WorldWideScience

Sample records for based sinusoidal pulse

  1. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation

    Science.gov (United States)

    Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan

    2016-01-01

    This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic

  2. Comparative study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) based three phase voltage source inverters for variable speed drive

    Science.gov (United States)

    Ahmed, Waheed; Usman Ali, Syed M.

    2013-12-01

    We have performed comparative studies of Space Vector Pulse Width Modulation (SVPWM) and Sinusoidal Pulse Width Modulation (SPWM) techniques utilizing MATLAB tools. During these investigations, we carried out intensive simulations, comprehensively analyzed the obtained results and compared the harmonic density, power factor (PF), & switching losses of SVPWM and SPWM. It has been observed during investigations that if the switching frequency is high then losses due to harmonics are negligible, thus based on obtained results we suggested that the SVPWM technique is a more reliable solution. Because SVPWM utilizes DC bus voltage more efficiently, generates less Total Harmonic Distortion (THD) and has higher output quality it provides flexible control of output voltage and output frequency for Variable Speed Drive (VSD).

  3. New Approaches for Channel Prediction Based on Sinusoidal Modeling

    Directory of Open Access Journals (Sweden)

    Ekman Torbjörn

    2007-01-01

    Full Text Available Long-range channel prediction is considered to be one of the most important enabling technologies to future wireless communication systems. The prediction of Rayleigh fading channels is studied in the frame of sinusoidal modeling in this paper. A stochastic sinusoidal model to represent a Rayleigh fading channel is proposed. Three different predictors based on the statistical sinusoidal model are proposed. These methods outperform the standard linear predictor (LP in Monte Carlo simulations, but underperform with real measurement data, probably due to nonstationary model parameters. To mitigate these modeling errors, a joint moving average and sinusoidal (JMAS prediction model and the associated joint least-squares (LS predictor are proposed. It combines the sinusoidal model with an LP to handle unmodeled dynamics in the signal. The joint LS predictor outperforms all the other sinusoidal LMMSE predictors in suburban environments, but still performs slightly worse than the standard LP in urban environments.

  4. Effects of continuous-wave, pulsed, and sinusoidal-amplitude-modulated microwaves on brain energy metabolism.

    Science.gov (United States)

    Sanders, A P; Joines, W T; Allis, J W

    1985-01-01

    A comparison of the effects of continuous-wave, sinusoidal-amplitude-modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague-Dawley rats (175-225 g). Brain NADH fluorescence, adenosine triphosphate (ATP) concentration, and creatine phosphate (CP) concentration were determined as a function of modulation frequency. Brain temperatures of animals were maintained between -0.1 and -0.4 degrees C from the preexposure temperature when subjected to as much as 20 mW/cm2 (average power) CW, pulsed, or sinusoidal-amplitude modulated 591-MHz radiation for 5 min. Sinusoidal-amplitude-modulated exposures at 16-24 Hz showed a trend toward preferential modulation frequency response in inducing an increase in brain NADH fluorescence. The pulse-modulated and sinusoidal-amplitude-modulated (16 Hz) microwaves were not significantly different from CW exposures in inducing increased brain NADH fluorescence and decreased ATP and CP concentrations. When the pulse-modulation frequency was decreased from 500 to 250 pulses per second the average incident power density threshold for inducing an increase in brain NADH fluorescence increased by a factor of 4--ie, from about 0.45 to about 1.85 mW/cm2. Since brain temperature did not increase, the microwave-induced increase in brain NADH and decrease in ATP and CP concentrations was not due to hyperthermia. This suggests a direct interaction mechanism and is consistent with the hypothesis of microwave inhibition of mitochondrial electron transport chain function of ATP production.

  5. ISAR active jamming method based on sinusoidal modulation

    Institute of Scientific and Technical Information of China (English)

    Yu Zhang; Congfeng Liu; Yan Zhu

    2015-01-01

    It is potential y useful to perform deception or cover jamming using the rotating angular reflectors since they can form deception echoes along range and azimuth. Inspired by the cohe-rent jamming and micro-motion modulation, a novel active method is proposed for inverse synthetic aperture radar (ISAR). Radar pulses are sampled and frequency-modulated along azimuth by si-nusoidal signal, and then the jamming signals are retransmitted to the radar and the jamming images are induced after ISAR imaging. Therein, the jamming principle, key parameters and the jamming effect are discussed. The simulated data verify the effectiveness of the jamming method.

  6. Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection

    Science.gov (United States)

    Li, Gang; McDonald, Geoff L.; Zhao, Qing

    2017-01-01

    This paper presents a novel Sinusoidal Synthesis Based Adaptive Tracking (SSBAT) technique for vibration-based rotating machinery fault detection. The proposed SSBAT algorithm is an adaptive time series technique that makes use of both frequency and time domain information of vibration signals. Such information is incorporated in a time varying dynamic model. Signal tracking is then realized by applying adaptive sinusoidal synthesis to the vibration signal. A modified Least-Squares (LS) method is adopted to estimate the model parameters. In addition to tracking, the proposed vibration synthesis model is mainly used as a linear time-varying predictor. The health condition of the rotating machine is monitored by checking the residual between the predicted and measured signal. The SSBAT method takes advantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem into a linear adaptive problem in the time domain based on a state-space realization. It has low computation burden and does not need a priori knowledge of the machine under the no-fault condition which makes the algorithm ideal for on-line fault detection. The method is validated using both numerical simulation and practical application data. Meanwhile, the fault detection results are compared with the commonly adopted autoregressive (AR) and autoregressive Minimum Entropy Deconvolution (ARMED) method to verify the feasibility and performance of the SSBAT method.

  7. Phase extraction based on sinusoidal extreme strip phase shifting method

    Science.gov (United States)

    Hui, Mei; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    Multiple synthetic aperture imaging can enlarge pupil diameter of optical systems, and increase system resolution. Multiple synthetic aperture imaging is a cutting-edge topic and research focus in recent years, which is prospectively widely applied in fields like astronomical observations and aerospace remote sensing. In order to achieve good imaging quality, synthetic aperture imaging system requires phase extraction of each sub-aperture and co-phasing of whole aperture. In the project, an in-depth study about basic principles and methods of segments phase extraction was done. The study includes: application of sinusoidal extreme strip light irradiation phase shift method to extract the central dividing line to get segment phase extraction information, and the use of interference measurement to get the aperture phase extraction calibration coefficients of spherical surface. Study about influence of sinusoidal extreme strip phase shift on phase extraction, and based on sinusoidal stripe phase shift from multiple linear light sources of the illumination reflected image, to carry out the phase shift error for inhibiting the effect in the phase extracted frame.

  8. Rigorous analysis of the propagation of sinusoidal pulses in bacteriorhodopsin films.

    Science.gov (United States)

    Acebal, Pablo; Blaya, Salvador; Carretero, Luis; Madrigal, R F; Fimia, A

    2012-11-05

    The propagation of sinusoidal pulses in bacteriorhodopsin films has been theoretically analyzed using a complete study of the photoinduced processes that take into account all the physical parameters, the coupling of rate equations with the energy transfer equation and the temperature change during the experiment. The theoretical approach was compared to experimental data and a good concordance was observed. This theoretical treatment, can be widely applied, i.e when arbitrary pump and/or signal is used or in the case of the pump and signal beams have different wavelengths. Due to we have performed a rigorous analysis, from this treatment the corresponding two level approximation has also been analyzed for these systems.

  9. New Realizations of Single OTRA-Based Sinusoidal Oscillators

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chien

    2014-01-01

    Full Text Available This study proposes three new sinusoidal oscillators based on an operational transresistance amplifier (OTRA. Each of the proposed oscillator circuits consists of one OTRA combined with a few passive components. The first circuit is an OTRA-based minimum RC oscillator. The second circuit is capable of providing independent control on the condition of oscillation without affecting the oscillation frequency. The third circuit exhibits independent control of oscillation frequency through a capacitor. This study first introduces the OTRA and the related formulations of the proposed oscillator circuits, and then discusses the nonideal effects, sensitivity analyses, and frequency stability of the presented circuits. The proposed oscillators exhibit low sensitivities and good frequency stability. Because the presented circuits feature low impedance output, they can be connected directly to the next stage without cascading additional voltage buffers. HSPICE simulations and experimental results confirm the feasibility of the new oscillator circuits.

  10. A high current sinusoidal pulse generator for the diluter magnets of the LHC beam dump system

    CERN Document Server

    Vossenberg, Eugène B; Ducimetière, L; Schröder, G H

    2000-01-01

    CERN is constructing the Large Hadron Collider (LHC), a superconducting accelerator that will collide protons at a center of mass energy of 14 TeV. The two colliding beams will each store an energy of up to 540 MJ, which must be safely deposited within one beam revolution of 89 mu s on two external absorbers located about 700 m from the extraction points at the end of dedicated extraction tunnels. To avoid evaporation of the graphite absorber material by the very high energy density of the incident beams, the deposition area of the beams on the absorber front face will be increased. This is done by a pair of sinusoidally powered orthogonal magnet systems producing approximately an e-shape figure of about 35 mm diameter, with a minimum velocity of 10 mm/ mu s during the dumping process. The pulse generators of the horizontally and vertically deflecting diluter magnets are composed of capacitor banks, discharged by stacks of solid state closing switches. They are connected to the magnets by 28 m long low induct...

  11. Automatic Frequency Identification under Sample Loss in Sinusoidal Pulse Width Modulation Signals Using an Iterative Autocorrelation Algorithm

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2016-08-01

    Full Text Available In this work, we present a simple algorithm to calculate automatically the Fourier spectrum of a Sinusoidal Pulse Width Modulation Signal (SPWM. Modulated voltage signals of this kind are used in industry by speed drives to vary the speed of alternating current motors while maintaining a smooth torque. Nevertheless, the SPWM technique produces undesired harmonics, which yield stator heating and power losses. By monitoring these signals without human interaction, it is possible to identify the harmonic content of SPWM signals in a fast and continuous manner. The algorithm is based in the autocorrelation function, commonly used in radar and voice signal processing. Taking advantage of the symmetry properties of the autocorrelation, the algorithm is capable of estimating half of the period of the fundamental frequency; thus, allowing one to estimate the necessary number of samples to produce an accurate Fourier spectrum. To deal with the loss of samples, i.e., the scan backlog, the algorithm iteratively acquires and trims the discrete sequence of samples until the required number of samples reaches a stable value. The simulation shows that the algorithm is not affected by either the magnitude of the switching pulses or the acquisition noise.

  12. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge

    Science.gov (United States)

    Zhang, Shuai; Wang, Wen-chun; Jiang, Peng-chao; Yang, De-zheng; Jia, Li; Wang, Sen

    2013-10-01

    In this paper, atmospheric pressure air discharge plasma in quartz tube is excited by 15 ns high-voltage nanosecond pulsed discharge (HVNPD) and sinusoidal alternating current discharge (SACD), respectively, and a comparison study of these two kinds of discharges is made through visual imaging, electrical characterization, optical detection of active species, and plasma gas temperature. The peak voltage of the power supplies is kept at 16 kV while the pulse repetition rate of nanosecond pulse power supply is 100 Hz, and the frequency of sinusoidal power supply is 10 kHz. Results show that the HVNPD is uniform while the SACD presents filamentary mode. For exciting the same cycles of discharge, the average energy consumption in HVNPD is about 1/13 of the SACD. However, the chemical active species generated by the HVNPD is about 2-9 times than that excited by the SACD. Meanwhile, the rotational and vibrational temperatures have been obtained via fitting the simulated spectrum of N2 (C3Πu → B3Πg, 0-2) with the measured one, and the results show that the plasma gas temperature in the HVNPD remains close to room temperature whereas the plasma gas temperature in the SACD is about 200 K higher than that in HVNPD in the initial phase and continually increases as discharge exposure time goes on.

  13. Direct Vector Control of Induction Motor Based on Sinusoidal PWM Inverter with Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Nirban Chakraborty

    2014-04-01

    Full Text Available This paper presents the speed control scheme of direct vector control of Induction Motor drive (IM drive. The Fuzzy logic controller is (FLC used as the controller part here for the direct vector control of Induction Motor using Sinusoidal PWM Inverter (SPWM. Fuzzy logic controller has become a very popular controlling scheme in the field of Industrial application. The entire module of this IM is divided into several parts such as IM body module, Inverter module, coordinate transformation module and Sinusoidal pulse width modulation (SPWM production module and so on. With the help of this module we can analyze a variety of different simulation waveforms, which provide an effective means for the analysis and design of the IM control system using FLC technique.

  14. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias

    Science.gov (United States)

    Opaits, Dmitry F.; Likhanskii, Alexandre V.; Neretti, Gabriele; Zaidi, Sohail; Shneider, Mikhail N.; Miles, Richard B.; Macheret, Sergey O.

    2008-08-01

    Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.

  15. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to vibration based fault detection

    Science.gov (United States)

    Li, Gang; Zhao, Qing

    2017-03-01

    In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.

  16. Efficient Maximum Likelihood Estimation of a 2-D Complex Sinusoidal Based on Barycentric Interpolation

    CERN Document Server

    Selva, J

    2011-01-01

    This paper presents an efficient method to compute the maximum likelihood (ML) estimation of the parameters of a complex 2-D sinusoidal, with the complexity order of the FFT. The method is based on an accurate barycentric formula for interpolating band-limited signals, and on the fact that the ML cost function can be viewed as a signal of this type, if the time and frequency variables are switched. The method consists in first computing the DFT of the data samples, and then locating the maximum of the cost function by means of Newton's algorithm. The fact is that the complexity of the latter step is small and independent of the data size, since it makes use of the barycentric formula for obtaining the values of the cost function and its derivatives. Thus, the total complexity order is that of the FFT. The method is validated in a numerical example.

  17. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  18. A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting

    Science.gov (United States)

    Jan, Chia-Ming; Lin, Ying-Chieh

    2016-03-01

    This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.

  19. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  20. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings.

    Science.gov (United States)

    Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2016-08-01

    A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.

  1. Study of the dead-time based on a unipolar modulating sinusoidal pulse amplitude modulation photovoltaic inverter%基于单极调制的正弦脉宽幅度调制光伏逆变器死区时间的研究

    Institute of Scientific and Technical Information of China (English)

    董志意; 崔玉龙; 卢冲; 李连玉

    2011-01-01

    According to the switching characteristics of a power switch, we propose a method of setting the deadtime during the phase conversion of a sinusoidal fundamental wave and study the effect of this dead-time on the output voltage wave of a sinusoidal pulseamplitude modulation (SPWM) photovoltaic inverter with unipolar modulation. It was found that the output voltage waveform was improved, and the output voltage waveform distortion was lower. The results were validated by Matlab/simulink.%针对死区时间对单极调制的正弦脉宽幅度调制(SPWM)光伏逆变器输出电压波形的影响,根据开关管的开关特性,提出了在正弦基波换相处设置死区时间的方法,并对死区时间的计算给出理论推导.最后通过Matlab/simulink仿真验证,该方法可以获得良好的输出电压波形,有效地降低输出电压波形失真度.

  2. Research on Internal Relation Between Virtual Space Vector Pulse Width Modulation Strategy and Carrier Sinusoidal Pulse Width Modulation Strategy for Three-Level Neutral Point Clamped Converter%三电平NPC变流器虚拟空间矢量调制策略与载波调制策略的内在关系研究

    Institute of Scientific and Technical Information of China (English)

    李宁; 王跃; 蒋应伟; 雷万钧; 王兆安

    2014-01-01

    分析了虚拟空间矢量调制(virtual space vector pulse width modulation,VSVPWM)策略的基本原理,推导了三电平 VSVPWM 策略与单相双调制波三电平正弦脉冲宽度调制(sinusoidal pulse width modulation,SPWM)策略的内在联系,建立了两者间的调制波等效关系。应用调制波等效关系分析了 VSVPWM 策略的输出电压总谐波畸变率(total harmonic distortion,THD)、直流电压利用率和开关器件损耗。最后,提出了基于调制波等效关系的三电平VSVPWM快速实现方案。仿真和实验结果验证了理论分析的正确性。%In the modulation strategies for three-level NPC converter, neutral point voltage control under the entire modulation index and full power factor can be achieved by virtual space vector pulse width modulation (VSVPWM) strategy. In this paper the basic principle of VSVPWM is analyzed, then the internal relation between three-level VSVPWM strategy and single-phase dual modulation based three-level sinusoidal pulse width modulation (SPWM) strategy is derived and the modulation-wave equivalence between the two modulation strategies is established. Using the established modulation-wave equivalent relation, the total harmonic distortion (THD) of output voltage, DC voltage utilization rate and switch device losses under VSVPWM strategy are analyzed. Finally, a fast implementation of three-level VSVPWM strategy based on modulation-wave equivalence is proposed. The correctness of the theoretical analysis is verified by both results from simulation and experiments.

  3. Certain investigations on the reduction of side lobe level of an uniform linear antenna array using biogeography based optimization technique with sinusoidal migration model and simplified-BBO

    Indian Academy of Sciences (India)

    T S Jeyali Laseetha; R Sukanesh

    2014-02-01

    In this paper, we propose biogeography based optimization technique, with linear and sinusoidal migration models and simplified biogeography based optimization (S-BBO), for uniformly spaced linear antenna array synthesis to maximize the reduction of side lobe level (SLL). This paper explores biogeography theory. It generalizes two migration models in BBO namely, linear migration model and sinusoidal migration model. The performance of SLL reduction in ULA is investigated. Our performance study shows that among the two, sinusoidal migration model is a promising candidate for optimization. In our work, simplified – BBO algorithmis also deployed. This determines an optimum set value for amplitude excitations of antenna array elements that generate a radiation pattern with maximum side lobe level reduction. Our detailed investigation also shows that sinusoidal migration model of BBO performs better compared to the other evolutionary algorithms discussed in this paper.

  4. Shock Characteristics of Tilted Support Spring System with Critical Components under the Action of Semi-sinusoid Pulse%半正弦脉冲激励下斜支承系统易损件冲击特性

    Institute of Scientific and Technical Information of China (English)

    陈安军

    2012-01-01

    The nonlinear dynamical equations of tilted support spring system with critical components were established under the action of semi-sinusoidal pulse, and the equations were solved using Runge-Kulla method. The shock response characteristics of the critical components were obtained and analyzed. To evaluate the shock, a new concept of shock response spectra was proposed. The ratio of the maximum shock response acceleration of the critical components to the peak pulse acceleration and the dimensionless pulse duration were employed as the basic parameters of the shock response spectra. Based on the numerical results, the effects of the peak pulse acceleration, the dimensionless pulse duration, the angle of the tilted support spring and the frequency ratio of the system on the shock response were discussed. It is shown that the effects of the angle of the tilted support spring and the frequency ratio of the system are particularly noticeable. By increasing frequency ratio of the system, the maximum shock response acceleration of the critical components can be obviously decreased, while the peak of the shock response of the critical components can be decreased by increasing mass ratio at low frequency ratio.%以考虑易损件的斜支承弹簧系统为研究对象,建立系统几何非线性动力学方程,利用龙格-库塔法对易损件冲击响应特性进行数值分析.以易损件加速度响应峰值与脉冲激励幅值之比为易损件在半正弦波脉冲激励作用下的响应指标,无量纲脉冲激励时间作为变量,构建易损件的冲击响应谱.通过数值分析讨论脉冲激励幅值、脉冲激励时间、系统支承角以及频率比等对易损件冲击响应的影响规律.研究表明,系统支撑角、频率比等对易损件冲击响应影响显著,增加频率比可使易损件加速度响应峰值明显降低,低频率比条件下增大质量比可抑制易损件加速度响应峰值.

  5. Synthesis of Voltages of Multiple Uniform PWM, Generated by Trapezoidal and Sinusoidal Functions

    Directory of Open Access Journals (Sweden)

    A. Ctryzhniou

    2013-01-01

    Full Text Available The problem of synthesis and qualitative estimation of the harmonic composition of voltages of multiple uniform PWM pulses generated by trapezoidal and sinusoidal functions is considered. Analytical expressions for PWM pulses parameters ai  and ti have been received and they can be used for program-based generation of multiple uniform PWM, determination of n-harmonic magnitude in pulse-width regulation and AC motor operation simulation.

  6. Enhanced Disturbance-Observer-Based Control for a Class of Time-Delay System with Uncertain Sinusoidal Disturbances

    Directory of Open Access Journals (Sweden)

    Xinyu Wen

    2013-01-01

    Full Text Available This paper is concerned with disturbance-observer-based control (DOBC for a class of time-delay systems with uncertain sinusoidal disturbances. The disturbances are decomposed as precise and uncertain parts using nonlinear disturbance observer (DO after appropriate coordinate transformation. And then the two parts can be compensated by corresponding controller, respectively, such that the classic DOBC method is extended to uncertain disturbance rejection. One novel feature of the proposed method is that even if the precise disturbance parameters are inaccessible, the merits of DOBC can be inherited. By integrating the disturbance observers with feedback control laws with time delay, the disturbances can be rejected and the desired dynamic performances can be guaranteed. Finally, simulations for a flight control system are given to demonstrate the effectiveness of the results.

  7. FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter

    CERN Document Server

    Singh, S N

    2010-01-01

    With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

  8. Fokker-Planck and Fortet equation-based parameter estimation for a leaky integrate-and-fire model with sinusoidal and stochastic forcing

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    Analysis of sinusoidal noisy leaky integrate-and-fire models and comparison with experimental data are important to understand the neural code and neural synchronization and rhythms. In this paper, we propose two methods to estimate input parameters using interspike interval data only. One is based...

  9. Linear sinusoidal phase-shifting method resistant to non-sinusoidal phase error

    Institute of Scientific and Technical Information of China (English)

    Haihua Cui; Wenhe Liao; Ning Dai; Xiaosheng Cheng

    2012-01-01

    Non-sinusoidal phase error is common in structured light three-dimensional (3D) shape measurement system, thus we perform theoretical and experimental analyses of such error. The number of non-sinusoidal waveform errors in a 2tt phase period is the same as the number of steps of the phase-shifting algorithm; no errors occur within the one-phase period. Based on our findings, a new structured light method, the linear sinusoidal phase-shifting method (LSPS), that is resistant to non-sinusoidal phase error is proposed. Experiments show that the non-sinusoidal waveform error is reduced to an almost negligible level (0.001 rad) using the proposed LSPS.%Non-sinusoidal phase error is common in structured light three-dimensional (3D) shape measurement system,thus we perform theoretical and experimental analyses of such error.The number of non-sinusoidal waveform errors in a 2π phase period is the same as the number of steps of the phase-shifting algorithm; no errors occur within the one-phase period.Based on our findings,a new structured light method,the linear sinusoidal phase-shifting method (LSPS),that is resistant to non-sinusoidal phase error is proposed.Experiments show that the non-sinusoidal waveform error is reduced to an almost negligible level (0.001 rad)using the proposed LSPS.

  10. Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory

    Science.gov (United States)

    Arani, A. Ghorbanpour; Jalaei, M. H.

    2017-02-01

    This research aims to investigate the influence of a longitudinal magnetic field on the dynamic response of single-layered graphene sheet (SLGS) resting on viscoelastic foundation based on the nonlocal sinusoidal shear deformation theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanoplate, and does not require shear correction factors. The material properties of graphene sheet are assumed orthotropic viscoelastic using Kelvin-Voigt model. Utilizing Hamilton's principle governing equations of motion are derived and solved analytically. The parametric study is conducted, focusing on the remarkable effects of the magnetic field, structural damping, stiffness and damping coefficient of the foundation, nonlocal parameter, aspect ratio and length to thickness ratio on the dynamic response of the SLGS. Results indicate that the longitudinal magnetic field exerted on the SLGS decreases the amplitude of dynamic response. In addition, it is observed that the magnetic field effect on the dynamic response is more distinguished as the nonlocal parameter increases while by increasing the foundation and structural damping coefficients, this effect diminishes. The results of this study can be used in design and manufacturing of nanomechanical devices in the presence of magnetic field as a parametric controller.

  11. Prosodic Modification of Chinese Speech Based on Sinusoidal Model%基于正弦模型的汉语语音的韵律修正

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Modification on time-scale and pitch-scale of Chinese syllable based on sinusoidal model is presented in this paper. Firstly,the short-term speech is decomposed into a sum of sinusoidal waves of different magnitudes and phases. Then vocal tractsystem and excitation are obtained using a homomophic technique.Lastly, the speech with desired time-scale and pitch-scale is obtained through the change of frequency and phase of excitation while the parameters of vocal tract system are changed accordingly. The results show that the adjustable scale of pitch and time-scale is big using this algorithm and it is suitable to be used in analysis and synthesis of Chinese speech.

  12. COMPUTER BASED HEART PULSES MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Ali N. Hamoodi

    2013-05-01

    Full Text Available In this work the measurement and displays of blood oxygen saturation and pulse rate are investigated practically using computer.The analysis involves the variation in blood oxygen saturation ratio and pulse rate. The results obtained are compared with kontron pulse oximeter 7840 device. The value obtained for the same person pulse rate is approximately equal to that obtained by the konton pulse oximeter 7840 device. The sensor used in this work is the finger clip.The advantages of using computer over kontron pulse oximeter 7840 device is that the data of the patient can be saved in the computer for many years and also it can be display at any time so that the doctor get file contains all data for each patient. 

  13. Sinusoidal oscillators with lower gain requirements at higher frequencies based on an explicit tanh(x) nonlinearity

    KAUST Repository

    Elwakil, Ahmed S.

    2009-04-28

    Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.

  14. Fokker-Planck and Fortet equation-based parameter estimation for a leaky integrate-and-fire model with sinusoidal and stochastic forcing

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    Analysis of sinusoidal noisy leaky integrate-and-fire models and comparison with experimental data are important to understand the neural code and neural synchronization and rhythms. In this paper, we propose two methods to estimate input parameters using interspike interval data only. One is based...... on numerical solutions of the Fokker–Planck equation, and the other is based on an integral equation, which is fulfilled by the interspike interval probability density. This generalizes previous methods tailored to stationary data to the case of time-dependent input. The main contribution is a binning method...

  15. Noise upon the Sinusoids

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    Sinusoids are used for making harmonic and other sounds. In order to having life in the sounds and adding a wide variety of noises, irregularities are inserted in the frequency and amplitudes. A simple and intuitive noise model is presented, consisting of a low-pass filtered noise, and having...... control for strength and bandwidth. The noise is added on the frequency and amplitudes of the sinusoids, and the resulting irregularity’s (jitter and shimmer) bandwidth is derived. This, together with an overview of investigation methods of the jitter and shimmer results in an analysis of the necessary...... samplerate of the shimmer and jitter. A harmonic model introduces individual and common irregularity, and adds a correlation control. The model has been implemented in max/msp and used in contemporary music compositions....

  16. Noise upon the sinusoids

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    Sinusoids are used for making harmonic and other Sounds. In order to having life in the sounds and adding a wide variety of noises, irregularities are inserted in the frequency and amplitudes. A simple and intuitive noise model is presented, consisting of a low-pass filtered noise, and having...... control for strength and bandwidth. The noise is added on the frequency and amplitudes of the sinusoids, and the resulting irregularity's (jitter and shimmer) bandwidth is derived. This, together with an overview of investigation methods of the jitter and shimmer results in an analysis of the necessary...... samplerate of the shimmer and jitter. A harmonic model introduces individual and common irregularity, and adds a correlation control. The model has been implemented in max/msp and used in contemporary Music compositions....

  17. Pulse frequency classification based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; WANG Xu; YANG Dan; FU Rong

    2006-01-01

    In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.

  18. Dynamic Voltage Restorer Based on Space Vector Pulse Width Modulation Technique

    Directory of Open Access Journals (Sweden)

    B.N S P Venkatesh

    2011-07-01

    Full Text Available Power Quality problems encompass a wide range of disturbances such as voltage sags, swells, flicker,harmonics distortion and interruptions. The strategic deployment of custom power devices has been proposed asone of the means to protect sensitive loads from power quality problems such as voltage sags and swells. The Dynamic Voltage Restorer (DVR is a power electronic device that is used to inject 3-phase voltage in series and in synchronism with the distribution feeder voltages in order to compensate voltage sag and similarly itreacts quickly to inject the appropriate voltage component (negative voltage magnitude in order to compensate voltage swell. The principal component of the DVR is a voltage source inverter that generates three phase voltages and provides the voltage support to a sensitive load during voltage sags and swells. Pulse Width Modulation Technique is very critical for proper control of DVR. Sinusoidal Pulse Width Modulation (SPWM and Space Vector Pulse Width Modulation (SVPWM control techniques are used for controlling the DVR. Inthis work, the operation of DVR is presented and the control technique used for voltage source inverter is Space Vector PWM technique. Space vector PWM can utilize the better dc voltage and generates the fewer harmonic in inverter output voltage than Sinusoidal PWM technique. This work describes the DVR based on Space Vector PWM which provides voltage support to sensitive loads and is simulated by using MATLAB/SIMULINK. Simulation results show that the control approach is able to compensate for any type of voltage sags and swells.

  19. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.;

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least-squar......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  20. FPGA based pulsed NQR spectrometer

    Science.gov (United States)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  1. Variable Voltage Source Inverter with controlled frequency spectrum based on Random Pulse Width Modulation

    Directory of Open Access Journals (Sweden)

    Muhammad Farrukh Yaqub

    2012-01-01

    Full Text Available This paper presents a new method for single phase variable voltage inverter based on Random Pulse Width Modulation. In Random Pulse Width Modulation based inverter, the frequency spectrum of the output current and voltage waveforms becomes continuous because of the randomization of the switching function of the devices controlling the output voltages. This paper establishes a theory that if the distributions of the random numbers generated by the random source are kept within certain limit with respect to the peak value of reference sinusoidal waveform, the frequency spectrum can be controlled. On the basis of the results, a novel drive using variable tap changing transformer (optional and adaptive random number generator, to control the ratio between the numbers generated by the random source and the reference waveform has been suggested that will guarantee a better power quality profile for a broad range of output voltages.

  2. Encryption in Chaotic Systems with Sinusoidal Excitations

    Directory of Open Access Journals (Sweden)

    G. Obregón-Pulido

    2014-01-01

    Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.

  3. Variable Dimension Trellis-Coded Quantization of Sinusoidal Parameters

    DEFF Research Database (Denmark)

    Larsen, Morten Holm; Christensen, Mads G.; Jensen, Søren Holdt

    2008-01-01

    In this letter, we propose joint quantization of the parameters of a set of sinusoids based on the theory of trellis-coded quantization. A particular advantage of this approach is that it allows for joint quantization of a variable number of sinusoids, which is particularly relevant in variable...

  4. Sinusoids theory and technological applications

    CERN Document Server

    Kythe, Prem K

    2014-01-01

    A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and...

  5. 基于 VSG 的正弦锁定技术研究%Research on sinusoid-locked technology based on virtual synchronous generator

    Institute of Scientific and Technical Information of China (English)

    王嘉磊; 何建平; 郭筱瑛; 游芳; 李清; 曹太强; 罗谦

    2015-01-01

    为了实现新能源系统中各并网运行设备的实时同步,采用了一种不需要进行滤波器设计且计算量小的正弦锁定器技术。本文通过虚拟同步发电机的控制思想模拟同步发电机的运行情况,控制其与电网的功率交换为0,实现对电网输入信号幅值、频率及其相位的同步。仿真分析可知,在输入信号发生阶跃突变时,由于虚拟惯性的存在其输出信号不发生瞬时突变;当输入电压信号中含有幅值为10%基波的2、3、5次谐波成分时,正弦锁定器的输出电压总谐波畸变率从增强型锁相环条件下的4.28%减小到0.01%,有效的验证了正弦锁定器的抗谐波干扰能力。%In order to realize the real-time synchronization of various grid-connected operation equipment in new ener-gy system, this paper adopted a effective sinusoid-locked loop technique which do not need to design the filter and has the advantage of less calculation.This paper mimicked the operation of synchronous generators which is based on the control thinking of virtual synchronous generator, by controlling the power exchanged to be zero with the grid to get the synchronized signal of input amplitude, frequency and phase.Finally through the Matlab/Simulink simulation analy-sis, the sinusoid-locked loop technology has the characteristic of that output signal without instantaneous mutations be-cause of the existence of virtual inertia when the input signal step mutation;when the input voltage signal with 2nd, 3rd,5th order harmonic components which the amplitudes are 10%of the fundamental wave, and the output voltage total harmonic distortion rate decreased from 4 .28%which under the condition of enhanced phase-locked loop to 0 . 01%.The simulation results are given to effectively verify the capacity of resisting harmonic interference of sinusoid-locked loop technique.

  6. Compressive spectrum sensing of radar pulses based on photonic techniques.

    Science.gov (United States)

    Guo, Qiang; Liang, Yunhua; Chen, Minghua; Chen, Hongwei; Xie, Shizhong

    2015-02-23

    We present a photonic-assisted compressive sampling (CS) system which can acquire about 10(6) radar pulses per second spanning from 500 MHz to 5 GHz with a 520-MHz analog-to-digital converter (ADC). A rectangular pulse, a linear frequency modulated (LFM) pulse and a pulse stream is respectively reconstructed faithfully through this system with a sliding window-based recovery algorithm, demonstrating the feasibility of the proposed photonic-assisted CS system in spectral estimation for radar pulses.

  7. New Assessment Model of Pulse Depth Based on Sensor Displacement in Pulse Diagnostic Devices

    Directory of Open Access Journals (Sweden)

    Jang-Han Bae

    2013-01-01

    Full Text Available An accurate assessment of the pulse depth in pulse diagnosis is vital to determine the floating and sunken pulse qualities (PQs, which are two of the four most basic PQs. In this work, we proposed a novel model of assessing the pulse depth based on sensor displacement (SD normal to the skin surface and compared this model with two previous models which assessed the pulse depth using contact pressure (CP. In contrast to conventional stepwise CP variation tonometry, we applied a continuously evolving tonometric mechanism at a constant velocity and defined the pulse depth index as the optimal SD where the largest pulse amplitude was observed. By calculating the pulse depth index for 18 volunteers, we showed that the pulse was deepest at Cheok (significance level: P<0.01, while no significant difference was found between Chon and Gwan. In contrast, the two CP-based models estimated that the pulse was shallowest at Gwan (P<0.05. For the repeated measures, the new SD-based model showed a smaller coefficient of variation (CV≈7.6% than the two CP-based models (CV≈13.5% and 12.3%, resp.. The SD-based pulse depth assessment is not sensitive to the complex geometry around the palpation locations and temperature variation of contact sensors, which allows cost-effective sensor technology.

  8. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation

    Science.gov (United States)

    Vu, Thanh-Tung; Higuchi, Masato; Aketagawa, Masato

    2016-10-01

    We propose the use of the sinusoidal frequency modulation technique to improve both the frequency stability of an external cavity laser diode (ECLD) and the measurement accuracy and range of a displacement-measuring interferometer. The frequency of the ECLD was modulated at 300 kHz by modulating the injection current, and it was locked to the b21 hyperfine component of the transition 6-3, P(33), 127I2 (633 nm) by the null method. A relative frequency stability of 6.5  ×  10-11 was achieved at 100 s sampling time. The stabilized ECLD was then utilized as a light source for an unbalanced Michelson interferometer. In the interferometer, the displacement and direction of the target mirror can be determined using a Lissajous diagram based on two consecutive and quadrant-phase harmonics of the interference signal. Generally, the measurement range of the interferometer by the proposed method is limited by the modulation index and the signal-to-noise ratio of the harmonics. To overcome this drawback, suitable consecutive harmonic pairs were selected for the specific measurement ranges to measure the displacement. The displacements determined in the specific ranges by the proposed method were compared with those observed by a commercial capacitive sensor. From the comparison, the proposed method has high precision to determine the displacement. The measurement range was also extended up to 10 m by selecting a suitable modulation index and suitable consecutive pairs of harmonics.

  9. A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres

    Institute of Scientific and Technical Information of China (English)

    SUI Zhan; LIN Hong-Huan; WANG Jian-Jun; ZHAO Hong-Ming; LI Ming-Zhong; QIAN Lie-Jia; ZHU He-Yuan; FAN Dian-Yuan

    2006-01-01

    @@ We demonstrate a compact pulse shaping system based on temporal stacking of pulses in fibres, by which synchronized pulses of ultrashort and nanosecond lasers can be obtained. The system may generate shape-controllable pulses with a fast rise time and high-resolution within a time window of ~2.2 ns by adjusting variable optical attenuators in the 32 fibre channels independently. With the help of optical amplifiers, the system delivers mJ-level pulses with a signal-to-noise ratio of~35 dB.

  10. Force Sensor Characterization Under Sinusoidal Excitations

    Directory of Open Access Journals (Sweden)

    Nieves Medina

    2014-10-01

    Full Text Available The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time.

  11. Sinusoidal Signal Frequency Estimation Based on Improved DFT Phase Difference%基于改进DFT相位差的正弦波频率估计

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 邢敏捷; 刘歌; 赵汝鹏

    2016-01-01

    The frequency offset sensitivity problem of discrete Fourier transform ( DFT ) phase difference method in sinusoid wave frequency estimation is studied. An improved DFT phase difference frequency esti-mation method is presented. Firstly,the mean-squared error( MSE) of DFT phase difference method is de-duced. And then,an improved DFT phase difference frequency estimation method based on Rife interpola-tion is proposed. The improved method has well solved the problem of sensitivity to frequency offset. The computer simulation results indicate that the improved method has higher estimation accuracy in any fre-quency offset,and its estimation performance is close to Cramer-Rao lower bound( CRLB) .%针对基于离散傅里叶变换( DFT)相位差的正弦波频率估计方法对频偏敏感的问题,提出了一种改进DFT相位差频率估计方法。首先推导了DFT相位差法频率估计的均方误差,然后提出了基于Rife插值的改进DFT相位差频率估计方法,较好地解决了正弦波频率估计对频偏敏感的问题。仿真实验结果表明,改进方法在各种频偏下均能取得较高的估计精度,估计性能接近克拉美罗限( CRLB)。

  12. An optical pulse width modulation generator based on the injection-locking property of single mode FP-LD

    Science.gov (United States)

    Tran, Quoc Hoai; Nakarmi, Bikash; Won, Yong Hyub

    2013-03-01

    A novel simple optical pulse width modulation generator (OPWMG) based on injection-locking property of a single mode FP-LD (SMFP-LD) has been proposed and experimentally verified. The OPWMG consists of a SMFP-LD (which acts as comparator), an optical sinusoidal wave source (analog input), and a continuous optical beam (control signal). The power required for fully injection-locking the SMFP-LD acts as the referent power whereas the combination power of continuous optical beam and analog optical sinusoidal signals work as control signals for changing the duty cycle of the proposed OPWMG. The presence of only continuous optical beam is not sufficient to suppress the dominant mode of SMFP-LD with high ON/OFF contrast ratio; however, the application of additional sinusoidal wave of constant amplitude and frequency, the dominant mode of SMFP-LD can be suppressed for the certain time window. Since, injection-locking power is dependent with the combined power of input injected continuous beam and sinusoidal optical wave, the time window of injection-locking can be varied by changing input beam power which provides different duty cycle of 13% to 68% at the output. Current available schemes for generating PWM signals are in electrical domain, hence, they need to convert electrical signals into optical domain by using expensive O/E converters for application in optical control and signal processing. The proposed OPWMG scheme has several advantages, such as low cost, low power consumption (~0.5 mW) which can be used for various applications where the effect of EMI/EMR is considered as an important factor such as control circuit for high voltage converters in power plant and electrical vehicles.

  13. 硅基正弦波纹微通道内的流动阻力特性%Flow friction in silicon-based sinusoidal wavy microchannels

    Institute of Scientific and Technical Information of China (English)

    张弛; 吴慧英; 黄后学

    2012-01-01

    硅基正弦波纹微通道在微尺度强化换热、微流体器件中均有重要运用,而目前尚未见有关于其内部流动特性的实验报道.利用标准微机电系统(MEMS)工艺在硅基芯片上加工制成一系列具有不同相位差和周期、当量直径为160μm的正弦波纹微通道,通过实验研究了其内部流动阻力特性.研究表明:正弦波纹微通道较平直微通道阻力均有增加,且增加幅度与波纹微通道两侧壁的相位差和周期有关.对于周期相同的波纹微通道,两侧壁相位差越大,阻力也越大.对于相位差相同的波纹微通道,周期对阻力的影响则较为复杂:当相位差为0时,呈现出周期越大、阻力越小的趋势(除最小周期通道外);当相位差为π时,呈现出周期越大、阻力越大的趋势.研究还发现:随着周期减小,相位差对阻力的影响减小,当周期缩短至0.5 mm时,相位差为0和π的波纹微通道内的阻力特性曲线几乎重合.%A series of sinusoidal wavy microchannels with different phase shifts and wavelengths were fabricated on the silicon wafer based on the MEMS technology. Flow frictions in these sinusoidal wavy microchannels were investigated experimentally. Results show that the flow friction in wavy microchannels is higher compared with the smooth straight microchannels with the same hydraulic diameter. Both the phase shift and the wavelength have effect on the flow friction in wavy microchannels. For the microchannels with the same wavelength, the flow friction increases as the phase shift increases. However, the influence of wavelength is complicated. For the microchannels with phase shift of 0, the flow friction normally increases as the wavelength decreases with the exception for the microchannel with the smallest wavelength. For the microchannels with phase shift of 7t, the flow friction decreases as the wavelength decreases due to the decrease of the throat size in the microchannels. The investigation

  14. A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yap Hoon

    2017-02-01

    Full Text Available In this paper, a refined reference current generation algorithm based on instantaneous power (pq theory is proposed, for operation of an indirect current controlled (ICC three-level neutral-point diode clamped (NPC inverter-based shunt active power filter (SAPF under non-sinusoidal source voltage conditions. SAPF is recognized as one of the most effective solutions to current harmonics due to its flexibility in dealing with various power system conditions. As for its controller, pq theory has widely been applied to generate the desired reference current due to its simple implementation features. However, the conventional dependency on self-tuning filter (STF in generating reference current has significantly limited mitigation performance of SAPF. Besides, the conventional STF-based pq theory algorithm is still considered to possess needless features which increase computational complexity. Furthermore, the conventional algorithm is mostly designed to suit operation of direct current controlled (DCC SAPF which is incapable of handling switching ripples problems, thereby leading to inefficient mitigation performance. Therefore, three main improvements are performed which include replacement of STF with mathematical-based fundamental real power identifier, removal of redundant features, and generation of sinusoidal reference current. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and laboratory test utilizing a TMS320F28335 digital signal processor (DSP are performed. Both simulation and experimental findings demonstrate superiority of the proposed algorithm over the conventional algorithm.

  15. Improved Multiple Descriptions Sinusoidal Coder Adaptive to Packet Loss Rate

    Institute of Scientific and Technical Information of China (English)

    LANG Yue; WANG Jing; ZHAO Sheng-hui; KUANG Jing-ming

    2008-01-01

    To make the multiple descriptions codec adaptive to the packet loss rate, which can minimize the final distortion, a novel adaptive multiple descriptions sinusoidal coder (AMDSC) is proposed, which is based on a sinusoidal model and a noise model. Firstly, the sinusoidal parameters are extracted in the sinusoidal model, and ordered in a decrease manner. Odd indexed and even indexed parameters are divided into two descriptions. Secondly, the output vector from the noise model is split vector quantized. And the two sub-vectors are placed into two descriptions too. Finally, the number of the extracted parameters and the redundancy between the two descriptions are adjusted according to the packet loss rate of the network. Analytical and experimental results show that the proposed AMDSC outperforms existing MD speech coders by taking network loss characteristics into account. Therefore, it is very suitable for unreliable channels.

  16. Design of a finger base-type pulse oximeter

    Science.gov (United States)

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  17. An experimental distribution of analog and digital information in a hybrid wireless visible light communication system based on acousto-optic modulation and sinusoidal gratings

    Science.gov (United States)

    Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.

    2016-03-01

    In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.

  18. Theoretical and experimental analysis of pulse delay in bacteriorhodopsin films by a saturable absorber theory.

    Science.gov (United States)

    Blaya, Salvador; Candela, Manuel; Acebal, Pablo; Carretero, Luis; Fimia, Antonio

    2014-05-19

    Time-delay of transmitted pulses with respect to the incident pulse in bacteriorhodopsin films has been studied without the use of a pump beam. Based on a modified saturable absorber model, analytical expressions of the transmitted pulse have been obtained. As a result, time delay, distortion and fractional delay have been analyzed for sinusoidal pulses with a low background. A good agreement between theory and experiences has been observed.

  19. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  20. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    Science.gov (United States)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  1. A compact bipolar pulse-forming network-Marx generator based on pulse transformers

    Science.gov (United States)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  2. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  3. Optimised design of fibre-based pulse compressor for gain-switched DFB laser pulses at 1.5 µm

    OpenAIRE

    Barry, Liam P.; Thomsen, Benn C.; Dudley, John M.; Harvey, John D.

    1999-01-01

    An optical-fibre based pulse compressor for gain-switched DFB laser pulses has been optimised using a systematic procedure based on the initial complete characterisation of the laser pulses, followed by numerical simulations of the pulse propagation in different types of fibre to determine the required lengths for optimum compression. Using both linear and nonlinear compression techniques, an optimum compression factor of 12 is achieved.

  4. Sinusoidal Order Estimation Using Angles between Subspaces

    Directory of Open Access Journals (Sweden)

    Søren Holdt Jensen

    2009-01-01

    Full Text Available We consider the problem of determining the order of a parametric model from a noisy signal based on the geometry of the space. More specifically, we do this using the nontrivial angles between the candidate signal subspace model and the noise subspace. The proposed principle is closely related to the subspace orthogonality property known from the MUSIC algorithm, and we study its properties and compare it to other related measures. For the problem of estimating the number of complex sinusoids in white noise, a computationally efficient implementation exists, and this problem is therefore considered in detail. In computer simulations, we compare the proposed method to various well-known methods for order estimation. These show that the proposed method outperforms the other previously published subspace methods and that it is more robust to the noise being colored than the previously published methods.

  5. Mathematical Models of the Sinusoidal Screen Family

    Directory of Open Access Journals (Sweden)

    Tajana Koren

    2011-06-01

    Full Text Available In this paper we will define a family of sinusoidal screening elements and explore the possibilities of their application in graphic arts, securities printing and design solutions in photography and typography editing. For this purpose mathematical expressions of sinusoidal families were converted into a Postscript language. The introduction of a random variable results in a countless number of various mutations which cannot be repeated without knowing the programming code itself. The use of the family of screens in protection of securities is thus of great importance. Other possible application of modulated sinusoidal screens is related to the large format color printing. This paper will test the application of sinusoidal screens in vector graphics, pixel graphics and typography. The development of parameters in the sinusoidal screen element algorithms gives new forms defined within screening cells with strict requirements of coverage implementation. Individual solutions include stochastic algorithms, as well as the autonomy of screening forms in regard to multicolor printing channels.

  6. Improved method for pulse sorting based on PRI transform

    Science.gov (United States)

    Ren, Chunhui; Cao, Junqing; Fu, Yusheng; Barner, Kenneth E.

    2014-06-01

    To solve the problem of pulse sorting in complex electromagnetic environment, we propose an improved method for pulse sorting through in-depth analysis of the PRI transform algorithm principle and the advantages and disadvantages in this paper. The method is based on the traditional PRI transform algorithm, using spectral analysis of PRI transform spectrum to estimate the PRI centre value of jitter signal. Simulation results indicate that, the improved sorting method overcome the shortcomings of the traditional PRI jitter separation algorithm which cannot effectively sort jitter pulse sequence, in addition to the advantages of simple and accurate.

  7. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  8. EMD Based Compensation of Encoder's Sinusoidal Index in Free Optical Communication Terminal%光通信终端中编码器信号正弦性的EMD修正

    Institute of Scientific and Technical Information of China (English)

    郭汉洲; 宋延嵩

    2012-01-01

    In order to restrain the subdividing error of encoders caused by moire fringe' s sinusoidal index deviation, and to guarantee the APT precision of optical communication terminals, a compensation method based on EMD (Empirical Mode Decomposition) is proposed.First, the connection between subdividing error and moire fringe' s sinusoidal index deviation is analyzed and a practical threshold of sinusoidal index deviation is given.After expatiating on EMD theory, a method based on it is proposed to compensate the sinusoidal index deviation.This method makes use of the coarse codes to calculate the rate of the encoder, so as to compute the fundamental frequency of encoder' s moire fringe, and then the IMF (Intrinsic Mode Function) , which matches with the fundamental frequency, is extracted from the original signal.Finally, simulations on the principle of this method and its adaptability of rotating rate are made, and applications are carried out in the coarse pointing loop' s encoder without using the optical filter diaphragm. Results indicate that: the compensated sinusoidal index deviation is less than 0.85% at any rotating rate, which satisfies the subdividing need.Meanwhile, the fine codes become smooth on account of EMD compensation, and the measure precision is within 1", which meets the demand of APT precision.%为了抑制编码器莫尔条纹正弦性偏差引入的细分误差,保证光通信终端的捕获、对准、跟踪(APT)精度,设计了基于经验模态分解( EMD)的正弦性修正方法.首先,分析了莫尔条纹正弦偏差给系统带来的细分误差并给出满足工程需求的正弦性阈值.然后,在阐述了EMD分解原理的基础上,给出了基于EMD的正弦性修正方法,该方法利用编码器自身粗码信息计算转速,从而确定精码莫尔条纹信号的基波频率值,并采用EMD分解在原始信号中提取与该值相匹配的模态分量.最后,对该方法进行了原理和转速自适应性仿

  9. Ultrashort-pulse lasers based on the Sagnac interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Bezrodnyi, V.I.; Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.; Iatskiv, D.IA.

    1988-01-01

    Results of experimental studies carried out on passively mode-locked and synchronously pumped ultrashort-pulse lasers with cavities based on the Sagnac interferometer are reported. It is shown that the use of the interferometer makes it possible to substantially improve the principal parameters of the ultrashort-pulse laser, such as repeatability, stability, spatial-angular characteristics, and the frequency tuning range. In particular, results are presented for YAG:Nd(3+) and dye lasers with Sagnac interferometers. 10 references.

  10. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  11. Correction of group refraction index based on pulse trains interference

    Science.gov (United States)

    Wei, Dong; Aketagawa, Masato

    2015-02-01

    We propose a new concept for an unconventional type of two-color method for interferometry-based length measurements based on the adjacent pulse repetition interval length (APRIL), which is the physical length associated with the pulse repetition period. We demonstrate by numerical simulations that if the wavelength-based two-color method can eliminate the inhomogeneous disturbance of effects caused by the phase refractive index, then the APRIL-based two-color method can eliminate the air turbulence of errors induced by the group refractive index. We show that our analysis will benefit the pulse-laser-based two-color method, which secures traceability to the definition of the meter.

  12. Improved pulse laser ranging algorithm based on high speed sampling

    Science.gov (United States)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  13. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    Science.gov (United States)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic

  14. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    Science.gov (United States)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  15. A Vector Network Analyzer Based on Pulse Generators

    Directory of Open Access Journals (Sweden)

    B. Schulte

    2005-01-01

    Full Text Available A fast four channel network analyzer is introduced to measure S-parameters in a frequency range from 10MHz to 3GHz. The signal generation for this kind of analyzer is based on pulse generators, which are realized with bipolar transistors. The output signal of the transistor is differentiated and two short pulses, a slow and a fast one, with opposite polarities are generated. The slow pulse is suppressed with a clipping network. Thus the generation of very short electrical pulses with a duration of about 100ps is possible. The structure of the following network analyzer is similar to the structure of a conventional four channel network analyzer. All four pulses, which contain the high frequency information of the device under test, are evaluated after the digitalization of intermediate frequencies. These intermediate frequencies are generated with sampling mixers. The recorded data is evaluated with a special analysis technique, which is based on a Fourier transformation. The calibration techniques used are the same as for conventional four channel network analyzers, no new calibration techniques need to be developed.

  16. Generation of synchronized signal and pump pulses for an optical parametric chirped pulse amplification based multi-terawatt Nd:glass laser system

    Indian Academy of Sciences (India)

    M Raghuramaiah; R K Patidar; R A Joshi; P A Naik; P D Gupta

    2010-11-01

    Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse amplification based Nd:glass laser system. As the chirped signal pulse and the pump pulse originated from the same oscillator, the time jitter between the pump pulse and the signal pulse can be <50 ps.

  17. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  18. A high precision magnetometer based on pulsed NMR

    NARCIS (Netherlands)

    Prigl, R; Haeberlen, U; Jungmann, K; Putlitz, GZ; vonWalter, P

    1996-01-01

    A magnetometer based on pulsed proton magnetic resonance has been developed and constructed. The system will be employed for an accurate measurement of the absolute magnetic field in the region of 1.45 T in a precision experiment on the muon's anomalous magnetic moment at the Brookhaven National Lab

  19. Digital Pulse Modulation Amplifier (PMA) systems based on PEDEC control

    DEFF Research Database (Denmark)

    Nielsen, Karsten

    1999-01-01

    The paper extends previous research and presents a suite of novel high efficiency digital PMA topologies based on Pulse Edge Delay Error Correction (PEDEC). The practical results are very encouraging, showing that digital modulator performance is maintained throughout the subsequent power...... conversion. The topologies are believed to be the first implemented digital PMA systems including effective power stage error correction....

  20. The criterion of pulse reconstruction quality based on Wigner representation

    NARCIS (Netherlands)

    Yeremenko, S.; Baltuska, A.; Pshenichnikov, M.S; Wiersma, D. A.

    2000-01-01

    We propose a new criterion for the assessment of ultrashort pulse reconstruction quality. Our idea is based on the use of a two-dimensional Wigner representation of the electric field. This allows introducing a single measure to represent the quality of both phase and amplitude retrieval. The new cr

  1. Doppler Ambiguity Resolution Based on Random Sparse Probing Pulses

    Directory of Open Access Journals (Sweden)

    Yunjian Zhang

    2015-01-01

    Full Text Available A novel method for solving Doppler ambiguous problem based on compressed sensing (CS theory is proposed in this paper. A pulse train with the random and sparse transmitting time is transmitted. The received signals after matched filtering can be viewed as randomly sparse sampling from the traditional fixed-pulse repetition frequency (PRF echo signals. The whole target echo could be reconstructed via CS recovery algorithms. Through refining the sensing matrix, which is equivalent to increase the sampling frequency of target characteristic, the Doppler unambiguous range is enlarged. In particular, Complex Approximate Message Passing (CAMP algorithm is developed to estimate the unambiguity Doppler frequency. Cramer-Rao lower bound expressions are derived for the frequency. Numerical simulations validate the effectiveness of the proposed method. Finally, compared with traditional methods, the proposed method only requires transmitting a few sparse probing pulses to achieve a larger Doppler frequency unambiguous range and can also reduce the consumption of the radar time resources.

  2. Pulse-shaping based two-photon FRET stoichiometry.

    Science.gov (United States)

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  3. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  4. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications.

    Science.gov (United States)

    Sun, Li; Savory, Joshua J; Warncke, Kurt

    2013-08-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range.

  5. Implementation of Pulse Radar Waveform Based on Software Radio Platform

    OpenAIRE

    Wang Dong; Dong Jian; Xiao Shunping

    2015-01-01

    Based on the frequency and phase modulated signal, the authors design some commonly-used pulse radar baseband waveform, such as linear frequency modulated waveform, nonlinear frequency modulated waveform, Costas waveform, Barker coding waveform and multi-phase coded waveform, and the authors compare their performance, such as the peak side lobe ratio, the Rayleigh resolution in time and distance resolution. Then, based on the software radio platform NI PXIe-5644R, the authors design the timin...

  6. Free space optical communication based on pulsed lasers

    Science.gov (United States)

    Drozd, Tadeusz; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek

    2016-12-01

    Most of the current optical data transmission systems are based on continuous wave (cw) lasers. It results from the tendency to increase data transmission speed, and from the simplicity in implementation (straightforward modulation). Pulsed lasers, which find many applications in a variety of industrial, medical and military systems, in this field are not common. Depending on the type, pulsed lasers can generate instantaneous power which is many times greater when compared with cw lasers. As such, they seem to be very attractive to be used in data transmission technology, especially due to the potentially larger ranges of transmission, or in adverse atmospheric conditions where low power cw-lasersbased transmission is no longer feasible. It is also a very practical idea to implement data transmission capability in the pulsed laser devices that have been around and already used, increasing the functionality of this type of equipment. At the Institute of Optoelectronics at Military University of Technology, a unique method of data transmission based on pulsed laser radiation has been developed. This method is discussed in the paper in terms of both data transmission speed and transmission range. Additionally, in order to verify the theoretical assumptions, modules for voice and data transmission were developed and practically tested which is also reported, including the measurements of Bit Error Rate (BER) and performance vs. range analysis.

  7. Parameter Estimation of Noise Corrupted Sinusoids

    CERN Document Server

    O'Brien, Francis J; Johnnie, Nathan

    2011-01-01

    Existing algorithms for fitting the parameters of a sinusoid to noisy discrete time observations are not always successful due to initial value sensitivity and other issues. This paper demonstrates the techniques of FIR filtering, Fast Fourier Transform, and nonlinear least squares minimization as useful in the parameter estimation of amplitude, frequency and phase exemplified for a low-frequency time-delayed sinusoid describing simple harmonic motion. Alternative means are described for estimating frequency and phase angle. An autocorrelation function for harmonic motion is also derived.

  8. Cavitation on hydrofoils with sinusoidal leading edge

    Science.gov (United States)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  9. High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR).

    Science.gov (United States)

    Leviatan, Eyal; Eyal, Avishay

    2015-12-28

    There are many advantages to using direct frequency modulation for OFDR based DAS. However, achieving sufficiently linear scan via direct frequency modulation is challenging and poses limits on the scan parameters. A novel method for analyzing sinusoidal frequency modulated light is presented and demonstrated for both static and dynamic sensing. SFS-OFDR projects the measured signal onto appropriate sinusoidal phase terms to obtain spatial information. Thus, by using SFS-OFDR on sinusoidal modulated light it is possible to make use of the many advantages offered by direct frequency modulation without the limitations posed by the linearity requirement.

  10. Genetic algorithm based optimization of pulse profile for MOPA based high power fiber lasers

    Science.gov (United States)

    Zhang, Jiawei; Tang, Ming; Shi, Jun; Fu, Songnian; Li, Lihua; Liu, Ying; Cheng, Xueping; Liu, Jian; Shum, Ping

    2015-03-01

    Although the Master Oscillator Power-Amplifier (MOPA) based fiber laser has received much attention for laser marking process due to its large tunabilty of pulse duration (from 10ns to 1ms), repetition rate (100Hz to 500kHz), high peak power and extraordinary heat dissipating capability, the output pulse deformation due to the saturation effect of fiber amplifier is detrimental for many applications. We proposed and demonstrated that, by utilizing Genetic algorithm (GA) based optimization technique, the input pulse profile from the master oscillator (current-driven laser diode) could be conveniently optimized to achieve targeted output pulse shape according to real parameters' constraints. In this work, an Yb-doped high power fiber amplifier is considered and a 200ns square shaped pulse profile is the optimization target. Since the input pulse with longer leading edge and shorter trailing edge can compensate the saturation effect, linear, quadratic and cubic polynomial functions are used to describe the input pulse with limited number of unknowns(<5). Coefficients of the polynomial functions are the optimization objects. With reasonable cost and hardware limitations, the cubic input pulse with 4 coefficients is found to be the best as the output amplified pulse can achieve excellent flatness within the square shape. Considering the bandwidth constraint of practical electronics, we examined high-frequency component cut-off effect of input pulses and found that the optimized cubic input pulses with 300MHz bandwidth is still quite acceptable to satisfy the requirement for the amplified output pulse and it is feasible to establish such a pulse generator in real applications.

  11. A Comparative analysis of three level VSC based multi-pulse STATCOM

    Directory of Open Access Journals (Sweden)

    Smruti Ranjan Barik

    2014-07-01

    Full Text Available This paper presents a comparative analysis among different models of three level NPC (Neutral point clamped VSC (Voltage source converter based STATCOMs. Here separate models of 12- pulse, 24-pulse, 36-pulse, 48-pulse VSC based STATCOMs are configured in MATLAB environment. These individual models are synthesized using appropriate number of three level converters which are switched at fundamental frequency and their gate pulse pattern are properly phase shifted to get desired number of pulses. The simulation results of each individual model are analyzed in three different modes: inductive, capacitive and floating mode. Harmonic content of the proposed higher pulse models are limited as per IEEE 519 standards.

  12. A Simple Picosecond Pulse Generator Based on a Pair of Step Recovery Diodes

    CERN Document Server

    Zou, Lianfeng; Caloz, Christophe

    2016-01-01

    A picosecond pulse generator based on a pair of step recovery diodes (SRD), leveraging the transient response of the SRD PN junction and controlling the pulse width by a resistor, is proposed. We first explain the operation principle of the device, decomposing the pulse generation into different phases, and then demonstrate an experimental prototype with two different resistance, and hence pulse width, values.

  13. Development of a chemical microthruster based on pulsed detonation

    Science.gov (United States)

    Wu, Ming-Hsun; Lu, Tsung-Hsun

    2012-10-01

    The development of a microthruster based on gaseous pulsed detonation is presented in this study. The feasibility of cyclic valveless pulsed detonation at frequencies over 100 Hz is first experimentally investigated in a microchannel with 1 mm × 0.6 mm rectangular cross-section. Highly reactive ethylene/oxygen mixtures are utilized to reduce the time and distance required for the reaction wave to run up to detonation in a smooth channel. High-speed visualizations have shown that the reaction waves reach detonative state through highly repeatable flame acceleration and deflagration-to-detonation transition processes in the channel. The validated concepts are implemented for the development of an integrated pulsed detonation microthruster. The microthruster was fabricated using low temperature co-fired ceramic tape technology. The volume of the reaction channel in the microthruster was 58 mm3. Spark electrodes and ion probes were embedded in the ceramic microthruster. The channel and via holes were fabricated using laser cutting techniques. Ion probe measurements showed that the reaction wave propagated at velocities larger than 2000 m s-1 before reaching the channel exit. The pulsed detonation microthruster has been successfully operated at frequencies as high as 200 Hz.

  14. SCALABLE PERCEPTUAL AUDIO REPRESENTATION WITH AN ADAPTIVE THREE TIME-SCALE SINUSOIDAL SIGNAL MODEL

    Institute of Scientific and Technical Information of China (English)

    Al-Moussawy Raed; Yin Junxun; Song Shaopeng

    2004-01-01

    This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is described. The paper presents essentially a fundamental enhancement to the sinusoidal modeling component. The enhancement involves an audio signal scheme based on carrying out overlap-add sinusoidal modeling at three successive time scales,large, medium, and small. The sinusoidal modeling is done in an analysis-by-synthesis overlapadd manner across the three scales by using a psychoacoustically weighted matching pursuits.The sinusoidal modeling residual at the first scale is passed to the smaller scales to allow for the modeling of various signal features at appropriate resolutions. This approach greatly helps to correct the pre-echo inherent in the sinusoidal model. This improves the perceptual audio quality upon our previous work of sinusoidal modeling while using the same number of sinusoids. The most obvious application for the SN model is in scalable, high fidelity audio coding and signal modification.

  15. [Design and implementation of pulse instrument based on DSP].

    Science.gov (United States)

    Jiao, Qiyu; Pang, Chunying

    2013-03-01

    The Traditional Chinese Medical Pulse Instrument uses the HKG-07B infrared pulse sensor to get pulse signal from the body. It makes full use of the TMS320VC5402 chip to realize time-frequency domain parameters extracting, classification and identification of the pulse signal. The system can store a plenty of pulse signal and realize data communication with the PC via the USB interface. According to acquisition and classification of pulse signal experiments of 200 subjects, the results show that the recognition rate of pulse signal can reach to 87.4%. It is applicable to the clinical diagnosis and detection of the pulse signal and home healthcare.

  16. Enhanced nonlinear spectral compression in fiber by external sinusoidal phase modulation

    Science.gov (United States)

    Boscolo, S.; Mouradian, L. Kh; Finot, C.

    2016-10-01

    We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.

  17. The generalization of A. E. Kennelly theory of complex representation of the electrical quantities in sinusoidal periodic regime to the one and three-phase electric quantities in non-sinusoidal periodic regime

    CERN Document Server

    Mihai, Gheorghe

    2010-01-01

    In this paper, a new mathematical method of electrical circuits calculus is proposed based on the theory of the complex linear operators in matrix form. The newly proposed method generalizes the theory of complex representation of electrical quantities in sinusoidal periodic regime to the non-sinusoidal periodic regime.

  18. Absolute Calibration of Proportional Counter Based Fast Pulsed Neutron Detectors with Resolution Below 105 neutron/pulse

    Science.gov (United States)

    Tarifeño-Saldivia, A.; Mayer, R. E.; Pavez, C.; Soto, L.

    2014-05-01

    A method for absolute calibration of proportional counters for pulsed fast neutrons is presented. The method is based on the use of an isotopic standard source and development of a model for counting detected events from area of a signal compounded by single piled up neutron pulses. Effects of detection counting statistics and electrical background noise are also considered. The method is applied in detectors used for D-D neutron yield measurements in low emission plasma focus devices.

  19. Polystyrene-based scintillator with pulse-shape discrimination capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhmurin, P.N.; Lebedev, V.N.; Titskaya, V.D.; Adadurov, A.F., E-mail: adadurov@isma.kharkov.ua; Elyseev, D.A.; Pereymak, V.N.

    2014-10-11

    Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter – figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background.

  20. High-Quality Ultrashort Pulse Generation Utilizing a Self-Phase Modulation-Based Reshaper

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.

  1. Preliminary results of a battery-based, multi megawatt 200 kA pulsed power supply.

    NARCIS (Netherlands)

    Karthaus, W.; Kolkert, W.J.; Nowee, J.

    1989-01-01

    A pulsed power supply consisting of a fast discharge battery, a switch based on silicon-controlled-rectifier SCR technology, and an energy storage/pulse transformer is discussed. Preliminary results indicate that the battery is capable of discharging current pulses with reproducible peak values of 6

  2. Interference Resilient Sigma Delta-Based Pulse Oximeter.

    Science.gov (United States)

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet

    2016-06-01

    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  3. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  4. Sinusoidal excitation on the Chua's circuit simulation of limit cycles and chaos

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1994-01-01

    Experiments with modelling and simulation of sinusoidal excitation on Chua's circuit are presented. It is demonstrated that the behaviour of the circuit is based on the interaction of two different kinds of energy balance: chaotic behaviour based on a balance between two unstable “states of charg......Experiments with modelling and simulation of sinusoidal excitation on Chua's circuit are presented. It is demonstrated that the behaviour of the circuit is based on the interaction of two different kinds of energy balance: chaotic behaviour based on a balance between two unstable “states...

  5. A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary%基于压缩感知和正弦字典的语音编码新方案

    Institute of Scientific and Technical Information of China (English)

    李尚靖; 朱琦; 朱俊华

    2015-01-01

    A novel speech coding method based on compressed sensing is proposed in this paper. Based on compressed sensing theory,the row echelon matrix retains parts of speech time domain features in the measurements,and utilize a sinusoidal dictionary and matching pur-suit for measurements sequence modeling. The model parameters are encoded by appropriate methods respectively. At the decoder,basis pursuit algorithm employs the decoded measurements for synthesized speech reconstruction. A rear low-pass filter is adopted to improve auditory effects. Simulation results show the average MOS scores of the synthesis speech are between 2. 81~3. 23 in low bit rate (2. 8~5. 7 kbps),which achieves a preferable coding effect in compressed sensing framework.%文中提出一种压缩感知框架采样下的语音编码方案。根据压缩感知原理,利用行阶梯矩阵投影产生的观测序列保留了部分语音信息的时域特征,利用正弦字典和匹配追踪算法对观测序列进行建模,对于每帧观测序列的模型参数,根据各自特性采用合适的编码方式进行编码。在解码端对解码后的观测序列利用基追踪算法重构合成语音,并后置低通滤波器提高合成语音的人耳听觉效果。仿真实验表明,提出的编码方案在2.8~5.7 kbps时得到的合成语音平均MOS分为2.81~3.23,在压缩感知框架下取得了较好的语音编码效果。

  6. Simulation of nanosecond square pulse fiber laser based on nonlinear amplifying loop mirror

    Institute of Scientific and Technical Information of China (English)

    Guoliang Chen; Chun Gu; Lixin Xu; Huan Zheng; Hai Ming

    2011-01-01

    A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror (NALM) is numerically analyzed by the nonlinear Schrodinger equation. The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM, and the nanosecond square pulse is generated by the pulse shaping effect. The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately. The generated square pulses have flat top and no internal structure.%@@ A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror(NALM)is numerically analyzed by the nonlinear Schr6dinger equation.The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM,and the nanosecond square pulse is generated by the pulse shaping effect.The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately.The generated square pulses have flat top and no internal structure.

  7. Web Based System Architecture for Long Pulse Remote Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    De Las Heras, E.; Lastra, D. [INDRA Sistemas, S.A., Unidad de Sistemas de Control, Madrid (Spain); Vega, J.; Castro, R. [Association Euratom CIEMAT for Fusion, Madrid (Spain); Ruiz, M.; Barrera, E. [Universidad Politecnica de Madrid (Spain)

    2009-07-01

    INDRA is the first Information Technology company in Spain and it presents here, through a series of transparencies, its own approach for the remote experimentation architecture for long pulses (REAL). All the architecture is based on Java-2 platform standards and REAL is a totally open architecture. By itself REAL offers significant advantages: -) access authentication and authorization under multiple security implementations, -) local or remote network access: LAN, WAN, VPN..., -) on-line access to acquisition systems for monitoring and configuration, -) scalability, flexibility, robustness, platform independence,.... The BeansNet implementation of REAL gives additional good things such as: -) easy implementation, -) graphical tool for service composition and configuration, -) availability and hot-swap (no need of stopping or restarting services after update or remodeling, and -) INDRA support. The implementation of BeansNet at the TJ-2 stellarator at Ciemat is presented. This document is made of the presentation transparencies. (A.C.)

  8. Optimization of energy harvesting efficiency of an oscillating hydrofoil: Sinusoidal and Non-sinusoidal trajectories

    Science.gov (United States)

    Miller, Michael; Strom, Ben; Breuer, Kenneth; Mandre, Shreyas

    2014-11-01

    We determine the feasibility of applying optimization algorithms to an oscillating hydrofoil's motion trajectory to determine maximum efficiency of energy capture. Optimization is performed using the Nelder-Meade downhill simplex method. The objective function is the energy captured measured experimentally in run-time with an oscillating hydrofoil capable of measuring mechanical energy capture in a laboratory flume. For sinusoidal trajectories, optimization is performed over pitch and heave amplitudes as well as frequency; this system is shown to be capable of optimization in run-time. The optimum efficiency of 30% is found for a pitch amplitude of 70°, a heave amplitude of 0.8* chord and a dimensionless frequency of 0.13. To treat non-sinusoidal trajectories, we expand them in a truncated Fourier series and consider the coefficients of this series as variables for optimization. The sinusoidal case is simply an extreme case of such a truncated Fourier series, with only one term in the series retained. We present a systematic method for optimization over general non-sinusoidal trajectories by including more and more terms in the Fourier series.

  9. Simple Arduino based pulse generator design for electroporation

    Science.gov (United States)

    Sulaeman, Muhammad Yangki; Widita, Rena

    2015-09-01

    This research will discuss the design of electroporation generator using Arduino as the pulse controller. The pulse parameters are the most important thing in electroporation method, therefore many researches aimed to produce generator to control its parameters easily. Arduino will be used as the microcontroller to create low amplitude signal trigger to get the high voltage pulse for electroporation. 124.4 VDC will be used and tested in cuvette contained NaCl solution with various concentration between 0% - 1%.

  10. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    CERN Document Server

    Yao, B C; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W

    2015-01-01

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse for...

  11. Identification of acceleration pulses in near-fault ground motion using the EMD method

    Institute of Scientific and Technical Information of China (English)

    Zhang Yushan; Hu Yuxian; Zhao Fengxin; Liang Jianwen; Yang Caihong

    2005-01-01

    In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing)and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.

  12. Multi-channel, fiber-based seed pulse distribution system for femtosecond-level synchronized chirped pulse amplifiers

    Science.gov (United States)

    Horáček, Martin; Indra, Lukáš; Green, Jonathan T.; Naylon, Jack A.; Tykalewicz, Boguslaw; Novák, Jakub; Batysta, František; Mazanec, Tomáš; Horáček, Jakub; Antipenkov, Roman; Hubka, Zbyněk; Boge, Robert; Bakule, Pavel; Rus, Bedřich

    2017-01-01

    We report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines. These functions are characterized and the system as a whole is demonstrated by seeding two high energy amplifiers in the laser beamline. The design of this system allows for complete computer control of all functions, including tuning of dispersion, and is entirely hands-free. The performance of this device and its subsystems will be relevant to those developing lasers where reliability, size, and cost are key concerns in addition to performance; this includes those developing large-scale laser systems similar to ours and also those developing table-top experiments and commercial systems.

  13. Design of nanosecond pulse laser micromachining system based on PMAC

    Science.gov (United States)

    Liu, Mingyan; Fu, Xing; Xu, Linyan; Lin, Qian; Gu, Shuang

    2012-10-01

    Pulse laser micromachining technology, as a branch of laser processing technology, has been widely used in MEMS device processing, aviation, instruments fabrication, circuit board design etc.. In this paper, a novel nanosecond pulse laser micromachining system is presented, which consists of nanosecond pulse LASER, optical path mechanical structure, transmission system, motion control system. Nanosecond pulse UV laser, with 355 nm wavelength and 40ns pulse width, is chosen as the light source. Optical path mechanical structure is designed to get ideal result of laser focusing. Motion control system, combining PMAC card with the PC software, can control the 3-D motion platform and complete microstructure processing. By CCD monitoring system, researchers can get real-time detection on the effect of laser beam focusing and processing process.

  14. High power microwave system based on power combining and pulse compression of conventional klystrons

    CERN Document Server

    Xiong, Zheng-Feng; Cheng, Cheng; Ning, Hui; Tang, Chuan-Xiang

    2015-01-01

    A high power microwave system based on power combining and pulse compression of conventional klystrons is introduced in this paper. This system mainly consists of pulse modulator, power combiner, driving source of klystrons and pulse compressor. A solid state induction modulator and pulse transformer were used to drive two 50 MW S-band klystrons with pulse widths 4 {\\mu}s in parallel, after power combining and pulse compression, the tested peak power had reached about 210 MW with pulse widths nearly 400 ns at 25 Hz, while the experimental maximum output power was just limited by the power capacity of loads. This type of high power microwave system has widely application prospect in RF system of large scale particle accelerators, high power radar transmitters and high level electromagnetic environment generators.

  15. Vibration measurement based on the optical cross-correlation technique with femtosecond pulsed laser

    Science.gov (United States)

    Han, Jibo; Wu, Tengfei; Zhao, Chunbo; Li, Shuyi

    2016-10-01

    Two vibration measurement methods with femtosecond pulsed laser based on the optical cross-correlation technique are presented independently in this paper. The balanced optical cross-correlation technique can reflect the time jitter between the reference pluses and measurement pluses by detecting second harmonic signals using type II phase-matched nonlinear crystal and balanced amplified photo-detectors. In the first method, with the purpose of attaining the vibration displacement, the time difference of the reference pulses relative to the measurement pluses can be measured using single femtosecond pulsed laser. In the second method, there are a couple of femtosecond pulsed lasers with high pulse repetition frequency. Vibration displacement associated with cavity length can be calculated by means of precisely measuring the pulse repetition frequency. The results show that the range of measurement attains ±150μm for a 500fs pulse. These methods will be suited for vibration displacement measurement, including laboratory use, field testing and industrial application.

  16. A generalized sinusoidal model and its applications

    Institute of Scientific and Technical Information of China (English)

    KU Shao-ping; LI Ning

    2009-01-01

    A physical model of sinusoidal function was established. It is generalized that the force is directly proportional to a power function of the distance in a classical spring-oscillator system. The differential equation of the generalized model was given. Simulations were conducted with different power values. The results show that the solution of the generalized equation is a periodic function. The expressions of the amplitude and the period (frequency) of the generalized equation were derived by the physical method. All the simulation results coincide with the calculation results of the derived expressions. A special function also was deduced and proven to be convergent in the theoretical analysis. The limit value of the special function also was derived. The generalized model can be used in solving a type of differential equation and to generate periodic waveforms.

  17. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)

  18. All-digital pulse-expansion-based CMOS digital-to-time converter

    Science.gov (United States)

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μ m Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm2. Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  19. Generation of nanosecond S band microwave pulses based on superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M. [Russian Academy of Science, Institute of Applied Physics, Nizhny Novgorod (RU)] [and others

    2002-06-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  20. Information Fusing Recognition of Traditional Chinese Medicine (TCM) Pulse State Based on Stochastic Fuzzy Neural Network

    Institute of Scientific and Technical Information of China (English)

    QIN Jian; LIU Hong-jian; DENG Wei; WU Guo-zhen; CHEN Shu-qing; JING Ming-hua

    2005-01-01

    Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan,and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.

  1. Is the sinusoidal obstructive syndrome post-liver transplantation a pathologic entity with a multifactorial etiology?

    Directory of Open Access Journals (Sweden)

    Luis Miguel Marín-Gómez

    2015-04-01

    Full Text Available The sinusoidal obstructive syndrome is a complication typically associated with hematopoietic stem cell transplantation. This syndrome, more commonly known as veno-occlusive disease, has also been described after liver transplantation. It can have a life-threatening course. Herein, we describe the hepatic graft loss secondary to the development of a sinusoidal obstructive syndrome after a severe acute cellular rejection and toxic levels of once daily modified released tacrolimus (TAC. We discuss the role of the endotheliitis of acute rejection and toxic metabolites of some immunosuppressants such as azathioprine and TAC. Based on the current scientific evidence, we contemplate the possibility that the etiology of sinusoidal obstruction syndrome post-liver transplantation is multifactorial.

  2. Nanosecond Square Pulse Fiber Laser based on the Nonlinear Amplifying Loop Mirror

    Institute of Scientific and Technical Information of China (English)

    陈国梁; 顾春; 许立新; 王安廷; 明海

    2011-01-01

    We propose and demonstrate a nanosecond square pulse ytterbium doped fiber laser in the 1060 nm band. The laser is based on the figure-8 structure and has a tunable pulse bandwidth from 3 ns to beyond 100 ns, showing excellent temporal tuning ability. The experimental results show that a steady square pulse can be generated when the parameters of the cavity are chosen appropriately.%We propose and demonstrate a nanosecond square pulse ytterbium doped fiber laser in the 1060nm band.The laser is based on the figure-8 structure and has a tunable pulse bandwidth from 3ns to beyond 100ns,showing excellent temporal tuning ability.The experimental results show that a steady square pulse can be generated when the parameters of the cavity are chosen appropriately.

  3. Transform of Lightning Electromagnetic Pulses Based on Laplace Wavelet

    Directory of Open Access Journals (Sweden)

    Qin Li

    2013-09-01

    Full Text Available In this study, the fine structures of lightning electromagnetic pulse associated with 19 preliminary breakdown pulses, 37 stepped leaders, 8 dart leaders, 73 first and 52 subsequent return strokes were analyzed by using Laplace wavelet. The main characteristics of field waveforms such as, the correlation coefficient, the time of arrival and the dominant frequency of the initial peak field, the energy and the frequency of the power spectrum peak are presented. The instantaneous initial peak field pulse can be precisely located by the value of the correlation coefficient. The dominant frequencies of the initial peak field of PB pulses and leaders range from 100 kHz to 1 MHz, and that of the first and subsequent return strokes below 100 and 50 kHz, respectively. The statistical results show that the Laplace wavelet is an effective tool and can be used to determine time and frequency of the lightning events with greater accuracy.  

  4. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  5. Analytic solutions of self-similar pulse based on Ginzburg-Landau equation with constant coefficients

    Institute of Scientific and Technical Information of China (English)

    FENG Jie; XU WenCheng; LI ShuXian; LIU SongHao

    2008-01-01

    Based on the constant coefficients of Ginzburg-Landau equation that considers the influence of the doped fiber retarded time on the evolution of self-similar pulse, the parabolic asymptotic self-similar solutions were obtained by the symmetry reduc-tion algorithm.The parabolic asymptotic amplitude function, phase function, strict linear chirp function and the effective temporal pulse width of self-similar pulse are given in this paper.And these theoretical results are consistent with the numerical simulations.

  6. GPU-based parallel clustered differential pulse code modulation

    Science.gov (United States)

    Wu, Jiaji; Li, Wenze; Kong, Wanqiu

    2015-10-01

    Hyperspectral remote sensing technology is widely used in marine remote sensing, geological exploration, atmospheric and environmental remote sensing. Owing to the rapid development of hyperspectral remote sensing technology, resolution of hyperspectral image has got a huge boost. Thus data size of hyperspectral image is becoming larger. In order to reduce their saving and transmission cost, lossless compression for hyperspectral image has become an important research topic. In recent years, large numbers of algorithms have been proposed to reduce the redundancy between different spectra. Among of them, the most classical and expansible algorithm is the Clustered Differential Pulse Code Modulation (CDPCM) algorithm. This algorithm contains three parts: first clusters all spectral lines, then trains linear predictors for each band. Secondly, use these predictors to predict pixels, and get the residual image by subtraction between original image and predicted image. Finally, encode the residual image. However, the process of calculating predictors is timecosting. In order to improve the processing speed, we propose a parallel C-DPCM based on CUDA (Compute Unified Device Architecture) with GPU. Recently, general-purpose computing based on GPUs has been greatly developed. The capacity of GPU improves rapidly by increasing the number of processing units and storage control units. CUDA is a parallel computing platform and programming model created by NVIDIA. It gives developers direct access to the virtual instruction set and memory of the parallel computational elements in GPUs. Our core idea is to achieve the calculation of predictors in parallel. By respectively adopting global memory, shared memory and register memory, we finally get a decent speedup.

  7. INTELLIGENT CONTROL SYSTEM OF PULSED MAG WELDING INVERTER BASED ON DIGITAL SIGNAL PROCESSOR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A fuzzy logic intelligent control system of pulsed MAG welding inverter based on digital signal processor (DSP) is proposed to obtain the consistency of arc length in pulsed MAG welding. The proposed control system combines the merits of intelligent control with DSP digital control. The fuzzy logic intelligent control system designed is a typical two-input-single-output structure, and regards the error and the change in error of peak arc voltage as two inputs and the background time as single output. The fuzzy logic intelligent control system is realized in a look-up table (LUT) method by using MATLAB based fuzzy logic toolbox, and the implement of LUT method based on DSP is also discussed. The pulsed MAG welding experimental results demonstrate that the developed fuzzy logic intelligent control system based on DSP has strong arc length controlling ability to accomplish the stable pulsed MAG welding process and controls pulsed MAG welding inverter digitally and intelligently.

  8. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation

    DEFF Research Database (Denmark)

    Hu, Hao; Mulvad, Hans Christian Hansen; Peucheret, Christophe

    2011-01-01

    to compensate the chirp. The non-linear pulse compression stages are based on self-phase modulation (SPM) in dispersion-flattened highly non-linear fibers (DF-HNLF). The pulse source is tunable over the C-band with negligible pedestal. © 2011 Optical Society of America....... the high pulse quality. The pulse source is based on a linear pulse compression stage followed by two polarization-independent non-linear pulse compression stages. The linear pulse compression stage relies on a phase modulator, which is used to generate linear chirp and followed by a dispersive element...

  9. Synchronization and Coherent Combining of Two Pulsed Fiber Ring Lasers Based on Direct Phase Modulation

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lin; ZHOU Pu; MA Hao-Tong; CHEN Zi-Lun; LI Xiao; XU Xiao-Jun; LIU Ze-Jin

    2009-01-01

    We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchronous pulsed lasers can be generated and coherent combining of the two synchronous lasers is obtained. Two pulsed fiber ring lasers are coherently combined with 0.55 μJ pulse energy and 10μs pulse duration at a repetition rate of 27.5 kHz. Experimental results show that the two fiber ring lasers are phase locked with an invariable phase difference of π and have good temporal synchronization and spatial coherence. The combining efficiency of the two pulsed fiber laser reaches 90% and the fringe contrast is larger than 40%. Neither active phase control nor polarization control is used in our experiment and this method can be extended to combine more beams and higher repetition rate scaling up to higher power.

  10. Repetition rate tunable ultra-short optical pulse generation based on electrical pattern generator

    Institute of Scientific and Technical Information of China (English)

    Xin Fu; Hongming Zhang; Meng Yan; Minyu Yao

    2009-01-01

    @@ An actively mode-locked laser with tunable repetition rate is proposed and experimentally demonstrated based on a programmable electrical pattern generator.By changing the repetition rate of the electrical patterns applied on the in-cavity modulator, the repetition rate of the output optical pulse sequences changes accordingly while the pulse width of the optical pulse train remains almost constant.In other words, the output ultra-short pulse train has a tunable duty cycle.In a proof-of-principle experiment, optical pulses with repetition rates of 10, 5, 2.5 and 1.25 GHz are obtained by adjusting the electrical pattern applied on the in-cavity modulator while their pulse widths remain almost unchanged.

  11. ECCM schemes in netted radar system based on temporal pulse diversity

    Institute of Scientific and Technical Information of China (English)

    Ahmed Abdalla; Zhao Yuan; Bin Tang

    2016-01-01

    For a netted radar system to counteract the deception electronic countermeasure (ECM) signals, an effective electronic counter countermeasure (ECCM) approach is proposed. The pro-posed approach is realized based on the new signaling strategy for the temporal pulse diversity, which makes use of transmitting pulses at each pulse repetition interval (PRI) with specific trans-mission pulse block, and then fol owing proper processing and information fusion. The existence of the deceptive ECM signal is confirmed by one station, while the other stations in the netted radar with same parameters applied the pulse diversity skil ful y. Meanwhile, this method ensured that, pulse diversity can be ap-plied in netted radar. The performance assessment shows that the proposed solutions are effective in presence of ECM signals. This algorithm has been demonstrated by simulations. The presented simulation results are in excel ent consensus with theoretical pre-dictions.

  12. MOSFET-based high voltage double square-wave pulse generator with an inductive adder configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Qiaogen, E-mail: hvzhang@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Long, Jinghua [College of Physics, Shenzhen University, Shenzhen 518060 (China); Lei, Yunfei; Liu, Jinyuan [Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-09-01

    This paper presents a fast MOSFET-based solid-state pulse generator for high voltage double square-wave pulses. The generator consists mainly of an inductive adder system stacked of 20 solid-state modules. Each of the modules has 18 power MOSFETs in parallel, which are triggered by individual drive circuits; these drive circuits themselves are synchronously triggered by a signal from avalanche transistors. Our experiments demonstrate that the output pulses with amplitude of 8.1 kV and peak current of about 405 A are available at a load impedance of 20 Ω. The pulse has a double square-wave form with a rise and fall time of 40 ns and 26 ns, respectively and bottom flatness better than 12%. The interval time of the double square-wave pulses can be adjustable by varying the interval time of the trigger pulses.

  13. Determination of instantaneous pressure in a transonic base flow using four-pulse tomographic PIV

    NARCIS (Netherlands)

    Blinde, P.L.; Lynch, K.P.; Schrijer, F.F.J.; Van Oudheusden, B.W.

    2015-01-01

    A tomographic four-pulse PIV system is used in a transonic axisymmetric base flow experiment at a nominal free stream Mach number of 0.7, with the objective to obtain flow acceleration and pressure data. The PIV system, consisting of two double-pulse lasers and twelve cameras, allows acquiring two v

  14. Generation of pulsed light in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Johansson, Sandra; Andersen, Martin; Tidemand-Lichtenberg, Peter

    We propose a novel generic approach for generation of pulsed light in the visible spectrum based on sum-frequency generation between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser. For demonstration, we used a CW 1342 nm laser mixed with a pass...

  15. Significance of power average of sinusoidal and non-sinusoidal periodic excitations in nonlinear non-autonomous system

    Indian Academy of Sciences (India)

    VENKATESH P R; VENKATESAN A

    2016-07-01

    Additional sinusoidal and different non-sinusoidal periodic perturbations applied to the periodically forced nonlinear oscillators decide the maintainance or inhibitance of chaos. It is observed that the weak amplitude of the sinusoidal force without phase is sufficient to inhibit chaos rather than the other non-sinusoidal forces and sinusoidal force with phase. Apart from sinusoidal force without phase, i.e., from various non-sinusoidal forces and sinusoidal force with phase, square force seems to be an effective weak perturbation to suppress chaos. The effectiveness of weak perturbation for suppressing chaos is understood with the total power average of the external forces applied to the system. In any chaotic system, the total power average of the external forces isconstant and is different for different nonlinear systems. This total power average decides the nature of the force to suppress chaos in the sense of weak perturbation. This has been a universal phenomenon for all the chaoticnon-autonomous systems. The results are confirmed by Melnikov method and numerical analysis. With the help of the total power average technique, one can say whether the chaos in that nonlinear system is to be supppressed or not.

  16. Generation of powerful ultrashort electromagnetic pulses based on superradiance

    CERN Document Server

    Ginzburg, N S; Novozhilova, Y V; Sergeev, A S; Phelps, A D R; Cross, A W; Wiggins, S M; Ronald, K; Shpak, V G; Yalandin, M I; Shunailov, S A; Ulmaskulov, M R

    2001-01-01

    Experimental results of the observation of superradiation from intense, subnanosecond electron bunches moving through a periodic waveguide and interacting with a backward propagating TM sub 0 sub 1 wave are presented. The ultra-short microwave pulses in Ka, W, and G band were generated with repetition frequencies of up to 25 Hz. Observation of RF breakdown of ambient air, as well as direct measurements by hot-carrier germanium detectors, leads to an estimate of the peak power as high as 60-120 MW for the 300-400 ps pulses at 38 GHz. The initial observation of 75 GHz 10-15 MW radiation pulses with duration less than 150 ps, and of 150 GHz microwave spikes with a risetime of 75ps are also reported. Comparison with simulations is discussed as well.

  17. Optical antennas with sinusoidal modulation in width.

    Science.gov (United States)

    Dikken, Dirk Jan; Segerink, Frans B; Korterik, Jeroen P; Pfaff, Stefan S; Prangsma, Jord C; Herek, Jennifer L

    2016-08-08

    Small metal structures sustaining plasmon resonances in the optical regime are of great interest due to their large scattering cross sections and ability to concentrate light to subwavelength volumes. In this paper, we study the dipolar plasmon resonances of optical antennas with a constant volume and a sinusoidal modulation in width. We experimentally show that by changing the phase of the width-modulation, with a small 10 nm modulation amplitude, the resonance shifts over 160 nm. Using simulations we show how this simple design can create resonance shifts greater than 600 nm. The versatility of this design is further shown by creating asymmetric structures with two different modulation amplitudes, which we experimentally and numerically show to give rise to two resonances. Our results on both the symmetric and asymmetric antennas show the capability to control the localization of the fields outside the antenna, while still maintaining the freedom to change the antenna resonance wavelength. The antenna design we tested combines a large spectral tunability with a small footprint: all the antenna dimensions are factor 7 to 13 smaller than the wavelength, and hold potential as a design element in meta-surfaces for beam shaping.

  18. Pressure profile in liver sinusoids. A model of localization of sinusoidal resistance in the normal and cirrhotic liver

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Lassen, N A

    1988-01-01

    profiles along the sinusoids indicate a steep downstream pressure fall in cirrhosis, implying that the spatial average of sinusoidal pressure is close to that of the inlet, i.e. portal pressure. Another prediction is an increased blood flow rate (flow rate per vessel) in the region near the outlet......A model of pressure profile along the sinusoids in the liver is presented. The major prerequisite is a converging sinusoidal flow pattern through a network of tubes with almost equal diameter. In this case the main hemodynamic resistance is located downstream at the outlet. Different geometric...... configurations (sphere, cylinder, and sections of these) are considered, and it is concluded that the precise shape of the microcirculatory unit is not crucial. The applicability in cirrhosis is considered in relation to a decreased diameter and number of the sinusoids in this condition. Estimated pressure...

  19. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2015-12-01

    Full Text Available In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  20. Masking of a brief probe by sinusoidal frequency modulation.

    Science.gov (United States)

    Edwards, B W; Viemeister, N F

    1997-02-01

    Contrary to level detection models, the thresholds for a brief-duration probe masked by a sinusoidal frequency modulation (FM) masker increases as the modulation index (beta) of FM increases [Zwicker, Acustica 31, 243-256 (1974)]. In this paper the reason for this phenomenon is investigated. In experiment 1, a 10-ms, 1-kHz probe was detected in the presence of an FM masker centered at 1 kHz and sinusoidally modulated at 16 Hz. Thresholds increased by over 15 dB with increasing beta, consistent with Zwicker's findings. In experiment 2, the instantaneous frequency changes of the masker used in experiment 1 were clipped and the resulting thresholds indicated that detection was determined primarily by the masker's total frequency excursion rather than by its instantaneous sweep rate. In experiment 3, the FM maskers from the first two experiments were passed through a roex filter centered at 1 kHz and the resulting envelope was used to amplitude modulate a 1-kHz tone, producing approximately the same effective envelope at 1 kHz as the FM maskers. Threshold functions for the amplitude modulated (AM) maskers were similar to those for their corresponding FM maskers. Thresholds increased by over 15 dB while the total energy of the AM masker decreased by over 10 dB, again contrary to standard level-detection models. The results from these experiments can be explained, at least qualitatively, by a model based on envelope shape discrimination: similarities between the envelopes of the masker alone and masker-plus-probe at the output of an auditory filter centered on the frequency of the probe are primarily responsible for the observed masking, particularly at large beta's.

  1. Operational Characteristics of an SCR-Based Pulse Generating Circuit

    Science.gov (United States)

    2014-12-01

    the inductive loading of the probe connected to the oscilloscope during pulsing. The fast rise time (  < 1 µs), coupled with the surge in current...16] V. A. K. Temple and F. W. Holroyd. (1983, July). Optimizing carrier lifetime profile for improved trade-off between turn-off time and

  2. Phase Sensitive Amplifier Based on Ultrashort Pump Pulses

    CERN Document Server

    Gershikov, Alexander

    2016-01-01

    We demonstrate a narrow band phase sensitive amplifier in the pump degenerate configuration which employs ps pump pulses. Control of the amplifier bandwidth is achieved via changes of the pump spectral width. A phase sensitive gain between -6 and 6 decibels, with an overall system gain of 28dB was demonstrated.

  3. Time-lens based optical packet pulse compression and retiming

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist;

    2010-01-01

    This paper presents a new optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically transparent and does not require clock...

  4. Flattop pulse generation based on the combined action of active mode locking and nonlinear polarization rotation.

    Science.gov (United States)

    Fang, Xiaohui; Wai, P K A; Lu, Chao; Chen, Jinhua

    2014-02-10

    A pulse-width-tunable 10 GHz flattop pulse (FTP) train is generated based on the combined action of active mode locking and nonlinear polarization rotation pulse shaping. Although the setup was previously used for other applications, the mechanism of FTP generation based on it is first analyzed and confirmed in the experiment. An FTP with pulse width tunable from 12 to 20 ps by changing polarization controllers is generated within the wavelength tuning range of 20 nm. The generated pulse reveals good stability, with the side mode suppression ratio of 65 dB, timing jitter of 92 fs, and amplitude fluctuation of 0.36%.

  5. Semi-definite programming based pulse waveform design and its further analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Li-li; SHA Xue-jun; WU Xuan-li

    2008-01-01

    In order to.provide a judicious pulse waveform design required for ultra-wideband (UWB) communi-cation to enable the UWB spectral mask compatible and coexistent with other existing wireless communication systems, a semi-definite programming (SDP) based pulse waveform design method for UWB radios is intro-duced and a further analysis is given in this paper. By using Sedumi and Yalmip toolboxes of Matlab, the pro-cedure of solving the SDP problem is simplified. Simulation results show that this SDP based pulse waveform design method can be used to design pulses that fulfill the Federal Communications Commission (FCC) spectral mask strictly and optimize the power efficiency at the same time. This paper also analyzes the influences of the power efficiency duing to the changes of sampling interval and the number of combined pulses, and then the op-timal sampling interval that maximizes the transmission power can be found.

  6. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  7. Treatment Pulse Application for Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Sun-Seob Choi

    2011-01-01

    Full Text Available Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.

  8. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    Science.gov (United States)

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  9. Sinusoidal Analysis-Synthesis of Audio Using Perceptual Criteria

    Directory of Open Access Journals (Sweden)

    Ted Painter

    2003-01-01

    Full Text Available This paper presents a new method for the selection of sinusoidal components for use in compact representations of narrowband audio. The method consists of ranking and selecting the most perceptually relevant sinusoids. The idea behind the method is to maximize the matching between the auditory excitation pattern associated with the original signal and the corresponding auditory excitation pattern associated with the modeled signal that is being represented by a small set of sinusoidal parameters. The proposed component-selection methodology is shown to outperform the maximum signal-to-mask ratio selection strategy in terms of subjective quality.

  10. Precise measurement of the micron-scale spot of ultrashort laser pulse based on film scanning

    Institute of Scientific and Technical Information of China (English)

    Fengtie Wu; Jianrong Zhang; Yunbin Chen; Dongdong Guo

    2008-01-01

    @@ A novel and precise micron-scale nanosecond laser spot measurement based on film-scanning method is presented. The method can be used to measure the spot size, beam profile, and intensity distribution of the pulse.

  11. A Waveguide Based, High Power Pockels Cell Modulator for Sub-Nanosecond Pulse Slicing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Goal of this STTR is to develop a high speed, high power, waveguide based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key...

  12. Portal and sinusoidal fibrosis are common on liver biopsy after Fontan surgery.

    Science.gov (United States)

    Schwartz, Matthew C; Sullivan, Lisa M; Glatz, Andrew C; Rand, Elizabeth; Russo, Pierre; Goldberg, David J; Rome, Jonathan J; Cohen, Meryl S

    2013-01-01

    Hepatic fibrosis is an important complication after Fontan surgery in patients with single-ventricle congenital heart disease. Few reports of hepatic histology in these patients exist, and sinusoidal fibrosis has been described. We aimed to characterize fibrosis at liver biopsy procedure in patients with previous Fontan surgery and to identify patient variables associated with the degree of fibrosis. All patients who had previous Fontan surgery and who subsequently underwent liver biopsy at our institution between January 1990 and July 2010 were identified. For each biopsy specimen, portal and sinusoidal fibrosis were graded and medical records reviewed. Biopsy specimens from 13 patients were examined; the median time from Fontan surgery to liver biopsy procedure was 16.9 years (range 6.9-25). At the most recent biopsy procedure, 12 patients (92 %) had evidence of portal fibrosis, including 1 patient with portal-based cirrhosis. Thirteen patients (100 %) had at least some degree of sinusoidal fibrosis, including 1 patient with centrilobular-based cirrhosis. Lower platelet count was associated with greater degree of portal fibrosis by ordinal regression (odds ratio 0.84, P = 0.04), and patients with no or mild portal fibrosis had significantly higher platelet counts compared with those with moderate or severe portal disease (278 ± 78 K vs. 160 ± 46 K, P = 0.005). Four patients underwent serial biopsy procedures; portal fibrosis was progressed in 3 patients, and sinusoidal fibrosis was progressed in 3 patients. After Fontan surgery, portal and sinusoidal fibrosis are common at liver biopsy and can progress over time. Lower platelet count may represent a marker of portal-based disease in these patients.

  13. A Novel Pulse Design Based on Hermite Functions for UWB Communications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the design of a class of pulses that are based on Hermite functions for ultra-wideband communication systems. The presented class of pulses can not only meet the power spectral emission constraints of federal communications commission, but also have a short duration for multiple accesses. This paper gives closed form expressions of auto-and cross-correlation functions of the proposed pulses, which can be used to evaluate the performance of the correlator receiver. Furthermore, the paper investigates, under various channel conditions, the spectrum characteristic and the bit error rate of the pulses' waveforms. The investigation conditions include additive white Gaussian noise channels, multipleaccess interference channels, and fading multipath channels. Our results indicate that our systematic algorithm is flexible for designing ultra-wideband pulses that conform to spectral emission constraints and offer good bit error rate performance.

  14. Study on impurity desorption induced by femtosecond pulse laser based on a stochastic process model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the advantages on non-equilibrium heating and desorption induced by electronic transition, the femtosecond pulse laser introduces a new way for solving the problem of impurity pollution adsorbed on a solid thin film in micro-electro-mechanical systems (MEMS). A model based on stochastic processes was established for stimulated desorption induced by the femtosecond pulse laser to interpret the interaction of the optically excited hot electrons with the adsorbed molecules in a metal substrate. Numerical simulation results reveal a time-dependent desorption probability of adsorbed molecules and indicate that how key parameters of femtosecond pulse laser, such as incident laser energy flux, pulse duration, and wavelength of pulse, have a great effect on the desorption probability.

  15. 基于改进 Prony方法的邻近频率正弦信号参数识别%Parameters Estimation of Intensive Sinusoidal Signals Based on Improved Prony Method

    Institute of Scientific and Technical Information of China (English)

    高启明; 李传江; 张自强; 陈海雄

    2013-01-01

    在旋转机械故障诊断、通信等工程领域中邻近正弦信号参数识别问题较为常见,针对此类问题中非衰减实值信号的特点,采用总体最小二乘改进型Prony方法(简称IPM)来提取邻近频率分量的频率值,并推导出两个正弦信号频率识别的封闭解。当信噪比较差时,先采用低通或带通滤波器降噪并去除直流偏置,然后采用IPM方法识别参数,大大提高参数估计精度。仿真和实验结果表明:该方法只需少量样本数据即可获得较高的识别精度,且运算实时性较高,具有很好的工程应用价值。%Estimation of sinusoidal signal with adjacent frequencies is a common problem in engineering areas,such as fault di-agnosis of rotor system and communication. In view of the undamped real signal in this problem,the total least square improved Prony method was introduced to extract frequencies of signal components with adjacent frequencies. And closed form solution for two sinusoid signals was deduced. When SNR wass low,low-pass or band-pass filter was used to denoise and remove constant bias first,and then IPM was used to estimate parameters,which could improve estimation precision greatly. Simulation and experimental results show that the proposed method has high precision only using little data,and also has good real-time performance and desirable application value in engineering.

  16. Polarization domain wall pulses in a microfiber-based topological insulator fiber laser

    Science.gov (United States)

    Liu, Jingmin; Li, Xingliang; Zhang, Shumin; Zhang, Han; Yan, Peiguang; Han, Mengmeng; Pang, Zhaoguang; Yang, Zhenjun

    2016-07-01

    Topological insulators (TIs), are novel two-dimension materials, which can act as effective saturable absorbers (SAs) in a fiber laser. Moreover, based on the evanescent wave interaction, deposition of the TI on microfiber would create an effective SA, which has combined advantages from the strong nonlinear optical response in TI material together with the sufficiently-long-range interaction length in fiber taper. By using this type of TI SA, various scalar solitons have been obtained in fiber lasers. However, a single mode fiber always exhibits birefringence, and hence can support two orthogonal degenerate modes. Here we investigate experimentally the vector characters of a TI SA fiber laser. Using the saturated absorption and the high nonlinearity of the TI SA, a rich variety of dynamic states, including polarization-locked dark pulses and their harmonic mode locked counterparts, polarization-locked noise-like pulses and their harmonic mode locked counterparts, incoherently coupled polarization domain wall pulses, including bright square pulses, bright-dark pulse pairs, dark pulses and bright square pulse-dark pulse pairs are all observed with different pump powers and polarization states.

  17. Pulsed, all solid-state light source in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Andersen, Martin; Johansson, Sandra

    We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser....

  18. Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation

    OpenAIRE

    2009-01-01

    We study the convex optimization approach for parameter estimation of several sinusoidal models, namely, single complex/real tone, multiple complex sinusoids, and single two-dimensional complex tone, in the presence of additive Gaussian noise. The major difficulty for optimally determining the parameters is that the corresponding maximum likelihood (ML) estimators involve finding the global minimum or maximum of multimodal cost functions because the frequencies are nonlinear in the observed s...

  19. Displacement response analysis of base-isolated buildings subjected to near-fault ground motions with velocity pulse

    Science.gov (United States)

    He, Qiumei; Li, Xiaojun; Yang, Yu; Liu, Aiwen; Li, Yaqi

    2016-04-01

    In order to study the influence of the velocity pulse to seismic displacement response of base-isolated buildings and the differences of the influent of the two types of near-fault ground motions with velocity pulse to seismic response of base-isolated buildings, the seismic responses are analyzed by three dimensional finite element models for three base-isolated buildings, 4 stories, 9 stories and 14 stories. In this study, comparative analyses were done for the seismic displacement responses of the base-isolated structures under 6 near-fault ground motion records with velocity pulse and no velocity pulse, in which, 6 artificial ground motion time histories with same elastic response spectrum as the 6 near-fault ground motion records are used as the ground motion with no velocity pulse. This study indicates that under the ground motions with velocity pulse the seismic displacement response of base-isolated buildings is significantly increased than the ground motions with no velocity pulse. To the median-low base-isolated buildings, the impact of forward directivity pulses is bigger than fling-step pulses. To the high base-isolated buildings, the impact of fling-step pulses is bigger than forward directivity pulses. The fling-step pulses lead to large displacement response in the lower stories. This work has been supported by the National Natural Science Foundation of China (Grant No.51408560)

  20. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H- beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  1. Pulse-induced acoustoelectric vibrations in surface-gated GaAs-based quantum devices

    Science.gov (United States)

    Rahman, S.; Stace, T. M.; Langtangen, H. P.; Kataoka, M.; Barnes, C. H. W.

    2007-05-01

    We present the results of a numerical investigation which show the excitation of acoustoelectric modes of vibration in GaAs-based heterostructures due to sharp nanosecond electric-field pulses applied across surface gates. In particular, we show that the pulses applied in quantum information processing applications are capable of exciting acoustoelectric modes of vibration including surface acoustic modes which propagate for distances greater than conventional device dimensions. We show that the pulse-induced acoustoelectric vibrations are capable of inducing significant undesired perturbations to the evolution of quantum systems.

  2. Triangle bipolar pulse shaping and pileup correction based on DSP

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2011-02-11

    Programmable Digital Signal Processing (DSP) microprocessors are capable of doing complex discrete signal processing algorithms with clock rates above 50 MHz. This combined with their low expense, ease of use and selected dedicated hardware make them an ideal option for spectrometer data acquisition systems. For this generation of spectrometers, functions that are typically performed in dedicated circuits, or offline, are being migrated to the field programmable gate array (FPGA). This will not only reduce the electronics, but the features of modern FPGAs can be utilized to add considerable signal processing power to produce higher resolution spectra. In this paper we report on an all-digital triangle bipolar pulse shaping and pileup correction algorithm that is being developed for the DSP. The pileup mitigation algorithm will allow the spectrometers to run at higher count rates or with multiple sources without imposing large data losses due to the overlapping of scintillation signals. This correction technique utilizes a very narrow bipolar triangle digital pulse shaping algorithm to extract energy information for most pileup events.

  3. Population inversion by chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lu Tianshi [Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033 (United States)

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  4. Finite Element Based Optimal Design Approach for High Voltage Pulse Transformers

    CERN Document Server

    Aguglia, D; Viarouge, P; Cros, J

    2014-01-01

    This paper presents an optimal design methodology of monolithic high voltage pulse transformers based on the direct 2D FEA identification of the electrical equivalent circuit parameters. This method is applied to the preliminary optimal design of the monolithic high voltage pulse transformer for the future CLIC modulators under study at CERN. The feasibility of such a transformer with tight specifications is demonstrated. The predicted performances obtained with the direct 2D FEA optimization process is validated by 3D FEA simulation.

  5. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik Department E15, Technische Universitaet Muenchen, 85748 Garching (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  6. Detection and analysis of multi-dimensional pulse wave based on optical coherence tomography

    Science.gov (United States)

    Shen, Yihui; Li, Zhifang; Li, Hui; Chen, Haiyu

    2014-11-01

    Pulse diagnosis is an important method of traditional Chinese medicine (TCM). Doctors diagnose the patients' physiological and pathological statuses through the palpation of radial artery for radial artery pulse information. Optical coherence tomography (OCT) is an useful tool for medical optical research. Current conventional diagnostic devices only function as a pressure sensor to detect the pulse wave - which can just partially reflect the doctors feelings and lost large amounts of useful information. In this paper, the microscopic changes of the surface skin above radial artery had been studied in the form of images based on OCT. The deformation of surface skin in a cardiac cycle which is caused by arterial pulse is detected by OCT. The patient's pulse wave is calculated through image processing. It is found that it is good consistent with the result conducted by pulse analyzer. The real-time patient's physiological and pathological statuses can be monitored. This research provides a kind of new method for pulse diagnosis of traditional Chinese medicine.

  7. All-solid-state repetitive semiconductor opening switch-based short pulse generator.

    Science.gov (United States)

    Ding, Zhenjie; Hao, Qingsong; Hu, Long; Su, Jiancang; Liu, Guozhi

    2009-09-01

    The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 mus primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Omega. The highest repetition rate is up to 1 kHz.

  8. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network

    Science.gov (United States)

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-03-01

    High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.

  9. fs/ns dual-pulse LIBS analytic survey for copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santagata, A. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy)], E-mail: santagata@pz.imip.cnr.it; Teghil, R. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Albano, G.; Spera, D.; Villani, P. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Parisi, G.P. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy); Galasso, A. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy)

    2007-12-15

    The quantitative analytic capability of a fs/ns dual-pulse Laser-Induced Breakdown Spectroscopy technique, based on the orthogonal reheating of a fs-laser ablation plume by a ns-laser pulse, is presented. In this work, it is shown how the effect played by the delay times between the two laser beams can vary the analytical response of this dual-pulse LIBS configuration. In order to address this task, the Sn, Pb and Zn calibration curves of five certified copper-based samples have been investigated. These calibration curves have been obtained, in air at atmospheric pressure, by integrating the emission data collected in two different inter-pulse delay zones, one in the delay interval of 1-41 {mu}s, the other within the range of 46-196 {mu}s. For drawing the species calibration curves, the emission intensities of the considered Pb(I), Sn(I) and Zn(I) electronic transitions have been normalized with a non-resonant Cu(I) emission line. The experimental results have shown that, by varying the inter-pulse delay between the two laser beams, complementary analytical results can be induced. By considering at once all data acquired within the inter-pulse delay time of 1-196 {mu}s, this hypothesis has been strengthened. The calibration curves obtained in this way are characterized by excellent linear regression coefficients (0.988-0.999) despite of the large Sn, Pb and Zn compositional variation of the targets employed. The results presented reveal, for the first time, that, by taking into account the role played by the inter-pulse delay time between the two laser beams, the fs/ns dual-pulse LIBS configuration here used can be improved and provide very good opportunities for performing quantitative analysis of copper-based alloys.

  10. Orbital component extraction by time-variant sinusoidal modeling.

    Science.gov (United States)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-04-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model

  11. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  12. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-01-01

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  13. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  14. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning.

    Science.gov (United States)

    Kim, Uksu; Morita, Noboru; Lee, Deug; Jun, Martin; Park, Jeong Woo

    2017-03-27

    Pulse electrochemical nanopatterning (PECN), a non-contact scanning probe lithography (NC-SPL) process using ultrashort voltage pulses, is based primarily on an electrochemical machining (ECM) process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  15. An Optimal Sorting of Pulse Amplitude Sequence Based on the Phased Array Radar Beam Tasks

    Institute of Scientific and Technical Information of China (English)

    Chuan Sheng∗,Yongshun Zhang; Wenlong Lu

    2016-01-01

    The study of phased array radar ( PAR) pulse amplitude sequence characteristics is the key to understand the radar’s working state and its beam’s scanning manner. According to the principle of antenna pattern formation and the searching and tracking modes of beams, this paper analyzes the characteristics and differences of pulse amplitude sequence when the radar beams work in searching and tracking modes respectively. Then an optimal sorting model of pulse amplitude sequence is established based on least⁃squares and curve⁃fitting methods. This method is helpful for acquiring the current working state of the radar and recognizing its instantaneous beam pointing by sorting the pulse amplitude sequence without the necessity to estimate the antenna pattern.

  16. Detection of Underwater Carrier-Free Pulse based on Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Yunlu Ni

    2013-01-01

    Full Text Available Carrier-free short pulse widely employed in UWB radar is brought into high-resolution sonar system, which has unique advantages: attaining more target information, restraining fluctuation of reverberation envelop efficiently in short-range detection and achieving accurate estimation. In essence such pulse is transiently short in time domain and wide in frequency domain, and as such it is difficult to separate signal to noise based on Fourier Transform spectrum. So as to seek for detection methods of short pulse, minor differences of energy distribution of time-frequency characteristics are presented on three time-frequency methods such as Short Time Fourier Transform, Wavelet Transform and Hilbert-Huang Transform. With these results, a tri-channel detector is established for such underwater short pulse in noise environment, which is generally suitable not only for detection module of underwater sonar system but also that of radar system.

  17. Pulse shaping techniques for a high-g shock tester based on collision principle

    Science.gov (United States)

    Duan, Zhengyong; Tang, Chuansheng; Li, Yang; Han, Junliang; Wu, Guoxiong

    2016-09-01

    Pulse shaping techniques are discussed in this paper for the practicability of a developed high-g shock tester. The tester is based on collision principle where there is a one-level velocity amplifier. A theoretical and experimental study of pulse shaping techniques is presented. A model was built and theoretical formulae were deduced for the shock peak acceleration and its duration. Then theoretical analysis and some experiments were conducted. The test results verify the validity of theoretical model and show that the shock tester can generate the expected high-g shock pulses by integrated usage of different impact velocities and pulse shapers made from different materials. This is important in practical applications where the items under test can be shown to excite specific resonances at predetermined acceleration levels using the shock tester.

  18. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Tetsushi Ikegami

    2008-04-01

    Full Text Available Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  19. A novel acquisition method of nuclear spectrum based on pulse area analysis

    CERN Document Server

    Dongcang, Li; Lei, Yang; Zhong, Qi; Xiangting, Meng; Bitao, Hu

    2014-01-01

    A novel method based on pulse area analysis(PAA) was presented for acquisition nuclear spectrum by the digitizer. PAA method can be used as a substitute for the traditional method of pulse height analysis (PHA). In the PAA method a commercial digitizer was employed to sample and sum in the pulse, and the area of pulse is proportional to the energy of the detected radiation. The results of simulation and experiment indicate the great advantages of PAA method, especially when the count rate is high and shaping time constant is small. When shaping time constant is 0.5us, the energy resolution of PAA is about 66% better than that of PHA.

  20. Nine Channel Mid-Power Bipolar Pulse Generator Based on a Field Programmable Gate Array

    CERN Document Server

    Haylock, Ben; Kasture, Sachin; Fisher, Paul; Streed, Erik W; Lobino, Mirko

    2016-01-01

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array (FPGA). Positive and negative pulses can be generated at repetition rates from up to 80~MHz with pulse width adjustable in increments of 1.6~ns across nine independent outputs. Each channel can provide 1.5W of RF power and it can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  1. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Ohno Kohei

    2008-01-01

    Full Text Available Abstract Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  2. Magnetite-based magnetoreception: the effect of repeated pulsing on the orientation of migratory birds

    Science.gov (United States)

    Winklhofer, M.; Wiltschko, W.; Wiltschko, R.; Ford, H.; Munro, U.

    2007-05-01

    Previous studies have shown that a magnetic pulse affected the orientation of passerine migrants for a short period only: for about 3 days, the birds' headings were deflected eastward from their migratory direction, followed by a phase of disorientation, with the birds returning to their normal migratory direction after about 10 days. To analyze the processes involved in the fading of the pulse effect, migratory birds were subjected to a second, identical pulse 16 days after the first pulse, when the effect of that pulse had disappeared. This second pulse affected the birds' behavior in a different way: it caused an increase in the scatter of the birds' headings for 2 days, after which the birds showed normal migratory orientation again. These observations are at variance with the hypothesis that the magnetite-based receptor had been fully restored, but also with the hypothesis that the input of this receptor was ignored. They rather indicate dynamic processes, which include changes in the affected receptor, but at the same time cause the birds to weigh and rate the altered input differently. The bearing of these findings on the question of whether single domains or superparamagnetic particles are involved in the magnetite-based receptors is discussed.

  3. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    Science.gov (United States)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  4. Magnetite-based magnetoreception: the effect of repeated pulsing on the orientation of migratory birds.

    Science.gov (United States)

    Wiltschko, Wolfgang; Ford, Hugh; Munro, Ursula; Winklhofer, Michael; Wiltschko, Roswitha

    2007-05-01

    Previous studies have shown that a magnetic pulse affected the orientation of passerine migrants for a short period only: for about 3 days, the birds' headings were deflected eastward from their migratory direction, followed by a phase of disorientation, with the birds returning to their normal migratory direction after about 10 days. To analyze the processes involved in the fading of the pulse effect, migratory birds were subjected to a second, identical pulse 16 days after the first pulse, when the effect of that pulse had disappeared. This second pulse affected the birds' behavior in a different way: it caused an increase in the scatter of the birds' headings for 2 days, after which the birds showed normal migratory orientation again. These observations are at variance with the hypothesis that the magnetite-based receptor had been fully restored, but also with the hypothesis that the input of this receptor was ignored. They rather indicate dynamic processes, which include changes in the affected receptor, but at the same time cause the birds to weigh and rate the altered input differently. The bearing of these findings on the question of whether single domains or superparamagnetic particles are involved in the magnetite-based receptors is discussed.

  5. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    Science.gov (United States)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  6. Four-Wire Delta Service Sinusoidal Operation and Compensation Simulator

    Directory of Open Access Journals (Sweden)

    Vicente León-Martínez

    2015-10-01

    Full Text Available An off-line simulator based on Excel used to evaluate the operation of four-wire delta (4WD services as well as the effects of reactive and imbalance compensators in sinusoidal steady-state conditions is described in this paper. Voltages, currents and powers in the primary and secondary windings of the transformer as well as in the high voltage (HV and low voltage (LV lines and in the loads are calculated through that simulator. The apparent powers in the mains, transformer and loads are determined applying Buchholz’s and unified power measurement (UPM formulations in both scalar and vector notations. The effects of the neutral current are especially examined, in order to minimize them, and the optimal wye load distribution is determined by the simulator. The simulator provides the necessary elements of passive reactive and unbalanced compensators that optimize the 4WD transformer operation too. Those compensators are determined for each load, and they can be separately selected and included in the simulation process or not. An application example is finally used to step by step explain how the simulator runs.

  7. Credibility Test for Frequency Estimation of Sinusoid Using Chebyshev’s Inequality

    Directory of Open Access Journals (Sweden)

    Hu Guobing

    2014-01-01

    Full Text Available Estimation of sinusoid frequency is a key research problem related to radar, sonar, and communication systems. The results of numerous investigations on frequency estimation have been reported in the literature. Nevertheless, to the best of our knowledge, none of them have dealt with credibility evaluation, which is used to decide whether an individual frequency estimate of the sinusoid is accurate or not. In this study, the credibility problem is modeled as a hypothesis test based on Chebyshev’s inequality (CI. The correlation calculated from the received signal and the reference signal generated according to the frequency estimate is used as a test statistic. A threshold is determined based on CI, and the analytical expression for the frequency estimation credibility detection performance is derived. Simulations show that the proposed method performs well even at low signal-to-noise ratios.

  8. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    Science.gov (United States)

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

  9. Mechanism of ultrasonic-pulse electrochemical compound machining based on particles

    Institute of Scientific and Technical Information of China (English)

    张成光; 张勇; 张飞虎

    2014-01-01

    The electric double layer with the transmission of particles was presented based on the principle of electrochemistry. In accordance with this theory, the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining (UPECM) based on particles was proposed. The removal mechanism was a particular focus and was thus validated by experiments. The principles and experiments of UPECM were introduced, and the removal model of the UPECM based on the principles of UPECM was established. Furthermore, the effects of the material removal rate for the main processing parameters, including the particles size, the ultrasonic vibration amplitude, the pulse voltage and the minimum machining gap between the tool and the workpiece, were also studied through UPECM. The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM. The results also indicate that the processing speed, machining accuracy and surface quality can be improved under UPECM compound machining.

  10. Single-shot laser pulse reconstruction based on self-phase modulated spectra measurements

    Science.gov (United States)

    Anashkina, Elena A.; Ginzburg, Vladislav N.; Kochetkov, Anton A.; Yakovlev, Ivan V.; Kim, Arkady V.; Khazanov, Efim A.

    2016-09-01

    We report a method for ultrashort pulse reconstruction based only on the pulse spectrum and two self-phase modulated (SPM) spectra measured after pulse propagation through thin media with a Kerr nonlinearity. The advantage of this method is that it is a simple and very effective tool for characterization of complex signals. We have developed a new retrieval algorithm that was verified by reconstructing numerically generated fields, such as a complex electric field of double pulses and few-cycle pulses with noises, pedestals and dips down to zero spectral intensity, which is challenging for commonly used techniques. We have also demonstrated a single-shot implementation of the technique for the reconstruction of experimentally obtained pulses. This method can be used for high power laser systems operating in a single-shot mode in the optical, near- and mid-IR spectral ranges. The method is robust, low cost, stable to noise, does not require a priori information, and has no ambiguity related to time direction.

  11. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    Science.gov (United States)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  12. Tip-based source of femtosecond electron pulses at 30 keV

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes; Paul Stein, Jan [Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Krüger, Michael; Förster, Michael; Hammer, Jakob; Ehberger, Dominik; Hommelhoff, Peter, E-mail: peter.hommelhoff@fau.de [Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Department für Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 1, 91058 Erlangen (Germany); Baum, Peter [Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching (Germany)

    2014-03-07

    We present a nano-scale photoelectron source, optimized for ultrashort pulse durations and well-suited for time-resolved diffraction and advanced laser acceleration experiments. A tungsten tip of several-ten-nanometers diameter mounted in a suppressor-extractor electrode configuration allows the generation of 30 keV electron pulses with an estimated pulse duration of 9 fs (standard deviation; 21 fs full width at half maximum) at the gun exit. We infer the pulse duration from particle tracking simulations, which are in excellent agreement with experimental measurements of the electron-optical properties of the source in the spatial domain. We also demonstrate femtosecond-laser triggered operation of the apparatus. The temporal broadening of the pulse upon propagation to a diffraction sample can be greatly reduced by collimating the beam. Besides the short electron pulse duration, a tip-based source is expected to feature a large transverse coherence and a nanometric emittance.

  13. Perambatan Gelombang Optik pada Grating Sinusoidal dengan Chirp dan Taper

    Directory of Open Access Journals (Sweden)

    Isnani Darti

    2009-11-01

    menggunakan MIL, dipelajari perubahan respon optik pada grating sinusoidal akibat variasi amplitudo modulasi indeks (taper dan variasi frekuensi spasial grating (chirp. Hasil simulasi menunjukkan bahwa taper menyebabkan adanya fenomena penghilangan side-lobe pada spektrum transmitansi. Adanya chirp menyebabkan penghalusan side-lobe pada spektrum transmitansi dengan semakin besar parameter chirp menyebabkan peningkatan transmitansi di sekitar pusat band-gap dari grating homogen. Selain implementasi integrasi numerik (Runge-Kutta, MIL merupakan metode eksak sehingga dapat digunakan untuk mengevaluasi validitas metode yang sering digunakan yaitu Persamaan Moda Tergandeng (PMT. Dari hasil perbandingan dapat disimpulkan bahwa secara umum PMT kurang akurat dalam menganalisis struktur grating sinusoidal baik homogen maupun tak-homogen.

  14. Discrimination of steady state and transient state of dither extremum seeking control via sinusoidal detection

    Science.gov (United States)

    Mu, Baojie; Li, Yaoyu; Seem, John E.

    2016-08-01

    A major class of extremum seeking control (ESC) is based on the use of periodic dither perturbation of plant input for extracting the gradient information. Presence of the dither input into the steady state operation is undesirable in practice due to the possible excessive wear of actuators. It is thus beneficial to stop the dithering action after the ESC reaches its steady state. In this paper, we propose a method for automatically discriminating between the steady state and the transient state modes of extremum seeking control process using the sinusoidal detection techniques. Some design guidelines are proposed for the parameter selection of the relevant sinusoidal detection scheme. The proposed scheme is validated with simulation study on dynamic virtual plant of two building HVAC systems.

  15. Sequentially Adapted Parallel Feedforward Active Noise Control of Noisy Sinusoidal Signals

    Directory of Open Access Journals (Sweden)

    Govind Kannan

    2009-01-01

    Full Text Available A large class of acoustic noise sources has an underlying periodic process that generates a periodic noise component, and thus their acoustic noise can in general be modeled as the sum of a periodic signal and a randomly fluctuating signal (usually a broadband background noise. Active control of periodic noise (i.e., for a mixture of sinusoids is more effective than that of random noise. For mixtures of sinusoids in a background broadband random noise, conventional FXLMS-based single filter method does not reach the maximum achievable Noise Attenuation Level (NALmax⁡. In this paper, an alternative approach is taken and the idea of a parallel active noise control (ANC architecture for cancelling mixtures of periodic and random signals is presented. The proposed ANC system separates the noise into periodic and random components and generates corresponding antinoises via separate noise cancelling filters, and tends to reach NALmax⁡ consistently. The derivation of NALmax⁡ is presented. Both the separation and noise cancellation are based on adaptive filtering. Experimental results verify the analytical development by showing superior performance of the proposed method, over the single-filter approach, for several cases of sinusoids in white noise.

  16. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: A new step in migration.

    Science.gov (United States)

    Patten, Daniel A; Wilson, Garrick K; Bailey, Dalan; Shaw, Robert K; Jalkanen, Sirpa; Salmi, Marko; Rot, Antal; Weston, Chris J; Adams, David H; Shetty, Shishir

    2017-01-01

    The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSECs), a functionally and phenotypically distinct subpopulation of endothelial cells. Using flow-based adhesion assays to study the migration of lymphocytes across primary human HSECs, we found that lymphocytes enter into HSECs, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon-γ increased intracellular localization of lymphocytes within HSECs. Furthermore, using confocal imaging and time-lapse recordings, we demonstrated "intracellular crawling" of lymphocytes entering into one endothelial cell from another. This required the expression of intracellular adhesion molecule-1 and stabilin-1 and was facilitated by the junctional complexes between HSECs.

  17. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  18. Ageing monitoring in IGBT module under sinusoidal loading

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; Rannestad, Bjørn

    2015-01-01

    This paper presents monitoring of ageing in high power insulated gate bipolar transistor (IGBT) modules subjected to sinusoidal loading at nominal power level. On-state voltage for IGBT, diode, and rise in interconnection resistance are used as ageing parameters. These are measured in three diffe...

  19. Using Antenna Arrays to Motivate the Study of Sinusoids

    Science.gov (United States)

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  20. Non-Sinusoidal PWM Method for Cascaded Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    Abdul Halim M. Yatim

    2012-08-01

    Full Text Available This paper presents a new switching method for Cascaded Multilevel Inverter (CMI.  The new method uses multiple non-sinusoidal signals as the modulating signal.  The main advantage of using non-sinusoidal modulating signal is that it provides higher fundamental component but at the cost of having a numbers of low-order harmonics in its unfiltered output voltage; naturally contributed by the non-sinusoidal modulating signal. In this paper, the Trapezoidal waveform is employed as the non-sinusoidal modulating signal for the CMI.  Its harmonics profile of different slope angles is analysed.  From the analysis, it was found that the trapezoidal with the slope angle of 36o eliminates the third and fifth harmonics yet yields a high fundamental magnitude.  To verify, a single-phase CMI prototype is constructed and an ALTERA FPGA is deployed to implement the proposed method’s algorithm.  From the results, it was shown that analysis is validated

  1. Electron beam-based sources of ultrashort x-ray pulses.

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Accelerator Systems Division (APS)

    2010-09-30

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  2. A comparison study of on-chip short pulse generation circuits based on a coplanar waveguide

    Institute of Scientific and Technical Information of China (English)

    邹焕; 耿永涛; 王平山; 李家胤

    2011-01-01

    A few traditional pulse-forming circuits are implemented in a commercial 0.13 μm digital complementary-metal-oxide-semiconductor (CMOS) technology. These circuits, based on a coplanar waveguide, are analyzed and compared through CadenceTM Spectre simulati

  3. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Institute of Scientific and Technical Information of China (English)

    Xue Mengfan; Li Xiaoping; Sun Haifeng; Fang Haiyan

    2016-01-01

    X-ray pulsar-based navigation (XPNAV) is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint prob-ability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC) and nonlinear least squares (NLS) estima-tors, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML) estimators.

  4. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Directory of Open Access Journals (Sweden)

    Xue Mengfan

    2016-06-01

    Full Text Available X-ray pulsar-based navigation (XPNAV is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint probability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC and nonlinear least squares (NLS estimators, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML estimators.

  5. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal;

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser...

  6. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    Science.gov (United States)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  7. Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids

    Directory of Open Access Journals (Sweden)

    Geissmann Frederic

    2005-01-01

    Full Text Available We examined the in vivo behavior of liver natural killer T cells (NKT cells by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10-20 µm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.

  8. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Frederic Geissmann

    2005-04-01

    Full Text Available We examined the in vivo behavior of liver natural killer T cells (NKT cells by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6(+ cells in liver, were found to crawl within hepatic sinusoids at 10-20 microm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.

  9. Motion Stability Analysis of Non-sinusoidal Oscillation of Mold Driven by Servomotor

    Institute of Scientific and Technical Information of China (English)

    YAO Yunfeng; LI Junxia; FANG Yiming

    2015-01-01

    The investments of the electro-hydraulic servo system of the mold non-sinusoidal oscillator are great, the modification ratio of the mechanical type is unable to be adjusted online, and some continuous casters suffer from server resonance during the casting. A mold non-sinusoidal oscillation mechanism driven by servomotor is proposed and the prototype is produced in the lab, the investment is low and the modification ratio is can be adjusted online, and the stability problem is studied. At first the dynamics model of the servomotor non-sinusoidal oscillation is established, and the kinematics differential function is deduced. Furthermore, based on the harmonic balance method, the eigenvalues of the system are solved; the criterion of the stability of the system is put forward. In addition, the eigenvalues and harmonic with different oscillating parameters are analyzed. Analytical results show that the real parts of the eigenvalues are positive, the system will be unstable, and the resonance will occur when the positive real parts of the eigenvalues are extremum. A foundation is established for solving the running smooth problem and next application of this mechanism.

  10. Microprocessor-Based Neural-Pulse-Wave Analyzer

    Science.gov (United States)

    Kojima, G. K.; Bracchi, F.

    1983-01-01

    Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2

  11. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  12. Optimised NQR pulse technique for the effective detection of Heroin Base.

    Science.gov (United States)

    Rudakov, T N; Hayes, P A; Flexman, J H

    2008-03-01

    The nuclear quadrupole resonance (NQR) method has been applied to Heroin Base (HB) to find an optimised multi-pulse technique for effective detection of HB. Experimental results of applying the proposed spin-locking multi-pulse (SLMP) technique to nitrogen-14 NQR in this sample are presented and convincingly demonstrate as a path towards efficient detection. A detection using a sequence of this character could be achieved over real-world scan volumes for screening of goods. All experiments were carried out at room temperature.

  13. Characterization of superconducting pulse discriminators based on parallel NbN nanostriplines

    Energy Technology Data Exchange (ETDEWEB)

    Ejrnaes, M; Casaburi, A; Cristiano, R [CNR-Istituto di Cibernetica ' E Caianiello' , I-80078 Pozzuoli (Italy); Martucciello, N [CNR-Istituto SPIN Salerno and Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, I-84084 Fisciano (Italy); Mattioli, F; Gaggero, A; Leoni, R [CNR-Istituto di Fotonica e Nanotecnologie, I-00156 Roma (Italy); Villegier, J-C [SPSMS, UMR-E 9001, CEA-INAC/UJF, F-38054 Grenoble (France); Pagano, S, E-mail: mikkel.ejrnaes@cnr.it [CNR-Istituto SPIN Salerno and Dipartimento di Matematica e Informatica, Universita di Salerno, I-84084 Fisciano (Italy)

    2011-03-15

    A superconducting pulse discriminator based on a cascade switch to the normal state of parallel ultrathin NbN nanostrips has been fabricated and carefully investigated. Correct operation was achieved using 1 ns input pulses with amplitudes down to 15 {mu}A. The discriminator had a peak current gain of 12 and an FWHM timing jitter of 80 ps, limited by our measurement instrument resolution. These characteristics, together with simple on-chip integration, small area and low dissipation, make this device suitable for applications such as readout of fast cryogenic detectors and the output stage of superconducting digital circuits.

  14. Neutron-gamma discrimination based on bipolar trapezoidal pulse shaping using FPGAs in NE213

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-12-01

    A technique employing neutron-gamma pulse shape discrimination (PSD) system that overcomes pile up limitations of previous methods to distinguish neutrons from gammas in scintillation detectors is described. The output signals of detectors were digitized and processed with a data acquisition system based on bipolar trapezoidal pulse shaping using Field programmable gate arrays (FPGA). FPGAs are capable of doing complex discrete signal processing algorithms with clock rates above 100 MHz. Their low cost, ease of use and selected dedicated hardware make them an ideal option for spectrometer systems.

  15. Pulse Compression Based on Laser-Induced Optical Breakdown in Suspension

    Institute of Scientific and Technical Information of China (English)

    HASI Wu-Li-Ji; FU Mei-Ling; LU Huan-Huan; GONG Sheng; LU Zhi-Wei; LIN Dian-Yang; HE Wei-Ming

    2009-01-01

    Pulse compression based on laser-induced optical breakdown in suspension is investigated.The physical mechanism behind it is analyzed theoretically and validated in the Q-switched Nd:YAG laser system.A 12-ns pump pulse is suppressed to 5 ns with good fidelity in the front edge and sharp steepness in the trailing edge.The HT-270,which has a small gain coemcient and absorption coefficient,is used as a solvent,and therefore the disturbance induced by stimulated Brillouin scattering and absorption are minimized and the transmittivity is enhanced.

  16. Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating

    Science.gov (United States)

    Chen, Chun-Hung; Lee, Yung-Chun

    2007-07-01

    This paper reports a novel contact printing method which can transfer patterned metallic films directly from a mold to a substrate, based on applied contact pressure and infrared pulse laser heating. Experiments have been carried out using a 1064 nm pulsed Nd:YAG laser to demonstrate the feasibility of the proposed method. Chromium (Cr) films of 70 nm thickness with both array-dot patterns and linear grating patterns of typically 500 nm feature sizes are successfully transferred. The transferred Cr patterns can serve as an etching mask for the subsequent etching on the substrate. The potential for applying this method to nano-patterning and nano-fabrication is addressed.

  17. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Z.M.; Yuan, P.; Cao, S.C.; Shen, X.K.; Jing, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu, C.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Z.P.; Liu, M.; Xiao, R.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zong, Y.; Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-21

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60–70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article. -- Highlights: •The key technology of DWA, including switches and pulse forming lines were studied. •The SiC PCSS obtained from Shanghai Institute were tested. •Two layers ZIP lines (new structure) and four layers Blumlein lines were studied with laser triggered spark gap switches. •A nanosecond pulse-width electron diode based on DWA technologies is achieved and studied experimentally. •The principle of DWA is also proved by the diode.

  18. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Science.gov (United States)

    Yang, Xiaobin; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-01

    A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  19. Selective triggering of phase change in dielectrics by femtosecond pulse trains based on electron dynamics control

    Institute of Scientific and Technical Information of China (English)

    Xu Chuan-Cai; Jiang Lan; Leng Ni; Liu Peng-Jun

    2013-01-01

    In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC),including manipulation of excitations,ionizations,densities,and temperatures of electrons.By designing the pulse energy distribution to adjust the absorptions,excitations,ionizations,and recombinations of electrons,the dominant phase change mechanism experiences transition from nonthermal to thermal process.This phenomenon is observed in quadruple,triple,and double pulses per train ablation of fused silica separately.This opens up possibilities for controlling phase change mechanisms by EDC,which is of great significance in laser processing of dielectrics and fabrication of integrated nano-and micro-optical devices.

  20. Pulsed photothermal profiling of water-based samples using a spectrally composite reconstruction approach

    Energy Technology Data Exchange (ETDEWEB)

    Majaron, B; Milanic, M, E-mail: boris.majaron@ijs.s [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2010-03-01

    Pulsed photothermal profiling involves reconstruction of temperature depth profile induced in a layered sample by single-pulse laser exposure, based on transient change in mid-infrared (IR) emission from its surface. Earlier studies have indicated that in watery tissues, featuring a pronounced spectral variation of mid-IR absorption coefficient, analysis of broadband radiometric signals within the customary monochromatic approximation adversely affects profiling accuracy. We present here an experimental comparison of pulsed photothermal profiling in layered agar gel samples utilizing a spectrally composite kernel matrix vs. the customary approach. By utilizing a custom reconstruction code, the augmented approach reduces broadening of individual temperature peaks to 14% of the absorber depth, in contrast to 21% obtained with the customary approach.

  1. Evaluation of paint coating thickness variations based on pulsed Infrared thermography laser technique

    Science.gov (United States)

    Mezghani, S.; Perrin, E.; Vrabie, V.; Bodnar, J. L.; Marthe, J.; Cauwe, B.

    2016-05-01

    In this paper, a pulsed Infrared thermography technique using a homogeneous heat provided by a laser source is used for the non-destructive evaluation of paint coating thickness variations. Firstly, numerical simulations of the thermal response of a paint coated sample are performed. By analyzing the thermal responses as a function of thermal properties and thickness of both coating and substrate layers, optimal excitation parameters of the heating source are determined. Two characteristic parameters were studied with respect to the paint coating layer thickness variations. Results obtained using an experimental test bench based on the pulsed Infrared thermography laser technique are compared with those given by a classical Eddy current technique for paint coating variations from 5 to 130 μm. These results demonstrate the efficiency of this approach and suggest that the pulsed Infrared thermography technique presents good perspectives to characterize the heterogeneity of paint coating on large scale samples with other heating sources.

  2. Zigzag Connected Autotransformer-Based 24-pulse AC-DC Converter

    Science.gov (United States)

    Xiao-qiang, Chen; Hao, Qiu

    2015-02-01

    In this paper, a zigzag connected autotransformer-based 24-pulse AC-DC converter is designed, modeled and simulated to feed direct torque controlled induction motor drives. Winding arrangements and parameters of the autotransformer and interphase reactor are given. Moreover, the design procedure of the autotransformer is modified to make it suitable for retrofit applications. Simulation results indicate that the system is capable of eliminating up to 21st harmonics in the ac mains current. The effect of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 24-pulse converters. A set of power quality indices at ac mains and dc side are presented to compare the performance of 6-, 12- and 24-pulse converters.

  3. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  4. Simple autocorrelator for ultraviolet pulse-width measurements based on the nonlinear photoelectric effect.

    Science.gov (United States)

    Takagi, Y

    1994-09-20

    An optical pulse-width measurement in the ultraviolet spectral region has been performed in a simple manner by introducing into the second-order autocorrelator a nonlinear response of the optical detector based on the two-photon photoelectric effect. The pulse widths of the third, fourth, and fifth harmonics of a mode-locked Nd:YAG laser were measured by the use of a photomultiplier with a cesium iodide photocathode with a minimum required pulse energy of 10 nJ and a power density of 10 kW/cm(2). The effect of transient interband optical excitation with different photon energies on the intensity correlation profile was also studied for the case of a copper iodide photocathode, and the result provides a background-free intensity correlation in a part of the ultraviolet spectral region.

  5. Host-based data acquisition system to control pulsed facilities of the accelerator

    Science.gov (United States)

    Zamriy, V. N.

    2016-09-01

    The report discusses development of the host-based system to carry out timed measurements and data acquisition for the control of pulsed facilities of the accelerator. We consider modes of timing and allocation of operations of channels and the system node. The time of any working cycle of the pulsed facilities, rate of a data flow and an amount of serviced channels are coordinated with operation characteristics of the system node. Estimations of the readout rate of the data and the waiting time demonstrate the system efficiency. The technique has been developed to provide checking of groups of pulse parameters and control the facilities of the linear accelerator of electrons LUE-200 of the neutron source IREN.

  6. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    Science.gov (United States)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  7. Simulink based behavioural modelling of a pulse oximeter for deployment in rapid development, prototyping and verification.

    Science.gov (United States)

    Shokouhian, M; Morling, R C S; Kale, I

    2012-01-01

    The pulse oximeter is a well-known device for measuring the level of oxygen in blood. Since their invention, pulse oximeters have been under constant development in both aspects of hardware and software; however there are still unsolved problems that limit their performance [6], [7]. Many fresh algorithms and new design techniques are being suggested every year by industry and academic researchers which claim that they can improve accuracy of measurements [8], [9]. With the lack of an accurate computer-based behavioural model for pulse oximeters, the only way for evaluation of these newly developed systems and algorithms is through hardware implementation which can be both expensive and time consuming. This paper presents an accurate Simulink based behavioural model for a pulse oximeter that can be used by industry and academia alike working in this area, as an exploration as well as productivity enhancement tool during their research and development process. The aim of this paper is to introduce a new computer-based behavioural model which provides a simulation environment from which new ideas can be rapidly evaluated long before the real implementation.

  8. Polarization and dynamical properties of VCSELs-based photonic neuron subject to optical pulse injection

    Science.gov (United States)

    Xiang, Shuiying; Wen, Aijun; Zhang, Hao; Li, Jiafu; Guo, Xingxing; Shang, Lei; Lin, Lin

    2016-11-01

    The polarization-resolved nonlinear dynamics of vertical-cavity surface-emitting lasers (VCSELs) subject to orthogonally polarized optical pulse injection are investigated numerically based on the spin flip model. By extensive numerical bifurcation analysis, the responses dynamics of photonic neuron based on VCSELs under the arrival of external stimuli of orthogonally polarized optical pulse injection are mainly discussed. It is found that, several neuron-like dynamics, such as phasic spiking of a single abrupt large amplitude pulse followed with or without subthreshold oscillation, and tonic spiking with multiple periodic pulses, are successfully reproduced in the numerical model of VCSELs. Besides, the effects of stimuli strength, pump current, frequency detuning, as well as the linewidth enhancement factor on the neuron-like response dynamics are examined carefully. The operating parameters ranges corresponding to different neuron-like dynamics are further identified. Thus, the numerical model and simulation results are very useful and interesting for the ultrafast brain-inspired neuromorphic photonics systems based on VCSELs.

  9. THE NO SINUSOIDAL VOLTAGES UNDER THE SINUSOIDAL CURRENT AT THE ENTRY OF THE OPEN–ENDED LINE WITH REAL LOSS

    Directory of Open Access Journals (Sweden)

    Patsiuk V.I.

    2008-12-01

    Full Text Available he classical problems of the theoretical electrical engineering, such as open-ended (or short-circuited line energization on alternating voltage (or current, are solved by means of Fourier series method. The conditions of creation of no sinusoidal steady-state regimes in the lines with nonzero loss are discovered.

  10. Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings.

    Science.gov (United States)

    García-Muñoz, Víctor; Preciado, Miguel A; Muriel, Miguel A

    2007-08-20

    We propose an all-fiber method for the generation of ultrafast shaped pulse train bursts from a single pulse based on Fourier Series Developments (FDSs). The implementation of the FSD based filter only requires the use of a very simple non apodized Superimposed Fiber Bragg Grating (S-FBG) for the generation of the Shaped Output Pulse Train Burst (SOPTB). In this approach, the shape, the period and the temporal length of the generated SOPTB have no dependency on the input pulse rate.

  11. Using composite sinusoidal patterns in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food

    Science.gov (United States)

    This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...

  12. Correction of refraction index based on adjacent pulse repetition interval lengths

    Science.gov (United States)

    Wei, Dong; Aketagawa, Masato

    2014-11-01

    Correction of refraction index is important for length measurement. The two-color method has been widely used for correction. The wavelengths of lasers have been used as a ruler of that. Based on the analogy between the wavelength and the adjacent pulse repetition interval length (APRIL), in this paper we investigate the possibility of two-color method based on adjacent pulse repetition interval lengths. Since the wavelength-based two-color method can eliminate the inhomogeneous disturbance of effects caused by the phase refractive index, therefore the APRIL-based two-color method can eliminate the air turbulence of errors induced by the group refractive index. Our analysis will contribute to high-precision length measurement.

  13. A FBG pulse wave demodulation method based on PCF modal interference filter

    Science.gov (United States)

    Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua

    2016-10-01

    Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.

  14. [Design and implementation of the pulse wave generator with field programmable gate array based on windkessel model].

    Science.gov (United States)

    Wang, Hao; Fu, Quanhai; Xu, Lisheng; Liu, Jia; He, Dianning; Li, Qingchun

    2014-10-01

    Pulse waves contain rich physiological and pathological information of the human vascular system. The pulse wave diagnosis systems are very helpful for the clinical diagnosis and treatment of cardiovascular diseases. Accurate pulse waveform is necessary to evaluate the performances of the pulse wave equipment. However, it is difficult to obtain accurate pulse waveform due to several kinds of physiological and pathological conditions for testing and maintaining the pulse wave acquisition devices. A pulse wave generator was designed and implemented in the present study for this application. The blood flow in the vessel was simulated by modeling the cardiovascular system with windkessel model. Pulse waves can be generated based on the vascular systems with four kinds of resistance. Some functional models such as setting up noise types and signal noise ratio (SNR) values were also added in the designed generator. With the need of portability, high speed dynamic response, scalability and low power consumption for the system, field programmable gate array (FPGA) was chosen as hardware platform, and almost all the works, such as developing an algorithm for pulse waveform and interfacing with memory and liquid crystal display (LCD), were implemented under the flow of system on a programmable chip (SOPC) development. When users input in the key parameters through LCD and touch screen, the corresponding pulse wave will be displayed on the LCD and the desired pulse waveform can be accessed from the analog output channel as well. The structure of the designed pulse wave generator is simple and it can provide accurate solutions for studying and teaching pulse waves and the detection of the equipments for acquisition and diagnosis of pulse wave.

  15. Investigation on the automatic parameters extraction of pulse signals based on wavelet transform

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper analyses a key problem in the quantification of pulse diagnosis. Due to the subjectivity and fuzziness of pulse diagnosis, quantitative methods are needed. To extract the parameters of pulse signals, the prerequisite is to detect the corners of pulse signals correctly. Up to now, the pulse parameters are mostly acquired by marking the pulse corners manually, which is an obstacle to modernize pulse diagnosis. Therefore, a new automatic parameters extraction approach for pulse signals using wavelet transform is presented. The results testified that the method we proposed is feasible and effective and can detect corners of pulse signals accurately, which can be expected to facilitate the modernization of pulse diagnosis.

  16. Design and Construction of a Microcontroller-Based Ventilator Synchronized with Pulse Oximeter.

    Science.gov (United States)

    Gölcük, Adem; Işık, Hakan; Güler, İnan

    2016-07-01

    This study aims to introduce a novel device with which mechanical ventilator and pulse oximeter work in synchronization. Serial communication technique was used to enable communication between the pulse oximeter and the ventilator. The SpO2 value and the pulse rate read on the pulse oximeter were transmitted to the mechanical ventilator through transmitter (Tx) and receiver (Rx) lines. The fuzzy-logic-based software developed for the mechanical ventilator interprets these values and calculates the percentage of oxygen (FiO2) and Positive End-Expiratory Pressure (PEEP) to be delivered to the patient. The fuzzy-logic-based software was developed to check the changing medical states of patients and to produce new results (FiO2 ve PEEP) according to each new state. FiO2 and PEEP values delivered from the ventilator to the patient can be calculated in this way without requiring any arterial blood gas analysis. Our experiments and the feedbacks from physicians show that this device makes it possible to obtain more successful results when compared to the current practices.

  17. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  18. Orthogonal fs/ns double-pulse libs for copper-based-alloy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santagata, A.; Spera, D.; Albano, G.; Parisi, G.P.; Villani, P. [Zona Industriale di Tito Scalo, CNR-IMIP, Unita Operativa di Potenza, Tito Scalo (Italy); Teghil, R.; Bonis, A. de [Universita degli Studi della Basilicata, Dipartimento di Chimica, Potenza (Italy)

    2008-12-15

    The analytical response of a fs/ns double-pulse laser induced breakdown spectroscopy technique based on the orthogonal reheating induced by a ns-laser pulse on a fs-laser ablation plume is presented. All investigations have been performed in air at atmospheric pressure and employing certified copper-based-alloy targets. The emission intensities of the considered electronic transitions of Pb(I), Sn(I) and Zn(I) have been normalised with a Cu(I) emission line intensity belonging to the same considered spectral range. Emission data, acquired with inter-pulse steps of 2 {mu}s within the delay range of 1-200 {mu}s, have shown that fractionation takes place. Nevertheless, excellent linear regression coefficients (0.998-0.999), despite the target's large compositional variation and fractionation effects, have been obtained by integrating all emission intensity data along the whole inter-pulse delays used. Deviations from the theoretical ratio of the Zn(I)/Cu(I) emission intensities are shown and some hypotheses about the processes involved are formulated. (orig.)

  19. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    Science.gov (United States)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  20. Novel Active Bouncer Topology for Klystron Modulators based on Pulsed Transformers

    CERN Document Server

    AUTHOR|(CDS)2079689; Aguglia, Davide; Viarouge, Philippe; Cros, Jérôme

    2015-01-01

    Active droop compensation systems, so called active bouncers, for klystron modulators based on monolithic pulse transformers perform the regulation of the output pulse voltage while simultaneously withstand all the primary current of the modulator. This imposes the utilization of high power semiconductors which can produce high switching losses and degrade the overall system efficiency. In order to overcome this issue, this paper proposes a new active bouncer topology based on the parallel connection of two different power converters: the first one is in charge of handling the majority of the primary current at high efficiency, and the second one is used to fine tune the bouncer voltage via a high bandwidth converter rated at a fraction of the first parallel connected converter. Detailed comparison between a classical active bouncer and two variants of the proposed topology are presented and based on numerical simulations.

  1. Multipath time delay estimation of underwater acoustic sinusoidal signals

    Institute of Scientific and Technical Information of China (English)

    TONG Feng; XU Xiaomei; FANG Shiliang

    2009-01-01

    To overcome the performance limitation of multipath time-delay estimation posed by underwater acoustic sinusoidal signals, an approach incorporating the frequency-domain weighting of the highly oscillatory Nonlinear Least Squares (NLS) cost function with the evolutionary optimization was proposed to facilitate the accurate estimation of the multipath timedelay of sinusoidal signals. In the described method, the number of the effective multipath signals, which is included into the parameter model as well as the multipath time-delay and amplitude factor, can be estimated simultaneously thus avoiding the requirement of additional computation. The experimental results performed with numerical simulation and sea-trial data are provided, demonstrating the effectiveness and precision enhancement of the proposed algorithm.

  2. Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation

    Science.gov (United States)

    Lui, Kenneth W. K.; So, H. C.

    2009-12-01

    We study the convex optimization approach for parameter estimation of several sinusoidal models, namely, single complex/real tone, multiple complex sinusoids, and single two-dimensional complex tone, in the presence of additive Gaussian noise. The major difficulty for optimally determining the parameters is that the corresponding maximum likelihood (ML) estimators involve finding the global minimum or maximum of multimodal cost functions because the frequencies are nonlinear in the observed signals. By relaxing the nonconvex ML formulations using semidefinite programs, high-fidelity approximate solutions are obtained in a globally optimum fashion. Computer simulations are included to contrast the estimation performance of the proposed semi-definite relaxation methods with the iterative quadratic maximum likelihood technique as well as Cramér-Rao lower bound.

  3. Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Kenneth W. K. Lui

    2009-01-01

    Full Text Available We study the convex optimization approach for parameter estimation of several sinusoidal models, namely, single complex/real tone, multiple complex sinusoids, and single two-dimensional complex tone, in the presence of additive Gaussian noise. The major difficulty for optimally determining the parameters is that the corresponding maximum likelihood (ML estimators involve finding the global minimum or maximum of multimodal cost functions because the frequencies are nonlinear in the observed signals. By relaxing the nonconvex ML formulations using semidefinite programs, high-fidelity approximate solutions are obtained in a globally optimum fashion. Computer simulations are included to contrast the estimation performance of the proposed semi-definite relaxation methods with the iterative quadratic maximum likelihood technique as well as Cramér-Rao lower bound.

  4. Quantum Computing Using Pulse-Based Electron-Nuclear Double Resonance (endor):. Molecular Spin-Qubits

    Science.gov (United States)

    Sato, Kazuo; Nakazawa, Shigeki; Rahimi, Robabeh D.; Nishida, Shinsuke; Ise, Tomoaki; Shimoi, Daisuke; Toyota, Kazuo; Morita, Yasushi; Kitagawa, Masahiro; Carl, Parick; Höfner, Peter; Takui, Takeji

    2009-06-01

    Electrons with the spin quantum number 1/2, as physical qubits, have naturally been anticipated for implementing quantum computing and information processing (QC/QIP). Recently, electron spin-qubit systems in organic molecular frames have emerged as a hybrid spin-qubit system along with a nuclear spin-1/2 qubit. Among promising candidates for QC/QIP from the materials science side, the reasons for why electron spin-qubits such as molecular spin systems, i.e., unpaired electron spins in molecular frames, have potentialities for serving for QC/QIP will be given in the lecture (Chapter), emphasizing what their advantages or disadvantages are entertained and what technical and intrinsic issues should be dealt with for the implementation of molecular-spin quantum computers in terms of currently available spin manipulation technology such as pulse-based electron-nuclear double resonance (pulsed or pulse ENDOR) devoted to QC/QIP. Firstly, a general introduction and introductory remarks to pulsed ENDOR spectroscopy as electron-nuclear spin manipulation technology is given. Super dense coding (SDC) experiments by the use of pulsed ENDOR are also introduced to understand differentiating QC ENDOR from QC NMR based on modern nuclear spin technology. Direct observation of the spinor inherent in an electron spin, detected for the first time, will be shown in connection with the entanglement of an electron-nuclear hybrid system. Novel microwave spin manipulation technology enabling us to deal with genuine electron-electron spin-qubit systems in the molecular frame will be introduced, illustrating, from the synthetic strategy of matter spin-qubits, a key-role of the molecular design of g-tensor/hyperfine-(A-)tensor molecular engineering for QC/QIP. Finally, important technological achievements of recently-emerging CD ELDOR (Coherent-Dual ELectron-electron DOuble Resonance) spin technology enabling us to manipulate electron spin-qubits are described.

  5. The Mechanism of Aerodynamic Hysteresis for Sinusoidally Oscillating Delta Wings

    Institute of Scientific and Technical Information of China (English)

    黄国创; 王玉明; 曹桂兴

    1994-01-01

    An unsteady model of vortex system is developed to simulate the phenomena of aerodynamic hysteresis of sinusoidally oscillating delta wings.The dynamic behavior of leading-edge separation vortices simulated by the present method is in qualitative agreement with that of flow visualization by Gad-el-Hak and Ho.The calculated lift hysteresis loops are in quantitative agreement with the force measurements in the tunnel.The aerodynamic mechanism of the hysteresis phenomena is further investigated by the present method.

  6. Electronic Bands Behaviour at Sinusoidal Potential Presence of Incommensurate Crystals

    OpenAIRE

    Vlokh R.; Vlokh O.; Lukiyanets B.

    2004-01-01

    On the basis of solving the Schrodinger and Mathieu equations, for the case of crystal field perturbed by one-dimensional sinusoidal potential of the modulated phase in uniaxial ferroelectrics, it has been shown that the positions of electronic levels are sensitive to the ratio of periods of the crystal field and the perturbation potential. Considering the energy states as prototypes of bands normalized by perturbation, one can come to the conclusion that the level of the states is the same a...

  7. A Versatile 1.4-mW 6-bits CMOS ADC for Pulse-Based UWB Communication Systems

    OpenAIRE

    Ghamari, Saeed; Chastellain, Frederic; Botteron, Cyril; Robert, Christian; Farine, Pierre-André

    2014-01-01

    An Analog to Digital Converter (ADC) using the low duty-cycle nature of pulse-based Ultra Wide-Band (UWB) communications to reduce its power consumption is proposed. Implemented in CMOS 180 nm technology, it can capture a 5 ns window at 4 GS/s each 100 ns, which corresponds to the acquisition of one UWB pulse at the pulse repetition rate of 10 mega pulses per second (Mpps). By using time-interleaved Redundant Signed Digit (RSD) ADCs, the complete ADC occupies only 0.15 mm2 and consumes only 1...

  8. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang

    2013-01-01

    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  9. Nanosecond Pulse Shaping with Fiber-Based Electro-Optical Modulators and a Double-Pass Tapered Amplifier

    CERN Document Server

    Rogers, Charles E

    2015-01-01

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  10. Pulse Responses of the Conducting Polymer Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate)-Based Junctions

    Science.gov (United States)

    Zeng, Fei; Li, Xiaojun; Li, Sizhao; Chang, Chiating; Hu, Yuandong

    2017-03-01

    Pulse responses were studied for the heterojunctions within the structure of Ti/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/Ti. The pulse response was found to resemble that of the action potential after the pulse width was modulated to a time scale of nanoseconds. Using the pulse as a stimulation protocol to simulate synaptic plasticity produced spike rate-dependent plasticity-like phenomena. Thus, the application scope of this conducting polymer-based memristor can be extended from a time scale of milliseconds to one of nanoseconds, depending on the requirement of neuromorphic circuits. Current oscillations were observed with a period within 100 ns. The mechanisms of the behavior response were analyzed according to memristor protocol. An interface barrier is thought to primarily account for the origin of the capacitive feature and the charge q, i.e., one of the basic characteristic of the memristor. The chain structure of this conducting polymer should primarily account for the origin of its inductive feature and the flux φ, i.e., another basic characteristic of the memristor.

  11. Plasma-based amplification and manipulation of high-power laser pulses

    Science.gov (United States)

    Lehmann, Goetz

    2016-10-01

    In the last decade the increasing availability of Tera- and Petawatt class lasers with ps to fs pulse duration has intensified the interest in the relativistic interaction between laser radiation and matter. Today laser intensities up to 1022 W/cm2 can be achieved. Most high intensity lasers today rely on amplification schemes that can only hardly be scaled to higher power levels due to material damage thresholds. An alternative approach that allows circumventing these issues is the use of plasma as an amplification medium. Langmuir or ion waves may be used as optical components, scattering the energy from a long pump pulse into a short seed pulse. Damage thresholds of solid-state materials are not only limiting the generation of high power laser light, but also its subsequent manipulation. Again, plasma can provide an alternative approach to light manipulation. We recently proposed the concept of transient plasma photonic crystals, which aims at transferring and extending the concept of photonic crystals to the realm of plasma physics in the range of optical frequencies. In my presentation I will discuss Brillouin type plasma-based laser amplifiers and show that the ion plasma waves, driven by the two laser pulses, eventually form photonic crystals. The properties and possible future applications of these plasma photonic crystals as efficient Bragg type mirrors or polarizers will be discussed.

  12. Analysis of event-related potentials (ERP) by damped sinusoids.

    Science.gov (United States)

    Demiralp, T; Ademoglu, A; Istefanopulos, Y; Gülçür, H O

    1998-06-01

    Several researchers propose that event-related potentials (ERPs) can be explained by a superposition of transient oscillations at certain frequency bands in response to external or internal events. The transient nature of the ERP is more suitable to be modelled as a sum of damped sinusoids. These damped sinusoids can be completely characterized by four sets of parameters, namely the amplitude, the damping coefficient, the phase and the frequency. The Prony method is used to estimate these parameters. In this study, the long-latency auditory-evoked potentials (AEP) and the auditory oddball responses (P300) of 10 healthy subjects are analysed by this method. It is shown that the original waveforms can be reconstructed by summing a small number of damped sinusoids. This allows for a parsimonious representation of the ERPs. Furthermore, the method shows that the oddball target responses contain higher amplitude, slower delta and slower damped theta components than those of the AEPs. With this technique, we show that the differentiation of sensory and cognitive potentials are not inherent in their overall frequency content but in their frequency components at certain bands.

  13. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy

    Science.gov (United States)

    Sackey-Aboagye, Bridget; Olsen, Abby L.; Mukherjee, Sarmistha M.; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E.; Lee, Gi Yun; Naga, Hani

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN. PMID:27741254

  14. An Analysis to Strategy of Pulse Research in Iran Based Upon the First National Pulse Symposium Approaches

    Directory of Open Access Journals (Sweden)

    abdolreza bagheri

    2009-06-01

    Full Text Available Pulse, as the second source of human nutrition, benefits from great agronomic and nutritious features. These plants are amongst the most important crops which are full of protein and are widely cultivated all over the world; having the ability to adapt to different climate measures ranging from mild to hot and from moist to very dry. The other noteworthy trait of these crops is their talent to coexist with nitrogen fixation bacteria available in the soil which plays an important role in soil fertility and sustainability. For the previously mentioned reasons and many more, pulses have been extensive fields of research. With the substitution of legumes with fallow in the wheat-fallow agricultural system, great success in product stability has been gained. Having emphasized on the importance of the issue, the first national pulse symposium with the aim of investigating the opportunities and threats facing the development of pulse in Iran was held on 20-21 Nov. 2005 in the Ferdowsi University of Mashhad at the Research Center of Plant Sciences in collaboration with many scientific, research and administrative institutions. This paper aims at sketching the overview of the strategic research direction in Iran by analyzing the published papers presented in this conference and will provide the key points mentioned in the final conference manifestation.

  15. Specifics of Pulsed Arc Welding Power Supply Performance Based On A Transistor Switch

    Science.gov (United States)

    Krampit, N. Yu; Kust, T. S.; Krampit, M. A.

    2016-08-01

    Specifics of designing a pulsed arc welding power supply device are presented in the paper. Electronic components for managing large current was analyzed. Strengths and shortcomings of power supply circuits based on thyristor, bipolar transistor and MOSFET are outlined. As a base unit for pulsed arc welding was chosen MOSFET transistor, which is easy to manage. Measures to protect a transistor are given. As for the transistor control device is a microcontroller Arduino which has a low cost and adequate performance of the work. Bead transfer principle is to change the voltage on the arc in the formation of beads on the wire end. Microcontroller controls transistor when the arc voltage reaches the threshold voltage. Thus there is a separation and transfer of beads without splashing. Control strategies tested on a real device and presented. The error in the operation of the device is less than 25 us, it can be used controlling drop transfer at high frequencies (up to 1300 Hz).

  16. Sample Entropy-Based Approach to Evaluate the Stability of Double-Wire Pulsed MIG Welding

    Directory of Open Access Journals (Sweden)

    Ping Yao

    2014-01-01

    Full Text Available According to the sample entropy, this paper deals with a quantitative method to evaluate the current stability in double-wire pulsed MIG welding. Firstly, the sample entropy of current signals with different stability but the same parameters is calculated. The results show that the more stable the current, the smaller the value and the standard deviation of sample entropy. Secondly, four parameters, which are pulse width, peak current, base current, and frequency, are selected for four-level three-factor orthogonal experiment. The calculation and analysis of desired signals indicate that sample entropy values are affected by welding current parameters. Then, a quantitative method based on sample entropy is proposed. The experiment results show that the method can preferably quantify the welding current stability.

  17. Irregular Segmented Region Compression Coding Based on Pulse Coupled Neural Network

    Institute of Scientific and Technical Information of China (English)

    MA Yi-de; QI Chun-liang; QIAN Zhi-bai; SHI Fei; ZHANG Bei-dou

    2006-01-01

    An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approximate gray values can be activated simultaneously. One can draw a conclusion that PCNN has the advantage of realizing the regional segmentation, and the details of original image can be achieved by the parameter adjustment of segmented images, and at the same time, the trivial segmented regions can be avoided. For the better approximation of irregular segmented regions, the Gram-Schmidt method, by which a group of orthonormal basis functions is constructed from a group of linear independent initial base functions, is adopted. Because of the orthonormal reconstructing method, the quality of reconstructed image can be greatly improved and the progressive image transmission will also be possible.

  18. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    Science.gov (United States)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  19. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities.

    Science.gov (United States)

    Frassetto, F; Trabattoni, A; Anumula, S; Sansone, G; Calegari, F; Nisoli, M; Poletto, L

    2014-10-01

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10(11) W/cm(2).

  20. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  1. Image Fusion Based on Nonsubsampled Contourlet Transform and Saliency-Motivated Pulse Coupled Neural Networks

    OpenAIRE

    Liang Xu; Junping Du; Qingping Li

    2013-01-01

    In the nonsubsampled contourlet transform (NSCT) domain, a novel image fusion algorithm based on the visual attention model and pulse coupled neural networks (PCNNs) is proposed. For the fusion of high-pass subbands in NSCT domain, a saliency-motivated PCNN model is proposed. The main idea is that high-pass subband coefficients are combined with their visual saliency maps as input to motivate PCNN. Coefficients with large firing times are employed as the fused high-pass subband coefficients. ...

  2. 200 TW 45 fs laser based on optical parametric chirped pulse amplification.

    Science.gov (United States)

    Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V; Garanin, S G; Sukharev, S A; Rukavishnikov, N N; Charukhchev, A V; Gerke, R R; Yashin, V E

    2006-01-01

    200 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P (DKDP) crystals providing 14.5 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor. The final parametrical amplifier and the compressor are described in detail. Scaling of such architecture to multipetawatt power is discussed.

  3. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Frassetto, F.; Poletto, L., E-mail: poletto@dei.unipd.it [National Research Council, Institute of Photonics and Nanotechnologies, via Trasea 7, 35131 Padova (Italy); Trabattoni, A.; Anumula, S.; Sansone, G. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Calegari, F. [National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy); Nisoli, M. [Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); National Research Council, Institute of Photonics and Nanotechnologies, Piazza L. da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10{sup 11} W/cm{sup 2}.

  4. Pulse-mode measurement of electron beam halo using diamond-based detector

    Science.gov (United States)

    Aoyagi, Hideki; Asano, Yoshihiro; Itoga, Toshiro; Nariyama, Nobuteru; Bizen, Teruhiko; Tanaka, Takashi; Kitamura, Hideo

    2012-02-01

    Using a diamond-based detector, the electron beam halo in a high-energy accelerator can be measured with a lower detection limit than that using other instruments, such as a core monitor, a dose meter, or an optical fiber. We have successfully measured an electron beam halo using diamond-based detectors operating in the ionization mode, which were installed in the beam duct to measure the intensity of the beam halo directly. Pulse-by-pulse measurements were adopted to suppress the background noise efficiently. Feasibility tests on the diamond-based detector and beam halo monitor were performed in the beam dump area of the 8 GeV SPring-8 synchrotron booster and at the 250 MeV SPring-8 Compact SASE Source test accelerator for the SPring-8 Angstrom Compact free electron LAser (SACLA), respectively. We achieved a lower detection limit of 2×103electrons/pulse for single-shot measurement, which corresponds to a ratio of about 10-6 relative to the typical charge of the beam core of 0.3 pC. We also confirmed the feasibility of the electron beam halo monitor for use as an interlock sensor to protect undulator permanent magnets used in SACLA from radiation damage.

  5. Reliability of utricular function testing sinusoidal translation profile during unilateral centrifugation.

    Science.gov (United States)

    Buytaert, K I; Vanspauwen, R; Van de Heyning, P H; Wuyts, F L

    2010-01-01

    The unilateral centrifugation test is one of the few vestibular tests that evaluate the utricles side by side. During this test, a subject is rotated about an earth vertical axis at high rotation speeds (e.g. 400 degrees/s) and translated sideways along the interaural axis to align the axis of rotation consecutively with the right and the left utricle. The combined rotation and translation induces ocular counter rolling (OCR), which is measured using three-dimensional video-oculography. Recently, a new model has been proposed to analyse the OCR. The model is based on contributions from both the semicircular canals and the utricles. Concomitant with the new model a new stimulation profile using a sinusoidal translation profile during the unilateral centrifugation has been introduced [1]. The current study presents the test-retest reliability as well as the robustness of the new stimulation method, based on data of 67 healthy subjects. Test-retest reliability was based on repeated measurements of a group of subjects. To test the robustness of the new sinusoidal translation paradigm, we investigated the effect of a different amplitude of the sinusoidal translation (6 cm instead of 4 cm) and of an offset in translation (from -3 to +5 cm, instead of from -4 to +4 cm) on the parameters. Several statistical measures were used to reflect the reliability: intraclass correlation coefficient (ICC), the "coefficient of variation of the method error" and the "minimal difference" (MD). All relevant variables from the physiological model for the OCR induced by unilateral centrifugation show a good to excellent reliability during the test-retest study and the relevant parameters remain unaffected by the changes applied to the translation profile (p > 0.05) as predicted by the model. Additionally, all observed differences are smaller than the MD values calculated in the test-retest part of the study.

  6. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  7. Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method

    CERN Document Server

    Otomo, Hiroshi; Hazlett, Randy; Li, Yong; Staroselsky, Ilya; Zhang, Raoyang; Chen, Hudong

    2016-01-01

    We simulate oil slug displacement in a sinusoidal channel in order to validate computational models and algorithms for multi-component flow. This case fits in the gap between fully realistic cases characterized by complicated geometry and academic cases with simplistic geometry. Our computational model is based on the lattice Boltzmann method and allows for variation of physical parameters such as wettability and viscosity. The effect of variation of model parameters is analyzed, in particular via comparison with analytical solutions. We discuss the requirements for accurate solution of the oil slug displacement problem.

  8. Intense pulsed light treatment of cadmium telluride nanoparticle-based thin films.

    Science.gov (United States)

    Dharmadasa, Ruvini; Lavery, Brandon; Dharmadasa, I M; Druffel, Thad

    2014-04-09

    The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.

  9. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology

    Science.gov (United States)

    Tang, Qingju; Dai, Jingmin; Liu, Junyan; Liu, Chunsheng; Liu, Yuanlin; Ren, Chunping

    2016-07-01

    Quantitative detection of debonding defects' diameter and depth in TBCs has been carried out using pulsed infrared thermography technology. By combining principal component analysis with neural network theory, the Markov-PCA-BP algorithm was proposed. The principle and realization process of the proposed algorithm was described. In the prediction model, the principal components which can reflect most characteristics of the thermal wave signal were set as the input, and the defect depth and diameter was set as the output. The experimental data from pulsed infrared thermography tests of TBCs with flat bottom hole defects was selected as the training and testing sample. Markov-PCA-BP predictive system was arrived, based on which both the defect depth and diameter were identified accurately, which proved the effectiveness of the proposed method for quantitative detection of debonding defects in TBCs.

  10. Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    V. V. Strelchuk

    2015-01-01

    Full Text Available The SERS (surface enhanced Raman spectroscopy substrates based on nanocomposite porous films with gold nanoparticles (Au NPs arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107 was shown.

  11. Connecting Realities: Rafael Lozano-Hemmer’s Pulse-based Works

    Directory of Open Access Journals (Sweden)

    Claudia Arozqueta

    2014-12-01

    Full Text Available Rafael Lozano-Hemmer is a Mexican digital artist recognized for creating large-scale theatrical interactive installations for museum and public spaces, as well as small-scale works with custom-made interfaces and digital technologies. Since 2006 this artist has created eight works that require the physiological input (pulse and heartbeats of the audience in order to be completed. Light in the pulse-based works of Rafael Lozano-Hemmer is the main vehicle that serves to visualize heartbeats outside the realm of the body, facilitating its reterritorialization and conceptualization as a malleable material that can cross the boundaries of the skin, expanding it to other three-dimensional extents in which new spatiotemporal relationships and interactions between participants and the surroundings are produced. This paper explores how these rhizomatic digital installations create a community conscience and engagement between different people in various spaces dedicated to art, while challenging our conception of reality.

  12. Nanocomposite tantalum-carbon-based films deposited by femtosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Benchikh, N. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Garrelie, F. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Wolski, K. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SMS - URA CNRS 5146, 158 cours Fauriel, 42023 Saint-Etienne, Cedex 02 (France); Donnet, C. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France)]. E-mail: Christophe.Donnet@univ-st-etienne.fr; Fillit, R.Y. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SMS - URA CNRS 5146, 158 cours Fauriel, 42023 Saint-Etienne, Cedex 02 (France); Rogemond, F. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Subtil, J.L. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Rouzaud, J.N. [Laboratoire de Geologie de l' Ecole Normale Superieure de Paris 24, rue Lhomond 75231-Paris Cedex 5 (France); Laval, J.Y. [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, 10 rue Vauquelin 75231-Paris Cedex 05 (France)

    2006-01-03

    Nanostructured coatings of metal (tantalum) containing diamond-like carbon (a-C:Ta) have been prepared by femtosecond pulsed laser deposition (PLD). The films, containing 15 at.% tantalum, have been deposited by ablating sequentially graphite and metallic tantalum in vacuum conditions with an amplified Ti:sapphire laser. The coatings have been investigated by X-ray photoelectron spectroscopy, grazing angle X-ray diffraction, energy filtered transmission electron microscopy, scanning and high resolution transmission electron microscopies. Evidence of metallic {alpha}-Ta and {beta}-Ta particles (diameter in the 100 nm range) and smaller quasi-amorphous tantalum clusters embedded in the carbonaceous matrix have been shown. A thin tantalum carbide interface between the carbon matrix and the top surface of the tantalum nodules has also been identified. The ability of femtosecond pulsed laser deposition to synthetize nanocomposite carbon-based films and to control their nanostructure is discussed.

  13. Realizing precision pulse TIG welding with arc length control and visual image sensing based weld detection

    Institute of Scientific and Technical Information of China (English)

    孙振国; 陈念; 陈强

    2003-01-01

    Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all-hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm, processing time of each image is less than 120 ms. Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.

  14. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  15. Evaluating the use of a continuous approximation for model-based quantification of pulsed chemical exchange saturation transfer (CEST)

    Science.gov (United States)

    Tee, Y. K.; Khrapitchev, A. A.; Sibson, N. R.; Payne, S. J.; Chappell, M. A.

    2012-09-01

    Many potential clinical applications of chemical exchange saturation transfer (CEST) have been studied in recent years. However, due to various limitations such as specific absorption rate guidelines and scanner hardware constraints, most of the proposed applications have yet to be translated into routine diagnostic tools. Currently, pulsed CEST which uses multiple short pulses to perform the saturation is the only viable irradiation scheme for clinical translation. However, performing quantitative model-based analysis on pulsed CEST is time consuming because it is necessary to account for the time dependent amplitude of the saturation pulses. As a result, pulsed CEST is generally treated as continuous CEST by finding its equivalent average field or power. Nevertheless, theoretical analysis and simulations reveal that the resulting magnetization is different when the different irradiation schemes are applied. In this study, the quantification of important model parameters such as the amine proton exchange rate from a pulsed CEST experiment using quantitative model-based analyses were examined. Two model-based approaches were considered - discretized and continuous approximation to the time dependent RF irradiation pulses. The results showed that the discretized method was able to fit the experimental data substantially better than its continuous counterpart, but the smaller fitted error of the former did not translate to significantly better fit for the important model parameters. For quantification of the endogenous CEST effect, such as in amide proton transfer imaging, a model-based approach using the average power equivalent saturation can thus be used in place of the discretized approximation.

  16. On a method of perfect regression using sinusoidal expansion

    CERN Document Server

    Sinha, Nilotpal Kanti

    2011-01-01

    We present a new method of weighted least square regression that gives a curve of fit with any desired degree of accuracy for a given set of data points. By applying this iterative process infinitely, we show that every finite set of coplanar points can be expanded as a sinusoidal series in infinitely many ways. Thus, given any set of finite data points, we can obtain infinitely many perfect regression curves which give a perfect match between the given data points and the values given by the regression.

  17. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Science.gov (United States)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  18. Broadly Tunable SOA-Based Active Mode-Locked Fibre Ring Laser by Forward Injection Optical Pulse

    Institute of Scientific and Technical Information of China (English)

    YAN Shuang-Yi; ZHANG Jian-Guo; ZHAO Wei; LU Hong-Qiang; WANG Wei-Qiang

    2008-01-01

    @@ We present a broadly tunable active mode-locked fibre ring laser based on a semiconductor optical amplifier (SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength-tunable optical bandpass filter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental configuration of the pulse laser is very simple and easy to setup with no polarization-sensitive components.

  19. Suppression of Repeat-Intensive False Targets Based on Temporal Pulse Diversity

    Directory of Open Access Journals (Sweden)

    Gang Lu

    2013-01-01

    Full Text Available This paper considers the problem of suppressing the repeat-intensive false targets produced by a deception electronic attack (EA system equipped with a Digital Radio Frequency Memory (DRFM device. Different from a conventional repeat jammer, this type of jamming intensively retransmits the intercepted signal stored in a DRFM to the victim radar in a very short time-delay interval relative to a radar pulse wide. A multipeak matched-filtering output is then produced other than the merely expected true target. An electronic protection (EP algorithm based on the space time block code (STBC is proposed to suppress the adverse effects of this jammer. By transmitting a pulse sequence generated from the STBC in succession and the following cancellation process applied upon the received signal, this algorithm performs successfully in a single antenna system provided that the target models are nonfluctuating or slow fluctuating and the pulse repetition frequency (PRF is comparatively high. The performance in white and correlated Gaussian disturbance is evaluated by means of Monte Carlo simulations.

  20. A novel technique for the characterization of a HPGe detector response based on pulse shape comparison

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Million, B.; Sassi, M.; Wieland, O.; Bracco, A. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)

    2008-08-11

    A novel technique for measuring the HPGe detector pulse shape as a function of the {gamma}-ray interaction position inside the detector volume is presented. This technique is based on a specific pulse shape comparison procedure. Its main feature is that it allows to characterize the 3D position response of a HPGe segmented detector in a much shorter time as compared with the standard coincidence techniques. The method was first validated using a GEANT simulation of a 36-fold HPGe AGATA detector realized taking into account the effects of the electronic chain response and electrical noise on the calculated signal shape. This procedure was then applied to extract experimentally the position response of a non-segmented coaxial HPGe detector along the radial direction, using a 438 MBq {sup 137}Cs collimated {gamma}-source. The results of this measurement show a dependence of the pulse shape as a function of {gamma}-ray interaction radial coordinate consistent with that obtained with calculations. The signal acquisition rate reached using this characterization technique allows to realize a full scan of a large volume highly segmented HPGe detector in less than a week.

  1. [A quick algorithm of dynamic spectrum photoelectric pulse wave detection based on LabVIEW].

    Science.gov (United States)

    Lin, Ling; Li, Na; Li, Gang

    2010-02-01

    Dynamic spectrum (DS) detection is attractive among the numerous noninvasive blood component detection methods because of the elimination of the main interference of the individual discrepancy and measure conditions. DS is a kind of spectrum extracted from the photoelectric pulse wave and closely relative to the artery blood. It can be used in a noninvasive blood component concentration examination. The key issues in DS detection are high detection precision and high operation speed. The precision of measure can be advanced by making use of over-sampling and lock-in amplifying on the pick-up of photoelectric pulse wave in DS detection. In the present paper, the theory expression formula of the over-sampling and lock-in amplifying method was deduced firstly. Then in order to overcome the problems of great data and excessive operation brought on by this technology, a quick algorithm based on LabVIEW and a method of using external C code applied in the pick-up of photoelectric pulse wave were presented. Experimental verification was conducted in the environment of LabVIEW. The results show that by the method pres ented, the speed of operation was promoted rapidly and the data memory was reduced largely.

  2. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    Science.gov (United States)

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  3. Generic Sensor Modeling Using Pulse Method

    Science.gov (United States)

    Helder, Dennis L.; Choi, Taeyoung

    2005-01-01

    Recent development of high spatial resolution satellites such as IKONOS, Quickbird and Orbview enable observation of the Earth's surface with sub-meter resolution. Compared to the 30 meter resolution of Landsat 5 TM, the amount of information in the output image was dramatically increased. In this era of high spatial resolution, the estimation of spatial quality of images is gaining attention. Historically, the Modulation Transfer Function (MTF) concept has been used to estimate an imaging system's spatial quality. Sometimes classified by target shapes, various methods were developed in laboratory environment utilizing sinusoidal inputs, periodic bar patterns and narrow slits. On-orbit sensor MTF estimation was performed on 30-meter GSD Landsat4 Thematic Mapper (TM) data from the bridge pulse target as a pulse input . Because of a high resolution sensor s small Ground Sampling Distance (GSD), reasonably sized man-made edge, pulse, and impulse targets can be deployed on a uniform grassy area with accurate control of ground targets using tarps and convex mirrors. All the previous work cited calculated MTF without testing the MTF estimator's performance. In previous report, a numerical generic sensor model had been developed to simulate and improve the performance of on-orbit MTF estimating techniques. Results from the previous sensor modeling report that have been incorporated into standard MTF estimation work include Fermi edge detection and the newly developed 4th order modified Savitzky-Golay (MSG) interpolation technique. Noise sensitivity had been studied by performing simulations on known noise sources and a sensor model. Extensive investigation was done to characterize multi-resolution ground noise. Finally, angle simulation was tested by using synthetic pulse targets with angles from 2 to 15 degrees, several brightness levels, and different noise levels from both ground targets and imaging system. As a continuing research activity using the developed sensor

  4. Thixotropy and rheopexy of muscle fibers probed using sinusoidal oscillations.

    Directory of Open Access Journals (Sweden)

    David Altman

    Full Text Available Length changes of muscle fibers have previously been shown to result in a temporary reduction in fiber stiffness that is referred to as thixotropy. Understanding the mechanism of this thixotropy is important to our understanding of muscle function since there are many instances in which muscle is subjected to repeated patterns of lengthening and shortening. By applying sinusoidal length changes to one end of single permeabilized muscle fibers and measuring the force response at the opposite end, we studied the history-dependent stiffness of both relaxed and activated muscle fibers. For length change oscillations greater than 1 Hz, we observed thixotropic behavior of activated fibers. Treatment of these fibers with EDTA and blebbistatin, which inhibits myosin-actin interactions, quashed this effect, suggesting that the mechanism of muscle fiber thixotropy is cross-bridge dependent. We modeled a half-sarcomere experiencing sinusoidal length changes, and our simulations suggest that thixotropy could arise from force-dependent cross-bridge kinetics. Surprisingly, we also observed that, for length change oscillations less than 1 Hz, the muscle fiber exhibited rheopexy. In other words, the stiffness of the fiber increased in response to the length changes. Blebbistatin and EDTA did not disrupt the rheopectic behavior, suggesting that a non-cross-bridge mechanism contributes to this phenomenon.

  5. Sinusoidal current and stress evolutions in lithium-ion batteries

    Science.gov (United States)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  6. Propiedades de transporte de una superred de grafeno tipo sinusoidal

    Directory of Open Access Journals (Sweden)

    J. A. Briones-Torres

    2015-01-01

    Full Text Available En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de los electrones de Dirac a través de superredes en grafeno. Consideramos una superred con potencial sinusoidal o polaridad invertida, para ello consideramos dos maneras de crearla, una por medio de sustratos mixtos junto con la aplicación de un campo perpendicular sobre el sustrato de Óxido de Silicio (SiO2, la otra por medio de potenciales alternados aplicados perpendicularmente sobre la sábana de grafeno. Calculamos las propiedades de transmisión, transporte y estructura electrónica, variando diferentes parámetros como ángulo de incidencia, anchos de pozos y barreras y diferente número de barreras. Se encontró (1 el importante papel que juega el efecto Klein en tales estructuras, (2 las propiedades de transmisión y transporte presentan cierta simetría respecto del origen de la energía, y (3 el carácter sinusoidal del sistema trae consigo una baja en el nivel de energía de las subbandas en el espectro de estados acotados, además las degenera y origina que la apertura-cierre de las minibandas sea en el mismo nivel de energía.

  7. Method and apparatus for spur-reduced digital sinusoid synthesis

    Science.gov (United States)

    Zimmerman, George A. (Inventor); Flanagan, Michael J. (Inventor)

    1995-01-01

    A technique for reducing the spurious signal content in digital sinusoid synthesis is presented. Spur reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to that produced by a pseudo-noise (PN) generator are analyzed. This phase dithering method provides a spur reduction of 6(M + 1) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid look-up tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse-resolution, highly-linear digital-to-analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution.

  8. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Science.gov (United States)

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-01-01

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique. PMID:26473871

  9. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  10. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    Science.gov (United States)

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-10-13

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  11. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Directory of Open Access Journals (Sweden)

    Xiuyun Zhou

    2015-10-01

    Full Text Available In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT. Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  12. Implementation of pulse interval modulation based on dualmapping technique for optical wireless communications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-ying; WANG Hong-xing; HU Hao; CONG Pei-sheng

    2009-01-01

    Aiming at implementing the digital pulse interval modulation (DPIM) for optical wireless communications (OWC), a dual-mapping technique is presented. The scheme of DPIM train based upon the dual-mapping technique is given. Its slot error rate is derived for the avalanche photonic diode (APD) receiver model, and is compared with that of classical DPIM. Simulation results show that the dual-mapping DPIM (D-DPIM), which has a fixed slot length, only has marginally inferior error performance, but can solve waiting slots or buffer overflowing in comparison with DPIM. Hence, it is suitable for the optical wireless communication systems.

  13. Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models.

  14. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang [Keio University, Department of Mechanical Engineering, Faculty of Science and Technology, Yokohama (Japan)

    2016-10-15

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN. (orig.)

  15. Pulse Power Capability Estimation of Lithium Titanate Oxide-based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Loan

    2016-01-01

    The pulse power capability (PPC) represents one of the parameters that describe the performance behavior of Lithium-ion batteries independent on the application. Consequently, extended information about the Li-ion battery PPC and its dependence on the operating conditions become necessary. Thus......, this paper analyzes the power capability characteristic of a 13Ah high power Lithium Titanate Oxide-based battery and its dependence on temperature, load current and state-of-charge. Furthermore, a model to predict the discharging PPC of the battery cell at different temperatures and load currents for three...

  16. Compact FPGA-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    CERN Document Server

    Pruttivarasin, Thaned

    2015-01-01

    We present a compact FPGA-based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 TTL channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube (PMT). There are 16 independent direct-digital-synthesizers (DDS) RF sources with fast (rise-time of ~60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  17. All-optical wavelength conversion of short pulses and NRZ signals based on a nonlinear optical loop mirror

    DEFF Research Database (Denmark)

    Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe;

    2000-01-01

    Wavelength conversion of short pulses at 10 GHz based on a nonlinear optical loop mirror (NOLM) is experimentally and numerically investigated for the case of small group velocity dispersion and walkoff between the control pulses and continuous lightwaves. Experimental and numerical simulation...... results show that the pulsewidths of the converted signals at different wavelengths are almost the same, and the pulsewidths are compressed when the peak power of the control pulse is smaller than a certain value. An RZ optical source containing eight wavelengths having a high sidemode suppression ratio...

  18. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  19. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    Science.gov (United States)

    Khudyakov, D. V.; Borodkin, A. A.; Lobach, A. S.; Vartapetov, S. K.

    2015-09-01

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes.

  20. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khudyakov, D V; Borodkin, A A; Vartapetov, S K [Physics Instrumentation Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Troitsk, Moscow Region (Russian Federation); Lobach, A S [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2015-09-30

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)

  1. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    Science.gov (United States)

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of ‑0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of ‑0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  2. Programmable pulse generator

    CERN Document Server

    Xue Zhi Hua; Duan Xiao Hui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  3. Measuring the 3D shape of high temperature objects using blue sinusoidal structured light

    Science.gov (United States)

    Zhao, Xianling; Liu, Jiansheng; Zhang, Huayu; Wu, Yingchun

    2015-12-01

    The visible light radiated by some high temperature objects (less than 1200 °C) almost lies in the red and infrared waves. It will interfere with structured light projected on a forging surface if phase measurement profilometry (PMP) is used to measure the shapes of objects. In order to obtain a clear deformed pattern image, a 3D measurement method based on blue sinusoidal structured light is proposed in this present work. Moreover, a method for filtering deformed pattern images is presented for correction of the unwrapping phase. Blue sinusoidal phase-shifting fringe pattern images are projected on the surface by a digital light processing (DLP) projector, and then the deformed patterns are captured by a 3-CCD camera. The deformed pattern images are separated into R, G and B color components by the software. The B color images filtered by a low-pass filter are used to calculate the fringe order. Consequently, the 3D shape of a high temperature object is obtained by the unwrapping phase and the calibration parameter matrixes of the DLP projector and 3-CCD camera. The experimental results show that the unwrapping phase is completely corrected with the filtering method by removing the high frequency noise from the first harmonic of the B color images. The measurement system can complete the measurement in a few seconds with a relative error of less than 1 : 1000.

  4. Propagation of pulse fluctuations in single-mode fibers.

    Science.gov (United States)

    Marcuse, D

    1980-06-01

    An earlier paper [Applied Optics 19, 1653 (1980)] dealt with the ensemble averages of pulses propagating in single-mode fibers. In this paper we discuss pulse fluctuations. The light pulses are generated by modulation of the power of a continuously operating light source consisting of N discrete sinusoidal frequencies randomly phased relative to each other. The fixed amplitudes of the sinusoidal frequency components of the source are adjusted to fit into a Gaussian envelope, and the modulating pulse has a Gaussian distribution in time. This mathematical model approximates a laser light source operating in several free-running longitudinal modes. We find that the fluctuations of the modulated light pulses can die out if the pulses travel a long distance in a dispersive fiber, provided the spacings between the sinusoidal frequency components of the light source are larger than the spectral width of the modulating signal. If the source frequency components are spaced more closely than the spectral width of the modulating pulse, fluctuations persist indefinitely independent of fiber length. However, in a practical system, whose input pulse is only about half as short as the output pulse, fluctuations are practically unaffected by transmission through a fiber.

  5. Distinguishing mechanisms of plasma-based amplification for short laser pulses

    Science.gov (United States)

    Jia, Qing; Edwards, Matthew; Barth, Ido; Mikhailova, Julia; Fisch, Nathaniel

    2016-10-01

    Several plasma-based amplification mechanisms have been proposed to obtain short laser pulses with ultrahigh intensities beyond the damage threshold of solid-state devices, including Compton-like superradiant amplification, backward Raman amplification and strongly-coupled Brillouin amplification. These three mechanisms are all based on the periodic structure of particle (electrons for the former two and ions for Brillouin amplification) density fluctuations that function as a grating. By turning off the ion motion in particle-in-cell simulations, we can distinguish Brillouin from Raman, and show that Raman amplification is responsible for the main leading spike amplification of ultrashort pulses. By artificially turning off the longitudinal electric field (Ex) in simulations, we can distinguish Raman from Compton-like superradiant amplification. Interestingly, we find that the superradiant amplification in Ex-off simulation is similar to the amplification in pair plasmas, with roughly half amplification efficiency of the latter due to absence of equal contribution from positrons. In addition, we also discuss the competition between Brillouin amplification and superradiant amplification in pair plasmas by comparing the dominance of thermal pressure and ponderomotive force.

  6. Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders

    Science.gov (United States)

    Milanović, Veljko; Kasturi, Abhishek; Atwood, Bryan; Su, Yu; Limkrailassiri, Kevin; Nettleton, John E.; Goldberg, Lew; Cole, Brian J.; Hough, Nathaniel

    2015-02-01

    A highly compact and low power consuming Q-switch module was developed based on a fast single-axis MEMS mirror, for use in eye-safe battery-powered laser range finders The module's 1.6mm x 1.6mm mirror has cost than the traditional Electro-Optical Q-Switch. Because pulse-on-demand capability is required, resonant mirrors cannot be used to achieve the needed performance. Instead, a fast point-to-point analog single-axis tilt actuator was designed with a custom-coated high reflectance (HR) mirror to withstand the high intra-cavity laser fluence levels. The mirror is bonded on top of the MEMS actuator in final assembly. A compact MEMS controller was further implemented with the capability of autonomous on-demand operation based on user-provided digital trigger. The controller is designed to receive an external 3V power supply and a digital trigger and it consumes ~90mW during the short switching cycle and ~10mW in standby mode. Module prototypes were tested in a laser cavity and demonstrated high quality laser pulses with duration of ~20ns and energy of over 3mJ.

  7. Hepatic Sinusoidal Obstruction Syndrome Induced by Non-transplant Chemotherapy for Non-Hodgkin Lymphoma

    Science.gov (United States)

    Sakumura, Miho; Tajiri, Kazuto; Miwa, Shigeharu; Nagata, Kohei; Kawai, Kengo; Miyazono, Takayoshi; Arita, Kotaro; Wada, Akinori; Murakami, Jun; Sugiyama, Toshiro

    2017-01-01

    Hepatic sinusoidal obstruction syndrome (SOS), a serious complication that mainly occurs after hematopoietic-stem cell transplantation (HSCT), is caused by damage to the sinusoidal endothelial cells after the obstruction of the sinusoid. Recently, hepatic SOS was reported to occur after non-HSCT chemotherapies. This report describes a patient who experienced hepatic SOS after non-HSCT chemotherapy for non-Hodgkin lymphoma. A liver biopsy showed the slight dilatation of the hepatic sinusoid, which may be indicative of hepatic SOS. Hepatic SOS should be included in the differential diagnosis of patients with severe liver injury following the administration of chemotherapy regimens that are toxic to the vascular endothelial cells. PMID:28202860

  8. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses.

    Science.gov (United States)

    Ozeki, Yasuyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2012-02-01

    We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter. After amplification by fiber amplifiers, we obtain narrowband pulses with a spectral width of 225 cm(-1). By using these pulses, we accomplish SRS imaging of polymer beads with spectral information.

  9. The sinusoidal periodicity nature for M>=5 global earthquakes

    CERN Document Server

    Zhang, Z X

    2016-01-01

    By using the M>=5 global earthquake data for Jan. 1950 to Dec. 2015, we performed statistical analyses for the parameters magnitude, time, and depth on a yearly scale. The magnitude spectrum, which is the earthquake number accumulated at different magnitudes, had an exponential distribution. For the first time, we report a very significant characteristic of the sinusoidal periodic variation in the spectral index. The cycle of the sine function fitting was 30.98 years. The concept of annual equivalent total magnitude (AETM) of total released energy for each year was introduced and the trend variation of AETM year by year was studied. Overall, the global AETM of earthquakes with M>=5 displayed a certain upward trend as the years elapsed. At the same time, the change of the average epicenter depth of the global earthquakes (M>=5) in each year was analyzed.

  10. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia

    Directory of Open Access Journals (Sweden)

    Yolanda Peñaloza-López

    2016-04-01

    Full Text Available ABSTRACT Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA and Sinusoidal amplitude modulation (SAM threshold in children with Phonological dyslexia (PD. Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  11. Pulsating laminar pipe flows with sinusoidal mass flux variations

    Science.gov (United States)

    Ünsal, B.; Ray, S.; Durst, F.; Ertunç, Ö.

    2005-11-01

    Combined analytical and experimental investigation of sinusoidal mass flow-controlled, pulsating, laminar and fully developed pipe flow was carried out. The experimental investigation employed a mass flow control unit built at LSTM-Erlangen for the present investigation. For the analytical investigation, the equations describing such flows were normalized to allow for a general solution, depending only on the normalized amplitude mA* of the mass flow pulsation and the normalized frequency F. The analytical and experimental results are presented in this normalized way and it is shown that good agreement between the results of the authors is obtained. A diagram is presented for the condition of flow reversal in terms of the dimensionless frequency F and the mass flow rate amplitude mA*.

  12. A vibration energy harvesting system based on a pulse fluid flow transducer and its tests%基于脉冲液流换能器的振动能量回收原理与实验研究

    Institute of Scientific and Technical Information of China (English)

    袁四美; 廖昌荣; 赵丹侠; 刘琼; 韩亮

    2013-01-01

    To solve the energy supply problem of a self-powered Magneto-rheological damping modulator system, a vibration energy harvesting system based on a pulse fluid flow transducer was presented. Through a conversion of vibration energy-fluid flow energy-mechanical energy-electrical energy, vibration energy harvesting was realized. An analysis model of a pulse fluid flow transducer composed of a gear motor, a flywheel and a permanent magnet generator was built. The output voltage, power conversion and conversion efficiency of the pulse fluid flow transducer were simulated via Matlab software under the condition of sinusoideal excitation. In order to verify the rationality of the theoretical analysis, a vibration energy harvesting system based on the pulse fluid flow transducer was designed and fabricated. The vibration energy harvesting system was tested with a J95-I type shock absorber test-table. Under the sinusoidal excitation condition, the theoretical voltage characteristics of the transducer were compared with those from tests, and the theoretical efficiencies were compared with the test ones. It was shown that the puls-fluid flow transducer can relize vibration energy harvesting; the energy conversion efficiency reaches 48.65% and the average output power reaches 37.4 watt under the condition of 30 ohm load.%针对自供电磁流变阻尼调节系统的能量供给问题,提出基于脉冲液流换能器的振动能量回收方法,通过振动能-液流能-机械能-电能的变换,实现振动能量回收.建立了基于齿轮马达、飞轮和永磁发动机的脉冲液流换能器分析模型,利用Matlab软件对正弦振动下换能器的电压输出特性、功率转换特性和转换效率进行仿真.为验证理论分析的正确性,设计制作了基于脉冲液流换能器的振动能量回收装置,利用J95-Ⅰ减振器测试台上对振动能量回收装置实验测试,比较了正弦激励条件下换能器的理论电压特性与实测电压特性

  13. Nematic liquid crystals on sinusoidal channels: the zigzag instability

    Science.gov (United States)

    Silvestre, Nuno M.; Romero-Enrique, Jose M.; Telo da Gama, Margarida M.

    2017-01-01

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  14. Representative Sinusoids for Hepatic Four-Scale Pharmacokinetics Simulations.

    Directory of Open Access Journals (Sweden)

    Lars Ole Schwen

    Full Text Available The mammalian liver plays a key role for metabolism and detoxification of xenobiotics in the body. The corresponding biochemical processes are typically subject to spatial variations at different length scales. Zonal enzyme expression along sinusoids leads to zonated metabolization already in the healthy state. Pathological states of the liver may involve liver cells affected in a zonated manner or heterogeneously across the whole organ. This spatial heterogeneity, however, cannot be described by most computational models which usually consider the liver as a homogeneous, well-stirred organ. The goal of this article is to present a methodology to extend whole-body pharmacokinetics models by a detailed liver model, combining different modeling approaches from the literature. This approach results in an integrated four-scale model, from single cells via sinusoids and the organ to the whole organism, capable of mechanistically representing metabolization inhomogeneity in livers at different spatial scales. Moreover, the model shows circulatory mixing effects due to a delayed recirculation through the surrounding organism. To show that this approach is generally applicable for different physiological processes, we show three applications as proofs of concept, covering a range of species, compounds, and diseased states: clearance of midazolam in steatotic human livers, clearance of caffeine in mouse livers regenerating from necrosis, and a parameter study on the impact of different cell entities on insulin uptake in mouse livers. The examples illustrate how variations only discernible at the local scale influence substance distribution in the plasma at the whole-body level. In particular, our results show that simultaneously considering variations at all relevant spatial scales may be necessary to understand their impact on observations at the organism scale.

  15. Image Fusion Based on Nonsubsampled Contourlet Transform and Saliency-Motivated Pulse Coupled Neural Networks

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2013-01-01

    Full Text Available In the nonsubsampled contourlet transform (NSCT domain, a novel image fusion algorithm based on the visual attention model and pulse coupled neural networks (PCNNs is proposed. For the fusion of high-pass subbands in NSCT domain, a saliency-motivated PCNN model is proposed. The main idea is that high-pass subband coefficients are combined with their visual saliency maps as input to motivate PCNN. Coefficients with large firing times are employed as the fused high-pass subband coefficients. Low-pass subband coefficients are merged to develop a weighted fusion rule based on firing times of PCNN. The fused image contains abundant detailed contents from source images and preserves effectively the saliency structure while enhancing the image contrast. The algorithm can preserve the completeness and the sharpness of object regions. The fused image is more natural and can satisfy the requirement of human visual system (HVS. Experiments demonstrate that the proposed algorithm yields better performance.

  16. Roller Profile Online Measurement Based on Ultrasonic Circulation Pulse-echo Technology

    Institute of Scientific and Technical Information of China (English)

    WEN Shu-hui; XU Feng-rong

    2007-01-01

    In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the factors influencing the accuracy of roller profile online measurement were analyzed in detail and error compensation analysis of system was accordingly presented. In order to reduce count error, field program gate array(FPGA) was introduced and a highprecision data acquisition system was designed based on digital phase-shift technology. Experiments indicate that the standard deviation of measure data was 7.27 μm, which showed the feasibility and validity of the proposed method, and realized the roll profile measurement with high precision.

  17. High Power Er/Yb Codoped Double Clad Fiber Pulsed Amplifier Based on an All-Fiber Configuration

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lei; NING Ji-Ping; CHEN Cheng; HAN Qun; ZHANG Wei-Yi; WANG Jun-Tao

    2009-01-01

    We report an all-fiber two-stage high power pulsed amplifier,seeded with a 1550nm,1 kHz repetition rate rectangular pulse,and based on Er/Yb co-doped double clad fiber.All the characteristics are measured in the experiment.The maxima/slope efficiency is 22.56%,which is the highest we know of at such a low repetition rate,and the maximal output signal power is 1W.The various factors that affect the pulsed amplifier performance are analyzed.A high output power while keeping high power conversion efficiency can be obtained with careful selection of the input power,pump power and repetition rate.The experimental results show that the crucial parameters should be optimized when designing all-fiber pulsed amplifiers.

  18. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  19. Pulse generation and compression using an asymmetrical porous silicon-based Mach–Zehnder interferometer configuration

    Indian Academy of Sciences (India)

    SHU-WEN GUO; JIAN-WEI WU

    2016-12-01

    We propose an asymmetrical Mach–Zehnder interferometer (MZI) for efficient pulse generation and compression using porous silicon (PS) waveguide, fibre delay line and couplers. We show a pulse compression of about 0.4 ns at the output port with third-order super-Gaussian input pulse in ∼2 ns time duration and ∼40.3 W peak power level. Also, we show the possibility of obtaining compressed single- or double-pulse with judicious choice of various parameters like input peak power, delay time and input pulse width.

  20. Correction factor based double model fuzzy logic control strategy of arc voltage in pulsed MIG welding

    Institute of Scientific and Technical Information of China (English)

    Wu Kaiyuan; Huang Shisheng; Meng Yongmin

    2005-01-01

    According to the feature of arc voltage control in welding steel using pulsed MIG welding, a correction factor based double model fuzzy logic controller (FLC) was developed to realize the arc voltage control by means of arc voltage feedback.When the error of peak arc voltage was great, a coarse adjusting fuzzy logic control rules with correction factor was designed,in the controller, the peak arc voltage was controlled by the wire feeding speed by means of arc voltage feedback. When the error of peak arc voltage was small, a fine adjusting fuzzy logic control rules with correction factor was designed, in this controller, the peak arc voltage was controlled by the background time by means of arc voltage feedback. The FLC was realized in a Look-Up Table ( LUT) method. Experiments had been carried out aiming at implementing the control strategy to control the arc length change in welding process. Experimental results show that the controller proposed enables the consistency of arc length and the stabolity of arc voltage and welding process to be achieved in pulsed MIG welding process.

  1. Power nanosecond pulse shaping by means of RCD-generators with peaking circuits based on diode current breakers

    CERN Document Server

    Grekhov, I V; Korotkov, S V; Stepanyants, A L; Khristyuk, D V

    2002-01-01

    One considered the basic principles to design nanosecond region generators based on reverse-connected dynistos (RCD) with diode current breaker base output peaking circuits. Paper presents the results of experimental investigation in intense generator based on RCD, peaking pulsed transformer and high-voltage diode breaker from a set of series-connected drift diodes with abrupt reset. Generator at 1 kHz frequency commutates voltage pulses with approx 45 kV amplitude, approx 50 ns duration and approx 10 ns rise front to 25 ohm load

  2. Wrist pulse (image)

    Science.gov (United States)

    To measure the pulse at the wrist, place the index and middle finger over the underside of the opposite wrist, below the base ... firmly with flat fingers until you feel the pulse in the radial artery.

  3. Proof-of-Concept Experiments on a Gallium-Based Ignitron for Pulsed Power Applications

    Science.gov (United States)

    Ali, H. K.; Hanson, V. S.; Polzin, K. A.; Pearson, J. B.

    2015-01-01

    Ignitrons are electrical switching devices that operate at switching times that are on the order of microseconds, can conduct high currents of thousands of amps, and are capable of holding off tens of thousands of volts between pulses. They consist of a liquid metal pool within an evacuated tube that serves both the cathode and the source of atoms and electrons for an arc discharge. Facing the liquid metal pool is an anode suspended above the cathode, with a smaller ignitor electrode tip located just above the surface of the cathode. The ignitron can be charged to significant voltages, with a potential difference of thousands of volts between anode and cathode. When an ignition pulse is delivered from the ignitor electrode to the cathode, a small amount of the liquid metal is vaporized and subsequently ionized, with the high voltage between the anode and cathode causing the gas to bridge the gap between the two electrodes. The electrons and ions move rapidly towards the anode and cathode, respectively, with the ions liberating still more atoms from the liquid metal cathode surface as a high-current plasma arc discharge is rapidly established. This arc continues in a self-sustaining fashion until the potential difference between the anode and cathode drops below some critical value. Ignitrons have been used in a variety of pulsed power applications, including the railroad industry, industrial chemical processing, and high-power arc welding. In addition, they might prove useful in terrestrial power grid applications, serving as high-current fault switches, quickly shunting dangerous high-current or high-voltage spikes safely to ground. The motivation for this work stemmed from the fact that high-power, high-reliability, pulsed power devices like the ignitron have been used for ground testing in-space pulsed electric thruster technologies, and the continued use of ignitrons could prove advantageous to the future development and testing of such thrusters. Previous

  4. Investigation of a physical disinfection process based on pulsed underwater corona discharges

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.B.

    2007-09-15

    To overcome the side effects of commonly used water disinfection methods based on chemicals, advanced oxidation processes (AOP's) are presently considered as an alternative. These processes are based on the effect of highly reactive oxidants (like ozone, OH radicals, H{sub 2}O{sub 2}, et.) on microorganisms and toxic organic compounds. In this work the effects and products from pulsed underwater corona discharges have been investigated for their potential to remove contaminants from the water. Pulsed underwater corona discharges create oxidative and reductive species, UV radiation, shock waves and strong electric field at the tip of propagating streamers. It has been supposed that the combined appearance of these effects leads to an effective destruction of contaminants in the water. It was the aim of this work to quantify the production rates of oxidants and the intensity of other effects from underwater corona discharges, to demonstrate their effectiveness for the inactivation of microorganisms and to propose a suitable corona reactor that is scalable to large throughputs. For that purpose a coaxial corona reactor was designed with a central anode covered by a thin (200-300 {mu}m) porous ceramic layer. The conductive porous ceramic and the anode cathode water gap form a parallel resistive-capacitive voltage divider. For times greater than the dielectric relaxation time of the water ({tau}={epsilon}{epsilon}{sub 0}/{sigma}) resistive voltage division dominates and the electric field at the ceramic layer can be more enhanced than in the case of capacitive voltage division. Applying a pulsed voltage of 30-50 kV for a duration of 200-400 ns to the anode a large number of streamers is launched homogeneously from the ceramic surface extending up to 10 mm into the anode cathode water gap. An L-C chain Blumlein configuration has been selected to generate the pulses. By changing the number and the values of the LC elements the impedance of the generator and its pulse

  5. Control Scheme of Z-Source Inverter Based BLDC Motor Drive System Using Modified Pulse Width Modulation Techniq

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar,

    2014-01-01

    Full Text Available A modified pulse width modulation technique for Z-source inverter based BLDC motor is proposed and analyzed in this project.The Z-source inverter can be used as Buck/Boost converter with lower cost and high efficiency. BLDC motors are used in electric vehicles where portability and efficiency are required. This drive system provides advantages of both BLDC motors and Z-source inverter, and can be used in fuel cell system and other adjustable speed drive application. In this project principle of modified pulse width modulation technique is implemented and simulated. The model of a three phase Z-source inverter has been discussed based on modified pulse with modulation technique. The simulation of Z-source inverter based BLDC motor is done using the MATLAB/SIMULINK.

  6. Enhanced performance of an EUV light source (λ = 84 nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon

    Science.gov (United States)

    Carman, R. J.; Kane, D. M.; Ward, B. K.

    2010-01-01

    The electrical and optical characteristics of a dielectric barrier discharge (DBD) based neon excimer lamp generating output in the extreme ultraviolet (EUV) spectral range (λ = 84 nm) have been investigated experimentally. We report a detailed comparison of lamp performance for both pulsed and sinusoidal voltage excitation waveforms, using otherwise identical operating conditions. The results show that pulsed voltage excitation yields a ~50% increase in the overall electrical to EUV conversion efficiency compared with sinusoidal waveforms, when operating in the pressure range 500-900 mbar. Pulsed operation allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, instantaneous peak power). The Ne DBD based source is also found to be highly monochromatic with respect to its spectral output from the second continuum band at λ ~ 84 nm (5 nm FWHM). This continuum band dominates the spectral emission over the wavelength range 30-550 nm. Lamp performance; as measured by the overall EUV output energy, electrical to EUV conversion efficiency and spectral purity at λ ~ 84 nm; improves with increasing gas pressure up to p = 900 mbar.

  7. Enhanced performance of an EUV light source ({lambda} = 84 nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R J; Kane, D M; Ward, B K, E-mail: rcarman@science.mq.edu.a [Department of Physics and Engineering, Faculty of Science, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia)

    2010-01-20

    The electrical and optical characteristics of a dielectric barrier discharge (DBD) based neon excimer lamp generating output in the extreme ultraviolet (EUV) spectral range ({lambda} = 84 nm) have been investigated experimentally. We report a detailed comparison of lamp performance for both pulsed and sinusoidal voltage excitation waveforms, using otherwise identical operating conditions. The results show that pulsed voltage excitation yields a {approx}50% increase in the overall electrical to EUV conversion efficiency compared with sinusoidal waveforms, when operating in the pressure range 500-900 mbar. Pulsed operation allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, instantaneous peak power). The Ne DBD based source is also found to be highly monochromatic with respect to its spectral output from the second continuum band at {lambda} {approx} 84 nm (5 nm FWHM). This continuum band dominates the spectral emission over the wavelength range 30-550 nm. Lamp performance; as measured by the overall EUV output energy, electrical to EUV conversion efficiency and spectral purity at {lambda} {approx} 84 nm; improves with increasing gas pressure up to p = 900 mbar.

  8. A HIGH RESOLUTION WIDE SWATH SAR METHOD BASED ON INTRA-PULSE NULL STEERING AND MIMO

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High Resolution Wide Swath(HRWS)Synthetic Aperture Radar(SAR)often Sufiers from low Signal-to-Noise Ratio(SNR)due to small transmitting antenna,especially in phased array antenna systems.Digital Beam Forming(DBF)based on Single Input and Multiple Output(SIMO)achieves receiving array gain at the cost of increasing data rate.This letter proposes a new HRWS SAR method, which employs intra-pulse null steering to get receiving gain in elevation and decrease the data rate,and Multiple Input and Multiple Output(MIMO)using Space-Time Block Coding(STBC)in azimuth to get transmitting gain and receiving array gain simultaneously.The feasibility is verified by deduction and simulations.

  9. A dynamic CMOS multiplier for analog VLSI based on exponential pulse-decay modulation

    Science.gov (United States)

    Massengill, Lloyd W.

    1991-03-01

    A clocked, charge-based, CMOS modulator circuit is presented. The circuit, which performs a semilinear multiplication function, has applications in arrayed analog VLSI architectures such as parallel filters and neural network systems. The design presented is simple in structure, uses no operational amplifiers for the actual multiplication function, and uses no power in the static mode. Two-quadrant weighting of an input signal is accomplished by control of the magnitude and decay time of an exponential current pulse, resulting in the delivery of charge packets to a shared capacitive summing bus. The cell is modular in structure and can be fabricated in a standard CMOS process. An analytical derivation of the operation of the circuit, SPICE simulations, and MOSIS fabrication results are presented. The simulation studies indicate that the circuit is inherently tolerant to temperature effects, absolute device sizing errors, and clock-feedthrough transients.

  10. Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong [Department of Mathematics and Computer Science, FernUniversitaet in Hagen, 58084 Hagen (Germany)], E-mail: hong.li@FernUni-Hagen.de; Zhang Bo [School of Electric Power, South China University of Technology, Guangzhou (China); Li Zhong; Halang, Wolfgang A. [Department of Mathematics and Computer Science, FernUniversitaet in Hagen, 58084 Hagen (Germany); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China)

    2009-11-15

    In this paper, periodic and chaotic behaviors of DC-DC converters under certain parametric conditions are simulated, experimentally verified, and analyzed. Motivated by the work of J.H.B. Deane and D.C. Hamill in 1996, where chaotic phenomena are useful in suppressing electromagnetic interference (EMI) by adjusting the parameters of the DC-DC converter and making it operate in chaos, a chaos-based pulse width modulation (CPWM) is proposed to distribute the harmonics of the DC-DC converters continuously and evenly over a wide frequency range, thereby reducing the EMI. The output waves and spectral properties of the EMI are simulated and analyzed as the carrier frequency or amplitude changes with regard to different chaotic maps. Simulation and experimental results are given to illustrate the effectiveness of the proposed CPWM, which provides a good example of applying chaos theory in engineering practice.

  11. A real-time n/γ digital pulse shape discriminator based on FPGA.

    Science.gov (United States)

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Yuan, Guoliang; Yang, Qingwei; Yin, Zejie

    2013-02-01

    A FPGA-based real-time digital pulse shape discriminator has been employed to distinguish between neutrons (n) and gammas (γ) in the Neutron Flux Monitor (NFM) for International Thermonuclear Experimental Reactor (ITER). The discriminator takes advantages of the Field Programmable Gate Array (FPGA) parallel and pipeline process capabilities to carry out the real-time sifting of neutrons in n/γ mixed radiation fields, and uses the rise time and amplitude inspection techniques simultaneously as the discrimination algorithm to observe good n/γ separation. Some experimental results have been presented which show that this discriminator can realize the anticipated goals of NFM perfectly with its excellent discrimination quality and zero dead time.

  12. Double Pulse LIBS of Titanium-Based PVD-Coatings with Submicron Resolution

    Directory of Open Access Journals (Sweden)

    K. Ermalitskaia

    2016-01-01

    Full Text Available The possibility for double pulse LIBS in the process of a direct layer-by-layer analysis of the titanium-based PVD-coatings on polished flat blank samples of steel and silicon and also of the TiAlN/TiN-coating on a milling cutter is considered. A method is proposed to control thickness of the radiation evaporated layer by defocusing the laser beam with respect to the surface, making it possible to attain the depth resolution of 0.1 μm. The Ti and Ti-Zr-coatings produced using the ion-assisted condensation method and subjected to streams of the nitrogen plasma in a magnetic-plasma compressor are studied.

  13. Tonal Language Speech Compression Based on a Bitrate Scalable Multi-Pulse Based Code Excited Linear Prediction Coder

    Directory of Open Access Journals (Sweden)

    Suphattharachai Chomphan

    2011-01-01

    Full Text Available Problem statement: Speech compression is an important issue in the modern digital speech communication. The functionality of bitrates scalability also plays significant role, since the capacity of communication system varies all the time. When considering tonal speech, such as Thai, tone plays important role on the naturalness and the intelligibility of the speech, it must be treated appropriately. Therefore these issues are taken into account in this study. Approach: This study proposes a modification of flexible Multi-Pulse based Code Excited Linear Predictive (MP-CELP coder with bitrates scalabilities for tonal language speech in the multimedia applications. The coder consists of a core coder and bitrates scalable tools. The high pitch delay resolutions are applied to the adaptive codebook of core coder for tonal language speech quality improvement. The bitrates scalable tool employs multi-stage excitation coding based on an embedded-coding approach. The multi-pulse excitation codebook at each stage is adaptively produced depending on the selected excitation signal at the previous stage. Results: The experimental results show that the speech quality of the proposed coder is improved above the speech quality of the conventional coder without pitch-resolution adaptation. Conclusion: From the study, the proposed approach is able to improve the speech compression quality for tonal language and the functionality of bitrates scalability is also developed.

  14. Electrohydrodynamic Nanofluid Hydrothermal Treatment in an Enclosure with Sinusoidal Upper Wall

    Directory of Open Access Journals (Sweden)

    Mohsen Sheikholeslami

    2015-08-01

    Full Text Available The influence of non-uniform electric filed on Fe3O4-Ethylene glycol nanofluid hydrothermal treatment in an enclosure with sinusoidal upper and moving lower walls is investigated in this study. Control Volume based Finite Element Method (CVFEM is utilized to simulate in the presented model. Numerical investigation are conducted for the sundry parameters such as Reynolds number; nanoparticle volume fraction and supplied. Results show that supplied voltage can change the flow shape. Coulomb force causes isotherms denser near the moving wall. Heat transfer rises with augment of supplied voltage and Reynolds number. Effect of electric filed on heat transfer is more pronounced at low Reynolds number. Finally, a comparison with the existing literature is also made.

  15. [The analysis of sinusoidal modulated method used for measuring fluorescence lifetime].

    Science.gov (United States)

    Feng, Ying; Huang, Shi-hua

    2007-12-01

    This paper has built a system with a sinusoidal modulated LED as the excitation source. Such exciter was used upon the sample Eu2 L'3 x nH2O (L' = C4H4O4). Both the excitation light and the 5Do-7F2 emission of Eu3+ ion were measured. Fluorescence lifetime, which approximate to 0.680 ms, can then be obtained from the measured excitation and fluorescence waveforms by non-linear least square curve fitting based on the principle of phase-shift measurement of fluorescence lifetime. Data processing methods considering respectively the high order harmonics in the modulation and multi-exponential decay of the fluorescence were discussed. A method of utilizing Fourier series expandedness to amendatory the result was put forward. Accordingly, the applicability for phase-shift method was expanded as well as a more exact result was acquired.

  16. Fiber-optic project-fringe interferometry with sinusoidal phase modulating system

    Science.gov (United States)

    Zhang, Fukai; Duan, Fajie; Lv, Changrong; Duan, Xiaojie; Bo, En; Feng, Fan

    2013-06-01

    A fiber-optic sinusoidal phase-modulating (SPM) interferometer for fringe projection is presented. The system is based on the SPM technique and makes use of the Mach-Zehnder interferometer structure and Young's double pinhole interference principle to achieve interference fringe projection. A Michelson interferometer, which contains the detection of Fresnel reflection on its fiber end face and interference at one input port of a 3 dB coupler, is utilized to achieve feedback precise control of the fringe phase, which is sensitive to phase drifting produced by the nature of the fiber. The phase diversity for the closed-loop SPM system can be real-time measured with a precision of 3 mrad. External disturbances mainly caused by temperature fluctuations can be reduced to 57 mrad for the fringe map. The experimental results have shown the usefulness of the system.

  17. Direct calculation of 2D components of myocardial strain using sinusoidal MR tagging

    Science.gov (United States)

    Osman, Nael F.; Prince, Jerry L.

    1998-07-01

    A new technique to measure local planar strain in left ventricular myocardium using two-dimensional tagged MR images is presented. This new technique is computationally fast, is fully automated, and generates dense motion estimates. It is based on using a 1-1 SPAMM tag pattern which comprise several one-dimensional sinusoidal tag patterns at different frequencies. A local deformation of the myocardium produces a variation in the local frequencies of these patterns, which can be used to compute strain components in the image plane. Local frequency is measured by scanning certain spectral peaks to create complex images, for which the local frequency is the gradient of the angle associated with their complex data points. The method is demonstrated using both simulations and real tagged MR images, and a discussion of these results and of directions for future research is provided.

  18. Laminar heat transfer characteristics of internally finned tube with sinusoidal wavy fin

    Science.gov (United States)

    Lin, M.; Tian, L.; Wang, Q. W.

    2011-06-01

    Comparative numerical study of laminar heat transfer characteristics of annular tubes with sinusoidal wavy fins has been conducted both experimentally and numerically with Re = 299-1,475. The uniform heat flux is imposed on the tube outside wall surface. Two tube materials (copper and stainless steel) are considered. It is found that the fluid temperature profile is not linear but convex along the flow direction due to the axial heat conduction in tube wall, and the effects of axial heat conduction on the heat transfer decreases with an increase in Reynolds number or decrease in tube wall thermal conductivity. The axial distributions of local Nusselt number could reach periodically fully developed after 3-5 cycles. The convectional data reduction method based on the traditional method should be improved for tube with high thermal conductivity or low Reynolds numbers, Otherwise, the heat transfer performance of internally finned tube may be underestimated.

  19. Improved Sinusoid Analysis and Post-Processing in Parametric Audio Coding

    Institute of Scientific and Technical Information of China (English)

    周宏; 陈健

    2003-01-01

    This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.

  20. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  1. [Qualitative analysis of Raman spectra based on pulse coupled neural network].

    Science.gov (United States)

    Wang, Cheng; Li, Shao-fa; Wu, Zheng-jie; He, Kai; Huang, Yao-xiong

    2010-09-01

    By studying on pulse coupled neural network (PCNN) and Raman spectra qualitative analysis, a method based on PCNN for Raman spectra qualitative analysis was proposed. After encoding the Raman spectra by using PCNN neurons' characteristics of fatigue and refractory period, the improved Horspool algorithm was used to match the code corresponding to the detected sample with all of the base code in the database one by one, and then their matching similarity was acquired to determine the sample type. Experimental results and analysis of data proved that the method proposed in this paper is accurate and effective for Raman spectra qualitative analysis. Meanwhile, traditional qualitative analysis method based on spectral template has some deficiencies, like that it is difficult to determine the characteristic peak of the detected sample and the matching analysis process has a high degree of redundancy. While our proposed method not only can avoid these deficiencies very well, but also needs a small amount of data storage. The requirement of the storage space was only 5.8% of that used in the traditional qualitative analysis method based on spectral template.

  2. Absolute phase recovery in structured light illumination systems: Sinusoidal vs. intensity discrete patterns

    Science.gov (United States)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos

    2016-09-01

    Structured light illumination is a well-established technology for noncontact 3D surface measurements. A common challenge in those systems is to obtain the absolute surface information using few measurement frames. This work discusses techniques based on the projection of multiple sinusoidal fringe patterns with different fringe period, as well as the projection of intensity discrete Gray Code and grey-level coded patterns. The use of sinusoidal multi-frequency techniques has been since years an on-going area of research, where various algorithms have been developed based on beats, look-up tables, or number-theoretical approaches. This work shows that a related technique, the so-called algebraic reconstruction technique that is borrowed from the area of multi-wavelength interferometry can be used for this purpose. This approach provides a robust analytical solution to the phase-unwrapping problem. However, this work argues that despite these advances, the acquisition of additional phase maps obtained with different fringe periods requires too many measurement frames, and hence is inefficient. Motivated by that, this work proposes a new grey level coding scheme that uses only few measurement frames, overcomes typical defocus errors, and has an error detecting feature. The latter feature makes the need of separate error detecting algorithms obsolete. This so-called closed-loop space filling curve can be implemented with an arbitrary number of N grey-levels enabling to code up to (2N) code-words. The performance of this so-called closed-loop space filling curve is demonstrated using experimental data.

  3. Simulation of picosecond pulse propagation in fibre-based radiation shaping units

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Laptev, A. V.; Petrov, V. A.; Pestryakov, E. V.

    2016-09-01

    We have performed a numerical simulation of picosecond pulse propagation in a combined stretcher consisting of a segment of a telecommunication fibre and diffraction holographic gratings. The process of supercontinuum generation in a nonlinear photoniccrystal fibre pumped by picosecond pulses is simulated by solving numerically the generalised nonlinear Schrödinger equation; spectral and temporal pulse parameters are determined. Experimental data are in good agreement with simulation results. The obtained results are used to design a high-power femtosecond laser system with a pulse repetition rate of 1 kHz.

  4. A novel variable polarity welding power based on high-frequency pulse modulation

    Institute of Scientific and Technical Information of China (English)

    Qiu Ling; Yang Chunli; Fan Chenglei; Lin Sanbao; Wu Yun

    2006-01-01

    A new type of variable polarity welding power modulated with high-frequency pulse current is developed.Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current.Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.

  5. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    Science.gov (United States)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  6. Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb³⁺:CaF₂.

    Science.gov (United States)

    Körner, Jörg; Hein, Joachim; Liebetrau, Hartmut; Seifert, Reinhard; Klöpfel, Diethard; Kahle, Martin; Loeser, Markus; Siebold, Mathias; Schramm, Ulrich; Kaluza, Malte C

    2013-11-18

    We present a novel approach for the amplification of high peak power femtosecond laser pulses at a high repetition rate. This approach is based on an all-diode pumped burst mode laser scheme. In this scheme, pulse bursts with a total duration between 1 and 2 ms are be generated and amplified. They contain 50 to 2000 individual pulses equally spaced in time. The individual pulses have an initial duration of 350 fs and are stretched to 50 ps prior to amplification. The amplifier stage is based on Yb3+:CaF2 cooled to 100 K. In this amplifier, a total output energy in excess of 600 mJ per burst at a repetition rate of 10 Hz is demonstrated. For lower repetition rates the total output energy per burst can be scaled up to 915 mJ using a longer pump duration. This corresponds to an efficiency as high as 25% of extracted energy from absorbed pump energy. This is the highest efficiency, which has so far been demonstrated for a pulsed Yb3+:CaF2 amplifier.

  7. [Application of three heat pulse technique-based methods to determine the stem sap flow].

    Science.gov (United States)

    Wang, Sheng; Fan, Jun

    2015-08-01

    It is of critical importance to acquire tree transpiration characters through sap flow methodology to understand tree water physiology, forest ecology and ecosystem water exchange. Tri-probe heat pulse sensors, which are widely utilized in soil thermal parameters and soil evaporation measurement, were applied to implement Salix matsudana sap flow density (Vs) measurements via heat-ratio method (HRM), T-Max method (T-Max) and single-probe heat pulse probe (SHPP) method, and comparative analysis was conducted with additional Grainer's thermal diffusion probes (TDP) measured results. The results showed that, it took about five weeks to reach a stable measurement stage after TPHP installation, Vs measured with three methods in the early stage after installation was 135%-220% higher than Vs in the stable measurement stage, and Vs estimated via HRM, T-Max and SHPP methods were significantly linearly correlated with Vs estimated via TDP method, with R2 of 0.93, 0.73 and 0.91, respectively, and R2 for Vs measured by SHPP and HRM reached 0.94. HRM had relatively higher precision in measuring low rates and reverse sap flow. SHPP method seemed to be very promising to measure sap flow for configuration simplicity and high measuring accuracy, whereas it couldn' t distinguish directions of flow. T-Max method had relatively higher error in sap flow measurement, and it couldn' t measure sap flow below 5 cm3 · cm(-2) · h(-1), thus this method could not be used alone, however it could measure thermal diffusivity for calculating sap flow when other methods were imposed. It was recommended to choose a proper method or a combination of several methods to measure stem sap flow, based on specific research purpose.

  8. Sinusoidal Wave Estimation Using Photogrammetry and Short Video Sequences

    Directory of Open Access Journals (Sweden)

    Ewelina Rupnik

    2015-12-01

    Full Text Available The objective of the work is to model the shape of the sinusoidal shape of regular water waves generated in a laboratory flume. The waves are traveling in time and render a smooth surface, with no white caps or foam. Two methods are proposed, treating the water as a diffuse and specular surface, respectively. In either case, the water is presumed to take the shape of a traveling sine wave, reducing the task of the 3D reconstruction to resolve the wave parameters. The first conceived method performs the modeling part purely in 3D space. Having triangulated the points in a separate phase via bundle adjustment, a sine wave is fitted into the data in a least squares manner. The second method presents a more complete approach for the entire calculation workflow beginning in the image space. The water is perceived as a specular surface, and the traveling specularities are the only observations visible to the  cameras, observations that are notably single image. The depth ambiguity is removed given additional constraints encoded within the law of reflection and the modeled parametric surface. The observation and constraint equations compose a single system of equations that is solved with the method of least squares adjustment. The devised approaches are validated against the data coming from a capacitive level sensor and on physical targets floating on the surface. The outcomes agree to a high degree.

  9. FORCE REDUCTION OF FLOW AROUND A SINUSOIDAL WAVY CYLINDER

    Institute of Scientific and Technical Information of China (English)

    ZOU Lin; LIN Yu-feng

    2009-01-01

    A large eddy simulation of cross-flow around a sinusoidal wavy cylinder at Re=3000 was performed and the load cell measurement was introduced for the validation test. The mean flow field and the near wake flow structures were presented and compared with those for a circular cylinder at the same Reynolds number. The mean drag coefficient for the wavy cylinder is smaller than that for a corresponding circular cylinder due to the formation of a longer wake vortex generated by the wavy cylinder. The fluctuating lift coefficient of the wavy cylinder is also greatly reduced. This kind of wavy surface leads to the formation of 3-D free shear layers which are more stable than purely 2-D free shear layers. Such free shear layers only roll up into mature vortices at further downstream position and significantly modify the near wake structures and the pressure distributions around the wavy cylinder. Moreover, the simulations in laminar flow condition were also performed to investigate the effect of Reynolds number on force reduction control.

  10. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    Science.gov (United States)

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  11. Rotational swashplate pulse continuously variable transmission based on helical gear axial meshing transmission

    Science.gov (United States)

    Sun, Jiandong; Fu, Wenyu; Lei, Hong; Tian, E.; Liu, Ziping

    2012-11-01

    The current research on pulse continuously variable transmission(CVT) is mainly focused on reducing the pulse degree and making pulse degrees a constant value. Current research mainly confined to find out new design parameters by using the method of optimization, and reduce the pulse degree of pulse CVT and its range of variation. But the fact is that the reduction of the pulse degree is not significant. This article presents a new structure of mechanical pulse CVT—the rotational swashplate pulse CVT with driven by helical gear axial meshing. This transmission is simple and compact in structure and low in pulsatile rate (it adopts 6 guide rods), and the pulsatile degree is irrelevant to the transmission ratio. Theoretically, pulsatile rate could be reduced to zero if appropriate curved surface of the swashplate is used. Compared with the connecting rod pulse CVT, the present structure uses helical gear mechanism as transmission part and it avoids unbalanced inertial force in the former model. This paper analyzes the principle of driving of this transmission, presents its mechanical structure, and discusses its motion characteristics. Experimental prototype of this type of CVT has been manufactured. Tests for the transmission efficiency(when the rotational speed of the output shaft is the maximum) and the angular velocity of the output shaft have been carried out, and data have been analyzed. The experimental results show that the speed of the output shaft for the experimental prototype is slightly lower than the theoretical value, and the transmission efficiency of the experimental prototype is about 70%. The pulse degree of the CVT discussed in this paper is less than the existing pulse CVT of other types, and it is irrelevant to the transmission ratio of the CVT. The research provides the new idea to the CVT study.

  12. The precision of respiratory-gated delivery of synchrotron-based pulsed beam proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong Lei; Balter, Peter; Mohan, Radhe [Department of Radiation Physics, Unit 94, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Umezawa, Masumi, E-mail: ytsunash@mdanderson.or [Accelerator System Group Medical System Project, Hitachi, Ltd, Energy and Environmental Systems Laboratory, 2-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken 319-1221 (Japan)

    2010-12-21

    A synchrotron-based proton therapy system operates in a low repetition rate pulsed beam delivery mode. Unlike cyclotron-based beam delivery, there is no guarantee that a synchrotron beam can be delivered effectively or precisely under the respiratory-gated mode. To evaluate the performance of gated synchrotron treatment, we simulated proton beam delivery in the synchrotron-based respiratory-gated mode using realistic patient breathing signals. Parameters used in the simulation were respiratory motion traces (70 traces from 24 patients), respiratory gate levels (10%, 20% and 30% duty cycles at the exhalation phase) and synchrotron magnet excitation cycles (T{sub cyc}) (fixed T{sub cyc} mode: 2.7, 3.0-6.0 s and each patient breathing cycle, and variable T{sub cyc} mode). The simulations were computed according to the breathing trace in which the proton beams were delivered. In the shorter fixed T{sub cyc} (<4 s), most of the proton beams were delivered uniformly to the target during the entire expiration phase of the respiratory cycle. In the longer fixed T{sub cyc} (>4 s) and the variable T{sub cyc} mode, the proton beams were not consistently delivered during the end-expiration phase of the respiratory cycle. However we found that the longer and variable T{sub cyc} operation modes delivered proton beams more precisely during irregular breathing.

  13. A stable pulsed picosecond GSGG:Nd(3+) laser with a resonator based on the Sagnac interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, V.I.; Surovtsev, D.V.; Tikhonov, E.A.; Iatskiv, D.IA. (Institut Fiziki, Kiev (Ukrainian SSR))

    1990-03-01

    A study is made of a passively mode-locked laser based on chromium-doped gadolinium-scandium-gallium garnet operating in the ultrashort-pulse emission mode. Statistical expressions are presented which relate the width, energy, and repeatability of the generated pulses as a function of the position of a cell with a saturable absorbent (dye 3274 in ethanol) in the interferometer and its initial transmission. A new resonator scheme with asymmetric positioning of the active element with the interferometer ring is described which makes it possible to achieve stable generation at the lower transverse mode without additional spatial selection. 8 refs.

  14. Novel power quality indices based on wavelet packet transform for non-stationary sinusoidal and non-sinusoidal disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, Walid G. [University of New Brunswick, Fredericton, New Brunswick (Canada); El-Hawary, M.E. [Dalhousie University, Halifax, Nova Scotia (Canada)

    2010-07-15

    High power quality (PQ) level represents one of the main objectives towards smart grid. The currently used PQIs that are a measure of the PQ level are defined under the umbrella of the Fourier foundation that produces unrealistic results in case of non-stationary PQ disturbances. In order to accurately measure those indices, wavelet packet transform (WPT) is used in this paper to reformulate the recommended PQIs and hence benefiting from the WPT capabilities in accurately analyzing non-stationary waveforms and providing a uniform time-frequency sub-bands leading to reduced size of the data to be processed which is a necessity to facilitate the implementation of smart grid. Numerical examples' results considering non-stationary waveforms prove the suitability of the WPT for PQIs measurement; also the results indicate that Daubechies 10 could be the best candidate wavelet basis function that could provide acceptable accuracy while requiring less number of wavelet coefficients and hence reducing the data size. Moreover, a new time-frequency overall and node crest factors are introduced in this paper. The new node crest factor is able to determine the node or the sub-band that is responsible for the largest impact which could not be achieved using traditional approaches. (author)

  15. A compact diode-pumped pulsed Nd:YAG slab laser based on a master oscillator power amplifier configuration

    Science.gov (United States)

    Maleki, A.; Kavosh Tehrani, M.; Saghafifar, H.; Moghtader Dindarlu, M. H.; Ebadian, H.

    2016-02-01

    In this paper, the design and construction of a pulsed Nd:YAG laser is described. The structure of this laser is based on a master oscillator power amplifier system. A master oscillator is an electro-optical Q-switched Nd:YAG rod laser. Face-pumping is used for the excitation of the slab structure, and a double-pass method is designed for the amplification stages. Two Nd:YAG zigzag slabs are utilized as power amplification stages in this laser. The laser diodes are stacked in a compact configuration and are used for rod and slabs pumping. The total pump energy in the amplifier stages is 3200 mJ at 808 nm. The output pulse energy achieved at 1064 nm is about 850 mJ of 10 ns pulse duration corresponding to 26.5% optical-to-optical conversion efficiency. Moreover, this laser can generate pulse energies around 430 mJ at 532 nm. The dependence of the output energy of MOPA and second harmonic generation operations on different pulse repetition rates (PRRs) from 1 to 100 Hz has been investigated. Experimental results show that the maximum fluctuations of the output energies are about 2.5 and 4% for 1064 and 532 nm, respectively.

  16. High voltage bulk GaN-based photoconductive switches for pulsed power applications

    Science.gov (United States)

    Leach, J. H.; Metzger, R.; Preble, E. A.; Evans, K. R.

    2013-03-01

    Switches are at the heart of all pulsed power and directed energy systems, which find utility in a number of applications. At present, those applications requiring the highest power levels tend to employ spark-gap switches, but these suffer from relatively high delay-times (~10-8 sec), significant jitter (variation in delay time), and large size. That said, optically-triggered GaN-based photoconductive semiconductor switches (PCSS) offer a suitably small form factor and are a cost-effective, versatile solution in which delay times and jitter can be extremely short. Furthermore, the optical control of the switch means that they are electrically isolated from the environment and from any other system circuitry, making them immune from electrical noise, eliminating the potential for inadvertent switch triggering. Our recent work shows great promise to extend high-voltage GaN-based extrinsic PCSS state-of-the-art performance in terms of subnanosecond response times, low on-resistance, high current carrying capacity and high blocking voltages. We discuss our recent results in this work.

  17. 1 K cryostat with sub-millikelvin stability based on a pulse-tube cryocooler

    Science.gov (United States)

    DeMann, A.; Mueller, Sara; Field, S. B.

    2016-01-01

    A cryogenic system has been designed and tested that reaches a temperature below 1.1 K, with an rms temperature stability of 25 μ K. In this system a commercial pulse-tube cryocooler is used to liquify helium gas supplied from an external source. This liquid helium enters a 1 K pot through a large-impedance capillary tube, similar to a conventional 1 K system operated from a liquid helium bath. Unlike a conventional system, however, the molar flow rate of the system can be varied by changing the pressure of the incoming helium. This allows for a trade-off between helium usage and cooling power, which has a maximum value of 27 mW. The measured cooling power and fraction of helium exiting the capillary as liquid agree well with predictions based on an isenthalpic model of helium flow through the capillary. The system is simple to use and inexpensive to operate: The system can be cooled to base temperature in about 3 h and, with a flow rate giving a cooling power of 13 mW, the helium cost is around 6 per day.

  18. Perfluorobutyric Acid and its Monohydrate: a Chirped Pulse and Cavity Based Fourier Transform Microwave Spectroscopic Study

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito, III; Lin, Wei; Jaeger, Wolfgang; Xu, Yunjie

    2014-06-01

    Perfluorobutyric acid (PFBA) is highly soluble in water and is a molecule of environmental importance. Rotational spectra of PFBA and its monohydrate were studied using a broadband chirped pulse and a narrow band cavity based Fourier transform microwave spectrometers and high level ab initio calculations. Extensive conformational search was performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted for PFBA and its monohydrate, respectively. One set of rotational transitions of PFBA and its mono-hydrate in each case was observed and assigned. Based on the broadband spectra obtained, one can confidently conclude that only one dominate conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed one to identify the most stable monohydrate conformation which takes on the insertion hydrogen-bonding topology. Comparison to the shorter chain analogues, i.e. trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, was made to elucidate the general trend in their conformational preference and binding topologies.

  19. Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based fourier transform microwave spectroscopic study.

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito; Lin, Wei; Jäger, Wolfgang; Xu, Yunjie

    2014-05-12

    Rotational spectra of perfluorobutyric acid (PFBA) and its monohydrate were studied with a broadband chirped pulse and a narrow-band cavity based Fourier transform microwave spectrometer, and high-level ab initio calculations. Extensive conformational searches were performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted to exist for PFBA and its monohydrate, respectively. One set of rotational transitions was observed and assigned for each, PFBA and its monohydrate. Based on the measured broadband spectra, we confidently conclude that only one dominant conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined by using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed us to identify the most stable monohydrate conformation, which takes on an insertion hydrogen-bonding topology. Comparisons to the shorter chain analogues, that is, trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, are made to elucidate the general trend in their conformational preference and binding topologies.

  20. Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano

    2016-05-01

    Full Text Available Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM to iteratively estimate amplitude- and frequency-modulated (AM–FM sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.

  1. Femtosecond double-pulse fabrication of hierarchical nanostructures based on electron dynamics control for high surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhang, Ning; Li, Xin; Jiang, Lan; Shi, Xuesong; Li, Cong; Lu, Yongfeng

    2013-09-15

    This Letter presents a simple, efficient approach for high surface-enhanced Raman scattering by one-step controllable fabrication of hierarchical structures (nanoparticles+subwavelength ripples) on silicon substrates in silver nitrate solutions using femtosecond double pulses based on nanoscale electron dynamics control. As the delays of the double pulses increase from 0 fs to 1 ps, the hierarchical structures can be controlled with (1) nanoparticles--the number of nanoparticles in the range of 40-100 nm reaches the maximum at 800 fs and (2) ripples--the subwavelength ripples become intermittent with decreased ablation depths. The redistributed nanoparticles and the modified ripple structures contribute to the maximum enhancement factor of 2.2×10(8) (measured by 10(-6)  M rhodamine 6G solution) at the pulse delay of 800 fs.

  2. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    Science.gov (United States)

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  3. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    influenced considerably, the area-integrated pressure was only slightly affected. Normalized RMS levels indicate that base pressure fluctuations were significantly reduced with the addition of the splitter plates. Power-spectral-density estimates revealed a spectral broadening of fluctuating energy for the 1/2 cylinder configuration and a bimodal distribution for the 1/3 and 1/4 cylinder configurations. It was concluded that the recirculation region is not the most sensitive location to apply flow control; rather, the shear layer may be a more influential site for implementing flow control methodologies. For active flow control, pulsed plasma-driven fluidic actuators were investigated. Initially, the performance of two plasma actuator designs was characterized to determine their potential as supersonic flow control devices. For the first actuator considered, the pulsed plasma jet, electro-thermal heating from an electric discharge heats and pressurizes gas in a small cavity which is exhausted through a circular orifice forming a synthetic jet. Depending on the electrical energy addition, peak jet velocities ranged between 130 to nearly 500 m/s when exhausted to quiescent, ambient conditions. The second plasma actuator investigated is the localized arc filament plasma actuator (LAFPA), which created fluidic perturbations through the rapid, local thermal heating, generated from an electric arc discharge between two electrodes within a shallow open cavity. Electrical and emission properties of the LAFPA were first documented as a function of pressure in a quiescent, no-flow environment. Rotational and vibrational temperatures from N2 spectra were obtained for select plasma conditions and ambient pressures. Results further validate that the assumption of optically thin conditions for these electric arc plasmas is not necessary valid, even at low ambient pressure. Breakdown voltage, sustained plasma voltage, power, and energy per pulse were demonstrated to decrease with

  4. Dynamic changes of capillarization and peri-sinusoid fibrosis in alcoholic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Guang-Fu Xu; Xin-Yue Wang; Gui-Ling Ge; Peng-Tao Li; Xu Jia; De-Lu Tian; Liang-Duo Jiang; Jin-Xiang Yang

    2004-01-01

    AIM: To investigate the dynamic changes of capillarization and peri-sinusoid fibrosis in an alcoholic liver disease model induced by a new method.METHODS: Male SD rats were randomly divided into 6 groups, namely normal, 4 d, 2 w, 4 w, 9 w and 11 w groups.The animals were fed with a mixture of alcohol for designated days and then decollated, and their livers were harvested to examine the pathological changes of hepatocytes, hepatic stellate cells, sinusoidal endothelial cells, sinusoid, peri-sinusoid. The generation of three kinds of extra cellular matrix was also observed.RESULTS: The injury of hepatocytes became severer as modeling going on. Under electronic microscope, fatty vesicles and swollen mitochondria in hepatocytes, activated hepatic stellate cells with fibrils could been seen near or around it. Fenestrae of sinusoidal endothelial cells were decreased or disappeared, sinusoidal basement was formed.Under light microscopy typical peri-sinusoid fibrosis, gridding-like fibrosis, broaden portal areas, hepatocyte's fatty and balloon denaturation, iron sediment, dot necrosis,congregated lymphatic cells and leukocytes were observed.Type Ⅰ collagen showed an increasing trend as modeling going on, slightly recovered when modeling stopped for 2 weeks. Meanwhile, type Ⅳ collagen decreased rapidly when modeling began and recovered after modeling stopped for 2 weeks. Laminin increased as soon as modeling began and did not recover when modeling stopped for 2 weeks.CONCLUSION: The pathological changes of the model were similar to that of human ALD, but mild in degree. It had typical peri-sinusoid fibrosis; however, capillarization seemed to be instable. It may be related with the reduction of type Ⅳ collagen in the basement of sinusoid during modeling.

  5. Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong, Lei; Bues, Martin; Balter, Peter; Smith, Alfred; Mohan, Radhe [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd., Unit 94, Houston, TX 77030 (United States); Umezawa, Masumi [Hitachi America Ltd, PTC-H Construction Site, 7707 Fannin Street, Suite 203, Houston, TX 77054 (United States); Sakae, Takeji [Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0801 (Japan)], E-mail: svedam@mdanderson.org

    2008-04-07

    Significant differences exist in respiratory-gated proton beam delivery with a synchrotron-based accelerator system when compared to photon therapy with a conventional linear accelerator. Delivery of protons with a synchrotron accelerator is governed by a magnet excitation cycle pattern. Optimal synchronization of the magnet excitation cycle pattern with the respiratory motion pattern is critical to the efficiency of respiratory-gated proton delivery. There has been little systematic analysis to optimize the accelerator's operational parameters to improve gated treatment efficiency. The goal of this study was to estimate the overall efficiency of respiratory-gated synchrotron-based proton irradiation through realistic simulation. Using 62 respiratory motion traces from 38 patients, we simulated respiratory gating for duty cycles of 30%, 20% and 10% around peak exhalation for various fixed and variable magnet excitation patterns. In each case, the time required to deliver 100 monitor units in both non-gated and gated irradiation scenarios was determined. Based on results from this study, the minimum time required to deliver 100 MU was 1.1 min for non-gated irradiation. For respiratory-gated delivery at a 30% duty cycle around peak exhalation, corresponding average delivery times were typically three times longer with a fixed magnet excitation cycle pattern. However, when a variable excitation cycle was allowed in synchrony with the patient's respiratory cycle, the treatment time only doubled. Thus, respiratory-gated delivery of synchrotron-based pulsed proton irradiation is feasible and more efficient when a variable magnet excitation cycle pattern is used.

  6. Research on Modulation Strategies Based on Multilevel Inverter Universal Hybrid Topology

    Institute of Scientific and Technical Information of China (English)

    Zhou Jinghua; Su Yanmin; Shen Chuanwen; Zhang Lin

    2005-01-01

    Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this universal topology, several new hybrid topologies were constructed. Also, based on conventional modulation strategies- multi-carrier SPWM (Sinusoidal Pulse Width Modulation), hybrid modulation strategies were introduced corresponding to hybrid topologies, and a multilevel SVPWM (Space Vector Pulse Width Modulation) technique based on phase-shifted theory was naturally produced. Simulation and experiment results prove that hybrid topologies and corresponding modulation strategies are valid, which lay a foundation for practical application of hybrid multilevel inverter topologies.

  7. An automated system for measuring parameters of nematode sinusoidal movement

    Directory of Open Access Journals (Sweden)

    Stirbl Robert C

    2005-02-01

    Full Text Available Abstract Background Nematode sinusoidal movement has been used as a phenotype in many studies of C. elegans development, behavior and physiology. A thorough understanding of the ways in which genes control these aspects of biology depends, in part, on the accuracy of phenotypic analysis. While worms that move poorly are relatively easy to describe, description of hyperactive movement and movement modulation presents more of a challenge. An enhanced capability to analyze all the complexities of nematode movement will thus help our understanding of how genes control behavior. Results We have developed a user-friendly system to analyze nematode movement in an automated and quantitative manner. In this system nematodes are automatically recognized and a computer-controlled microscope stage ensures that the nematode is kept within the camera field of view while video images from the camera are stored on videotape. In a second step, the images from the videotapes are processed to recognize the worm and to extract its changing position and posture over time. From this information, a variety of movement parameters are calculated. These parameters include the velocity of the worm's centroid, the velocity of the worm along its track, the extent and frequency of body bending, the amplitude and wavelength of the sinusoidal movement, and the propagation of the contraction wave along the body. The length of the worm is also determined and used to normalize the amplitude and wavelength measurements. To demonstrate the utility of this system, we report here a comparison of movement parameters for a small set of mutants affecting the Go/Gq mediated signaling network that controls acetylcholine release at the neuromuscular junction. The system allows comparison of distinct genotypes that affect movement similarly (activation of Gq-alpha versus loss of Go-alpha function, as well as of different mutant alleles at a single locus (null and dominant negative alleles

  8. A Fault Feature Extraction Method for Rolling Bearing Based on Pulse Adaptive Time-Frequency Transform

    Directory of Open Access Journals (Sweden)

    Jinbao Yao

    2016-01-01

    Full Text Available Shock pulse method is a widely used technique for condition monitoring of rolling bearing. However, it may cause erroneous diagnosis in the presence of strong background noise or other shock sources. Aiming at overcoming the shortcoming, a pulse adaptive time-frequency transform method is proposed to extract the fault features of the damaged rolling bearing. The method arranges the rolling bearing shock pulses extracted by shock pulse method in the order of time and takes the reciprocal of the time interval between the pulse at any moment and the other pulse as all instantaneous frequency components in the moment. And then it visually displays the changing rule of each instantaneous frequency after plane transformation of the instantaneous frequency components, realizes the time-frequency transform of shock pulse sequence through time-frequency domain amplitude relevancy processing, and highlights the fault feature frequencies by effective instantaneous frequency extraction, so as to extract the fault features of the damaged rolling bearing. The results of simulation and application show that the proposed method can suppress the noises well, highlight the fault feature frequencies, and avoid erroneous diagnosis, so it is an effective fault feature extraction method for the rolling bearing with high time-frequency resolution.

  9. STRUCTURAL 3D MONITORING USING A NEW SINUSOIDAL FITTING ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    I. Detchev

    2016-06-01

    Full Text Available Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate – a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  10. Structural 3d Monitoring Using a New Sinusoidal Fitting Adjustment

    Science.gov (United States)

    Detchev, I.; Habib, A.; Lichti, D.; El-Badry, M.

    2016-06-01

    Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate - a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  11. Feedforward and Feedback Optimal Control for Linear Systems with Sinusoidal Disturbances

    Institute of Scientific and Technical Information of China (English)

    唐功友

    2001-01-01

    The linear systems affected by additive external sinusoidal disturbances is studied. he problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear timeinvariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.

  12. Analysis of Beaulieu Pulse Shaping Family Based FIR Filter for WCDMA

    CERN Document Server

    Kang, A S

    2010-01-01

    The analysis and simulation of transmit and receive pulse shaping filter is an important aspect of digital wireless communication since it has a direct effect on error probabilities. Pulse shaping for wireless communication over time as well as frequency selective channels is the need of hour for 3G and 4G systems. The pulse shaping filter is a useful means to shape the signal spectrum and avoid interferences. Basically digital filters are used to modify the characteristics of signal in time and frequency domain and have been recognized as primary digital signal processing operations.

  13. Graphene-based Q-switched pulsed fiber laser in a linear configuration

    Institute of Scientific and Technical Information of China (English)

    Y. K. Yap; Richard M. De La Rue; C. H. Pua; S. W. Harun; H. Ahmad

    2012-01-01

    A pulsed laser system is realized with graphene employed as a Q-switch.The graphene is exfoliated from its solution using an optical deposition and the optical tweezer effect.A fiber ferrule that already has the graphene deposited on it is inserted into an erbium-ytterbium laser (EYL) system with linear cavity configuration.We successfully demonstrate a pulsed EYL with a pulse duration of approximately 5.9 μs and a repetition rate of 20.0 kHz.

  14. Breast mass segmentation in digital mammography based on pulse coupled neural network and level set method

    Science.gov (United States)

    Xie, Weiying; Ma, Yide; Li, Yunsong

    2015-05-01

    A novel approach to mammographic image segmentation, termed as PCNN-based level set algorithm, is presented in this paper. Just as its name implies, a method based on pulse coupled neural network (PCNN) in conjunction with the variational level set method for medical image segmentation. To date, little work has been done on detecting the initial zero level set contours based on PCNN algorithm for latterly level set evolution. When all the pixels of the input image are fired by PCNN, the small pixel value will be a much more refined segmentation. In mammographic image, the breast tumor presents big pixel value. Additionally, the mammographic image with predominantly dark region, so that we firstly obtain the negative of mammographic image with predominantly dark region except the breast tumor before all the pixels of an input image are fired by PCNN. Therefore, in here, PCNN algorithm is employed to achieve mammary-specific, initial mass contour detection. After that, the initial contours are all extracted. We define the extracted contours as the initial zero level set contours for automatic mass segmentation by variational level set in mammographic image analysis. What's more, a new proposed algorithm improves external energy of variational level set method in terms of mammographic images in low contrast. In accordance with the gray scale of mass region in mammographic image is higher than the region surrounded, so the Laplace operator is used to modify external energy, which could make the bright spot becoming much brighter than the surrounded pixels in the image. A preliminary evaluation of the proposed method performs on a known public database namely MIAS, rather than synthetic images. The experimental results demonstrate that our proposed approach can potentially obtain better masses detection results in terms of sensitivity and specificity. Ultimately, this algorithm could lead to increase both sensitivity and specificity of the physicians' interpretation of

  15. Effect of intense pulsed ion beams irradiation on the oxidation behavior of gamma sup ' -based superalloy

    CERN Document Server

    Zhang Hong Tao; Han Bao Xi; Yan Sha; Zhao Wei Jiang; Han Ya Fan

    2002-01-01

    Intense pulsed ion beams (IPIB) with three different power densities (25, 37.5 and 50 MW/cm sup 2) are employed for the surface treatment of gamma sup ' -based superalloy IC6. The influence of IPIB irradiation on the oxidation behavior of IC6 at 1100 degree sign C for up to 100 h is investigated. It is found that the phase states of IC6 are dramatically changed after IPIB irradiation and the oxidation behavior of the irradiated coupons depends greatly on the power density of IPIB. IPIB irradiation with a power density of 25 or 37.5 MW/cm sup 2 significantly reduces the oxidation rate with respect to the unirradiated coupon. The improvement of the oxidation resistance can be attributed to a change in the oxidation products from a three-layered scale of Ni-rich oxides for the unirradiated coupon to a two-layered scale of Mo- and Al-rich oxides. In contrast, IPIB irradiation with a power density of 50 MW/cm sup 2 proves to be detrimental, causing a higher oxidation rate. The oxidation mechanism for IPIB irradiat...

  16. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator.

    Science.gov (United States)

    Ayvali, Elif; Desai, Jaydev P

    2014-04-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  17. A high-temperature superconducting millimeter wave detecting system based on pulse tube cryocooler

    Science.gov (United States)

    Chen, Jian; Wu, Peiheng; Nakajima, Kensuke; Yamashita, Tsutomu

    2004-10-01

    A millimeter (mm) wave broadband video detecting system using high temperature superconducting (HTS) junction and compact pulse tube cryocooler (PTC) has been studied. The lowest attainable temperature of the PTC is 42K and the operating temperature (T) can be adjusted by changing the pressure difference in the compressor. By measuring the linewidth of the Josephson oscillation as well as the dynamic range of the Josephson detector, it is found that the PTC has no excess noise compared with other kinds of cryostats such as liquid helium cryostats, and is very suitable for the applications in the mm wave detecting system. Furthermore, to improve the sensitivity of the system, the coupling efficiency of the system has been studied in detail. It is found that the coupling efficiency increases with the increase of RN linearly, and is better than 1% for RN of 1.7 Ohm. A sensitivity of about 318V/W has been obtained for the system based on the PTC and a junction with RN=1.7 Ohm and ICRN =1mV.

  18. Operating modes of a hydrogen ion source based on a hollow-cathode pulsed Penning discharge

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. M. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk (Russian Federation); Shandrikov, M. V., E-mail: shandrikov@opee.hcei.tsc.ru; Vizir, A. V. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation)

    2016-02-15

    An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H{sub 2}), the ion beam contained three species: H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. For all experimental conditions, the fraction of H{sub 2}{sup +} ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H{sup +} and H{sub 3}{sup +} depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H{sup +} fraction in ion beam. The maximum fraction of H{sup +} reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H{sub 3}{sup +} fraction in the beam. At optimum parameters, the fraction of H{sub 3}{sup +} ions reached 60% of the total ion beam current.

  19. Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.

    Science.gov (United States)

    Qu, Hong; Yi, Zhang; Yang, Simon X

    2013-06-01

    Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach.

  20. A novel defect depth measurement method based on Nonlinear System Identification for pulsed thermographic inspection

    Science.gov (United States)

    Zhao, Yifan; Mehnen, Jörn; Sirikham, Adisorn; Roy, Rajkumar

    2017-02-01

    This paper introduces a new method to improve the reliability and confidence level of defect depth measurement based on pulsed thermographic inspection by addressing the over-fitting problem. Different with existing methods using a fixed model structure for all pixels, the proposed method adaptively detects the optimal model structure for each pixel thus targeting to achieve better model fitting while using less model terms. Results from numerical simulations and real experiments suggest that (a) the new method is able to measure defect depth more accurately without a pre-set model structure (error is usually within 1 % when SNR>32 dB) in comparison with existing methods, (b) the number of model terms should be 8 for signals with SNR∈ [ 30 dB , 40 dB ] , 8-10 for SNR>40 dB and 5-8 for SNR<30 dB, and (c) a data length with at least 100 data points and 2-3 times of the characteristic time usually produces the best results.

  1. A NOVEL ARTIFICIAL HYDROCARBON NETWORKS BASED SPACE VECTOR PULSE WIDTH MODULATION CONTROLLER FOR INDUCTION MOTORS

    Directory of Open Access Journals (Sweden)

    Hiram Ponce

    2014-01-01

    Full Text Available Most of machine-operated industrial processes implement electric machinery as their work sources, implying the necessary improvement of control techniques and power electronics drivers. Many years have passed since the control conflicts related to induction motors have been overcome through torque-flux control techniques so their advantages over direct current motors have made them to be the most common electric actuator found behind industrial automation. In fact, induction motors can be easily operated using a Direct Torque Control (DTC. Since, it is based on a hysteresis control of the torque and flux errors, its performance is characterized by a quick reaching of the set point, but also a high ripple on both torque and flux. In order to enhance that technique, this study introduces a novel hybrid fuzzy controller with artificial hydrocarbon networks (FMC that is used in a Space Vector Pulse Width Modulation (SVPWM technique, so-called FMC-SVPWM-DTC. In fact, this study describes the proposal and its design method. Experimental results over a velocity-torque cascade topology proved that the proposed FMC-SVPWM-DTC responses highly effective almost suppressing rippling in torque and flux. It also performed a faster speed response than in a conventional DTC. In that sense, the proposed FMC-SVPWM-DTC can be used an alternative approach for controlling induction motors.

  2. Scintillation-only Based Pulse Shape Discrimination for Nuclear and Electron Recoils in Liquid Xenon

    CERN Document Server

    Ueshima, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Koshio, Y; Liu, J; Martens, K; Moriyama, S; Nakahata, M; Nishiie, H; Ogawa, H; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Yamashita, M; Fujii, K; Murayama, I; Nakamura, S; Otsuka, K; Takeuchi, Y; Fukuda, Y; Nishijima, K; Motoki, D; Itow, Y; Masuda, K; Nishitani, Y; Uchida, H; Tasaka, S; Ohsumi, H; Kim, Y D; Kim, Y H; Lee, K B; Lee, M K

    2011-01-01

    In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7\\pm1.1(stat)\\pm1.2 0.6(sys)\\times10-2 at energies between 4.8 and 7.2 keVee and to 7.7\\pm2.8(stat)\\pm2.5 2.8(sys)\\times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4\\pm0.2(stat)\\pm0.3 0.2(sys)\\times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the ...

  3. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-988, Mianyang, China, 621900 (China); Bin, L [School of Computer and Communication Engineering, Southwest Jiaotong University, Chengdu. China, 610031 (China)], E-mail: sujingqin@tom.com

    2008-05-15

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  4. Single photon detection based devices and techniques for pulsed time-of-flight applications

    OpenAIRE

    Hallman, L. (Lauri)

    2015-01-01

    Abstract In this thesis, a new type of laser diode transmitter using enhanced gain-switching suitable for use with a single photon avalanche diode (SPAD) detector was developed and tested in the pulsed time-of-flight laser range finding (lidar) application. Several laser diode versions were tested and the driving electronics were developed. The driving electronics improvements enabled a pulsing frequency of up to 1 MHz, while the maximum laser output power was about 5–40 W depending on...

  5. Design and performance analysis of transmission line-based nanosecond pulse multiplier

    Indian Academy of Sciences (India)

    Rishi Verma; A Shyam; Kunal G Shah

    2006-10-01

    Conventionally, Marx generators are used for the production of short duration, high voltage pulses but since many discharge gap switches are utilized for stepping up the voltage, there are many disadvantages. Here, an alternative and much simpler technique for the multiplication of nanosecond high voltage pulses has been presented in which multiplication takes place by switching single spark gap providing voltage gain of $‘nxV’$ where is the subsequent number of stages. Stepped up high voltage pulse with fixed voltage gain of defined shape with fast rise time and good flat top is produced without using additional pulse-forming network. Its operation has been made repetitive by switching single spark gap. Multipurpose use, low cost, small size, light weight (weighing less than 50 kg) and portability are the additional benefits of the system. The reported nanosecond pulser has been made by cascading three stages of Blumlein. To cross check its performance the parasitic impedance of the system has been evaluated to realize its adverse effect on the voltage gain and pulse shape. Also its operation has been simulated by PSPICE circuit simulator program and good agreement has been obtained between simulated and experimental results. Applications of this pulse generator include X-ray generation, breakdown tests, ion implantation, streamer discharge studies and ultra wideband generation, among others.

  6. Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity.

    Science.gov (United States)

    Zhang, Haiyang; Brunel, Marc; Romanelli, Marco; Vallet, Marc

    2016-04-01

    This paper investigates the radio frequency (RF) up-conversion properties of a frequency-shifting external cavity on a laser beam. We consider an infrared passively Q-switched pulsed laser whose intensity modulation results from the multiple round-trips in the external cavity, which contains a frequency shifter. The output beam undergoes optical second-harmonic generation necessary to reach the green wavelength. We model the pulse train using a rate-equation model to simulate the laser pulses, together with a time-delayed interference calculation taking both the diffraction efficiency and the Gaussian beam propagation into account. The predictions are verified experimentally using a diode-pumped Nd:YAG laser passively Q-switched by Cr4+:YAG whose pulse train makes multiple round-trips in a mode-matched external cavity containing an acousto-optic frequency shifter driven at 85 MHz. Second-harmonic generation is realized in a KTP crystal, yielding RF-modulated pulses at 532 nm with a modulation contrast of almost 100%. RF harmonics up to the 6th order (1.020 GHz) are observed in the green output pulses. Such a RF-modulated green laser may find applications in underwater detection and ranging.

  7. A transgenic model for conditional induction and rescue of portal hypertension reveals a role of VEGF-mediated regulation of sinusoidal fenestrations.

    Directory of Open Access Journals (Sweden)

    Dalit May

    Full Text Available Portal hypertension (PH is a common complication and a leading cause of death in patients with chronic liver diseases. PH is underlined by structural and functional derangement of liver sinusoid vessels and its fenestrated endothelium. Because in most clinical settings PH is accompanied by parenchymal injury, it has been difficult to determine the precise role of microvascular perturbations in causing PH. Reasoning that Vascular Endothelial Growth Factor (VEGF is required to maintain functional integrity of the hepatic microcirculation, we developed a transgenic mouse system for a liver-specific-, reversible VEGF inhibition. The system is based on conditional induction and de-induction of a VEGF decoy receptor that sequesters VEGF and preclude signaling. VEGF blockade results in sinusoidal endothelial cells (SECs fenestrations closure and in accumulation and transformation of the normally quiescent hepatic stellate cells, i.e. provoking the two processes underlying sinusoidal capillarization. Importantly, sinusoidal capillarization was sufficient to cause PH and its typical sequela, ascites, splenomegaly and venous collateralization without inflicting parenchymal damage or fibrosis. Remarkably, these dramatic phenotypes were fully reversed within few days from lifting-off VEGF blockade and resultant re-opening of SECs' fenestrations. This study not only uncovered an indispensible role for VEGF in maintaining structure and function of mature SECs, but also highlights the vasculo-centric nature of PH pathogenesis. Unprecedented ability to rescue PH and its secondary manifestations via manipulating a single vascular factor may also be harnessed for examining the potential utility of de-capillarization treatment modalities.

  8. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement. The usefulness of the interferometer is demonstrated by simulations and experiments.

  9. Optimization for sinusoidal profiles in surface relief gratings recorded on photoresist

    Indian Academy of Sciences (India)

    Sanjiva Kumar; Amrita Debnath; R B Tokas; K Divakar Rao; D V Udupa; N K Sahoo

    2014-02-01

    The formations of sinusoidal surface relief structures recorded in positive photoresist (Allresist AR-P 3120) have been studied and optimized for different recording parameters of gratings with spatial frequency of∼1200 grooves/mm.Astable sinusoidal pattern generated using a two-beam laser interferometric technique was recorded in thin films of positive photoresist deposited on glass substrates. Several gratings were generated by varying the exposure time of interference pattern and time of chemical development of exposed media. Time duration of exposure for 90 s and chemical development for 15 s were observed to be optimum for the translation of the sinusoidal interference pattern into nearly-sinusoidal profiled grooves in the gratings for a developer AR-300-26 of dilution of 2:1 (developer:de-ionized water).

  10. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    Caini Zhang; Xiangzhao Wang

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement.The usefulness of the interferometer is demonstrated by simulations and experiments.

  11. 基于ATmega16实现手摇脉冲发生器输出脉冲控制%Realization of output-pulse control using manual pulse generator based on ATmega16

    Institute of Scientific and Technical Information of China (English)

    范剑

    2012-01-01

    Based on ATmegal6 microchip, a digital manual pulse generator device is developed and presented for solving the existed problems such as missing-count of generated pulse, output lag of motor pulse and the motor vibration created by the discontinuous output pulse. A series of software realization methods were proposed such as "predicting the period of generated pulse", "follow up period detecting", as well as "compensation of output pulse control". Experiments show that output control signal was steady and the abovementioned problems were resolved with the digital manual pulse generator device while working in a selected high-multiplying condition.%针对数控系统手摇脉冲发生器模块的脉冲漏计、电动机脉冲输出滞后或因脉冲输出不连续导致电动机振动等现象,基于ATmega16单片机设计了手摇脉冲发生器控制模块,采用“预测脉冲发生周期”和“随动检测”、“补偿输出控制”的软件实现方法,实现了数控系统在手轮高倍率选择状态下的稳定输出控制.

  12. A feedback control system for real-time formant estimation. I--Static and dynamic analysis for sinusoidal input signals.

    Science.gov (United States)

    Zierhofer, C M; Hochmair, E S

    1993-09-01

    This paper presents a novel analog scheme suitable for the real-time estimation of formant frequencies. Formant tracking is based on a feedback technique which uses both the amplitude and phase characteristics of two stagger-tuned bandpass filters to give an improved dynamic behavior. The implementation of the system requires a small number of components, and is practical for low-power applications. An analysis of the static and dynamic behavior is given for sinusoidal input signals. The transient response is independent of the amplitude level of the input signal. The system is designed for second formant detection in a cochlear prosthesis system.

  13. Near-Nyquist optical pulse generation with fiber optical parametric amplification.

    Science.gov (United States)

    Vedadi, Armand; Shoaie, Mohammad Amin; Brès, Camille-Sophie

    2012-12-10

    A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

  14. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver.

    Science.gov (United States)

    Suematsu, M; Goda, N; Sano, T; Kashiwagi, S; Egawa, T; Shinoda, Y; Ishimura, Y

    1995-11-01

    Heme oxygenase is a heme-oxidizing enzyme which generates biliverdin and carbon monoxide (CO). The present study was designed to elucidate whether CO endogenously produced by this enzyme serves as an active vasorelaxant in the hepatic microcirculation. Microvasculature of the isolated perfused rat liver was visualized by dual-color digital microfluorography to alternately monitor sinusoidal lining and fat-storing Ito cells. In the control liver, the CO flux in the venous effluent ranged at 0.7 nmol/min per gram of liver. Administration of a heme oxygenase inhibitor zinc protoporphyrin IX (1 microM) eliminated the baseline CO generation, and the vascular resistance exhibited a 30% elevation concurrent with discrete patterns of constriction in sinusoids and reduction of the sinusoidal perfusion velocity. The major sites of the constriction corresponded to local sinusoidal segments colocalized with Ito cell which were identified by imaging their vitamin A autofluorescence. The increase in the vascular resistance and sinusoidal constriction were attenuated significantly by adding CO (1 microM) or a cGMP analogue 8-bromo-cGMP (1 microM) in the perfusate. From these findings, we propose that CO can function as an endogenous modulator of hepatic sinusoidal perfusion through a relaxing mechanism involving Ito cells.

  15. Ultrastructural changes in hepatic sinusoidal endothelial cells acutely exposed to colloidal iron.

    Science.gov (United States)

    Bassett, Mark L; Dahlstrom, Jane E; Taylor, Matthew C; Koina, Mark E; Maxwell, Lesley; Francis, Douglas; Jain, Sanjiv; McLean, Allan J

    2003-07-01

    Hepatic sinusoidal endothelial cells form an important interface between the vascular system, represented by the sinusoids, and the space of Disse that surrounds the hepatocyte microvilli. This study aimed to assess the light microscopic and ultrastructural effects of acute exposure of hepatic sinusoidal endothelial cells to colloidal iron by injection of rats with iron polymaltose. Eight minutes after a single intravenous injection of iron polymaltose sinusoidal endothelial cells showed defenestration, and thickening and layering as assessed by transmission electron microscopy. Kupffer cells and stellate cells appeared activated. These changes were not observed in control animals, experiments using equivalent doses of maltose, or experiments using colloidal carbon except for Kupffer cell activation due to colloidal carbon. No significant light microscopic changes were seen in study or control animals. The findings indicate that acute exposure to colloidal iron causes changes in hepatic sinusoidal endothelial cells, stellate cells and Kupffer cells. This may be the result of a direct toxic effect of iron or increased production of reactive oxygen species. These observations suggest a possible mechanism for defenestration of sinusoidal endothelial cells in ageing and in disease states.

  16. The matching pursuit approach based on the modulated Gaussian pulse for efficient guided-wave damage inspection

    Science.gov (United States)

    Hong, Jin-Chul; Sun, Kyung Ho; Kim, Yoon Young

    2005-08-01

    The success of the guided-wave damage inspection technology depends not only on the generation and measurement of desired waveforms but also on the signal processing of the measured waves, but less attention has been paid to the latter. This research aims to develop an efficient signal processing technique especially suitable for the current guided-wave technology. To achieve this objective, the use of a two-stage matching pursuit approach based on the Gabor dictionary is proposed. Instead of truncated sine pulses commonly used in waveguide inspection, Gabor pulses, the modulated Gaussian pulses, are chosen as the elastic energy carrier to facilitate the matching pursuit algorithm. To extract meaningful waves out of noisy signals, a two-stage matching pursuit strategy is developed, which consists of the following: rough approximations with a set of predetermined parameters characterizing the Gabor pulse, and fine adjustments of the parameters by optimization. The parameters estimated from measured longitudinal elastic waves can be then directly used to assess not only the location but also the size of a crack in a rod. For the estimation of the crack size, in particular, Love's theory is incorporated in the matching pursuit analysis. Several experiments were conducted to verify the validity of the proposed approach in damage assessment.

  17. High-energy, sub-30 fs near-IR pulses from a broadband optical parametric amplifier based on collinear interaction in BiB(3)O(6).

    Science.gov (United States)

    Ghotbi, M; Beutler, M; Petrov, V; Gaydardzhiev, A; Noack, F

    2009-03-01

    We report efficient generation of tunable femtosecond pulses in the near IR using a two stage, white-light seeded, collinear, femtosecond optical parametric amplifier (OPA). The OPA, based on BiB(3)O(6) crystal in both stages and pumped at 807 nm by a 1 kHz Ti:sapphire laser amplifier, provides sub-30 fs signal pulses after compression with energies exceeding 200 microJ, which corresponds to fivefold pulse shortening and approximately 30% internal conversion efficiency in the second stage considering 150 fs pump pulses with 1.5 mJ energy. The corresponding idler pulses with more than 100 microJ have sub-60 fs duration without compression. The first stage alone is capable of producing sub-20 fs pulses near 1400 nm at the microjoule level without using any compression.

  18. Effect of nanosecond pulse laser ablation on the surface morphology of Zr-based metallic glass

    Science.gov (United States)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-09-01

    In this study, we investigated the ripple patterns formation on the surface of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass using a nanosecond pulse laser ablation in air with a wavelength of 1064 nm. The strong thermal ablation phenomenon could be observed on vit1 BMG surface at laser energy of 200 mJ as a result of the adhibition of confining overlay. Many periodic ripples had formed on the edge of the ablated area at laser energy of 400 mJ because of the high intensity pulsed laser beam. The underlying mechanism of the periodic ripples formation could be explained by the K-H hydrodynamic instability theory. It had been shown that laser ablation with 600 mJ and 200 pulses results in the formation of many micro-cracks on the ablated area. Further analysis showed that the spatial occupation of the laser ablated area and the spacing between two adjacent ripples increased as the laser energy and the number of incident laser pulses increasing. The surface ripples feature on the edge of ablated area became more obvious with increasing laser pulses, but it was not correlated closely with the laser energies variation.

  19. Scintillation-only based pulse shape discrimination for nuclear and electron recoils in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, K., E-mail: ueshima@suketto.icrr.u-tokyo.ac.jp [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Abe, K.; Hiraide, K.; Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S.; Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takeda, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Yamashita, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2011-12-11

    In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches in the absence of an externally applied electric field. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background by a factor of 7.7{+-}1.1(stat){+-}{sub 0.6}{sup 1.2}(sys) Multiplication-Sign 10{sup -2} at energies between 4.8 and 7.2 keV{sub ee} and 7.7{+-}2.8(stat){+-}{sub 2.8}{sup 2.5}(sys) Multiplication-Sign 10{sup -3} at energies between 9.6 and 12 keV{sub ee} for a scintillation light yield of 20.9 photoelectrons/keV{sub ee}. Further study was done by masking some of that light to reduce this yield to 4.6 photoelectrons/keV{sub ee}. Under these conditions the same method results in an electron event reduction by a factor of 2.4{+-}0.2(stat){+-}{sub 0.2}{sup 0.3}(sys) Multiplication-Sign 10{sup -1} for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.

  20. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies.

    Science.gov (United States)

    Subramanian, Kaushik; Gabay, Ilan; Ferhanoğlu, Onur; Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, Adela

    2016-11-01

    We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber's low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm(2) scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm(2) on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe's energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation.

  1. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies

    Science.gov (United States)

    Subramanian, Kaushik; Gabay, Ilan; Ferhanoğlu, Onur; Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Tkaczyk, Tomasz; Ben-Yakar, Adela

    2016-01-01

    We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber’s low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe’s energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation. PMID:27896003

  2. Cloud and aerosol optics by polarized micro pulse Lidar and ground based measurements of zenith radiance

    Science.gov (United States)

    Delgadillo, Rodrigo

    Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.

  3. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study.

    Science.gov (United States)

    Datta, Abhishek; Dmochowski, Jacek P; Guleyupoglu, Berkan; Bikson, Marom; Fregni, Felipe

    2013-01-15

    The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS). In order to understand further the mechanisms of CES, we aimed to model CES using a magnetic resonance imaging (MRI)-derived finite element head model including cortical and also subcortical structures. Cortical electric field (current density) peak intensities and distributions were analyzed. We evaluated different electrode configurations of CES including in-ear and over-ear montages. Our results confirm that significant amounts of current pass the skull and reach cortical and subcortical structures. In addition, depending on the montage, induced currents at subcortical areas, such as midbrain, pons, thalamus and hypothalamus are of similar magnitude than that of cortical areas. Incremental variations of electrode position on the head surface also influence which cortical regions are modulated. The high-resolution modeling predictions suggest that details of electrode montage influence current flow through superficial and deep structures. Finally we present laptop based methods for tPCS dose design using dominant frequency and spherical models. These modeling predictions and tools are the first step to advance rational and optimized use of tPCS and CES.

  4. Black phosphorus based saturable absorber for Nd-ion doped pulsed solid state laser operation

    Science.gov (United States)

    Han, S.; Zhang, F.; Wang, M.; Wang, L.; Zhou, Y.; Wang, Z.; Xu, X.

    2016-12-01

    In this paper, the use of black phosphorus (BP) as a saturable absorber in a Q-switched Nd-ion doped solid state laser is presented. Few layers of BP in isopropyl alcohol are obtained by liquid phase exfoliation. The BP nanosheets with thicknesses in the range of 15-20 nm are deposited onto a K9 glass substrate. By inserting the BP nanosheets into a diode pumped Nd-ion doped solid state laser, stable Q-switched lasing at 0.9, 1.06, 1.3 μm is obtained. Using this approach, we have achieved a short pulse duration down to 219 ns, a high pulse energy of up to 6.5 μJ, and the corresponding peak power of 30 W. Our results show that the BP saturable absorber functions well in a Nd-ion doped solid state laser for pulsed laser generation.

  5. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Science.gov (United States)

    Zhao, Quantang; Zhang, Z. M.; Yuan, P.; Cao, S. C.; Shen, X. K.; Jing, Y.; Yu, C. S.; Li, Z. P.; Liu, M.; Xiao, R. Q.; Zong, Y.; Wang, Y. R.; Zhao, H. W.

    2013-11-01

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60-70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article.

  6. Energy-spread measurement of triple-pulse electron beams based on the magnetic dispersion principle

    CERN Document Server

    Wang, Yi; Yang, Zhiyong; Zhang, Huang; Ding, Hengsong; Yang, Anmin; Wang, Minhong

    2016-01-01

    The energy-spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator is measured using the method of energy dispersion in the magnetic field. A sector magnet is applied for energy analyzing of the electron beam, which has a bending radius of 300 mm and a deflection angle of 90 degrees. For each pulse, both the time-resolved and the integral images of the electron position at the output port of the bending beam line are recorded by a streak camera and a CCD camera, respectively. Experimental results demonstrate an energy-spread of less than +-2.0% for the electron pulses. The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.

  7. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage...... vectors. The relationship between the inductance variations and voltage vector positions was studied. The inductance variation effect on estimation accuracy was studied as well. An improved five-pulses injection method was proposed, to improve the estimation accuracy by choosing optimaized voltage vectors...

  8. Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy.

    Science.gov (United States)

    Anisha Thayil, K N; Gualda, E J; Psilodimitrakopoulos, S; Cormack, I G; Amat-Roldán, I; Mathew, M; Artigas, D; Loza-Alvarez, P

    2008-04-01

    We report a simple methodology to provide complete pulse characterization at the sample plane of a two-photon excited fluorescence (TPEF) microscope. This is achieved by using backward propagating second-harmonic generation (SHG) from starch granules. Without any modification to the microscope, SHG-autocorrelation traces were obtained by using a single starch granule that was placed alongside the biological specimen being imaged. A spectrally resolved SHG autocorrelation was acquired by placing a spectrometer at the output port of the microscope. Complete in situ pulse information is then directly retrieved in an analytical way using the measurement of electric filed by interferometric spectral trace observation (MEFISTO) technique.

  9. Short-pulsed laser transport in absorbing and scattering media: time-based versus frequency-based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Francoeur, Mathieu [Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506 (United States); Rousse, Daniel R [Department of Mathematics, Computer Sciences, and Engineering, Universite du Quebec a Rimouski, Levis, PQ G6V 8R9 (Canada)

    2007-09-21

    Optical tomography (OT) is a promising non-intrusive characterization technique of absorbing and scattering media that uses transmitted and/or reflected signals of samples irradiated with visible or near-infrared light. The quality of OT techniques is directly related to the accuracy of their forward models due to the use of inversion algorithms. In this paper, forward models for transient OT approaches are investigated. The system under study involves a one-dimensional absorbing and scattering medium illuminated by a short laser pulse; this problem is solved using a discrete ordinates-finite volume (DO-FV) method in both time and frequency domain. Previous works have shown that time-domain approaches coupled with first order spatial interpolation schemes cannot represent the physics of the problem adequately as transmitted fluxes emerge before the minimal physical time required to leave the medium. In this work, the Van Leer and Superbee flux limiters, combined with the second order Lax-Wendroff scheme, are used in an attempt to prevent this. Results show that despite significant improvement, flux limiters fail to completely eliminate the physically unrealistic behaviour. On the other hand, results for transmittance obtained from the frequency-based method are accurate, without physically unrealistic behaviours at early time periods. The frequency-dependent approach is however computationally expensive, since it requires approximately five times more computational time than its temporal counterpart when used as a forward model for transient OT. On the other hand, the great advantages of the frequency-based approach is that limited windows of temporal signals can be calculated efficiently (in transient OT), and it can also be used as a forward model for steady-state, frequency-based and transient OT techniques.

  10. A Robust Hash Function Using Cross-Coupled Chaotic Maps with Absolute-Valued Sinusoidal Nonlinearity

    Directory of Open Access Journals (Sweden)

    Wimol San-Um

    2016-01-01

    Full Text Available This paper presents a compact and effective chaos-based keyed hash function implemented by a cross-coupled topology of chaotic maps, which employs absolute-value of sinusoidal nonlinearity, and offers robust chaotic regions over broad parameter spaces with high degree of randomness through chaoticity measurements using the Lyapunov exponent. Hash function operations involve an initial stage when the chaotic map accepts initial conditions and a hashing stage that accepts input messages and generates the alterable-length hash values. Hashing performances are evaluated in terms of original message condition changes, statistical analyses, and collision analyses. The results of hashing performances show that the mean changed probabilities are very close to 50%, and the mean number of bit changes is also close to a half of hash value lengths. The collision tests reveal the mean absolute difference of each character values for the hash values of 128, 160 and 256 bits are close to the ideal value of 85.43. The proposed keyed hash function enhances the collision resistance, comparing to MD5 and SHA1, and the other complicated chaos-based approaches. An implementation of hash function Android application is demonstrated.

  11. Hepatic sinusoidal obstruction syndrome caused by herbal medicine: CT and MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Lou, Hai Yan [Dept. of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Wang, Yi Xiang J. [Dept. of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Xu, Xiao Jun; Zhang, Min Ming [Dept. of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China)

    2014-04-15

    To describe the CT and MRI features of hepatic sinusoidal obstruction syndrome (HSOS) caused by herbal medicine Gynura segetum. The CT and MRI features of 16 consecutive Gynura segetum induced HSOS cases (12 men, 4 women) were analyzed. Eight patients had CT; three patients had MRI, and the remaining five patients had both CT and MRI examinations. Based on their clinical presentations and outcomes, the patients were classified into three categories: mild, moderate, and severe. The severity of the disease was also evaluated radiologically based on the abnormal hepatic patchy enhancement in post-contrast CT or MRI images. Ascites, patchy liver enhancement, and main right hepatic vein narrowing or occlusion were present in all 16 cases. Hepatomegaly and gallbladder wall thickening were present in 14 cases (87.5%, 14/16). Periportal high intensity on T2-weighted images was present in 6 cases (75%, 6/8). Normal liver parenchymal enhancement surrounding the main hepatic vein forming a clover-like sign was observed in 4 cases (25%, 4/16). The extent of patchy liver enhancement was statistically associated with clinical severity classification (kappa = 0.565). Ascites, patchy liver enhancement, and the main hepatic veins narrowing were the most frequent signs of herbal medicine induced HSOS. The grade of abnormal patchy liver enhancement was associated with the clinical severity.

  12. A Pulse Generator Based on an Arduino Platform for Ultrasonic Applications

    Science.gov (United States)

    Acevedo, Pedro; Vázquez, Mónica; Durán, Joel; Petrearce, Rodolfo

    The objective of this work is to use the Arduino platform as an ultrasonic pulse generator to excite PVDF ultrasonic arrays in transmission. An experimental setup was implemented using a through-transmission configuration to evaluate the performance of the generator.

  13. Catalytic graphitization of wood-based carbons with alumina by pulse current heating

    NARCIS (Netherlands)

    Hata, T; Ishimaru, K; Fujisawa, M; Bronsveld, P; Vystavel, T; De Hosson, J; Kikuchi, H; Nishizawa, T; Imamura, Y

    2005-01-01

    Japanese cedar was preheated at 500 degrees C and subsequently mixed with 40 mu m Al2O3 particles. A pulse current heating method was used for a 5-min carbonization step under a pressure of 50MPa in order to promote the graphitization at temperatures between 2000 and 2200 degrees C. The samples were

  14. An ultrasound-based method for determining pulse wave velocity in superficial arteries.

    Science.gov (United States)

    Rabben, Stein Inge; Stergiopulos, Nikos; Hellevik, Leif Rune; Smiseth, Otto A; Slørdahl, Stig; Urheim, Stig; Angelsen, Bjørn

    2004-10-01

    In this paper, we present a method for estimating local pulse wave velocity (PWV) solely from ultrasound measurements: the area-flow (QA) method. With the QA method, PWV is estimated as the ratio between change in flow and change in cross-sectional area (PWV = dQ/dA) during the reflection-free period of the cardiac cycle. In four anaesthetized dogs and 21 human subjects (age 23-74) we measured the carotid flow and cross-sectional area non-invasively by ultrasound. As a reference method we used the Bramwell-Hill (BH) equation which estimates PWV from pulse pressure and cross-sectional area. Additionally, we therefore measured brachial pulse pressure by oscillometry in the human subjects, and central aortic pulse pressure by micro-manometry in the dogs. As predicted by the pressure dependency of arterial stiffness, the estimated PWV decreased when the aortic pressure was lowered in two of the dogs. For the human subjects, the QA and BH estimates were correlated (R=0.43, pBH method increased with age (pBH method, indicating different precisions for the two methods. This study illustrates that the simple equation PWV = dQ/dA gives estimates correlated to the PWV of the reference method. However, improvements in the basic measurements seem necessary to increase the precision of the method.

  15. Pulse mode readout of MEMS bulk disk resonator based mass sensor

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2011-01-01

    We propose a pulse excitation setup applied on a Micro-Electro-Mechanical bulk disk resonator aimed for mass detection. This scheme offers measuring not only the resonant frequency, which defines the mass change, but also the quality factor and the feedthrough/parasitic capacitance of the disk wh...

  16. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James;

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...

  17. FPGA-based Signal Processor for Detection and Interpretationof Pulsed Laser Radiation

    Directory of Open Access Journals (Sweden)

    A. K. Maini

    2007-07-01

    Full Text Available A novel design technique for detection and interpretation of pulsed laser radiationimplemented on Xilinx Spartan-III field programmable gate arrays (FPGA is presented. The designarchitecture is modular with high performance and unparalleled flexibility that simplifies designchanges. The design gives superior accuracy and scalability and is applicable to a range ofFPGA technologies.

  18. Thermodynamic Analysis and Optimization Based on Exergy Flow for a Two-Staged Pulse Tube Refrigerator

    Science.gov (United States)

    2010-01-01

    and magnetostriction Rev. Sci. Instrum. 83, 095102 (2012) Compact radio-frequency resonator for cryogenic ion traps Rev. Sci. Instrum. 83, 084705...Vol. 55, edited by J. G. Weisend II 2010 American Institute of Physics 978-0-7354-0761-9/10/$30.00 INTRODUCTION Multi-stage Pulse Tube

  19. A modified circuit topology for inductive pulsed power supply based on HTSPPTs

    Science.gov (United States)

    Li, Haitao; Zhang, Cunshan; Wang, Teng; Gao, Mingliang; Li, Zhenmei; Zou, Guofeng

    2016-10-01

    High temperature superconducting pulsed power transformer (HTSPPT) provides an efficient method for inductive energy storage and current multiplication. The primary inductor of HTSPPT used for energy storage is made of high temperature superconducting coils, and the secondary inductor used for current pulse generation is made of normal conductor coils. In the initial circuit, the secondary inductor generates current pulse by switching out the coupled primary superconducting inductor. However, during the switching period, the leakage flux caused by imperfect coupling and the sudden change in primary current induce a voltage across the opening switch which exceeds the affordability of modern solid-state switches. In previous studies, a half-cycle oscillatory discharge circuit is proposed to mitigate these problems by using a capacitor to recapture the energy in the leakage flux and to slow down the turnoff of current in the primary. However, there are still some problems should be settled. For example, the output pulse cannot be adjusted, the residual energy cannot be recovered and the capacitor branch circuit may have an impact on the charging process. In the paper, a modified discharge circuit topology is introduced to solve these problems. A multi-module system comprising of several HTSPPTs charging in series connection and discharging in parallel is also designed and simulated. This system can be used to power an electromagnetic emission device.

  20. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator

    NARCIS (Netherlands)

    Marpaung, David; Chevalier, Ludovic; Burla, Maurizio; Roeloffzen, Chris

    2011-01-01

    We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator

  1. Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

    Science.gov (United States)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-09-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency. Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in

  2. High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression

    Directory of Open Access Journals (Sweden)

    Zhenxu Bai

    2016-01-01

    Full Text Available A high beam quality hundred picoseconds single-longitudinal-mode (SLM laser is demonstrated based on stimulated Brillouin scattering (SBS pulse compression and aberration compensation. Flash-lamp-pumped Q-switched Nd3+:Y3Al5O12 (Nd:YAG SLM laser with Cr4+:Y3Al5O12 (Cr4+:YAG as a saturable absorber is used as the seed source. By combining master-oscillator-power-amplifier (MOPA, a compact single-cell with FC-770 as working medium is generated as pulse compressor. The 7.8 ns SLM laser is temporally compressed to about 450 ps, and 200 mJ energy is obtained at 1064 nm without optical damage. The energy stability is better than 3% with beam quality factor M2 less than 1.8, which makes this laser system an attractive source for scientific and industrial applications.

  3. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF.

    Science.gov (United States)

    Mak, Ka Fai; Travers, John C; Hölzer, Philipp; Joly, Nicolas Y; Russell, Philip St J

    2013-05-06

    An efficient and tunable 176-550 nm source based on the emission of resonant dispersive radiation from ultrafast solitons at 800 nm is demonstrated in a gas-filled hollow-core photonic crystal fiber (PCF). By careful optimization and appropriate choice of gas, informed by detailed numerical simulations, we show that bright, high quality, localized bands of UV light (relative widths of a few percent) can be generated at all wavelengths across this range. Pulse energies of more than 75 nJ in the deep-UV, with relative bandwidths of ~3%, are generated from pump pulses of a few μJ. Excellent agreement is obtained between numerical and experimental results. The effects of positive and negative axial pressure gradients are also experimentally studied, and the coherence of the deep-UV dispersive wave radiation numerically investigated.

  4. On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry.

    Science.gov (United States)

    Pedrini, Giancarlo; Alexeenko, Igor; Osten, Wolfgang; Schnars, Ulf

    2006-02-10

    A method based on pulsed digital holographic interferometry for the measurement of dynamic deformations of a surface by using a moving system is presented. The measuring system may move with a speed of several meters per minute and can measure deformation of the surface with an accuracy of better than 50 nm. The deformation is obtained by comparison of the wavefronts recorded at different times with different laser pulses produced by a Nd:YAG laser. The effect due to the movement of the measuring system is compensated for by digital processing of the different holograms. The system is well suited for on-line surveillance of a dynamic process such as laser welding and friction stir welding. Experimental results are presented, and the advantages of the method are discussed.

  5. Toxicity of magnesium pulses to tropical freshwater species and the development of a duration-based water quality guideline.

    Science.gov (United States)

    Hogan, Alicia C; Trenfield, Melanie A; Harford, Andrew J; van Dam, Rick A

    2013-09-01

    Six freshwater species (Chlorella sp., Lemna aequinoctialis, Amerianna cumingi, Hydra viridissima, Moinodaphnia macleayi, and Mogurnda mogurnda) were exposed to 4-h, 8-h, and 24-h Mg pulses in natural creek water. Magnesium toxicity to all species increased with exposure duration; however, the extent of increase and the nature of the relationship differed greatly between species. Based on median inhibitory concentrations (IC50s), and compared with continuous exposure data from a previous study, the increase in toxicity with increasing exposure duration from 4 h to continuous (72-144 h) ranged from approximately 2-fold for Chlorella sp. and H. viridissima to greater than 40-fold for A. cumingi. Moreover, the form of the relationship between Mg toxicity and duration ranged from linear or near-linear to exponential for different species. The life-stage at which M. macleayi was exposed was important, with cladocerans pulsed at the onset of reproductive maturity being approximately 4 times more sensitive (based on IC50s) than younger than 6-h-old neonates. Species sensitivity distributions were constructed for the 4-h, 8-h, and 24-h pulse durations, from which 99% species protection guideline values (95% confidence limits [CLs]) of 94 (6.4-1360) mg/L, 14 (0.5-384) mg/L, and 8.0 (0.5-144) mg/L Mg, respectively, were derived. These values were plotted against exposure duration (h) and polynomial interpolation used to derive a guideline value for any pulse duration within the range assessed.

  6. High-power 850-870-nm pulsed lasers based on heterostructures with narrow and wide waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ladugin, M A; Koval' , Yu P; Marmalyuk, Aleksandr A; Petrovskii, V A; Bagaev, T A; Andreev, A Yu; Padalitsa, A A; Simakov, V A [Open Joint-Stock Company ' M.F. Stel' makh Polyus Research and Development Institute' , Moscow (Russian Federation)

    2013-05-31

    The power and spectral characteristics of pulsed laser diode arrays operating in the spectral range of 850-870 nm and based on heterostructures of two different types (with narrow and wide waveguides) are studied. It is found that the power-current characteristics of the laser arrays of both types are linear within the pump current range of 10-50 A and that the steepness of these characteristics decreases at currents exceeding 80 A. The decrease in the slope efficiency is more noticeable for laser arrays based on heterostructures with wide waveguides. (semiconductor lasers. physics and technology)

  7. Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature

    Directory of Open Access Journals (Sweden)

    Missoum Abdelkrim

    2016-01-01

    Full Text Available This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number and amplitude of temperature on heat transfer rate (Nusselt number on convective structures that appear.

  8. Does the Newton's gravitational constant vary sinusoidally with time? An independent test with planetary orbital motions

    CERN Document Server

    Iorio, Lorenzo

    2016-01-01

    A sinusoidally time-varying pattern for the values of the Newton's constant of gravitation $G$ measured in Earth-based laboratories over the latest decades has been recently reported in the literature. Its amplitude and period amount to $A_G=1.619\\times 10^{-14} \\textrm{kg}^{-1} \\textrm{m}^3 \\textrm{s}^{-2}, P_G=5.899 \\textrm{yr}$, respectively. Given the fundamental role played by $G$ in the currently accepted theory of gravitation and the attempts to merge it with quantum mechanics, it is important to put to the test the hypothesis that the aforementioned harmonic variation may pertain $G$ itself in a direct and independent way. The bounds on $\\dot G/G$ existing in the literature may not be extended straightforwardly to the present case since they were inferred by considering just secular variations. Thus, we numerically integrated the ad-hoc modified equations of motion of the major bodies of the Solar System by finding that the orbits of the planets would be altered by an unacceptably larger amount in vie...

  9. The inhibition of stuttering via the presentation of natural speech and sinusoidal speech analogs.

    Science.gov (United States)

    Saltuklaroglu, Tim; Kalinowski, Joseph

    2006-08-14

    Sensory signals containing speech or gestural (articulatory) information (e.g., choral speech) have repeatedly been found to be highly effective inhibitors of stuttering. Sine wave analogs of speech consist of a trio of changing pure tones representative of formant frequencies. They are otherwise devoid of traditional speech cues, yet have proven to evoke consistent linguistic percepts in listeners. Thus, we investigated the potency of sinusoidal speech for inhibiting stuttering. Ten adults who stutter read while listening to (a) forward-flowing natural speech; (b) forward-flowing sinusoid analogs of natural speech; (c) reversed natural speech; (d) reversed sinusoid analogs of natural speech; and (e) a continuous 1000 Hz pure tone. The levels of stuttering inhibition achieved using the sinusoidal stimuli were potent and not significantly different from those achieved using natural speech (approximately 50% in forward conditions and approximately 25% in the reversed conditions), suggesting that the patterns of undulating pure tones are sufficient to endow sinusoidal sentences with 'quasi-gestural' qualities. These data highlight the sensitivity of a specialized 'phonetic module' for extracting gestural information from sensory stimuli. Stuttering inhibition is thought to occur when perceived gestural information facilitates fluent productions via the engagement of mirror neurons (e.g., in Broca's area), which appear to play a crucial role in our ability to perceive and produce speech.

  10. Neutrophil adhesion and crawling dynamics on liver sinusoidal endothelial cells under shear flow.

    Science.gov (United States)

    Yang, Hao; Li, Ning; Du, Yu; Tong, Chunfang; Lü, Shouqin; Hu, Jinrong; Zhang, Yan; Long, Mian

    2017-02-01

    Neutrophil (polymorphonuclear leukocyte, PMN) recruitment in the liver sinusoid takes place in almost all liver diseases and contributes to pathogen clearance or tissue damage. While PMN rolling unlikely appears in liver sinusoids and Mac-1 or CD44 is assumed to play respective roles during in vivo local or systematic inflammatory stimulation, the regulating mechanisms of PMN adhesion and crawling dynamics are still unclear from those in vivo studies. Here we developed a two-dimensional in vitro sinusoidal model with primary liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) to investigate TNF-α-induced PMN recruitment under shear flow. Our data demonstrated that LFA-1 dominates the static or shear resistant adhesion of PMNs while Mac-1 decelerates PMN crawling on LSEC monolayer. Any one of LFA-1, Mac-1, and CD44 molecules is not able to work effectively for mediating PMN transmigration across LSEC monolayer. The presence of KCs only affects the randomness of PMN crawling. These findings further the understandings of PMN recruitment under shear flow in liver sinusoids.

  11. Sinusoidal microcirculatory changes after small-for-size liver transplantation in rats.

    Science.gov (United States)

    Li, Junjian; Liang, Liang; Ma, Tao; Yu, Xiazhen; Chen, Wei; Xu, Guodong; Liang, Tingbo

    2010-09-01

    Small-for-size graft injury is characterized by portal venous hypertension and loss of intracellular homeostasis early after transplant. The long-term alteration of sinusoidal microcirculatory hemodynamic state remains unknown. A syngeneic rat orthotopic liver transplantation model was developed using small-for-size grafts (35% of recipient liver weight) or whole grafts (100% of recipient liver weight). Graft survival, portal pressure, liver function, hepatocellular apoptosis as well as morphological changes (by light microscopy and electron microscopy) were assessed. Sinusoidal microcirculatory hemodynamics was examined by intravital fluorescence microscopy. Although portal hypertension lasted only for 1 h after performance of small-for-size liver transplantation, a sustained microcirculatory disturbance was accompanied by dramatic reduction of sinusoidal perfusion rate, elevation of sinusoidal diameter as well as increase in the number of apoptotic hepatocytes during the first 7 days. These resulted in lower survival rate (50% vs. 100%, P = 0.012), higher level of liver function, and more severe morphological changes, which could induce small-for-size syndrome. In conclusion, persistent microcirculatory hemodynamic derangement during the first 7 days after reperfusion as well as transient portal hypertension is significant manifestation after small-for-size liver transplantation. Long-term microcirculation disturbance displayed as decrease of sinusoidal reperfusion area and increase of spread in functional liver mass seems to be the key factor for graft injuries.

  12. Investigation of signal processing algorithms for an embedded microcontroller-based wearable pulse oximeter.

    Science.gov (United States)

    Johnston, W S; Mendelson, Y

    2006-01-01

    Despite steady progress in the miniaturization of pulse oximeters over the years, significant challenges remain since advanced signal processing must be implemented efficiently in real-time by a relatively small size wearable device. The goal of this study was to investigate several potential digital signal processing algorithms for computing arterial oxygen saturation (SpO(2)) and heart rate (HR) in a battery-operated wearable reflectance pulse oximeter that is being developed in our laboratory for use by medics and first responders in the field. We found that a differential measurement approach, combined with a low-pass filter (LPF), yielded the most suitable signal processing technique for estimating SpO(2), while a signal derivative approach produced the most accurate HR measurements.

  13. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains.

    Science.gov (United States)

    Jiang, Lan; Shi, Xuesong; Li, Xin; Yuan, Yanping; Wang, Cong; Lu, Yongfeng

    2012-09-10

    This study reveals that the periods, ablation areas and orientations of periodic surface structures (ripples) in fused silica can be adjusted by using designed femtosecond (fs) laser pulse trains to control transient localized electron dynamics and corresponding material properties. By increasing the pulse delays from 0 to 100 fs, the ripple periods are changed from ~550 nm to ~255 nm and the orientation is rotated by 90°. The nearwavelength/subwavelength ripple periods are close to the fundamental/second-harmonic wavelengths in fused silica respectively. The subsequent subpulse of the train significantly impacts free electron distributions generated by the previous subpulse(s), which might influence the formation mechanism of ripples and the surface morphology.

  14. Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H L; Wang, X L; Zhou, P; Chen, J B [College of Optoelectronics Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2016-03-31

    We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum. (control of laser radiation parameters)

  15. Pulsed Blue and Ultraviolet Laser System for Fluorescence Diagnostics based on Nonlinear Frequency Conversion

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay

    nm laser is non-trivial. Detailed investigation into pump beam optimization has been carried out for an end-pumped 946 nm CW laser. Using an innovative external cavity tapered diode laser as pump source, a record 800 mW of output power was obtained using a single-emitter diode laser pump source....... The spatial and spectral properties of the pump source were also investigated individually, and it was concluded that a broad spectrum tapered diode pump source may be most stable and cost-effective. To generate high peak power pulsed output, Q-switched lasers were considered. In particular, synchronized Q...... a four-sigma or six-sigma definition was used. Detailed investigation into the relative timing jitter between the two synchronized pulses was also carried out, where it was found that the lower limit on the relative jitter, determined by pump power fluctuations and amplified spontaneous emission, was 6...

  16. Modulated Pulses Based High Spatial Resolution Distributed Fiber System for Multi-Parameter Sensing

    CERN Document Server

    Zhang, Jingdong; Zhou, Huan; Li, Yang; Liu, Min; Huang, Wei

    2016-01-01

    We demonstrate a hybrid distributed fiber sensing system for multi-parameter detection. The integration of phase-sensitive optical time domain reflectometry ({\\Phi}-OTDR) and Brillouin optical time domain reflectometry (B-OTDR) enables measurement of vibration, temperature and strain. Exploiting the fast changing property of vibration and the static property of temperature and strain, the laser pulse width and intensity are modulated and then injected into the single-mode sensing fiber proportionally, so that the three concerned parameters can be extracted simultaneously by only one photo-detector and data acquisition channel. Combining with advanced data processing methods, the modulation of laser pulse brings additional advantages because of trade and balance between the backscattering light power and nonlinear effect noise, which enhances the signal-to-noise ratio, and enables sub-meter level spatial resolution together with long sensing distance. The proposed method realizes up to 4.8 kHz vibration sensin...

  17. Effects of low amplitude pulsed radiofrequency stimulation with different waveform in rats for neuropathic pain.

    Science.gov (United States)

    Lin, W T; Chang, C H; Cheng, C Y; Chen, M C; Wen, Y R; Lin, C T; Lin, C W

    2013-01-01

    Pulsed-radiofrequency (PRF) electrical stimulation has been widely used for chronic pain treatment. It has been demonstrated with advantages of low temperature over traditional continuous radiofrequency (CRF) lesions with higher amplitude and mono polar electrode to treat pain in clinics (frequency 500 KHz, Pulse duration 20 msec, Amplitude 45 V, Treatment 2 min). We compare the effects of different pulse waveforms and PRF parameters (Pulse duration 25 ms, Treatment duration 5 min, low amplitude of 2.5/1.25 V) with a miniature bi-polar electrode on Dorsal root ganglion (DRG). The pain relief effect due to PRF is evaluated by using Von Frey method for the pain threshold index based on behavior response to mechanical stimulus of various strengths. Experimental results of Von Frey Score show that the sinusoidal group has higher responses than the square wave one. Both fast and secondary expressed proteins of c-fos and pp38 are measured from spinal cord tissue sectioning slides to characterize the pain associated inflammatory responses and their responses due to PRF stimulation.

  18. FREQUENCY-CODED OPTIMIZATION OF HOPPED-FREQUENCY PULSE SIGNAL BASED ON GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Liu Zheng; Mu Xuehua

    2005-01-01

    The Frequency-Coded Pulse (FCP) signal has good performance of range and Doppler resolution. This paper first gives the mathematical expression of the ambiguity function for FCP signals, and then presents a coding rule for optimizing FCP signal. The genetic algorithm is presented to solve this kind of problem for optimizing codes. Finally, an example for optimizing calculation is illustrated and the optimized frequency coding results are given with the code length N=64 and N=128 respectively.

  19. Pulse splitter-based nonlinear microscopy for live-cardiomyocyte imaging

    OpenAIRE

    Wang, Zhonghai; Qin, Wan; Shao, Yonghong; Ma, Siyu; Borg, Thomas K.; GAO, BRUCE Z.

    2014-01-01

    Second harmonic generation (SHG) microscopy is a new imaging technique used in sarcomeric-addition studies. However, during the early stage of cell culture in which sarcomeric additions occur, the neonatal cardiomyocytes that we have been working with are very sensitive to photodamage, the resulting high rate of cell death prevents systematic study of sarcomeric addition using a conventional SHG system. To address this challenge, we introduced use of the pulse-splitter system developed by Na ...

  20. Delineation of Raw Plethysmograph using Wavelets for Mobile based Pulse Oximeters

    CERN Document Server

    Soni, Sangeeta

    2010-01-01

    The non-invasive pulse-oximeter is a crucial parameter in continuous monitoring systems. It plays a vital role from admission of the patient to surgeries with general anaesthesia. The paper proposes the application of wavelet transform to delineate the raw plethysmograph signals obtained from basic portable and mobile-powered electronic hardware. The paper primarily focuses on finding peaks and baseline from noisy infrared and red waveforms which are responsible for calculating heart-rate and oxygen saturation percentages.

  1. Pulse wave detection method based on the bio-impedance of the wrist

    Science.gov (United States)

    He, Jianman; Wang, Mengjun; Li, Xiaoxia; Li, Gang; Lin, Ling

    2016-05-01

    The real-time monitoring of pulse rate can evaluate the heart health to some extent, and the measurement of bio-impedance has the potential in wearable health monitoring system. In this paper, an effective method, which contains self-balancing bridge, flexible electrode, and high-speed digital lock-in algorithm (DLIA) with over-sampling, was designed to detect the impedance pulse wave at the wrist. By applying the self-balancing bridge, the basic impedance can be compensated as much as possible, and the low amplitude of impedance variation related to heart pulse can be obtained more easily. And the flexible conductive rubber electrode used in our experiment is human-friendly. Besides, the over-sampling method and high-speed DLIA are used to enhance the effective resolution of the existing data sampled by analog to digital converter. With the high-speed data process and simple circuit above, this proposed method has the potential in wrist-band wearable systems and it can satisfy quests of small volume and low power consumption.

  2. FPGA-Based Pulse Pile-Up Correction With Energy and Timing Recovery.

    Science.gov (United States)

    Haselman, M D; Pasko, J; Hauck, S; Lewellen, T K; Miyaoka, R S

    2012-10-01

    Modern field programmable gate arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates well above 100 MHz. This, combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilized to add significant signal processing power to produce higher quality images. In this paper we report on an all-digital pulse pile-up correction algorithm that has been developed for the FPGA. The pile-up mitigation algorithm will allow the scanner to run at higher count rates without incurring large data losses due to the overlapping of scintillation signals. This correction technique utilizes a reference pulse to extract timing and energy information for most pile-up events. Using pulses acquired from a Zecotech Photonics MAPD-N with an LFS-3 scintillator, we show that good timing and energy information can be achieved in the presence of pile-up utilizing a moderate amount of FPGA resources.

  3. Influence of pulsing current on the glass transition and crystallizing kinetics of a Zr base bulk amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wenfei; YAO Kefu; ZHAO Zhankui

    2004-01-01

    Based on the thermal analysis, the influence of pulsing current on the glass transition and crystallizing kinetics of Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy has been studied. The obtained results show that after the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy was pretreated by high-density pulsing current at low temperature, its glass transition temperature Tg, the initial crystallizing temperature Tx and the corresponding exothermic peak of crystallization Tpi were reduced. But the temperature range of supercooled liquid ΔT=Tx-Tg is almost the same. The calculated results with Kissinger equation show that the activation energy of glass transition of the alloy pretreated is reduced significantly, while the activation energy of crystallization is basically unchanged. The influence of pulsing current on the glass transition and crystallization of the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy is believed to be related with the structure relaxation of the glass caused by the current.

  4. A Pulsed Coding Technique Based on Optical UWB Modulation for High Data Rate Low Power Wireless Implantable Biotelemetry

    Directory of Open Access Journals (Sweden)

    Andrea De Marcellis

    2016-10-01

    Full Text Available This paper reports on a pulsed coding technique based on optical Ultra-wideband (UWB modulation for wireless implantable biotelemetry systems allowing for high data rate link whilst enabling significant power reduction compared to the state-of-the-art. This optical data coding approach is suitable for emerging biomedical applications like transcutaneous neural wireless communication systems. The overall architecture implementing this optical modulation technique employs sub-nanosecond pulsed laser as the data transmitter and small sensitive area photodiode as the data receiver. Moreover, it includes coding and decoding digital systems, biasing and driving analogue circuits for laser pulse generation and photodiode signal conditioning. The complete system has been implemented on Field-Programmable Gate Array (FPGA and prototype Printed Circuit Board (PCB with discrete off-the-shelf components. By inserting a diffuser between the transmitter and the receiver to emulate skin/tissue, the system is capable to achieve a 128 Mbps data rate with a bit error rate less than 10−9 and an estimated total power consumption of about 5 mW corresponding to a power efficiency of 35.9 pJ/bit. These results could allow, for example, the transmission of an 800-channel neural recording interface sampled at 16 kHz with 10-bit resolution.

  5. The Modelling and Characteristic Analysis of Brushless Synchronous Motor with Sinusoidal back EMF

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Nam [Dong Seoul College (Korea); Baek, Soo Hyun; Maeng, In Jae; Yoon, Shin Yong; Baek, Soo Hyun [Dongguk University (Korea); Kim, Cherl Jin [Hanlla University (Korea)

    2000-06-01

    This paper presents the mathematical analysis of Brushless Synchronous Motor(BLSM). The dynamic and the steady state characteristics of BLSM are simulated and analyzed : electromagnetic torque, speed, line voltage, and current. We used mathematical modelling to model of BLSM with sinusoidal back EMF, namely the shaft transformation referencing rotor frame from a, b, c three phase frame to d-q two phase frame. Therefore, the BLSM induced a sinusoidal back EMF requires sinusoidal current to produce constant torque like synchronous motor. The experiment result has already similar to compare with simulation result : torque error about 7%, speed error about 5%. The validity of proposed modelling and analysis was confirmed by the experimental result. (author). 11 refs., 14 figs., 1 tab.

  6. Ascites due to pre-sinusoidal portal hypertension in dogs: a retrospective analysis of 17 cases.

    Science.gov (United States)

    James, F E; Knowles, G W; Mansfield, C S; Robertson, I D

    2008-05-01

    Accumulation of a pure transudate abdominal effusion in the absence of significant hypoalbuminaemia is uncommon in dogs and is due to pre-sinusoidal portal hypertension. Reported causes of pre-sinusoidal portal hypertension vary, but suggest a reasonable prognosis. A retrospective analysis of 17 dogs that presented to our institution with ascites due to pre-sinusoidal portal hypertension identified idiopathic hepatic fibrosis or canine chronic hepatitis as the underlying cause in the majority of cases. Twelve (70.5%) dogs were 4 years of age or younger at time of presentation. Total serum protein was higher in dogs with chronic hepatitis than it was in dogs without inflammatory disease. The prognosis was generally poor and no histological, imaging or biochemical parameters were useful as prognostic indicators. Dogs died or were euthanased due to severe clinical signs associated with the portal hypertension and/or perceived poor prognosis.

  7. The Integrity bare-metal stent made by continuous sinusoid technology.

    Science.gov (United States)

    Turco, Mark A

    2011-05-01

    The Integrity Coronary Stent System (Medtronic Vascular, CA, USA) is a low-profile, open-cell, cobalt-chromium-alloy advanced bare-metal iteration of the well-known Driver/Micro-Driver Coronary Stent System (Medtronic Vascular). The Integrity stent is made with a process called continuous sinusoid technology. This process allows stent construction via wrapping a single thin strand of wire around a mandrel in a sinusoid configuration, with laser fusion of adjacent crowns. The wire-forming process and fusion pattern provide the stent with a continuous preferential bending plane, intended to allow easier access to, and smoother tracking within, distal and tortuous vessels while radial strength is maintained. Continuous sinusoid technology represents innovation in the design of stent platforms and will provide a future stent platform for newer technology, including drug-eluting stent platforms, drug-filled stents and core wire stents.

  8. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    Directory of Open Access Journals (Sweden)

    Abhirup Lahiri

    2011-01-01

    Full Text Available This paper reports two new circuit topologies using second-generation current conveyors (CCIIs for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantageous feature of frequency tuning through two grounded elements. Application of the proposed circuits as a wide-frequency range digitally controlled sinusoid generator is exhibited wherein the digital frequency control has been enabled by replacing both the capacitors by two identical variable binary capacitor banks tunable by means of the same binary code. SPICE simulations of the CMOS implementation of the oscillators using 0.35 μm TSMC CMOS technology parameters and bipolar implementation of the oscillators using process parameters for NR200N-2X (NPN and PR200N-2X (PNP of bipolar arrays ALA400-CBIC-R have validated their workability. One of the oscillators (with CMOS implementation is exemplified as a digitally controlled sinusoid generator with frequency generation from 25 kHz to 6.36 MHz, achieved by switching capacitors and with power consumption of 7 mW in the entire operating frequency range.

  9. Pulse shape analysis of a two fold clover detector with an EMD based new algorithm: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Siwal, Davinder, E-mail: dev84sonu@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Mandal, S. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Palit, R.; Sethi, J. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Garg, R. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Saha, S. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Chavan, P.B.; Naidu, B.S.; Jadhav, S.; Donthi, R. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Schaffner, H.; Adamczewski-Musch, J.; Kurz, N.; Wollersheim, H.J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Singh, R. [Amity Institute of Nuclear Science and Technology, Amity University, Noida 201303 (India)

    2014-03-21

    An investigation of Empirical Mode Decomposition (EMD) based noise filtering algorithm has been carried out on a mirror signal from a two fold germanium clover detector. EMD technique can decompose linear as well as nonlinear and chaotic signals with a precise frequency resolution. It allows to decompose the preamplifier signal (charge pulse) on an event-by-event basis. The filtering algorithm provides the information about the Intrinsic Mode Functions (IMFs) mainly dominated by the noise. It preserves the signal information and separates the overriding noise oscillations from the signals. The identification of noise structure is based on the frequency distributions of different IMFs. The preamplifier noise components which distort the azimuthal co-ordinates information have been extracted on the basis of the correlation between the different IMFs and the mirror signal. The correlation studies have been carried out both in frequency and time domain. The extracted correlation coefficient provides an important information regarding the pulse shape of the γ-ray interaction in the detector. A comparison between the EMD based and state-of-the-art wavelet based denoising techniques has also been made and discussed. It has been observed that the fractional noise strength distribution varies with the position of the collimated gamma-ray source. Above trend has been reproduced by both the denoising techniques.

  10. Electrochemical properties of Sn-based nanopowders synthesized by a pulsed wire evaporation method and effect of binder coating

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jong-Keun [School of Materials Science and Engineering & RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do (Korea, Republic of); Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon [Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering & RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do (Korea, Republic of); Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do (Korea, Republic of); Cho, Kwon-Koo, E-mail: kkcho66@gnu.ac.kr [School of Materials Science and Engineering & RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do (Korea, Republic of); Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do (Korea, Republic of)

    2016-10-15

    Highlights: • Sn-based nanoparticles are fabricated by using the pulsed wire evaporation method. • The electrodes are prepared by mixing the graphene and coating the surface. • Coating the surface of electrode is used with brushing of simple and facile method. • The electrochemical measurements are performed with galvanostatic experiments. • The coating electrode maintains capacity nearly of 501 mAh g{sup −1} up to 100 cycles. - Abstract: Sn-based nanoparticles are prepared with the O{sub 2} concentrations in chamber of Ar atmosphere (by v/v) by using the pulsed wire evaporation (PWE) method. The prepared electrodes are only Sn-based powder electrode, its binder coating electrode and Sn-based powder/graphene nanocomposite electrode. Morphology and structure of the synthesized powders and electrodes are investigated with a field emission scanning electron microscope (FE-SEM) and an X-ray diffraction (XRD) analysis. The electrochemical measurements were performed with galvanostatic cycling experiments using a coin type cell of CR2032 (Ø20, T3.2 mm). The binder coating electrode is superior to others and maintains delithiation capacity nearly of 501 mAh g{sup −1} as 58.3% of first delithiation capacity at 0.2 C-rate up to 100 cycles.

  11. Sinusoidal Vertical Motion of a Sonobuoy Suspension: Experimental Data and a Theoretical Model

    Science.gov (United States)

    2008-06-01

    dB par décade. Selon des expériences, le coefficient d’inertie Ci et le coefficient de frottement Cf d’un disque circulaire en mouvement sinusoïdal... coefficient CI and the drag coefficient CD of a circular disk in sinusoidal motion are in fact not constants, but depend on the dimensionless ratio of...investigation of hydrodynamic added mass and damping of disks in sinusoidal motion revealed that these coefficients may not be constant, but may in fact be

  12. Sinusoidal phase-modulating laser diode interferometer for real-time surface profile measurement

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang

    2007-01-01

    A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.

  13. Modified Smith predictor for frequency identification and disturbance rejection of single sinusoidal signal.

    Science.gov (United States)

    Zheng, Da; Fang, Jian'an; Ren, Zhengyun

    2010-01-01

    This paper presents a frequency identification and disturbance rejection scheme for open loop stable time delay systems with disturbance containing a constant signal and a single sinusoidal signal. Astrom's modified Smith predictor is employed to maintain good setpoint tracking performance. Disturbance rejection controller is designed via internal model control principle and functions as a finite dimensional repetitive controller. Extended Kalman filter is designed to track the frequency of unknown periodic disturbance. The simulation results demonstrate the successful performance of the proposed disturbance rejection method for controlling a linear system with time delays, subjected to both step and sinusoidal disturbances.

  14. Dynamic Neural Network-Based Pulsed Plasma Thruster (PPT) Fault Detection and Isolation for Formation Flying of Satellites

    Science.gov (United States)

    Valdes, A.; Khorasani, K.

    The main objective of this paper is to develop a dynamic neural network-based fault detection and isolation (FDI) scheme for the Pulsed Plasma Thrusters (PPTs) that are used in the Attitude Control Subsystem (ACS) of satellites that are tasked to perform a formation flying mission. By using data collected from the relative attitudes of the formation flying satellites our proposed "High Level" FDI scheme can detect the pair of thrusters which is faulty, however fault isolation cannot be accomplished. Based on the "High Level" FDI scheme and the DNN-based "Low Level" FDI scheme developed earlier by the authors, an "Integrated" DNN-based FDI scheme is then proposed. To demonstrate the FDI capabilities of the proposed schemes various fault scenarios are simulated.

  15. Modeling and calibration of pulse-modulation based ToF imaging systems

    Science.gov (United States)

    Süss, Andreas; Varga, Gabor; Marx, Michael; Fürst, Peter; Gläsener, Stefan; Tiedke, Wolfram; Jung, Melanie; Spickermann, Andreas; Hosticka, Bedrich J.

    2016-03-01

    Conversely to the continuous wave indirect time-of-flight (CW-iToF) imaging scheme, pulsed modulation ToF (PM-iToF) imaging is a promising depth measurement technique for operation at high ambient illumination. It is known that non-linearity and finite charge-transfer speed impact trueness and precision of ToF systems.1-3 As pulses are no Eigenfunctions to the shutter system, this issue is especially pronounced in pulsed modulation.2, 3 Despite these effects, it is possible to find analytical expressions founded on physical observations that map scenery parameters such as depth information, reflectance and ambient light level to sensor output.3, 4 In the application, the inverse of this map has to be evaluated. In PM-iToF, an inverse function cannot be yielded in a direct manner, as models proposed in the literature were transcendental.3, 4 For a limited range an approximating linearization can be performed to yield depth information.5 To extend the usable range, recently, an alternative approach that indirectly approximates the inverse function was presented.6 This method was founded on 1D doping concentration profiles, which, however, are typically not made available to end users. Also, limitations of the 1D approximation as well as stability are yet to be explored. This work presents a calibration methodology that copes with detector insufficiencies such as finite charge transfer speed. Contrarily to the state of the art, no prior knowledge on details of the underlying devices is required. The work covers measurement setup, a benchmark of various calibration schemes and deals with issues such as overfitting or defect pixels.

  16. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Vander Stappen, François; Janssens, Guillaume; Prieels, Damien [Ion Beam Applications SA, Louvain-la-Neuve 1348 (Belgium); Bawiec, Christopher R.; Lewin, Peter A. [School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Sehgal, Chandra M. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  17. MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.

    Science.gov (United States)

    Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan

    2016-02-01

    A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.

  18. A novel system for three-pulse drug release based on "tablets in capsule" device.

    Science.gov (United States)

    Li, Bin; Zhu, JiaBi; Zheng, Chunli; Gong, Wen

    2008-03-20

    The objective of the present study was to obtain programmed drug delivery from a novel system, which contains a water-soluble cap, impermeable capsule body, and two multi-layered tablets. Types of materials for the modulating barrier and its weight can significantly affect the lag time (defined as the time when drug released 8% of the single pulse dosage). We chose sodium alginate and hydroxy-propyl methyl cellulose (HPMC E5) as the candidate modulating barrier material. Through adjusting ratio of sodium alginate and lactose, lag time was controllable between the first two pulsatile release. Linear relationship was observed between the ratio and the lag time. Through adjusting the ratio of HPMC E5/lactose, lag time between the second and the third pulse can be successfully modulated. In further studies, drug release rate of the second pulsatile dose can be improved by adding a separating layer between the third and the modulating barrier layer in the three-layered tablet. To evaluate contribution of bulking agent to drug release rate, lactose, sodium chloride, and effervescent blend were investigated. No superiority was found using sodium chloride and effervescent blend. However, lactose favored it. The results reveal that programmed drug delivery to achieve pulsatile drug release for three times daily can be obtained from these tablets in capsule system by systemic formulation approach.

  19. Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link.

    Science.gov (United States)

    Chang, You Min; Lee, Junsu; Lee, Ju Han

    2010-09-13

    Proposed herein is an alternative photonic scheme for the generation of a doublet UWB pulse, which is based on the nonlinear polarization rotation of an elliptically polarized probe beam. The proposed scheme is a modified optical-fiber Kerr shutter that uses an elliptically polarized probe beam together with a linearly polarized control beam. Through theoretical analysis, it was shown that the optical-fiber-based Kerr shutter is capable of producing an ideal transfer function for the successful conversion of input Gaussian pulses into doublet pulses under special elliptical polarization states of the probe beam. An experimental verification was subsequently carried out to verify the working principle. Finally, the system performance of the generated UWB doublet pulses was assessed by propagating them over a 25-km-long standard single-mode fiber link, followed by wireless transmission. Error-free transmission was successfully achieved.

  20. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes.

  1. Predictive Pulse Pattern Current Modulation Scheme for Harmonic Reduction in Three-Phase Multidrive Systems

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz

    2016-01-01

    of them can lead to the cancellation of specific harmonics. This paper proposes a new cost-effective harmonic mitigation solution for multi-drive systems using a predictive pulse pattern current modulation control strategy. The proposed technique applies suitable interaction among parallel drive units......The majority of the industrial motor drive systems are equipped with the conventional line-commutated front-end rectifiers, and being one of the main sources of harmonics in the power line. While a parallel combination of these drive units elevates current quality issues, a proper arrangement...... at the rectification stage to synthesize sinusoidal input currents. The input voltage sensing is avoided in order to minimize the number of required sensors, and the grid synchronization also has been implemented based on a common Phase-Locked-Loop (PLL) using the DC-link capacitor voltage ripple. Experimental results...

  2. Measurement of definite integral of sinusoidal signal absolute value third power using digital stochastic method

    Directory of Open Access Journals (Sweden)

    Beljić Željko

    2017-01-01

    Full Text Available In this paper a special case of digital stochastic measurement of the third power of definite integral of sinusoidal signal’s absolute value, using 2-bit AD converters is presented. This case of digital stochastic method had emerged from the need to measure power and energy of the wind. Power and energy are proportional to the third power of wind speed. Anemometer output signal is sinusoidal. Therefore an integral of the third power of sinusoidal signal is zero. Two approaches are proposed for the third power calculation of the wind speed signal. One approach is to use absolute value of sinusoidal signal (before AD conversion for which there is no need of multiplier hardware change. The second approach requires small multiplier hardware change, but input signal remains unchanged. For the second approach proposed minimal hardware change was made to calculate absolute value of the result after AD conversion. Simulations have confirmed theoretical analysis. Expected precision of wind energy measurement of proposed device is better than 0,00051% of full scale. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR32019

  3. Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection.

    Science.gov (United States)

    Leung, L S; Yu, H W

    1998-03-01

    Sinusoidal currents of various frequencies were injected into hippocampal CA1 neurons in vitro, and the membrane potential responses were analyzed by cross power spectral analysis. Sinusoidal currents induced a maximal (resonant) response at a theta frequency (3-10 Hz) in slightly depolarized neurons. As predicted by linear systems theory, the resonant frequency was about the same as the natural (spontaneous) oscillation frequency. However, in some cases, the resonant frequency was higher than the spontaneous oscillation frequency, or resonance was found in the absence of spontaneous oscillations. The sharpness of the resonance (Q), measured by the peak frequency divided by the half-peak power bandwidth, increased from a mean of 0.44 at rest to 0.83 during a mean depolarization of 6.5 mV. The phase of the driven oscillations changed most rapidly near the resonant frequency, and it shifted about 90 degrees over the half-peak bandwidth of 8.4 Hz. Similar results were found using a sinusoidal function of slowly changing frequency as the input. Sinusoidal currents of peak-to-peak intensity of >100 pA may evoke nonlinear responses characterized by second and higher harmonics. The theta-frequency resonance in hippocampal neurons in vitro suggests that the same voltage-dependent phenomenon may be important in enhancing a theta-frequency response when hippocampal neurons are driven by medial septal or other inputs in vivo.

  4. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip.

    Science.gov (United States)

    Du, Yu; Li, Ning; Yang, Hao; Luo, Chunhua; Gong, Yixin; Tong, Chunfang; Gao, Yuxin; Lü, Shouqin; Long, Mian

    2017-02-28

    Physiologically, four major types of hepatic cells - the liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes - reside inside liver sinusoids and interact with flowing peripheral cells under blood flow. It is hard to mimic an in vivo liver sinusoid due to its complex multiple cell-cell interactions, spatiotemporal construction, and mechanical microenvironment. Here we developed an in vitro liver sinusoid chip by integrating the four types of primary murine hepatic cells into two adjacent fluid channels separated by a porous permeable membrane, replicating liver's key structures and configurations. Each type of cells was identified with its respective markers, and the assembled chip presented the liver-specific unique morphology of fenestration. The flow field in the liver chip was quantitatively analyzed by computational fluid dynamics simulations and particle tracking visualization tests. Intriguingly, co-culture and shear flow enhance albumin secretion independently or cooperatively, while shear flow alone enhances HGF production and CYP450 metabolism. Under lipopolysaccharide (LPS) stimulations, the hepatic cell co-culture facilitated neutrophil recruitment in the liver chip. Thus, this 3D-configured in vitro liver chip integrates the two key factors of shear flow and the four types of primary hepatic cells to replicate key structures, hepatic functions, and primary immune responses and provides a new in vitro model to investigate the short-duration hepatic cellular interactions under a microenvironment mimicking the physiology of a liver.

  5. Anode initiated impulse breakdown in water: the dependence on pulse rise time for nanosecond and sub-nanosecond pulses and initiation mechanism based on electrostriction

    CERN Document Server

    Seepersad, Yohan; Dobrynin, Danil

    2015-01-01

    The effect of the voltage rise time on nanosecond and sub-nanosecond impulse breakdown of distilled water is studied. The dependence of anode initiated streamer inception on this parameter is shown to be more intricate than previously reported, particularly as it relates to mechanisms directly in the liquid phase. Dynamics of the emission phase for sub-nanosecond pulses with 600ps rise time are presented to enable comparison with previous work on nanosecond initiation features. Schlieren imaging is also used to show the development of optical density perturbations and rarefactions as a result of electrostriction in the liquid which were previously found for nanosecond pulses as well. The mechanism of nanopore generation in the liquid due to fast impulses proposed by Shneider, Pekker and Fridman is used to explain the results.

  6. Comparison of WDM/Pulse-Position-Modulation (WDM/PPM) with Code/Pulse-Position-Swapping (C/PPS) Based on Wavelength/Time Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    Pulse position modulation (PPM) signaling is favored in intensity modulated/direct detection (IM/DD) systems that have average power limitations. Combining PPM with WDM over a fiber link (WDM/PPM) enables multiple accessing and increases the link's throughput. Electronic bandwidth and synchronization advantages are further gained by mapping the time slots of PPM onto a code space, or code/pulse-position-swapping (C/PPS). The property of multiple bits per symbol typical of PPM can be combined with multiple accessing by using wavelength/time [W/T] codes in C/PPS. This paper compares the performance of WDM/PPM and C/PPS for equal wavelengths and bandwidth.

  7. Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition

    Science.gov (United States)

    2003-04-03

    Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition DISTRIBUTION: Approved for public...Society H2.4 Microstructural and Electrical Characterization of Barium Strontium Titanate- based Solid Solution Thin Films Deposited on Ceramic...investigated and report the microstructural and electrical characterization of selected barium strontium titanate-based solid solution thin films

  8. Comparison of cardiovascular response to sinusoidal and constant lower body negative pressure with reference to very mild whole-body heating

    Directory of Open Access Journals (Sweden)

    Ishibashi Keita

    2012-11-01

    Full Text Available Abstract Background The purpose of the present study was to compare sinusoidal versus constant lower body negative pressure (LBNP with reference to very mild whole-body heating. Sinusoidal LBNP has a periodic load component (PLC and a constant load component (CLC of orthostatic stress, whereas constant LBNP has only a CLC. We tested two sinusoidal patterns (30-s and 180-s periods with 25 mmHg amplitude of LBNP and a constant LBNP with −25 mmHg in 12 adult male subjects. Results Although the CLC of all three LBNP conditions were configured with −25 mmHg, the mean arterial pressure (MAP results showed a significantly large decrease from baseline in the 30-s period condition (P 0, total peripheral resistance (TPR, the natural logarithmic of the HF component (lnHF, and LF/HF (ln(LF/HF of heart rate variability (HRV showed relatively small variations from baseline in the 30-s period condition (P Conclusion These results revealed that the effect of the CLC of LBNP on cardiovascular adjustability was attenuated by the addition of the PLC to LBNP. Based on the results of suppressed HRV response from baseline in the 30-s period condition, we suggest that the attenuation may be caused by the suppression of the vagal responsiveness to LBNP.

  9. Hysteresis Current Control Based Shunt Active Power Filter for Six Pulse Ac/Dc Converter

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Pandey

    2017-02-01

    Full Text Available In this paper the simulation of Shunt Active power Filter using P-Q theory and PI controller has been presented. This SAPF compensates the harmonic currents drawn by three phase six pulse AC/DC converter. The process of compensation is done by calculating the instantaneous reactive power losses using p-q theory and the PI controller to reduce the ripple voltage of the dc capacitor of the PWM-VSI. This approach is different from conventional approach and provides very effective solution. In this simulation we use hysteresis band current controller (HCC for switching the VSI inverter. The simulation has been done for both steady state and transient conditions

  10. Method based on broadband compressed pulse superposition to measure properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    LI Shui; MIAO Rongxing

    2001-01-01

    A method is proposed for the measurements of the performances of underwater acoustic finite sized large area material samples in a free field by using broadband pulse compression technique. As the result of which, the low-frequency cutoff of the standard tests is obviously reduced, and the broadband measurements are also realized. The experimental system provides measurements of complex reflection and transmission coefficients at continuous frequency points. From the data one can obtain the following acoustic parameters: echo reduction and insertion loss, absorption and attenuation coefficients, etc. The measurements are performed for two actual panels with the size 1 m×1 m in the frequency range from 2-20 kHz.

  11. Production of intense attosecond vector beam pulse trains based on harmonics

    Institute of Scientific and Technical Information of China (English)

    韩玉晶; 廖国前; 陈黎明; 李玉同; 王伟民; 张杰

    2015-01-01

    We provide the first report on the harmonics generated by an intense femtosecond vector beam that is normally incident on a solid target. By using 2D particle-in-cell (PIC) codes, we observe the third and the fifth harmonic signals with the same vector structure as the driving beam, and obtain an attosecond vector beam pulse train. We also show that the conversion efficiencies of the third and the fifth harmonics reach their maxima for a plasma density of four times the critical density due to the plasma resonating with the driving force. This method provides a new means of generating intense extreme ultraviolet (XUV) vector beams via ultra-intense laser-driven harmonics.

  12. Design and implementation of a sigma delta technology based pulse oximeter's acquisition stage

    Science.gov (United States)

    Rossi, E. E.; Peñalva, A.; Schaumburg, F.

    2011-12-01

    Pulse oximetry is a widely used tool in medical practice for estimating patient's fraction of hemoglobin bonded to oxygen. Conventional oximetry presents limitations when changes in the baseline, or low amplitude of signals involved occur. The aim of this paper is to simultaneously solve these constraints and to simplify the circuitry needed, by using ΣΔ technology. For this purpose, a board for the acquisition of the needed signals was developed, together with a PC managed software which controls it, and displays and processes in real time the information acquired. Also laboratory and field tests where designed and executed to verify the performance of this equipment in adverse situations. A simple, robust and economic instrument was achieved, capable of obtaining signals even in situations where conventional oximetry fails.

  13. Meta-analysis of pulsed-field gel electrophoresis fingerprints based on a constructed Salmonella database.

    Directory of Open Access Journals (Sweden)

    Wen Zou

    Full Text Available A database was constructed consisting of 45,923 Salmonella pulsed-field gel electrophoresis (PFGE patterns. The patterns, randomly selected from all submissions to CDC PulseNet during 2005 to 2010, included the 20 most frequent serotypes and 12 less frequent serotypes. Meta-analysis was applied to all of the PFGE patterns in the database. In the range of 20 to 1100 kb, serotype Enteritidis averaged the fewest bands at 12 bands and Paratyphi A the most with 19, with most serotypes in the 13-15 range among the 32 serptypes. The 10 most frequent bands for each of the 32 serotypes were sorted and distinguished, and the results were in concordance with those from distance matrix and two-way hierarchical cluster analyses of the patterns in the database. The hierarchical cluster analysis divided the 32 serotypes into three major groups according to dissimilarity measures, and revealed for the first time the similarities among the PFGE patterns of serotype Saintpaul to serotypes Typhimurium, Typhimurium var. 5-, and I 4,[5],12:i:-; of serotype Hadar to serotype Infantis; and of serotype Muenchen to serotype Newport. The results of the meta-analysis indicated that the pattern similarities/dissimilarities determined the serotype discrimination of PFGE method, and that the possible PFGE markers may have utility for serotype identification. The presence of distinct, serotype specific patterns may provide useful information to aid in the distribution of serotypes in the population and potentially reduce the need for laborious analyses, such as traditional serotyping.

  14. Target detection in pulse-Doppler radar based on multi-scanning signal integration

    Directory of Open Access Journals (Sweden)

    O. S. Neuimin

    2013-07-01

    Full Text Available Introduction. Development of multi-scanning signal integration algorithms for pulseDoppler radars which are widely used in practice is of great practical importance. Problem statement. The problem of multi-scanning signal integration measuring range and range-rate is considered. The reflected signal from a target is a distorted white noise coherent packet of radio pulses with random initial phase and known amplitude. Target detection in a sequence of radar scans is reduced to the detection of target track. Development of a two-step multi-scanning incoherent signal integration algorithm. Two-step integration method is applied to reduce the number of tracks. In the first stage the initial signals detection with a sufficiently high probability of false alarm is performed. In the second stage the tracking problem for selection target markers is solved and the multiscanning signal integration is implemented. It provides an optimal target detection solution over K surveys with low signal-to-noise ratio. Expressions for the correct target detection probability and false alarm incorporating quality track tracking are obtained. Simulation results. Analysis of the algorithm is carried out as example of the little maneuvering target detection using the statistical modeling. The methods of calculating the output threshold (the cumulative statistics are compared on it is presented. Conclusions. Increasing the number of scans (in which the integration are performed leads to a significant decreasing the probability of false alarm, which allows to increase the signal-to-noise ratio compared with the detection in a single scan up to 3.5 dB.

  15. Numerical Investigation of Turbulent Natural Convection for a Cavity Having Sinusoidal Protuberances on a Vertical Wall

    Directory of Open Access Journals (Sweden)

    K Rahmani

    2013-01-01

    Full Text Available This work concerns the study of heat transfer by means of natural convection with fluids circulating in enclosures. These topics are largely studied both experimentally and numerically due to their wide industrial application in various fields such as nuclear energy, the heating and cooling of buildings, solar collectors, etc. A great deal of relevant research work consists in numerical simulations of natural convection mechanisms with laminar flows in closed cavities. In this context, the present study comes as a contribution in numerical form investigating the turbulent natural convection in vertical enclosure which presents sinusoidal protuberances on one of its vertical walls. Both the top and bottom of the enclosure are open to allow the fluid flow. The horizontal walls are supposed adiabatic. We are interested in determining for various amplitudes and periods. The influence of geometry on several factors such as: temperature, the number of local Nusselt, the turbulent kinetic energy k and its dissipation. Based on the Navier-Stokes equations and Boussinesq approximation, the equations were solved by the CFD technique using the Finite Volume Method In the case of enclosures having the form ratio equal to 0.6 (A=0.6. Given the steady conditions of heat flow on the vertical walls and the pressures at the entry and exit of the cavity, the results show that when we gradually increase the amplitudes of the protuberance wall (say a=0.005 m, a=0.010, a=0.015, a= 0.02, and a=0.025, the maximal temperature increases with the increase of amplitude. This is due to the rise of the heat transfer surface of the modified wall. Regarding heat transfer parameters, the results show that the number of local Nusselt varies relatively with the amplitudes. This explains that the modified wall is affected locally by a pure conduction. The results obtained in this study are in agreement with recent works of several authors.

  16. Does Newton’s gravitational constant vary sinusoidally with time? Orbital motions say no

    Science.gov (United States)

    Iorio, Lorenzo

    2016-02-01

    A sinusoidally time-varying pattern of the values of Newton’s constant of gravitation G measured in Earth-based laboratories over the last few decades has been recently reported in the literature. We put to the test the hypothesis that the aforementioned harmonic variation may pertain to G itself in a direct and independent way. We numerically integrated the ad hoc modified equations of motion of the major bodies of the Solar System, finding that the orbits of the planets would be altered by an unacceptably larger amount in view of the present-day high accuracy astrometric measurements. In the case of Saturn, its geocentric right ascension α, declination δ and range ρ would be affected by up to {10}4-{10}5 milliarcseconds and 105 km, respectively; the present-day residuals of such observables are as little as about 4 milliarcseconds and 10-1 km, respectively. We analytically calculated the long-term orbital effects induced by the putative harmonic variation of G at hand, finding non-zero rates of change for the semimajor axis a, the eccentricity e and the argument of pericenter ω of a test particle. For the LAGEOS satellite, an orbital increase as large as 3.9 m yr-1 is predicted, in contrast with the observed decay of -0.203 ± 0.035 m yr-1. An anomalous perihelion precession as large as 14 arcseconds per century is implied for Saturn, while latest observations constrain it to the 10-4 arcseconds per century level. The rejection level provided by the Mercury’s perihelion rate is of the same order of magnitude.

  17. Modelling the pulse transformer in SPICE

    Science.gov (United States)

    Godlewska, Malgorzata; Górecki, Krzysztof; Górski, Krzysztof

    2016-01-01

    The paper is devoted to modelling pulse transformers in SPICE. It shows the character of the selected models of this element, points out their advantages and disadvantages, and presents the results of experimental verification of the considered models. These models are characterized by varying degrees of complexity - from linearly coupled linear coils to nonlinear electrothermal models. The study was conducted for transformer with ring cores made of a variety of ferromagnetic materials, while exciting the sinusoidal signal of a frequency 100 kHz and different values of load resistance. The transformers operating conditions under which the considered models ensure the acceptable accuracy of calculations are indicated.

  18. Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode

    Science.gov (United States)

    Zhu, Ge; Zheng, Fu; Wang, Chao; Sun, Zhibin; Zhai, Guangjie; Zhao, Qing

    2016-11-01

    We characterized the dependence of the timing jitter of an InGaAs/InP single-photon avalanche diode on the excess bias voltage (V ex) when operated in 1-GHz sinusoidally gated mode. The single-photon avalanche diode was cooled to -30 degrees Celsius. When the V ex is too low (0.2 V-0.8 V) or too high (3 V-4.2 V), the timing jitter is increased with the V ex, particularly at high V ex. While at middle V ex (1 V-2.8 V), the timing jitter is reduced. Measurements of the timing jitter of the same avalanche diode with pulsed gating show that this effect is likely related to the increase of both the amplitude of the V ex and the width of the gate-on time. For the 1-GHz sinusoidally gated detector, the best jitter of 93 ps is achieved with a photon detection efficiency of 21.4% and a dark count rate of ˜2.08×10-5 per gate at the V ex of 2.8 V. To evaluate the whole performance of the detector, we calculated the noise equivalent power (NEP) and the afterpulse probability (P ap). It is found that both NEP and P ap increase quickly when the V ex is above 2.8 V. At 2.8-V V ex, the NEP and P ap are ˜2.06×10-16 W/Hz1/2 and 7.11%, respectively. Therefore, the detector should be operated with V ex of 2.8 V to exploit the fast time response, low NEP and low P ap. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275024, 61274024, and 61474123), the Youth Innovation Promotion Association, China (Grant No. 2013105), and the Ministry of Science and Technology of China (Grant Nos. 2013YQ030595-3 and 2011AA120101).

  19. 10-GHz return-to-zero pulse source tunable in wavelength with a single- or multiwavelength output based on four-wave mixing in a newly developed highly nonlinear fiber

    DEFF Research Database (Denmark)

    Clausen, A. T.; Oxenlowe, L.; Peucheret, Christophe;

    2001-01-01

    In this letter, a novel scheme for a wavelength-tunable pulse source (WTPS) is proposed and characterized. It is based on four-wave mixing (FWM) in a newly developed highly nonlinear fiber between a return-to-zero (RZ) pulsed signal at a fixed wavelength and a continuous wave probe tunable...... the WTPS compared to the original RZ pulses is negligible....

  20. Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve

    Directory of Open Access Journals (Sweden)

    Meng Di Yin

    2016-03-01

    Full Text Available The pulse-based charging method for battery cells has been recognized as a fast and efficient way to overcome the shortcoming of a slow charging time in distributed battery cells, which is regarded as a connection of cells such as the Internet of Things (IoT. The pulse frequency for controlling the battery charge duration is dynamically controlled within a certain range in order to inject the maximum charge current into the battery cells. The optimal frequency is determined in order to minimize battery impedance. The adaptation of the proposed pulse duty and frequency decreases the concentration of the polarization by sensing the runtime characteristics of battery cells so that it guarantees a certain level of safety in charging the distributed battery cells within the operating temperature range of 5–45 °C. The sensed terminal voltage and temperature of battery cells are dynamically monitored while the battery is charging so as to adjust the frequency and duty of the proposed charging pulse method, thereby preventing battery degradation. The evaluation results show that a newly designed charging algorithm for the implemented charger system is about 18.6% faster than the conventional constant-current (CC charging method with the temperature rise within a reasonable range. The implemented charger system, which is based on the proposed dynamic frequency and duty control by considering the cell polarization, charges to about 80% of its maximum capacity in less than 56 min and involves a 13 °C maximum temperature rise without damaging the battery.

  1. Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code

    Science.gov (United States)

    Hu, Yixiang; Zeng, Jiangtao; Sun, Fengju; Wei, Hao; Yin, Jiahui; Cong, Peitian; Qiu, Aici

    2014-09-01

    Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit model topology of the switch is proposed, and in particular, calculation methods of the dynamic inductance and resistance of the switching arc are described. Moreover, a set of closed equations used for calculations of various node voltages are theoretically derived and numerically discretized. Based on these discrete equations and the Matlab program, a simulation procedure is established for analyses of the ZR main switch. Voltages and currents at different key points are obtained, and comparisons are made with those of a PSpice L-C model. The comparison results show that these two models are perfectly in accord with each other with discrepancy less than 0.1%, which verifies the effectiveness of the TLCODE model to a certain extent.

  2. Tunable sub-20 fs pulses from a 500 kHz OPCPA with 15 W average power based on an all-ytterbium laser

    CERN Document Server

    Puppin, Michele; Prochnow, Oliver; Ahrens, Jan; Binhammer, Thomas; Morgner, Uwe; Krenz, Marcel; Wolf, Martin; Ernstorfer, Ralph

    2014-01-01

    An optical parametric chirped pulse amplifier fully based on Yb lasers at 500 kHz is described. Passive optical-synchronization is achieved between a fiber laser-pumped white-light and a 515 nm pump produced with a 200 W picosecond Yb:YAG InnoSlab amplifier. An output power up to 19.7 W with long-term stability of 0.3% is demonstrated for wavelength tunable pulses between 680 nm and 900 nm and spectral stability of 0.2%; 16.5 W can be achieved with a bandwidth supporting 5.4 fs pulses. We demonstrate compression of 30 microjoule pulses to sub-20 fs duration with a prism compressor, suitable for high harmonic generation.

  3. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    Science.gov (United States)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  4. Realization of ICA for Pulsed Neural Networks Based on Delta-Sigma Modulation and Their Hardware Implementation

    Science.gov (United States)

    Hotta, Hirohisa; Murahashi, Yoshimitsu; Doki, Shinji; Okuma, Shigeru

    In order to ride on the strength of paralell operation a feature of neural network, it is preferable that all neuron is implemented on hardware. Formerly, we combine Neural Network and ΔΣ modulation, which is a method of converting to 1bit pulsed signal. Then we succeeded to configurate “a Pulsed Neural Network based on ΔΣ modulation(DSM-PNN)", which keep the circuit scale as same as to operate precisely. In last paper, we proposed hardware implementation methods of DSM-PNN with GHA learning rule and show its availability in linear operation. However, since neural networks are characterized by nonlinear map, signals needs to be treated with sufficient precision, also in nonlinear operation. In this paper, in order to shows that the 1-bit signal processing by DSM-PNN can be available, even when it includes nonlinear operation, we proposed the technique of realizing algorithm of ICA including nonlinear operation in DSM-PNN and confirm the performance of it.

  5. Foliation-Based Parameter Tuning in a Model of the GnRH Pulse and Surge Generator

    Science.gov (United States)

    Clement, Frederique; Vidal, Alexandre

    2009-01-01

    We investigate a model of the GnRH pulse and surge generator, with the definite aim of constraining the model GnRH output with respect to a physiologically relevant list of specifications. The alternating pulse and surge pattern of secretion results from the interaction between a GnRH secreting system and a regulating system exhibiting slow-fast dynamics. The mechanisms underlying the behavior of the model are reviewed from the study of the Boundary-Layer System according to the dissection method principle. Using singular perturbation theory, we describe the sequence of bifurcations undergone by the regulating (FitzHugh-Nagumo) system, encompassing the rarely investigated case of homoclinic connection. Based on pure dynamical considerations, we restrict the space of parameter search for the regulating system and describe a foliation of this restricted space, whose leaves define constant duration ratios between the surge and the pulsatility phase in the whole system. We propose an algorithm to fix the parameter values also to meet the other prescribed ratios dealing with amplitude and frequency features of the secretion signal. We finally apply these results to illustrate the dynamics of GnRH secretion in the ovine species and the rhesus monkey.

  6. Pulse electrical arc stimulator based on single-electrode for active exercise in tail-suspension rat

    Institute of Scientific and Technical Information of China (English)

    孙联文; 谢添; 樊瑜波; 张晓薇; 孙瑶; 杨肖

    2008-01-01

    To make rat do active exercise to counteract bone loss in the rat tail-suspension model, a pulse electrical stimulator based on single-electrode with a low-current and a high-voltage was designed. The stimulator was controlled by SCM (single chip micyoco) that could accurately control the stimulation duration and the interval between stimulations, and cease the operation after the recorded number of stimulation had reached the value set by the program. With the help of posture estimation part, the device would operate intelligently by determining whether to stimulate or not, depending on the posture of rat’s limb. Software was developed to make operator control the stimulator using computer, save the experiment data and print the report. In practical experiment, the voltaic arc is generated by the stimulator, and impacted on the rat’s thenar. This induced pain to the rat and the rat would actively contract its hindlimb to evade the pain, so active exercise was carried out. The tail-suspension rats were trained twice every day for 14 d. At the 0 and 14th day, bone mineral density of rat femurs was determined by dual energy X-ray absorptiometry (DXA). The results show that the active exercise stimulated by the pulse electrical arc stimulator can attenuate weightlessness-induced bone loss, and this device is a convenient steady performance electrical stimulator that can surely induce rat’s hindlimb to do active exercise.

  7. Noise-like pulse based on dissipative four-wave-mixing with photonic crystal fiber filled by reduced graphene oxide

    CERN Document Server

    Gao, Lei; Huang, Wei

    2014-01-01

    A noise-like pulse based on dissipative four-wave-mixing in a fiber cavity with photonic crystal fiber filled by reduced graphene oxide is proposed. Due to large evanescent field provided by 3 cm photonic crystal fiber and ultrahigh nonlinearity of reduced graphene oxide, this mixed structure provides excellent saturable absorption and high nonlinearity, which are necessary for generating four-wave-mixing (FWM). We experimentally prove that the mode-locked laser transfers its energy from center wavelength to sidebands through degenerate FWM, and new frequencies are generated via cascaded FWM among those sidebands. During this process, the frequencies located in various orders of longitudinal modes of the ring cavity are supported, and others are suppressed due to destructive interference. As the longitudinal modes of the cavity with a spacing of 6.874 MHz are partially supported, the loosely fixed phase relationship results in noise-like pulse with a coherent peak of 530 fs locating on a pedestal of 730.693 p...

  8. Blood Cell Segmentation Based on Improved Pulse Coupled Neural Network and Fuzzy Entropy

    Directory of Open Access Journals (Sweden)

    Zhanbo Liu

    2016-12-01

    Full Text Available In the field of biomedical image processing, because of the low intensity and brightness of the cell image, and the complex structure of the cell image, the segmentation of cell images is very difficult. A large number of studies have shown that the Pulse Coupled Neural Networks (PCNN is suitable for image segmentation. However, the traditional PCNN must set a large number of parameters in image segmentation, and the optimal number of iterations cannot be automatically determined. In this paper, a new improved PCNN model is proposed. The work of improved PCNN includes the acceptance portion of the PCNN model being simplified and the connection portion of PCNN being improved. In addition, the maximum fuzzy entropy is used as the criterion to determine the optimal number of iterations. Experimental results on blood cell image segmentation show that this proposed method can automatically determine the number of loop iterations and automatically select the best threshold. It also has the characteristics of fast convergence, high accuracy and good segmentation effect in blood cell image segmentation processing.

  9. Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor.

    Science.gov (United States)

    Mishra, Rupesh K; Hayat, Akhtar; Catanante, Gaëlle; Istamboulie, Georges; Marty, Jean-Louis

    2016-02-01

    In this work, we propose for the first time a sensitive Ochratoxin A (OTA) detection in cocoa beans using competitive aptasensor by differential pulse voltammetry (DPV). In the proposed method, biotin labeled and free OTA competed to bind with immobilized aptamer onto the surface of a screen printed carbon electrode (SPCE), and percentage binding was calculated. The detection was performed after adding avidin-ALP to perform avidin-biotin reaction; the signal was generated through a suitable substrate 1-naphthyl phosphate (1-NP), for alkaline phosphatase (ALP). The cocoa samples were extracted and purified using molecular imprinted polymer (MIP) columns specifically designed for OTA. The developed aptasensor showed a good linearity in the range 0.15-5 ng/mL with the limit of detection (LOD) 0.07 ng/mL and 3.7% relative standard deviation (RSD). The aptasensor displayed good recovery values in the range 82.1-85% with 3.87% RSD, thus, demonstrated the efficiency of proposed aptasensor for such matrices.

  10. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.

    Science.gov (United States)

    Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C

    2010-06-01

    We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation.

  11. Genetic diversity of Xanthomonas axonopodis pv. citri based on plasmid profile and pulsed field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Carvalho Flávia Maria de Souza

    2005-01-01

    Full Text Available Xanthomonas axonopodis pv. citri strains that cause disease in citrus were investigated by pulsed field and plasmid profile analysis. For the first method, genomic DNA was digested by the rare-cutting enzymes Xba I and Vsp I. The strains evaluated were collected in seven different States of Brazil and in Argentina, Bolivia, Paraguay and Uruguay. Genetic variability was found among strains of X. axonopodis pv. citri from different geographical areas Argentina, Bolivia and Uruguay, with similarities varying from 0.62 to 0.83. However, the strains collected in Brazil, despite being from different States, have shown a genetic similarity ranging from 0.83 to 1.00. Cluster analysis showed a relationship between genomic similarity and geographical origin of the strains. Plasmids were observed in all strains, with a total of five different plasmids, with sizes between 57.7 and 83.0 kilobases. The 72.6 kb plasmid was the most frequent, present in 15 out of 22 strains, while the 68.1 kb plasmid was observed in two strains only. Although the plasmid diversity detected in the present study was not very great, the X. axonopodis pv. citri strains evaluated showed a considerable degree of diversity with regard to this extrachromosomal genetic element.

  12. Linear Track Estimation Using Double Pulse Sources for Near-Field Underwater Moving Target

    Institute of Scientific and Technical Information of China (English)

    Zhifei Chen; Hong Hou; Jianhua Yang; Jincai Sun; Qian Wang

    2013-01-01

    The double pulse sources (DPS) method is presented for linear track estimation in this work.In the field of noise identification of underwater moving target,the Doppler will distort the frequency and amplitude of the radiated noise.To eliminate this,the track estimation is necessary.In the DPS method,we first estimate bearings of two sinusoidal pulse sources installed in the moving target through baseline positioning method.Meanwhile,the emitted and recorded time of each pulse are also acquired.Then the linear track parameters will be achieved based on the geometry pattern with the help of double sources spacing.The simulated results confirm that the DPS improves the performance of the previous double source spacing method.The simulated experiments were carried out using a moving battery car to further evaluate its performance.When the target is 40-60m away,the experiment results show that biases of track azimuth and abeam distance of DPS are under 0.6° and 3.4m,respectively.And the average deviation of estimated velocity is around 0.25m/s.

  13. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo;

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  14. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  15. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency.

    Science.gov (United States)

    Das, Sudeb; Kundu, Malay Kumar

    2012-10-01

    In this article, a novel multimodal medical image fusion (MIF) method based on non-subsampled contourlet transform (NSCT) and pulse-coupled neural network (PCNN) is presented. The proposed MIF scheme exploits the advantages of both the NSCT and the PCNN to obtain better fusion results. The source medical images are first decomposed by NSCT. The low-frequency subbands (LFSs) are fused using the 'max selection' rule. For fusing the high-frequency subbands (HFSs), a PCNN model is utilized. Modified spatial frequency in NSCT domain is input to motivate the PCNN, and coefficients in NSCT domain with large firing times are selected as coefficients of the fused image. Finally, inverse NSCT (INSCT) is applied to get the fused image. Subjective as well as objective analysis of the results and comparisons with state-of-the-art MIF techniques show the effectiveness of the proposed scheme in fusing multimodal medical images.

  16. Generation of ions in a pulsed ion source with an interface based on a polymer track membrane

    Science.gov (United States)

    Balakin, A. A.; Khidirov, S. G.; Buido, E. A.

    2016-10-01

    The time-of-flight spectra of ions generated during the extraction of negative ions from the KI solution in water-glycerin mixture by high-strength electric field pulses are studied using a source with an interface based on a polymer track membrane. It has been shown that the ions formed in secondary processes of bombardment of the membrane surface make a considerable contribution to the observed spectra. It has been found that the peaks of negative hydrogen ions have the highest intensity in the spectrum, indicating effective emission of these ions during the bombardment of polyethylene terephthalate by secondary ions with an energy of about 6 keV. The main trends in the modification of the membrane interface to reduce the fraction of secondary ions in the ion beam have been outlined.

  17. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution

    Science.gov (United States)

    Smith, R. J.; Weber, T. E.

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ˜mm interval given available fiber materials.

  18. Development of a new diagnosis method for caries in human teeth based on thermal images under pulse heating

    Science.gov (United States)

    Sakagami, Takahide; Kubo, Shiro; Naganuma, Takeshi; Inoue, Tomoyasu; Matsuyama, Kazumasa; Kaneko, Kenji

    2001-03-01

    A new diagnosis method based on the pulse heating thermographic NDT was proposed for the incipient caries of human teeth. Experimental study was made on the applicability of the proposed method to the quantitative evaluation of location and shape of the incipient caries as well as the quantitative diagnosis of the degree of incipient caries. The incipient caries were artificially introduced to the extracted human teeth in various severities. Impulse heat flux by the xenon flash lamp was applied to the surface of the tooth and sequential thermal images were taken by the high-speed infrared thermography. It was found that the caries were clearly identified as the localized high temperature region in the sequential thermal images. Coefficients of the temperature descent were obtained from sequential thermal images. It was found that the degree of the demineralization, i.e. the degree of incipient caries was evaluated from temperature descent coefficients.

  19. Ferromagnetic Tubes Testing Based Pulsed Remote Field Eddy Current Technique%基于脉冲远场涡流的管道内检测技术

    Institute of Scientific and Technical Information of China (English)

    杨理践; 王赓; 高松巍

    2012-01-01

    针对传统远场涡流检测方法对铁磁性管道内外壁缺陷灵敏度相同,无法有效区分缺陷在管道内壁还是管道外表面的问题,提出了采用具有丰富频率成分的脉冲激励信号取代传统的远场涡流中正弦信号激励的方法.采用小波去噪方法滤除检测数据中的信号噪声;研究了将检测线圈分别置于近场区、过渡区和远场区时的信号时域特性与管壁伤的关系;进行了针对管道管壁内外相同宽度不同深度缺陷的检测试验,结果表明采用脉冲激励作为激励源并综合运用过渡区的检测信号的幅值和过零时间特征能够有效地区分管壁内外全周向的缺陷.%In view of the traditional remote field eddy current technique for ferromagnetic tube having the same sensitivity of inner and outside walls defect,unable to distinguish the defects in the inner wall or in the outer surface,this paper adopt with abundant frequency components of the pulse signal to replace the traditional remote field eddy current sinusoidal excitation signal. Using the methods of wavelet denoising to filter acquired signal and process the data. This paper studied the relationship between the tube wall defects and signal time-domain characteristics when the detector coil was placed in the direct zone, transition zone and remote field zone. Conduct experiments to acquire data about different depth defects in the inside or outside of the walls, the results show that using the pulse signal as excitation source and characteristics about the detect signal amplitude and zero-crossing time can effectively distinguish between the inner and outer circumferential direction tube wall defects.

  20. 基于脉冲跳变的空间矢量脉冲宽度调制策略%Novel space vector pulse width modulation based on pulse-shifting

    Institute of Scientific and Technical Information of China (English)

    林城美; 王公宝; 汪光森; 李卫超; 崔小鹏

    2016-01-01

    针对二极管钳位型单相九电平逆变器,分析其工作原理,提取了逆变器工作的有效开关状态。根据伏秒平衡原理和两矢量三段式调制规律,提出了一种基于脉冲跳变的空间矢量脉冲宽度调制( space vector pulse width modulation,SVPWM)策略。通过分析所有开关周期脉冲的跳变情况,给出了脉冲类型的判断条件,并根据脉冲类型计算起始和终止电压矢量及其作用时间;同时,应用FPGA设计了模块化SVPWM控制系统,并对该控制系统进行了时钟与资源消耗评估。性能分析结果表明,该调制策略计算速度快、资源消耗小。最后,仿真与实验结果验证了所提调制策略的正确性和有效性,而且能够有效地均衡电容电压。%The operating principle of diode-clamped single phase 9-level inverter was analyzed firstly, and its useful switching vectors of the inverter were obtained. A novel space vector pulse width modulation ( SVPWM) was presented based on pulse-shifting, according to volt-second balance principle and two-vector modulation rule. By analyzing the pulse-shifting condition within one normal switching period, the criterion for judging pulse type was also proposed. Based on different pulse type, the computing method of the start and end voltage vector were different, and their dwell time were also different. The SVPWM control system was implemented using a field programmable gate array ( FPGA) circuit as the hardware simulation platform, whose clock and resource utilization are evaluated. The simulation and experimental results demonstrate that the presented control strategy has good control effect, and balances the capacitor voltages better.