Si-based semiconductive sheets after being coated with high polarity polymer layers is inferred to originate from the strong induction of high polarity polymers. The increased mobility of the electrons in Si-based semiconductive sheets coated by high polarity polymer layers should be responsible for the significantly enhanced dielectric properties of composites. This could be facilely achieved by either increasing the polarity of polymer layers or reducing the percolative electric field of Si-based semiconductive sheets. The most promising 2-2 dielectric composite was found to be made of α-SiC with strong electron mobility and poly(vinyl alcohol) (PVA) with high polarity, and its highest permittivity was obtained as 372 at 100 Hz although the permittivity of α-SiC and PVA is 3–5 and 15, respectively. This work may help in the fabrication of high dielectric constant (high-k) composites by tailoring the induction effect of high polarity polymers to semiconductors. (paper)

  13. Significantly elevated dielectric permittivity of Si-based semiconductor/polymer 2-2 composites induced by high polarity polymers

    Science.gov (United States)

    Feng, Yefeng; Gong, Honghong; Xie, Yunchuan; Wei, Xiaoyong; Zhang, Zhicheng

    2016-02-01

    To disclose the essential influence of polymer polarity on dielectric properties of polymer composites filled with semiconductive fillers, a series of Si-based semiconductor/polymer 2-2 composites in a series model was fabricated. The dielectric permittivity of composites is highly dependant on the polarity of polymer layers as well as the electron mobility in Si-based semiconductive sheets. The huge dielectric permittivity achieved in Si-based semiconductive sheets after being coated with high polarity polymer layers is inferred to originate from the strong induction of high polarity polymers. The increased mobility of the electrons in Si-based semiconductive sheets coated by high polarity polymer layers should be responsible for the significantly enhanced dielectric properties of composites. This could be facilely achieved by either increasing the polarity of polymer layers or reducing the percolative electric field of Si-based semiconductive sheets. The most promising 2-2 dielectric composite was found to be made of α-SiC with strong electron mobility and poly(vinyl alcohol) (PVA) with high polarity, and its highest permittivity was obtained as 372 at 100 Hz although the permittivity of α-SiC and PVA is 3-5 and 15, respectively. This work may help in the fabrication of high dielectric constant (high-k) composites by tailoring the induction effect of high polarity polymers to semiconductors.

  14. Conductive polymer-based microextraction methods: a review.

    Science.gov (United States)

    Bagheri, Habib; Ayazi, Zahra; Naderi, Mehrnoush

    2013-03-12

    Conductive polymers (CPs) are classified as materials which exhibit highly reversible redox behavior and the unusual combined properties of metal and plastics. CPs, due to their multifunctionality, ease of synthesis and their stability, have attracted more attentions in different fields of research, including sample preparation. CPs along with several commercial hydrophilic sorbents, are alternative to the commercially available hydrophobic sorbents which despite their high specific surface areas, have poor interactions and retentions in the extraction of polar compounds. This review covers a general overview regarding the recent progress and new applications of CPs toward their synthesis and use in novel extraction and microextraction techniques including solid phase microextraction (SPME), electrochemically controlled solid-phase microextraction (EC-SPME) and other relevant techniques. Furthermore the contribution of nano-structured CPs in these methodologies is also reviewed. PMID:23452781

  15. Effect of polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions.

    Science.gov (United States)

    Knopp, Matthias Manne; Chourak, Nabil; Khan, Fauzan; Wendelboe, Johan; Langguth, Peter; Rades, Thomas; Holm, René

    2016-08-01

    This study investigated the non-sink in vitro dissolution behavior and in vivo performance in rats of celecoxib (CCX) amorphous solid dispersions with polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) at different drug doses. Both in vitro and in vivo, the amorphous solid dispersions with the hydrophilic polymers PVP and HPMC led to higher areas under both, the in vitro dissolution and the plasma concentration-time curves (AUC) compared to crystalline and amorphous CCX for all doses. In contrast, the amorphous solid dispersion with the hydrophobic polymer PVA showed a lower AUC both in vitro and in vivo than crystalline CCX. For crystalline CCX and CCX:PVA, the in vitro AUC was limited by the low solubility of the drug and the slow release of the drug from the hydrophobic polymer, respectively. For the supersaturating formulations, amorphous CCX, CCX:PVP and CCX:HPMC, the in vitro performance was mainly dependent on the dissolution rate and precipitation/crystallization inhibition of the polymer. As expected, the crystallization tendency increased with increasing dose, and therefore the in vitro AUCs did not increase proportionally with dose. Even though the in vivo AUC for all formulations increased with increasing dose, the relative bioavailability decreased significantly, indicating that the supersaturating formulations also crystallized in vivo and that the absorption of CCX was solubility-limited. These findings underline the importance of evaluating relevant in vitro doses, in order to rationally assess the performance of amorphous solid dispersions and avoid confusion in early in vivo studies. PMID:27212472

  16. Effect of polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions.

    Science.gov (United States)

    Knopp, Matthias Manne; Chourak, Nabil; Khan, Fauzan; Wendelboe, Johan; Langguth, Peter; Rades, Thomas; Holm, René

    2016-08-01

    This study investigated the non-sink in vitro dissolution behavior and in vivo performance in rats of celecoxib (CCX) amorphous solid dispersions with polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) at different drug doses. Both in vitro and in vivo, the amorphous solid dispersions with the hydrophilic polymers PVP and HPMC led to higher areas under both, the in vitro dissolution and the plasma concentration-time curves (AUC) compared to crystalline and amorphous CCX for all doses. In contrast, the amorphous solid dispersion with the hydrophobic polymer PVA showed a lower AUC both in vitro and in vivo than crystalline CCX. For crystalline CCX and CCX:PVA, the in vitro AUC was limited by the low solubility of the drug and the slow release of the drug from the hydrophobic polymer, respectively. For the supersaturating formulations, amorphous CCX, CCX:PVP and CCX:HPMC, the in vitro performance was mainly dependent on the dissolution rate and precipitation/crystallization inhibition of the polymer. As expected, the crystallization tendency increased with increasing dose, and therefore the in vitro AUCs did not increase proportionally with dose. Even though the in vivo AUC for all formulations increased with increasing dose, the relative bioavailability decreased significantly, indicating that the supersaturating formulations also crystallized in vivo and that the absorption of CCX was solubility-limited. These findings underline the importance of evaluating relevant in vitro doses, in order to rationally assess the performance of amorphous solid dispersions and avoid confusion in early in vivo studies.

  17. EFFICIENT POLYMER PHOTOVOLTAIC DEVICES BASED ON POLYMER D-A BLENDS

    Institute of Scientific and Technical Information of China (English)

    Xian-yu Deng; Li-ping Zheng; Yue-qi Mo; Gang Yu; Wei Yang; Wen-hua Weng; Yong Cao

    2001-01-01

    Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks[1,2]. In this paper we present a comprehensive study on improving energy conversion efficiencies of PVCs based on composite films of MEHPPV and fullerene derivatives. Carrier collection efficiency of ca. 30% el/ph and energy conversion efficiency of 3.9% were achieved at 500 nm. At reverse bias of 15 V, the photosensitivity reached 0.8 A/W, corresponding to a quantum efficiency over 100% el/ph. These results suggest that high efficiency photoelectric conversion can be achieved in polymer devices with M-P-M structure. These devices are promising for practical applications such as plastic solar cells and plastic photodetectors.

  18. Triptycene-based ladder monomers and polymers, methods of making each, and methods of use

    KAUST Repository

    Pinnau, Ingo

    2015-02-05

    Embodiments of the present disclosure provide for a triptycene-based A-B monomer, a method of making a triptycene-based A-B monomer, a triptycene-based ladder polymer, a method of making a triptycene-based ladder polymers, a method of using triptycene-based ladder polymers, a structure incorporating triptycene-based ladder polymers, a method of gas separation, and the like.

  19. A thermal logic device based on fluid-solid interfaces

    OpenAIRE

    Murad, Sohail; Puri, Ishwar K.

    2013-01-01

    Thermal rectification requires that thermal conductivity not be a separable function of position and temperature. Investigators have considered inhomogeneous solids to design thermal rectifiers but manipulations of solid lattices are energy intensive. We propose a thermal logic device based on asymmetric solid-fluid resistances that couples two fluid reservoirs separated by solid-fluid interfaces. It is the thermal analog of a three terminal transistor, the hot reservoir being the emitter, th...

  20. Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells

    Science.gov (United States)

    Skandan, Ganesh; Singhal, Amit

    2005-01-01

    Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.

  1. A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-Li; YAO Jian-Quan; CHEN He-Ming; LI Zhong-Yang

    2011-01-01

    We propose a simple birefringent terahertz (THz) waveguide which is a polymer elliptical tube with a cross section of elliptical ring structure. It can be achieved by stretching a normal circular-tube in one direction. Simulations based on the full-vector finite element method (FEM) show that this kind of waveguides exhibits high birefringence on a level of 10-2 over a wide THz frequency range. Moreover, as a majority of modal power is trapped in the air core inside the polymer elliptical tube, the THz waveguide guiding loss caused by material absorption can be reduced effectively.

  2. Morphology of Polyvinylidene Fluoride Based Gel Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    田立颖; 黄小彬; 唐小真

    2004-01-01

    Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calorimetry, scanning electron microscope and complex impedance spectrometer. The results show that there are great interactions between PVDF, PC and lithium cations. Both LiClO4 and PC content lead to evident change of the morphology of the gel polymer electrolytes. The content of LiClO4 and PC also influences the ionic conductivity of the samples,and an ionic conductivity of above 10-3S·cm-1 can be reached at room temperature.

  3. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu;

    2012-01-01

    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is line...

  4. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented ...

  5. Interpenetrating polymer network hydrogels based on polysaccharides for biomedical applications

    NARCIS (Netherlands)

    Pescosolido, L.

    2011-01-01

    The main theme of this thesis is the development and the characterization of interpenetrating polymer network hydrogels (IPNs) based on biodegradable and biocompatible polysaccharides, in particular alginate, hyaluronic acid and dextran. The suitability of these novel systems as pharmaceutical and b

  6. Preparation and Characterization of a Polymer-Based "Molecular Accordion".

    Science.gov (United States)

    Karoyo, Abdalla H; Wilson, Lee D

    2016-03-29

    A urethane-based polymer material, denoted HDI-1, was obtained from the addition reaction of β-cyclodextrin (β-CD) with 1,6-hexamethylene diisocyanate (HDI) at the 1:1 mole ratio. In aqueous solution and ambient temperature conditions, HDI-1 adopts a compact (coiled) morphology where the cross-linker units become coiled and are partially self-included in the annular hydroxyl (interstitial) region of β-CD. As the temperature is raised or as p-nitrophenol (PNP) was included within the β-CD cavity and the noninclusion sites of the polymer, an extended (uncoiled) morphology was adopted. The equilibrium distribution between the extended and the compact forms of HDI-1 is thermally and chemically switchable, in accordance with the hydration properties and host-guest chemistry of this responsive polymer system. The molecular structure of this water-soluble urethane polymer and its host-guest complexes with PNP were investigated using spectroscopic (Raman, (1)H NMR, induced circular dichroism), dynamic light scattering (DLS), and calorimetric (DSC) methods in aqueous solution at ambient pH, and compared with native β-CD. This study reports on the unique supramolecular properties of a polymer that resembles a thermally and chemically responsive "molecular accordion". PMID:26931298

  7. Study of effect of composition, irradiation and quenching on ionic conductivity in (PEG) : NH4NO3 solid polymer electrolyte

    Indian Academy of Sciences (India)

    R Damle; P N Kulkarni; S V Bhat

    2008-11-01

    We have prepared, characterized and investigated a new PEG-2000 based solid polymer electrolyte (PEG): NH4NO3. Ionic conductivity measurements have been made as a function of salt concentration as well as temperature in the range 265–330 K. Selected compositions of the electrolyte are exposed to a beam of 8 MeV electrons and 60Co -rays to an accumulated dose of 10 kGy to study the effect on ionic conductivity. The electrolyte samples are also quenched at liquid nitrogen temperature and conductivity measurements are carried out. The ionic conductivity at room temperature exhibits a characteristic peak for the composition, = 46. Electron beam irradiation results in an increase in conductivity for all compositions by a factor of 2–3. Exposure to -rays enhances the conductivity by one order of magnitude. Quenching at low temperature has resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is interpreted as due to an increase in amorphous region and decrease in crystallinity of the electrolyte. DSC and NMR measurements also support this conclusion.

  8. Clay-based polymer nanocomposites: research and commercial development.

    Science.gov (United States)

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials. PMID:16245517

  9. An easily fabricated high performance ionic polymer based sensor network

    Science.gov (United States)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  10. Polymer-based stress sensor with integrated readout

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Yalcinkaya, Arda Deniz; Vettiger, P.;

    2002-01-01

    We present a polymer-based mechanical sensor with an integrated strain sensor element. Conventionally, silicon has been used as a piezoresistive material due to its high gauge factor and thereby high sensitivity to strain changes in the sensor. By using the fact that the polymer SU-8 [1] is much...... softer than silicon and that a gold resistor is easily incorporated in SU-8, we have proven that a SU-8-based cantilever sensor is almost as sensitive to stress changes as the silicon piezoresistive cantilever. First, the surface stress sensing principle is discussed, from which it can be shown...... that the SU-8-based sensor is nearly as sensitive as the silicon based mechanical sensor. We hereafter demonstrate the chip fabrication technology of such a sensor, which includes multiple SU-8 and gold layer deposition. The SU-8-based mechanical sensor is finally characterized with respect to sensitivity...

  11. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    Science.gov (United States)

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng

    2015-11-15

    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method.

  12. Morphology and conductivity studies of a new solid polymer electrolyte: (PEG)LiClO4

    Indian Academy of Sciences (India)

    Th Joykumar Singh; S V Bhat

    2003-12-01

    A new solid polymer electrolyte, (PEG)LiClO4, consisting of poly(ethylene)glycol of molecular weight 2000 and LiClO4 was prepared and characterized using XRD, IR, SEM, DSC, NMR and impedance spectroscopy techniques. XRD and IR results show the formation of the polymer–salt complex. The samples with higher salt concentration are softer, less opaque and less smooth compared to the low salt concentration samples. DSC studies show an increase in the glass transition temperature and a decrease in the degree of crystallinity with increase in the salt concentration. Melting temperature of SPEs is lower than the pure PEG 2000. Room temperature 1H and 7Li NMR studies were also carried out for the (PEG)iClO4 system. The 1H linewidth decreases as salt concentration increases in a similar way to the decrease in the crystalline fraction and reaches a minimum at around = 46 and then increases. 7Li linewidth was found to decrease first and then to slightly increase after reaching a minimum at = 46 signifying the highest mobility of Li ions for this composition. Room temperature conductivity first increases with salt concentration and reaches a maximum value ( = 7.3 × 10-7 S/cm) at = 46 and subsequently decreases. The temperature dependence of the conductivity can be fitted to the Arrhenius and the VTF equations in different temperature ranges. The ionic conductivity reaches a high value of ∼ 10-4 S/cm close to the melting temperature.

  13. From Polymer to Small Organic Molecules: A Tight Relationship between Radical Chemistry and Solid-Phase Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Danilo Mirizzi

    2011-04-01

    Full Text Available Since Gomberg’s discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual “in-solution” radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the development of methodologies for the synthesis of small molecules or potential libraries. The aim of this review is to put in perspective radical chemistry, moving it away from its origin as a synthetic means for solid supports, to becoming a useful tool for the synthesis of small molecules.

  14. Polymer waveguide based hybrid opto-electric integration technology

    Science.gov (United States)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  15. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  16. Polymer-based chips for surface plasmon resonance sensors

    Science.gov (United States)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  17. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    Science.gov (United States)

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  18. Physical properties of Li ion conducting polyphosphazene based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, S.; Zawodzinski, T.; Hermes, R.; Davey, J.; Dai, Hongli

    1996-12-31

    We report a systematic study of the transport properties and the underlying physical chemistry of some polyphosphazene (PPhz)-based polymer electrolytes. We synthesized MEEP and variants which employed mixed combinations of different length oxyethylene side-chains. We compare the conductivity and ion-ion interactions in polymer electrolytes obtained with lithium triflate and lithium bis(trifluoromethanesulfonyl)imide (TFSI) salts added to the polymer. The combination of the lithium imide salt and MEEP yields a maximum conductivity of 8 x 10{sup -5} {Omega}{sup -1} cm{sup -1} at room temperature at a salt loading of 8 monomers per lithium. In one of the mixed side-chain variations, a maximum conductivity of 2 x 10{sup -4} {Omega}{sup -1} cm{sup -1} was measured at the same molar ratio. Raman spectral analysis shows some ion aggregation and some polymer - ion interactions in the PPhz-LiTFSI case but much less than observed with Li CF{sub 3}SO{sub 3}. A sharp increase in the Tg as salt is added corresponds to concentrations above which the conductivity significantly decreases and ion associations appear.

  19. Nitroaldol reaction over solid base catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Akutu, Kazumasa; Kabashima, Hajime; Seki, Tsunetake; Hattori, Hideshi [Center for Advanced Research of Energy Technology, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2003-07-10

    Nitroaldol reaction of a nitro compound with a carbonyl compound was carried out over a variety of solid base catalysts to elucidate the activity-determining factors in the nature of the catalysts and in the nature of nitro and carbonyl compounds. Among the catalysts examined, MgO, CaO, Ba(OH){sub 2}, KOH/alumina, KF/alumina, Sr(OH){sub 2}, hydrotalcite, and MgCO{sub 3} exhibited high activity for nitroaldol reaction of nitromethane with propionaldehyde, the activities being in this order. Over these catalysts, the yields exceeded 20% at a reaction temperature of 313K and a reaction time of 1h. Mg(OH){sub 2}, {gamma}-alumina, SrO, Ca(OH){sub 2}, BaCO{sub 3}, SrCO{sub 3}, BaO, and La{sub 2}O{sub 3} exhibited moderate activites; the yield were in the range 20-2%. CaCO{sub 3}, ZrO{sub 2}, and ZnO scarcely showed the activity. It is suggested that strongly basic sites are not required for the reaction because the abstraction of a proton from a nitro compound is easy. The reactivities of the nitro compounds were nitroethane > nitromethane > 2-nitropropane, and those of carbonyl compounds were propionaldehyde>isobutyraldehyde>pivalaldehyde>acetone>benzaldehyde>methylpro pionate. On the basis of IR study of adsorbed reactants and the reactivities of the reactants, the reaction mechanisms are proposed. The reaction proceeds by the nucleophilic addition of the carbanion formed by the abstraction of a proton from nitro compounds to the cationic species formed by the adsorption of carbonyl compounds on the acidic sites (metal cations). The nitroaldol reaction of nitromethane with propionaldehyde over MgO was scarcely poisoned by carbon dioxide and water; nitromethane is so acidic that it is able to be adsorbed on the catalyst on which carbon dioxide or water was preadsorbed.

  20. Synthesis, characterization, optical and electrical properties of bis(phenylvinyl)anthracene-based polymers

    Science.gov (United States)

    Mansour, Nadia; Hriz, Khaled; Jaballah, Nejmeddine; Kreher, David; Majdoub, Mustapha

    2016-08-01

    A series of bis(phenylvinyl)anthracene-based polymers containing different lengths of polar ethylene glycol groups in the main chain (P1-3) were efficiently synthesized by Wittig polycondensation. These polymers are fully soluble in volatile solvents, which helped a lot to obtain high quality films. Moreover, these semi-conducting materials exhibited semi-crystalline morphology with relatively high glass transition temperature. In this article, the UV-visible absorption and fluorescence properties of P1-3 were studied consequently both in solution and as thin solid film: tan absorption-onset at 433 nm was observed and all these bis(phenylvinyl)anthracene-based polymers (P1-3) show a blue emission in solution, fluorescence quantum efficiencies being respectively 52% for P1, 75% for P2 and 67% for P3. In addition, the HOMO/LUMO energy levels were evaluated by cyclic voltammetry measurements and indicate a p-type semi-conducting materials. Finally, the electrical properties of P1-3 were investigated by recording current-tension characteristics and these experimental results were modeled by the current space-charge-limited (SCLC) mechanism.

  1. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  2. Ultrafast all-polymer paper-based batteries.

    Science.gov (United States)

    Nyström, Gustav; Razaq, Aamir; Strømme, Maria; Nyholm, Leif; Mihranyan, Albert

    2009-10-01

    Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m(2) g(-1) and batteries based on this material can be charged with currents as high as 600 mA cm(-2) with only 6% loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g(-1) or 38-50 mAh g(-1) per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. PMID:19739594

  3. Controlling potassium selectivity and proton blocking in a hybrid biological/solid-state polymer nanoporous membrane.

    Science.gov (United States)

    Balme, Sébastien; Picaud, Fabien; Kraszewski, Sebastian; Déjardin, Philippe; Janot, Jean Marc; Lepoitevin, Mathilde; Capomanes, Jhon; Ramseyer, Christophe; Henn, François

    2013-05-01

    Specific separations of protons and cations are usually performed by electromembrane processes, which require external electric energy. An easier process would be using a membrane able to separate both entities by passive diffusion. Presently, such synthetic nanoporous membranes do not exist. Here, we report the production of a robust hybrid biological/artificial solid-state membrane, which allows selective permeation of alkali metal cations without competing or concurrent permeation of protons. This membrane is simple to prepare and is based on the hydrophobic nature of the polymeric pore walls, and the confined gramicidin A molecules within. This work opens a new route for separation in the domain of nanobiofiltration, especially for tunable nanodevices based on differential ion conduction, with a fundamental understanding of the confinement mechanism.

  4. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples.

    Science.gov (United States)

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping

    2015-05-01

    The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption-desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30-60 μm), a specific surface area (S(BET)) of 281.26 m(2) g(-1) and a total pore volume (V(t)) of 0.459 cm(3) g(-1). Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2-2.2 ng mL(-1). The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL(-1) for each BP) were in the range of 81.3-106.7% with RSD values below 8.3%.

  5. Controlling potassium selectivity and proton blocking in a hybrid biological/solid-state polymer nanoporous membrane

    Science.gov (United States)

    Balme, Sébastien; Picaud, Fabien; Kraszewski, Sebastian; Déjardin, Philippe; Janot, Jean Marc; Lepoitevin, Mathilde; Capomanes, Jhon; Ramseyer, Christophe; Henn, François

    2013-04-01

    Specific separations of protons and cations are usually performed by electromembrane processes, which require external electric energy. An easier process would be using a membrane able to separate both entities by passive diffusion. Presently, such synthetic nanoporous membranes do not exist. Here, we report the production of a robust hybrid biological/artificial solid-state membrane, which allows selective permeation of alkali metal cations without competing or concurrent permeation of protons. This membrane is simple to prepare and is based on the hydrophobic nature of the polymeric pore walls, and the confined gramicidin A molecules within. This work opens a new route for separation in the domain of nanobiofiltration, especially for tunable nanodevices based on differential ion conduction, with a fundamental understanding of the confinement mechanism.Specific separations of protons and cations are usually performed by electromembrane processes, which require external electric energy. An easier process would be using a membrane able to separate both entities by passive diffusion. Presently, such synthetic nanoporous membranes do not exist. Here, we report the production of a robust hybrid biological/artificial solid-state membrane, which allows selective permeation of alkali metal cations without competing or concurrent permeation of protons. This membrane is simple to prepare and is based on the hydrophobic nature of the polymeric pore walls, and the confined gramicidin A molecules within. This work opens a new route for separation in the domain of nanobiofiltration, especially for tunable nanodevices based on differential ion conduction, with a fundamental understanding of the confinement mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00564j

  6. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minyu [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng, Shujing; Fang, Shibi; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen; Lin, Yuan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-04-01

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V{sub oc} closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs. (author)

  7. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V oc closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs

  8. SYNTHESIS, CHARACTERIZATION AND ION TRANSPORT PROPERTIES OF HOT-PRESSED SOLID POLYMER ELECTROLYTES (1-x) PEO:x KI

    Institute of Scientific and Technical Information of China (English)

    Angesh Chandra; Archana Chandra; K.Thakur

    2013-01-01

    Synthesis and ion transport properties of hot-pressed solid polymer electrolytes (SPEs),(1-x) PEO:x KI,where x is the content of KI in wt%,are reported.A hot-press technique has been used for the formation of the polymeric membranes in place of the usual solution cast method.The composition (80 PEO:20 KI) was identified as the highest conducting polymer electrolyte on the basis of compositional dependent conductivity studies of PEO:KI films.A conductivity enhancement of more than two orders of magnitude from that of the pure PEO was achieved.Materials characterization and ion transport mechanism were explained by using various experimental techniques.

  9. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    OpenAIRE

    Guang-Wei Zhang; Long Wang; Ling-Hai Xie; Jin-Yi Lin; Wei Huang

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photolu...

  10. Polymer-Based Self-Standing Flexible Strain Sensor

    OpenAIRE

    Estibalitz Ochoteco; Tomasz Sikora; Ion Uribe; Gregorio Obieta; Fernando Martinez

    2010-01-01

    The design and characterization of polymer-based self-standing flexible strain sensors are presented in this work. Properties as lightness and flexibility make them suitable for the measurement of strain in applications related with wearable electronics such as robotics or rehabilitation devices. Several sensors have been fabricated to analyze the influence of size and electrical conductivity on their behavior. Elongation and applied charge were precisely controlled in order to measure differ...

  11. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  12. An Electrochemical NO₂ Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity.

    Science.gov (United States)

    Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich

    2015-11-11

    A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity.

  13. Radiation and Thermal Stability of Solid Radwaste After Immobilization in Polymer Matrix - 13504

    International Nuclear Information System (INIS)

    The paper will illustrate results of the various experiments on radiation and thermal stability of polymer matrixes after solutions solidification including aqueous and organic solutions and mixed waste. It was shown that- after irradiation the specimen and after solidification the mixture with oil and TBP hydrogen has been observed (less 1%) and some others gases have been detected. Results of the performed experiments and the radiation stability data of the polymer compositions allow the conclusion that the technological process of immobilizing the above mentioned aqueous solutions and solutions with organic products into polymers at room temperature is the explosion- and flameproof as well as the storage thereof. (authors)

  14. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    Science.gov (United States)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The

  15. A Novel Thiophene Derivative-based Conjugated Polymer for Polymer Solar Cells with High Open-circuit Voltage

    Institute of Scientific and Technical Information of China (English)

    谌烈; 沈星星; 陈义旺

    2012-01-01

    A novel D-A alternative conjugated polymer PBDTDMCT containing benzo[1,2-b:4,5-b']dithiophene (BDT) and dimethyl thiophene-3,4-dicarboxylate (DMCT), was designed and synthesized by Stille cross-coupling reaction. The copolymer exhibited excellent solubility and good thermal stability. The optical band gap determined from the onset of absorption of the polymer film was 2.10 eV. By incorporation of the ester groups into the polymer side chain, the HOMO level of polymer PBDTDMT was tuned to be deep-lying (--5.65 eV). Open-circuit voltage of polymer solar cells constructed based on PBDTDMT and [6,6]-phenyl-CTwbutyric acid methyl ester (PCTIBM) can be tuned to achieve values as high as ca. 1.0 V.

  16. Nanostructured conducting polymer based reagentless capacitive immunosensor.

    Science.gov (United States)

    Bandodkar, Amay Jairaj; Dhand, Chetna; Arya, Sunil K; Pandey, M K; Malhotra, Bansi D

    2010-02-01

    Nanostructured polyaniline (PANI) film electrophoretically fabricated onto indium-tin-oxide (ITO) coated glass plate has been utilized for development of an immunosensor based on capacitance change of a parallel plate capacitor (PPC) by covalently immobilizing anti-human IgG (Anti-HIgG) using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide chemistry. These fabricated PANI/ITO and Anti-HIgG/PANI/ITO plates have been characterized using scanning electron microscopy, cyclic voltammetry, differential pulse voltammetry and Fourier transform infra-red studies. The capacitance measurements indicate that dielectric medium of this biologically modified PPC (Anti-HIgG/PANI/ITO) is sensitive to HIgG in 5 - 5 x 10(5) ng mL(-1) range and has lower detection limit of 1.87 ng mL(-1). The observed results reveal that this Anti-HIgG modified PPC can be used as a robust, easy-to-use, reagentless, sensitive and selective immunosensor for estimation of human IgG.

  17. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    Science.gov (United States)

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-01

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material. PMID:23753038

  18. MOLECULAR DESIGN OF FUNCTIONAL POLYMERS BASED ON UNIQUE PROPERTIES OF POLYMER CHAINS

    Institute of Scientific and Technical Information of China (English)

    Mikiharu Kamachi

    2000-01-01

    The inclusion complex formation of α-CD, β-CD, and γ-CD with various water-soluble polymers has been investigated, and the relationship between the chain cross-sectional areas of the polymers and the diameters of the cavities of cyclodextrins (molecular recognition) was found. Polyrotaxanes and tubular polymers were prepared on the basis of molecular recognition. Several kinds of polymers having tetraphenylporphyrin (TPP) and paramagnetic metallotetraphenylporphyrin (AgTPP, CuTPP, VOTPP or ZnTPP) have been prepared by radical polymerization of the corresponding monomers. Visible spectra of these polymers show hypochromism in the Soret bands of TPP moieties as compared with those of monomers. Polymer effects were observed in the magnetic behavior and oxygen adsorption of paramagnetic metallotetraphenylporphyrin moieties. Moreover, polymer effects on photophysical and photochemical behavior were found in the amphiphilic polymers covalently tethered with small amounts of zinc(Ⅱ)-tetraphenylporphyrin (ZnTPP).

  19. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers

    Science.gov (United States)

    Shi, Yi; Cao, Xiaosong; Gao, Haifeng

    2016-02-01

    The rapid development of efficient organic click coupling reactions has significantly facilitated the construction of synthetic polymers with sophisticated branched nanostructures. This Feature Article summarizes the recent progress in the application of efficient copper-catalyzed and copper-free azide-alkyne cycloaddition (CuAAC and CuFAAC) reactions in the syntheses of dendrimers, hyperbranched polymers, star polymers, graft polymers, molecular brushes, and cyclic graft polymers. Literature reports on the interesting properties and functions of these polytriazole-based nanostructured polymers are also discussed to illustrate their potential applications as self-healing polymers, adhesives, polymer catalysts, opto-electronic polymer materials and polymer carriers for drug and imaging molecules.

  20. Kinetic isotope effect of low-temperature reactions of carbenes in solid polymers

    Energy Technology Data Exchange (ETDEWEB)

    Korshak, V.V.; Vorotnikov, A.P.; Davydov, E.Ya.; Kozyreva, N.M.; Kirilin, A.I.; Skubina, S.B.; Toptygin, D.Ya.

    1987-05-01

    The kinetics of dark quenching of diphenylcarbene (DPC) and 2,6-di-tert-butylcyclohexadiene carbene (CHC) in polymethyl methacrylate (PMMA) and polystyrene (PS) with protonated and totally deuterated units were studied to determine the mechanism of the reactions of carbenes in the polymer matrix. A comparison of the kinetic data on quenching of DPC and CHC in proton- and deuterium-containing polymers indicates the complex dependence of the kinetic isotope effect on both the temperature and the degree of conversion.

  1. HIGH SOLIDS-CONTENT NANOSIZE POLYMER LATEXES MADE BY A MODIFIED EMULSION COPOLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuying; GUO Tianying; HAO Guangjie; SONG Maodao; Zhang Banghua

    2003-01-01

    Polymer nanoparticles were prepared in the methyl methacrylate (MMA)/buty lmethacrylate (BA) emulsion copolymerization process by a modified microemulsion copolymerization method. 2-Hydroxyethyl methacrylate(HEMA), acrylate (AA) and methyl acrylate (MAA) were used as reactive cosurfactants. With this process high polymer: surfactant weight ratios (40:1 or greater),relatively concentrated (~30wt. %) latexes and small (~60nm) particle diameters were obtained.Properties of the latexes were characterized by TEM, DSC, dynamic light scattering, and IR spectroscopy.

  2. The structures and luminescence properties of lanthanide (Ln = Sm, Eu and Tb) metal-organic coordination polymers based on 5-(2-hydroxyethoxy)isophthalate ligand

    Science.gov (United States)

    Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying

    2015-03-01

    Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.

  3. Synthesis and characterization of quinoxaline-based polymers for bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bathula, Chinna [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Song, Chang Eun [Department of Materials Science and Engineering, Korea Advanced Instituted of Science and Technology, Daejeon 305–701 (Korea, Republic of); Lee, Woo-Hyung [Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743 (Korea, Republic of); Lee, Jaemin; Badgujar, Sachin; Koti, Rajesh [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Kang, In-Nam [Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743 (Korea, Republic of); Shin, Won Suk [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Ahn, Taek, E-mail: taekahn@ks.ac.kr [Department of Chemistry, Kyungsung University, Busan 608–736 (Korea, Republic of); Lee, Jong-Cheol [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Moon, Sang-Jin, E-mail: moonsj@krict.re.kr [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Lee, Sang Kyu, E-mail: skyulee@krict.re.kr [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of)

    2013-06-30

    A series of quinoxaline (Qx)-based copolymers, poly[2,7-(9,9-bis(2-ethylhexyl)dibenzosilole)-alt-5,5-(5′, 8′-di-2-thienyl-2,3-bis(4-octyloxyl)phenyl)quinoxaline] (P1), poly[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b′]dithiophene-alt-5,5-(5′, 8′-di-2-thienyl-2,3-bis(4-octyloxyl)phenyl)quinoxaline] (P2), and poly[4,4′-bis(2-ethylhexyl)-dithieno[3,2-b:2′,3′-d]silole-alt-5,5-(5′, 8′-di-2-thienyl-2,3-bis(4-octyloxyl)phenyl)quinoxaline] (P3), were synthesized and characterized for use in polymer solar cells (PSCs). We describe the effects of the various donor segments on the optical, electrochemical, field-effect carrier mobilities, and photovoltaic characteristics of the resulting Qx-based copolymers. The results indicated that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were 1.71–2.03 eV. Under optimized conditions, the Qx-based polymers showed power conversion efficiencies for the PSCs of 0.87–2.15% under AM 1.5 illumination (100 mW/cm{sup 2}). Among the studied Qx-based copolymers, P2, which contained a benzo[1,2-b:4,5-b′]dithiophene unit, showed a power conversion efficiency of 2.15% with a short circuit current of 7.06 mA/cm{sup 2}, an open-circuit voltage of 0.67 V, and a fill factor of 0.46, under AM 1.5 illumination (100 mW/cm{sup 2}). - Highlights: • A series of quinoxaline (Qx)-based copolymers were synthesized. • We described the effects of the donor segments on photovoltaic characteristics. • The Qx-based polymers showed power conversion efficiencys in the range 0.87–2.15%.

  4. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  5. Function of Amphiphilic Biomolecular Machines: Elastic Protein-based Polymers

    Science.gov (United States)

    Urry, Dan W.

    2000-03-01

    Elastic protein-based polymers function as biomolecular machines due to inverse temperature transitions of hydrophobic folding and assembly. The transitions occur either on raising the temperature from below to above the transition temperature, Tt, or on isothermally lowering Tt from above to below an operating temperature. The inverse temperature transition involves a decrease in entropy of the polymer component of the system on raising the temperature and a larger increase in solvent entropy on hydrophobic association. Tt depends on the quantity of hydrophobic hydration that undergoes transition to bulk water. Designed amphiphilic polymers perform free energy transductions involving the intensive variables of mechanical force, pressure, temperature, chemical potential, electrochemical potential and electromagnetic radiation and define a set of five axioms for their function as machines. The physical basis for these diverse energy conversions is competition for hydration between apolar (hydrophobic) and polar (e.g., charged) moieties. The effectiveness of these Tt-type entropic elastic protein-based machines is due to repeating peptide sequences that form regular, dynamic repeating structures and exhibit damping of backbone torsional oscillations on extension.

  6. Utilization of novel bithiazole based conducting polymers in electrochromic applications

    International Nuclear Information System (INIS)

    In this paper we disclose the synthesis of a novel monomer (2,2′-di-pyrrol-1-yl-[4,4′]bithiazolyl, PyDBTH) and the optoelectronic properties of the resultant conducting polymers. PyDBTH was synthesized via the Clauson-Kaas reaction of 2,2′-diamino-4,4′-bithiazole with 2,5-dimethoxytetrahydrofuran in acetic acid which was characterized by 1H, 13C-NMR, FTIR and MS analyses. Homopolymerization and copolymerization (in the presence of 3,4-ethylenedioxythiophene) were achieved in a tetrabutylammonium hexafluorophosphate (TBAPF6) dichloromethane system. The electrochemical and electrochromic properties of the homopolymer and copolymers were examined by cyclic voltammetry, FTIR, spectroelectrochemistry and kinetic studies. Depending on the synthesis conditions, the bithiazole based polymers exhibited optical band gaps ranging from 2.60 to 1.75 eV and the copolymers displayed multichromism within a wide span of the visible spectrum. The copolymers revealed short switching times and useful optical contrast of 0.6 s and 54%, respectively. Due to its favorable electrochromic properties, utilization of bithiazole based polymers in electrochromic devices was also investigated. These devices exhibited low switching voltages and switching times with reasonable stability under atmospheric conditions. (paper)

  7. The potential of organic polymer-based hydrogen storage materials.

    Science.gov (United States)

    Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan

    2007-04-21

    The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption. PMID:17415491

  8. Biosensors based on polymer networks formed by gamma irradiation crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Heineman, W.R. (Univ. of Cincinnati, OH (United States))

    Water-soluble polymers immobilized by gamma radiation have been investigated as a means of developing electrochemical sensors. Enzyme-based sensors for glucose and lactate have been made by immobilizing glucose oxidase and lactate oxidase, respectively, on platinized graphite electrodes. The enzyme is entrapped in a polymeric network of poly(vinyl alcohol) that is formed by gamma radiation crosslinking. Electrodes coated with poly (N-vinylpyrrolidone) and its corresponding monomers and then crosslinked with gamma radiation show an extraction of catecholamines into the polymer film that enhances the analytical signal for their detection by electrochemical oxidation. Poly(dimethyldiallylammonium chloride) spin-coated on a screen-printed electrochemical cell provides sufficient ionic conductivity for the cell to function as a gas sensor for oxygen, which is detected by reduction at a platinum working electrode. 13 refs., 9 figs.

  9. Molecularly imprinted polymers as biomimetic receptors for fluorescence-based optical sensors

    Science.gov (United States)

    Moreno-Bondi, María C.; Urraca, Javier L.; Benito-Peña, Elena; Navarro-Villoslada, Fernando; Martins, Sofía A.; Orellana, Guillermo; Sellergren, Börje

    2007-07-01

    Molecularly imprinted polymers (MIPs), human-made polymers capable of recognizing a particular molecule in the presence of others due to the selective cavities of the material, have been successfully applied to the development of chromatographic and solid phase extraction methods. They have also been applied to the development of electrochemical, piezoelectrical and optical sensors. In parallel with the classification of biosensors, MIP-based devices can work according to two different detection schemes: (1) affinity sensors ("plastic-bodies") and, (2) catalytic sensors ("plastic-enzymes"). In the first case the change in a characteristic optical property, most frequently fluorescence, of the analyte or of the polymer is monitored, upon their mutual interaction. Alternatively, a fluorescent analogue of the target analyte can also be used to develop sensors based on competitive assays (MIAs). Optimization of the polymer composition and, in particular, a proper choice of the nature of the functional monomers involved in the polymerization process, is critical to prepare materials able to selectively interact with the analyte in aqueous media and with the fast kinetics required for analytical applications. Moreover, a rational design of fluorescent analogues of non-naturally fluorescent templates or of fluorescent monomers able to change its property upon interaction with the analyte, is also a bottle neck for wide application of this recognition elements in optical sensing. In this paper we present several approaches to address these issues namely the optimization of MIP composition and the design and synthesis of novel fluorophores for the analysis of antibiotics and mycotoxins in real samples.

  10. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  11. Multifunctional non-viral delivery systems based on conjugated polymers.

    Science.gov (United States)

    Yang, Gaomai; Lv, Fengting; Wang, Bing; Liu, Libing; Yang, Qiong; Wang, Shu

    2012-12-01

    Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.

  12. An electric nose based on arylenevinylene polymers and oligomers

    Science.gov (United States)

    de Wit, Michael

    An electronic nose is an instrument, which comprises an array of electronic chemical sensors with partial specificity and an appropriate pattern-recognition system, capable of recognising simple or complex odours. Our efforts are centred around the sensors part of the nose. In fact, we applied a number of polymeric and oligomeric members of the arylenevinylene group of molecules as the active layer for conductimetric sensors (chemiresistors). The electric resistance of the active layer changes when it is exposed to vapors. The response of the sensor on a vapour is defined as the fractional, percentual change of the resistance compared to that in clean air. We made the sensors by depositing the organic layers on a substrate containing pre-printed gold contacts. At first we tested poly(2,5-thienylene vinylene) (PTV). A synthetic method was employed in which a soluble methoxy-precursor polymer of PTV was isolated, which was then spin-coated onto the substrate, and after being converted thermally to PTV, subsequently doped by iodine. The values of the responses of the PTV sensors are comparable to those sensors based on other conducting polymers, but the (partial) selectivity for the vapors is different. The responses of the PTV sensor are linearly related to the concentration. Incomplete conversion of the precursor polymer to the final PTV leads to copolymers of methoxy-PTV and PTV itself varying inter alia in the degree of conjugation. Chemiresistors based on these new materials show an affinity to vapors differing from that of PTV. We discovered that the arylenevinylenes need not to be of polymeric nature for this application. In fact, the arylenevinylene oligomers perform better. The oligomers are easier to modify and to process than polymers. We tested 2,5-dimethoxy-1,4-bis(3,4,5-trimethoxystyrylbenzene) (OMT) in its pure form and in blends with polycarbonate. The responses of these oligomeric sensors are on the average five times higher than those of the

  13. Time dependent mechanical modeling for polymers based on network theory

    Science.gov (United States)

    Billon, Noëlle

    2016-05-01

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physicl meaning.

  14. Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Mohammad, E-mail: saraji@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84154-83111 (Iran, Islamic Republic of); Yousefi, Hamideh [Department of Chemistry, Isfahan University of Technology, Isfahan 84154-83111 (Iran, Islamic Republic of)

    2009-08-15

    A new ion-imprinted polymer (IIP) material was synthesized by copolymerization of 4-vinylpyridine as monomer, ethyleneglycoldimethacrylate as crosslinking agent and 2,2'-azobis-sobutyronitrile as initiator in the presence of Ni-dithizone complex. The IIP was used as sorbent in a solid-phase extraction column. The effects of sampling volume, elution conditions, sample pH and sample flow rate on the extraction of Ni ions form water samples were studied. The maximum adsorption capacity and the relative selectivity coefficients of imprinted polymer for Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were calculated. Compared with non-imprinted polymer particles, the IIP had higher selectivity for Ni(II). The relative selectivity factor ({alpha}{sub r}) values of Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were 21.6, 54.3, and 22.7, respectively, which are greater than 1. The relative standard deviation of the five replicate determinations of Ni(II) was 3.4%. The detection limit for 150 mL of sample was 1.6 {mu}g L{sup -1} using flame atomic absorption spectrometry. The developed method was successfully applied to the determination of trace nickel in water samples with satisfactory results.

  15. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  16. Synthetic approaches to parabens molecularly imprinted polymers and their applications to the solid-phase extraction of river water samples.

    Science.gov (United States)

    Beltran, A; Marcé, R M; Cormack, P A G; Borrull, F

    2010-09-10

    In this paper we describe the synthesis, characterisation and use of two distinct molecularly imprinted polymers (MIPs) prepared using esters of p-hydroxybenzoic acid (parabens) as templates: one MIP was synthesised by precipitation polymerisation using a semi-covalent molecularly imprinting strategy with methyl paraben as the template/target (MIP 1); the second MIP was prepared in monolithic form through a conventional non-covalent molecular imprinting strategy, with butyl paraben as the template (MIP 2). MIP 1 recognized methyl paraben, showed cross-selectivity for other parabens analytes used in the study and higher affinity towards these compounds than did a non-imprinted control polymer. Similarly, MIP 2 demonstrated higher affinity towards paraben analytes than a non-imprinted control polymer. For the analysis of environmental water samples, a solid-phase extraction (SPE) protocol was developed using MIP 2 as sorbent, and results were compared to a SPE using a commercial sorbent (Oasis HLB). With MIP 2 as sorbent and butyl paraben as target, when percolating 500 mL of river water spiked at 1 μg L(-1) through the SPE cartridge, and using 1 mL of isopropanol as cleaning solvent, a higher recovery of butyl 4-hydroxybenzoate (butyl paraben) and a cleaner chromatogram where achievable when using the MIP compared to the commercial sorbent.

  17. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    International Nuclear Information System (INIS)

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity

  18. Polymer films removed from solid surfaces by nanostructured fluids: microscopic mechanism and implications for the conservation of cultural heritage.

    Science.gov (United States)

    Raudino, Martina; Selvolini, Giulia; Montis, Costanza; Baglioni, Michele; Bonini, Massimo; Berti, Debora; Baglioni, Piero

    2015-03-25

    Complex fluids based on amphiphilic formulations are emerging, particularly in the field of conservation of works of art, as effective and safe liquid media for the removal of hydrophobic polymeric coatings. The comprehension of the cleaning mechanism is key to designing tailored fluids for this purpose. However, the interaction between nanostructured fluids and hydrophobic polymer films is still poorly understood. In this study, we show how the combination of confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) provides interesting and complementary insight into this process. We focused on the interaction between an ethyl methacrylate/methyl acrylate 70:30 copolymer film deposited onto a glass surface and a water/nonionic surfactant/2-butanone (MEK) ternary system, with MEK being a good solvent and water being a nonsolvent for the polymer. Our results indicate a synergy between the organic solvent and the surfactant assemblies: MEK rapidly swells the outer layers of the polymer film allowing for the subsequent diffusion of solvent molecules, while the amphiphile decreases the interfacial energy between the polymeric coating and the liquid phase, favoring dewetting and dispersion of swollen polymer droplets in the aqueous phase. The chemical nature of the surfactant and the microstructure of the assemblies determine both the kinetics and the overall efficiency of polymer removal, as assessed by comparing the behavior of similar formulations containing an anionic surfactant (sodium dodecyl sulfate, SDS).

  19. Hybrid integrated photonic components based on a polymer platform

    Science.gov (United States)

    Eldada, Louay A.

    2003-06-01

    We report on a polymer-on-silicon optical bench platform that enables the hybrid integration of elemental passive and active optical functions. Planar polymer circuits are produced photolithographically, and slots are formed in them for the insertion of chips and films of a variety of materials. The polymer circuits provide interconnects, static routing elements such as couplers, taps, and multi/demultiplexers, as well as thermo-optically dynamic elements such as switches, variable optical attenuators, and tunable notch filters. Crystal-ion-sliced thin films of lithium niobate are inserted in the polymer circuit for polarization control or for electro-optic modulation. Films of yttrium iron garnet and neodymium iron boron magnets are inserted in order to magneto-optically achieve non-reciprocal operation for isolation and circulation. Indium phosphide and gallium arsenide chips are inserted for light generation, amplification, and detection, as well as wavelength conversion. The functions enabled by this multi-material platform span the range of the building blocks needed in optical circuits, while using the highest-performance material system for each function. We demonstrated complex-functionality photonic components based on this technology, including a metro ring node module and a tunable optical transmitter. The metro ring node chip includes switches, variable optical attenuators, taps, and detectors; it enables optical add/drop multiplexing, power monitoring, and automatic load balancing, and it supports shared and dedicated protection protocols in two-fiber metro ring optical networks. The tunable optical transmitter chip includes a tunable external cavity laser, an isolator, and a high-speed modulator.

  20. Construction of [Cu_nI_n]-based coordination polymers via flexible benzimidazolyl-based ligands

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four new [CunIn]-based coordination polymers, [{Cu4(μ3-I)4(mbbm)2}·2DMF]n (1), [(CuI)2(mbbm)2]n (2), [{Cu2(μ-I)2-(ebbm)2}·2MeCN]n (3), and [Cu2(μ-I)2(prbbm)2]n (4), were prepared from solvothermal reactions of CuI with three flexible ligands [(bzim)(CH2)n(bzim)] (bzim = benzimidazole; n = 1, mbbm; n = 2, ebbm; n = 3, prbbm). These compounds were characterized by elemental analysis, IR and X-ray crystallography. 1 consists of cubanelike [Cu4(μ3-I)4] fragments that link the neighboring ones via mbbm bridges to form a 1D ladder-type chain. 2 contains mononuclear [CuI] fragments that are bridged by mbbm ligands to yield a 1D zigzag chain. 3 or 4 contains a [Cu2(μ-I)2] dimeric fragment, which works as a four-connecting node to link its four equivalent ones to form a 2D (4,4) network (3) or acts as a two-connecting node to connect its two equivalent ones via two pairs of prbbm bridges to form a 1D double chain (4). The photoluminescent properties of 1-4 in the solid state at ambient temperature were investigated.

  1. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Fatin; Chan, Chin Han; Winie, Tan [Faculty of Applied Sciences, UniversitiTeknologi MARA (UiTM), Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Sim, Lai Har; Zainal, Nurul Fatahah Asyqin [Center of Foundation Studies, PuncakAlam Campus, UniversitiTeknologi MARA, 40430 Selangor Darul Ehsan (Malaysia)

    2015-08-28

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  2. Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule

    2014-01-01

    Full Text Available Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD with immediate release and improved bioavailability was prepared using Soluplus (Sol as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0–72 and Cmax of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72 and Cmax higher than those with the commercial capsule (Noxafil. Molecular dynamic (MD simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  3. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterisation.

    Science.gov (United States)

    Fule, Ritesh; Amin, Purnima

    2014-01-01

    Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0-72) and C(max) of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0-72) and C(max) higher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  4. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: Investigating drug-polymer miscibility with advanced characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule

    2014-04-01

    Full Text Available In current study, immediate release solid dispersion (SD formulation of antiulcer drug lafutidine (LAFT was developed using hot melt extrusion (HME technique. Amphiphilic Soluplus® used as a primary solubilizing agent, with different concentrations of selected surfactants like PEG 400, Lutrol F127 (LF127, Lutrol F68 (LF68 were used to investigate their influence on formulations processing via HME. Prepared amorphous glassy solid dispersion was found to be thermodynamically and physicochemically stable. On the contrary, traces of crystalline LAFT not observed in the extrudates according to differential scanning calorimetry (DSC, X-ray diffraction (XRD, scanning electron microscopy (SEM and Raman spectroscopy. Raman micro spectrometry had the lowest detection limit of LAFT crystals compared with XRD and DSC. Atomic Force microscopy (AFM studies revealed drug- polymer molecular miscibility and surface interaction at micro level. 1H–COSY NMR spectroscopy confirmed miscibility and interaction between LAFT and Soluplus®, with chemical shift drifting and line broadening. MD simulation studies using computational modelling showed intermolecular interaction between molecules. Dissolution rate and solubility of LAFT was enhanced remarkably in developed SD systems. Optimized ratio of polymer and surfactants played crucial role in dissolution rate enhancement of LAFT SD. The obtained results suggested that developed LAFT has promising potential for oral delivery and might be an efficacious approach for enhancing the therapeutic potential of LAFT.

  5. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    International Nuclear Information System (INIS)

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO4) salt and titanium dioxide (TiO2) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO4 causes a greater increase in glass transition temperature (Tg) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO2 in ENR/LiClO4 system, a remarkable Tg elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO2 loading where ENR25 shows enhancement of conductivity while ENR50 shows declination

  6. Microporous polymer electrolyte based on PVDF-PEO

    Institute of Scientific and Technical Information of China (English)

    LI Jian; XI Jingyu; SONG Qing; TANG Xiaozhen

    2005-01-01

    @@ Since Wright et al.[1] found that the complex of PEO/alkali metals salt had the ability of ionic conductivity in 1973, in-depth studies have been carried out about various polymer electrolytes, which were applied to replacing the liquid electrolytes in lithium ion battery[2,3]. At present, polymer electrolytes mainly include three kinds: dry polymer electrolytes, gel polymer electrolytes and microporous polymer electrolytes.

  7. Polymers Based on Renewable Raw Materials – Part I

    Directory of Open Access Journals (Sweden)

    2013-09-01

    Full Text Available This paper gives an overview of the production and application of polymer materials based on renewable raw materials – biopolymers. It is pointed out that, investment of resources in the study of renewable raw materials in the last twenty years has led to the improvement of old and development of completely new chemical and biochemical processes for using biomass for the production of low molecular weight chemical substances, and especially for the production of biopolymers, which are biodegradable and compostable, and biopolymers which are nonbiodegradable. In the same period, producers of polymers based on fossil raw materials have also developed biopolymers that are biodegradable and some of them compostable and, most important, compatible with biopolymers based on renewable raw materials. The facts considering the state of biopolymers based on renewable raw materials on the market, and prediction of production increase over the next five years are also stated. Additionally, the main renewable raw materials and the biopolymers made from them that are already present in the world market are briefly listed. A short review of biopolymers based on cellulose from wood and annual plants is also given.

  8. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  9. Generic Role of Polymer Supports in the Fine Adjustment of Interfacial Interactions between Solid Substrates and Model Cell Membranes.

    Science.gov (United States)

    Rossetti, Fernanda F; Schneck, Emanuel; Fragneto, Giovanna; Konovalov, Oleg V; Tanaka, Motomu

    2015-04-21

    To understand the generic role of soft, hydrated biopolymers in adjusting interfacial interactions at biological interfaces, we designed a defined model of the cell-extracellular matrix contacts based on planar lipid membranes deposited on polymer supports (polymer-supported membranes). Highly uniform polymer supports made out of regenerated cellulose allow for the control of film thickness without changing the surface roughness and without osmotic dehydration. The complementary combination of specular neutron reflectivity and high-energy specular X-ray reflectivity yields the equilibrium membrane-substrate distances, which can quantitatively be modeled by computing the interplay of van der Waals interaction, hydration repulsion, and repulsion caused by the thermal undulation of membranes. The obtained results help to understand the role of a biopolymer in the interfacial interactions of cell membranes from a physical point of view and also open a large potential to generally bridge soft, biological matter and hard inorganic materials. PMID:25794040

  10. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2008-04-01

    Full Text Available Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylenes, poly(pyrroles, poly(thiophenes, poly(terthiophenes, poly(anilines, poly(fluorines, poly(3-alkylthiophenes, polytetrathiafulvalenes, polynapthalenes, poly(p-phenylene sulfide, poly(p-phenylenevinylenes, poly(3,4-ethylenedioxythiophene, polyparaphenylene, polyazulene, polyparaphenylene sulfide, polycarbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs, i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE, Single-Piece ISE (SPISE, Conducting Polymer (CP-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed.

  11. Solid state transport-based thermoelectric converter

    Science.gov (United States)

    Hu, Zhiyu

    2010-04-13

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  12. Polymer Electrolytes Based on Electrospun PEO-P(VdF-HFP) Blends for Lithium-Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    P.Raghvan; J.Manuel; G.Cheruvally; J.H.Ahn

    2007-01-01

    1 Results Electrospinning has attracted immense attention recently as a versatile and easy method to prepare polymer membranes that are made up of thin fibers of micron and sub-micron diameters.Such membranes are particularly suitable as host matrices for polymer electrolytes (PEs) since the interlaying of fibers generate large porosity with fully interconnected pore structure facilitating the easy transport of ions.Characterization of PEs based on electrospun membranes of poly(vinylidene fluoride) (PVd...

  13. Correlation of structure and mechanical response in solid-like polymers

    Science.gov (United States)

    Jabbari-Farouji, Sara; Rottler, Joerg; Lame, Olivier; Makke, Ali; Perez, Michel; Barrat, Jean-Louis

    2015-05-01

    Employing large scale molecular dynamics simulations, we measure the uniaxial tensile response of amorphous and semicrystalline states of a coarse-grained PVA bead-spring model. The response beyond the elastic limit encompasses strain-softening and strain-hardening regimes. To understand the underlying mechanisms of plastic deformation, we analyse conformational and structural changes of polymers. In particular, we characterise the volume distribution of crystalline domains along the stress-strain curve. The strain-softening regime in semicrystalline samples is dominated by deformation of crystalline parts, while strain-hardening involves unfolding and alignment of chains in both amorphous and crystalline parts. Comparing the tensile response of semicrystalline and amorphous polymers, we find similar conformations of polymers for both systems in the strain-hardening regime.

  14. Correlation of structure and mechanical response in solid-like polymers

    International Nuclear Information System (INIS)

    Employing large scale molecular dynamics simulations, we measure the uniaxial tensile response of amorphous and semicrystalline states of a coarse-grained PVA bead-spring model. The response beyond the elastic limit encompasses strain-softening and strain-hardening regimes. To understand the underlying mechanisms of plastic deformation, we analyse conformational and structural changes of polymers. In particular, we characterise the volume distribution of crystalline domains along the stress–strain curve. The strain-softening regime in semicrystalline samples is dominated by deformation of crystalline parts, while strain-hardening involves unfolding and alignment of chains in both amorphous and crystalline parts. Comparing the tensile response of semicrystalline and amorphous polymers, we find similar conformations of polymers for both systems in the strain-hardening regime. (paper)

  15. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    Science.gov (United States)

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications. PMID:23775443

  16. Electrical conduction in solid materials physicochemical bases and possible applications

    CERN Document Server

    Suchet, J P

    2013-01-01

    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  17. Influence of Solid-liquid Interaction and Temperature on the Dynamic Dewetting of a Thin Polymer Film: A Molecular Dynamics Study

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li; XUE Xiang-gui; L(U) Zhong-yuan

    2011-01-01

    Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium.The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid polymer film. As is consistent with the results obtained in previous researches, the liquid film recedes at a constant speed initially with different solid-liquid couplings and temperatures. Furthermore, smaller coupling parameters or higher temperatures tend to accelerate the recession speed of the liquid film and shorten the constant-speed recession duration. Obvious rims were not always observed. Both coupling parameter and temperature can influence the emergence of the rims.

  18. A Novel Technology for Synthesizing Pentasil Zeolites Based on Solid-Solid Mass Transformation Mechanism

    Institute of Scientific and Technical Information of China (English)

    张瑛; 窦涛; 鲍晓军; 李玉平; 李晓峰

    2003-01-01

    A novel technology of preparing zeoliltes based on solid-solid mass transformation mechanism is developed for the first time. By employing this technology, three different types of highly crystallized pentasil zeolites,ZSM-35 (FER-type), Silicalite-l(MFI-type) and Mordenite(MOR-type), are successfully synthesized in the solid system. In terms of commercial production, the technology'could simplify synthesis procedure and make the continuous production of zeolites possible, so as to improve the productivity. Additionally, it is environmentally friendly because the crystallization occurs in solid phase where there exists no pollution caused by waste liquid. Therefore, this technique provides us with a new indusr, rial process for the clean and continuous production of zeolites.The characteristics in synthesis chemistry and the crystallization mechanism involved in the technology are also discussed.

  19. Development of an Ion Sensitive Field Effect Transistor Based Urea Biosensor with Solid State Reference Systems

    Directory of Open Access Journals (Sweden)

    Kow-Ming Chang

    2010-06-01

    Full Text Available Ion sensitive field-effect transistor (ISFET based urease biosensors with solid state reference systems for single-ended and two-ended differential readout electronics were investigated. The sensing membranes of the biosensors were fabricated with urease immobilized in a conducting polymer-based matrix. The responses of 12.9~198.1 mV for the urea concentrations of 8~240 mg/dL reveal that the activity of the enzyme was not significantly decreased. Biosensors combined with solid state reference systems were fabricated, and the evaluation results demonstrated the feasibility of miniaturization. For the differential system, the optimal transconductance match for biosensor and reference field-effect transistors (REFET pair was determined through the modification of the membranes of the REFETs and enzyme field-effect transistors (EnFETs. The results show that the transconductance curve of polymer based REFET can match with that of the EnFET by adjusting the photoresist/NafionTM ratio. The match of the transconductance curves for the differential pairs provides a wide dynamic operating measurement range. Accordingly, the miniaturized quasi-reference electrode (QRE/REFET/EnFET combination with differential arrangement achieved similar urea response curves as those measured by a conventional large sized discrete sensor.

  20. Polymers Based on Renewable Raw Materials – Part II

    Directory of Open Access Journals (Sweden)

    Jovanović, S.

    2013-09-01

    Full Text Available A short review of biopolymers based on starch (starch derivatives, thermoplastic starch, lignin and hemicelluloses, chitin (chitosan and products obtained by degradation of starch and other polysaccharides and sugars (poly(lactic acid, poly(hydroxyalkanoates, as well as some of their basic properties and application area, are given in this part. The problem of environmental and economic feasibility of biopolymers based on renewable raw materials and their competitiveness with polymers based on fossil raw materials is discussed. Also pointed out are the problems that appear due to the increasing use of agricultural land for the production of raw materials for the chemical industry and energy, instead for the production of food for humans and animals. The optimistic assessments of experts considering the development perspectives of biopolymers based on renewable raw materials in the next ten years have also been pointed out.At the end of the paper, the success of a team of researchers gathered around the experts from the company Bayer is indicated. They were the first in the world to develop a catalyst by which they managed to effectively activate CO - and incorporate it into polyols, used for the synthesis of polyurethanes in semi-industrial scale. By applying this process, for the first time a pollutant will be used as a basic raw material for the synthesis of organic compounds, which will have significant consequences on the development of the chemical industry, and therefore the production of polymers.

  1. Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery

    Science.gov (United States)

    Ambika, C.; Hirankumar, G.

    2016-02-01

    Various compositions of solid blend polymer electrolytes based on poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) complexed with methanesulfonic acid (MSA) as proton donor were prepared by solution casting technique. The complex nature of polymer blend with MSA was confirmed by Fourier transform infrared spectroscopy. Good thermal stability of PMMA/PVP blend polymer electrolyte was identified by thermogravimetric analysis. The surface morphology of the prepared electrolytes was studied through optical microscopy. Ion transport number was determined in the range of 0.93-0.97 for proton-conducting blend polymer electrolytes. The maximum conductivity value was calculated as 2.51 × 10-5 S/cm at 303 K for 14.04 mol% MSA-doped polymer electrolytes. Dielectric studies were also carried out. The electrochemical stability window of blend polymer electrolyte was found to be 1.82 V. Primary proton battery was fabricated with Zn + ZnSO4·7H2O/solid polymer electrolytes/MnO2. The discharge characteristics were studied at constant current drain of 5, 20 and 50 μA. The energy and power density were calculated as 0.27 W h kg-1 and 269.23 mW kg-1 for 20 μA of discharge, respectively.

  2. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells.

    Science.gov (United States)

    Long, Xiaojing; Ding, Zicheng; Dou, Chuandong; Zhang, Jidong; Liu, Jun; Wang, Lixiang

    2016-08-01

    A novel polymer acceptor based on the double B←N bridged bipyridine building block is reported. All-polymer solar cells based on the new polymer acceptor show a power conversion efficiency of as high as 6.26% at a photon energy loss of only 0.51 eV. PMID:27167123

  3. Solid formation in piperazine rate-based simulation

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Thomsen, Kaj; von Solms, Nicolas;

    2014-01-01

    of view but also from a modeling perspective. The present work develops a rate-based model for CO2 absorption and desorption modeling for gas-liquid-solid systems and it is demonstrated for the piperazine CO2 capture process. This model is an extension of the DTU CAPCO2 model to precipitating systems...... species since the piperazine is deactivated when present as solid. It is assumed that solid-gas reactions are slow compared to normal liquid side reactions. In the current work, the formation of solids is described in an equilibrium approach, assuming instantaneous formation of hydrates such as PZ·6H2O......, PZ·½H2O, and anhydrous PZ. The simulation of a 100t/hr post-combustion capture plant outlines that 5 % solid reduces the CO2 capture rate with 13%. Therefore, it demonstrates that an accurate description of the precipitation phenomenon is essential for realistic and accurate modeling....

  4. Gelation Behavior of Poly (Vinylidene Fluoride )-based Gel Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    WANG Biao-bing; GU Li-xia

    2006-01-01

    Poly ( vinylidene fluoride ) ( PVdF )-based gel polymer electrolytes with various compositions were prepared by solution casting technique. The kinetics of gelation was analyzed via the correlation between the apparent gelation rate and concentration of PVdF at a given temperature.Combination the results of the kinetics of gelation and the DSC study, it revealed that the phase separation was the major behavior and the fibrils were the major junction joints of the three-dimensional network even in the ease the concentration of PVdF was higher than 25 wt%. The porous surface observed by ESEM also reflected that the phase separation took place during the gelation.

  5. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  6. Triphenylamine-based amorphous polymers for bulk-heterojunction photovoltaic cells

    International Nuclear Information System (INIS)

    In this paper, the recent research progress on triphenylamine (TPA)-based donor-acceptor (D-A) amorphous polymers including our developed polymers is reviewed. TPA has three-dimensional branched structures and can provide D-A polymers containing D and A units in the main chain or side chain. The use of TPA-based amorphous polymers in the fabrication of organic photovoltaics (OPVs) offers great advantages over the use of a polycrystalline film in terms of high reproducibility of the OPV performance. The amorphous polymer design using TPA, therefore, indicates a promising direction for the development of new donor materials in OPVs

  7. The effect of composition, electron irradiation and quenching on ionic conductivity in a new solid polymer electrolyte: (PEG) NH4I

    Indian Academy of Sciences (India)

    R Damle; P N Kulkarni; S V Bhat

    2009-03-01

    We have prepared, characterized and investigated a new PEG-2000 based solid polymer electrolyte (PEG)NH4I. Ionic conductivity measurements have been made as a function of salt concentration as well as temperature in the range 265–330 K. Selected compositions of the electrolyte were exposed to a beam of 8 MeV electrons to an accumulated dose of 10 kGy to study the effect on ionic conductivity. The electrolyte samples were also quenched at liquid nitrogen temperature and conductivity measurements were made. The ionic conductivity at room temperature exhibits a characteristic double peak for the composition = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is interpreted as due to an increase in amorphous region and decrease in crystallinity of the electrolyte. DSC and proton NMR measurements also support this conclusion.

  8. Polymer vs. surfactant : competitive adsorption at the solid-liquid interface

    NARCIS (Netherlands)

    Postmus, B.R.

    2008-01-01

    The research described in this thesis focuses on the competitive adsorption of nonionic polymer and nonionic surfactant on a silica surface. These type of systems are interesting from both an academical and a technological viewpoint. Our academic interest stems simply from the observation that we ha

  9. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  10. A Digitally Controllable Polymer-Based Microfluidic Mixing Module Array

    Directory of Open Access Journals (Sweden)

    Raymond H. W. Lam

    2012-03-01

    Full Text Available This paper presents an integrated digitally controllable microfluidic system for continuous solution supply with a real-time concentration control. This system contains multiple independently operating mixing modules, each integrated with two vortex micropumps, two Tesla valves and a micromixer. The interior surface of the system is made of biocompatible materials using a polymer micro-fabrication process and thus its operation can be applied to chemicals and bio-reagents. In each module, pumping of fluid is achieved by the vortex micropump working with the rotation of a micro-impeller. The downstream fluid mixing is based on mechanical vibrations driven by a lead zirconate titanate ceramic diaphragm actuator located below the mixing chamber. We have conducted experiments to prove that the addition of the micro-pillar structures to the mixing chamber further improves the mixing performance. We also developed a computer-controlled automated driver system to control the real-time fluid mixing and concentration regulation with the mixing module array. This research demonstrates the integration of digitally controllable polymer-based microfluidic modules as a fully functional system, which has great potential in the automation of many bio-fluid handling processes in bio-related applications.

  11. Crystallization-driven assembly of conjugated-polymer-based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, Ryan C. [Univ. of Massachusetts, Amherst, MA (United States). Polymer Science & Engineering

    2016-10-15

    The goal of this project has been to improve our ability to simultaneously control the organization, and therefore the opto-electronic properties, of conjugated-polymer based materials across three different length-scales: 1) the molecular scale, in the sense of controlling growth and functionalization of highly crystalline semiconducting organic materials capable of efficient charge transport, 2) the nanoscale, in terms of positioning n- and p-type materials with domain sizes comparable to exciton diffusion lengths (~ 10 nm) to facilitate charge separation, and 3) the colloidal scale, such that well-defined crystalline nanoscale building blocks can be hierarchically organized into device layers. As described in more detail below, the project was successful in generating powerful new approaches to, and improved fundamental understanding of, processing and self-assembly of organic and hybrid semiconducting materials across all three length-scales. Although the goals of the project were formulated with primarily photovoltaic architectures in mind, the outcomes of the project have significant implications for a variety of conjugated-polymer-based devices including field-effect-transistors for sensors and logic devices, as well as potentially thermoelectrics and battery electrode materials. The project has resulted in 10 peer-reviewed publications to date [1-10], with several additional manuscripts currently in preparation.

  12. Large area modules based on low band gap polymers

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2010-01-01

    The use of three low band gap polymers in large area roll-to-roll coated modules is demonstrated. The polymers were prepared by a Stille cross coupling polymerization and all had a band gap around 1.6 eV. The polymers were first tested in small area organic photovoltaic devices which showed...

  13. High Performance and Long-Term Stability in Ambiently Fabricated Segmented Solid-State Polymer Electrochromic Displays.

    Science.gov (United States)

    Remmele, Julian; Shen, D Eric; Mustonen, Tero; Fruehauf, Norbert

    2015-06-10

    This work reports on the performance of a segmented polymer electrochromic display that was fabricated with solution-based processes in ambient atmosphere. An encapsulation process and the combination of structured wells for the polymer electrochrome and electrolyte layers as well as the use of a preoxidized counter polymer yields high contrasts and fast switching speeds. Asymmetric driving-with respect to time-of the display is investigated for the first time and the degradation effects in the electrochrome layer are analyzed and addressed to yield a stable device exceeding 100,000 switching cycles. A printed circuit board was integrated with the display, allowing the device to be run as a clock, where the segments only required short pulses to switch without the need for a constant current to maintain its state. Such an application pairs well with the advantages of electrochromic polymers, drawing on its high contrast, stability, and ability to maintain its colored or colorless state without the need for a constant power supply, to demonstrate the promise as well as the challenges of developing more sophisticated electrochromic devices. PMID:25978306

  14. Coordination polymers undergoing spin crossover and reversible ligand exchange in the solid

    OpenAIRE

    Galet, Ana; Muñoz, M Carmen; Real Cabezos, Jose Antonio

    2006-01-01

    Here we report the synthesis and characterisation of a polymer made up of a system of parallel 2-D grids of Fe(II) ions linked by [Au(CN)2]– bridges and its transformation into a new system of three interpenetrated 3-D coordination open frameworks with the NbO topology. Reversibility of this crystal-to-crystal transformation is evidenced by X-ray crystallographic data and from their spin crossover properties.

  15. An overview of the pharmacokinetics of polymer-based nanoassemblies and nanoparticles.

    Science.gov (United States)

    Zhao, Qing-He; Qiu, Li-Yan

    2013-10-01

    Advancements in the design and synthesis of polymer-based nanoassemblies and nanoparticles, combined with achievements in nanotechnology and medicine, have resulted in remarkable applications of polymer nanosystems in the areas of nanomedicine and pharmaceutical sciences. However, a complete understanding of the absorption, distribution, metabolism, and elimination (ADME) processes of such polymer nanosystems in living systems has not been achieved. The influences of the pharmacokinetic parameters of polymer nanomaterials on the ADME processes are reviewed in this article, with discussions of the absorption and transportation of polymer nanoparticles across biological barriers, the factors affecting the bodily distribution of polymer nanocarriers, the transformation of polymer nanomaterials in vivo, the elimination pathway of polymer nanoparticles from biological systems, and perspectives of future pharmacokinetics and safety investigations of polymer-based nanoassemblies. A full and better understanding of the pharmacokinetic parameters of polymer-based nanomaterials is of vital importance in developing polymer nanosystems with optimal pharmacokinetics and biological safety for applications in nanomedicine and the pharmaceutical industry. PMID:24016113

  16. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes

    Science.gov (United States)

    Burba, Christopher M.; Woods, Lauren; Millar, Sarah Y.; Pallie, Jonathan

    2011-01-01

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm-1 bands are used to probe the crystalline PEO and P(EO)3LiCF3SO3 domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte. PMID:22184475

  17. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes.

    Science.gov (United States)

    Burba, Christopher M; Woods, Lauren; Millar, Sarah Y; Pallie, Jonathan

    2011-12-15

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm(-1) bands are used to probe the crystalline PEO and P(EO)(3)LiCF(3)SO(3) domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte.

  18. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    Science.gov (United States)

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region.

  19. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  20. Styrene-Based Copolymer for Polymer Membrane Modifications

    Directory of Open Access Journals (Sweden)

    Harsha Srivastava

    2016-05-01

    Full Text Available Poly(vinylidene fluoride (PVDF was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffraction (XRD experiments that the modified PVDF membranes show a drastic reduction in their crystallinity. The neat PVDF membrane has the highest degradation rate, which decreased with the addition of the styrene-based copolymer.

  1. Fluorescence quenching effect of metal ions for α,α'-diamine containing conjugated polymers in solid films

    Institute of Scientific and Technical Information of China (English)

    TIAN Leilei; ZHANG Ming; LU Ping; ZHANG Wu; YANG Bing; MA Yuguang

    2004-01-01

    The fluorescence quenching effect of the conjugated polymers P1 and P2 (the molecular recognitions are twisted 2,2′-bipyridine (bpy) and planar 1,10-phenanthrolin (phen), respectively) films upon the addition of metal ions has been studied. And the results showed that P2 exhibited stronger fluorescence quenching ability upon the addition of both transition metal ions and main group metal ions compared with that of P1. The 20° twist angle between the two consecutive pyridine rings of bpy unit in the P1 main chain is the reason for the weaker fluorescence quenching ability compared with P2, in which the planar phen unit can chelate with metal ions relatively freely without the conformational transition. So P2 is a kind of material with better properties for solid film devices, such as sensors for metal ions recognition.

  2. 准固态聚合物电解质在染料敏化太阳能电池中的应用%A Review: Quasi-solid State Polymer Electrolytes for Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    王惟嘉; 杨英; 郭学益; 田庆华

    2011-01-01

    将固态或准固态聚合物电解质应用到染料敏化太阳能电池(DSSC)中可以有效解决应用液态电解质遇到的封装难、稳定性差等问题,因而近年来,对固态和准固态电解质的研究引起了广泛关注.本文就准固态聚合物电解质在DSSC中应用的研究进展及存在的问题进行了综述.同时,介绍了DSSC的结构及工作原理.根据目前DSSC准固态聚合物电解质的研究发展情况和体系的不同,可将其分为两大类:单一聚合物基质和复合聚合物基质准固态聚合物电解质.总结了国内外研究人员近几年关于准固态聚合物电解质在DSSC中应用的研究成果,分析了各种不同种类聚合物基质电解质的DSSC的性能参数,并对其未来的发展方向进行了展望.%The dye-sensitized solar cells (DSSC) provide a promising alternative concept to conventional silicon solar cell, However, liquid-state DSSC possesses a series of problems, such as low stability, hard to be sealed, etc.Replacing liquid electrolytes by quasi-solid state polymer electrolytes is an approach available to solve such problems.In this paper, the progress of quasi-solid state polymer electrolytes was reviewed. The structure and working principle of DSSC were introduced. The quasi-solid state polymer electrolytes for DSSC are divided into two types according to the polymer matrix in the electrolytes, which are mono-polymer matrix electrolytes and composite polymer matrix electrolytes, The performances of solar cells based on these polymer electrolytes were analyzed in detail. The future development of the polymer electrolytes for DSSC was also prospected.

  3. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    Science.gov (United States)

    Semirov, A. V.; Derevyanko, M. S.; Bukreev, D. A.; Moiseev, A. A.; Kudryavtsev, V. O.; Safronov, A. P.

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co75Fe5Si4B16 ribbons. Both as-cast amorphous ribbons and Co75Fe5Si4B16/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current.

  4. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  5. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  6. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  7. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Science.gov (United States)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  8. 固相力化学改性高聚物的方法研究%Researches On Modification Polymers through Solid State Mechanochemical Methods

    Institute of Scientific and Technical Information of China (English)

    马超; 赵林; 卢灿辉; 曾俊峰

    2011-01-01

    With the stress of solid phase stress, the polymer molecule structure would be weakened or destroyed, and the chemical bonds may be distorted or broken. Polymers of solid phase chemical modification are used to study the physical and chemical changes of various polymers, which occur duing to mechanical effect. As the method has wide applicability, purity product, ease of operation, high efficiency,easy, saving energy, no pollution and so on, it becomes one of the important methods of polymer modified. This ariticle systematically review the mechanism and methods of the solid state shear pulverization of polymer, polymer solid-phase disc-type milling grinding, crushing mechanism of polymers and high-energy ball milling, detailly describe technology progress of these types of grinding methods on the application of polymer modified, and indicate the stress on the theory and trends in the application of key technology of solid-phase chemical modification of polymer.%在固相应力作用下高聚物分子结构可被削弱或破坏,化学键可能发生畸变或断裂。固相力化学改性高聚物是研究各种高聚物因机械力影响而发生化学或物理化学变化的方法。由于该方法具有适用性广、产品纯净、操作方便、效率高、简便、节能、无污染等优点而成为高聚物改性的重要方法之一。本文系统综述了高聚物的固相剪切粉碎、固相磨盘型碾磨粉碎、高能球磨粉碎的机理和方法,详细介绍了这几种粉碎方法对高聚物改性的应用技术研究进展,并指出固相力化学改性高聚物的理论研究重点和应用技术的发展趋势。

  9. A modified free-volume-based model for predicting vapor-liquid and solid-liquid equilibria for size asymmetric systems

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.;

    2005-01-01

    The main purpose of this work is to present a free-volume combinatorial term in predicting vapor-liquid equilibrium (VLE) and solid-liquid equilibrium (SLE) of polymer/solvent and light and heavy hydrocarbon/hydrocarbon mixtures. The proposed term is based on a modification of the original Freed...

  10. Highly effective Ir(x)Sn(1-x)O2 electrocatalysts for oxygen evolution reaction in the solid polymer electrolyte water electrolyser.

    Science.gov (United States)

    Li, Guangfu; Yu, Hongmei; Wang, Xunying; Sun, Shucheng; Li, Yongkun; Shao, Zhigang; Yi, Baolian

    2013-02-28

    We developed an advanced surfactant-assistant method for the Ir(x)Sn(1-x)O(2) (0 electrolysis efficiency, reduce the noble-metal Ir loading and thus the cost of hydrogen production from the solid polymer electrolyte water electrolysis. PMID:23338525

  11. Polymer Nanocomposite Based Multi-layer Neutron Shields

    International Nuclear Information System (INIS)

    It is important to shield radiations generated from the various radiation sources including nuclear reactors, transportation and storage systems for the radioactive wastes, accelerator, hospital, and defense systems etc. In this regard, development of efficient, light and durable radiation shielding materials has been an issue for many years. High energy neutrons (fast neutrons) can be thermalized by colliding with the light elements such as hydrogen, and thermalized neutrons can be efficiently captured by neutron absorbers such as boron, lithium, or gadolinium, etc. To shield neutrons, it is common to use hydrogen rich polymer based shields containing thermal neutron absorbers. It is also necessary to shield secondary gamma radiations produced from nuclear reaction of neutrons with various materials. Hence, high density elements such as Fe, Pb, or W might be dispersed in the polymer base as well as with neutron absorbers at the same time. However, the particle sizes of these elements are in the range of several tens and hundreds micrometers causing possible leakage of radiation. To enhance radiation shielding efficiency, it is useful to use ultrafine particles to increase collision probability of radiation with the particles. Furthermore, it is theoretically possible to enhance radiation shielding efficiency by using the multi-layer structured shields whose constituents are different for each layer depending upon the shielding purpose under the same overall density. Also, material properties of the nanocomposites can be enhanced compared to the normal composites. This investigation is focused on characterization of the nanocomposite based multi-layer structured radiation shields compared to the conventional radiation shields

  12. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  13. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  14. Molecular imprinted polymer for solid-phase extraction of flavonol aglycones from Moringa oleifera extracts.

    Science.gov (United States)

    Pakade, Vusumzi; Cukrowska, Ewa; Lindahl, Sofia; Turner, Charlotta; Chimuka, Luke

    2013-02-01

    Molecular imprinted polymer produced using quercetin as the imprinting compound was applied for the extraction of flavonol aglycones (quercetin and kaempferol) from Moringa oleifera methanolic extracts obtained using heated reflux extraction method. Identification and quantification of these flavonols in the Moringa extracts was achieved using high performance liquid chromatography with ultra violet detection. Breakthrough volume and retention capacity of molecular imprinted polymer SPE was investigated using a mixture of myricetin, quercetin and kaempferol. The calculated theoretical number of plates was found to be 14, 50 and 8 for myricetin, quercetin and kaempferol, respectively. Calculated adsorption capacities were 2.0, 3.4 and 3.7 μmol/g for myricetin, quercetin and kaempferol, respectively. No myricetin was observed in Moringa methanol extracts. Recoveries of quercetin and kaempferol from Moringa methanol extracts of leaves and flowers ranged from 77 to 85% and 75 to 86%, respectively, demonstrating the feasibility of using the developed molecularly imprinted SPE method for quantitative clean-up of both of these flavonoids. Using heated reflux extraction combined with molecularly imprinted SPE, quercetin concentrations of 975 ± 58 and 845 ± 32 mg/kg were determined in Moringa leaves and flowers, respectively. However, the concentrations of kaempferol found in leaves and flowers were 2100 ± 176 and 2802 ± 157 mg/kg, respectively. PMID:23255435

  15. Structure/property development in aPET during large strain, solid phase polymer processing

    Science.gov (United States)

    Martin, Peter; Mohamed, Raja Roslan Raja

    2015-12-01

    Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.

  16. Lipid- and Polymer-Based Nanostructures for Cancer Theranostics

    Directory of Open Access Journals (Sweden)

    Brian T. Luk, Ronnie H. Fang, Liangfang Zhang

    2012-01-01

    Full Text Available The relatively new field of nanotheranostics combines the advantages of in vivo diagnosis with the ability to administer treatment through a single nano-sized carrier, offering new opportunities for cancer diagnosis and therapy. Nanotheranostics has facilitated the development of nanomedicine through direct visualization of drug blood circulation and biodistribution. From a clinical perspective, nanotheranostics allows therapies to be administered and monitored in real time, thus decreasing the potential of under- or over-dosing and allowing for more personalized treatment regimens. Herein, we review recent development of nanotheranostics using lipid- and polymer-based formulations, with a particular focus on their applications in cancer research. Recent advances in nanotechnology aimed to combine therapeutic molecules with imaging agents for magnetic resonance imaging, radionuclide imaging, or fluorescence imaging are discussed.

  17. Polymer-Based Self-Standing Flexible Strain Sensor

    Directory of Open Access Journals (Sweden)

    Fernando Martinez

    2010-01-01

    Full Text Available The design and characterization of polymer-based self-standing flexible strain sensors are presented in this work. Properties as lightness and flexibility make them suitable for the measurement of strain in applications related with wearable electronics such as robotics or rehabilitation devices. Several sensors have been fabricated to analyze the influence of size and electrical conductivity on their behavior. Elongation and applied charge were precisely controlled in order to measure different parameters as electrical resistance, gauge factor (GF, hysteresis, and repeatability. The results clearly show the influence of size and electrical conductivity on the gauge factor, but it is also important to point out the necessity of controlling the hysteresis and repeatability of the response for precision-demanding applications.

  18. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    Directory of Open Access Journals (Sweden)

    Guang-Wei Zhang

    2013-11-01

    Full Text Available Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR and dynamic light scattering (DLS. The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  19. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    Directory of Open Access Journals (Sweden)

    Olaf Mühling

    2010-12-01

    Full Text Available The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field.

  20. Polymer-based tubular microbots: role of composition and preparation

    Science.gov (United States)

    Gao, Wei; Sattayasamitsathit, Sirilak; Uygun, Aysegul; Pei, Allen; Ponedal, Adam; Wang, Joseph

    2012-03-01

    The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal surfaces (Ag, Pt, Au, Ni-Pt alloy), upon the movement of such bilayer microtubes are evaluated and compared. Electropolymerization conditions, such as the monomer concentration and medium (e.g. surfactant, electrolyte), have a profound effect upon the morphology and locomotion of the resulting microtubes. The most efficient propulsion is observed using PEDOT/Pt microbots that offer a record-breaking speed of over 1400 body lengths s-1 at physiological temperature, which is the fastest relative speed reported to date for all artificial micro/nanomotors. An inner Pt-Ni alloy surface is shown useful for combining magnetic control and catalytic fuel decomposition within one layer, thus greatly simplifying the preparation of magnetically-guided microbots. Polymer-based microbots with an inner gold layer offer efficient biocatalytic propulsion in low peroxide level in connection to an immobilized catalase enzyme. Metallic Au/Pt bilayer microbots can also be prepared electrochemically to offer high speed propulsion towards potential biomedical applications through functionalization of the outer gold surface. Such rational template preparation and systematic optimization of highly efficient microbots hold considerable promise for diverse practical applications.The influence of the composition and electropolymerization conditions upon the propulsion of new template-prepared polymer-based bilayer microtubular microbots is described. The effects of different electropolymerized outer layers, including polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and of various inner catalytic metal

  1. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  2. Coordination polymer flexibility leads to polymorphism and enables a crystalline solid-vapour reaction: a multi-technique mechanistic study.

    Science.gov (United States)

    Vitórica-Yrezábal, Iñigo J; Libri, Stefano; Loader, Jason R; Mínguez Espallargas, Guillermo; Hippler, Michael; Fletcher, Ashleigh J; Thompson, Stephen P; Warren, John E; Musumeci, Daniele; Ward, Michael D; Brammer, Lee

    2015-06-01

    Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)2 ] formed by loss of TMP ligands exclusively from singly-bridging sites. Four polymorphic forms of 1 (1-A(LT) , 1-A(HT) , 1-B(LT) and 1-B(HT) ; HT=high temperature, LT=low temperature) have been identified crystallographically. In situ powder X-ray diffraction (PXRD) studies of the 1-ROH→1→2 transformations indicate the role of the HT polymorphs in these reactions. The structural relationship between polymorphs, involving changes in conformation of perfluoroalkyl chains and a change in orientation of entire polymers (A versus B forms), suggests a mechanism for the observed reactions and a pathway for guest transport within the fluorous layers. Consistent with this pathway, optical microscopy and AFM studies on single crystals of 1-MeOH/1-A(HT) show that cracks parallel to the layers of interdigitated perfluoroalkyl chains develop during the MeOH release/uptake process. PMID:25962844

  3. Effect of Molecular Weight on Mechanical and Electrochemical Performance of All Solid-State Polymer Electrolyte Membranes

    Science.gov (United States)

    He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein

    2015-03-01

    Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.

  4. Preparation and characterization of poly(lithium acrylate-arcylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; YUAN Yun-lan; CHEN Zhen-hua; XU Xian-hua; ZHANG Jian

    2005-01-01

    Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4):n(LiNO3):n(LiBr)=1.6:3.8:1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly(lithium acrylate-acrylonitrile) and LiClO4-LiNO3-LiBr eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches 3.11×10-4 S·cm-1. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 ℃ compared with that of poly(lithium acrylate-acrylonitrile) of 105 ℃. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system.

  5. Bio-mineralisation on the composites of silicon-based polymer and nanodiamond particles by a species of Serratia Bacteria

    International Nuclear Information System (INIS)

    Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium that is able to produce hydroxyapatite by a mechanism involving enzymic cleavage of organic phosphates. Serratia bacteria can attach and form a biofilm on glass, plastics, ceramics and metals and the method can be used to form three dimensional porous scaffolds and for coating 3D structures with hydroxyapatite. The production of calcium phosphate is driven by an acid phosphatase enzyme located in the bacterial cell wall, on fimbriae and within the bacterial extracellular polymeric matrix. Calcium phosphate ceramic may be obtained by two methods: In the first, crystals of calcium phosphate are formed extracellularly within the pre-formed bacterial biofilm grown on the substrata. In the second method, planktonic bacteria catalyse the formation of CaP in suspension and on solid substrata placed in the same container. Composite thin layer of silicon-based polymer and detonated nanodiamond (DND) particles was used as substrate for the process of biomineralization by a species of Serratia. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymer, in which DND particles were incorporated. Over the past decades carbon-based nanostructures have been the focus of intense research due to their unique chemical and physical properties. Recently it was shown that the incorporation of the DND particles in a polymer matrix (an organosilicon polymer) changes their physico-chemical properties. The composite films are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. The aim of this study was to investigate the process of biomineralisation by Serratia bacteria on various composites of silicon-based polymer and detonated nanodiamond particles

  6. A Review of Thermal Spray Metallization of Polymer-Based Structures

    Science.gov (United States)

    Gonzalez, R.; Ashrafizadeh, H.; Lopera, A.; Mertiny, P.; McDonald, A.

    2016-06-01

    A literature review on the thermal spray deposition of metals onto polymer-based structures is presented. The deposition of metals onto polymer-based structures has been developed to enhance the thermal and electrical properties of the resulting metal-polymer material system. First, the description of the thermal spray metallization processes and technologies for polymer-based materials are outlined. Then, polymer surface preparation methods and the deposition of metal bond-coats are explored. Moreover, the thermal spray process parameters that affect the properties of metal deposits on polymers are described, followed by studies on the temperature distribution within the polymer substrate during the thermal spray process. The objective of this review is devoted to testing and potential applications of thermal-sprayed metal coatings deposited onto polymer-based substrates. This review aims to summarize the state-of-the-art contributions to research on the thermal spray metallization of polymer-based materials, which has gained recent attention for potential and novel applications.

  7. Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors

    OpenAIRE

    Changsoon Choi; Shi Hyeong Kim; Hyeon Jun Sim; Jae Ah Lee; A Young Choi; Youn Tae Kim; Xavier Lepró; Spinks, Geoffrey M.; Ray H. Baughman; Seon Jeong Kim

    2015-01-01

    Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices, and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing t...

  8. Carbon Nanotube-Conducting Polymer Composites Based Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Prakash; R.Somani; M.Umeno

    2007-01-01

    1 Results Combination of carbon nanotubes (CN) with polymers is important for application towards value added composites,solar cells,fuel cells etc.Especially interesting is the combination of CN with π-conjugated polymers because of the potential interaction between the highly delocalized π-electrons of the CN and the π-electrons correlated with the lattice of polymer skeleton.Efficient exciton dissociation due to electron transfer from the photoexcited polymer to CN is of interest for photovoltaic app...

  9. The Photophysical Properties and Morphology of Fluorene- alt-benzene Based Conjugated Polymers

    Institute of Scientific and Technical Information of China (English)

    Guizhong Yang; Tianxi Liu; Min Wang; Peiyi Wu; Wei Huang

    2005-01-01

    @@ 1Introduction There has been wide interest in the photophysical properties of rod-like fluorene based conjugated polymers because of their potential applications in various optoelectronic devices, especially in polymers light-emitting diodes (PLEDs)[1]. In this work, a series of fluorene-alt-benzene based conjugated main chain polymers with different length alkyl side chains on phenylene ring were designed and successfully synthesized. The effect of alkyl chain length on the photophysical property, phase transition behavior and morphology structure of the polymers were investigated.

  10. Peritoneal transport characteristics with glucose polymer-based dialysis fluid in children.

    NARCIS (Netherlands)

    Rusthoven, E.; Krediet, R.T.; Willems, J.L.; Monnens, L.A.H.; Schröder, C.H.

    2004-01-01

    Scarce data are available on the use of glucose polymer-based dialysate in children. The effects of glucose polymer-based dialysate on peritoneal fluid kinetics and solute transport were studied in pediatric patients who were on chronic peritoneal dialysis, and a comparison was made with previously

  11. Thermoresponsive polymer system based on poly(N-vinylcaprolactam) intended for local radiotherapy applications

    International Nuclear Information System (INIS)

    Brachytherapy represents effective local therapy of unresectable solid tumors with very few side effects. Radiolabeled thermoresponsive polymers offer almost noninvasive approach to brachytherapy applications. A radioiodinated, water-soluble, thermosensitive poly(N-vinylcaprolactam) (PVCL) polymer was prepared using two approaches. The direct copolymerization with N-methacryloyl-L-tyrosinamide, as well as end-capping of carboxy-terminated PVCL homopolymer with tyramine, were used. In both cases the product was successfully radiolabeled with 125I. The obtained polymers demonstrate cloud-point temperature (TC) values in the range of 33–35 °C in all the studied solvent systems (water, PBS (pH 7.4) and physiological saline solution). Above the cloud point temperature, the molecularly dissolved polymer is macroprecipitated from the solution. The TC values close to the human body temperature of this biocompatible poly(N-vinylcaprolactam) polymer makes it a promising material intended for local therapy of solid tumors. - Highlights: • New radiolabeled thermoresponsive polymer system for injectable brachytherapy is described. • Two ways of introducing radiolabelable moiety into poly(N-vinylcaprolactam) are demonstrated. • The method allows preparation of a stable product carrying 125I

  12. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-01

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.

  13. The present status and key problems of carbon nanotube based polymer composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available The state-of-art and key problems of carbon nanotube (CNT based polymer composites (CNT/polymer composites including CNT/polymer structural composites and CNT/polymer functional composites are reviewed. Based on the results reported up to now, CNTs can be an effective reinforcement for polymer matrices, and the tensile strength and elastic modulus of CNT/polymer composites can reach as high as 3600 MPa and 80 GPa, respectively. CNT/polymer composites are also promising functional composite materials with improved electrical and thermal conductivity, etc. Due to their multi-functional properties, CNT/polymer composites are expected to be used as low weight structural materials, optical devices, thermal interface materials, electric components, electromagnetic absorption materials, etc. However, the full potential of CNT/polymer composites still remains to be realized. A few key problems, such as how to prepare structure-controllable CNTs with high purity and consistently dependable high performance, how to break up entangled or bundled CNTs and then uniformly disperse and align them within a polymer matrix, how to improve the load transfer from matrix to CNT reinforcement, etc, still exist and need to be solved in order to realize the wide applications of these advanced composites.

  14. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiajia [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yun; Wang, Jincheng [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli; Cao, Rong [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Hao [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Department of Chemistry, Liaoning University, Shenyang 110000 (China); Huang, Chaonan [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2015-05-04

    Highlights: • BPA imprinted polymer microspheres were prepared by Pickering emulsion polymerization. • Regular spherical shape and narrow diameter distribution. • Good specific adsorption capacity for BPA. • Good class-selectivity and clean-up efficiency for bisphenols in human urine under SPE mode. • Good recoveries and sensitivity for bisphenols using the MIPMS-SPE coupled with HPLC-DAD method. - Abstract: The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption–desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30–60 μm), a specific surface area (S{sub BET}) of 281.26 m{sup 2} g{sup −1} and a total pore volume (V{sub t}) of 0.459 cm{sup 3} g{sup −1}. Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2–2.2 ng mL{sup −1}. The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL{sup −1} for each BP) were in the range of 81.3–106.7% with RSD values below 8.3%.

  15. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  16. Community-Based Solid Waste Management: A Training Facilitator's Guide.

    Science.gov (United States)

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Urban environmental management and environmental health issues are of increasing concern worldwide. The need for urban environmental management work at the local level where the Peace Corps works most effectively is significant, but training materials dedicated specifically to community-based solid waste management work in urban areas are lacking.…

  17. Design of electrically conducting polymer hybrid composites based on polyvinyl chloride and polyethylene

    OpenAIRE

    Kuryptya, Yaroslav; Sova, Nadiya; Savchenko, Bohdan; Slieptsov, Aleksander; Plavan, Viktoriia

    2016-01-01

    Interest to electrically conducting polymer composite materials in recent times has grown considerably, which is associated with the design of new branches of science and technology. The existing analogues are different in the complexity of production and high cost. One of the ways of solving the problem may be designing polymer composite materials with a combined filler. The research was carried out on creating electrically conducting hybrid polymer composites, based on emulsion polyvinyl ch...

  18. Ionic liquids as foaming agents of semi-crystalline natural-based polymers

    OpenAIRE

    Duarte, Ana Rita C.; SILVA, S. S.; Mano, J.F; Reis, R. L.

    2012-01-01

    In this work, the ability to foam semi-crystalline natural-based polymers by supercritical fluid technology is evaluated. The application of this technique to natural polymers has been limited due to the fact that they are normally semi-crystalline polymers, which do not plasticize in the presence of carbon dioxide. This can be overcome by the use of plasticizers, such as glycerol, which is a commonly used plasticizer, or ionic liquids, which have recently been proposed as plastic...

  19. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  20. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.

    Science.gov (United States)

    Lei, Ting; Wang, Jie-Yu; Pei, Jian

    2014-04-15

    Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using

  1. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  2. Magnetic field sensor using a polymer-based vibrator

    Science.gov (United States)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1-570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T-1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  3. ROMP-based polymer composites and biorenewable rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wonje [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  4. Magnetic field sensor using a polymer-based vibrator

    Science.gov (United States)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1–570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T‑1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  5. ROMP-based polymer composites and biorenewable rubbers

    Science.gov (United States)

    Jeong, Wonje

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (T g) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  6. Synthesis of metronidazole-imprinted molecularly imprinted polymers by distillation precipitation polymerization and their use as a solid-phase adsorbent and chromatographic filler.

    Science.gov (United States)

    Liu, Jiang; Zhang, Lu; Li Han Song, Le; Liu, Yuan; Tang, Hui; Li, Yingchun

    2015-04-01

    Metronidazole-imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation-precipitation polymerization. The as-obtained polymers were characterized by Fourier-transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole-imprinted polymers were further applied as packing agents in solid-phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid-phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer-packed chromatographic column. The relative standard deviation of both methods was less than 6%. PMID:25594306

  7. Polylactic Acid-Based Polymer Blends for Durable Applications

    Science.gov (United States)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  8. Ferromagnetic composites with polymer matrix consisted of nanocrystalline Fe-based filler

    Energy Technology Data Exchange (ETDEWEB)

    Nowosielski, Ryszard; Gramatyka, Paweł; Sakiewicz, Piotr; Babilas, Rafał, E-mail: rafal.babilas@polsl.pl

    2015-08-01

    Objective: The paper intends to present structural and magnetic behavior of ferromagnetic composites consisted of nanocrystalline powders obtained by annealing and milling of Fe{sub 78}Si{sub 9}B{sub 13} and Fe{sub 73,5}Cu{sub 1}Nb{sub 3}Si{sub 13,5}B{sub 9} metallic glasses. Methods: The as-cast ribbons were subsequently milled using a high-energy ball mill. The prepared powders were separated into fractions with a particle mean diameter range of 200–500 µm, 75–200 µm and 25–75 µm and then annealed to obtain the nanocrystalline powder materials. The powder particles were mixed and consolidated with a polymer to obtain composites in the form of the toroidal cores. The following experimental techniques were used: scanning and transmission electron microscopy, X-ray diffraction and vibration sample magnetometry. Results: The analysis of magnetic properties of the powders and the composites prepared from the powders revealed that the preparation process caused significant decrease in magnetic properties in a relation to ribbons in as-cast state. Conclusion: The structure and magnetic properties of the examined materials could be improved by means of a right choice of milling time as well as a thermal treatment and by a decrease of the demagnetization effect. Practice implications: The amorphous and nanocrystalline powders obtained by a milling of metallic glasses are an alternative to solid alloys and make it possible to obtain the ferromagnetic nanocomposites with controlled magnetic properties. - Highlights: • Soft magnetic composites consisting nanocrystalline powders were obtained. • Amorphous Fe{sub 78}Si{sub 9}B{sub 13} and Fe{sub 73,5}Cu{sub 1}Nb{sub 3}Si{sub 13,5}B{sub 9} ribbons were milled. • Powders particles were consolidated with polymer to obtain toroidal composites. • Magnetic properties could be formed by milling and annealing parameters. • Polymer nanocomposites with Fe-based powders are an alternative to solid alloys.

  9. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  10. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    Science.gov (United States)

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  11. Modeling Physical Stability of Amorphous Solids Based on Temperature and Moisture Stresses.

    Science.gov (United States)

    Zhu, Donghua Alan; Zografi, George; Gao, Ping; Gong, Yuchuan; Zhang, Geoff G Z

    2016-09-01

    Isothermal microcalorimetry was utilized to monitor the crystallization process of amorphous ritonavir (RTV) and its hydroxypropylmethylcellulose acetate succinate-based amorphous solid dispersion under various stressed conditions. An empirical model was developed: ln(τ)=ln(A)+EaRT-b⋅wc, where τ is the crystallization induction period, A is a pre-exponential factor, Ea is the apparent activation energy, b is the moisture sensitivity parameter, and wc is water content. To minimize the propagation of errors associated with the estimates, a nonlinear approach was used to calculate mean estimates and confidence intervals. The physical stability of neat amorphous RTV and RTV in hydroxypropylmethylcellulose acetate succinate solid dispersions was found to be mainly governed by the nucleation kinetic process. The impact of polymers and moisture on the crystallization process can be quantitatively described by Ea and b in this Arrhenius-type model. The good agreement between the measured values under some less stressful test conditions and those predicted, reflected by the slope and R(2) of the correlation plot of these 2 sets of data on a natural logarithm scale, indicates its predictability of long-term physical stability of amorphous RTV in solid dispersions. To further improve the model, more understanding of the impact of temperature and moisture on the amorphous physical stability and fundamentals regarding nucleation and crystallization is needed.

  12. Modeling Physical Stability of Amorphous Solids Based on Temperature and Moisture Stresses.

    Science.gov (United States)

    Zhu, Donghua Alan; Zografi, George; Gao, Ping; Gong, Yuchuan; Zhang, Geoff G Z

    2016-09-01

    Isothermal microcalorimetry was utilized to monitor the crystallization process of amorphous ritonavir (RTV) and its hydroxypropylmethylcellulose acetate succinate-based amorphous solid dispersion under various stressed conditions. An empirical model was developed: ln(τ)=ln(A)+EaRT-b⋅wc, where τ is the crystallization induction period, A is a pre-exponential factor, Ea is the apparent activation energy, b is the moisture sensitivity parameter, and wc is water content. To minimize the propagation of errors associated with the estimates, a nonlinear approach was used to calculate mean estimates and confidence intervals. The physical stability of neat amorphous RTV and RTV in hydroxypropylmethylcellulose acetate succinate solid dispersions was found to be mainly governed by the nucleation kinetic process. The impact of polymers and moisture on the crystallization process can be quantitatively described by Ea and b in this Arrhenius-type model. The good agreement between the measured values under some less stressful test conditions and those predicted, reflected by the slope and R(2) of the correlation plot of these 2 sets of data on a natural logarithm scale, indicates its predictability of long-term physical stability of amorphous RTV in solid dispersions. To further improve the model, more understanding of the impact of temperature and moisture on the amorphous physical stability and fundamentals regarding nucleation and crystallization is needed. PMID:27185539

  13. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  14. INVESTIGATION OF STRUCTURE AND PROPERTIES FOR POLYMER SYSTEMS BASED ON DYNAMIC RHEOLOGICAL APPROACHES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Min Zuo

    2005-01-01

    The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems, due to its sensitive response to changes of structure for these heterogeneous polymers. In the present article, recent progresses in the studies on dynamic theology for heterogeneous polymer systems including polymeric composites filled with inorganic particles, thermo-oxidized polyolefins, phaseseparated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed, mainly depending on the results by the authors' group. By means of rheological measurements, not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained, the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials.

  15. Testing of the structure of macromolecular polymer films containing solid active pharmaceutical ingredient (API) particles

    Energy Technology Data Exchange (ETDEWEB)

    Boelcskei, E. [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary); Suevegh, K. [Laboratory of Nuclear Chemistry, Eoetvoes Lorand University, H-1518 Budapest 112, P.O. Box 32 (Hungary); Marek, T. [Hungarian Academy of Sciences, Research Group for Nuclear Techniques in Structural Chemistry, Eoetvoes Lorand University, H-1518 Budapest 112, P.O. Box 32 (Hungary); Regdon, G. [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary); Pintye-Hodi, K., E-mail: klara.hodi@pharm.u-szeged.h [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary)

    2011-07-15

    The aim of the present study was to investigate the structure of free films of Eudragit{sup L} 30D-55 containing different concentrations (0%, 1% or 5%) of diclofenac sodium by positron annihilation spectroscopy. The data revealed that the size of the free-volume holes and the lifetimes of ortho-positronium atoms decreased with increase of the API concentration. Films containing 5% of the API exhibited a different behavior during storage (17 {sup o}C, 65% relative humidity (RH)) in consequence of the uptake of water from the air. -- Highlights: {yields} The aim of the present study was to investigate the structure of free films of Eudragit{sup L} 30D-55 containing different concentrations (0%, 1% or 5%) of diclofenac sodium by positron annihilation spectroscopy. {yields} The data revealed that the size of the free-volume holes and the lifetimes of ortho-positronium atoms decreased with increase of the API concentration (). {yields} The API distorts the original polymer structure, but as time goes by, the metastable structure relaxes and it is almost totally restored after 3 weeks of storage (17 {sup o}C, 65% RH).

  16. PREPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    R.K.Mishra; A.Anis; S.Mondal; M.Dutt; A.K.Banthia

    2009-01-01

    The work presents the synthesis and characterization of ami dated pectin(AP)based polymer electrolyte membranes(PEM)crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA)and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(YM and YN)are calculated based on the results of organic elemental analysis.FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands.XRD pattern of membranes clearly indicates that there is a considerable increase in crystallinity as compared to parent pectin.TGA studies indicate that AP is less thermally stable than reference pectin.A maximum room temperature conductivity of 1.098×10-3 Scm-1 is obtained in the membrane,which is designated as AP-3.These properties make them good candidates for low cost biopolymer electrolyte membranes for fuel cell applications.

  17. Selective mixed-bed solid phase extraction of atrazine herbicide from environmental water samples using molecularly imprinted polymer.

    Science.gov (United States)

    Zarejousheghani, Mashaalah; Fiedler, Petra; Möder, Monika; Borsdorf, Helko

    2014-11-01

    A novel approach for the selective extraction of organic target compounds from water samples has been developed using a mixed-bed solid phase extraction (mixed-bed SPE) technique. The molecularly imprinted polymer (MIP) particles are embedded in a network of silica gel to form a stable uniform porous bed. The capabilities of this method are demonstrated using atrazine as a model compound. In comparison to conventional molecularly imprinted-solid phase extraction (MISPE), the proposed mixed-bed MISPE method in combination with gas chromatography-mass spectrometry (GC-MS) analysis enables more reproducible and efficient extraction performance. After optimization of operational parameters (polymerization conditions, bed matrix ingredients, polymer to silica gel ratio, pH of the sample solution, breakthrough volume plus washing and elution conditions), improved LODs (1.34 µg L(-1) in comparison to 2.25 µg L(-1) obtained using MISPE) and limits of quantification (4.5 µg L(-1) for mixed-bed MISPE and 7.5 µg L(-1) for MISPE) were observed for the analysis of atrazine. Furthermore, the relative standard deviations (RSDs) for atrazine at concentrations between 5 and 200 µg L(-1) ranged between 1.8% and 6.3% compared to MISPE (3.5-12.1%). Additionally, the column-to-column reproducibility for the mixed-bed MISPE was significantly improved to 16.1%, compared with 53% that was observed for MISPE. Due to the reduced bed-mass sorbent and at optimized conditions, the total amount of organic solvents required for conditioning, washing and elution steps reduced from more than 25 mL for conventional MISPE to less than 2 mL for mixed-bed MISPE. Besides reduced organic solvent consumption, total sample preparation time of the mixed-bed MISPE method relative to the conventional MISPE was reduced from more than 20 min to less than 10 min. The amount of organic solvent required for complete elution diminished from 3 mL (conventional MISPE) to less than 0.4 mL with the mixed

  18. Ferulic Acid-Based Polymers with Glycol Functionality as a Versatile Platform for Topical Applications.

    Science.gov (United States)

    Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E

    2015-09-14

    Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products. PMID:26258440

  19. Characterization of particle morphology of biochanin A molecularly imprinted polymers and their properties as a potential sorbent for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowska, Anna M.; Poliwoda, Anna, E-mail: Anna.Poliwoda@uni.opole.pl; Wieczorek, Piotr P.

    2015-04-01

    Molecularly imprinted polymers (MIPs) with biochanin A as a template were obtained using a bulk polymerization with non-covalent imprinting approach. The polymers were prepared in acetonitrile as porogen, using ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The synthesis, with an application of 1′,1′-azobis(cyclohexanecarbonitrile) (ACHN) as an initiator, has been performed thermally. During the synthesis process the effect of different functional monomers such as methacrylic acid (MAA), acrylamide (AA) and 4-vinylpyridine (4-VP) was investigated. The application of nitrogen sorption porosimetry, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) permitted the characterization and evaluation of synthesized polymers. The adsorption capacity of obtained MIPs was checked by using the binding testing. All synthesized polymers were evaluated as solid-phase extraction (SPE) sorbents for isolation and preconcentration of biochanin A and its analogues, daidzein and genistein. The MIPs exhibited higher affinity for biochanin A over competitive compounds. - Highlights: • The molecularly imprinted polymers with biochanin A as a template were synthesized. • The surface of synthesized monoliths was formed mainly from mesopores (73–77%). • Biochanin A was effectively concentrated in each of the synthesized polymers (recovery > 89.8%). • The results show potential ability of synthesized MIPs in analysis of phytoestrogens in real samples.

  20. Solid-State Nanopore-Based DNA Sequencing Technology

    Directory of Open Access Journals (Sweden)

    Zewen Liu

    2016-01-01

    Full Text Available The solid-state nanopore-based DNA sequencing technology is becoming more and more attractive for its brand new future in gene detection field. The challenges that need to be addressed are diverse: the effective methods to detect base-specific signatures, the control of the nanopore’s size and surface properties, and the modulation of translocation velocity and behavior of the DNA molecules. Among these challenges, the realization of the high-quality nanopores with the help of modern micro/nanofabrication technologies is a crucial one. In this paper, typical technologies applied in the field of solid-state nanopore-based DNA sequencing have been reviewed.

  1. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  2. Study of soybean oil-based polymers for controlled release anticancer drugs

    Science.gov (United States)

    Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...

  3. Synthesis and characterization of thiolated polymers based on polyhydroxyethylakrylate and 3-mercaptopropylmethoxysilane

    Directory of Open Access Journals (Sweden)

    G. Irmukhametova

    2012-03-01

    Full Text Available In the presented paper thiolated polymer based on nonionic polyhydroxyethylmethacrylate (PHEMA and 3-mercaptopropyltrimethoxysilane (MPTS was obtained and characterized. Results of Raman-spectroscopy and Elman’s assay showed the presence of thiol groups in the modified polymer.

  4. Designing polymers with sugar-based advantages for bioactive delivery applications.

    Science.gov (United States)

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  5. Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, Ian P; Webb, David J; Kalli, Kyriacos;

    2011-01-01

    Fibre Bragg grating (FBG) sensors have been fabricated in polymer photonic crystal fibre (PCF). Results are presented using two different types of polymer optical fibre (POF); first multimode PCF with a core diameter of 50μm based on poly(methyl methacrylate) (PMMA) and second, endlessly single m...

  6. Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ileperuma, O.A.; Somasunderam, S. [University of Peradeniya (Sri Lanka). Dept. of Chemistry; Dissanayake, M.A.K.L.; Bandara, L.R.A.K. [University of Peradeniya (Sri Lanka). Dept. of Physics

    2004-10-01

    Two types of photoelectrochemical (PEC) solar cells, FTO/TiO{sub 2}/dye/PAN, EC, PC, Pr{sub 4}N{sup +-}, I{sub 2}/Pt/FTO, and FTO/TiO{sub 2}/dye/PEO, EC, PC, KI/I{sub 2}{sup P}t /FTO have been fabricated using a PAN-based gel polymer electrolyte and a PEO-based plasticised polymer electrolyte. The PAN-based gel electrolyte, made of polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC) and tetrapropylammoniumiodide (Pr{sub 4}N{sup +-}) as the completing salt exhibited a room temperature conductivity of 2.9 x 10{sup -1} S m{sup -1} for the composition, PAN (13%):EC (31%):PC (45%):Pr{sub 4}N{sup +}I{sup -} (7%):I{sub 2} (4%) by weight ratio. The PEO-based polymer electrolyte had a conductivity of 2.2 x 10{sup -3} S cm{sup -1} for the composition PEO (37.5%):EC (37.5%):PC (20.7%):KI (3.9%):12 (0.4%). These solar cells have been characterised using current-voltage characteristics and action spectra. The PAN-based solar cells had an overall quantum efficiency of 2.3%. However, the PEO-based solar cells had an overall quantum efficiency of only 0.6%. (author)

  7. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    Science.gov (United States)

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization. PMID:27424262

  8. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    Science.gov (United States)

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization.

  9. Polylactic Acid-Based Polymer Blends for Durable Applications

    Science.gov (United States)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  10. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    Science.gov (United States)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  11. A newly developed simultaneous SANS/FTIR measuring system for structural study on polymer solid states

    International Nuclear Information System (INIS)

    Small angle neutron scattering (SANS) is a powerful and convenient method to investigate the higher order structure of static polymer systems. SANS has increased its presence even in the research concerning time-dependent structural evolution. Although we have employed timeresolved SANS (TR-SANS) for the study on syndiotactic polystyrene (sPS) cocrystals so far, exploiting the large difference in molecular scattering length between fully deuterated and protonated compounds, recently we have tried to develop a new measuring system, which combine TR-SANS with the merit of FTIR spectroscopy, i.e., high potential of quantitative analysis of chemical constituents and high sensitivity to local structures such as chemical structure and molecular conformation, to enrich structural information and interpret SANS data in a more reliable manner. In this paper, we would like to introduce the simultaneous timeresolved SANS and FTIR (STR-SANS/FTIR) system and its application to sPS cocrystals. Fig 1(left) shows schematically our STR-SANS/FTIR measurement system, composed of an FTIR spectrometer and our own designed optical system, which enables the IR radiation and the neutron beam to impinge the sample film coaxially. The device was installed on a small-angle neutron diffractometer KWS2 at MLZ, as shown Fig. 1 (middle). The structural changes in a cocrystal of deuterated sPS (d-sPS) with triethylene glycol dimethyl ether (TEGDME) during the course of heating were followed with this system. Fig. 1(right) reproduces the changes in SANS 2D images and FTIR spectra measured in parallel. As for SANS images, the two lamellar reflections gradually decreased in intensity as the temperature increased and then increased slowly above 100°C. The infrared bands due to TEGDME significantly decreased in intensity, whereas the bands due to d-sPS remained almost unchanged. The information obtained by combining the SANS and FTIR data will be presented at the conference.

  12. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays.

    Science.gov (United States)

    Hahm, Jong-in

    2014-08-26

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein-surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format.

  13. Optimal Control of Polymer Flooding Based on Maximum Principle

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  14. Synthesis and study of novel silicon-based unsaturated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  15. Stimulus-responsive hydrogels based on associative polymers

    DEFF Research Database (Denmark)

    Hietala, Sami; Hvilsted, Søren; Jankova Atanasova, Katja;

    2008-01-01

    enables design of novel associating polymers. Two different stimuli-responsive hydrogel systems will be discussed. Poly(N-isopropylacrylamide) (PNIPAM) has attracted attention due to its sharp and reversible transition behavior and well-defined demixing temperature in aqueous medium. This however only...... have been synthesized. l The properties of aqueous solutions and hydrogels of these stereoblock copolymers were studied with respect to the molecular characteristics, ego order ofthe blocks, block lengths and molecular weight.2 Atom transfer radical polymerization (ATRP) was used in the synthesis of 4....... The resulting hydrogels were studied with respect to the polymer concentration, temperature and ionic strength.3 REFERENCES 1. Nuopponen M.; Kalliomaki K.; Laukkanen A.; Hietala S.; Tenhu H. 1. Polym. Sci. Polym. Chern. 2008, 46, 38-46. 2. Hietala S.; Nuopponen M.; Kalliomaki K.; Tenhu H. Macromolecules...

  16. Shape memory-based tunable resistivity of polymer composites

    Science.gov (United States)

    Luo, Hongsheng; Zhou, Xingdong; Ma, Yuanyuan; Yi, Guobin; Cheng, Xiaoling; Zhu, Yong; Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang

    2016-02-01

    A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (Rs) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The Rs-strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent Rs was disclosed. The findings provided a new avenue to tailor the conductivity of the polymeric nano-composites by combining the composition method and a thermo-mechanical programming, which may greatly benefit the application of intelligent polymers in flexible electronics and sensors fields.

  17. Investigation of polymer electrolyte based on agar and ionic liquids

    Directory of Open Access Journals (Sweden)

    M. M. Silva

    2012-12-01

    Full Text Available The possibility to use natural polymer as ionic conducting matrix was investigated in this study. Samples of agarbased electrolytes with different ionic liquids were prepared and characterized by physical and chemical analyses. The ionic liquids used in this work were 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][C2SO4], 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc] and trimethyl-ethanolammonium acetate, [Ch][OAc]. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction, scanning electron microscopy and Fourier Transform infrared spectroscopy. Electrolyte samples are thermally stable up to approximately 190°C. All the materials synthesized are semicrystalline. The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. The preliminary studies carried out with electrochromic devices (ECDs incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of ‘smart windows’, as well as ECD-based devices.

  18. Electroencephalogram measurement using polymer-based dry microneedle electrode

    Science.gov (United States)

    Arai, Miyako; Nishinaka, Yuya; Miki, Norihisa

    2015-06-01

    In this paper, we report a successful electroencephalogram (EEG) measurement using polymer-based dry microneedle electrodes. The electrodes consist of needle-shaped substrates of SU-8, a silver film, and a nanoporous parylene protective film. Differently from conventional wet electrodes, microneedle electrodes do not require skin preparation and a conductive gel. SU-8 is superior as a structural material to poly(dimethylsiloxane) (PDMS; Dow Corning Toray Sylgard 184) in terms of hardness, which was used in our previous work, and facilitates the penetration of needles through the stratum corneum. SU-8 microneedles can be successfully inserted into the skin without breaking and could maintain a sufficiently low skin-electrode contact impedance for EEG measurement. The electrodes successfully measured EEG from the frontal pole, and the quality of acquired signals was verified to be as high as those obtained using commercially available wet electrodes without any skin preparation or a conductive gel. The electrodes are readily applicable to record brain activities for a long period with little stress involved in skin preparation to the users.

  19. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    Science.gov (United States)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  20. Soft linear electroactive polymer actuators based on polypyrrole

    OpenAIRE

    Maziz, Ali; Khaldi, Alexandre; Persson, Nils-Krister; Jager, Edwin

    2015-01-01

    There is a growing demand for human-friendly robots that can interact and work closely with humans. Such robots need to be compliant, lightweight and equipped with silent and soft actuators. Electroactive polymers such as conducting polymers (CPs) are “smart” materials that deform in response to electrical simulation and are often addressed as artificial muscles due to their functional similarity with natural muscles. They offer unique possibilities and are perfect candidates for such actuato...