WorldWideScience

Sample records for based satellite image

  1. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......-based observations become available. At present preliminary results are obtained using the routine methods. The first step in the process is to retrieve raw SAR data, calibrate the images and use a priori wind direction as input to the geophysical model function. From this process the wind speed maps are produced....... The wind maps are geo-referenced. The second process is the analysis of a series of geo-referenced SAR-based wind maps. Previous research has shown that a relatively large number of images are needed for achieving certain accuracies on mean wind speed, Weibull A and k (scale and shape parameters...

  2. Model-based satellite image fusion

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Sveinsson, J. R.; Nielsen, Allan Aasbjerg

    2008-01-01

    A method is proposed for pixel-level satellite image fusion derived directly from a model of the imaging sensor. By design, the proposed method is spectrally consistent. It is argued that the proposed method needs regularization, as is the case for any method for this problem. A framework for pixel...

  3. Moving Target Information Extraction Based on Single Satellite Image

    Directory of Open Access Journals (Sweden)

    ZHAO Shihu

    2015-03-01

    Full Text Available The spatial and time variant effects in high resolution satellite push broom imaging are analyzed. A spatial and time variant imaging model is established. A moving target information extraction method is proposed based on a single satellite remote sensing image. The experiment computes two airplanes' flying speed using ZY-3 multispectral image and proves the validity of spatial and time variant model and moving information extracting method.

  4. Automatic Matching of High Resolution Satellite Images Based on RFM

    OpenAIRE

    JI Shunping; YUAN Xiuxiao

    2016-01-01

    A matching method for high resolution satellite images based on RFM is presented.Firstly,the RFM parameters are used to predict the initial parallax of corresponding points and the prediction accuracy is analyzed.Secondly,the approximate epipolar equation is constructed based on projection tracking and its accuracy is analyzed.Thirdly,approximate 1D image matching is executed on pyramid images and least square matching on base images.At last RANSAC is imbedded to eliminate mis-matching points...

  5. Automatic Matching of High Resolution Satellite Images Based on RFM

    Directory of Open Access Journals (Sweden)

    JI Shunping

    2016-02-01

    Full Text Available A matching method for high resolution satellite images based on RFM is presented.Firstly,the RFM parameters are used to predict the initial parallax of corresponding points and the prediction accuracy is analyzed.Secondly,the approximate epipolar equation is constructed based on projection tracking and its accuracy is analyzed.Thirdly,approximate 1D image matching is executed on pyramid images and least square matching on base images.At last RANSAC is imbedded to eliminate mis-matching points and matching results are obtained.Test results verified the method more robust and with higher matching rate,compared to 2D gray correlation method and the popular SIFT matching method,and the method preferably solved the question of high resolution satellite image matching with different stereo model,different time and large rotation images.

  6. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  7. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  8. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    Science.gov (United States)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  9. Autonomous Sub-Pixel Satellite Track Endpoint Determination for Space Based Images

    Energy Technology Data Exchange (ETDEWEB)

    Simms, L M

    2011-03-07

    An algorithm for determining satellite track endpoints with sub-pixel resolution in spaced-based images is presented. The algorithm allows for significant curvature in the imaged track due to rotation of the spacecraft capturing the image. The motivation behind the subpixel endpoint determination is first presented, followed by a description of the methodology used. Results from running the algorithm on real ground-based and simulated spaced-based images are shown to highlight its effectiveness.

  10. Moving object detection in video satellite image based on deep learning

    Science.gov (United States)

    Zhang, Xueyang; Xiang, Junhua

    2017-11-01

    Moving object detection in video satellite image is studied. A detection algorithm based on deep learning is proposed. The small scale characteristics of remote sensing video objects are analyzed. Firstly, background subtraction algorithm of adaptive Gauss mixture model is used to generate region proposals. Then the objects in region proposals are classified via the deep convolutional neural network. Thus moving objects of interest are detected combined with prior information of sub-satellite point. The deep convolution neural network employs a 21-layer residual convolutional neural network, and trains the network parameters by transfer learning. Experimental results about video from Tiantuo-2 satellite demonstrate the effectiveness of the algorithm.

  11. Smoothing of Fused Spectral Consistent Satellite Images

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli

    2006-01-01

    on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. (2005) proposed a method of fusion of satellite images that is based on the properties of imaging physics...

  12. An attitude algorithm based on the band seamless splicing imaging for agile satellite

    Science.gov (United States)

    Wang, Ya-min; Xu, Wei; Jin, Guang; Yang, Xiu-bin; Zhang, Zhao

    2017-09-01

    In order to realize fast maneuvering imaging of the target area with high resolution agile satellite, a new attitude matching algorithm is developed. A strict mosaic imaging model of ray trace and the velocity vector mapping are built according to the strip mosaic imaging principle and the relationship between imaging target and the camera focal plane. The three-axis attitude is deduced based on the principle of optimal tracking of the maneuvering path. Finally, the geometric scaling simulation is carried out through the time delayed and integration (TDI) charge coupled device (CCD) prototype system, satellite attitude control physical simulation platform and the LED earth target simulator. The experimental results show that the algorithm could realize the matching band seamless splicing imaging of the target very well, confirming the correctness of the algorithm.

  13. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area

    Science.gov (United States)

    Ronald E. McRoberts

    2010-01-01

    Satellite image-based maps of forest attributes are of considerable interest and are used for multiple purposes such as international reporting by countries that have no national forest inventory and small area estimation for all countries. Construction of the maps typically entails, in part, rectifying the satellite images to a geographic coordinate system, observing...

  14. Classification of high resolution satellite images using spatial constraints-based fuzzy clustering

    Science.gov (United States)

    Singh, Pankaj Pratap; Garg, Rahul Dev

    2014-01-01

    A spatial constraints-based fuzzy clustering technique is introduced in the paper and the target application is classification of high resolution multispectral satellite images. This fuzzy-C-means (FCM) technique enhances the classification results with the help of a weighted membership function (Wmf). Initially, spatial fuzzy clustering (FC) is used to segment the targeted vegetation areas with the surrounding low vegetation areas, which include the information of spatial constraints (SCs). The performance of the FCM image segmentation is subject to appropriate initialization of Wmf and SC. It is able to evolve directly from the initial segmentation by spatial fuzzy clustering. The controlling parameters in fuzziness of the FCM approach, Wmf and SC, help to estimate the segmented road results, then the Stentiford thinning algorithm is used to estimate the road network from the classified results. Such improvements facilitate FCM method manipulation and lead to segmentation that is more robust. The results confirm its effectiveness for satellite image classification, which extracts useful information in suburban and urban areas. The proposed approach, spatial constraint-based fuzzy clustering with a weighted membership function (SCFCWmf), has been used to extract the information of healthy trees with vegetation and shadows showing elevated features in satellite images. The performance values of quality assessment parameters show a good degree of accuracy for segmented roads using the proposed hybrid SCFCWmf-MO (morphological operations) approach which also occluded nonroad parts.

  15. An Improved Image Encryption Algorithm Based on Cyclic Rotations and Multiple Chaotic Sequences: Application to Satellite Images

    Directory of Open Access Journals (Sweden)

    MADANI Mohammed

    2017-10-01

    Full Text Available In this paper, a new satellite image encryption algorithm based on the combination of multiple chaotic systems and a random cyclic rotation technique is proposed. Our contribution consists in implementing three different chaotic maps (logistic, sine, and standard combined to improve the security of satellite images. Besides enhancing the encryption, the proposed algorithm also focuses on advanced efficiency of the ciphered images. Compared with classical encryption schemes based on multiple chaotic maps and the Rubik's cube rotation, our approach has not only the same merits of chaos systems like high sensitivity to initial values, unpredictability, and pseudo-randomness, but also other advantages like a higher number of permutations, better performances in Peak Signal to Noise Ratio (PSNR and a Maximum Deviation (MD.

  16. Shadow imaging of geosynchronous satellites

    Science.gov (United States)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  17. Crop Classification in Satellite Images through Probabilistic Segmentation Based on Multiple Sources

    Directory of Open Access Journals (Sweden)

    Oscar S. Dalmau

    2017-06-01

    Full Text Available Classification methods based on Gaussian Markov Measure Field Models and other probabilistic approaches have to face the problem of construction of the likelihood. Typically, in these methods, the likelihood is computed from 1D or 3D histograms. However, when the number of information sources grows, as in the case of satellite images, the histogram construction becomes more difficult due to the high dimensionality of the feature space. In this work, we propose a generalization of Gaussian Markov Measure Field Models and provide a probabilistic segmentation scheme, which fuses multiple information sources for image segmentation. In particular, we apply the general model to classify types of crops in satellite images. The proposed method allows us to combine several feature spaces. For this purpose, the method requires prior information for building a 3D histogram for each considered feature space. Based on previous histograms, we can compute the likelihood of each site of the image to belong to a class. The computed likelihoods are the main input of the proposed algorithm and are combined in the proposed model using a contrast criteria. Different feature spaces are analyzed, among them are 6 spectral bands from LANDSAT 5 TM, 3 principal components from PCA on 6 spectral bands and 3 principal components from PCA applied on 10 vegetation indices. The proposed algorithm was applied to a real image and obtained excellent results in comparison to different classification algorithms used in crop classification.

  18. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  19. A graph-based approach to detect spatiotemporal dynamics in satellite image time series

    Science.gov (United States)

    Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal

    2017-08-01

    Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.

  20. Satellite Image Pansharpening Using a Hybrid Approach for Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Hoan

    2012-10-01

    Full Text Available Intensity-Hue-Saturation (IHS, Brovey Transform (BT, and Smoothing-Filter-Based-Intensity Modulation (SFIM algorithms were used to pansharpen GeoEye-1 imagery. The pansharpened images were then segmented in Berkeley Image Seg using a wide range of segmentation parameters, and the spatial and spectral accuracy of image segments was measured. We found that pansharpening algorithms that preserve more of the spatial information of the higher resolution panchromatic image band (i.e., IHS and BT led to more spatially-accurate segmentations, while pansharpening algorithms that minimize the distortion of spectral information of the lower resolution multispectral image bands (i.e., SFIM led to more spectrally-accurate image segments. Based on these findings, we developed a new IHS-SFIM combination approach, specifically for object-based image analysis (OBIA, which combined the better spatial information of IHS and the more accurate spectral information of SFIM to produce image segments with very high spatial and spectral accuracy.

  1. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  2. Rule-based land cover classification from very high-resolution satellite image with multiresolution segmentation

    Science.gov (United States)

    Haque, Md. Enamul; Al-Ramadan, Baqer; Johnson, Brian A.

    2016-07-01

    Multiresolution segmentation and rule-based classification techniques are used to classify objects from very high-resolution satellite images of urban areas. Custom rules are developed using different spectral, geometric, and textural features with five scale parameters, which exploit varying classification accuracy. Principal component analysis is used to select the most important features out of a total of 207 different features. In particular, seven different object types are considered for classification. The overall classification accuracy achieved for the rule-based method is 95.55% and 98.95% for seven and five classes, respectively. Other classifiers that are not using rules perform at 84.17% and 97.3% accuracy for seven and five classes, respectively. The results exploit coarse segmentation for higher scale parameter and fine segmentation for lower scale parameter. The major contribution of this research is the development of rule sets and the identification of major features for satellite image classification where the rule sets are transferable and the parameters are tunable for different types of imagery. Additionally, the individual objectwise classification and principal component analysis help to identify the required object from an arbitrary number of objects within images given ground truth data for the training.

  3. kCCA Transformation-Based Radiometric Normalization of Multi-Temporal Satellite Images

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-03-01

    Full Text Available Radiation normalization is an essential pre-processing step for generating high-quality satellite sequence images. However, most radiometric normalization methods are linear, and they cannot eliminate the regular nonlinear spectral differences. Here we introduce the well-established kernel canonical correlation analysis (kCCA into radiometric normalization for the first time to overcome this problem, which leads to a new kernel method. It can maximally reduce the image differences among multi-temporal images regardless of the imaging conditions and the reflectivity difference. It also perfectly eliminates the impact of nonlinear changes caused by seasonal variation of natural objects. Comparisons with the multivariate alteration detection (CCA-based normalization and the histogram matching, on Gaofen-1 (GF-1 data, indicate that the kCCA-based normalization can preserve more similarity and better correlation between an image-pair and effectively avoid the color error propagation. The proposed method not only builds the common scale or reference to make the radiometric consistency among GF-1 image sequences, but also highlights the interesting spectral changes while eliminates less interesting spectral changes. Our method enables the application of GF-1 data for change detection, land-use, land-cover change detection etc.

  4. A Novel Algorithm for Satellite Images Fusion Based on Compressed Sensing and PCA

    Directory of Open Access Journals (Sweden)

    Wenkao Yang

    2013-01-01

    Full Text Available This paper studies the image fusion of high-resolution panchromatic image and low-resolution multispectral image. Based on the classic fusion algorithms on remote sensing image fusion, the PCA (principal component analysis transform, and discrete wavelet transform, we carry out in-depth research. The compressed sensing (CS abandons the full sample and shifts the sampling of the signal to sampling information that greatly reduces the potential consumption of traditional signal acquisition and processing. We combine compressed sensing with satellite remote sensing image fusion algorithm and propose an innovative fusion algorithm (CS-FWT-PCA, in which the symmetric fractional B-spline wavelet acts as the sparse base. In the algorithm we use Hama Da matrix as the measurement matrix and SAMP as the reconstruction algorithm and adopt an improved fusion rule based on the local variance. The simulation results show that the CS-FWT-PCA fusion algorithm achieves better fusion effect than the traditional fusion method.

  5. Satellite approach based on cloud cover classification: Estimation of hourly global solar radiation from meteosat images

    International Nuclear Information System (INIS)

    Mefti, A.; Adane, A.; Bouroubi, M.Y.

    2008-01-01

    Hourly global solar irradiation data useful for the design of solar energy conversion systems is generated using a new satellite based model called SICIC (solar irradiation from cloud image classification). It is a model built by processing high resolution visible Meteosat images and ground measurements of solar radiation flux collected in various locations of France during the 1994/95 period. Taking into account the hourly variability of solar radiation flux, SICIC begins by sorting the sun elevation angles into representative classes. For each location and each class, the clearness index is then computed, and the grey levels of the pixels of the visible Meteosat images are converted into cloud cover indexes. Next, two adjustable thresholds are used to split the set of cloud cover indices into three subsets representing clear, partly covered and overcast skies, respectively. Finally, three regression equations linking the clearness and cloud cover indices are obtained for the three sky categories. In these equations, the SICIC parameters (the regression coefficients and both thresholds) vary against the solar elevation angle. SICIC then yields a good estimate of the hourly global solar irradiation flux for every site displayed in the Meteosat images. This model is compared to GISTEL, which is another model governed by the same hypotheses as SICIC but differing by the invariability of its parameters in time. SICIC is found to be more accurate than GISTEL. In particular, the hourly solar data are estimated with an error (RMSE) varying from 32% to 12% for SICIC and 44% to 14% for GISTEL when the sun altitude increases from 15 o to 75 o . At the daily scale, SICIC is also more efficient than GISTEL. It has been satisfactorily applied to other sites of France and Algeria. The tests made on Wefax and B2 Meteosat images show that this model can be easily extended to other satellite images

  6. Wavelet-Based Local Contrast Enhancement for Satellite, Aerial and Close Range Images

    Directory of Open Access Journals (Sweden)

    Krystian Pyka

    2017-01-01

    Full Text Available The methods used for image contrast enhancement in the wavelet domain have been previously documented. The essence of these methods lies in the manipulation of the image during the reconstruction process, by changing the relationship between the components that require transformation. This paper proposes a new variant based on using undecimated wavelet transform and adapting the Gaussian function for scaling the coefficients of detail wavelet components, so that the role of low coefficients in the reconstructed image is greater. The enhanced image is then created by combining the new components. Applying the Haar wavelet minimises the effects of the relationship disturbance between components, and creates a small buffer around the edge. The proposed method was tested using six images at different scales, collected with handheld photo cameras, and aerial and satellite optical sensors. The results of the tests indicate that the method can achieve comparable, or even better enhancement effects for weak edges, than the well-known unsharp masking and Retinex methods. The proposed method can be applied in order to improve the visual interpretation of remote sensing images taken by various sensors at different scales.

  7. Ship Detection in Optical Satellite Image Based on RX Method and PCAnet

    Science.gov (United States)

    Shao, Xiu; Li, Huali; Lin, Hui; Kang, Xudong; Lu, Ting

    2017-12-01

    In this paper, we present a novel method for ship detection in optical satellite image based on the ReedXiaoli (RX) method and the principal component analysis network (PCAnet). The proposed method consists of the following three steps. First, the spatially adjacent pixels in optical image are arranged into a vector, transforming the optical image into a 3D cube image. By taking this process, the contextual information of the spatially adjacent pixels can be integrated to magnify the discrimination between ship and background. Second, the RX anomaly detection method is adopted to preliminarily extract ship candidates from the produced 3D cube image. Finally, real ships are further confirmed among ship candidates by applying the PCAnet and the support vector machine (SVM). Specifically, the PCAnet is a simple deep learning network which is exploited to perform feature extraction, and the SVM is applied to achieve feature pooling and decision making. Experimental results demonstrate that our approach is effective in discriminating between ships and false alarms, and has a good ship detection performance.

  8. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  9. An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Chandi Witharana

    2016-04-01

    Full Text Available The logistical challenges of Antarctic field work and the increasing availability of very high resolution commercial imagery have driven an interest in more efficient search and classification of remotely sensed imagery. This exploratory study employed geographic object-based analysis (GEOBIA methods to classify guano stains, indicative of chinstrap and Adélie penguin breeding areas, from very high spatial resolution (VHSR satellite imagery and closely examined the transferability of knowledge-based GEOBIA rules across different study sites focusing on the same semantic class. We systematically gauged the segmentation quality, classification accuracy, and the reproducibility of fuzzy rules. A master ruleset was developed based on one study site and it was re-tasked “without adaptation” and “with adaptation” on candidate image scenes comprising guano stains. Our results suggest that object-based methods incorporating the spectral, textural, spatial, and contextual characteristics of guano are capable of successfully detecting guano stains. Reapplication of the master ruleset on candidate scenes without modifications produced inferior classification results, while adapted rules produced comparable or superior results compared to the reference image. This work provides a road map to an operational “image-to-assessment pipeline” that will enable Antarctic wildlife researchers to seamlessly integrate VHSR imagery into on-demand penguin population census.

  10. SUPER RESOLUTION RECONSTRUCTION BASED ON ADAPTIVE DETAIL ENHANCEMENT FOR ZY-3 SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Zhu

    2016-06-01

    Full Text Available Super-resolution reconstruction of sequence remote sensing image is a technology which handles multiple low-resolution satellite remote sensing images with complementary information and obtains one or more high resolution images. The cores of the technology are high precision matching between images and high detail information extraction and fusion. In this paper puts forward a new image super resolution model frame which can adaptive multi-scale enhance the details of reconstructed image. First, the sequence images were decomposed into a detail layer containing the detail information and a smooth layer containing the large scale edge information by bilateral filter. Then, a texture detail enhancement function was constructed to promote the magnitude of the medium and small details. Next, the non-redundant information of the super reconstruction was obtained by differential processing of the detail layer, and the initial super resolution construction result was achieved by interpolating fusion of non-redundant information and the smooth layer. At last, the final reconstruction image was acquired by executing a local optimization model on the initial constructed image. Experiments on ZY-3 satellite images of same phase and different phase show that the proposed method can both improve the information entropy and the image details evaluation standard comparing with the interpolation method, traditional TV algorithm and MAP algorithm, which indicate that our method can obviously highlight image details and contains more ground texture information. A large number of experiment results reveal that the proposed method is robust and universal for different kinds of ZY-3 satellite images.

  11. Satellite-based ET estimation using Landsat 8 images and SEBAL model

    Directory of Open Access Journals (Sweden)

    Bruno Bonemberger da Silva

    Full Text Available ABSTRACT Estimation of evapotranspiration is a key factor to achieve sustainable water management in irrigated agriculture because it represents water use of crops. Satellite-based estimations provide advantages compared to direct methods as lysimeters especially when the objective is to calculate evapotranspiration at a regional scale. The present study aimed to estimate the actual evapotranspiration (ET at a regional scale, using Landsat 8 - OLI/TIRS images and complementary data collected from a weather station. SEBAL model was used in South-West Paraná, region composed of irrigated and dry agricultural areas, native vegetation and urban areas. Five Landsat 8 images, row 223 and path 78, DOY 336/2013, 19/2014, 35/2014, 131/2014 and 195/2014 were used, from which ET at daily scale was estimated as a residual of the surface energy balance to produce ET maps. The steps for obtain ET using SEBAL include radiometric calibration, calculation of the reflectance, surface albedo, vegetation indexes (NDVI, SAVI and LAI and emissivity. These parameters were obtained based on the reflective bands of the orbital sensor with temperature surface estimated from thermal band. The estimated ET values in agricultural areas, native vegetation and urban areas using SEBAL algorithm were compatible with those shown in the literature and ET errors between the ET estimates from SEBAL model and Penman Monteith FAO 56 equation were less than or equal to 1.00 mm day-1.

  12. Satellite image classification using convolutional learning

    Science.gov (United States)

    Nguyen, Thao; Han, Jiho; Park, Dong-Chul

    2013-10-01

    A satellite image classification method using Convolutional Neural Network (CNN) architecture is proposed in this paper. As a special case of deep learning, CNN classifies classes of images without any feature extraction step while other existing classification methods utilize rather complex feature extraction processes. Experiments on a set of satellite image data and the preliminary results show that the proposed classification method can be a promising alternative over existing feature extraction-based schemes in terms of classification accuracy and classification speed.

  13. An Ontology-Based Reasoning Framework for Querying Satellite Images for Disaster Monitoring

    Directory of Open Access Journals (Sweden)

    Marjan Alirezaie

    2017-11-01

    Full Text Available This paper presents a framework in which satellite images are classified and augmented with additional semantic information to enable queries about what can be found on the map at a particular location, but also about paths that can be taken. This is achieved by a reasoning framework based on qualitative spatial reasoning that is able to find answers to high level queries that may vary on the current situation. This framework called SemCityMap, provides the full pipeline from enriching the raw image data with rudimentary labels to the integration of a knowledge representation and reasoning methods to user interfaces for high level querying. To illustrate the utility of SemCityMap in a disaster scenario, we use an urban environment—central Stockholm—in combination with a flood simulation. We show that the system provides useful answers to high-level queries also with respect to the current flood status. Examples of such queries concern path planning for vehicles or retrieval of safe regions such as “find all regions close to schools and far from the flooded area”. The particular advantage of our approach lies in the fact that ontological information and reasoning is explicitly integrated so that queries can be formulated in a natural way using concepts on appropriate level of abstraction, including additional constraints.

  14. THE ANALYSIS OF MOISTURE DEFICIT BASED ON MODIS AND LANDSAT SATELLITE IMAGES. CASE STUDY: THE OLTENIA PLAIN

    Directory of Open Access Journals (Sweden)

    ONȚEL IRINA

    2014-03-01

    Full Text Available Satellite images are an important source of information to identify and analyse some hazardous climatic phenomena such as the dryness and drought. These phenomena are characterized by scarce rainfall, increased evapotranspiration and high soil moisture deficit. The soil water reserve depletes to the wilting coefficient, soon followed by the pedological drought which has negative effects on vegetation and agricultural productivity. The MODIS satellite images (Moderate Resolution Imaging Spectroradiometer allow the monitoring of the vegetation throughout the entire vegetative period, with a frequency of 1-2 days and with a spatial resolution of 250 m, 500 m and 1 km away. Another useful source of information is the LANDSAT satellite images, with a spatial resolution of 30 m. Based on MODIS and Landsat satellite images, were calculated moisture monitoring index such as SIWSI (Shortwave Infrared Water Stress Index. Consequently, some years with low moisture such as 2000, 2002, 2007 and 2012 could be identified. Spatially, the areas with moisture deficit varied from one year to another all over the whole analised period (2000-2012. The remote sensing results was corelated with Standard Precipitation Anomaly, which gives a measure of the severity of a wet or dry event.

  15. Using PACS and wavelet-based image compression in a wide-area network to support radiation therapy imaging applications for satellite hospitals

    Science.gov (United States)

    Smith, Charles L.; Chu, Wei-Kom; Wobig, Randy; Chao, Hong-Yang; Enke, Charles

    1999-07-01

    An ongoing PACS project at our facility has been expanded to include providing and managing images used for routine clinical operation of the department of radiation oncology. The intent of our investigation has been to enable out clinical radiotherapy service to enter the tele-medicine environment through the use of a PACS system initially implemented in the department of radiology. The backbone for the imaging network includes five CT and three MR scanners located across three imaging centers. A PC workstation in the department of radiation oncology was used to transmit CT imags to a satellite facility located approximately 60 miles from the primary center. Chest CT images were used to analyze network transmission performance. Connectivity established between the primary department and satellite has fulfilled all image criteria required by the oncologist. Establishing the link tot eh oncologist at the satellite diminished bottlenecking of imaging related tasks at the primary facility due to physician absence. A 30:1 compression ratio using a wavelet-based algorithm provided clinically acceptable images treatment planning. Clinical radiotherapy images can be effectively managed in a wide- area-network to link satellite facilities to larger clinical centers.

  16. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    Science.gov (United States)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  17. Satellite Images-Based Obstacle Recognition and Trajectory Generation for Agricultural Vehicles

    Directory of Open Access Journals (Sweden)

    Mehmet Bodur

    2015-12-01

    Full Text Available In this study, a method for the generation of tracking trajectory points, detection and positioning of obstacles in agricultural fields have been presented. Our principal contribution is to produce traceable GPS trajectories for agricultural vehicles to be utilized by path planning algorithms, rather than a new path planning algorithm. The proposed system works with minimal initialization requirements, specifically, a single geographical coordinate entry of an agricultural field. The automation of agricultural plantation requires many aspects to be addressed, many of which have been covered in previous studies. Depending on the type of crop, different agricultural vehicles may be used in the field. However, regardless of their application, they all follow a specified trajectory in the field. This study takes advantage of satellite images for the detection and positioning of obstacles, and the generation of GPS trajectories in the agricultural realm. A set of image processing techniques is applied in Matlab for detection and positioning.

  18. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    Science.gov (United States)

    Osipov, Gennady

    2013-04-01

    We propose a solution to the problem of exploration of various mineral resource deposits, determination of their forms / classification of types (oil, gas, minerals, gold, etc.) with the help of satellite photography of the region of interest. Images received from satellite are processed and analyzed to reveal the presence of specific signs of deposits of various minerals. Course of data processing and making forecast can be divided into some stages: Pre-processing of images. Normalization of color and luminosity characteristics, determination of the necessary contrast level and integration of a great number of separate photos into a single map of the region are performed. Construction of semantic map image. Recognition of bitmapped image and allocation of objects and primitives known to system are realized. Intelligent analysis. At this stage acquired information is analyzed with the help of a knowledge base, which contain so-called "attention landscapes" of experts. Used methods of recognition and identification of images: a) combined method of image recognition, b)semantic analysis of posterized images, c) reconstruction of three-dimensional objects from bitmapped images, d)cognitive technology of processing and interpretation of images. This stage is fundamentally new and it distinguishes suggested technology from all others. Automatic registration of allocation of experts` attention - registration of so-called "attention landscape" of experts - is the base of the technology. Landscapes of attention are, essentially, highly effective filters that cut off unnecessary information and emphasize exactly the factors used by an expert for making a decision. The technology based on denoted principles involves the next stages, which are implemented in corresponding program agents. Training mode -> Creation of base of ophthalmologic images (OI) -> Processing and making generalized OI (GOI) -> Mode of recognition and interpretation of unknown images. Training mode

  19. Spectrally Consistent Satellite Image Fusion with Improved Image Priors

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Aanæs, Henrik; Jensen, Thomas B.S.

    2006-01-01

    Here an improvement to our previous framework for satellite image fusion is presented. A framework purely based on the sensor physics and on prior assumptions on the fused image. The contributions of this paper are two fold. Firstly, a method for ensuring 100% spectrally consistency is proposed......, even when more sophisticated image priors are applied. Secondly, a better image prior is introduced, via data-dependent image smoothing....

  20. A Web-based Google-Earth Coincident Imaging Tool for Satellite Calibration and Validation

    Science.gov (United States)

    Killough, B. D.; Chander, G.; Gowda, S.

    2009-12-01

    The Group on Earth Observations (GEO) is coordinating international efforts to build a Global Earth Observation System of Systems (GEOSS) to meet the needs of its nine “Societal Benefit Areas”, of which the most demanding, in terms of accuracy, is climate. To accomplish this vision, satellite on-orbit and ground-based data calibration and validation (Cal/Val) of Earth observation measurements are critical to our scientific understanding of the Earth system. Existing tools supporting space mission Cal/Val are often developed for specific campaigns or events with little desire for broad application. This paper describes a web-based Google-Earth based tool for the calculation of coincident satellite observations with the intention to support a diverse international group of satellite missions to improve data continuity, interoperability and data fusion. The Committee on Earth Observing Satellites (CEOS), which includes 28 space agencies and 20 other national and international organizations, are currently operating and planning over 240 Earth observation satellites in the next 15 years. The technology described here will better enable the use of multiple sensors to promote increased coordination toward a GEOSS. The CEOS Systems Engineering Office (SEO) and the Working Group on Calibration and Validation (WGCV) support the development of the CEOS Visualization Environment (COVE) tool to enhance international coordination of data exchange, mission planning and Cal/Val events. The objective is to develop a simple and intuitive application tool that leverages the capabilities of Google-Earth web to display satellite sensor coverage areas and for the identification of coincident scene locations along with dynamic menus for flexibility and content display. Key features and capabilities include user-defined evaluation periods (start and end dates) and regions of interest (rectangular areas) and multi-user collaboration. Users can select two or more CEOS missions from a

  1. Target Matching Recognition for Satellite Images Based on the Improved FREAK Algorithm

    Directory of Open Access Journals (Sweden)

    Yantong Chen

    2016-01-01

    Full Text Available Satellite remote sensing image target matching recognition exhibits poor robustness and accuracy because of the unfit feature extractor and large data quantity. To address this problem, we propose a new feature extraction algorithm for fast target matching recognition that comprises an improved feature from accelerated segment test (FAST feature detector and a binary fast retina key point (FREAK feature descriptor. To improve robustness, we extend the FAST feature detector by applying scale space theory and then transform the feature vector acquired by the FREAK descriptor from decimal into binary. We reduce the quantity of data in the computer and improve matching accuracy by using the binary space. Simulation test results show that our algorithm outperforms other relevant methods in terms of robustness and accuracy.

  2. Patch-based image segmentation of satellite imagery using minimum spanning tree construction

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-01-01

    We present a method for hierarchical image segmentation and feature extraction. This method builds upon the combination of the detection of image spectral discontinuities using Canny edge detection and the image Laplacian, followed by the construction of a hierarchy of segmented images of successively reduced levels of details. These images are represented as sets of polygonized pixel patches (polygons) attributed with spectral and structural characteristics. This hierarchy forms the basis for object-oriented image analysis. To build fine level-of-detail representation of the original image, seed partitions (polygons) are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on the top of the detected spectral discontinuities that form a network of constraints for the Delaunay triangulation. A polygonized image is represented as a spatial network in the form of a graph with vertices which correspond to the polygonal partitions and graph edges reflecting pairwise partitions relations. Image graph partitioning is based on the iterative graph oontraction using Boruvka's Minimum Spanning Tree algorithm. An important characteristic of the approach is that the agglomeration of partitions is constrained by the detected spectral discontinuities; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects.

  3. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    Science.gov (United States)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  4. A new web-based system for unsupervised classification of satellite images from the Google Maps engine

    Science.gov (United States)

    Ferrán, Ángel; Bernabé, Sergio; García-Rodríguez, Pablo; Plaza, Antonio

    2012-10-01

    In this paper, we develop a new web-based system for unsupervised classification of satellite images available from the Google Maps engine. The system has been developed using the Google Maps API and incorporates functionalities such as unsupervised classification of image portions selected by the user (at the desired zoom level). For this purpose, we use a processing chain made up of the well-known ISODATA and k-means algorithms, followed by spatial post-processing based on majority voting. The system is currently hosted on a high performance server which performs the execution of classification algorithms and returns the obtained classification results in a very efficient way. The previous functionalities are necessary to use efficient techniques for the classification of images and the incorporation of content-based image retrieval (CBIR). Several experimental validation types of the classification results with the proposed system are performed by comparing the classification accuracy of the proposed chain by means of techniques available in the well-known Environment for Visualizing Images (ENVI) software package. The server has access to a cluster of commodity graphics processing units (GPUs), hence in future work we plan to perform the processing in parallel by taking advantage of the cluster.

  5. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  6. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  7. 4-D display of satellite cloud images

    Science.gov (United States)

    Hibbard, William L.

    1987-01-01

    A technique has been developed to display GOES satellite cloud images in perspective over a topographical map. Cloud heights are estimated using temperatures from an infrared (IR) satellite image, surface temperature observations, and a climatological model of vertical temperature profiles. Cloud levels are discriminated from each other and from the ground using a pattern recognition algorithm based on the brightness variance technique of Coakley and Bretherton. The cloud regions found by the pattern recognizer are rendered in three-dimensional perspective over a topographical map by an efficient remap of the visible image. The visible shades are mixed with an artificial shade based on the geometry of the cloud-top surface, in order to enhance the texture of the cloud top.

  8. Space Object Detection in Video Satellite Images Using Motion Information

    Directory of Open Access Journals (Sweden)

    Xueyang Zhang

    2017-01-01

    Full Text Available Compared to ground-based observation, space-based observation is an effective approach to catalog and monitor increasing space objects. In this paper, space object detection in a video satellite image with star image background is studied. A new detection algorithm using motion information is proposed, which includes not only the known satellite attitude motion information but also the unknown object motion information. The effect of satellite attitude motion on an image is analyzed quantitatively, which can be decomposed into translation and rotation. Considering the continuity of object motion and brightness change, variable thresholding based on local image properties and detection of the previous frame is used to segment a single-frame image. Then, the algorithm uses the correlation of object motion in multiframe and satellite attitude motion information to detect the object. Experimental results with a video image from the Tiantuo-2 satellite show that this algorithm provides a good way for space object detection.

  9. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2015-07-01

    Full Text Available As convective clouds in Northeast Asia are accompanied by various hazards related with heavy rainfall and thunderstorms, it is very important to detect convective initiation (CI in the region in order to mitigate damage by such hazards. In this study, a novel approach for CI detection using images from Meteorological Imager (MI, a payload of the Communication, Ocean, and Meteorological Satellite (COMS, was developed by improving the criteria of the interest fields of Rapidly Developing Cumulus Areas (RDCA derivation algorithm, an official CI detection algorithm for Multi-functional Transport SATellite-2 (MTSAT-2, based on three machine learning approaches—decision trees (DT, random forest (RF, and support vector machines (SVM. CI was defined as clouds within a 16 × 16 km window with the first detection of lightning occurrence at the center. A total of nine interest fields derived from visible, water vapor, and two thermal infrared images of MI obtained 15–75 min before the lightning occurrence were used as input variables for CI detection. RF produced slightly higher performance (probability of detection (POD of 75.5% and false alarm rate (FAR of 46.2% than DT (POD of 70.7% and FAR of 46.6% for detection of CI caused by migrating frontal cyclones and unstable atmosphere. SVM resulted in relatively poor performance with very high FAR ~83.3%. The averaged lead times of CI detection based on the DT and RF models were 36.8 and 37.7 min, respectively. This implies that CI over Northeast Asia can be forecasted ~30–45 min in advance using COMS MI data.

  10. Satellite angular velocity estimation based on star images and optical flow techniques.

    Science.gov (United States)

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-09-25

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  11. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-09-01

    Full Text Available An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  12. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    Science.gov (United States)

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  13. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  14. Sharpening method of satellite thermal image based on the geographical statistical model

    Science.gov (United States)

    Qi, Pengcheng; Hu, Shixiong; Zhang, Haijun; Guo, Guangmeng

    2016-04-01

    To improve the effectiveness of thermal sharpening in mountainous regions, paying more attention to the laws of land surface energy balance, a thermal sharpening method based on the geographical statistical model (GSM) is proposed. Explanatory variables were selected from the processes of land surface energy budget and thermal infrared electromagnetic radiation transmission, then high spatial resolution (57 m) raster layers were generated for these variables through spatially simulating or using other raster data as proxies. Based on this, the local adaptation statistical relationship between brightness temperature (BT) and the explanatory variables, i.e., the GSM, was built at 1026-m resolution using the method of multivariate adaptive regression splines. Finally, the GSM was applied to the high-resolution (57-m) explanatory variables; thus, the high-resolution (57-m) BT image was obtained. This method produced a sharpening result with low error and good visual effect. The method can avoid the blind choice of explanatory variables and remove the dependence on synchronous imagery at visible and near-infrared bands. The influences of the explanatory variable combination, sampling method, and the residual error correction on sharpening results were analyzed deliberately, and their influence mechanisms are reported herein.

  15. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    International Nuclear Information System (INIS)

    Zaher, A; Thiery, F; Grieu, S; Traoré, A; N’goran, Y

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking. (paper)

  16. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    Science.gov (United States)

    Zaher, A.; N'goran, Y.; Thiery, F.; Grieu, S.; Traoré, A.

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking.

  17. Benefits of Red-Edge Spectral Band and Texture Features for the Object-based Classification using RapidEye sSatellite Image data

    Science.gov (United States)

    Kim, H. O.; Yeom, J. M.

    2014-12-01

    Space-based remote sensing in agriculture is particularly relevant to issues such as global climate change, food security, and precision agriculture. Recent satellite missions have opened up new perspectives by offering high spatial resolution, various spectral properties, and fast revisit rates to the same regions. Here, we examine the utility of broadband red-edge spectral information in multispectral satellite image data for classifying paddy rice crops in South Korea. Additionally, we examine how object-based spectral features affect the classification of paddy rice growth stages. For the analysis, two seasons of RapidEye satellite image data were used. The results showed that the broadband red-edge information slightly improved the classification accuracy of the crop condition in heterogeneous paddy rice crop environments, particularly when single-season image data were used. This positive effect appeared to be offset by the multi-temporal image data. Additional texture information brought only a minor improvement or a slight decline, although it is well known to be advantageous for object-based classification in general. We conclude that broadband red-edge information derived from conventional multispectral satellite data has the potential to improve space-based crop monitoring. Because the positive or negative effects of texture features for object-based crop classification could barely be interpreted, the relationships between the textual properties and paddy rice crop parameters at the field scale should be further examined in depth.

  18. Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station

    Science.gov (United States)

    Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł

    2017-12-01

    To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.

  19. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  20. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  1. A Study on Retrieval Algorithm of Black Water Aggregation in Taihu Lake Based on HJ-1 Satellite Images

    International Nuclear Information System (INIS)

    Lei, Zou; Bing, Zhang; Junsheng, Li; Qian, Shen; Fangfang, Zhang; Ganlin, Wang

    2014-01-01

    The phenomenon of black water aggregation (BWA) occurs in inland water when massive algal bodies aggregate, die, and react with the toxic sludge in certain climate conditions to deprive the water of oxygen. This process results in the deterioration of water quality and damage to the ecosystem. Because charge coupled device (CCD) camera data from the Chinese HJ environmental satellite shows high potential in monitoring BWA, we acquired four HJ-CCD images of Taihu Lake captured during 2009 to 2011 to study this phenomenon. The first study site was selected near the Shore of Taihu Lake. We pre-processed the HJ-CCD images and analyzed the digital number (DN) gray values in the research area and in typical BWA areas. The results show that the DN values of visible bands in BWA areas are obviously lower than those in the research areas. Moreover, we developed an empirical retrieving algorithm of BWA based on the DN mean values and variances of research areas. Finally, we tested the accuracy of this empirical algorithm. The retrieving accuracies were89.9%, 58.1%, 73.4%, and 85.5%, respectively, which demonstrates the efficiency of empirical algorithm in retrieving the approximate distributions of BWA

  2. Satellite-Based Quantum Communications

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; McCabe, Kevin P [Los Alamos National Laboratory; Newell, Raymond T [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  3. Virtual Satellite Construction and Application for Image Classification

    International Nuclear Information System (INIS)

    Su, W G; Su, F Z; Zhou, C H

    2014-01-01

    Nowadays, most remote sensing image classification uses single satellite remote sensing data, so the number of bands and band spectral width is consistent. In addition, observed phenomenon such as land cover have the same spectral signature, which causes the classification accuracy to decrease as different data have unique characteristic. Therefore, this paper analyzes different optical remote sensing satellites, comparing the spectral differences and proposes the ideas and methods to build a virtual satellite. This article illustrates the research on the TM, HJ-1 and MODIS data. We obtained the virtual band X 0 through these satellites' bands combined it with the 4 bands of a TM image to build a virtual satellite with five bands. Based on this, we used these data for image classification. The experimental results showed that the virtual satellite classification results of building land and water information were superior to the HJ-1 and TM data respectively

  4. Estimation of land surface temperature based on satellite image data. Paper no. IGEC-1-117

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S. [Kumamoto Univ., Dept. of Mechanical Engineering and Materials Science, Kurokami, Kumamoto (Japan)]. E-mail: torii@mech.kumamoto-u.ac.jp; Yano, T.; Iino, N. [Kagoshima Univ., Dept. of Mechanical Engineering, Korimoto, Kagoshima (Japan)

    2005-07-01

    The aim of the present study is to predict a ground surface temperature (GST) of Kagoshima Prefecture in Kyushu Island, Japan, by using LANDSAT-5/TM and NOAA-11/AVHRR digital data. Image processing procedure is employed to aid in evaluating GST, in which the thermal images of AVHRR bands 4 and 5 are analysed. Emphasis is placed on the prediction accuracy of the existing atmospheric correlation equations taking the atmospheric attenuation effect into account, which are proposed by Tamba et. al., Bates and Diaz, and Sakkaida and Kawamura. It is disclosed that (I) the factor of the zenith angle need to be taken into account when the accurate GST is evaluated by using the atmospheric correction equations, (ii) that of Sakaida and Kawamura has better accuracy, (iii) LANDSAT-5/TM data contains a very high resolution level of the land, the estimated land surface temperature is higher than the measured value, and (iv) improved accuracy of the surface temperature is achieved if LANDSAT-5/TM data are used together with NOAA-11/AVHRR. (author)

  5. Comparison of sampling strategies for object-based classification of urban vegetation from Very High Resolution satellite images

    Science.gov (United States)

    Rougier, Simon; Puissant, Anne; Stumpf, André; Lachiche, Nicolas

    2016-09-01

    Vegetation monitoring is becoming a major issue in the urban environment due to the services they procure and necessitates an accurate and up to date mapping. Very High Resolution satellite images enable a detailed mapping of the urban tree and herbaceous vegetation. Several supervised classifications with statistical learning techniques have provided good results for the detection of urban vegetation but necessitate a large amount of training data. In this context, this study proposes to investigate the performances of different sampling strategies in order to reduce the number of examples needed. Two windows based active learning algorithms from state-of-art are compared to a classical stratified random sampling and a third combining active learning and stratified strategies is proposed. The efficiency of these strategies is evaluated on two medium size French cities, Strasbourg and Rennes, associated to different datasets. Results demonstrate that classical stratified random sampling can in some cases be just as effective as active learning methods and that it should be used more frequently to evaluate new active learning methods. Moreover, the active learning strategies proposed in this work enables to reduce the computational runtime by selecting multiple windows at each iteration without increasing the number of windows needed.

  6. AUTOMATIC APPROACH TO VHR SATELLITE IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Kupidura

    2016-06-01

    Full Text Available In this paper, we present a proposition of a fully automatic classification of VHR satellite images. Unlike the most widespread approaches: supervised classification, which requires prior defining of class signatures, or unsupervised classification, which must be followed by an interpretation of its results, the proposed method requires no human intervention except for the setting of the initial parameters. The presented approach bases on both spectral and textural analysis of the image and consists of 3 steps. The first step, the analysis of spectral data, relies on NDVI values. Its purpose is to distinguish between basic classes, such as water, vegetation and non-vegetation, which all differ significantly spectrally, thus they can be easily extracted basing on spectral analysis. The second step relies on granulometric maps. These are the product of local granulometric analysis of an image and present information on the texture of each pixel neighbourhood, depending on the texture grain. The purpose of texture analysis is to distinguish between different classes, spectrally similar, but yet of different texture, e.g. bare soil from a built-up area, or low vegetation from a wooded area. Due to the use of granulometric analysis, based on mathematical morphology opening and closing, the results are resistant to the border effect (qualifying borders of objects in an image as spaces of high texture, which affect other methods of texture analysis like GLCM statistics or fractal analysis. Therefore, the effectiveness of the analysis is relatively high. Several indices based on values of different granulometric maps have been developed to simplify the extraction of classes of different texture. The third and final step of the process relies on a vegetation index, based on near infrared and blue bands. Its purpose is to correct partially misclassified pixels. All the indices used in the classification model developed relate to reflectance values, so the

  7. New on-orbit geometric interior parameters self-calibration approach based on three-view stereoscopic images from high-resolution multi-TDI-CCD optical satellites.

    Science.gov (United States)

    Cheng, Yufeng; Wang, Mi; Jin, Shuying; He, Luxiao; Tian, Yuan

    2018-03-19

    To increase the field of view (FOV), combining multiple time-delayed and integrated charge-coupled devices (TDI-CCD) into the camera and the pushbroom imaging modality are traditionally used with high-resolution optical satellites. It is becoming increasingly labor- and cost-intensive to build and maintain a calibration field with high resolution and broad coverage. This paper introduces a simple and feasible on-orbit geometric self-calibration approach for high-resolution multi-TDI-CCD optical satellites based on three-view stereoscopic images. With the aid of the a priori geometric constraint of tie points in the triple-overlap regions of stereoscopic images, as well as tie points between adjacent single TDI-CCD images (STIs), high accuracy calibration of all TDI-CCD detectors can be achieved using a small number of absolute ground control points (GCPs) covering the selected primary STI. This method greatly reduces the demand on the calibration field and thus is more time-, effort- and cost-effective. Experimental results indicated that the proposed self-calibration approach is effective for increasing the relative internal accuracy without the limitations associated with using a traditional reference calibration field, which could have great significance for future super-high-resolution optical satellites.

  8. Satellite imager calibration and validation

    CSIR Research Space (South Africa)

    Vhengani, L

    2010-10-01

    Full Text Available The success or failure of any earth observation mission depends on the quality of its data. Data quality is assessed by determining the radiometric, spatial, spectral and geometric fidelity of the satellite sensor. The process is termed calval...

  9. Randomness-Based Scale-Chromatic Image Analysis for Interactive Mapping on Satellite-Roadway-Vehicle Network

    Directory of Open Access Journals (Sweden)

    Kohji Kamejima

    2007-08-01

    Full Text Available A new framework is presented for integrating satellite/avionics sensors with onboard vision to support information intensive maneuvering. Real time bindings of the bird's eye observation and the driver's view via GPS provides \\textit{as-is} basis for perception and decision. Randomness-based roadway pattern model is implemented by fractal coding scheme associating bird's eye and frontal views. The feasibility of the framework with resquirements for vison system is discussed through concept modeling and experimental studies.

  10. Randomness-Based Scale-Chromatic Image Analysis for Interactive Mapping on Satellite-Roadway-Vehicle Network

    Directory of Open Access Journals (Sweden)

    Kohji Kamejima

    2007-08-01

    Full Text Available A new framework is presented for integrating satellite/avionics sensors with onboard vision to support information intensive maneuvering. Real time bindings of the bird's eye observation and the driver's view via GPS provides extit{as-is} basis for perception and decision. Randomness-based roadway pattern model is implemented by fractal coding scheme associating bird's eye and frontal views. The feasibility of the framework with resquirements for vison system is discussed through concept modeling and experimental studies.

  11. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  12. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  13. Control of satellite imaging formations in multi-body regimes

    Science.gov (United States)

    Howell, Kathleen C.; Millard, Lindsay D.

    2009-03-01

    Libration point orbits may be ideal locations for satellite imaging formations. Therefore, control of these arrays in multi-body regimes is critical. A continuous feedback control algorithm is developed that maintains a formation of satellites in motion that is bounded relative to a halo orbit. This algorithm is derived based on the dynamic characteristics of the phase space near periodic orbits in the circular restricted three-body problem (CR3BP). By adjusting parameters of the control algorithm appropriately, satellites in the formation follow trajectories that are particularly advantageous to imaging arrays. Image reconstruction and coverage of the ( u, v) plane are simulated for interferometric satellite configurations, demonstrating potential applications of the algorithm and the resulting motion.

  14. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed and calib......Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  15. Monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  16. Experience using the NDVI normalized difference vegetation index for monitoring Polesye agricultural land based on multispectral Ikonos satellite imaging data

    Science.gov (United States)

    Nichiporovich, Z. A.; Radevich, E. A.

    2012-09-01

    We discuss our experience in application of the normalized difference vegetation index (NDVI), which we use as a basis for proposing methods for automated recognition, classification, and assessment of the condition of land utilized for different agricultural purposes (agriculture, pasture, peat soils, water bodies, etc.), with visualization of the results as color-coded raster maps. The objective is realized utilizing the specialized ERDAS Imagine software, using multispectral Ikonos satellite data (1.2 m resolution), based on standardization against 84 reference areas from the Polesskaja experimental station. The results were tested on landscape analogs.

  17. Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast)

    Science.gov (United States)

    Konstantinov, P. I.; Grishchenko, M. Y.; Varentsov, M. I.

    2015-12-01

    This article presents the results of a study of the urban heat island (UHI) in the city of Apatity during winter that were obtained according to the data of field meteorological measurements and satellite images. Calculations of the surface layer temperature have been made based on the surface temperature data obtained from satellite images. The experimental data on air temperature were obtained as a result of expeditionary meteorological observations, and the experimental data on surface temperature were obtained based on the data of the space hyperspectral Moderate-Resolution Imaging Spectroradiometer (MODIS) system, channels 31 and 32 (10.78-11.28 and 11.77-12.27 micrometers, respectively). As a result of the analysis of temperature fields, an intensive heat island (up to 3.2°C) has been identified that was estimated based on the underlying surface temperature, and its mean intensity over the observation period significantly exceeds the representative data for European cities in winter. It has also been established that the air temperature calculated according to the MODIS data is systematically higher under winter conditions than the air temperature from direct measurement data.

  18. Analysis of wind and wave events at the MIZ based on TerraSAR-X satellite images

    Science.gov (United States)

    Gebhardt, Claus; Bidlot, Jean-Raymond; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey; Singha, Suman

    2017-04-01

    The seasonal opening-up of large expanses of open water in the Beaufort/Chukchi Sea is a phenomenon observed in recent years. The diameter of the open-water area is on the order of 1000 km around the sea ice minimum in summer. Thus, wind events in the area are accompanied by the build-up of sea waves. Significant wave heights of few to several meters may be reached. Under low to moderate winds, the morphology of the MIZ is governed by oceanic forcing. As a result, the MIZ resembles ocean circulation features such as eddies, meanders, etc.. In the case of strong wind events, however, the wind forcing may gain control. We analyse effects related to wind and wave events at the MIZ using TerraSAR-X satellite imagery. Methods such as the retrieval of sea state and wind data by empirical algorithms and automatic sea ice classification are applied. This is facilitated by a series of TerraSAR-X images acquired in support of a cruise of the research vessel R/V Sikuliaq in the Beaufort/Chukchi Sea in autumn 2015. For selected images, the results are presented and compared to numerical model forecasts which were as well part of the cruise support.

  19. Granulometric maps from high resolution satellite images:

    OpenAIRE

    Chopin, Franck; Mering, Catherine

    2002-01-01

    A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every ...

  20. Estimating burned area in Mato Grosso, Brazil, using an object-based classification method on a systematic sample of medium resolution satellite images

    OpenAIRE

    SHIMABUKURO YOSIO EDEMIR; MIETTINEN JUKKA ILMARI; BEUCHLE Rene'; GRECCHI ROSANA; SIMONETTI DARIO; ACHARD Frederic

    2015-01-01

    This paper presents a new approach for estimating burned areas at a regional scale, using a systematic sample of medium spatial resolution satellite images. This approach is based on a pan-tropical deforestation survey developed by the Joint Research Centre. We developed and tested our approach over Mato Grosso State, located in the Brazilian Legal Amazon region, with a total area of 903,366 km². We analyze Landsat-5 TM imagery over 77 sample sites (20 km × 20 km in size) located at each full...

  1. Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Yu Hsin Tsai

    2011-12-01

    Full Text Available The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1 post-classification comparison; and (2 bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst outperformed the true object-based feature delineation approach (ENVI Feature Extraction due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00. The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change.

  2. Quality of Life Assessment Based on Spatial and Temporal Analysis of the Vegetation Area Derived from Satellite Images

    Directory of Open Access Journals (Sweden)

    MARIA IOANA VLAD

    2011-01-01

    Full Text Available The quality of life in urban areas is a function of many parameters among which, one highly important is the number and quality of green areas for people and wildlife to thrive. The quality of life is also a political concept often used to describe citizen satisfaction within different residential locations. Only in the last decades green areas have suffered a progressive decrease in quality, pointing out the ecological urban risk with a negative impact on the standard of living and population health status. This paper presents the evolution of green areas in the cities of South-Eastern Romania within the last 20 years and sets forth the current state of quality of life from the perspective of vegetation reference. By using state-of-the-art processing tools applied on high-resolution satellite images, we have derived knowledge about the spatial and temporal expansion of urbanized regions. Our semi-automatic technologies for analysis of remote sensing data such as Landsat 7 ETM+, correlated with statistical information inferred from urban charts, demonstrate a negative trend in the distribution of green areas within the analyzed cities, with long-term implications on multiple areas in our lives.

  3. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  4. Geomorphology of coastal environments from satellite images

    International Nuclear Information System (INIS)

    Da Rocha Ribeiro, R.; Velho, L.; Schossler, V.

    2010-01-01

    This study aims at recognizing coastal environments supported by data from the Landsat Thematic Mapper (TM) satellite. The digital processing of images, System Information Geographic (SIG) techniques and field observation in one section of the “Província Costeira do Rio Grande do Sul” between the Rio Grande and the São Gonçalo channels - resulted in a geomorphologic profile and mapping

  5. Neural network-based segmentation of satellite imagery for estimating house cluster of an urban settlement from Google Earth images

    International Nuclear Information System (INIS)

    Wardaya, P D; Ridha, S

    2014-01-01

    In this paper a backpropagation neural network is utilized to perform house cluster segmentation from Google Earth data. The algorithm is subjected to identify houses in the image based on the RGB pattern within each pixel. Training data is given through cropping selection for a target that is a house cluster and a non object. The algorithm assigns 1 to a pixel belong to a class of object and 0 to a class of non object. The resulting outcome, a binary image, is then utilized to perform quantification to estimate the number of house clusters. The number of the hidden layer is varying in order to find its effect to the neural network performance and total computational time

  6. Image Dodging Algorithm for GF-1 Satellite WFV Imagery

    Directory of Open Access Journals (Sweden)

    HAN Jie

    2016-12-01

    Full Text Available Image dodging method is one of the important processes that determines whether the mosaicking image can be used for remote sensing quantitative application. GF-1 satellite is the first satellite in CHEOS (Chinese high-resolution earth observation system. WFV multispectral sensor is one of the instruments onboard GF-1 satellite which consist of four cameras to mosaic imaging. According to the characteristics of WFV sensor, this paper proposes an image dodging algorithm based on cross/inter-radiometric calibration method. First, the traditional cross calibration method is applied to obtain the calibration coefficients of one WFV camera. Then statistical analysis and simulation methods are adopted to build the correlation models of DN and TOA (top of atmosphere radiances between adjacent cameras. The proposed method can not only accomplish the radiation performance transfer, but also can fulfill the image dodging. The experimental results show the cross/inter-radiometric calibration coefficients in this paper can effectively eliminate the radiation inconsistency problem of the adjacent camera image which realizes the image dodging. So our proposed dodging method can provide an important reference for other similar sensor in future.

  7. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  8. Satellite images for land cover monitoring - Navigating through the maze

    Science.gov (United States)

    Künzer, Claudia; Fosnight, Gene

    2001-01-01

    Policy makers, managers, scientists and the public can view the changing environment using satellite images.  More than 60 Earth observing satellites are collecting images of the Earth's surface. Remote sensing satellite systems for land cover assessment are operated by a growing number of countries including India, the United States, Japan, France, Canada and Russia.

  9. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor is...

  10. Fusion of Satellite Multispectral Images Based on Ground-Penetrating Radar (GPR Data for the Investigation of Buried Concealed Archaeological Remains

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-06-01

    Full Text Available The paper investigates the superficial layers of an archaeological landscape based on the integration of various remote sensing techniques. It is well known in the literature that shallow depths may be rich in archeological remains, which generate different signal responses depending on the applied technique. In this study three main technologies are examined, namely ground-penetrating radar (GPR, ground spectroscopy, and multispectral satellite imagery. The study aims to propose a methodology to enhance optical remote sensing satellite images, intended for archaeological research, based on the integration of ground based and satellite datasets. For this task, a regression model between the ground spectroradiometer and GPR is established which is then projected to a high resolution sub-meter optical image. The overall methodology consists of nine steps. Beyond the acquirement of the in-situ measurements and their calibration (Steps 1–3, various regression models are examined for more than 70 different vegetation indices (Steps 4–5. The specific data analysis indicated that the red-edge position (REP hyperspectral index was the most appropriate for developing a local fusion model between ground spectroscopy data and GPR datasets (Step 6, providing comparable results with the in situ GPR measurements (Step 7. Other vegetation indices, such as the normalized difference vegetation index (NDVI, have also been examined, providing significant correlation between the two datasets (R = 0.50. The model is then projected to a high-resolution image over the area of interest (Step 8. The proposed methodology was evaluated with a series of field data collected from the Vésztő-Mágor Tell in the eastern part of Hungary. The results were compared with in situ magnetic gradiometry measurements, indicating common interpretation results. The results were also compatible with the preliminary archaeological investigations of the area (Step 9. The overall

  11. Detection of jet contrails from satellite images

    Science.gov (United States)

    Meinert, Dieter

    1994-02-01

    In order to investigate the influence of modern technology on the world climate it is important to have automatic detection methods for man-induced parameters. In this case the influence of jet contrails on the greenhouse effect shall be investigated by means of images from polar orbiting satellites. Current methods of line recognition and amplification cannot distinguish between contrails and rather sharp edges of natural cirrus or noise. They still rely on human control. Through the combination of different methods from cloud physics, image comparison, pattern recognition, and artificial intelligence we try to overcome this handicap. Here we will present the basic methods applied to each image frame, and list preliminary results derived this way.

  12. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  13. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis

    Directory of Open Access Journals (Sweden)

    Nuru Adgaba

    2017-07-01

    Full Text Available In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi, Acacia tortilis, Acacia origina, Acacia asak, Lavandula dentata, and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (<30% with low Shannon’s species diversity indices (H′ of 0.5–1.52 for different sites. Based on the eco-climatological factors and the variations in their flowering period, these major bee forage species were found to form eight distinct spatiotemporal categories which allow beekeepers to migrate their colonies to exploit the resources at different seasons and place. The Remote Sensed Satellite Image analysis confirmed the spatial

  14. The Multi-Angle Imager for Aerosols (MAIA) Instrument, the Satellite-Based Element of an Investigation to Benefit Public Health

    Science.gov (United States)

    Diner, D. J.

    2016-12-01

    Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five

  15. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Science.gov (United States)

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  16. Using Optical Interferometry for GEO Satellites Imaging: An Update

    Science.gov (United States)

    2016-05-27

    Using Optical Interferometry for GEO satellites imaging: an update Sergio R. Restainoa,J. Thomas Armstronga, Ellyn K. Bainesa, Henrique R. Schmitta...of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...detection of a satellite . Keywords: geostationary satellites , optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to

  17. ASTER 2002-2003 Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  18. MODIS 2002-2003 Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  19. Mapping Fish Community Variables by Integrating Field and Satellite Data, Object-Based Image Analysis and Modeling in a Traditional Fijian Fisheries Management Area

    Directory of Open Access Journals (Sweden)

    Stacy Jupiter

    2011-03-01

    Full Text Available The use of marine spatial planning for zoning multi-use areas is growing in both developed and developing countries. Comprehensive maps of marine resources, including those important for local fisheries management and biodiversity conservation, provide a crucial foundation of information for the planning process. Using a combination of field and high spatial resolution satellite data, we use an empirical procedure to create a bathymetric map (RMSE 1.76 m and object-based image analysis to produce accurate maps of geomorphic and benthic coral reef classes (Kappa values of 0.80 and 0.63; 9 and 33 classes, respectively covering a large (>260 km2 traditional fisheries management area in Fiji. From these maps, we derive per-pixel information on habitat richness, structural complexity, coral cover and the distance from land, and use these variables as input in models to predict fish species richness, diversity and biomass. We show that random forest models outperform five other model types, and that all three fish community variables can be satisfactorily predicted from the high spatial resolution satellite data. We also show geomorphic zone to be the most important predictor on average, with secondary contributions from a range of other variables including benthic class, depth, distance from land, and live coral cover mapped at coarse spatial scales, suggesting that data with lower spatial resolution and lower cost may be sufficient for spatial predictions of the three fish community variables.

  20. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  1. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis.

    Science.gov (United States)

    Adgaba, Nuru; Alghamdi, Ahmed; Sammoud, Rachid; Shenkute, Awraris; Tadesse, Yilma; Ansari, Mahammad J; Sharma, Deepak; Hepburn, Colleen

    2017-07-01

    In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi , Acacia tortilis , Acacia origina , Acacia asak , Lavandula dentata , and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.

  2. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction

    Directory of Open Access Journals (Sweden)

    Mehdi Rahnama

    2014-06-01

    Full Text Available Geological structures, such as faults and fractures, appear as image discontinuities or lineaments in remote sensing data. Geologic lineament mapping is a very important issue in geo-engineering, especially for construction site selection, seismic, and risk assessment, mineral exploration and hydrogeological research. Classical methods of lineaments extraction are based on semi-automated (or visual interpretation of optical data and digital elevation models. We developed a freely available Matlab based toolbox TecLines (Tectonic Lineament Analysis for locating and quantifying lineament patterns using satellite data and digital elevation models. TecLines consists of a set of functions including frequency filtering, spatial filtering, tensor voting, Hough transformation, and polynomial fitting. Due to differences in the mathematical background of the edge detection and edge linking procedure as well as the breadth of the methods, we introduce the approach in two-parts. In this first study, we present the steps that lead to edge detection. We introduce the data pre-processing using selected filters in spatial and frequency domains. We then describe the application of the tensor-voting framework to improve position and length accuracies of the detected lineaments. We demonstrate the robustness of the approach in a complex area in the northeast of Afghanistan using a panchromatic QUICKBIRD-2 image with 1-meter resolution. Finally, we compare the results of TecLines with manual lineament extraction, and other lineament extraction algorithms, as well as a published fault map of the study area.

  3. Design and Implementation of a Real-time Processing System of Full Resolution Quick-look Image of HJ-1 Environmental Satellite C SAR Based on High Performance Cluster

    Directory of Open Access Journals (Sweden)

    Li Jing-shan

    2014-06-01

    Full Text Available This study is concerned with the design and implementation of a real-time processing system of full resolution quick-look image of HJ-1 environmental satellite C SAR based on high-performance clusters. The system processes the first quick-look SAR image on December 9, 2012. The results show that the design and implementation of the quick-look processing system satisfies the real-time SAR image processing performance requirements at full resolution. Moreover, this system is the first real-time business system of full-resolution quick-look spaceborne SAR images in China.

  4. Tracking target objects orbiting earth using satellite-based telescopes

    Science.gov (United States)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  5. Using Fuzzy SOM Strategy for Satellite Image Retrieval and Information Mining

    Directory of Open Access Journals (Sweden)

    Yo-Ping Huang

    2008-02-01

    Full Text Available This paper proposes an efficient satellite image retrieval and knowledge discovery model. The strategy comprises two major parts. First, a computational algorithm is used for off-line satellite image feature extraction, image data representation and image retrieval. Low level features are automatically extracted from the segmented regions of satellite images. A self-organization feature map is used to construct a two-layer satellite image concept hierarchy. The events are stored in one layer and the corresponding feature vectors are categorized in the other layer. Second, a user friendly interface is provided that retrieves images of interest and mines useful information based on the events in the concept hierarchy. The proposed system is evaluated with prominent features such as typhoons or high-pressure masses.

  6. The SUMO Ship Detector Algorithm for Satellite Radar Images

    Directory of Open Access Journals (Sweden)

    Harm Greidanus

    2017-03-01

    Full Text Available Search for Unidentified Maritime Objects (SUMO is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, C- and X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from Spotlight to ScanSAR and resolutions (from 1–100 m and for all types and sizes of ships, within the physical limits imposed by the radar imaging. This paper describes, in detail, the algorithmic approach in all of the steps of the ship detection: land masking, clutter estimation, detection thresholding, target clustering, ship attribute estimation and false alarm suppression. SUMO is a pixel-based CFAR (Constant False Alarm Rate detector for multi-look radar images. It assumes a K distribution for the sea clutter, corrected however for deviations of the actual sea clutter from this distribution, implementing a fast and robust method for the clutter background estimation. The clustering of detected pixels into targets (ships uses several thresholds to deal with the typically irregular distribution of the radar backscatter over a ship. In a multi-polarization image, the different channels are fused. Azimuth ambiguities, a common source of false alarms in ship detection, are removed. A reliability indicator is computed for each target. In post-processing, using the results of a series of images, additional false alarms from recurrent (fixed targets including range ambiguities are also removed. SUMO can run in semi-automatic mode, where an operator can verify each detected target. It can also run in fully automatic mode, where batches of over 10,000 images have successfully been processed in less than two hours. The number of satellite SAR systems keeps increasing, as does their application to maritime surveillance. The open data policy of the EU

  7. Mapping Nearshore Seagrass and Colonized Hard Bottom Spatial Distribution and Percent Biological Cover in Florida, USA Using Object Based Image Analysis of WorldView-2 Satellite Imagery

    Science.gov (United States)

    Baumstark, R. D.; Duffey, R.; Pu, R.

    2016-12-01

    The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps depicting the spatial distribution and percent biological cover were created from WorldView-2 satellite imagery using Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study presents an alternative for mapping deeper, offshore habitats capable of producing higher thematic (percent biological cover) and spatial resolution maps compared to those created with the traditional photo-interpretation method.

  8. The edge detection enhancement on satellite image using bilateral filter

    Science.gov (United States)

    Fawwaz, I.; Zarlis, M.; Suherman; Rahmat, R. F.

    2018-02-01

    Satellite imagery is the image taken from satellites from outer space. It captures the appearance of the earth’s surface through remote sensing. Usually, satellite image’s object is hardly detected because many objects are covered with cloud shadows in the sky. Edge detection has an important role in image analysis. Edge detection aims to extract the boundary of an object contained in the image. Gaussian Filter is usually used on edge detection to smooth the image and reduce noise. However, in satellite image, we can improve it by using another filter. In this research, we compare gaussian filter with bilateral filter and analyze those two methods. We also using several operators to see the optimized process. After the experiment, by using the comparison parameter such as largest PSNR value, and the smallest MSE value, we can conclude that Bilateral Filter with Canny Operator is the most optimized edge detection for Satellite Imagery.

  9. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...... modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  10. DETECTION OF BARCHAN DUNES IN HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. A. Azzaoui

    2016-06-01

    Full Text Available Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden’s J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  11. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    International Nuclear Information System (INIS)

    Azmi, S M; Ahmad, Baharin; Ahmad, Anuar

    2014-01-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps

  12. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    Science.gov (United States)

    Azmi, S. M.; Ahmad, Baharin; Ahmad, Anuar

    2014-02-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps.

  13. Landsat TM and ETM+ Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2000-2001 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM) and...

  14. Kansas Satellite Image Database (KSID) 2004-2005

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID) 2004-2005 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM)...

  15. An AdaBoost Based Approach to Automatic Classification and Detection of Buildings Footprints, Vegetation Areas and Roads from Satellite Images

    Science.gov (United States)

    Gonulalan, Cansu

    In recent years, there has been an increasing demand for applications to monitor the targets related to land-use, using remote sensing images. Advances in remote sensing satellites give rise to the research in this area. Many applications ranging from urban growth planning to homeland security have already used the algorithms for automated object recognition from remote sensing imagery. However, they have still problems such as low accuracy on detection of targets, specific algorithms for a specific area etc. In this thesis, we focus on an automatic approach to classify and detect building foot-prints, road networks and vegetation areas. The automatic interpretation of visual data is a comprehensive task in computer vision field. The machine learning approaches improve the capability of classification in an intelligent way. We propose a method, which has high accuracy on detection and classification. The multi class classification is developed for detecting multiple objects. We present an AdaBoost-based approach along with the supervised learning algorithm. The combi- nation of AdaBoost with "Attentional Cascade" is adopted from Viola and Jones [1]. This combination decreases the computation time and gives opportunity to real time applications. For the feature extraction step, our contribution is to combine Haar-like features that include corner, rectangle and Gabor. Among all features, AdaBoost selects only critical features and generates in extremely efficient cascade structured classifier. Finally, we present and evaluate our experimental results. The overall system is tested and high performance of detection is achieved. The precision rate of the final multi-class classifier is over 98%.

  16. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  17. Image Positioning Accuracy Analysis for Super Low Altitude Remote Sensing Satellites

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line-of-sight rebuilding of each detection element and this direction precisely intersecting with the Earth's elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  18. Building damage scale proposal from VHR satellite image

    Science.gov (United States)

    Sandu, Constantin; Giulio Tonolo, Fabio; Cotrufo, Silvana; Boccardo, Piero

    2017-04-01

    Natural hazards have a huge impact in terms of economic losses, affected and killed people. Current exploitation of remote sensed images play a fundamental role in the delineation of damages generated by catastrophic events. Institutions like the United Nations and the European Commission designed services that provide information about the impact of disasters rapidly. One of the approach currently used to carry out the damage assessment is based on very high resolution remote sensing imagery (including both aerial and satellite platforms). One of the main focus of the responders, especially in case of events like earthquakes, is on buildings and infrastructures. As far as the buildings are concerned, to date international standard guidelines that provide essential information on how to assess building damages using VHR images still does not exist. The aim of this study is to develop a building damage scale tailored for analyses based on VHR vertical imagery and to propose a standard for the related interpretation guidelines. The task is carried out by comparing the current scales used for damage assessment by the main satellite based emergency mapping services. The study will analyze the datasets produced after the Ecuador (April 2016) and Central Italy(August and October 2016) earthquakes. The results suggest that by using VHR remotely sensed images it is not possible to directly use damage classification scales addressing structural damages (e.g the 5 grades proposed by EMS-98). A fine-tuning of existing damage classes is therefore required and the adoption of an internationally agreed standard should be encouraged, to streamline the use of SEM products generated by different services.

  19. Satellite Articulation Characterization from an Image Trajectory Matrix Using Optimization

    Science.gov (United States)

    Curtis, D. H.; Cobb, R. G.

    Autonomous on-orbit satellite servicing and inspection benefits from an inspector satellite that can autonomously gain as much information as possible about the primary satellite. This includes performance of articulated objects such as solar arrays, antennas, and sensors. This paper presents a method of characterizing the articulation of a satellite using resolved monocular imagery. A simulated point cloud representing a nominal satellite with articulating solar panels and a complex articulating appendage is developed and projected to the image coordinates that would be seen from an inspector following a given inspection route. A method is developed to analyze the resulting image trajectory matrix. The developed method takes advantage of the fact that the route of the inspector satellite is known to assist in the segmentation of the points into different rigid bodies, the creation of the 3D point cloud, and the identification of the articulation parameters. Once the point cloud and the articulation parameters are calculated, they can be compared to the known truth. The error in the calculated point cloud is determined as well as the difference between the true workspace of the satellite and the calculated workspace. These metrics can be used to compare the quality of various inspection routes for characterizing the satellite and its articulation.

  20. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-01-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  1. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  2. Detecting weather radar clutter using satellite-based nowcasting products

    DEFF Research Database (Denmark)

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    This contribution presents the initial results from experiments with detection of weather radar clutter by information fusion with satellite based nowcasting products. Previous studies using information fusion of weather radar data and first generation Meteosat imagery have shown promising results...... of the Danish Meteorological Institute has been extracted for cases of severe to moderate cases of land and sea clutter. For comparison, cases of clutter free data has also been analyzed. The satellite-based dataset used is an operational meteorological product developed within the 'Nowcasting Satellite...... Application Facility' of EUMETSAT and is based on multispectral images from the SEVIRI sensor of the Meteosat-8 platform. Of special interest is the 'Precipitating Clouds' product, which uses the spectral information coupled with surface temperatures from Numerical Weather Predictions to assign probabilities...

  3. Medical image transmission via communication satellite. Evaluation of bone scintigraphy

    International Nuclear Information System (INIS)

    Suzuki, Hideki; Inoue, Tomio; Endo, Keigo; Shimamoto, Shigeru.

    1995-01-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT 1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical imagings by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6±2.6% via satellite, and 93.2±2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes. (author)

  4. [Medical image transmission via communication satellite: evaluation of bone scintigraphy].

    Science.gov (United States)

    Suzuki, H; Inoue, T; Endo, K; Shimamoto, S

    1995-10-01

    As compared with terrestrial circuits, the communication satellite possesses superior characteristics such as wide area coverage, broadcasting, high capacity, and robustness to disasters. Utilizing the narrow band channel (64 kbps) of the geostationary satellite JCSAT1 located at the altitude of 36,000 km above the equator, the authors investigated satellite-relayed medical images by video signals, with bone scintigraphy as a model. Each bone scintigraphy was taken by a handy-video camera, digitalized and transmitted from faculty of technology located at 25 kilometers apart from our department. Clear bone scintigraphy was obtained via satellite, as seen on the view box. Eight nuclear physicians evaluated 20 cases of bone scintigraphy. ROC (Receiver Operating Characteristic) analysis was performed between the scintigraphies on view box and via satellite by the rating method. The area under the ROC curve was 91.6 +/- 2.6% via satellite, and 93.2 +/- 2.4% on the view box and there was no significant difference between them. These results suggest that the satellite communication is very useful and effective system to send nuclear imagings to distant institutes.

  5. An SDR based AIS receiver for satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter; Nielsen, Jens Frederik Dalsgaard

    2011-01-01

    For a few years now, there has been a high interest in monitoring the global ship traffic from space. A few satellite, capable of listening for ship borne AIS transponders have already been launched, and soon the AAUSAT3, carrying two different types of AIS receivers will also be launched. One...... of the AIS receivers onboard AAUSAT3 is an SDR based AIS receiver. This paper serves to describe the background of the AIS system, and how the SDR based receiver has been integrated into the AAUSAT3 satellite. Amongst some of the benefits of using an SDR based receiver is, that due to its versatility, new...

  6. The best printing methods to print satellite images

    Directory of Open Access Journals (Sweden)

    G.A. Yousif

    2011-12-01

    In this paper different printing systems were used to print an image of SPOT-4 satellite, caver part of Sharm Elshekh area, Sinai, Egypt, on the same type of paper as much as possible, especially in the photography. This step is followed by measuring the experimental data, and analyzed colors to determine the best printing systems for satellite image printing data. The laser system is the more printing system where produce a wider range of color and highest densities of ink and access much color detail. Followed by the offset system which it recorded the best dot gain. Moreover, the study shows that it can use the advantages of each method according to the satellite image color and quantity to be produced.

  7. Heuristic Scheduling Algorithm Oriented Dynamic Tasks for Imaging Satellites

    Directory of Open Access Journals (Sweden)

    Maocai Wang

    2014-01-01

    Full Text Available Imaging satellite scheduling is an NP-hard problem with many complex constraints. This paper researches the scheduling problem for dynamic tasks oriented to some emergency cases. After the dynamic properties of satellite scheduling were analyzed, the optimization model is proposed in this paper. Based on the model, two heuristic algorithms are proposed to solve the problem. The first heuristic algorithm arranges new tasks by inserting or deleting them, then inserting them repeatedly according to the priority from low to high, which is named IDI algorithm. The second one called ISDR adopts four steps: insert directly, insert by shifting, insert by deleting, and reinsert the tasks deleted. Moreover, two heuristic factors, congestion degree of a time window and the overlapping degree of a task, are employed to improve the algorithm’s performance. Finally, a case is given to test the algorithms. The results show that the IDI algorithm is better than ISDR from the running time point of view while ISDR algorithm with heuristic factors is more effective with regard to algorithm performance. Moreover, the results also show that our method has good performance for the larger size of the dynamic tasks in comparison with the other two methods.

  8. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm.

    Science.gov (United States)

    Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao

    2017-06-22

    To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved.

  9. Determining Surface Material Properties Using Satellite Imaging

    Science.gov (United States)

    Gloudeman, C.; Gerace, A. D.

    2017-12-01

    Knowledge of soil moisture content is necessary for drought monitoring, crop irrigation, and water runoff. Remote sensing techniques provide a more efficient alternative to traditional field measurements for determining soil moisture content. Thermal infrared sensors from Landsat, MODIS Aqua & Terra, and AVHRR MetOp A & B satellites were used to find thermal inertia, which is highly correlated with soil moisture. A diurnal cycle is converted from band effective radiance to Land Surface Temperature (LST) using Planck's Law for blackbody radiation and a modified split-window algorithm. The THERM model for finding expected LST is then used to determine the material properties. A second approach was used to calculate apparent thermal inertia and soil moisture content from day/ night pairs of LST. For this method, only the MODIS Aqua LST product was used.To this end, we have observed clear differences in moisture between areas of vegetation and sand and between different crop fields. Our results indicate that matching the observed data with the THERM model could be improved with increased satellite measurements.

  10. Satellite-based terrestrial production efficiency modeling

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2009-09-01

    Full Text Available Abstract Production efficiency models (PEMs are based on the theory of light use efficiency (LUE which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP monitoring. The objectives of this review are as follows: 1 to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS identified in the literature; 2 to review each model to determine potential improvements to the general PEM methodology; 3 to review the related literature on satellite-based gross primary productivity (GPP and NPP modeling for additional possibilities for improvement; and 4 based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra; there is an urgent need for

  11. Satellite-based terrestrial production efficiency modeling.

    Science.gov (United States)

    McCallum, Ian; Wagner, Wolfgang; Schmullius, Christiane; Shvidenko, Anatoly; Obersteiner, Michael; Fritz, Steffen; Nilsson, Sten

    2009-09-18

    Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research.This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling.Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT) or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra); there is an urgent need for satellite-based biomass

  12. Satellite image analysis for surveillance, vegetation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cai, D Michael [Los Alamos National Laboratory

    2011-01-18

    Recently, many studies have provided abundant evidence to show the trend of tree mortality is increasing in many regions, and the cause of tree mortality is associated with drought, insect outbreak, or fire. Unfortunately, there is no current capability available to monitor vegetation changes, and correlate and predict tree mortality with CO{sub 2} change, and climate change on the global scale. Different survey platforms (methods) have been used for forest management. Typical ground-based forest surveys measure tree stem diameter, species, and alive or dead. The measurements are low-tech and time consuming, but the sample sizes are large, running into millions of trees, covering large areas, and spanning many years. These field surveys provide powerful ground validation for other survey methods such as photo survey, helicopter GPS survey, and aerial overview survey. The satellite imagery has much larger coverage. It is easier to tile the different images together, and more important, the spatial resolution has been improved such that close to or even higher than aerial survey platforms. Today, the remote sensing satellite data have reached sub-meter spatial resolution for panchromatic channels (IKONOS 2: 1 m; Quickbird-2: 0.61 m; Worldview-2: 0.5 m) and meter spatial resolution for multi-spectral channels (IKONOS 2: 4 meter; Quickbird-2: 2.44 m; Worldview-2: 2 m). Therefore, high resolution satellite imagery can allow foresters to discern individual trees. This vital information should allow us to quantify physiological states of trees, e.g. healthy or dead, shape and size of tree crowns, as well as species and functional compositions of trees. This is a powerful data resource, however, due to the vast amount of the data collected daily, it is impossible for human analysts to review the imagery in detail to identify the vital biodiversity information. Thus, in this talk, we will discuss the opportunities and challenges to use high resolution satellite imagery and

  13. Detecting aircrafts from satellite images using saliency and conical ...

    Indian Academy of Sciences (India)

    Automatic target localization in satellite images still remains as a challenging problem in the field of computer vision. The issues ... Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Defence Terrain Research Laboratory, Defence Research and Development ...

  14. Class imaging of hyperspectral satellite remote sensing data using FLSOM

    OpenAIRE

    Villmann, Thomas; Schleif, Frank-Michael; Merenyi, E.; Strickert, M.; Hammer, Barbara

    2007-01-01

    We propose an extension of the self-organizing map for supervised fuzzy classification learning, whereby uncertain (fuzzy) class information is also allowed for training data. The method is able to detect class similarities, which can be used for data vizualization. Applying a special functional metric, derived from of the L_p norms, we show the application of the method for classification and visualization of hyper-spectral data in satellite image remote sensing image analysis.

  15. Efficient temporal access of satellite image data

    CSIR Research Space (South Africa)

    Bachoo, A

    2008-11-01

    Full Text Available A single tile from the gridded MODIS products, spanning a region of interest of approximately 10° by 10°, is stored as an image containing close to six million pixels, with data in multiple spectral bands for each pixel. Time series analyses...

  16. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina

    Science.gov (United States)

    Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti

    2013-01-01

    Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...

  17. Mapping soil heterogeneity using RapidEye satellite images

    Science.gov (United States)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  18. Mission planning optimization of video satellite for ground multi-object staring imaging

    Science.gov (United States)

    Cui, Kaikai; Xiang, Junhua; Zhang, Yulin

    2018-03-01

    This study investigates the emergency scheduling problem of ground multi-object staring imaging for a single video satellite. In the proposed mission scenario, the ground objects require a specified duration of staring imaging by the video satellite. The planning horizon is not long, i.e., it is usually shorter than one orbit period. A binary decision variable and the imaging order are used as the design variables, and the total observation revenue combined with the influence of the total attitude maneuvering time is regarded as the optimization objective. Based on the constraints of the observation time windows, satellite attitude adjustment time, and satellite maneuverability, a constraint satisfaction mission planning model is established for ground object staring imaging by a single video satellite. Further, a modified ant colony optimization algorithm with tabu lists (Tabu-ACO) is designed to solve this problem. The proposed algorithm can fully exploit the intelligence and local search ability of ACO. Based on full consideration of the mission characteristics, the design of the tabu lists can reduce the search range of ACO and improve the algorithm efficiency significantly. The simulation results show that the proposed algorithm outperforms the conventional algorithm in terms of optimization performance, and it can obtain satisfactory scheduling results for the mission planning problem.

  19. Generation of seismic base map using satellite images in the southern deltaic area, People`s Republic of Bangladesh; Eisei data ni motozuku jishin tansa base map no sakusei (Bangladesh nanbu delta no rei)

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Y. [Japan Energy Corp., Tokyo (Japan); Ochi, M. [Nikko Exploration and Development Co. Ltd., Tokyo (Japan); Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-05-27

    Assuming a two-dimensional seismic survey in a mangrove jungle in the southeast part of People`s Republic of Bangladesh and trially making a basemap for the survey plan from images of satellites such as LANDSAT, the paper considered the use and marginal use in the case of using satellite remote sensing for such a use field. When utilizing water channels in the mangrove jungle in the southwest of Bangladesh and using the seismic survey method for shallow sea, it is important to grasp the distribution of channels in the planning stage of the survey. Satellite remote sensing data are extremely important for knowing the wide-regional information including factors of hourly variations. In the area for this survey, for directly recognizing the channel, it is good only if the difference in reflectance between water and substances except water is indicated in the image because of flatness of the topography. There was seen few difference in accuracy between the passive multispectral image and the active SAR image which is sensitive to topographical changes. 2 figs.

  20. Satellite Contamination and Materials Outgassing Knowledge base

    Science.gov (United States)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  1. Extracting temporal and spatial distributions information about marine mucilage phenomenon based on Modis satellite images; a case study of the Tyrrhenian and the Adriatic Sea, 2010-2012

    OpenAIRE

    Gigliotti, Angelo

    2013-01-01

    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. A novel approach was used with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to detect Marine Mucilage in tow different marine areas of the Italy (Campanian Seas and North Adriatic Sea) from 2010 to 2012. The approach involves first deriving a Mucilage Index (MI) based on the medium‐resolution (500 m) MODIS reflectance data correction of th...

  2. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H.; Mozurkewich, D.; Armstrong, J.; Restaino, S.; Hindsley, R.

    2011-09-01

    Geostationary satellites are generally too small to image at high resolution with conventional single-dish telescopes. Obtaining many resolution elements across a typical geostationary satellite body requires a single-dish telescope with a diameter of 10’s of m or more, with a good adaptive optics system. An alternative is to use an optical/infrared interferometer consisting of multiple smaller telescopes in an array configuration. In this paper and companion papers1, 2 we discuss the performance of a common-mount 30-element interferometer. The instrument design is presented by Mozurkewich et al.,1 and imaging performance is presented by Schmitt et al.2 In this paper we discuss signal-to-noise ratio for both fringe-tracking and imaging. We conclude that the common-mount interferometer is sufficiently sensitive to track fringes on the majority of geostationary satellites. We also find that high-fidelity images can be obtained after a short integration time of a few minutes to a few tens of minutes.

  3. A satellite based crop water stress index for irrigation scheduling in sugarcane fields

    NARCIS (Netherlands)

    Veysi, Shadman; Naseri, Abd Ali; Hamzeh, Saeid; Bartholomeus, Harm

    2017-01-01

    In this study, the capability of crop water stress index (CWSI) based on satellite thermal infrared data for estimating water stress and irrigation scheduling in sugarcane fields was evaluated. For this purpose, eight Landsat 8 satellite images were acquired during the sugarcane growing season

  4. Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, José; White, Randall; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-09-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013-2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014. These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  5. Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-01-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  6. High-Resolution Imaging of Asteroids/Satellites with AO

    Science.gov (United States)

    Merline, William

    2012-02-01

    We propose to make high-resolution observations of asteroids using AO, to measure size, shape, and pole position (spin vectors), and/or to search for satellites. We have demonstrated that AO imaging allows determination of the pole/dimensions in 1 or 2 nights on a single target, rather than the years of observations with lightcurve inversion techniques that only yield poles and axial ratios, not true dimensions. Our new technique (KOALA) combines AO imaging with lightcurve and occultation data for optimum size/shape determinations. We request that LGS be available for faint targets, but using NGS AO, we will measure several large and intermediate asteroids that are favorably placed in spring/summer of 2012 for size/shape/pole. Accurately determining the volume from the often-irregular shape allows us to derive densities to much greater precision in cases where the mass is known, e.g., from the presence of a satellite. We will search several d! ozen asteroids for the presence of satellites, particularly in under-studied populations, particularly NEOs (we have recently achieved the first-ever optical image of an NEO binary [Merline et al. 2008b, IAUC 8977]). Satellites provide a real-life lab for testing collisional models. We will search for satellites around special objects at the request of lightcurve observers, and we will make a search for debris in the vicinity of Pluto, in support of the New Horizons mission. Our shape/size work requires observations over most of a full rotation period (typically several hours).

  7. Roads Data Conflation Using Update High Resolution Satellite Images

    Science.gov (United States)

    Abdollahi, A.; Riyahi Bakhtiari, H. R.

    2017-11-01

    Urbanization, industrialization and modernization are rapidly growing in developing countries. New industrial cities, with all the problems brought on by rapid population growth, need infrastructure to support the growth. This has led to the expansion and development of the road network. A great deal of road network data has made by using traditional methods in the past years. Over time, a large amount of descriptive information has assigned to these map data, but their geometric accuracy and precision is not appropriate to today's need. In this regard, the improvement of the geometric accuracy of road network data by preserving the descriptive data attributed to them and updating of the existing geo databases is necessary. Due to the size and extent of the country, updating the road network maps using traditional methods is time consuming and costly. Conversely, using remote sensing technology and geographic information systems can reduce costs, save time and increase accuracy and speed. With increasing the availability of high resolution satellite imagery and geospatial datasets there is an urgent need to combine geographic information from overlapping sources to retain accurate data, minimize redundancy, and reconcile data conflicts. In this research, an innovative method for a vector-to-imagery conflation by integrating several image-based and vector-based algorithms presented. The SVM method for image classification and Level Set method used to extract the road the different types of road intersections extracted from imagery using morphological operators. For matching the extracted points and to find the corresponding points, matching function which uses the nearest neighborhood method was applied. Finally, after identifying the matching points rubber-sheeting method used to align two datasets. Two residual and RMSE criteria used to evaluate accuracy. The results demonstrated excellent performance. The average root-mean-square error decreased from 11.8 to 4.1 m.

  8. High efficient optical remote sensing images acquisition for nano-satellite-framework

    Science.gov (United States)

    Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi

    2017-09-01

    It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.

  9. An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image

    Science.gov (United States)

    Pradhan, Biswajeet; Hagemann, Ulrike; Shafapour Tehrany, Mahyat; Prechtel, Nikolas

    2014-02-01

    Extraction of the flooded areas from synthetic aperture radar (SAR) and especially TerraSAR-X data is one of the most challenging tasks in the flood management and planning. SAR data due to its high spatial resolution and its capability of all weather conditions makes a proper choice for tropical countries. Texture is considered as an effective factor in distinguishing the classes especially in SAR imagery which records the backscatters that carry information of kind, direction, heterogeneity and relationship of the features. This paper put forward a computer program for texture analysis for high resolution radar data. Texture analysis program is introduced and discussed using the gray-level co-occurrence matrix (GLCM). To demonstrate the ability and correctness of this program, a test subset of TerraSAR-X imagery from Terengganu area, Malaysia was analyzed and pixel-based and object-based classification were attempted. The thematic maps derived by pixel-based method could not achieve acceptable visual interpretation and for that reason no accuracy assessment was performed on them. The overall accuracy achieved by object-based method was 83.63% with kappa coefficient of 0.8. Results on image texture classification showed that the proposed program is capable for texture analysis in TerraSAR-X image and the obtained textural analysis resulted in high classification accuracy. The proposed texture analysis program can be used in many applications such as land use/cover (LULC) mapping, hazard studies and many other applications.

  10. Targeting Villages for Rural Development Using Satellite Image Analysis.

    Science.gov (United States)

    Varshney, Kush R; Chen, George H; Abelson, Brian; Nowocin, Kendall; Sakhrani, Vivek; Xu, Ling; Spatocco, Brian L

    2015-03-01

    Satellite imagery is a form of big data that can be harnessed for many social good applications, especially those focusing on rural areas. In this article, we describe the common problem of selecting sites for and planning rural development activities as informed by remote sensing and satellite image analysis. Effective planning in poor rural areas benefits from information that is not available and is difficult to obtain at any appreciable scale by any means other than algorithms for estimation and inference from remotely sensed images. We discuss two cases in depth: the targeting of unconditional cash transfers to extremely poor villages in sub-Saharan Africa and the siting and planning of solar-powered microgrids in remote villages in India. From these cases, we draw out some common lessons broadly applicable to informed rural development.

  11. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  12. A line rate calculation method for arbitrary directional imaging of an Earth observing satellite

    Science.gov (United States)

    Jeon, Moon-Jin; Kim, Eunghyun; Lim, Seong-Bin; Choi, Seok-Weon

    2016-10-01

    Korean satellite with optical and infrared sensor. The satellite was launched by a Dnepr on 26 March 2015 and started normal operation on September 2015. The payload of the satellite is AEISS-A(Advanced Earth Imaging Sensor System-A) which has 0.55m GSD for panchromatic image, 2.2m GSD for multi-spectral image, and day-and-night infrared image. The main mission objective of the satellite is providing high resolution electro-optical images and infrared images for GIS application. By applying the proposed method, the line rate error was reduced to about 0.2% from 0.5% of previous method. The arbitrary directional imaging mode became a major operation mode and various application modes including due north directional imaging, pitch steering imaging, pitch step imaging are now developing. These application modes are based on technical achievement of the proposed method. In this paper, the details of line rate calculation method are described. The experimental results show the accuracy of the proposed method is less than 0.2% in average. For the application results, the mission operation of KOMPSAT-3A and arbitrary directional imaging results are described.

  13. METEOROLOGICAL SATELLITE IMAGES IN GEOGRAPHY CLASSES: a didactic possibility

    Directory of Open Access Journals (Sweden)

    Diego Correia Maia

    2016-01-01

    Full Text Available ABSTRACT: The satellite images are still largely unexplored as didactic resource in geography classes, particularly about meteorology. This article aims to contribute to the development of new methodologies of interpretation and understanding, beyond the construction of pedagogical practices involving meteorological satellite images, concepts and issues related to climate issues. The aim of this paper is to present possibilities for the use of meteorological satellite images in the Teaching of Geography, aiming the promoting and the understanding of contents of air masses and fronts and climatic factors. RESUMO: As imagens de satélite ainda são pouco exploradas como recurso didático nas aulas de Geografia, principalmente aquelas relativas à meteorologia. Este artigo visa contribuir com o desenvolvimento de novas metodologias de interpretação e compreensão, além da construção de práticas pedagógicas envolvendo imagens de satélite meteorológico, conceitos e temas ligados às questões climáticas. Seu objetivo é apresentar possibilidades de utilização das imagens de satélite meteorológico no Ensino de Geografia, visando à promoção e ao entendimento dos conteúdos de massas de ar e frentes e de elementos climáticos. Palavras chave

  14. Effect of satellite formations and imaging modes on global albedo estimation

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-05-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static referencecase. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/m2 or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More than

  15. A fast and automatic mosaic method for high-resolution satellite images

    Science.gov (United States)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  16. Recurrent Neural Networks to Correct Satellite Image Classification Maps

    Science.gov (United States)

    Maggiori, Emmanuel; Charpiat, Guillaume; Tarabalka, Yuliya; Alliez, Pierre

    2017-09-01

    While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.

  17. NITESat: A High Resolution, Full-Color, Light Pollution Imaging Satellite Mission

    Directory of Open Access Journals (Sweden)

    Ken Walczak

    2017-06-01

    Full Text Available The NITESat (Night Imaging and Tracking Experiment Satellite mission is a 2U CubeSat satellite designed for nighttime Earth imaging to quantify and characterize light pollution across the Midwestern United States. It is accompanied and supported by an array of ground-based light pollution observing stations called GONet (Ground Observing Network. NITESat is a pilot mission testing the potential for a simple and inexpensive (<$500,000 satellite to deliver high-resolution, three-color regional data of artificial light at night. In addition, GONet will form the core of an educational outreach program by establishing an array of all-sky monitors covering the imaging region of the satellite with 20+ full sky light pollution citizen-operated stations. This will provide synchronized data coinciding with the NITESat overpasses as well as providing near continuous night sky quality monitoring. If the initial mission is a success, the potential exists to expand the program into a low cost constellation of satellites capable of delivering global coverage. NITESat is being designed, built and will be operated by the Far Horizons program at the Adler Planetarium in Chicago, Illinois. Far Horizons is a student and volunteer centered program offering hands-on engineering and scientific research opportunities for education.

  18. Operational evapotranspiration based on Earth observation satellites

    Science.gov (United States)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  19. New and Emerging Satellite Imaging Capabilities in Support of Safeguards

    International Nuclear Information System (INIS)

    Johnson, M.; Paquette, J.P.; Spyropoulos, N.; Rainville, L.; Schichor, P.; Hong, M.

    2015-01-01

    This abstract is focused on new and emerging commercial satellite imagery (CSI) capabilities. For more than a decade, experienced imagery analysts have been exploiting and analyzing CSI in support of the Department of Safeguards. As the remote sensing industry continues to evolve, additional CSI imagery types are becoming available that could enhance our ability to evaluate and verify States' declarations and to investigate the possible presence of undeclared activities. A newly available and promising CSI capability that may have a Safeguards application is Full Motion Video (FMV) imagery collection from satellites. For quite some time, FMV imagery has been collected from airborne platforms, but now FMV sensors are being deployed into space. Like its airborne counterpart, satellite FMV imagery could provide analysts with a great deal of information, including insight into the operational status of facilities and patterns of activity. From a Safeguards perspective, FMV imagery could help the Agency in the evaluation and verification of States' declared facilities and activities. There are advantages of FMV imaging capabilities that cannot be duplicated with other CSI capabilities, including the ability to loiter over areas of interest and the potential to revisit sites multiple times per day. Additional sensor capabilities applicable to the Safeguards mission include, but are not limited to, the following sensors: · Thermal Infrared imaging sensors will be launched in late 2014 to monitor operational status, e.g., heat from a transformer. · High resolution ShortWave Infrared sensors able to characterize materials that could support verification of Additional Protocol declarations under Article 2.a(v). · Unmanned Aerial Vehicles with individual sensors or specific sensor combinations. The Safeguards Symposium provides a forum to showcase and demonstrate safeguards applications for these emerging satellite imaging capabilities. (author)

  20. Simultaneous hierarchical segmentation and vectorization of satellite images through combined data sampling and anisotropic triangulation

    Energy Technology Data Exchange (ETDEWEB)

    Grazzini, Jacopo [Los Alamos National Laboratory; Prasad, Lakshman [Los Alamos National Laboratory; Dillard, Scott [PNNL

    2010-10-21

    The automatic detection, recognition , and segmentation of object classes in remote sensed images is of crucial importance for scene interpretation and understanding. However, it is a difficult task because of the high variability of satellite data. Indeed, the observed scenes usually exhibit a high degree of complexity, where complexity refers to the large variety of pictorial representations of objects with the same semantic meaning and also to the extensive amount of available det.ails. Therefore, there is still a strong demand for robust techniques for automatic information extraction and interpretation of satellite images. In parallel, there is a growing interest in techniques that can extract vector features directly from such imagery. In this paper, we investigate the problem of automatic hierarchical segmentation and vectorization of multispectral satellite images. We propose a new algorithm composed of the following steps: (i) a non-uniform sampling scheme extracting most salient pixels in the image, (ii) an anisotropic triangulation constrained by the sampled pixels taking into account both strength and directionality of local structures present in the image, (iii) a polygonal grouping scheme merging, through techniques based on perceptual information , the obtained segments to a smaller quantity of superior vectorial objects. Besides its computational efficiency, this approach provides a meaningful polygonal representation for subsequent image analysis and/or interpretation.

  1. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano

    Science.gov (United States)

    Dehn, Jonathan; Dean, Kenneson; Engle, Kevin; Izbekov, Pavel

    2002-07-01

    Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.

  2. Stitching images of dual-cameras onboard satellite

    Science.gov (United States)

    Jiang, Yonghua; Xu, Kai; Zhao, Ruishan; Zhang, Guo; Cheng, Kan; Zhou, Ping

    2017-06-01

    The way of installing dual-cameras on one satellite is adopted to further enlarge the imaging swath, thereby improving the efficiency of data capturing. In this case, stitching images of dual-cameras with high precision is a key step in the practical application. Due to the inadequate overlapping area of dual-cameras, stitching their images by classic methods may cause internal accuracy loss of the mosaic image. The reason is that classic methods estimate the geometric transformation of dual-cameras merely by a few unevenly distributed precise tie points in overlapping area of dual-cameras, which is similar to the case of using unevenly distributed ground control points (GCPs) in block adjustment. This paper proposed a new method to precisely stitch images of dual cameras without losing internal accuracy. First, a model was built to recover the relative geometric relation of dual-cameras and eliminate Charge-Coupled Device (CCD) distortions of each camera, then a virtual camera model depending on the calibrated geometric relation was adopted to achieve a seamless mosaic image. The panchromatic images of camera A and camera B onboard Yaogan-24 were collected as the experimental data. Experiment results show that the calibration accuracies of dual-cameras are better than 0.3 pixels, and the stitching accuracies can reach the sub-pixel level, ranging from 0.3 to 0.5 pixels. On the other hand, the positioning accuracies with GCPs of the mosaic image and of individual camera are better than 0.6 pixels and 0.5 pixels respectively, so the internal accuracy loss of the mosaic image only reaches 0.1 pixels, which can be neglected. This demonstrates that the proposed method can achieve seamless mosaic images without losing internal accuracy.

  3. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  4. Chagas disease study using satellite image processing: A Bolivian case

    Science.gov (United States)

    Vargas-Cuentas, Natalia I.; Roman-Gonzalez, Avid; Mantari, Alicia Alva; Muñoz, Luis AnthonyAucapuma

    2018-03-01

    Remote sensing is the technology that has enabled us to obtain information about the Earth's surface without directly contacting it. For this reason, currently, the Bolivian state has considered a list of interesting applications of remote sensing in the country, including the following: biodiversity and environment monitoring, mining and geology, epidemiology, agriculture, water resources and land use planning. The use of satellite images has become a great tool for epidemiology because with this technological advance we can determine the environment in which transmission occurs, the distribution of the disease and its evolution over time. In that context, one of the important diseases related to public health in Bolivia is Chagas disease, also known as South American Trypanosomiasis. Chagas is caused by a blood-sucking bug or Vinchuca, which causes serious intestinal and heart long term problems and affects 33.4% of the Bolivian population. This disease affects mostly humble people, so the Bolivian state invests millions of dollars to acquire medicine and distribute it for free. Due to the above reasons, the present research aims to analyze some areas of Bolivia using satellite images for developing an epidemiology study. The primary objective is to understand the environment in which the transmission of the disease happens, and the climatic conditions under which occurs, observe the behavior of the blood-sucking bug, identify in which months occur higher outbreaks, in which months the bug leaves its eggs, and under which weather conditions this happens. All this information would be contrasted with information extracted from the satellite images and data from the Ministry of Health, and the Institute of Meteorology in Bolivia. All this data will allow us to have a more integrated understanding of this disease and promote new possibilities to prevent and control it.

  5. Using satellite-based measurements to explore ...

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), ozone (O3)), aerosol optical properties (aerosol optical depth (AOD), Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI), temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD×AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatia

  6. Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images

    Science.gov (United States)

    Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing

    2014-11-01

    Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.

  7. Detecting aircrafts from satellite images using saliency and conical ...

    Indian Academy of Sciences (India)

    Samik Banerjee

    based detection framework for targets with complex shapes in high resolution remote sensing images. Results were shown on remote sensing images from Google Earth for aircraft detection. Most of the images used were of high resolution, containing clear pictures of aircrafts as targets. Several deep learning frameworks ...

  8. Landsat TM and ETM+ 2002-2003 Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  9. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  10. Automatic Reacquisition of Satellite Positions by Detecting Their Expected Streaks in Astronomical Images

    Science.gov (United States)

    Levesque, M.

    Artificial satellites, and particularly space junk, drift continuously from their known orbits. In the surveillance-of-space context, they must be observed frequently to ensure that the corresponding orbital parameter database entries are up-to-date. Autonomous ground-based optical systems are periodically tasked to observe these objects, calculate the difference between their predicted and real positions and update object orbital parameters. The real satellite positions are provided by the detection of the satellite streaks in the astronomical images specifically acquired for this purpose. This paper presents the image processing techniques used to detect and extract the satellite positions. The methodology includes several processing steps including: image background estimation and removal, star detection and removal, an iterative matched filter for streak detection, and finally false alarm rejection algorithms. This detection methodology is able to detect very faint objects. Simulated data were used to evaluate the methodology's performance and determine the sensitivity limits where the algorithm can perform detection without false alarm, which is essential to avoid corruption of the orbital parameter database.

  11. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    Science.gov (United States)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  12. RapidEye satellite based geo-information system

    Science.gov (United States)

    Krischke, M.; Niemeyer, W.; Scherer, S.

    2000-03-01

    It has been found that the ability to offer a guaranteed delivery of information products is the key for any successful commercial Earth observation service. This understanding led to the definition of the RapidEye system and the foundation of the RapidEye AG. RapidEye is a satellite based remote sensing system which permits to have from any point on Earth, at least daily a multispectral (and optionally stereo) imaging capability with a resolution of 5-7 m. It is aimed at establishing an efficient operation for the rapid and accurate reception and processing of thematic information of the Earth's surface and to establish a reliable and sustained service for customers. RapidEye is set up in several steps. The individual steps can be realised according to the system's acceptance on the market. Four satellites are planned already for the first step which permits a revisiting rate of 1/day. In its final configuration, RapidEye consists of a chain of Earth observation satellites which optionally communicate with one another via communication links.

  13. Near Real-Time Automatic Marine Vessel Detection on Optical Satellite Images

    Science.gov (United States)

    Máttyus, G.

    2013-05-01

    Vessel monitoring and surveillance is important for maritime safety and security, environment protection and border control. Ship monitoring systems based on Synthetic-aperture Radar (SAR) satellite images are operational. On SAR images the ships made of metal with sharp edges appear as bright dots and edges, therefore they can be well distinguished from the water. Since the radar is independent from the sun light and can acquire images also by cloudy weather and rain, it provides a reliable service. Vessel detection from spaceborne optical images (VDSOI) can extend the SAR based systems by providing more frequent revisit times and overcoming some drawbacks of the SAR images (e.g. lower spatial resolution, difficult human interpretation). Optical satellite images (OSI) can have a higher spatial resolution thus enabling the detection of smaller vessels and enhancing the vessel type classification. The human interpretation of an optical image is also easier than as of SAR image. In this paper I present a rapid automatic vessel detection method which uses pattern recognition methods, originally developed in the computer vision field. In the first step I train a binary classifier from image samples of vessels and background. The classifier uses simple features which can be calculated very fast. For the detection the classifier is slided along the image in various directions and scales. The detector has a cascade structure which rejects most of the background in the early stages which leads to faster execution. The detections are grouped together to avoid multiple detections. Finally the position, size(i.e. length and width) and heading of the vessels is extracted from the contours of the vessel. The presented method is parallelized, thus it runs fast (in minutes for 16000 × 16000 pixels image) on a multicore computer, enabling near real-time applications, e.g. one hour from image acquisition to end user.

  14. Lineament systems indentification in Banten site using Spot 5 satellite image

    International Nuclear Information System (INIS)

    Yuliastuti; Heni Susiati; Yunus Daud; A-Sarwiyana Sastratenaya

    2013-01-01

    Lineament systems identification in Banten site using SPOT 5 satellite image has been performed. Based on regional site survey in Java Island, Banten is one of the potential candidate sites. The objective of this study was to determine direction and chronology of regional lineament morphology which was consider as fault or faulting in Banten site. The methodology used this study covered satellite image cropping, band selection, edge enhancement filtering, lineament extraction and lineament analysis. Result of the study showed that there were three dominant lineament groups, namely N-S, NW-SE, and E-W. Based on the forming chronology of the lineament, N-S group was the oldest one, followed by E-W group and NW-SE as the youngest group. These lineament groups have been confirmed as a manifestation of fault system structure. (author)

  15. A Low-Complexity UEP Methodology Demonstrated on a Turbo-Encoded Wavelet Image Satellite Downlink

    Directory of Open Access Journals (Sweden)

    Salemi Eric

    2008-01-01

    Full Text Available Realizing high-quality digital image transmission via a satellite link, while optimizing resource distribution and minimizing battery consumption, is a challenging task. This paper describes a methodology to optimize a turbo-encoded wavelet-based satellite downlink progressive image transmission system with unequal error protection (UEP techniques. To achieve that goal, we instantiate a generic UEP methodology onto the system, and demonstrate that the proposed solution has little impact on the average performance, while greatly reducing the run-time complexity. Based on a simple design-time distortion model and a low-complexity run-time algorithm, the provided solution can dynamically tune the system's configuration to any bitrate constraint or channel condition. The resulting system outperforms in terms of peak signal-to-noise ratio (PSNR, a state-of-the-art, fine-tuned equal error protection (EEP solution by as much as 2 dB.

  16. A Low-Complexity UEP Methodology Demonstrated on a Turbo-Encoded Wavelet Image Satellite Downlink

    Directory of Open Access Journals (Sweden)

    Eric Salemi

    2008-01-01

    Full Text Available Realizing high-quality digital image transmission via a satellite link, while optimizing resource distribution and minimizing battery consumption, is a challenging task. This paper describes a methodology to optimize a turbo-encoded wavelet-based satellite downlink progressive image transmission system with unequal error protection (UEP techniques. To achieve that goal, we instantiate a generic UEP methodology onto the system, and demonstrate that the proposed solution has little impact on the average performance, while greatly reducing the run-time complexity. Based on a simple design-time distortion model and a low-complexity run-time algorithm, the provided solution can dynamically tune the system's configuration to any bitrate constraint or channel condition. The resulting system outperforms in terms of peak signal-to-noise ratio (PSNR, a state-of-the-art, fine-tuned equal error protection (EEP solution by as much as 2 dB.

  17. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction

    Science.gov (United States)

    Su, X.

    2017-12-01

    A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.

  18. Navsat - A global satellite based navigation system

    Science.gov (United States)

    Rosetti, C.; Carnebianca, C.

    The Navsat 12-satellite highly eccentric orbit - plus - six-satellite geosynchronous orbit system constellation currently accepted as the baseline design is noted to be able to significantly reduce operating costs while furnishing navigation performance comparable or superior to that of GPS. The constellation is also noted to facilitate the implementation of the planned integrated navigation/communications/search-and-rescue service. With only two geosynchronous navigation satellites and three highly eccentric orbit satellites, full operational capability is achievable in the areas where the service is most needed.

  19. Application of SVM on satellite images to detect hotspots in Jharia coal field region of India

    Science.gov (United States)

    Gautam, R. S.; Singh, D.; Mittal, A.; Sajin, P.

    The present paper deals with the application of Support Vector Machine (SVM) and image analysis techniques on NOAA/AVHRR satellite image to detect hotspots on the Jharia coal field region of India. One of the major advantages of using these satellite data is that the data are free with very good temporal resolution; while, one drawback is that these have low spatial resolution (i.e., approximately 1.1 km at nadir). Therefore, it is important to do research by applying some efficient optimization techniques along with the image analysis techniques to rectify these drawbacks and use satellite images for efficient hotspot detection and monitoring. For this purpose, SVM and multi-threshold techniques are explored for hotspot detection. The multi-threshold algorithm is developed to remove the cloud coverage from the land coverage. This algorithm also highlights the hotspots or fire spots in the suspected regions. SVM has the advantage over multi-thresholding technique that it can learn patterns from the examples and therefore is used to optimize the performance by removing the false points which are highlighted in the threshold technique. Both approaches can be used separately or in combination depending on the size of the image. The RBF (Radial Basis Function) kernel is used in training of three sets of inputs: brightness temperature of channel 3, Normalized Difference Vegetation Index (NDVI) and Global Environment Monitoring Index (GEMI), respectively. This makes a classified image in the output that highlights the hotspot and non-hotspot pixels. The performance of the SVM is also compared with the performance obtained from the neural networks and SVM appears to detect hotspots more accurately (greater than 91% classification accuracy) with lesser false alarm rate. The results obtained are found to be in good agreement with the ground based observations of the hotspots. This type of work will be quite helpful in the near future to develop a hotspots monitoring system

  20. Foodstuff Survey Around a Major Nuclear Facility with Test of Satellite Image Application

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    1999-01-01

    'A foodstuff survey was performed around the Savannah River Site, Aiken SC. It included a census of buildings and fields within 5 km of the boundary and determination of the locations and amounts of crops grown within 80 km of SRS center. Recent information for this region was collected on the amounts of meat, poultry, milk, and eggs produced, of deer hunted, and of sports fish caught. The locations and areas devoted to growing each crop were determined in two ways: by the usual process of assuming uniform crop distribution in each county on the basis of agricultural statistics reported by state agencies, and by analysis of two LANDSAT TM images obtained in May and September. For use with environmental radionuclide transfer and radiation dose calculation codes, locations within 80 km were defined for 64 sections by 16 sectors centered on the Site and by 16-km distance intervals from 16 km to 80 km. Most locally-raised foodstuff was distributed regionally and not retained locally for consumption. For four food crops, the amounts per section based on county agricultural statistics prorated by area were compared with the amounts per section based on satellite image analysis. The median ratios of the former to the latter were 0.6 - 0.7, suggesting that the two approaches are comparable but that satellite image analysis gave consistently higher amounts. Use of satellite image analysis is recommended on the basis of these findings to obtain site-specific, as compared to area-averaged, information on crop locations in conjunction with radionuclide pathway modelling. Some improvements in technique are suggested for satellite image application to characterize additional crops.'

  1. Satellite-based Precipitation Measurements For Science and Society

    Science.gov (United States)

    Skofronick Jackson, G.; Huffman, G. J.

    2016-12-01

    Water is essential to Earth. Thus, knowing when, where, and how precipitation falls is of paramount importance for science and society. Some areas of the world have dense ground-based rain observations, but the vast oceans, less populated regions, and parts of developing countries lack adequate surface precipitation data. Satellites provide an optimal platform to measure precipitation globally. In the 1970's satellites started measuring precipitation and, over time, satellite precipitation sensors improved considerably. A major breakthrough was the 1998 launch of the joint NASA-Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM). The TRMM spacecraft had both a multi-frequency passive microwave imaging radiometer for measuring wide-swath rainfall surface intensity and horizontal structures, and a single-frequency radar channel capable of generating 3D views of rain in clouds. In 2014, NASA and JAXA launched the Global Precipitation Measurement Core Observatory (GPM-CO) spacecraft carrying the most advanced precipitation sensors currently in space, including a dual-frequency precipitation radar and a well-calibrated, multi-frequency passive microwave radiometer. The GPM-CO was designed to measure precipitation rates from 0.2-110 mm hr-1, to provide 3D particle size distributions, and to detect moderate to intense snow events, considerably improving over TRMM's capabilities. The GPM-CO serves as a reference for unifying data from a constellation of partner satellites to provide next-generation, merged estimates globally and with high temporal (30 min) and spatial (0.1ox0.1o) resolutions. GPM data have been used for observing hurricanes from the tropics to mid-latitudes; developing susceptibility maps for floods, landslides, and droughts; providing inputs into weather and climate models; and offering new insights into agricultural productivity and world health. The current status of GPM, its ongoing science, and the future plans will be

  2. Satellite Based Cropland Carbon Monitoring System

    Science.gov (United States)

    Bandaru, V.; Jones, C. D.; Sedano, F.; Sahajpal, R.; Jin, H.; Skakun, S.; Pnvr, K.; Kommareddy, A.; Reddy, A.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    Agricultural croplands act as both sources and sinks of atmospheric carbon dioxide (CO2); absorbing CO2 through photosynthesis, releasing CO2 through autotrophic and heterotrophic respiration, and sequestering CO2 in vegetation and soils. Part of the carbon captured in vegetation can be transported and utilized elsewhere through the activities of food, fiber, and energy production. As well, a portion of carbon in soils can be exported somewhere else by wind, water, and tillage erosion. Thus, it is important to quantify how land use and land management practices affect the net carbon balance of croplands. To monitor the impacts of various agricultural activities on carbon balance and to develop management strategies to make croplands to behave as net carbon sinks, it is of paramount importance to develop consistent and high resolution cropland carbon flux estimates. Croplands are typically characterized by fine scale heterogeneity; therefore, for accurate carbon flux estimates, it is necessary to account for the contribution of each crop type and their spatial distribution. As part of NASA CMS funded project, a satellite based Cropland Carbon Monitoring System (CCMS) was developed to estimate spatially resolved crop specific carbon fluxes over large regions. This modeling framework uses remote sensing version of Environmental Policy Integrated Climate Model and satellite derived crop parameters (e.g. leaf area index (LAI)) to determine vertical and lateral carbon fluxes. The crop type LAI product was developed based on the inversion of PRO-SAIL radiative transfer model and downscaled MODIS reflectance. The crop emergence and harvesting dates were estimated based on MODIS NDVI and crop growing degree days. To evaluate the performance of CCMS framework, it was implemented over croplands of Nebraska, and estimated carbon fluxes for major crops (i.e. corn, soybean, winter wheat, grain sorghum, alfalfa) grown in 2015. Key findings of the CCMS framework will be presented

  3. Integration of Satellite Tracking Data and Satellite Images for Detailed Characteristics of Wildlife Habitats

    Science.gov (United States)

    Dobrynin, D. V.; Rozhnov, V. V.; Saveliev, A. A.; Sukhova, O. V.; Yachmennikova, A. A.

    2017-12-01

    Methods of analysis of the results got from satellite tracking of large terrestrial mammals differ in the level of their integration with additional geographic data. The reliable fine-scale cartographic basis for assessing specific wildlife habitats can be developed through the interpretation of multispectral remote sensing data and extrapolation of the results to the entire estimated species range. Topographic maps were ordinated according to classified features using self-organizing maps (Kohonen's SOM). The satellite image of the Ussuriiskyi Nature Reserve area was interpreted for the analysis of movement conditions for seven wild Amur tigers ( Panthera tigris altaica) equipped with GPS collars. 225 SOM classes for cartographic visualization are sufficient for the detailed mapping of all natural complexes that were identified as a result of interpretation. During snow-free periods, tigers preferred deciduous and shrub associations at lower elevations, as well as mixed forests in the valleys of streams that are adjacent to sparse forests and shrub watershed in the mountain ranges; during heavy snow periods, the animals preferred the entire range of plant communities in different relief types, except for open sites in meadows and abandoned fields at foothills. The border zones of different biotopes were typically used by the tigers during all seasons. Amur tigers preferred coniferous forests for long-term movements.

  4. Development of dual imaging optical sensor (DIOS) for small satellites

    Science.gov (United States)

    Choi, Young-Wan; Kang, Myung-Seok; Jeong, Sung-Keun; Yun, Ji-Ho; Yang, Seung-Uk; Kim, Jongun; Kim, Ee-Eul

    2007-09-01

    The mission of DIOS program is to provide the function of large-swathwidth or in-track stereo imaging with compact electro-optical cameras. Optimized from its predecessor SAC (Small-sized Aperture Camera), DIOS consists of two cameras, each with an aperture of 120 mm diameter, 10 m GSD, and 50 km swath width in the spectral range of 520 ~ 890 nm. DIOS is developed to produce high quality images: MTF of more than 12 %; SNR of more than 100. DIOS can be configured to have cameras side-by-side, providing a swathwidth up to 100 km for a mission of large swathwidth. DIOS will be configured with installation of slanted two cameras for the mission of in-track stereo imaging to produce digital elevation model. In this paper, Dual Imaging Optical Sensor (DIOS) will be introduced with design approach and performance measure. Even though developed for micro satellites, the presentation of development status and test results will demonstrate the potential capability that DISO can provide for world-wide remote sensing groups: short development period, cost-effectiveness, wide application ranges, and high performance.

  5. Brightness temperature nowcasting for satellite-based short-term prediction of storms: opportunities and challenges

    Science.gov (United States)

    Cai, Huaqing; Kuligowski, Robert; Lee, Gyuwon; Rehak, Nancy; Cunning, Gary; Albo, David; Megenhardt, Daniel; Steiner, Matthias

    2008-08-01

    Satellite-based brightness temperature observations are used in a wide range of applications for monitoring weather systems over land and especially over water, including short-term prediction of the evolution of weather systems. Results are presented from an evaluation of three extrapolation-based nowcasting procedures to predict satellitebased brightness temperatures up to 3 hours into the future. Analyses are based on using METEOSAT-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as a proxy for the Advanced Baseline Imager (ABI) to be flown on the next-generation National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellite (GOES)-R series.

  6. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    Science.gov (United States)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  7. Direct Geolocation of Satellite Images with the EO-CFI Libraries

    Science.gov (United States)

    de Miguel, Eduardo; Prado, Elena; Estebanez, Monica; Martin, Ana I.; Gonzalez, Malena

    2016-08-01

    The INTA Remote Sensing Laboratory has implemented a tool for the direct geolocation of satellite images. The core of the tool is a C code based on the "Earth Observation Mission CFI SW" from ESA. The tool accepts different types of inputs for satellite attitude (euler angles, quaternions, default attitude models). Satellite position can be provided either in ECEF or ECI coordinates. The line of sight of each individual detector is imported from an external file or is generated by the tool from camera parameters. Global DEM ACE2 is used to define ground intersection of the LOS.The tool has been already tailored for georeferencing images from the forthcoming Spanish Earth Observation mission SEOSat/Ingenio, and for the camera APIS onboard the INTA cubesat OPTOS. The next step is to configure it for the geolocation of Sentinel 2 L1b images.The tool has been internally validated by different means. This validation shows that the tool is suitable for georeferencing images from high spatial resolution missions. As part of the validation efforts, a code for simulating orbital info for LEO missions using EO-CFI has been produced.

  8. Dictionary Based Image Segmentation

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  9. Near Real-Time Disturbance Detection in Terrestrial Ecosystems Using Satellite Image Time Series: Drought Detection in Somalia

    OpenAIRE

    Jan Verbesselt; Achim Zeileis; Martin Herold

    2011-01-01

    Near real-time monitoring of ecosystem disturbances is critical for addressing impacts on carbon dynamics, biodiversity, and socio-ecological processes. Satellite remote sensing enables cost-effective and accurate monitoring at frequent time steps over large areas. Yet, generic methods to detect disturbances within newly captured satellite images are lacking. We propose a generic time series based disturbance detection approach by modelling stable historical behaviour to enable detection of a...

  10. ROI-ORIENTATED SENSOR CORRECTION BASED ON VIRTUAL STEADY REIMAGING MODEL FOR WIDE SWATH HIGH RESOLUTION OPTICAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-09-01

    Full Text Available To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.

  11. Modeling Surface Energy Fluxes over a Dehesa (Oak Savanna Ecosystem Using a Thermal Based Two Source Energy Balance Model (TSEB II—Integration of Remote Sensing Medium and Low Spatial Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Ana Andreu

    2018-04-01

    Full Text Available Dehesas are highly valuable agro-forestry ecosystems, widely distributed over Mediterranean-type climate areas, which play a key role in rural development, basing their productivity on a sustainable use of multiple resources (crops, livestock, wildlife, etc.. The information derived from remote sensing based models addressing ecosystem water consumption, at different scales, can be used by institutions and private landowners to support management decisions. In this study, the Two-Source Energy Balance (TSEB model is analyzed over two Spanish dehesa areas integrating multiple satellites (MODIS and Landsat for estimating water use (ET, vegetation ground cover, leaf area and phenology. Instantaneous latent heat (LE values are derived on a regional scale and compared with eddy covariance tower (ECT measurements, yielding accurate results (RMSDMODIS Las Majadas 44 Wm−2, Santa Clotilde RMSDMODIS 47 Wm−2 and RMSDLandsat 64 Wm−2. Daily ET(mm is estimated using daily return interval of MODIS for both study sites and compared with the flux measurements of the ECTs, with RMSD of 1 mm day−1 over Las Majadas and 0.99 mm day−1 over Santa Clotilde. Distributed ET over Andalusian dehesa (15% of the region is successfully mapped using MODIS images, as an approach to monitor the ecosystem status and the vegetation water stress on a regular basis.

  12. Satellite-based monitoring of cotton evapotranspiration

    Science.gov (United States)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  13. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  14. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    Science.gov (United States)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  15. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  16. Analysis of laser jamming to satellite-based detector

    Science.gov (United States)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100m

  17. Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes

    Science.gov (United States)

    Anderssohn, J.; Motagh, M.; Walter, T. R.; Rosenau, M.; Kaufmann, H.; Oncken, O.

    2009-12-01

    The variable spatio-temporal scales of Earth's surface deformation in potentially hazardous volcanic areas pose a challenge for observation and assessment. Here we used Envisat data acquired in Wide Swath Mode (WSM) and Image Mode (IM) from ascending and descending geometry, respectively, to study time-dependent ground uplift at the Lazufre volcanic system in Chile and Argentina. A least-squares adjustment was performed on 65 IM interferograms that covered the time period of 2003-2008. We obtained a clear trend of uplift reaching 15-16 cm in this 5-year interval. Using a joint inversion of ascending and descending interferograms, we evaluated the geometry and time-dependent progression of a horizontally extended pressurized source beneath the Lazufre volcanic system. Our results hence indicate that an extended magma body at a depth between 10 and 15 km would account for most of the ground uplift. The maximum inflation reached up to ~40 cm during 2003-2008. The lateral propagation velocity of the intrusion was estimated to be nearly constant at 5-10 km/yr during the observation time, which has important implications for the physical understanding of magma intrusion processes.

  18. Validation of a satellite-based cyclogenesis technique over the ...

    Indian Academy of Sciences (India)

    to predict TCs based on scatterometer-derived winds from the polar orbiting satellite, QuikSCAT and. Oceansat-II. The India Meteorological .... Environmental Prediction (NCEP) Global Fore- cast System (GFS) data fields as well ...... of climate change impact on Tropical Cyclones over the. North Indian Ocean during satellite ...

  19. Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data

    Science.gov (United States)

    Ostir, K.; Cotar, K.; Marsetic, A.; Pehani, P.; Perse, M.; Zaksek, K.; Zaletelj, J.; Rodic, T.

    2015-04-01

    In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.

  20. Satellite Based Analysis of Surface Urban Heat Island Intensity

    Directory of Open Access Journals (Sweden)

    Gémes Orsolya

    2016-06-01

    Full Text Available The most obvious characteristics of urban climate are higher air and surface temperatures compared to rural areas and large spatial variation of meteorological parameters within the city. This research examines the long term and seasonal development of urban surface temperature using satellite data during a period of 30 years and within a year. The medium resolution Landsat data were (preprocessed using open source tools. Besides the analysis of the long term and seasonal changes in land surface temperature within a city, also its relationship with changes in the vegetation cover was investigated. Different urban districts and local climate zones showed varying strength of correlation. The temperature difference between urban surfaces and surroundings is defined as surface urban heat island (SUHI. Its development shows remarkable seasonal and spatial anomalies. The satellite images can be applied to visualize and analyze the SUHI, although they were not collected at midday and early afternoon, when the phenomenon is normally at its maximum. The applied methodology is based on free data and software and requires minimal user interaction. Using the results new urban developments (new built up and green areas can be planned, that help mitigate the negative effects of urban climate.

  1. USING SATELLITE IMAGES FOR WIRELESS NETWORK PLANING IN BAKU CITY

    Directory of Open Access Journals (Sweden)

    M. Gojamanov

    2013-04-01

    Full Text Available It is a well known fact that the Information-Telecommunication and Space research technologies are the fields getting much more benefits from the achievements of the scientific and technical progress. In many cases, these areas supporting each other have improved the conditions for their further development. For instance, the intensive development in the field of the mobile communication has caused the rapid progress of the Space research technologies and vice versa.Today it is impossible to solve one of the most important tasks of the mobile communication as Radio Frecance planning without the 2D and 3D digital maps. The compiling of such maps is much more efficient by means of the space images. Because the quality of the space images has been improved and developed, especially at the both spectral and spatial resolution points. It has been possible to to use 8 Band images with the spatial resolution of 50 sm. At present, in relation to the function 3G of mobile communications one of the main issues facing mobile operator companies is a high-precision 3D digital maps. It should be noted that the number of mobile phone users in the Republic of Azerbaijan went forward other Community of Independent States Countries. Of course, using of aerial images for 3D mapping would be optimal. However, depending on a number of technical and administrative problems aerial photography cannot be used. Therefore, the experience of many countries shows that it will be more effective to use the space images with the higher resolution for these issues. Concerning the fact that the mobile communication within the city of Baku has included 3G function there were ordered stereo images wih the spatial resolution of 50 cm for the 150 sq.km territory occupying the central part of the city in order to compile 3D digital maps. The images collected from the WorldView-2 satellite are 4-Band Bundle(Pan+MS1 stereo images. Such kind of imagery enable to automatically

  2. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Nina Merkle

    2017-06-01

    Full Text Available Improving the geo-localization of optical satellite images is an important pre-processing step for many remote sensing tasks like monitoring by image time series or scene analysis after sudden events. These tasks require geo-referenced and precisely co-registered multi-sensor data. Images captured by the high resolution synthetic aperture radar (SAR satellite TerraSAR-X exhibit an absolute geo-location accuracy within a few decimeters. These images represent therefore a reliable source to improve the geo-location accuracy of optical images, which is in the order of tens of meters. In this paper, a deep learning-based approach for the geo-localization accuracy improvement of optical satellite images through SAR reference data is investigated. Image registration between SAR and optical images requires few, but accurate and reliable matching points. These are derived from a Siamese neural network. The network is trained using TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe, in order to learn the two-dimensional spatial shifts between optical and SAR image patches. Results confirm that accurate and reliable matching points can be generated with higher matching accuracy and precision with respect to state-of-the-art approaches.

  3. Conceptual Design of On Board Digital Base Part on Satellite to Effectively Interface the Data Upon Satellite Remote Devices

    Directory of Open Access Journals (Sweden)

    Cheol-Hea Koo

    2006-12-01

    Full Text Available In this paper, the conceptual design of satellite digital base part which is based upon data interface between satellite on-board computer and remote devices like satellite sub-components is presented. This conceptual design shows the unification of the interface between on-board computer and satellite remote devices and the hierarchical results of the interface level. A comparison of different system and merits and demerits of digital base part coming from this conceptual design is performed.

  4. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  5. Estimate Landslide Volume with Genetic Algorithms and Image Similarity Method from Single Satellite Image

    Science.gov (United States)

    Yu, Ting-To

    2013-04-01

    It is important to acquire the volume of landslide in short period of time. For hazard mitigation and also emergency response purpose, the traditional method takes much longer time than expected. Due to the weather limit, traffic accessibility and many regulations of law, it take months to handle these process before the actual carry out of filed work. Remote sensing imagery can get the data as long as the visibility allowed, which happened only few day after the event. While traditional photometry requires a stereo pairs images to produce the post event DEM for calculating the change of volume. Usually have to wait weeks or even months for gathering such data, LiDAR or ground GPS measurement might take even longer period of time with much higher cost. In this study we use one post event satellite image and pre-event DTM to compare the similarity between these by alter the DTM with genetic algorithms. The outcome of smartest guess from GAs shall remove or add exact values of height at each location, which been converted into shadow relief viewgraph to compare with satellite image. Once the similarity threshold been make then the guessing work stop. It takes only few hours to finish the entire task, the computed accuracy is around 70% by comparing to the high resolution LiDAR survey at a landslide, southern Taiwan. With extra GCPs, the estimate accuracy can improve to 85% and also within few hours after the receiving of satellite image. Data of this demonstration case is a 5 m DTM at 2005, 2M resolution FormoSat optical image at 2009 and 5M LiDAR at 2010. The GAs and image similarity code is developed on Matlab at windows PC.

  6. Children observe the Digital Earth from above: How they read aerial and satellite images

    International Nuclear Information System (INIS)

    Svatonova, H; Rybansky, M

    2014-01-01

    Digital aerial and satellite images depicting the Earth surface are not secret anymore and they are easily available for general public. Publishing of aerial and satellite images provoke the questions how the non-experts or the amateur groups can interpret these images, how they are able to cope with vertical or oblique images, with their colour, missing lettering, etc. The paper presents the results of the research of the above mentioned questions where the respondents were the Czech pupils and student at the age of about eleven, fifteen and nineteen years. These results are aimed at the effective exploitation of aerial and satellite images in teaching, they represent also information for imagery producers and distributors. A non-traditional view on the Earth surface from above using aerial or satellite images is one of the opportunities to discover the beauty of the Earth

  7. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Directory of Open Access Journals (Sweden)

    Xiao-fang Xie

    2007-05-01

    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  8. Children observe the Digital Earth from above: How they read aerial and satellite images

    Science.gov (United States)

    Svatonova, H.; Rybansky, M.

    2014-02-01

    Digital aerial and satellite images depicting the Earth surface are not secret anymore and they are easily available for general public. Publishing of aerial and satellite images provoke the questions how the non-experts or the amateur groups can interpret these images, how they are able to cope with vertical or oblique images, with their colour, missing lettering, etc. The paper presents the results of the research of the above mentioned questions where the respondents were the Czech pupils and student at the age of about eleven, fifteen and nineteen years. These results are aimed at the effective exploitation of aerial and satellite images in teaching, they represent also information for imagery producers and distributors. A non-traditional view on the Earth surface from above using aerial or satellite images is one of the opportunities to discover the beauty of the Earth.

  9. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  10. Detection and Extraction of Roads from High Resolution Satellites Images with Dynamic Programming

    Science.gov (United States)

    Benzouai, Siham; Smara, Youcef

    2010-12-01

    The advent of satellite images allows now a regular and a fast digitizing and update of geographic data, especially roads which are very useful for Geographic Information Systems (GIS) applications such as transportation, urban pollution, geomarketing, etc. For this, several studies have been conducted to automate roads extraction in order to minimize the manual processes [4]. In this work, we are interested in roads extraction from satellite imagery with high spatial resolution (at best equal to 10 m). The method is semi automatic and follows a linear approach where road is considered as a linear object. As roads extraction is a pattern recognition problem, it is useful, above all, to characterize roads. After, we realize a pre-processing by applying an Infinite Size Edge Filter -ISEF- and processing method based on dynamic programming concept, in particular, Fishler algorithm designed by F*.

  11. Information analysis of hyperspectral images from the hyperion satellite

    Science.gov (United States)

    Puzachenko, Yu. G.; Sandlersky, R. B.; Krenke, A. N.; Puzachenko, M. Yu.

    2017-07-01

    A new method of estimating the outgoing radiation spectra data obtained from the Hyperion EO-1 satellite is considered. In theoretical terms, this method is based on the nonequilibrium thermodynamics concept with corresponding estimates of the entropy and the Kullbak information. The obtained information estimates make it possible to assess the effective work of the landscape cover both in general and for its various types and to identify the spectrum ranges primarily responsible for the information increment and, accordingly, for the effective work. The information is measured in the frequency band intervals corresponding to the peaks of solar radiation absorption by different pigments, mesophyll, and water to evaluate the system operation by their synthesis and moisture accumulation. This method is assumed to be effective in investigation of ecosystem functioning by hyperspectral remote sensing.

  12. Spatial and decadal variations in satellite-based terrestrial ...

    Indian Academy of Sciences (India)

    Zhaolu Zhang

    2017-12-02

    s12040-017-0885-0. Spatial and decadal variations in satellite-based terrestrial evapotranspiration and drought over. Inner Mongolia Autonomous Region of China during 1982–2009. Zhaolu Zhang1, Hui Kang2, Yunjun Yao3,.

  13. Water extraction technique in mountainous areas from satellite images

    Science.gov (United States)

    Kaplan, Gordana; Avdan, Ugur

    2017-10-01

    Water monitoring is an important part of water resource management and has become an essential aspect of remote sensing. A number of indices have been developed for water extraction using satellite images. Even though all indices can extract the extent of a water body, none can do so without including a noise component, such as topographic shadows, cloud shadows, snow, ice, and buildup areas, all of which have spectrally similar characteristics under certain circumstances. In order to select the best index for water body extraction, several water indices have been compared. This paper proposes a method for extracting water bodies called the water extraction surface temperature index (WESTI). This method uses normalized difference water index (NDWI) and land surface temperature to eliminate the noise components, especially in mountainous and cold areas where other indices have very low accuracy. The results have shown that WESTI improves the NDWI results by removing more than 80% of topographic shadows, with an overall accuracy of 99% in all cases.

  14. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-01-01

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images. PMID:28481287

  15. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images

    Directory of Open Access Journals (Sweden)

    Lin Li

    2017-05-01

    Full Text Available Super-resolution (SR image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  16. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  17. Implementation of National Satellite Based Data Archive (NASABADA) in Turkey

    Science.gov (United States)

    Gökdemir, Orhan; Beşer, Özgür; Sürer, Serdar

    2010-05-01

    NASABADA is a unique platform aiming to develop main geographical information system and remote sensing layers that are often used in areas such as: agriculture, forest, climate, hydrology, transportation, meteorology, and energy. Its establishment has started at the second half of the year 2009 in Turkey by Beray Engineering Company, and focused on especially Turkey domain as an individual study area. In general, examples of the satellite-based data-oriented production are usually on global scale and and focuses on a specific satellite. However, the products in NASABADA are consistent with Turkey's geographical conditions, and they are supported by ground information and a time series evaluation as well. Moreover, while developing those algorithms priority is using the national resources and providing a know-how for national information infrastructure. Using different features of satellite data and blending them with ground data to develop and provide the results to the end users of these products is one of the main goals of NASABADA Project. In the first stage of NASABADA, development of 7 products is planned, but the number of products is aimed to be around 20 in the future. The explanation of the pioneering 7 products which their preliminary versions would be published in the near future are as follows: albedo, snow cover, snow water equivalent, cloud, surface temperature, vegetation indices, and daily sun radiation maps. Unique architectural design, algorithms including fuzzy logic and ANN methods have been used for image processing and automatic analysis of large amounts of data on a high-tec file and web servers hardware infrastructure. The final aim of NASABADA is developing a data infrastructure for optimal access to those huge amounts of observational data by end users with tools available to make online processing of data and only gathering required images other than raw data. We discuss the development of the NASABADA data infrastructure, its current

  18. Estimate of the effect of micro-vibration on the performance of the Algerian satellite (Alsat-1B) imager

    Science.gov (United States)

    Serief, Chahira

    2017-11-01

    Alsat-1B, launched into a 670 km sun-synchronous orbit on board the PSLV launch vehicle from the Sriharikota launch site in India on 26 September 2016, is a medium resolution Earth Observation satellite with a mass of 100 kg. Alsat-1B will be used for agricultural and resource monitoring, disaster management, land use mapping and urban planning. It is based on the SSTL-100 platform, and flies a 24 m multispectral imager and a 12 m panchromatic imager delivering images with a swath width of 140 km. One of the main factors affecting the performance of satellite-borne optical imaging systems is micro-vibration. Micro-vibration is a low level mechanical disturbance inevitably generated from moving parts on a satellite and exceptionally difficult to be controlled by the attitude and orbital control system (AOCS) of a spacecraft. Micro-vibration usually causes problems for optical imaging systems onboard Earth Observation satellites. The major effect of micro-vibration is the excitation of the support structures for the optical elements during imaging operations which can result in severe degradation of image quality by smearing and distortion. Quantitative characterization of image degradation caused by micro-vibration is thus quite useful and important as part of system level analysis which can help preventing micro-vibration influence by proper design and restoring the degraded image. The aim of this work is to provide quantitative estimates of the effect of micro-vibration on the performance of Alsat-1B imager, which may be experienced operationally, in terms of the modulation transfer function (MTF) and based on ground micro-vibration tests results.

  19. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  20. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    Science.gov (United States)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  1. Anholt offshore wind farm winds investigated from satellite images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Volker, Patrick

    , i.e. before the wind farm was constructed. Based on these data the wind resource is estimated. Concurrent Sentinel-1 SAR data and available SCADA and lidar data, kindly provided by DONG Energy and partners, for the period January 2013 to June 2015 account for ~70 images, while ~300 images...... are available for Sentinel-1 from July 2015 to February 2017. The Sentinel-1 wind maps are investigated for wind farm wake effects. Furthermore the results on wind resources and wakes are compared to the SCADA and model results from WRF, Park, Fuga and RANS models....

  2. Estimation of fire emissions from satellite-based measurements

    Science.gov (United States)

    Ichoku, C. M.; Kaufman, Y. J.

    2004-12-01

    Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System (EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (Ce in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America or Australia, but about 50 percent lower than the value for Zambia in southern Africa.

  3. Imaging-Duration Embedded Dynamic Scheduling of Earth Observation Satellites for Emergent Events

    Directory of Open Access Journals (Sweden)

    Xiaonan Niu

    2015-01-01

    Full Text Available We present novel two-stage dynamic scheduling of earth observation satellites to provide emergency response by making full use of the duration of the imaging task execution. In the first stage, the multiobjective genetic algorithm NSGA-II is used to produce an optimal satellite imaging schedule schema, which is robust to dynamic adjustment as possible emergent events occur in the future. In the second stage, when certain emergent events do occur, a dynamic adjusting heuristic algorithm (CTM-DAHA is applied to arrange new tasks into the robust imaging schedule. Different from the existing dynamic scheduling methods, the imaging duration is embedded in the two stages to make full use of current satellite resources. In the stage of robust satellite scheduling, total task execution time is used as a robust indicator to obtain a satellite schedule with less imaging time. In other words, more imaging time is preserved for future emergent events. In the stage of dynamic adjustment, a compact task merging strategy is applied to combine both of existing tasks and emergency tasks into a composite task with least imaging time. Simulated experiments indicate that the proposed method can produce a more robust and effective satellite imaging schedule.

  4. Automatic archaeological feature extraction from satellite VHR images

    Science.gov (United States)

    Jahjah, Munzer; Ulivieri, Carlo

    2010-05-01

    Archaeological applications need a methodological approach on a variable scale able to satisfy the intra-site (excavation) and the inter-site (survey, environmental research). The increased availability of high resolution and micro-scale data has substantially favoured archaeological applications and the consequent use of GIS platforms for reconstruction of archaeological landscapes based on remotely sensed data. Feature extraction of multispectral remotely sensing image is an important task before any further processing. High resolution remote sensing data, especially panchromatic, is an important input for the analysis of various types of image characteristics; it plays an important role in the visual systems for recognition and interpretation of given data. The methods proposed rely on an object-oriented approach based on a theory for the analysis of spatial structures called mathematical morphology. The term "morphology" stems from the fact that it aims at analysing object shapes and forms. It is mathematical in the sense that the analysis is based on the set theory, integral geometry, and lattice algebra. Mathematical morphology has proven to be a powerful image analysis technique; two-dimensional grey tone images are seen as three-dimensional sets by associating each image pixel with an elevation proportional to its intensity level. An object of known shape and size, called the structuring element, is then used to investigate the morphology of the input set. This is achieved by positioning the origin of the structuring element to every possible position of the space and testing, for each position, whether the structuring element either is included or has a nonempty intersection with the studied set. The shape and size of the structuring element must be selected according to the morphology of the searched image structures. Other two feature extraction techniques were used, eCognition and ENVI module SW, in order to compare the results. These techniques were

  5. Nanoplatform-based molecular imaging

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2011-01-01

    "Nanoplathform-Based Molecular Imaging provides rationale for using nanoparticle-based probes for molecular imaging, then discusses general strategies for this underutilized, yet promising, technology...

  6. AN APPROACH FOR STITCHING SATELLITE IMAGES IN A BIGDATA MAPREDUCE FRAMEWORK

    Directory of Open Access Journals (Sweden)

    H. Sarı

    2017-11-01

    Full Text Available In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper and then String formats in the forms of 255s and 0s (second mapper, and finally, find the best possible matching position of the images by a reduce function.

  7. An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework

    Science.gov (United States)

    Sarı, H.; Eken, S.; Sayar, A.

    2017-11-01

    In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.

  8. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  9. Using very high resolution satellite images to identify coastal zone dynamics at North Western Black Sea

    Science.gov (United States)

    Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Zoran, Maria

    2010-05-01

    The availability of updated information about the extension and characteristics of land cover is a crucial issue in the perspective of a correct landscape planning and management of marine coastal zones. Satellite remote sensing data can provide accurate information about land coverage at different scales and the recent availability of very high resolution images definitely improved the precision of coastal zone spatio-temporal changes. The Romanian North Western coastal and shelf zones of the Black Sea and Danube delta are a mosaic of complex, interacting ecosystems, rich natural resources and socio-economic activity. Dramatic changes in the Black Sea's ecosystem and resources are due to natural and anthropogenic causes (increase in the nutrient and pollutant load of rivers input, industrial and municipal wastewater pollution along the coast, and dumping on the open sea). A scientific management system for protection, conservation and restoration must be based on reliable information on bio-geophysical and geomorphologic processes, coastal erosion, sedimentation dynamics, mapping of macrophyte fields, water quality, and climatic change effects. Use of satellite images is of great help for coastal zone monitoring and environmental impact assessment. Synergetic use of in situ measurements with multisensors satellite data could provide a complex assessment of spatio-temporal changes. In this study was developed a method for extracting coastal zone features information as well as landcover dynamics from IKONOS, very high resolution images for North-Western Black Sea marine coastal zone. The main objective was obtaining reliable data about the spatio-temporal coastal zone changes in two study areas located in Constanta urban area and Danube Delta area. We used an object-oriented approach based on preliminary segmentation and classification of the resulting object. First of all, segmentation parameters were tested and selected comparing segmented polygons with

  10. Accuracy comparison of Pléiades satellite ortho-images using GPS ...

    African Journals Online (AJOL)

    Ivan Henrico

    GCP), high- resolution ... input and reference sources used, such as the use of digital elevation models (DEMs) and ground control points ... RPC method is a coordinate transformation that converts pixel coordinates of the satellite image to.

  11. Deep Learning for Super-Resolution of Time Series Satellite Images

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to use deep learning techniques to enhance the spatial resolution of time series satellite images. This improvement, also called “super-resolution” is...

  12. NOAA Geostationary Operational Environmental Satellite (GOES) Imager Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Geostationary Operational Environmental Satellite (GOES) series provides continuous measurements of the atmosphere and surface over the Western Hemisphere....

  13. NEPR World View 2 Satellite Mosaic - NOAA TIFF Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GeoTiff is a mosaic of World View 2 panchromatic satellite imagery of Northeast Puerto Rico that contains the shallow water area (0-35m deep) surrounding...

  14. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  15. Influence of relativistic effects on satellite-based clock synchronization

    Science.gov (United States)

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2016-03-01

    Clock synchronization between the ground and satellites is a fundamental issue in future quantum telecommunication, navigation, and global positioning systems. Here, we propose a scheme of near-Earth orbit satellite-based quantum clock synchronization with atmospheric dispersion cancellation by taking into account the spacetime background of the Earth. Two frequency entangled pulses are employed to synchronize two clocks, one at a ground station and the other at a satellite. The time discrepancy of the two clocks is introduced into the pulses by moving mirrors and is extracted by measuring the coincidence rate of the pulses in the interferometer. We find that the pulses are distorted due to effects of gravity when they propagate between the Earth and the satellite, resulting in remarkably affected coincidence rates. We also find that the precision of the clock synchronization is sensitive to the source parameters and the altitude of the satellite. The scheme provides a solution for satellite-based quantum clock synchronization with high precision, which can be realized, in principle, with current technology.

  16. Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique

    Science.gov (United States)

    Corucci, Linda; Masini, Andrea; Cococcioni, Marco

    2011-01-01

    This paper addresses bathymetry estimation from high resolution multispectral satellite images by proposing an accurate supervised method, based on a neuro-fuzzy approach. The method is applied to two Quickbird images of the same area, acquired in different years and meteorological conditions, and is validated using truth data. Performance is studied in different realistic situations of in situ data availability. The method allows to achieve a mean standard deviation of 36.7 cm for estimated water depths in the range [-18, -1] m. When only data collected along a closed path are used as a training set, a mean STD of 45 cm is obtained. The effect of both meteorological conditions and training set size reduction on the overall performance is also investigated.

  17. Bandwidth compression of the digitized HDTV images for transmission via satellites

    Science.gov (United States)

    Al-Asmari, A. KH.; Kwatra, S. C.

    1992-01-01

    This paper investigates a subband coding scheme to reduce the transmission bandwidth of the digitized HDTV images. The HDTV signals are decomposed into seven bands. Each band is then independently encoded. The based band is DPCM encoded and the high bands are encoded by using nonuniform Laplacian quantizers with a dead zone. By selecting the dead zone on the basis of energy in the high bands an acceptable image quality is achieved at an average of 45 Mbits/sec (Mbps) rate. This rate is comparable to some very hardware intensive schemes of transform compression or vector quantization proposed in the literature. The subband coding scheme used in this study is considered to be of medium complexity. The 45 Mbps rate is suitable for transmission of HDTV signals via satellites.

  18. Storm diagnostic/predictive images derived from a combination of lightning and satellite imagery

    Science.gov (United States)

    Goodman, Steven J.; Buechler, Dennis E.; Meyer, Paul J.

    1988-01-01

    A technique is presented for generating trend or convective tendency images using a combination of GOES satellite imagery and cloud-to-ground lightning observations. The convective tendency images can be used for short term forecasting of storm development. A conceptual model of cloud electrical development and an example of the methodology used to generate lightning/satellite convective tendency imagery are given. Successive convective tendency images can be looped or animated to show the previous growth or decay of thunderstorms and their associated lighting activity. It is suggested that the convective tendency image may also be used to indicate potential microburst producing storms.

  19. The Geometry of Large Tundra Lakes Observed in Historical Maps and Satellite Images

    Science.gov (United States)

    Sudakov, Ivan; Essa, Almabrok; Mander, Luke; Gong, Ming; Kariyawasam, Tharanga

    2017-10-01

    Tundra lakes are key components of the Arctic climate system because they represent a source of methane to the atmosphere. In this paper, we aim to analyze the geometry of the patterns formed by large ($>0.8$ km$^2$) tundra lakes in the Russian High Arctic. We have studied images of tundra lakes in historical maps from the State Hydrological Institute, Russia (date 1977; scale $0.21166$ km/pixel) and in Landsat satellite images derived from the Google Earth Engine (G.E.E.; date 2016; scale $0.1503$ km/pixel). The G.E.E. is a cloud-based platform for planetary-scale geospatial analysis on over four decades of Landsat data. We developed an image-processing algorithm to segment these maps and images, measure the area and perimeter of each lake, and compute the fractal dimension of the lakes in the images we have studied. Our results indicate that as lake size increases, their fractal dimension bifurcates. For lakes observed in historical maps, this bifurcation occurs among lakes larger than $100$ km$^2$ (fractal dimension $1.43$ to $1.87$). For lakes observed in satellite images this bifurcation occurs among lakes larger than $\\sim$100 km$^2$ (fractal dimension $1.31$ to $1.95$). Tundra lakes with a fractal dimension close to $2$ have a tendency to be self-similar with respect to their area--perimeter relationships. Area--perimeter measurements indicate that lakes with a length scale greater than $70$ km$^2$ are power-law distributed. Preliminary analysis of changes in lake size over time in paired lakes (lakes that were visually matched in both the historical map and the satellite imagery) indicate that some lakes in our study region have increased in size over time, whereas others have decreased in size over time. Lake size change during this 39-year time interval can be up to half the size of the lake as recorded in the historical map.

  20. The Geometry of Large Tundra Lakes Observed in Historical Maps and Satellite Images

    Directory of Open Access Journals (Sweden)

    Ivan Sudakov

    2017-10-01

    Full Text Available The climate of the Arctic is warming rapidly and this is causing major changes to the cycling of carbon and the distribution of permafrost in this region. Tundra lakes are key components of the Arctic climate system because they represent a source of methane to the atmosphere. In this paper, we aim to analyze the geometry of the patterns formed by large (> 0.8 km 2 tundra lakes in the Russian High Arctic. We have studied images of tundra lakes in historical maps from the State Hydrological Institute, Russia (date 1977; scale 0.21166 km/pixel and in Landsat satellite images derived from the Google Earth Engine (G.E.E.; date 2016; scale 0.1503 km/pixel. The G.E.E. is a cloud-based platform for planetary-scale geospatial analysis on over four decades of Landsat data. We developed an image-processing algorithm to segment these maps and images, measure the area and perimeter of each lake, and compute the fractal dimension of the lakes in the images we have studied. Our results indicate that as lake size increases, their fractal dimension bifurcates. For lakes observed in historical maps, this bifurcation occurs among lakes larger than 100 km 2 (fractal dimension 1.43 to 1.87 . For lakes observed in satellite images this bifurcation occurs among lakes larger than ∼100 km 2 (fractal dimension 1.31 to 1.95 . Tundra lakes with a fractal dimension close to 2 have a tendency to be self-similar with respect to their area–perimeter relationships. Area–perimeter measurements indicate that lakes with a length scale greater than 70 km 2 are power-law distributed. Preliminary analysis of changes in lake size over time in paired lakes (lakes that were visually matched in both the historical map and the satellite imagery indicate that some lakes in our study region have increased in size over time, whereas others have decreased in size over time. Lake size change during this 39-year time interval can be up to half the size of the lake as recorded in the

  1. Grazed grass was estimated via satellite images better then mowed grass

    Science.gov (United States)

    Koncz, Péter; Gubányi, András; Gecse, Bernadett; Tolnai, Márton; Pintér, Krisztina; Kertész, Péter; Fóti, Szilvia; Balogh, János; Nagy, Zoltán

    2017-04-01

    Precise livestock management requires objective alert system about the potential threats of overgrazing and intensive mowing. This kind of system could be based on the estimation of the amount of grazed and mowed biomass by remote sensing of vegetation indices. In our study we used the Normalized Difference Vegetation Index (NDVI) derived from Landsat 7 and 8 satellites to establish a regression between the vegetation index and the biomass (cut from ten, 40× 40 cm plots, during 52 measurement campaigns, 2011-2013) in a semi-arid grassland of Hungary, Bugac. Based on the regression time series of NDVI data were converted into biomass data in case of grazed and mowed areas (2011?2016). Biomass changes, inferred from NDVI data, were compared to the estimated grazed (based on daily dry matter uptake of cattle) and measured mowed (weighted) biomass. We found significant correlation between the NDVI and the total biomass (r2=0.6, pgrazed biomass based on dry matter uptake was in close agreement with the biomass changes inferred from NDVI data (r2=0.42, p=0.11, n=7, RMSE=25.2 g m-2). However, there was no correlation between the biomass of the measured hay and the biomass inferred from NDVI data (r2=0.16, p=0.49, n=5, RMSE=67.4 g m-2). This was most probably due to the fact that mowing is a sudden, while grazing is a prolonged event, hence satellite data are less likely to be available before and after the mowing events (i.e. within days) compared to the grazing periods which usually lasts for months (only 12±2 satellite images were suitable per year). Therefore, NDVI changes are more accurately captured when grazing is observed than when mowing. We concluded that NDVI data from satellite images could be used to estimate the amount of grazed biomass, however to estimate the amount of mowed hay more frequent data coverage would be needed.

  2. Planetary geodetic control using satellite imaging. [equations for determination of control points from surface television-imagery

    Science.gov (United States)

    Duxbury, T. C.

    1979-01-01

    A new data type for planetary geodetic control using natural satellite imaging is presented. Spacecraft images of natural satellites against the planet give a direct tie between inertial space and surface features surrounding the satellite image. This technique is expected to offer a factor of 3-10 improvement in accuracy over present geodetic reduction for Mars. A specific example using Viking imaging of Phobos against Mars is given.

  3. Remote microscopy and volumetric imaging on the surface of icy satellites

    Science.gov (United States)

    Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.

    2017-10-01

    With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.

  4. Research on Coal Exploration Technology Based on Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2016-01-01

    Full Text Available Coal is the main source of energy. In China and Vietnam, coal resources are very rich, but the exploration level is relatively low. This is mainly caused by the complicated geological structure, the low efficiency, the related damage, and other bad situations. To this end, we need to make use of some advanced technologies to guarantee the resource exploration is implemented smoothly and orderly. Numerous studies show that remote sensing technology is an effective way in coal exploration and measurement. In this paper, we try to measure the distribution and reserves of open-air coal area through satellite imagery. The satellite picture of open-air coal mining region in Quang Ninh Province of Vietnam was collected as the experimental data. Firstly, the ENVI software is used to eliminate satellite imagery spectral interference. Then, the image classification model is established by the improved ELM algorithm. Finally, the effectiveness of the improved ELM algorithm is verified by using MATLAB simulations. The results show that the accuracies of the testing set reach 96.5%. And it reaches 83% of the image discernment precision compared with the same image from Google.

  5. Remote diagnosis via a telecommunication satellite--ultrasonic tomographic image transmission experiments.

    Science.gov (United States)

    Nakajima, I; Inokuchi, S; Tajima, T; Takahashi, T

    1985-04-01

    An experiment to transmit ultrasonic tomographic section images required for remote medical diagnosis and care was conducted using the mobile telecommunication satellite OSCAR-10. The images received showed the intestinal condition of a patient incapable of verbal communication, however the image screen had a fairly coarse particle structure. On the basis of these experiments, were considered as the transmission of ultrasonic tomographic images extremely effective in remote diagnosis.

  6. Spatial resolution enhancement of satellite image data using fusion approach

    Science.gov (United States)

    Lestiana, H.; Sukristiyanti

    2018-02-01

    Object identification using remote sensing data has a problem when the spatial resolution is not in accordance with the object. The fusion approach is one of methods to solve the problem, to improve the object recognition and to increase the objects information by combining data from multiple sensors. The application of fusion image can be used to estimate the environmental component that is needed to monitor in multiple views, such as evapotranspiration estimation, 3D ground-based characterisation, smart city application, urban environments, terrestrial mapping, and water vegetation. Based on fusion application method, the visible object in land area has been easily recognized using the method. The variety of object information in land area has increased the variation of environmental component estimation. The difficulties in recognizing the invisible object like Submarine Groundwater Discharge (SGD), especially in tropical area, might be decreased by the fusion method. The less variation of the object in the sea surface temperature is a challenge to be solved.

  7. Deep and shallow structures in the Arctic region imaged by satellite magnetic and gravity data

    Science.gov (United States)

    Gaina, Carmen; Panet, Isabelle; Shephard, Grace

    2016-07-01

    The last decade has seen an increase in geoscientific data collection, which, together with available and older classified data made publicly available, is contributing to increasing our knowledge about Earth's structure and evolution. Despite this development, there are many gaps in data coverage in remote, hard-to-access regions. Satellite data have the advantage of acquiring measurements steadily and covering the entire globe. From a tectonics point of view, the specific heights of various satellites allow for the identification of moderate to large tectonic features, and can shed light on Earth's lower crust and lithosphere structure. In this contribution I discuss the use of magnetic and gravity models based on satellite data in deciphering the tectonic structure of remote areas. The present day Circum-Arctic region comprises a variety of tectonic settings: from active seafloor spreading in the North Atlantic and Eurasian Basin, and subduction in the North Pacific, to long-lived stable continental platforms in North America and Asia. A series of rifted margins, abandoned rifted areas and presumably extinct oceanic basins fringe these regions. Moreover, rifting- and seafloor spreading-related processes formed many continental splinters and terranes that were transported and docked at higher latitudes. Volcanic provinces of different ages have also been identified, from the Permian-Triassic Siberian traps at ca. 251 Ma to the (presumably) Cretaceous HALIP and smaller Cenozoic provinces in northern Greenland and the Barents Sea. We inspect global lithospheric magnetic data in order to identify the signature of the main volcanic provinces in the High Arctic. One of the most striking features in the Arctic domain is the strong magnetic anomaly close to the North Pole that correlates with a large, igneous oceanic plateau called the Alpha Mendeleev Ridge. The intensity and extent of the magnetic anomalies recorded by aircraft or satellites point towards a very thick

  8. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  9. Cadastral Resurvey using High Resolution Satellite Ortho Image - challenges: A case study in Odisha, India

    Science.gov (United States)

    Parida, P. K.; Sanabada, M. K.; Tripathi, S.

    2014-11-01

    Advancements in satellite sensor technology enabling capturing of geometrically accurate images of earth's surface coupled with DGPS/ETS and GIS technology holds the capability of large scale mapping of land resources at cadastral level. High Resolution Satellite Images depict field bunds distinctly. Thus plot parcels are to be delineated from cloud free ortho-images and obscured/difficult areas are to be surveyed using DGPS and ETS. The vector datasets thus derived through RS/DGPS/ETS survey are to be integrated in GIS environment to generate the base cadastral vector datasets for further settlement/title confirmation activities. The objective of this paper is to illustrate the efficacy of a hybrid methodology employed in Pitambarpur Sasana village under Digapahandi Tahasil of Ganjam district, as a pilot project, particularly in Odisha scenario where the land parcel size is very small. One of the significant observations of the study is matching of Cadastral map area i.e. 315.454 Acres, the image map area i.e. 314.887 Acres and RoR area i.e. 313.815 Acre. It was revealed that 79 % of plots derived by high-tech survey method show acceptable level of accuracy despite the fact that the mode of area measurement by ground and automated method has significant variability. The variations are more in case of Government lands, Temple/Trust lands, Common Property Resources and plots near to river/nalas etc. The study indicates that the adopted technology can be extended to other districts and cadastral resurvey and updating work can be done for larger areas of the country using this methodology.

  10. Satellite-to-Ground Entanglement-Based Quantum Key Distribution

    Science.gov (United States)

    Yin, Juan; Cao, Yuan; Li, Yu-Huai; Ren, Ji-Gang; Liao, Sheng-Kai; Zhang, Liang; Cai, Wen-Qi; Liu, Wei-Yue; Li, Bo; Dai, Hui; Li, Ming; Huang, Yong-Mei; Deng, Lei; Li, Li; Zhang, Qiang; Liu, Nai-Le; Chen, Yu-Ao; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-11-01

    We report on entanglement-based quantum key distribution between a low-Earth-orbit satellite equipped with a space borne entangled-photon source and a ground observatory. One of the entangled photons is measured locally at the satellite, and the other one is sent via a down link to the receiver in the Delingha ground station. The link attenuation is measured to vary from 29 dB at 530 km to 36 dB at 1000 km. We observe that the two-photon entanglement survives after being distributed between the satellite and the ground, with a measured state fidelity of ≥0.86 . We then perform the entanglement-based quantum key distribution protocol and obtain an average final key rate of 3.5 bits /s at the distance range of 530-1000 km.

  11. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  12. Detecting aircrafts from satellite images using saliency and conical ...

    Indian Academy of Sciences (India)

    Samik Banerjee

    the-art method. Experimental results on real world satellite scenes exhibit the superior performance of the proposed method, over some similar attempts of aircraft localization. The rest of the paper is organized as follows: We discuss related work in section 2. Section 3 gives a detailed over- view of proposed frameworks for ...

  13. Wildfire monitoring using satellite images, ontologies and linked geospatial data

    NARCIS (Netherlands)

    K. Kyzirakos (Konstantinos); M. Karpathiotakis (Manos); G. Garbis (George); C. Nikolaou (Charalampos); K. Bereta (Konstantina); I. Papoutsis (Ioannis); T. Herekakis (Themistocles); D. Michail (Dimitrios); M. Koubarakis (Manolis); C. Kontoes (Charalampos)

    2014-01-01

    htmlabstractAdvances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many

  14. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  15. RELATIVE ORIENTATION AND MODIFIED PIECEWISE EPIPOLAR RESAMPLING FOR HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    K. Gong

    2017-05-01

    Full Text Available High resolution, optical satellite sensors are boosted to a new era in the last few years, because satellite stereo images at half meter or even 30cm resolution are available. Nowadays, high resolution satellite image data have been commonly used for Digital Surface Model (DSM generation and 3D reconstruction. It is common that the Rational Polynomial Coefficients (RPCs provided by the vendors have rough precision and there is no ground control information available to refine the RPCs. Therefore, we present two relative orientation methods by using corresponding image points only: the first method will use quasi ground control information, which is generated from the corresponding points and rough RPCs, for the bias-compensation model; the second method will estimate the relative pointing errors on the matching image and remove this error by an affine model. Both methods do not need ground control information and are applied for the entire image. To get very dense point clouds, the Semi-Global Matching (SGM method is an efficient tool. However, before accomplishing the matching process the epipolar constraints are required. In most conditions, satellite images have very large dimensions, contrary to the epipolar geometry generation and image resampling, which is usually carried out in small tiles. This paper also presents a modified piecewise epipolar resampling method for the entire image without tiling. The quality of the proposed relative orientation and epipolar resampling method are evaluated, and finally sub-pixel accuracy has been achieved in our work.

  16. Extracting oil palm crown from WorldView-2 satellite image

    Science.gov (United States)

    Korom, A.; Phua, M.-H.; Hirata, Y.; Matsuura, T.

    2014-02-01

    Oil palm (OP) is the most commercial crop in Malaysia. Estimating the crowns is important for biomass estimation from high resolution satellite (HRS) image. This study examined extraction of individual OP crown from a WorldView-2 image using twofold algorithms, i.e., masking of Non-OP pixels and detection of individual OP crown based on the watershed segmentation of greyscale images. The study site was located in Beluran district, central Sabah, where matured OPs with the age ranging from 15 to 25 years old have been planted. We examined two compound vegetation indices of (NDVI+1)*DVI and NDII for masking non-OP crown areas. Using kappa statistics, an optimal threshold value was set with the highest accuracy at 90.6% for differentiating OP crown areas from Non-OP areas. After the watershed segmentation of OP crown areas with additional post-procedures, about 77% of individual OP crowns were successfully detected in comparison to the manual based delineation. Shape and location of each crown segment was then assessed based on a modified version of the goodness measures of Möller et al which was 0.3, indicating an acceptable CSGM (combined segmentation goodness measures) agreements between the automated and manually delineated crowns (perfect case is '1').

  17. Extracting oil palm crown from WorldView-2 satellite image

    International Nuclear Information System (INIS)

    Korom, A; Phua, M-H; Hirata, Y; Matsuura, T

    2014-01-01

    Oil palm (OP) is the most commercial crop in Malaysia. Estimating the crowns is important for biomass estimation from high resolution satellite (HRS) image. This study examined extraction of individual OP crown from a WorldView-2 image using twofold algorithms, i.e., masking of Non-OP pixels and detection of individual OP crown based on the watershed segmentation of greyscale images. The study site was located in Beluran district, central Sabah, where matured OPs with the age ranging from 15 to 25 years old have been planted. We examined two compound vegetation indices of (NDVI+1)*DVI and NDII for masking non-OP crown areas. Using kappa statistics, an optimal threshold value was set with the highest accuracy at 90.6% for differentiating OP crown areas from Non-OP areas. After the watershed segmentation of OP crown areas with additional post-procedures, about 77% of individual OP crowns were successfully detected in comparison to the manual based delineation. Shape and location of each crown segment was then assessed based on a modified version of the goodness measures of Möller et al which was 0.3, indicating an acceptable CSGM (combined segmentation goodness measures) agreements between the automated and manually delineated crowns (perfect case is '1')

  18. Assessment of Off-shore Wind Energy Resource in China using QuikSCAT Satellite data and SAR Satellite Images

    DEFF Research Database (Denmark)

    Xiuzhi, Zhang; Yanbo, Shen; Jingwei, Xu

    2010-01-01

    From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one ...... part of the project, off-shore wind energy resource in China was assessed with QuikSCAT Satellite data and SAR Satellite Images. In this paper, the results from these two ways were introduced.......From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one...

  19. DEM GENERATION FROM HIGH RESOLUTION SATELLITE IMAGES THROUGH A NEW 3D LEAST SQUARES MATCHING ALGORITHM

    Directory of Open Access Journals (Sweden)

    T. Kim

    2012-09-01

    Full Text Available Automated generation of digital elevation models (DEMs from high resolution satellite images (HRSIs has been an active research topic for many years. However, stereo matching of HRSIs, in particular based on image-space search, is still difficult due to occlusions and building facades within them. Object-space matching schemes, proposed to overcome these problem, often are very time consuming and critical to the dimensions of voxels. In this paper, we tried a new least square matching (LSM algorithm that works in a 3D object space. The algorithm starts with an initial height value on one location of the object space. From this 3D point, the left and right image points are projected. The true height is calculated by iterative least squares estimation based on the grey level differences between the left and right patches centred on the projected left and right points. We tested the 3D LSM to the Worldview images over 'Terrassa Sud' provided by the ISPRS WG I/4. We also compared the performance of the 3D LSM with the correlation matching based on 2D image space and the correlation matching based on 3D object space. The accuracy of the DEM from each method was analysed against the ground truth. Test results showed that 3D LSM offers more accurate DEMs over the conventional matching algorithms. Results also showed that 3D LSM is sensitive to the accuracy of initial height value to start the estimation. We combined the 3D COM and 3D LSM for accurate and robust DEM generation from HRSIs. The major contribution of this paper is that we proposed and validated that LSM can be applied to object space and that the combination of 3D correlation and 3D LSM can be a good solution for automated DEM generation from HRSIs.

  20. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    Science.gov (United States)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  1. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  2. Satellite-based technique for nowcasting of thunderstorms over ...

    Indian Academy of Sciences (India)

    Suman Goyal

    2017-08-31

    120 min forecast and longitudinal error varies from 34.1 to 90.2 km for. 30–120 min forecast. Hence there is longitudinal bias in the forecast track of the MCS. 4. Conclusions. The satellite based nowcast technique developed.

  3. Satellite-based technique for nowcasting of thunderstorms over ...

    Indian Academy of Sciences (India)

    India experiences severe thunderstorms during the months, March–June. But these systems are not predicted well, mainly due to the absence of mesoscale observational network over Indian region and the expert system. As these are short lived systems, the nowcast is attempted worldwide based on satellite and radar ...

  4. Validation of a satellite-based cyclogenesis technique over the ...

    Indian Academy of Sciences (India)

    2013), it is called a depression over the NIO. It becomes a cyclonic storm if the MSW is 34 knots or more. The intensity of the low pressure sys- tem is also defined based on Dvorak's technique. (Dvorak 1984) using satellite imageries. In this technique, the intensity is defined with an assigned number in a scale of 1–8 in an ...

  5. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    or other natural landscapes. Having very high resolution digital data over a landscape will however create new challenges in the field of atmospheric correction, ground registration, image processing and finally the image interpretation itself. Even...

  6. Temporal and spatial air quality monitoring using internet protocol camera and LANSAT5 satellite image

    Science.gov (United States)

    Wong, C. J.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Chin, T. S.

    2009-05-01

    Atmospheric fine particles with diameter less than 10 micron (PM10) have already become a major public health concern in any part of the world. These particles can be breathed more deeply into the lungs to cause adverse health effects. In order to prevent long exposure to these harmful atmospheric particles, this motivates a growing interest in developing efficient methods of fine particles monitoring. In this study, we proposed that an internet protocol camera and LANDSAT5 satellite image be used to monitor the temporal and spatial air quality. We developed an algorithm to converts multispectral image pixel values acquired from digital images into quantitative values of the concentrations of PM10. This algorithm was developed based on the regression analysis of relationship between the measured reflectance and the reflected components from a surface material and the ambient air. The computed PM10 values were compared to other standard values measured by a DustTrak meter. The correlation results showed that the newly develop algorithm produced a high degree of accuracy as indicated by high correlation coefficient (R2) and low root-mean-square-error (RMS). This study indicates that the temporal and spatial development of air quality can be monitored by using internet protocol camera and LANDSAT5 images.

  7. PRELIMINARY RESULTS OF THE COMPARISON OF SATELLITE IMAGERS USING TUZ GÖLÜ AS A REFERENCE STANDARD

    Directory of Open Access Journals (Sweden)

    H. Özen

    2012-07-01

    Full Text Available Earth surfaces, such as deserts, salt lakes, and playas, have been widely used in the vicarious radiometric calibration of optical earth observation satellites. In 2009, the Infrared and Visible Optical Sensors (IVOS sub-group of the Committee of Earth Observation Satellites (CEOS Working Group on Calibration and Validation (WGCV designated eight LANDNET reference sites to focus international efforts, facilitate traceability and enable the establishment of measurement "best practices." With support from the European Space Agency (ESA, one of the LANDNET sites, the Tuz Gölü salt lake located in central Turkey, was selected to host a cross-comparison of measurement instrumentation and methodologies conducted by 11 different ground teams across the globe. This paper provides an overview of the preliminary results of the cross-comparison of the ground-based spectral measurements made during the CEOS Land Comparison 13-27 August, 2010 with the simultaneous satellite image data acquisitions of the same site.

  8. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management.

    Science.gov (United States)

    Chang, Ni-Bin; Bai, Kaixu; Chen, Chi-Farn

    2017-10-01

    Monitoring water quality changes in lakes, reservoirs, estuaries, and coastal waters is critical in response to the needs for sustainable development. This study develops a remote sensing-based multiscale modeling system by integrating multi-sensor satellite data merging and image reconstruction algorithms in support of feature extraction with machine learning leading to automate continuous water quality monitoring in environmentally sensitive regions. This new Earth observation platform, termed "cross-mission data merging and image reconstruction with machine learning" (CDMIM), is capable of merging multiple satellite imageries to provide daily water quality monitoring through a series of image processing, enhancement, reconstruction, and data mining/machine learning techniques. Two existing key algorithms, including Spectral Information Adaptation and Synthesis Scheme (SIASS) and SMart Information Reconstruction (SMIR), are highlighted to support feature extraction and content-based mapping. Whereas SIASS can support various data merging efforts to merge images collected from cross-mission satellite sensors, SMIR can overcome data gaps by reconstructing the information of value-missing pixels due to impacts such as cloud obstruction. Practical implementation of CDMIM was assessed by predicting the water quality over seasons in terms of the concentrations of nutrients and chlorophyll-a, as well as water clarity in Lake Nicaragua, providing synergistic efforts to better monitor the aquatic environment and offer insightful lake watershed management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  10. Satellite-based assessment of grassland yields

    Science.gov (United States)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  11. Global thermochemical imaging of the lithosphere using satellite and terrestrial observations

    Science.gov (United States)

    Fullea, Javier; Lebedev, Sergei; Martinec, Zdenek; Celli, Nicolas

    2017-04-01

    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of the rocks within the Earth. However, modelling and interpretation of multiple data sets provide a multifaceted image of the true thermochemical structure of the Earth that needs to be appropriately and consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth involved. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite (e.g., Swarm and GOCE ESA missions) geophysical data sets over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. This project combines state-of-the-art seismic waveform tomography (using both surface and body waves), newly available global gravity satellite data (geoid and gravity anomalies and new gradiometric measurements from ESA's GOCE mission) and surface heat flow and elevation within a self-consistent thermodynamic framework. The aim is to develop a method for detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. In a preliminary study, we convert a state-of-the-art global

  12. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    Science.gov (United States)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  13. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  14. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  15. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  16. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  17. Sediment plume model-a comparison between use of measured turbidity data and satellite images for model calibration.

    Science.gov (United States)

    Sadeghian, Amir; Hudson, Jeff; Wheater, Howard; Lindenschmidt, Karl-Erich

    2017-08-01

    In this study, we built a two-dimensional sediment transport model of Lake Diefenbaker, Saskatchewan, Canada. It was calibrated by using measured turbidity data from stations along the reservoir and satellite images based on a flood event in 2013. In June 2013, there was heavy rainfall for two consecutive days on the frozen and snow-covered ground in the higher elevations of western Alberta, Canada. The runoff from the rainfall and the melted snow caused one of the largest recorded inflows to the headwaters of the South Saskatchewan River and Lake Diefenbaker downstream. An estimated discharge peak of over 5200 m 3 /s arrived at the reservoir inlet with a thick sediment front within a few days. The sediment plume moved quickly through the entire reservoir and remained visible from satellite images for over 2 weeks along most of the reservoir, leading to concerns regarding water quality. The aims of this study are to compare, quantitatively and qualitatively, the efficacy of using turbidity data and satellite images for sediment transport model calibration and to determine how accurately a sediment transport model can simulate sediment transport based on each of them. Both turbidity data and satellite images were very useful for calibrating the sediment transport model quantitatively and qualitatively. Model predictions and turbidity measurements show that the flood water and suspended sediments entered upstream fairly well mixed and moved downstream as overflow with a sharp gradient at the plume front. The model results suggest that the settling and resuspension rates of sediment are directly proportional to flow characteristics and that the use of constant coefficients leads to model underestimation or overestimation unless more data on sediment formation become available. Hence, this study reiterates the significance of the availability of data on sediment distribution and characteristics for building a robust and reliable sediment transport model.

  18. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    Science.gov (United States)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  19. Using Spatial Reinforcement Learning to Build Forest Wildfire Dynamics Models From Satellite Images

    Directory of Open Access Journals (Sweden)

    Sriram Ganapathi Subramanian

    2018-04-01

    Full Text Available Machine learning algorithms have increased tremendously in power in recent years but have yet to be fully utilized in many ecology and sustainable resource management domains such as wildlife reserve design, forest fire management, and invasive species spread. One thing these domains have in common is that they contain dynamics that can be characterized as a spatially spreading process (SSP, which requires many parameters to be set precisely to model the dynamics, spread rates, and directional biases of the elements which are spreading. We present related work in artificial intelligence and machine learning for SSP sustainability domains including forest wildfire prediction. We then introduce a novel approach for learning in SSP domains using reinforcement learning (RL where fire is the agent at any cell in the landscape and the set of actions the fire can take from a location at any point in time includes spreading north, south, east, or west or not spreading. This approach inverts the usual RL setup since the dynamics of the corresponding Markov Decision Process (MDP is a known function for immediate wildfire spread. Meanwhile, we learn an agent policy for a predictive model of the dynamics of a complex spatial process. Rewards are provided for correctly classifying which cells are on fire or not compared with satellite and other related data. We examine the behavior of five RL algorithms on this problem: value iteration, policy iteration, Q-learning, Monte Carlo Tree Search, and Asynchronous Advantage Actor-Critic (A3C. We compare to a Gaussian process-based supervised learning approach and also discuss the relation of our approach to manually constructed, state-of-the-art methods from forest wildfire modeling. We validate our approach with satellite image data of two massive wildfire events in Northern Alberta, Canada; the Fort McMurray fire of 2016 and the Richardson fire of 2011. The results show that we can learn predictive, agent-based

  20. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  1. Foodstuff survey around a major nuclear facility with test of satellite images application

    International Nuclear Information System (INIS)

    Twining, S.; Strydom, J.; Rosson, R.; Koffman, L.; Fledderman, P.; Kahn, B.

    2000-01-01

    A foodstuff survey was performed around the Savannah River Site, Aiken, South Carolina. It included a census of buildings and fields within 5 km of the boundary and determination of the locations and amounts of crops grown within 80 km of the Savannah River Site center. Recent information for this region was collected on the amounts of meat, poultry, milk, and eggs produced, of deer hunted, and of sports fish caught. The locations and areas devoted to growing each crop were determined by the usual process of applying county agricultural statistics reported by state agencies. This process was compared to crop analysis of two LANDSAT Thematic Mapper images. For use with environmental radionuclide transfer and radiation dose calculation codes, locations within 80 km were defined for 64 sections by 16 sectors centered on the site and by 16-km distance intervals from 16 km to 80 km. The median areas per section devoted to each of four food crops based on county agricultural statistics were about two-thirds of those based on satellite image analysis. Most locally-raised foodstuff was distributed regionally and not retained locally for consumption

  2. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  3. Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters

    Directory of Open Access Journals (Sweden)

    Shaodan Li

    2017-11-01

    Full Text Available In this paper, we present a novel approach for automatically detecting buildings from multiple heterogeneous and uncalibrated very high-resolution (VHR satellite images for a rapid response to natural disasters. In the proposed method, a simple and efficient visual attention method is first used to extract built-up area candidates (BACs from each multispectral (MS satellite image. After this, morphological building indices (MBIs are extracted from all the masked panchromatic (PAN and MS images with BACs to characterize the structural features of buildings. Finally, buildings are automatically detected in a hierarchical probabilistic model by fusing the MBI and masked PAN images. The experimental results show that the proposed method is comparable to supervised classification methods in terms of recall, precision and F-value.

  4. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images.

    Science.gov (United States)

    Su, Yuan-Fong; Liou, Jun-Jih; Hou, Ju-Chen; Hung, Wei-Chun; Hsu, Shu-Mei; Lien, Yi-Ting; Su, Ming-Daw; Cheng, Ke-Sheng; Wang, Yeng-Fung

    2008-10-10

    his study demonstrates the feasibility of coastal water quality mapping using satellite remote sensing images. Water quality sampling campaigns were conducted over a coastal area in northern Taiwan for measurements of three water quality variables including Secchi disk depth, turbidity, and total suspended solids. SPOT satellite images nearly concurrent with the water quality sampling campaigns were also acquired. A spectral reflectance estimation scheme proposed in this study was applied to SPOT multispectral images for estimation of the sea surface reflectance. Two models, univariate and multivariate, for water quality estimation using the sea surface reflectance derived from SPOT images were established. The multivariate model takes into consideration the wavelength-dependent combined effect of individual seawater constituents on the sea surface reflectance and is superior over the univariate model. Finally, quantitative coastal water quality mapping was accomplished by substituting the pixel-specific spectral reflectance into the multivariate water quality estimation model.

  5. Tectonics of the northern Venezuelan Andes from satellite images analysis

    Science.gov (United States)

    Dhont, D.; Backé, G.; Hervouët, Y.

    2003-04-01

    The northern part of the Venezuelan (or Merida) Andes is a complex area comprising a Cretaceous to Quaternary sedimentary sequence that recorded two main stages of deformation: (1) the uplifting of the Carribean belt in the Cretaceous-Eocene (Carribean stage), which is superimposed by (2) the building of the Venezuelan Andes since the Miocene (Andean stage). The study area is located at the junction between the Merida Andes and the Caribbean belt, and constitutes a key zone to understand the transition between these two orogens. Our aim is to implement the structural mapping in order to propose a new model of deformation at regional scale. The methodology is based on analysis of Landsat TM, SPOT, radarsat and DEM images, and is complemented by geological studies in the field. Integration of this complementary data set into a GIS enables a new understanding of the tectonics of the northern Venezuelan Andes during the Neogene-Quaternary. We focused on three main areas where the structures are clearly exposed. In the Mene Grande area, our structural analysis allows to precise the geometry and timing of deformations. The Cerro la Galera anticline is a fault bend fold propagating to the SW that developped along the Burro Negro fault during the Eocene-Oligocene and then eroded. The Cerro La Luna (or Cerro Misoa) is a pop-up structure that developped later during the Andean stage. In the Jirajara area, we have evidenced a releasing-bend basin at left-stepping offset of the Valera fault. To the east, this basin is surrounded by the relief of the Serrania de Jirajara which gravitationally collapses towards the lowland of the basin. In the Sierra de Barragua area, we mapped the left-lateral strike-slip Rio Diquiva fault 25 km east of the Valera fault. This fault is a major structure bounding two distincts areas of sedimentation during the Eocene. The synthesis of these observations shows that the northern Venezuelan Andes consist in a mosaic of independent crustal blocks

  6. Model based image restoration for underwater images

    Science.gov (United States)

    Stephan, Thomas; Frühberger, Peter; Werling, Stefan; Heizmann, Michael

    2013-04-01

    The inspection of offshore parks, dam walls and other infrastructure under water is expensive and time consuming, because such constructions must be inspected manually by divers. Underwater buildings have to be examined visually to find small cracks, spallings or other deficiencies. Automation of underwater inspection depends on established water-proved imaging systems. Most underwater imaging systems are based on acoustic sensors (sonar). The disadvantage of such an acoustic system is the loss of the complete visual impression. All information embedded in texture and surface reflectance gets lost. Therefore acoustic sensors are mostly insufficient for these kind of visual inspection tasks. Imaging systems based on optical sensors feature an enormous potential for underwater applications. The bandwidth from visual imaging systems reach from inspection of underwater buildings via marine biological applications through to exploration of the seafloor. The reason for the lack of established optical systems for underwater inspection tasks lies in technical difficulties of underwater image acquisition and processing. Lightening, highly degraded images make a computational postprocessing absolutely essential.

  7. Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics

    International Nuclear Information System (INIS)

    Dong, Zibo; Yang, Dazhi; Reindl, Thomas; Walsh, Wilfred M.

    2014-01-01

    Highlights: • Satellite image analysis is performed and cloud cover index is classified using self-organizing maps (SOM). • The ESSS model is used to forecast cloud cover index. • Solar irradiance is estimated using multi-layer perceptron (MLP). • The proposed model shows better accuracy than other investigated models. - Abstract: We forecast hourly solar irradiance time series using satellite image analysis and a hybrid exponential smoothing state space (ESSS) model together with artificial neural networks (ANN). Since cloud cover is the major factor affecting solar irradiance, cloud detection and classification are crucial to forecast solar irradiance. Geostationary satellite images provide cloud information, allowing a cloud cover index to be derived and analysed using self-organizing maps (SOM). Owing to the stochastic nature of cloud generation in tropical regions, the ESSS model is used to forecast cloud cover index. Among different models applied in ANN, we favour the multi-layer perceptron (MLP) to derive solar irradiance based on the cloud cover index. This hybrid model has been used to forecast hourly solar irradiance in Singapore and the technique is found to outperform traditional forecasting models

  8. Attitude motion compensation for imager on Fengyun-4 geostationary meteorological satellite

    Science.gov (United States)

    Lyu, Wang; Dai, Shoulun; Dong, Yaohai; Shen, Yili; Song, Xiaozheng; Wang, Tianshu

    2017-09-01

    A compensation method is used in Chinese Fengyun-4 satellite to counteracting the line-of-sight influence by attitude motion during imaging. The method is acted on-board by adding the compensation amount to the instrument scanning control circuit. The mathematics simulation and the three-axis air-bearing test results show that the method works effectively.

  9. Review On Feasibility of Using Satellite Imaging for Risk Management of Derailment Related Turnout Component Failures

    Science.gov (United States)

    Dindar, Serdar; Kaewunruen, Sakdirat; Osman, Mohd H.

    2017-10-01

    One of the emerging significant advances in engineering, satellite imaging (SI) is becoming very common in any kind of civil engineering projects e.g., bridge, canal, dam, earthworks, power plant, water works etc., to provide an accurate, economical and expeditious means of acquiring a rapid assessment. Satellite imaging services in general utilise combinations of high quality satellite imagery, image processing and interpretation to obtain specific required information, e.g. surface movement analysis. To extract, manipulate and provide such a precise knowledge, several systems, including geographic information systems (GIS) and global positioning system (GPS), are generally used for orthorectification. Although such systems are useful for mitigating risk from projects, their productiveness is arguable and operational risk after application is open to discussion. As the applicability of any novel application to the railway industry is often measured in terms of whether or not it has gained in-depth knowledge and to what degree, as a result of errors during its operation, this novel application generates risk in ongoing projects. This study reviews what can be achievable for risk management of railway turnouts thorough satellite imaging. The methodology is established on the basis of other published articles in this area and the results of applications to understand how applicable such imagining process is on railway turnouts, and how sub-systems in turnouts can be effectively traced/operated with less risk than at present. As a result of this review study, it is aimed that the railway sector better understands risk mitigation in particular applications.

  10. Effects of satellite image spatial aggregation and resolution on estimates of forest land area

    Science.gov (United States)

    M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer

    2009-01-01

    Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...

  11. Development of a Lyman-α Imaging Solar Telescope for the Satellite

    Directory of Open Access Journals (Sweden)

    M. Jang

    2005-09-01

    Full Text Available Long term observations of full-disk Lyman-α irradiance have been made by the instruments on various satellites. In addition, several sounding rockets dating back to the 1950s and up through the present have measured the Lyman-α irradiance. Previous full disk Lyman-α images of the sun have been very interesting and useful scientifically, but have been only five-minute ``snapshots" obtained on sounding rocket flights. All of these observations to date have been snapshots, with no time resolution to observe changes in the chromospheric structure as a result of the evolving magnetic field, and its effect on the Lyman-α intensity. The Lyman-α Imaging Solar Telescope(LIST can provide a unique opportunity for the study of the sun in the Lyman-α region with the high time and spatial resolution for the first time. Up to the 2nd year development, the preliminary design of the optics, mechanical structure and electronics system has been completed. Also the mechanical structure analysis, thermal analysis were performed and the material for the structure was chosen as a result of these analyses. And the test plan and the verification matrix were decided. The operation systems, technical and scientific operation, were studied and finally decided. Those are the technical operation, mechanical working modes for the observation and safety, the scientific operation and the process of the acquired data. The basic techniques acquired through the development of satellite based solar telescope are essential for the construction of space environment forecast system in the future. The techniques which we developed through this study, like mechanical, optical and data processing techniques, could be applied extensively not only to the process of the future production of flight models of this kind, but also to the related industries. Also, we can utilize the scientific achievements which are obtained throughout the project. And these can be utilized to build a high

  12. Mapping land cover from satellite images: A basic, low cost approach

    Science.gov (United States)

    Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.

  13. Vibration-based monitoring to detect mass changes in satellites

    Science.gov (United States)

    Maji, Arup; Vernon, Breck

    2012-04-01

    Vibration-based structural health monitoring could be a useful form of determining the health and safety of space structures. A particular concern is the possibility of a foreign object that attaches itself to a satellite in orbit for adverse reasons. A frequency response analysis was used to determine the changes in mass and moment of inertia of the space structure based on a change in the natural frequencies of the structure or components of the structure. Feasibility studies were first conducted on a 7 in x 19 in aluminum plate with various boundary conditions. Effect of environmental conditions on the frequency response was determined. The baseline frequency response for the plate was then used as the basis for detection of the addition, and possibly the location, of added masses on the plate. The test results were compared to both analytical solutions and finite element models created in SAP2000. The testing was subsequently expanded to aluminum alloy satellite panels and a mock satellite with dummy payloads. Statistical analysis was conducted on variations of frequency due to added mass and thermal changes to determine the threshold of added mass that can be detected.

  14. [Surveying a zoological facility through satellite-based geodesy].

    Science.gov (United States)

    Böer, M; Thien, W; Tölke, D

    2000-06-01

    In the course of a thesis submitted for a diploma degree within the Fachhochschule Oldenburg the Serengeti Safaripark was surveyed in autumn and winter 1996/97 laying in the planning foundations for the application for licences from the controlling authorities. Taking into consideration the special way of keeping animals in the Serengeti Safaripark (game ranching, spacious walk-through-facilities) the intention was to employ the outstanding satellite based geodesy. This technology relies on special aerials receiving signals from 24 satellites which circle around the globe. These data are being gathered and examined. This examination produces the exact position of this aerial in a system of coordinates which allows depicting this point on a map. This procedure was used stationary (from a strictly defined point) as well as in the movement (in a moving car). Additionally conventional procedures were used when the satellite based geodesy came to its limits. Finally a detailed map of the Serengeti Safaripark was created which shows the position and size of stables and enclosures as well as wood and water areas and the sectors of the leisure park. Furthermore the established areas of the enclosures together with an already existing animal databank have flown into an information system with the help of which the stock of animals can be managed enclosure-orientated.

  15. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  16. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

    Directory of Open Access Journals (Sweden)

    Seunghwan Hong

    2017-01-01

    Full Text Available Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy.

  17. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    Science.gov (United States)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an

  18. Estimating Reliability of Disturbances in Satellite Time Series Data Based on Statistical Analysis

    Science.gov (United States)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with "Change/ No change" by most of the present methods, while few methods focus on estimating reliability (or confidence level) of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1) Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST). (2) Forecasting and detecting disturbances in new time series data. (3) Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI) and Confidence Levels (CL). The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  19. V-SIPAL - A VIRTUAL LABORATORY FOR SATELLITE IMAGE PROCESSING AND ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. M. Buddhiraju

    2012-09-01

    Full Text Available In this paper a virtual laboratory for the Satellite Image Processing and Analysis (v-SIPAL being developed at the Indian Institute of Technology Bombay is described. v-SIPAL comprises a set of experiments that are normally carried out by students learning digital processing and analysis of satellite images using commercial software. Currently, the experiments that are available on the server include Image Viewer, Image Contrast Enhancement, Image Smoothing, Edge Enhancement, Principal Component Transform, Texture Analysis by Co-occurrence Matrix method, Image Indices, Color Coordinate Transforms, Fourier Analysis, Mathematical Morphology, Unsupervised Image Classification, Supervised Image Classification and Accuracy Assessment. The virtual laboratory includes a theory module for each option of every experiment, a description of the procedure to perform each experiment, the menu to choose and perform the experiment, a module on interpretation of results when performed with a given image and pre-specified options, bibliography, links to useful internet resources and user-feedback. The user can upload his/her own images for performing the experiments and can also reuse outputs of one experiment in another experiment where applicable. Some of the other experiments currently under development include georeferencing of images, data fusion, feature evaluation by divergence andJ-M distance, image compression, wavelet image analysis and change detection. Additions to the theory module include self-assessment quizzes, audio-video clips on selected concepts, and a discussion of elements of visual image interpretation. V-SIPAL is at the satge of internal evaluation within IIT Bombay and will soon be open to selected educational institutions in India for evaluation.

  20. V-Sipal - a Virtual Laboratory for Satellite Image Processing and Analysis

    Science.gov (United States)

    Buddhiraju, K. M.; Eeti, L.; Tiwari, K. K.

    2011-09-01

    In this paper a virtual laboratory for the Satellite Image Processing and Analysis (v-SIPAL) being developed at the Indian Institute of Technology Bombay is described. v-SIPAL comprises a set of experiments that are normally carried out by students learning digital processing and analysis of satellite images using commercial software. Currently, the experiments that are available on the server include Image Viewer, Image Contrast Enhancement, Image Smoothing, Edge Enhancement, Principal Component Transform, Texture Analysis by Co-occurrence Matrix method, Image Indices, Color Coordinate Transforms, Fourier Analysis, Mathematical Morphology, Unsupervised Image Classification, Supervised Image Classification and Accuracy Assessment. The virtual laboratory includes a theory module for each option of every experiment, a description of the procedure to perform each experiment, the menu to choose and perform the experiment, a module on interpretation of results when performed with a given image and pre-specified options, bibliography, links to useful internet resources and user-feedback. The user can upload his/her own images for performing the experiments and can also reuse outputs of one experiment in another experiment where applicable. Some of the other experiments currently under development include georeferencing of images, data fusion, feature evaluation by divergence andJ-M distance, image compression, wavelet image analysis and change detection. Additions to the theory module include self-assessment quizzes, audio-video clips on selected concepts, and a discussion of elements of visual image interpretation. V-SIPAL is at the satge of internal evaluation within IIT Bombay and will soon be open to selected educational institutions in India for evaluation.

  1. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    CAO Yungang

    2016-10-01

    Full Text Available A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features. Firstly, texture and shape features are extracted at the pixel level, and spectral features are extracted at the object level based on multi-scale image segmentation maps. Then, extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions. Finally, an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline. Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.

  2. Study of frontal weather system using satellite images

    International Nuclear Information System (INIS)

    Qureshi, J.; Ershad, S.

    2005-01-01

    Pakistan which is situated in the south Asian sub continent, has a peculiar climatological position. It is one of the few countries in the world, which undergo a complete transformation from summer to winter season. However this project only pertains to the winter weather conditions in Pakistan. During winter, the land masses cool off rapidly as compared to the seas and so high pressure cells are developed over land causing, weak anti-cyclonic circulation over the country. In between these cells of anti-cyclonic flow of wind, there are zones of convergence, which offer a good breeding place for low-pressure waves. The low-pressure waves are similar to the extra tropical depressions and approach and approach Pakistan from west. From the same reason these are locally called the western Disturbances. Consequently the focus of study is on the extra tropical cyclones which originate along the boundary between polar continental and tropical or polar maritime and tropical maritime air masses. The extra tropical cyclones (also called western disturbances and westerly waves.) which are embedded in westerly flow of air move across north of Pakistan are usually originate from the Mediterranean sea. These systems consist of two types of fronts i.e. warm and cold fronts. In fact these systems can be traced right from the Atlantic Ocean and Mediterranean Sea. The location of frontal weather is generally associated with the surrounding synoptic situation, geographical position of the westerly wave, location of subtropical jet stream, steering wind level etc. although the satellite imageries are quite helpful for forecasting the frontal weather over our region however the weather charts (both surface and upper air ) and jet maps are also very helpful for this purpose

  3. Object-Based Assessment of Satellite Precipitation Products

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2016-06-01

    Full Text Available An object-based verification approach is employed to assess the performance of the commonly used high-resolution satellite precipitation products: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN, Climate Prediction center MORPHing technique (CMORPH, and Tropical Rainfall Measurement Mission (TRMM Multi-Satellite Precipitation Analysis (TMPA 3B42RT. The evaluation of the satellite precipitation products focuses on the skill of depicting the geometric features of the localized precipitation areas. Seasonal variability of the performances of these products against the ground observations is investigated through the examples of warm and cold seasons. It is found that PERSIANN is capable of depicting the orientation of the localized precipitation areas in both seasons. CMORPH has the ability to capture the sizes of the localized precipitation areas and performs the best in the overall assessment for both seasons. 3B42RT is capable of depicting the location of the precipitation areas for both seasons. In addition, all of the products perform better on capturing the sizes and centroids of precipitation areas in the warm season than in the cold season, while they perform better on depicting the intersection area and orientation in the cold season than in the warm season. These products are more skillful on correctly detecting the localized precipitation areas against the observations in the warm season than in the cold season.

  4. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.

  5. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  6. Eumetcast receiving station integration withinthe satellite image database interface (SAIDIN) system.

    OpenAIRE

    Chic, Òscar

    2010-01-01

    Within the tasks devoted to operational oceanography, Coastal Ocean Observatory at Institut de Ciències del Mar (CSIC) has acquired an European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Broadcast System for Environmental Data (EUMETCast reception system) to replace a satellite direct broadcast system that receives data via High Resolution Picture Transmission (HRPT). EUMETCast system can receive data based on standard Digital Video Broadcastin...

  7. First validation of satellite microwave liquid water path with ship-based observations in marine low clouds

    Science.gov (United States)

    Painemal, D.; Cadeddu, M. P.; Greenwald, T. J.; Minnis, P.

    2015-12-01

    We present the first validation study of satellite microwave liquid water path, from four operational sensors, against in-situ observations from a ship-borne three-channel microwave radiometer collected over the northeast Pacific during May-August of 2013, along a ship transect length of 40˚ (33.7˚N, 118.2˚W - 21.3˚N, 157.8˚W). The satellite sensors analyzed here are: The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), Special Sensor Microwave Imager/Sounder (SSMIS) on the Defense Meteorological Satellite Program F16 and F17 satellites, and The Advanced Microwave Scanning Radiometer (AMSR-2) on board the Global Change Observation Mission - Water (GCOM-W1). Satellite retrievals show an overall correlation with hourly-averaged in-situ observations of 0.86 and a positive bias of 10.0 gm2, which decreases to 1.0 gm2 and a correlation that increases to 0.91 when selecting overcast scenes. The satellite bias for broken scenes remains below 22.2 gm2, although the removal of clear-sky in-situ samples yields an unbiased relationship. Satellites produce a diurnal cycle with amplitudes (35-47 gm2) consistent with ship-based observations. Longitudinal biases remain below 17.4 gm2, and they are negligible in overcast scenes and when clear-sky samples are removed from the in-situ hourly average. Our study indicates that satellite microwave retrievals are a reliable dataset for climate studies in marine warm low clouds. The implications for satellite visible/infrared retrievals will be also discussed.

  8. Imaging Spectroscopy Techniques for Rapid Assessment of Geologic and Cryospheric Science Data from future Satellite Sensors

    Science.gov (United States)

    Calvin, W. M.; Hill, R.

    2016-12-01

    Several efforts are currently underway to develop and launch the next generation of imaging spectrometer systems on satellite platforms for a wide range of Earth Observation goals. Systems that include the reflected solar wavelength range up to 2.5 μm will be capable of detailed mapping of the composition of the Earth's surface. Sensors under development include EnMAP, HISUI, PRISMA, HERO, and HyspIRI. These systems are expected to be able to provide global data for insights and constraints on fundamental geological processes, natural and anthropogenic hazards, water, energy and mineral resource assessments. Coupled with the development of these sensors is the challenge of bringing a multi-channel user community (from Landsat, MODIS, and ASTER) into the rich science return available from imaging spectrometer systems. Most data end users will never be spectroscopy experts so that making the derived science products accessible to a wide user community is imperative. Simple band parameterizations have been developed for the CRISM instrument at Mars, including mafic and alteration minerals, frost and volatile ice indices. These products enhance and augment the use of that data set by broader group of scientists. Summary products for terrestrial geologic and water resource applications would help build a wider user base for future satellite systems, and rapidly key spectral experts to important regions for detailed spectral mapping. Summary products take advantage of imaging spectroscopy's narrow spectral channels with band depth calculations in addition to band ratios that are commonly used by multi-channel systems (e.g. NDVI, NDWI, NDSI). We are testing summary products for Earth geologic and snow scenes over California using AVIRIS data at 18m/pixel. This has resulted in several algorithms for rapid mineral discrimination and mapping and data collects over the melting Sierra snowpack in spring 2016 are expected to generate algorithms for snow grain size and surface

  9. Analysis and Assessment of Land Use Change in Alexandria, Egypt Using Satellite Images, GIS, and Modelling Techniques

    International Nuclear Information System (INIS)

    Abdou Azaz, L.K.

    2008-01-01

    Alexandria is the second largest urban governorate in Egypt and has seen significant urban growth in its modern and contemporary history. This study investigates the urban growth phenomenon in Alexandria, Egypt, using the integration of remote sensing and GIS. The urban physical expansion and change were detected using Landsat satellite images. The satellite images of years 1984 and 1993 were first geo referenced, achieving a very small RMSE that provided high accuracy data for satellite image analysis. Then, the images were classified using a tailored classification scheme with accuracy of 93.82% and 95.27% for 1984 and 1993 images respectively. This high accuracy enabled detecting land use/land cover changes with high confidence using a post-classification comparison method. One of the most important findings here is the loss of cultivated land in favour of urban expansion. If the current loss rates continued, 75% of green lands would be lost by year 2191. These hazardous rates call for an urban growth management policy that can preserve such valuable resources to achieve sustainable urban development. Modelling techniques can help in defining the scenarios of urban growth. In this study, the SLEUTH urban growth model was applied to predict future urban expansion in Alexandria until the year 2055. The application of this model in Alexandria of Egypt with its different environmental characteristics is the first application outside USA and Europe. The results revealed that future urban growth would continue along the edges of the current urban extent. This means that the cultivated lands in the east and the southeast of the city will be decreased. To deal with such crisis, there is a serious need for a comprehensive urban growth management programme that can be based on the best practices in similar situations

  10. Forecast of wheat yield throughout the agricultural season using optical and radar satellite images

    Science.gov (United States)

    Fieuzal, R.; Baup, F.

    2017-07-01

    The aim of this study is to estimate the capabilities of forecasting the yield of wheat using an artificial neural network combined with multi-temporal satellite data acquired at high spatial resolution throughout the agricultural season in the optical and/or microwave domains. Reflectance (acquired by Formosat-2, and Spot 4-5 in the green, red, and near infrared wavelength) and multi-configuration backscattering coefficients (acquired by TerraSAR-X and Radarsat-2 in the X- and C-bands, at co- (abbreviated HH and VV) and cross-polarization states (abbreviated HV and VH)) constitute the input variable of the artificial neural networks, which are trained and validated on the successively acquired images, providing yield forecast in near real-time conditions. The study is based on data collected over 32 fields of wheat distributed over a study area located in southwestern France, near Toulouse. Among the tested sensor configurations, several satellite data appear useful for the yield forecasting throughout the agricultural season (showing coefficient of determination (R2) larger than 0.60 and a root mean square error (RMSE) lower than 9.1 quintals by hectare (q ha-1)): CVH, CHV, or the combined used of XHH and CHH, CHH and CHV, or green reflectance and CHH. Nevertheless, the best accurate forecast (R2 = 0.76 and RMSE = 7.0 q ha-1) is obtained longtime before the harvest (on day 98, during the elongation of stems) using the combination of co- and cross-polarized backscattering coefficients acquired in the C-band (CVV and CVH). These results highlight the high interest of using synthetic aperture radar (SAR) data instead of optical ones to early forecast the yield before the harvest of wheat.

  11. Field survey report and satellite image interpretation of the 2013 Super Typhoon Haiyan in the Philippines

    Science.gov (United States)

    Mas, E.; Bricker, J.; Kure, S.; Adriano, B.; Yi, C.; Suppasri, A.; Koshimura, S.

    2015-04-01

    Three weeks after the deadly Bohol earthquake of Mw 7.2, which claimed at least 222 victims, another disaster struck the Philippines. This time, Super Typhoon Haiyan, also known as Typhoon Yolanda in the Philippines, devastated the Eastern Visayas islands on 8 November 2013. Its classification as a super typhoon was based on its maximum sustained 1 min surface wind speed of 315 km h-1, which is equivalent to a strong Category 5 hurricane on the Saffir-Simpson scale. This was one of the deadliest typhoon events in the Philippines' history, after the 1897 and 1912 tropical cyclones. At least 6268 individuals have been reported dead and 1061 people are missing. In addition, a wide area of destruction was observed in the Eastern Visayas, on Samar and Leyte islands. The International Research Institute of Disaster Science (IRIDeS) at Tohoku University in Sendai, Japan, has deployed several teams for damage recognition, relief support and collaboration with regard to this disaster event. One of the teams, the hazard and damage evaluation team, visited the affected areas in the Eastern Visayas in mid-January 2014. In this paper, we summarize the rapid damage assessment from satellite imagery conducted days after the event and report on the inundation measurements and the damage surveyed in the field. Damage interpretation results by satellite images were qualitatively confirmed for the Tacloban city area on Leyte Island, the most populated city in the Eastern Visayas. During the survey, significant damage was observed from wind and storm surges on poorly designed housing on the east coast of Leyte Island. Damage, mainly from surface waves and winds, was observed on the east coast of Samar Island.

  12. The attitude inversion method of geostationary satellites based on unscented particle filter

    Science.gov (United States)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  13. An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products

    Science.gov (United States)

    Qin, Jun; Tang, Wenjun; Yang, Kun; Lu, Ning; Niu, Xiaolei; Liang, Shunlin

    2015-05-01

    Surface solar irradiance (SSI) is required in a wide range of scientific researches and practical applications. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since SSI is directly measured at a very limited number of stations. Even so, meteorological stations are still sparse, especially in remote areas. Remote sensing can be used to map spatiotemporally continuous SSI. Considering the huge amount of satellite data, coarse-resolution SSI has been estimated for reducing the computational burden when the estimation is based on a complex radiative transfer model. On the other hand, many empirical relationships are used to enhance the retrieval efficiency, but the accuracy cannot be guaranteed out of regions where they are locally calibrated. In this study, an efficient physically based parameterization is proposed to balance computational efficiency and retrieval accuracy for SSI estimation. In this parameterization, the transmittances for gases, aerosols, and clouds are all handled in full band form and the multiple reflections between the atmosphere and surface are explicitly taken into account. The newly proposed parameterization is applied to estimate SSI with both Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric and land products as inputs. These retrievals are validated against in situ measurements at the Surface Radiation Budget Network and at the North China Plain on an instantaneous basis, and moreover, they are validated and compared with Global Energy and Water Exchanges-Surface Radiation Budget and International Satellite Cloud Climatology Project-flux data SSI estimates at radiation stations of China Meteorological Administration on a daily mean basis. The estimation results indicates that the newly proposed SSI estimation scheme can effectively retrieve SSI based on MODIS products with mean root-mean-square errors of about 100 Wm- 1 and 35 Wm- 1 on an instantaneous and daily

  14. Bias correction of satellite-based rainfall data

    Science.gov (United States)

    Bhattacharya, Biswa; Solomatine, Dimitri

    2015-04-01

    Limitation in hydro-meteorological data availability in many catchments limits the possibility of reliable hydrological analyses especially for near-real-time predictions. However, the variety of satellite based and meteorological model products for rainfall provides new opportunities. Often times the accuracy of these rainfall products, when compared to rain gauge measurements, is not impressive. The systematic differences of these rainfall products from gauge observations can be partially compensated by adopting a bias (error) correction. Many of such methods correct the satellite based rainfall data by comparing their mean value to the mean value of rain gauge data. Refined approaches may also first find out a suitable time scale at which different data products are better comparable and then employ a bias correction at that time scale. More elegant methods use quantile-to-quantile bias correction, which however, assumes that the available (often limited) sample size can be useful in comparing probabilities of different rainfall products. Analysis of rainfall data and understanding of the process of its generation reveals that the bias in different rainfall data varies in space and time. The time aspect is sometimes taken into account by considering the seasonality. In this research we have adopted a bias correction approach that takes into account the variation of rainfall in space and time. A clustering based approach is employed in which every new data point (e.g. of Tropical Rainfall Measuring Mission (TRMM)) is first assigned to a specific cluster of that data product and then, by identifying the corresponding cluster of gauge data, the bias correction specific to that cluster is adopted. The presented approach considers the space-time variation of rainfall and as a result the corrected data is more realistic. Keywords: bias correction, rainfall, TRMM, satellite rainfall

  15. Classification of semiurban landscapes from very high-resolution satellite images using a regionalized multiscale segmentation approach

    Science.gov (United States)

    Kavzoglu, Taskin; Erdemir, Merve Yildiz; Tonbul, Hasan

    2017-07-01

    In object-based image analysis, obtaining representative image objects is an important prerequisite for a successful image classification. The major threat is the issue of scale selection due to the complex spatial structure of landscapes portrayed as an image. This study proposes a two-stage approach to conduct regionalized multiscale segmentation. In the first stage, an initial high-level segmentation is applied through a "broadscale," and a set of image objects characterizing natural borders of the landscape features are extracted. Contiguous objects are then merged to create regions by considering their normalized difference vegetation index resemblance. In the second stage, optimal scale values are estimated for the extracted regions, and multiresolution segmentation is applied with these settings. Two satellite images with different spatial and spectral resolutions were utilized to test the effectiveness of the proposed approach and its transferability to different geographical sites. Results were compared to those of image-based single-scale segmentation and it was found that the proposed approach outperformed the single-scale segmentations. Using the proposed methodology, significant improvement in terms of segmentation quality and classification accuracy (up to 5%) was achieved. In addition, the highest classification accuracies were produced using fine-scale values.

  16. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data

    Science.gov (United States)

    Ronald E. McRoberts; Steen Magnussen; Erkki O. Tomppo; Gherardo. Chirici

    2011-01-01

    Nearest neighbors techniques have been shown to be useful for estimating forest attributes, particularly when used with forest inventory and satellite image data. Published reports of positive results have been truly international in scope. However, for these techniques to be more useful, they must be able to contribute to scientific inference which, for sample-based...

  17. Spatial scales of pollution from variable resolution satellite imaging.

    Science.gov (United States)

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Extreme weather monitoring system with combination of micro-satellites and ground-based observation networks

    Science.gov (United States)

    Takahashi, Y.; Sato, M.; Castro, E. C.; Ishida, T.; Marciano, J. J.; Kubota, H.; Yamashita, K.

    2017-12-01

    Thunderstorm causes torrential rainfall and is the energy source of typhoon. In these decades it has been revealed that lightning discharge is a very good proxy of thunderstorm activity. However, operational and sustainable observation system that can provide sufficient information of lightning strokes has not been constructed in Asia. On the other hand, 50-kg micro-satellite is now one of the operational tools for remote-sensing, which could be fabricated also by developing countries. International project to promote the combination of the micro-satellites and ground-based observation networks, supported by programs of SATREPS by DOST and JST-JICA, e-ASIA by JST and other Asian agencies and Core-to-core by JSPS, is now going under international agreement among Asian countries. We will establish a new way to obtain very detail semi-real time information of thunderstorm and typhoon activities, using visible stereo and thermal infrared imaging by target pointing with 50-kg micro-satellite, and ground-based networks consisting of lightning sensors, AWS and infrasound sensors, that cannot be achieved only with existing observation methods. Based on these new techniques together with advanced radar system and drop/radio sondes, we will try to construct the cutting-edge observation system to monitor the development of thunderstorm and typhoon, which may greatly contribute to the prediction of disasters and the public alerting system.

  19. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    Science.gov (United States)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For

  20. A New Physical Model to Estimate Solar Irradiance Componets on the Earth's Surface from Satellite Images

    Science.gov (United States)

    Cony, Marco, ,, Dr.; Wiesenberg, Ralf, ,, Dr.; Fernandéz, Irene; Jimenez, Marta

    2017-04-01

    The present study describes a new model designed to estimate the incident solar radiation at the Earth's surface from geostationary satellites images (AFASat). In this new physical model proposed, the effect of Rayleigh scattering, aerosols and Earth's surface topography are taken into account. Water vapor absorption is also introduced by means of its climatological effects on shortwave radiation. Cloud albedo, ground albedo and absorption are derived from brightness measurements on the assumption that they both are linearly related to the brightness. However, this simple consideration applied to individual images elements represents quite accurately the bulk effect of clouds and reflectance. AFASat model uses the Heliosat-3 method and add others environmental factors to estimate with relative precision the solar radiation that arrives at the Earth's surface. Comparisons with daily radiation measurements from ground data station located in Europe, Africa and India (BSRN) showed that the satellite estimates were, on the average, within 2% of the ground measurements for global horizontal irradiance and less than 7% for direct normal irradiance. The hourly variations monitored by the satellite also followed very closely the variations measured on the ground. This study has shown that model is sufficient for the determination of the incident solar radiation when the high spatial and temporal coverage of a geostationary satellite is used. The AFASat is highly appropriate for such those projects that required an analysis of the solar resource assessment as such as TMY report (Typical Meteorological Year).

  1. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    Chudnovsky, Alexandra A.; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM 2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM 2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM 2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM 2.5 levels and wind speed. - Highlights: ► The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM 2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM 2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM 2.5 variability at the intra-urban scale.

  2. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    Science.gov (United States)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  3. Time-domain Astronomy with the Advanced X-ray Imaging Satellite

    Science.gov (United States)

    Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard

    2018-01-01

    The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.

  4. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    Science.gov (United States)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  5. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  6. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.

    Science.gov (United States)

    Morshed, Md Manjur; Islam, Md Tazmul; Jamil, Raihan

    2016-02-01

    This paper attempts to detect soil salinity from satellite image analysis using remote sensing and geographic information system. Salinity intrusion is a common problem for the coastal regions of the world. Traditional salinity detection techniques by field survey and sampling are time-consuming and expensive. Remote sensing and geographic information system offer economic and efficient salinity detection, monitoring, and mapping. To predict soil salinity, an integrated approach of salinity indices and field data was used to develop a multiple regression equation. The correlations between different indices and field data of soil salinity were calculated to find out the highly correlated indices. The best regression model was selected considering the high R (2) value, low P value, and low Akaike's Information Criterion. About 20% variation was observed between the field data and predicted EC from the satellite image analysis. The precision of this salinity detection technique depends on the accuracy and uniform distribution of field data.

  7. Visualization of Surface Processes over Space and Time using a Long Series of Satellite Based Imagery

    Science.gov (United States)

    Harris, T.; Schafer, R.; Hulslander, D.; O'Connor, A. S.; Wolfe, J.

    2014-12-01

    With the increasing diversity and long temporal record of satellite-based Earth imagery, we have new opportunities to better understand and predict Earth surface processes and activities. Satellite-based imagery is an increasingly important resource for analyzing changes in vegetation and land use, as well as monitoring the evolution of hazards and environmental conditions. A key requirement for exploitation of this imagery is visualization and extraction of multimodal data over space and time. Analysis of this imagery requires four primary components: 1) Assignment of acquisition time, spatial reference, and parameter descriptions, 2) Preprocessing including radiometric calibration, generation of derived parameters such as NDVI, and normalization to a common spatial grid, 3) Cataloging and access for discovering and extracting data through space, parameter, and time, and 4) Visualization techniques including animation, parameter-time, space-time, and space-frequency plots. Using ENVI, we will demonstrate how Landsat, MODIS, and Suomi NPP VIIRS data products can be prepared and visualized for exploring the evolution of processes and activities. Visual animation through a temporal stack of imagery is used to quickly understand trends in urban growth, vegetation, and land use. After exploring the temporal stack of images, spatio-temporal and periodic relationships are visualized using space-time and space-frequency representations of the data. Satellite-based imagery is a primary source of data for understanding global changes over time. To understand processes and activities, it is now increasingly important for data exploitation tools such as ENVI to easily extract data from multiple satellite-based sensors and visualize this multimodal data in both space and time.

  8. Combining satellite and seismic images to analyse the shallow structure of the Dead Sea Transform near the DESERT transect

    Science.gov (United States)

    Kesten, D.; Weber, M.; Haberland, Ch.; Janssen, Ch.; Agnon, A.; Bartov, Y.; Rabba, I.

    2008-02-01

    The left-lateral Dead Sea Transform (DST) in the Middle East is one of the largest continental strike-slip faults of the world. The southern segment of the DST in the Arava/Araba Valley between the Dead Sea and the Red Sea, called Arava/Araba Fault (AF), has been studied in detail in the multidisciplinary DESERT (DEad SEa Rift Transect) project. Based on these results, here, the interpretations of multi-spectral (ASTER) satellite images and seismic reflection studies have been combined to analyse geologic structures. Whereas satellite images reveal neotectonic activity in shallow young sediments, reflection seismic image deep faults that are possibly inactive at present. The combination of the two methods allows putting some age constraint on the activity of individual fault strands. Although the AF is clearly the main active fault segment of the southern DST, we propose that it has accommodated only a limited (up to 60 km) part of the overall 105 km of sinistral plate motion since Miocene times. There is evidence for sinistral displacement along other faults, based on geological studies, including satellite image interpretation. Furthermore, a subsurface fault is revealed ≈4 km west of the AF on two ≈E-W running seismic reflection profiles. Whereas these seismic data show a flower structure typical for strike-slip faults, on the satellite image this fault is not expressed in the post-Miocene sediments, implying that it has been inactive for the last few million years. About 1 km to the east of the AF another, now buried fault, was detected in seismic, magnetotelluric and gravity studies of DESERT. Taking together various evidences, we suggest that at the beginning of transform motion deformation occurred in a rather wide belt, possibly with the reactivation of older ≈N-S striking structures. Later, deformation became concentrated in the region of today’s Arava Valley. Till ≈5 Ma ago there might have been other, now inactive fault traces in the vicinity

  9. Applying Support Vector Machine in classifying satellite images for the assessment of urban sprawl

    Science.gov (United States)

    murgante, Beniamino; Nolè, Gabriele; Lasaponara, Rosa; Lanorte, Antonio; Calamita, Giuseppe

    2013-04-01

    In last decades the spreading of new buildings, road infrastructures and a scattered proliferation of houses in zones outside urban areas, produced a countryside urbanization with no rules, consuming soils and impoverishing the landscape. Such a phenomenon generated a huge environmental impact, diseconomies and a decrease in life quality. This study analyzes processes concerning land use change, paying particular attention to urban sprawl phenomenon. The application is based on the integration of Geographic Information Systems and Remote Sensing adopting open source technologies. The objective is to understand size distribution and dynamic expansion of urban areas in order to define a methodology useful to both identify and monitor the phenomenon. In order to classify "urban" pixels, over time monitoring of settlements spread, understanding trends of artificial territories, classifications of satellite images at different dates have been realized. In order to obtain these classifications, supervised classification algorithms have been adopted. More particularly, Support Vector Machine (SVM) learning algorithm has been applied to multispectral remote data. One of the more interesting features in SVM is the possibility to obtain good results also adopting few classification pixels of training areas. SVM has several interesting features, such as the capacity to obtain good results also adopting few classification pixels of training areas, a high possibility of configuration parameters and the ability to discriminate pixels with similar spectral responses. Multi-temporal ASTER satellite data at medium resolution have been adopted because are very suitable in evaluating such phenomena. The application is based on the integration of Geographic Information Systems and Remote Sensing technologies by means of open source software. Tools adopted in managing and processing data are GRASS GIS, Quantum GIS and R statistical project. The area of interest is located south of Bari

  10. Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

    OpenAIRE

    Toufic Abd El-Latif Sadek

    2016-01-01

    The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un th...

  11. Relationship between Lineament Density Extraction from Satellite Image and Earthquake Distribution of Taungtonelone Area, Myanmar

    OpenAIRE

    MYINT, Soe; WON-IN, KRIT; TAKASHIMA, lsao; CHARUSIRI, Punya

    2007-01-01

    [ABSTRACT] We studied relationship between lineament density extraction from satellite image and earthquake distribution using remote sensing applications. The result of this study aim to set up a complete earthquake hazard Map. The selected area is located in the Taungtonelone area,northern Mynmar. Myanmar is an earth-quake-prone country. It lies in a major earthquake zone of the world called Mediterranean -Himalayan belt. As the major urban areas in Myanmar lie in earthquake prone zones, ea...

  12. Do roads cause deforestation? Using satellite images in econometric analysis of land use

    OpenAIRE

    Nelson, Gerald; Hellerstein, Daniel

    1997-01-01

    In this paper we demonstrate how satellite images and other geographic data can be used to predict land use. A cross-section model of land use is estimated with data for a region in central Mexico. Parameters from the model are used to examine the effects of reduced human activity. If variables that proxy human influence are changed to reflect reduced impact, “forest” area increases and “irrigated crop” area is reduced. Copyright 1997, Oxford University Press.

  13. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  14. Bottom Topographic Changes of Poyang Lake During Past Decade Using Multi-temporal Satellite Images

    Science.gov (United States)

    Zhang, S.

    2015-12-01

    Poyang Lake, as a well-known international wetland in the Ramsar Convention List, is the largest freshwater lake in China. It plays crucial ecological role in flood storage and biological diversity. Poyang Lake is facing increasingly serious water crises, including seasonal dry-up, decreased wetland area, and water resource shortage, all of which are closely related to progressive bottom topographic changes over recent years. Time-series of bottom topography would contribute to our understanding of the lake's evolution during the past several decades. However, commonly used methods for mapping bottom topography fail to frequently update quality bathymetric data for Poyang Lake restricted by weather and accessibility. These deficiencies have limited our ability to characterize the bottom topographic changes and understanding lake erosion or deposition trend. To fill the gap, we construct a decadal bottom topography of Poyang Lake with a total of 146 time series medium resolution satellite images based on the Waterline Method. It was found that Poyang Lake has eroded with a rate of -14.4 cm/ yr from 2000 to 2010. The erosion trend was attributed to the impacts of human activities, especially the operation of the Three Gorge Dams, sand excavation, and the implementation of water conservancy project. A decadal quantitative understanding bottom topography of Poyang Lake might provide a foundation to model the lake evolutionary processes and assist both researchers and local policymakers in ecological management, wetland protection and lake navigation safety.

  15. Key issues in making and using satellite-based maps in ecology: a primer.

    Science.gov (United States)

    Karin S. Fassnacht; Warren B. Cohen; Thomas A. Spies

    2006-01-01

    The widespread availability of satellite imagery and image processing software has made it relatively easy for ecologists to use satellite imagery to address questions at the landscape and regional scales. However, as often happens with complex tools that are rendered easy to use by computer software, technology may be misused or used without an understanding of some...

  16. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  17. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  18. TESIS experiment on XUV imaging spectroscopy of the Sun onboard the CORONAS-PHOTON satellite

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Bogachev, S. A.; Shestov, S. V.; Bugaenko, O. I.; Suhodrev, N. K.; Pertsov, A. A.; Mitrofanov, A. V.; Ignat'ev, A. P.; Slemzin, V. A.

    We present a brief description of new complex of space telescopes and spectrographs, TESIS, which will be placed aboard the CORONAS-PHOTON satellite. The complex is intended for high-resolution imaging observation of full Sun in the coronal spectral lines and in the spectral lines of the solar transition region. TESIS will be launched at the end of 2007 - early of 2008. About 25 % of the daily TESIS images will be free for use and for downloading from the TESIS data center that is planned to open 2 months before the TESIS launching at http://www.tesis.lebedev.ru

  19. Multi-Scale Analysis of Very High Resolution Satellite Images Using Unsupervised Techniques

    Directory of Open Access Journals (Sweden)

    Jérémie Sublime

    2017-05-01

    Full Text Available This article is concerned with the use of unsupervised methods to process very high resolution satellite images with minimal or little human intervention. In a context where more and more complex and very high resolution satellite images are available, it has become increasingly difficult to propose learning sets for supervised algorithms to process such data and even more complicated to process them manually. Within this context, in this article we propose a fully unsupervised step by step method to process very high resolution images, making it possible to link clusters to the land cover classes of interest. For each step, we discuss the various challenges and state of the art algorithms to make the full process as efficient as possible. In particular, one of the main contributions of this article comes in the form of a multi-scale analysis clustering algorithm that we use during the processing of the image segments. Our proposed methods are tested on a very high resolution image (Pléiades of the urban area around the French city of Strasbourg and show relevant results at each step of the process.

  20. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.

    Science.gov (United States)

    Duru, Umit

    2017-08-01

    The research summarized here determines historical shoreline changes along Lake Sapanca by using Remote Sensing (RS) and Geographical Information Systems (GIS). Six multi-temporal satellite images of Landsat Multispectral Scanner (L1-5 MMS), Enhanced Thematic Mapper Plus (L7 ETM+), and Operational Land Imager Sensors (L8 OLI), covering the period between 17 June 1975 and 15 July 2016, were used to monitor shoreline positions and estimate change rates along the coastal zone. After pre-possessing routines, the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and supervised classification techniques were utilized to extract six different shorelines. Digital Shoreline Analysis System (DSAS), a toolbox that enables transect-based computations of shoreline displacement, was used to compute historical shoreline change rates. The average rate of shoreline change for the entire cost was 2.7 m/year of progradation with an uncertainty of 0.2 m/year. While the great part of the lake shoreline remained stable, the study concluded that the easterly and westerly coasts and deltaic coasts are more vulnerable to shoreline displacements over the last four decades. The study also reveals that anthropogenic activities, more specifically over extraction of freshwater from the lake, cyclic variation in rainfall, and deposition of sediment transported by the surrounding creeks dominantly control spatiotemporal shoreline changes in the region. Monitoring shoreline changes using multi-temporal satellite images is a significant component for the coastal decision-making and management.

  1. Control of a space robot for minimal attitude disturbance to the base satellite for capturing a tumbling satellite

    Science.gov (United States)

    Flores-Abad, Angel; Ma, Ou

    2012-06-01

    The use of a space manipulator (robot) for capturing a tumbling object is a risky and challenging task, mainly because when the manipulator onboard a servicing satellite (base satellite) intercepts with an external object for capture, the resulting impulse will be transferred along the mechanical arm down to the servicing satellite causing disturbance to the attitude of the satellite. Such disturbance may destabilize the servicing satellite if the captured object is tumbling and the physical contact between the robot end-effector and the object is not controlled properly. Certainly, the risk may be mitigated with a force or impedance control capability of the manipulator. However, the implementation of force or impedance control usually requires the robot to have a joint torque sensing and control capability which is a very expensive requirement for a space manipulator. To date, there has never been a really flown space manipulator having a joint torque control capability. Further, even a force or impedance control capability becomes available, much development is still needed before safe capture of a tumbling object can be confidently tried in a real mission. This paper presents an optimal control strategy for a space manipulator to have minimal impact to the base satellite during a capturing operation. The idea is to first predict an optimal future time and motion state for capturing and then control the manipulator to reach the determined motion state such that, when the tip of the robot maneuvers to and intercepts with the tumbling object, a minimal attitude disturbance to the servicing satellite will occur. The proposed control strategy can be implemented regardless whether the manipulator has a joint torque control capability or not. Since the control acts before a physical contact happens, it will not affect but actually augment any existing force or impedance control capability of the manipulator. The proposed method is demonstrated using a simulation

  2. Using Sentinel-1 and Landsat 8 satellite images to estimate surface soil moisture content.

    Science.gov (United States)

    Mexis, Philippos-Dimitrios; Alexakis, Dimitrios D.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.

    2016-04-01

    Nowadays, the potential for more accurate assessment of Soil Moisture (SM) content exploiting Earth Observation (EO) technology, by exploring the use of synergistic approaches among a variety of EO instruments has emerged. This study is the first to investigate the potential of Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Landsat 8) images in combination with ground measurements to estimate volumetric SM content in support of water management and agricultural practices. SAR and optical data are downloaded and corrected in terms of atmospheric, geometric and radiometric corrections. SAR images are also corrected in terms of roughness and vegetation with the synergistic use of Oh and Topp models using a dataset consisting of backscattering coefficients and corresponding direct measurements of ground parameters (moisture, roughness). Following, various vegetation indices (NDVI, SAVI, MSAVI, EVI, etc.) are estimated to record diachronically the vegetation regime within the study area and as auxiliary data in the final modeling. Furthermore, thermal images from optical data are corrected and incorporated to the overall approach. The basic principle of Thermal InfraRed (TIR) method is that Land Surface Temperature (LST) is sensitive to surface SM content due to its impact on surface heating process (heat capacity and thermal conductivity) under bare soil or sparse vegetation cover conditions. Ground truth data are collected from a Time-domain reflectometer (TRD) gauge network established in western Crete, Greece, during 2015. Sophisticated algorithms based on Artificial Neural Networks (ANNs) and Multiple Linear Regression (MLR) approaches are used to explore the statistical relationship between backscattering measurements and SM content. Results highlight the potential of SAR and optical satellite images to contribute to effective SM content detection in support of water resources management and precision agriculture. Keywords: Sentinel-1, Landsat 8, Soil

  3. High resolution satellite image indexing and retrieval using SURF features and bag of visual words

    Science.gov (United States)

    Bouteldja, Samia; Kourgli, Assia

    2017-03-01

    In this paper, we evaluate the performance of SURF descriptor for high resolution satellite imagery (HRSI) retrieval through a BoVW model on a land-use/land-cover (LULC) dataset. Local feature approaches such as SIFT and SURF descriptors can deal with a large variation of scale, rotation and illumination of the images, providing, therefore, a better discriminative power and retrieval efficiency than global features, especially for HRSI which contain a great range of objects and spatial patterns. Moreover, we combine SURF and color features to improve the retrieval accuracy, and we propose to learn a category-specific dictionary for each image category which results in a more discriminative image representation and boosts the image retrieval performance.

  4. Integrating satellite images and lidar data for straight-line mapping

    Science.gov (United States)

    Elaksher, Ahmed; Alharthy, Abdullatif; Ali, Tarig

    2017-09-01

    Currently, most mapping tasks are carried out using remote sensing data such as satellite imageries and LIDAR point clouds. This paper presents the integration of a QuickBird imagery set (both pan and multispectral) and LIDAR DEM generated from a LIDAR point cloud for mapping the coastline. A number of image processing techniques were applied to pan image to generate a coastline. Then a supervised classification is performed on the multispectral image followed by a raster to vector conversion to extract another shoreline. A third line was created from the LIDAR data using a set of processing algorithms. The three lines are weighted and pixels belonging to all of them are grouped to fit a final coastline. In order to evaluate the results, we manually extracted the corresponding line from the pan image and compared points belonging to both lines. Differences averaged about 1.37 meters.

  5. Recognition of landforms from digital elevation models and satellite imagery with expert systems, pattern recognition and image processing techniques

    OpenAIRE

    Miliaresis, George

    2014-01-01

    Recognition of landforms from digital elevation models and satellite imagery with expert systems, pattern recognition and image processing techniques. PhD Thesis, Remote Sensing & Terrain Pattern Recognition),National Technical University of Athens, Dpt. of Topography (2000).

  6. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. PRISM image orthorectification for one-half of the target areas was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative

  7. Differential Spatio-temporal Multiband Satellite Image Clustering using K-means Optimization With Reinforcement Programming

    Directory of Open Access Journals (Sweden)

    Irene Erlyn Wina Rachmawan

    2015-06-01

    Full Text Available Deforestration is one of the crucial issues in Indonesia because now Indonesia has world's highest deforestation rate. In other hand, multispectral image delivers a great source of data for studying spatial and temporal changeability of the environmental such as deforestration area. This research present differential image processing methods for detecting nature change of deforestration. Our differential image processing algorithms extract and indicating area automatically. The feature of our proposed idea produce extracted information from multiband satellite image and calculate the area of deforestration by years with calculating data using temporal dataset. Yet, multiband satellite image consists of big data size that were difficult to be handled for segmentation. Commonly, K- Means clustering is considered to be a powerfull clustering algorithm because of its ability to clustering big data. However K-Means has sensitivity of its first generated centroids, which could lead into a bad performance. In this paper we propose a new approach to optimize K-Means clustering using Reinforcement Programming in order to clustering multispectral image. We build a new mechanism for generating initial centroids by implementing exploration and exploitation knowledge from Reinforcement Programming. This optimization will lead a better result for K-means data cluster. We select multispectral image from Landsat 7 in past ten years in Medawai, Borneo, Indonesia, and apply two segmentation areas consist of deforestration land and forest field. We made series of experiments and compared the experimental results of K-means using Reinforcement Programming as optimizing initiate centroid and normal K-means without optimization process. Keywords: Deforestration, Multispectral images, landsat, automatic clustering, K-means.

  8. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    Science.gov (United States)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  9. Performance Evaluation of Three Different High Resolution Satellite Images in Semi-Automatic Urban Illegal Building Detection

    Science.gov (United States)

    Khalilimoghadama, N.; Delavar, M. R.; Hanachi, P.

    2017-09-01

    The problem of overcrowding of mega cities has been bolded in recent years. To meet the need of housing this increased population, which is of great importance in mega cities, a huge number of buildings are constructed annually. With the ever-increasing trend of building constructions, we are faced with the growing trend of building infractions and illegal buildings (IBs). Acquiring multi-temporal satellite images and using change detection techniques is one of the proper methods of IB monitoring. Using the type of satellite images with different spatial and spectral resolutions has always been an issue in efficient detection of the building changes. In this research, three bi-temporal high-resolution satellite images of IRS-P5, GeoEye-1 and QuickBird sensors acquired from the west of metropolitan area of Tehran, capital of Iran, in addition to city maps and municipality property database were used to detect the under construction buildings with improved performance and accuracy. Furthermore, determining the employed bi-temporal satellite images to provide better performance and accuracy in the case of IB detection is the other purpose of this research. The Kappa coefficients of 70 %, 64 %, and 68 % were obtained for producing change image maps using GeoEye-1, IRS-P5, and QuickBird satellite images, respectively. In addition, the overall accuracies of 100 %, 6 %, and 83 % were achieved for IB detection using the satellite images, respectively. These accuracies substantiate the fact that the GeoEye-1 satellite images had the best performance among the employed images in producing change image map and detecting the IBs.

  10. Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul H. Bhuiyan

    2010-01-01

    Full Text Available Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s, phase(s, and delay(s of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK- and Sine Binary Offset Carrier- (SinBOC- modulated signals is also analyzed in closed loop model with the new Composite

  11. LTE-based Satellite Communications in LEO Mega-Constellations

    OpenAIRE

    Guidotti, A.; Vanelli-Coralli, A.; Foggi, T.; Colavolpe, G.; Caus, M.; Bas, J.; Cioni, S.; Modenini, A.

    2017-01-01

    The integration of satellite and terrestrial networks is a promising solution for extending broadband coverage to areas not connected to a terrestrial infrastructure, as also demonstrated by recent commercial and standardisation endeavours. However, the large delays and Doppler shifts over the satellite channel pose severe technical challenges to traditional terrestrial systems, as LTE or 5G. In this paper, two architectures are proposed for a LEO mega-constellation realising a satellite-enab...

  12. Multi Resolution Analysis (MRA of satellite images of oil spill disasters

    Directory of Open Access Journals (Sweden)

    Rashid Hussain

    2014-09-01

    Full Text Available Oil spill disasters monitoring and mitigation requires availability of state of the art applications and tools. Conventional technology gets benefit from latest trends and research in satellite imaginary. This research highlights multi-resolution wavelet analysis of satellite images of oil spill disasters. Multi-resolution analysis is one of the powerful techniques to analyze information content of images. This analysis enables us to have a scale-invariant interpretation of the image. At each resolution level, both smooth and detailed signals carry all the necessary information to reconstruct the smooth signal at the next level. The wavelet decomposition results in detail and approximate threshold coefficients. Multi resolution wavelet decomposition is used to analyze the image in both time and frequency domain. It provides better frequency resolution and poor time resolution for lower frequency; better time resolution and poor frequency resolution for higher frequency. This condition is fortunately suited for real applications; as signals have high frequency components for very short period of the interval and low frequency components for longer durations.

  13. 3D reconstruction from multi-view VHR-satellite images in MicMac

    Science.gov (United States)

    Rupnik, Ewelina; Pierrot-Deseilligny, Marc; Delorme, Arthur

    2018-05-01

    This work addresses the generation of high quality digital surface models by fusing multiple depths maps calculated with the dense image matching method. The algorithm is adapted to very high resolution multi-view satellite images, and the main contributions of this work are in the multi-view fusion. The algorithm is insensitive to outliers, takes into account the matching quality indicators, handles non-correlated zones (e.g. occlusions), and is solved with a multi-directional dynamic programming approach. No geometric constraints (e.g. surface planarity) or auxiliary data in form of ground control points are required for its operation. Prior to the fusion procedures, the RPC geolocation parameters of all images are improved in a bundle block adjustment routine. The performance of the algorithm is evaluated on two VHR (Very High Resolution)-satellite image datasets (Pléiades, WorldView-3) revealing its good performance in reconstructing non-textured areas, repetitive patterns, and surface discontinuities.

  14. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  15. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S. W.; Yuan, M.; Cerveny, R. S.; Giri, C.

    2008-07-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  16. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  17. Metadata for Content-Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Adrian Sterca

    2010-12-01

    Full Text Available This paper presents an image retrieval technique that combines content based image retrieval with pre-computed metadata-based image retrieval. The resulting system will have the advantages of both approaches: the speed/efficiency of metadata-based image retrieval and the accuracy/power of content-based image retrieval.

  18. Potential for calibration of geostationary meteorological satellite imagers using the Moon

    Science.gov (United States)

    Stone, T.C.; Kieffer, H.H.; Grant, I.F.; ,

    2005-01-01

    Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data

  19. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  20. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  1. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  2. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  3. Fast Road Network Extraction in Satellite Images Using Mathematical Morphology and Markov Random Fields

    Directory of Open Access Journals (Sweden)

    Géraud Thierry

    2004-01-01

    Full Text Available We present a fast method for road network extraction in satellite images. It can be seen as a transposition of the segmentation scheme "watershed transform region adjacency graph Markov random fields" to the extraction of curvilinear objects. Many road extractors which are composed of two stages can be found in the literature. The first one acts like a filter that can decide from a local analysis, at every image point, if there is a road or not. The second stage aims at obtaining the road network structure. In the method we propose to rely on a "potential" image, that is, unstructured image data that can be derived from any road extractor filter. In such a potential image, the value assigned to a point is a measure of its likelihood to be located in the middle of a road. A filtering step applied on the potential image relies on the area closing operator followed by the watershed transform to obtain a connected line which encloses the road network. Then a graph describing adjacency relationships between watershed lines is built. Defining Markov random fields upon this graph, associated with an energetic model of road networks, leads to the expression of road network extraction as a global energy minimization problem. This method can easily be adapted to other image processing fields, where the recognition of curvilinear structures is involved.

  4. Considerations and methods for the changes detection using satellite images in the Municipality of Paipa

    International Nuclear Information System (INIS)

    Riano M, Orlando

    2002-01-01

    In this article the considerations and methods are presented for the changes detection in the earth covering, using two images Landsat TM of different dates for an area of the municipality of Paipa, Boyaca. The changes detection has become an important application of the multi-spectral data and multi-temporal of the satellites programs for studies of natural resources Landsat, TM and Spot, in such a way that is possible to determine the types and extension of the changes that are given in the environment. To carry out this process some digital techniques they have been used for changes detection, such as: images superposition, differences between images and analysis of main components. These techniques allowed to observe and to analyze changes in the use and covering of the earth in this municipality

  5. Building a satellite climate diagnostics data base for real-time climate monitoring

    International Nuclear Information System (INIS)

    Ropelewski, C.F.

    1991-01-01

    The paper discusses the development of a data base, the Satellite Climate Diagnostic Data Base (SCDDB), for real time operational climate monitoring utilizing current satellite data. Special attention is given to the satellite-derived quantities useful for monitoring global climate changes, the requirements of SCDDB, and the use of conventional meteorological data and model assimilated data in developing the SCDDB. Examples of prototype SCDDB products are presented. 10 refs

  6. Three-Axis Satellite Attitude Control Based on Magnetic Torquing

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1995-01-01

    Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics.......Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics....

  7. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  8. ORTHO-RECTIFICATION OF HJ-1A/1B MULTI-SPECTRAL IMAGE BASED ON THE GCP IMAGE DATABASE

    Directory of Open Access Journals (Sweden)

    G. Li

    2012-07-01

    Full Text Available HJ satellite is the abbreviation of the Small Satellite Constellation of Environment and Disaster Monitoring and Forecasting in China, which plays a very important role in forecasting and monitoring the environment problems and natural disasters. The ortho-rectification of HJ images aided by GCP (Ground Control Point image database is presented in this paper. The GCP image database is constructed from historical LandSat-TM images and the GCP chip consists of image and geographic attribute information. Then auto-searching and matching algorithm is introduced and mis-matching elimination method is presented. The imaging model based on collinearity equation and the polynomial description of the attitude and position of scanning line is utilized for ortho-rectification. Four scene images are experimented and compared, and the result demonstrated the feasibility and high efficiency of the whole work flow.

  9. Enhancement of thematic mapper satellite images for geological mapping of the Cho Dien area, Northern Vietnam

    Science.gov (United States)

    Won-In, Krit; Charusiri, Punya

    2003-06-01

    Information available from the earth science image processing package (ESIPP) software program was applied to enhance the satellite image data of the Cho Dien area, northern Vietnam. The area with dense vegetation covers is dominated by several small Zn-Pb prospects in middle Paleozoic limestone units. Interpretation of satellite image data using the digital enhancement ESIPP program, forms the prime objective of this study, which is to improve the image quality and visual interpretation of regional geology, lineament and structural geology. Thematic mapper of bands 7, 5 and 4 with the false-color composites: blue, green and red, respectively, are considered to be the most appropriate for geologic interpretation. Dark pixel correction is carried out prior to other enhancement analyses which include high-pass filtering, albedo correction, image classification, principle component analysis (PCA) and band ratios. High-pass filtering enhancement is considered to be the most suitable approach for lineament analysis. Albedo is good for differentiating lithology, and image classification is also successfully used for lineament interpretation and discrimination of lithologies but is regarded not better than high-pass filtering and albedo. PCA and ratio of band enhancements are considered not good because there are many disturbed and excavated land areas such as abandoned and current open pits in the concerned area. The result of Landsat interpretation indicate that most lineament structures developed in a roughly N-trending anticlinal structure are in NE-, E- and N-trends. Minor lineaments are in roughly NW-trend, and cross-cutting the NE- and E-trends. Interpretation from enhanced Landsat information also fits very well with field evidences. The interpreted map is slightly different from those of the previous mapping works, particularly with respect to detailed lithological boundaries.

  10. New perspectives for satellite-based archaeological research in the ancient territory of Hierapolis (Turkey

    Directory of Open Access Journals (Sweden)

    R. Lasaponara

    2008-11-01

    Full Text Available This paper deals with the use of satellite QuickBird images to find traces of past human activity in the ancient territory of Hierapolis (Turkey. This is one of the most important archaeological sites in Turkey, and in 1988 it was inscribed in the UNESCO World Heritage list. Although over the years the archaeological site of Hierapolis has been excavated, restored and well documented, up to now the territory around the ancient urban area is still largely unknown. The current research project, still in progress, aims to search the area neighbouring Hierapolis believed to have been under the control of the city for a long time and, therefore, expected to be very rich in archaeological evidence. In order to investigate a large area around the ancient Hierapolis and discover potential archaeological remains, QuickBird images were adopted.

    Results from satellite-based analysis allowed us to find several unknown rural settlements dating back to early Imperial Roman and the Byzantine age. Two significant test sites were focused on in this paper in order to characterize the different spectral responses observed for different types of archaeological features (shadow and soil marks. Principal Component Analysis and spectral indices were computed to enhance archaeological marks and make identification easier. The capability of the QuickBird data set (panchromatic, multispectral channel, PCA and spectral indices in searching for archaeological marks was assessed in a quantitative way by using a specific indicator.

  11. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  12. Deep learning for the detection of barchan dunes in satellite images

    Science.gov (United States)

    Azzaoui, A. M.; Adnani, M.; Elbelrhiti, H.; Chaouki, B. E. K.; Masmoudi, L.

    2017-12-01

    Barchan dunes are known to be the fastest moving sand dunes in deserts as they form under unidirectional winds and limited sand supply over a firm coherent basement (Elbelrhiti and Hargitai,2015). They were studied in the context of natural hazard monitoring as they could be a threat to human activities and infrastructures. Also, they were studied as a natural phenomenon occurring in other planetary landforms such as Mars or Venus (Bourke et al., 2010). Our region of interest was located in a desert region in the south of Morocco, in a barchan dunes corridor next to the town of Tarfaya. This region which is part of the Sahara desert contained thousands of barchans; which limits the number of dunes that could be studied during field missions. Therefore, we chose to monitor barchan dunes with satellite imagery, which can be seen as a complementary approach to field missions. We collected data from the Sentinel platform (https://scihub.copernicus.eu/dhus/); we used a machine learning method as a basis for the detection of barchan dunes positions in the satellite image. We trained a deep learning model on a mid-sized dataset that contained blocks representing images of barchan dunes, and images of other desert features, that we collected by cropping and annotating the source image. During testing, we browsed the satellite image with a gliding window that evaluated each block, and then produced a probability map. Finally, a threshold on the latter map exposed the location of barchan dunes. We used a subsample of data to train the model and we gradually incremented the size of the training set to get finer results and avoid over fitting. The positions of barchan dunes were successfully detected and deep learning was an effective method for this application. Sentinel-2 images were chosen for their availability and good temporal resolution, which will allow the tracking of barchan dunes in future work. While Sentinel images had sufficient spatial resolution for the

  13. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring

    Directory of Open Access Journals (Sweden)

    Pauline Dusseux

    2014-06-01

    Full Text Available The aim of this study was to assess the ability of optical images, SAR (Synthetic Aperture Radar images and the combination of both types of data to discriminate between grasslands and crops in agricultural areas where cloud cover is very high most of the time, which restricts the use of visible and near-infrared satellite data. We compared the performances of variables extracted from four optical and five SAR satellite images with high/very high spatial resolutions acquired during the growing season. A vegetation index, namely the NDVI (Normalized Difference Vegetation Index, and two biophysical variables, the LAI (Leaf Area Index and the fCOVER (fraction of Vegetation Cover were computed using optical time series and polarization (HH, VV, HV, VH. The polarization ratio and polarimetric decomposition (Freeman–Durden and Cloude–Pottier were calculated using SAR time series. Then, variables derived from optical, SAR and both types of remotely-sensed data were successively classified using the Support Vector Machine (SVM technique. The results show that the classification accuracy of SAR variables is higher than those using optical data (0.98 compared to 0.81. They also highlight that the combination of optical and SAR time series data is of prime interest to discriminate grasslands from crops, allowing an improved classification accuracy.

  14. Global root zone storage capacity from satellite-based evaporation

    Science.gov (United States)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  15. A case of timely satellite image acquisitions in support of coastal emergency environmental response management

    Science.gov (United States)

    Ramsey, Elijah W.; Werle, Dirk; Lu, Zhong; Rangoonwala, Amina; Suzuoki, Yukihiro

    2009-01-01

    The synergistic application of optical and radar satellite imagery improves emergency response and advance coastal monitoring from the realm of “opportunistic” to that of “strategic.” As illustrated by the Hurricane Ike example, synthetic aperture radar imaging capabilities are clearly applicable for emergency response operations, but they are also relevant to emergency environmental management. Integrated with optical monitoring, the nearly real-time availability of synthetic aperture radar provides superior consistency in status and trends monitoring and enhanced information concerning causal forces of change that are critical to coastal resource sustainability, including flooding extent, depth, and frequency.

  16. Monitoring an air pollution episode in Shenzhen by combining MODIS satellite images and the HYSPLIT model

    Science.gov (United States)

    Li, Lili; Liu, Yihong; Wang, Yunpeng

    2017-07-01

    Urban air pollution is influenced not only by local emission sources including industry and vehicles, but also greatly by regional atmospheric pollutant transportation from the surrounding areas, especially in developed city clusters, like the Pearl River Delta (PRD). Taking an air pollution episode in Shenzhen as an example, this paper investigates the occurrence and evolution of the pollution episode and identifies the transport pathways of air pollutants in Shenzhen by combining MODIS satellite images and HYSPLIT back trajectory analysis. Results show that this pollution episode is mainly caused by the local emission of pollutants in PRD and oceanic air masses under specific weather conditions.

  17. Utilization of satellite images to understand the dynamics of Pampas shallow lakes

    Directory of Open Access Journals (Sweden)

    V. S. Aliaga

    2016-06-01

    Full Text Available The aim of this study was to analyze satellite images of different spatial resolutions to interpret the morphometric behavior of six shallow lakes of the Pampas, Argentina. These are characterized by having different rainfall regimes. Morphometric response considering each location, site conditions and dry and wet extreme events is analyzed. Standardized Precipitation Index (IEP for determination of wet, dry and normal years was used. This analysis showed that the Pampas shallow lakes do not behave in the same way to the rainfall events. Its origin, socio-economic use and rainfall patterns affect their spatiotemporal variation and morphometric.

  18. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  19. Accuracy comparison of Pléiades satellite ortho-images using GPS ...

    African Journals Online (AJOL)

    image requires four basic components, namely an image, a geometric sensor model ... Nonetheless, the TerraSAR-X based GCPs still produced a sub 2 m accurate ortho-image, which is more than sufficient for the production of most geospatial ...

  20. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    Science.gov (United States)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-01-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop yields and early warning of food insecurity during drought years for these identified zones.

  1. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images

    International Nuclear Information System (INIS)

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Boyd, Doreen S.

    2015-01-01

    The global demand for fossil energy is triggering oil exploration and production projects in remote areas of the world. During the last few decades hydrocarbon production has caused pollution in the Amazon forest inflicting considerable environmental impact. Until now it is not clear how hydrocarbon pollution affects the health of the tropical forest flora. During a field campaign in polluted and pristine forest, more than 1100 leaf samples were collected and analysed for biophysical and biochemical parameters. The results revealed that tropical forests exposed to hydrocarbon pollution show reduced levels of chlorophyll content, higher levels of foliar water content and leaf structural changes. In order to map this impact over wider geographical areas, vegetation indices were applied to hyperspectral Hyperion satellite imagery. Three vegetation indices (SR, NDVI and NDVI 705 ) were found to be the most appropriate indices to detect the effects of petroleum pollution in the Amazon forest. - Highlights: • Leaf biochemical alterations in the rainforest are caused by petroleum pollution. • Lower levels of chlorophyll content are symptom of vegetation stress in polluted sites. • Increased foliar water content was found in vegetation near polluted sites. • Vegetation stress was detected by using vegetation indices from satellite images. • Polluted sites and hydrocarbon seepages in rainforest can be identified from space. - Hydrocarbon pollution in the Amazon forest is observed for first time from satellite data

  2. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-05

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  3. TIRCIS: Hyperspectral Thermal Infrared Imaging Using a Small-Satellite Compliant Fourier-Transform Imaging Spectrometer, for Natural Hazard Applications

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.

    2015-12-01

    Many natural hazards, including wildfires, volcanic eruptions, and, from the perspective of climate-related hazards, urban heat islands, could be better quantified via the routine availability of hyperspectral thermal infrared remote sensing data from orbit. However, no sensors are currently in operation that provide such data at high-to-moderate spatial resolution (e.g. Landsat-class resolution). In this presentation we will describe a prototype instrument, developed using funding provided by NASA's Instrument Incubator Program, that can make these important measurements. Significantly, the instrument has been designed such that its size, mass, power, and cost are consistent with its integration into small satellite platforms, or deployment as part of small satellite constellations. The instrument, TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data cubes. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. Neither the focal plane nor the optics need to be cooled, and the instrument has a mass of <10 kg and dimensions of 53 cm × 25 cm × 22 cm. Although the prototype has four moving parts, this can easily be reduced to one. The current optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 90 spectral samples are possible, by varying the physical design of the interferometer. Our performance model indicates signal-to-noise ratios of the order of about 200 to 300:1. In this presentation we will provide an overview of the instrument design, fabrication, results from our initial laboratory characterization, and some of the application areas in which small-satellite-ready instruments such as TIRCIS could make a valuable contribution to the study of natural hazards.

  4. GPU-based normalized cuts for road extraction using satellite imagery

    Indian Academy of Sciences (India)

    This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the ...

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    . As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all

  6. Primena satelitskih snimaka za dopunu sadržaja topografskih karata / An application of satellite images for improving the content of topographic maps

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2010-10-01

    Full Text Available Neažurnost sadržaja topografskih karata (TK, uslovljena ponajviše stvarnim ekonomskim teškoćama pri izradi novih i dopuni postojećih izdanja, kao i nedovoljnost i sve teže stanje pri izradi ostalih geotopografskih materijala (GTM, u velikoj meri otežavaju geotopografsko obezbeđenje (GTOb vojske u miru, kao i u svim periodima pripreme i vođenja ratnih dejstava. Rešenje ovog problema je u iznalaženju adekvatnog načina upotrebe proizvoda svih vrsta daljinskih snimanja, a naročito u obradi kvalitetnih satelitskih snimaka. Kao najbolji pokazatelj velikih mogućnosti daljinske detekcije, korišćenjem satelitskih snimaka, u kartografskoj praksi primenom kvalitetnih softverskih rešenja, u radu je predstavljena dopuna topografske karte nedostajućim topografskim sadržajem. / Lack of updated content of topographic maps (TMs, mainly due to economic issues regarding the publishing of existing or revised TMs, substantially affects geo-topographic supply (GTS of the Army both in peace and warfare time, as well as shortage of other geo-topographic materials (GTMs. The solution to this problem is in finding an appropriate method of using products of all types of remote sensing, high quality satellite images in particular. Having shown the best possibilities of remote sensing while using satellite images in mapping through the quality software solutions, the author presents an addition to topographic maps based on missing topographic data. Introduction Numerous natural and social phenomena are constantly observed, surveyed, registered and analyzed. Permanent or periodical satellite surveillance and recording for different purposes are growing in importance. The purposes can range from meteorological issues, through study of large water surfaces to military intelligence, etc. These recording can be used in making topographic, thematic and working maps as well as other geo-topographic material. Processing and analyzing of ikonos2 satellite images

  7. New Magnetospheric Substorm Injection Monitor: Image Electron Spectrometer On Board a Chinese Navigation IGSO Satellite

    Science.gov (United States)

    Zong, Qiugang; Wang, Yongfu; Zou, Hong; Wang, Linghua; Rankin, Robert; Zhang, Xiaoxin

    2018-02-01

    Substorm injections are one of the most dynamic processes in Earth's magnetosphere and have global consequences and broad implications for space weather modeling. They can be monitored using energetic electron detectors on geosynchronous satellites. The Imaging Electron Spectrometer (IES) on board a Chinese navigation satellite, launched on 16 October 2015 into an inclined geosynchronous satellite orbit (IGSO), provides the first energetic electron measurement in IGSO orbit to the best of our knowledge. The IES was developed by Peking University and is named hereafter as BD-IES. Using a pin-hole technique, the BD-IES instrument measures 50-600 keV incident electrons in eight energy channels from nine directions covering a range of 180° in polar angle. Data collection by the BD-IES instrument have recently passed the 1 year mark, which reflects a successful milestone for the mission. The innermost and outermost signatures of substorm injection at L 6 and 12 have been observed by the BD-IES with a high L shell spatial coverage, complementary to the existing missions such as the Van Allen Probes that covers the range below L 6. There are another two BD-IES instruments to be installed in the coming Chinese Sun-synchronous and geosynchronous satellites, respectively. Such a configuration will provide a unique opportunity to investigate inward and outward radial propagation of the substorm injection region simultaneously at high and low L shells. It will further elucidate potential mechanisms for the particle energization and transport, two of the most important topics in magnetospheric dynamics.

  8. Estimation about Active Phase of Trajectory Based on the Satellite Passive Detection

    OpenAIRE

    ZHOU Juan; ZHONG Maosheng

    2014-01-01

    To estimate a spacecraft trajectory, the observation satellite position should be calculated in advance. Through the simplified equation of motion based on the observation satellite for finishing the second order differential equation. By the MATLAB simulation interpolation operation with the existing list data, solution to satellite of three dimensional position in different moments. By the point wise intersection positioning method to estimating the trajectory of the spacecraft, the positio...

  9. A Collective Detection Based GPS Receiver for Small Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To solve the problem of autonomous navigation on small satellite platforms less than 20 kg, we propose to develop an onboard orbit determination receiver for small...

  10. Satellite-based Drought Reporting on the Navajo Nation

    Science.gov (United States)

    McCullum, A. J. K.; Schmidt, C.; Ly, V.; Green, R.; McClellan, C.

    2017-12-01

    The Navajo Nation (NN) is the largest reservation in the US, and faces challenges related to water management during long-term and widespread drought episodes. The Navajo Nation is a federally recognized tribe, which has boundaries within Arizona, New Mexico, and Utah. The Navajo Nation has a land area of over 70,000 square kilometers. The Navajo Nation Department of Water Resources (NNDWR) reports on drought and climatic conditions through the use of regional Standardized Precipitation Index (SPI) values and a network of in-situ rainfall, streamflow, and climate data. However, these data sources lack the spatial detail and consistent measurements needed to provide a coherent understanding of the drought regime within the Nation's regional boundaries. This project, as part of NASA's Western Water Applications Office (WWAO), improves upon the recently developed Drought Severity Assessment Tool (DSAT) to ingest satellite-based precipitation data to generate SPI values for specific administrative boundaries within the reservation. The tool aims to: (1) generate SPI values and summary statistics for regions of interest on various timescales, (2) to visualize SPI values within a web-map application, and (3) produce maps and comparative statistical outputs in the format required for annual drought reporting. The co-development of the DSAT with NN partners is integral to increasing the sustained use of Earth Observations for water management applications. This tool will provide data to support the NN in allocation of drought contingency dollars to the regions most adversely impacted by declines in water availability.

  11. Quantitative analysis of geomorphic processes using satellite image data at different scales

    Science.gov (United States)

    Williams, R. S., Jr.

    1985-01-01

    When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.

  12. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    Directory of Open Access Journals (Sweden)

    Haris Akram Bhatti

    2016-06-01

    Full Text Available With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA Climate Prediction Centre (CPC morphing technique (CMORPH satellite rainfall product (CMORPH in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW sizes and for sequential windows (SW’s of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE. To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r and standard deviation (SD. Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  13. Earth Camp: Exploring Earth Change through the Use of Satellite Images and Scientific Practices

    Science.gov (United States)

    Baldridge, A.; Buxner, S.; Crown, D. A.; Colodner, D.; Orchard, A.; King, B.; Schwartz, K.; Prescott, A.; Prietto, J.; Titcomb, A.

    2014-07-01

    Earth Camp is a NASA-funded program that gives students and teachers opportunities to explore local, regional, and global earth change through a combination of hands-on investigations and the use of satellite images. Each summer, 20 middle school and 20 high school students participate in a two-week leadership program investigating contemporary issues (e.g., changes in river sheds, water quality, and land use management) through hands-on investigations, analyzing remote sensing data, and working with experts. Each year, 20 teachers participate in a year-long professional development program that includes monthly workshops, field investigations on Mt. Lemmon in Tucson, Arizona, and a week-long summer design workshop. Teachers conduct investigations of authentic questions using satellite images and create posters to present results of their study of earth change. In addition, teachers design lesson plans to expand their students' ability to investigate earth change with 21st Century tools. Lessons can be used as classroom exercises or for after-school club programs. Independent evaluation has been an integral part of program development and delivery for all three audiences, enabling the program staff and participants to reflect on and continually improve their practice and learning over the three-year period.

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    , the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ahankashan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images

  16. Roof Type Selection Based on Patch-Based Classification Using Deep Learning for High Resolution Satellite Imagery

    Science.gov (United States)

    Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.

    2017-05-01

    3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  17. ROOF TYPE SELECTION BASED ON PATCH-BASED CLASSIFICATION USING DEEP LEARNING FOR HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    T. Partovi

    2017-05-01

    Full Text Available 3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2 for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes extracted from a Digital Surface Model (DSM, the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  18. Population-based geographic access to parent and satellite National Cancer Institute Cancer Center Facilities.

    Science.gov (United States)

    Onega, Tracy; Alford-Teaster, Jennifer; Wang, Fahui

    2017-09-01

    Satellite facilities of National Cancer Institute (NCI) cancer centers have expanded their regional footprints. This study characterized geographic access to parent and satellite NCI cancer center facilities nationally overall and by sociodemographics. Parent and satellite NCI cancer center facilities, which were geocoded in ArcGIS, were ascertained. Travel times from every census tract in the continental United States and Hawaii to the nearest parent and satellite facilities were calculated. Census-based population attributes were used to characterize measures of geographic access for sociodemographic groups. From the 62 NCI cancer centers providing clinical care in 2014, 76 unique parent locations and 211 satellite locations were mapped. The overall proportion of the population within 60 minutes of a facility was 22% for parent facilities and 32.7% for satellite facilities. When satellites were included for potential access, the proportion of some racial groups for which a satellite was the closest NCI cancer center facility increased notably (Native Americans, 22.6% with parent facilities and 39.7% with satellite facilities; whites, 34.8% with parent facilities and 50.3% with satellite facilities; and Asians, 40.0% with parent facilities and 54.0% with satellite facilities), with less marked increases for Hispanic and black populations. Rural populations of all categories had dramatically low proportions living within 60 minutes of an NCI cancer center facility of any type (1.0%-6.6%). Approximately 14% of the population (n = 43,033,310) lived more than 180 minutes from a parent or satellite facility, and most of these individuals were Native Americans and/or rural residents (37% of Native Americans and 41.7% of isolated rural residents). Racial/ethnic and rural populations showed markedly improved geographic access to NCI cancer center care when satellite facilities were included. Cancer 2017;123:3305-11. © 2017 American Cancer Society. © 2017 American

  19. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band

  1. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    Science.gov (United States)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  2. Operational Testing of Satellite based Hydrological Model (SHM)

    Science.gov (United States)

    Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2017-04-01

    Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow

  3. Multispectral Snapshot Imagers Onboard Small Satellite Formations for Multi-Angular Remote Sensing

    Science.gov (United States)

    Nag, Sreeja; Hewagama, Tilak; Georgiev, Georgi; Pasquale, Bert; Aslam, Shahid; Gatebe, Charles K.

    2017-01-01

    Multispectral snapshot imagers are capable of producing 2D spatial images with a single exposure at selected, numerous wavelengths using the same camera, therefore operate differently from push broom or whiskbroom imagers. They are payloads of choice in multi-angular, multi-spectral imaging missions that use small satellites flying in controlled formation, to retrieve Earth science measurements dependent on the targets Bidirectional Reflectance-Distribution Function (BRDF). Narrow fields of view are needed to capture images with moderate spatial resolution. This paper quantifies the dependencies of the imagers optical system, spectral elements and camera on the requirements of the formation mission and their impact on performance metrics such as spectral range, swath and signal to noise ratio (SNR). All variables and metrics have been generated from a comprehensive, payload design tool. The baseline optical parameters selected (diameter 7 cm, focal length 10.5 cm, pixel size 20 micron, field of view 1.15 deg) and snapshot imaging technologies are available. The spectral components shortlisted were waveguide spectrometers, acousto-optic tunable filters (AOTF), electronically actuated Fabry-Perot interferometers, and integral field spectrographs. Qualitative evaluation favored AOTFs because of their low weight, small size, and flight heritage. Quantitative analysis showed that waveguide spectrometers perform better in terms of achievable swath (10-90 km) and SNR (greater than 20) for 86 wavebands, but the data volume generated will need very high bandwidth communication to downlink. AOTFs meet the external data volume caps well as the minimum spectral (wavebands) and radiometric (SNR) requirements, therefore are found to be currently feasible in spite of lower swath and SNR.

  4. Satellite data transferring subsystem based on system 'Materik'

    International Nuclear Information System (INIS)

    Belogub, V.P.; Kal'schikov, I.B.; Kirillov, Yu.K.; Kulikov, V.N.; Shumov, A.N.

    1998-01-01

    One of the most important indicators of successful function of the International Monitoring System is existence of highly reliable communication channels providing transfer data from observation points in a real time scales. Up to present, the most communication channels were provided with existing VF-channels (Voice Frequency) that are relatively low-speedy in transfer process (4.8-9.6 kbit/sec.). In addition, reliability of the channels is insufficient because of many retransmission points. In connection with it, the special control service of MD RF decided to improve the information transfer system (ITS) installed between the observation point and National Data Center (Dubna-city). The improvement of the ITS comprises replacement of wire lines of VF-channels with satellite ones within the framework of the computer-aided satellite communication system (CASCS) M aterik . Besides it was considered to be expedient that the satellite system of data transfer from NPP to the Crisis Center of 'ROSENERGOATOM' Concern would be combined with CASCS M aterik , using the facilities of the Central Earth Station of Satellite Communication (CESSC) in Dubna. Such approach to the creation of Satellite communication has advantages in solution of radiation safety and global monitoring issues

  5. An Automatic and Novel SAR Image Registration Algorithm: A Case Study of the Chinese GF-3 Satellite

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2018-02-01

    Full Text Available The Chinese GF-3 satellite launched in August 2016 is a Synthetic Aperture Radar (SAR satellite that has the largest number of imaging modes in the world. It achieves a free switch in the spotlight, stripmap, scanSAR, wave, global observation and other imaging modes. In order to further utilize GF-3 SAR images, an automatic and fast image registration procedure needs to be done. In this paper, we propose a novel image registration technique for GF-3 images of different imaging modes. The proposed algorithm consists of two stages: coarse registration and fine registration. In the first stage, we combine an adaptive sampling method with the SAR-SIFT algorithm to efficiently eliminate obvious translation, rotation and scale differences between the reference and sensed images. In the second stage, uniformly-distributed control points are extracted, then the fast normalized cross-correlation of an improved phase congruency model is utilized as a new similarity metric to match the reference image and the coarse-registered image in a local search region. Moreover, a selection strategy is used to remove outliers. Experimental results on several GF-3 SAR images of different imaging modes show that the proposed algorithm gives a robust, efficient and precise registration performance, compared with other state-of-the-art algorithms for SAR image registration.

  6. An Automatic and Novel SAR Image Registration Algorithm: A Case Study of the Chinese GF-3 Satellite.

    Science.gov (United States)

    Xiang, Yuming; Wang, Feng; You, Hongjian

    2018-02-24

    The Chinese GF-3 satellite launched in August 2016 is a Synthetic Aperture Radar (SAR) satellite that has the largest number of imaging modes in the world. It achieves a free switch in the spotlight, stripmap, scanSAR, wave, global observation and other imaging modes. In order to further utilize GF-3 SAR images, an automatic and fast image registration procedure needs to be done. In this paper, we propose a novel image registration technique for GF-3 images of different imaging modes. The proposed algorithm consists of two stages: coarse registration and fine registration. In the first stage, we combine an adaptive sampling method with the SAR-SIFT algorithm to efficiently eliminate obvious translation, rotation and scale differences between the reference and sensed images. In the second stage, uniformly-distributed control points are extracted, then the fast normalized cross-correlation of an improved phase congruency model is utilized as a new similarity metric to match the reference image and the coarse-registered image in a local search region. Moreover, a selection strategy is used to remove outliers. Experimental results on several GF-3 SAR images of different imaging modes show that the proposed algorithm gives a robust, efficient and precise registration performance, compared with other state-of-the-art algorithms for SAR image registration.

  7. Neural network multispectral satellite images classification of volcanic ash plumes in a cloudy scenario

    Directory of Open Access Journals (Sweden)

    Matteo Picchiani

    2015-03-01

    Full Text Available This work shows the potential use of neural networks in the characterization of eruptive events monitored by satellite, through fast and automatic classification of multispectral images. The algorithm has been developed for the MODIS instrument and can easily be extended to other similar sensors. Six classes have been defined paying particular attention to image regions that represent the different surfaces that could possibly be found under volcanic ash clouds. Complex cloudy scenarios composed by images collected during the Icelandic eruptions of the Eyjafjallajökull (2010 and Grimsvötn (2011 volcanoes have been considered as test cases. A sensitivity analysis on the MODIS TIR and VIS channels has been performed to optimize the algorithm. The neural network has been trained with the first image of the dataset, while the remaining data have been considered as independent validation sets. Finally, the neural network classifier’s results have been compared with maps classified with several interactive procedures performed in a consolidated operational framework. This comparison shows that the automatic methodology proposed achieves a very promising performance, showing an overall accuracy greater than 84%, for the Eyjafjalla - jökull event, and equal to 74% for the Grimsvötn event. 

  8. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  9. Ground-Based Global Navigation Satellite System (GNSS) SBAS Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Satellite-Based Augmentation System (SBAS) Broadcast Ephemeris Data (sub-hourly...

  10. Ground-Based Global Navigation Satellite System (GNSS) SBAS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Satellite-Based Augmentation System (SBAS) Broadcast Ephemeris Data (daily files)...

  11. Ground-Based Global Navigation Satellite System (GNSS) SBAS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Satellite-Based Augmentation System (SBAS) Broadcast Ephemeris Data (hourly files)...

  12. Satellite and Ground Based Observations on Air Quality Over Major Cities in the Indo- Gangetic Basin

    Science.gov (United States)

    Singh, R. P.; Prasad, A. K.; Singh, S.

    2006-05-01

    The Indo-Gangetic (IG) basin is one of the largest basins in the world. The basin is densely populated; about 600 million live in the basin. Due to growing urbanization and industrialization, the air quality of cities lying in the basin is degrading. Further, increase in energy demand have led to growth of a number of coal based thermal power plants (TPP) which are mostly located close to cities are also contributing significantly in the air quality of the major cities in particular and in general of the IG basin. We have carried out analysis of satellite (Moderate Resolution Imaging Spectroradiometer - MODIS, Multiangle Imaging SpectroRadiometer - MISR) data that have been corroborated by several ground observations (Aerosol Robotic Network (AERONET), Central Pollution Control Board (CPCB), and other ground based measurements). In the last decade (1990- 2000), percent share of biomass as energy source has declined by 9.9% with rise in the coal (4.2%) and petroleum (4.2%) share. In the present paper, we have carried analysis of aerosol parameters retrieved from satellite remote sensing data and the air quality data measured in the major cities. The qualitative behavior of the aerosol parameters are found to show one to one relation with the air quality parameters measured from ground network. We have further used the Industrial Source Complex Short Term (ISCST-3) dispersion model to study the concentration of air pollutants emitted from these major cities and found that the point source lying in the cities contribute significantly up to a radius of 25km. The spatial concentration is found to be highly dependent on the wind direction and speed besides stability of the boundary layer. The model shows decrease in the concentration of pollutants with season (winter to summer).

  13. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  14. Upconversion based MIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Junaid, Saher; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    Midinfrared (MIR) hyperspectral imaging has a great potential to be used as a tool for medical diagnostics featuring a combination of imaging and spectroscopy. In hyperspectral imaging, the images of the (biomedical) samples contains both spectral and spatial information....

  15. Satellite-based high-resolution mapping of rainfall over southern Africa

    Science.gov (United States)

    Meyer, Hanna; Drönner, Johannes; Nauss, Thomas

    2017-06-01

    A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Rainfall measurements from about 350 weather stations from 2010-2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD). However, the false alarm ratio (FAR) was high (0.80), leading to a Heidke skill score (HSS) of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE) of 0.72. The correlation increased with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the Global Precipitation Measurement (GPM) mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed promising results

  16. A Visual Attention Model Based Image Fusion

    OpenAIRE

    Rishabh Gupta; M.R.Vimala Devi; M. Devi

    2013-01-01

    To develop an efficient image fusion algorithm based on visual attention model for images with distinct objects. Image fusion is a process of combining complementary information from multiple images of the same scene into an image, so that the resultant image contains a more accurate description of the scene than any of the individual source images. The two basic fusion techniques are pixel level and region level fusion. Pixel level fusion deals with the operations on each and every pixel sep...

  17. Summary of water body extraction methods based on ZY-3 satellite

    Science.gov (United States)

    Zhu, Yu; Sun, Li Jian; Zhang, Chuan Yin

    2017-12-01

    Extracting from remote sensing images is one of the main means of water information extraction. Affected by spectral characteristics, many methods can be not applied to the satellite image of ZY-3. To solve this problem, we summarize the extraction methods for ZY-3 and analyze the extraction results of existing methods. According to the characteristics of extraction results, the method of WI& single band threshold and the method of texture filtering based on probability statistics are explored. In addition, the advantages and disadvantages of all methods are compared, which provides some reference for the research of water extraction from images. The obtained conclusions are as follows. 1) NIR has higher water sensitivity, consequently when the surface reflectance in the study area is less similar to water, using single band threshold method or multi band operation can obtain the ideal effect. 2) Compared with the water index and HIS optimal index method, object extraction method based on rules, which takes into account not only the spectral information of the water, but also space and texture feature constraints, can obtain better extraction effect, yet the image segmentation process is time consuming and the definition of the rules requires a certain knowledge. 3) The combination of the spectral relationship and water index can eliminate the interference of the shadow to a certain extent. When there is less small water or small water is not considered in further study, texture filtering based on probability statistics can effectively reduce the noises in result and avoid mixing shadows or paddy field with water in a certain extent.

  18. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  19. A prototype method for diagnosing high ice water content probability using satellite imager data

    Directory of Open Access Journals (Sweden)

    C. R. Yost

    2018-03-01

    Full Text Available Recent studies have found that ingestion of high mass concentrations of ice particles in regions of deep convective storms, with radar reflectivity considered safe for aircraft penetration, can adversely impact aircraft engine performance. Previous aviation industry studies have used the term high ice water content (HIWC to define such conditions. Three airborne field campaigns were conducted in 2014 and 2015 to better understand how HIWC is distributed in deep convection, both as a function of altitude and proximity to convective updraft regions, and to facilitate development of new methods for detecting HIWC conditions, in addition to many other research and regulatory goals. This paper describes a prototype method for detecting HIWC conditions using geostationary (GEO satellite imager data coupled with in situ total water content (TWC observations collected during the flight campaigns. Three satellite-derived parameters were determined to be most useful for determining HIWC probability: (1 the horizontal proximity of the aircraft to the nearest overshooting convective updraft or textured anvil cloud, (2 tropopause-relative infrared brightness temperature, and (3 daytime-only cloud optical depth. Statistical fits between collocated TWC and GEO satellite parameters were used to determine the membership functions for the fuzzy logic derivation of HIWC probability. The products were demonstrated using data from several campaign flights and validated using a subset of the satellite–aircraft collocation database. The daytime HIWC probability was found to agree quite well with TWC time trends and identified extreme TWC events with high probability. Discrimination of HIWC was more challenging at night with IR-only information. The products show the greatest capability for discriminating TWC  ≥  0.5 g m−3. Product validation remains challenging due to vertical TWC uncertainties and the typically coarse spatio-temporal resolution

  20. HIGH-RESOLUTION SATELLITE IMAGING OF THE 2004 TRANSIT OF VENUS AND ASYMMETRIES IN THE CYTHEREAN ATMOSPHERE

    International Nuclear Information System (INIS)

    Pasachoff, Jay M.; Schneider, Glenn; Widemann, Thomas

    2011-01-01

    This paper presents the only space-borne optical-imaging observations of the 2004 June 8 transit of Venus, the first such transit visible from Earth since AD 1882. The high-resolution, high-cadence satellite images we arranged from NASA's Transition Region and Coronal Explorer (TRACE) reveal the onset of visibility of Venus's atmosphere and give further information about the black-drop effect, whose causes we previously demonstrated from TRACE observations of a transit of Mercury. The atmosphere is gradually revealed before second contact and after third contact, resulting from the changing depth of atmospheric layers refracting the photospheric surface into the observer's direction. We use Venus Express observations to relate the atmospheric arcs seen during the transit to the atmospheric structure of Venus. Finally, we relate the transit images to current and future exoplanet observations, providing a sort of ground truth showing an analog in our solar system to effects observable only with light curves in other solar systems with the Kepler and CoRoT missions and ground-based exoplanet-transit observations.

  1. Single image super-resolution based on image patch classification

    Science.gov (United States)

    Xia, Ping; Yan, Hua; Li, Jing; Sun, Jiande

    2017-06-01

    This paper proposed a single image super-resolution algorithm based on image patch classification and sparse representation where gradient information is used to classify image patches into three different classes in order to reflect the difference between the different types of image patches. Compared with other classification algorithms, gradient information based algorithm is simpler and more effective. In this paper, each class is learned to get a corresponding sub-dictionary. High-resolution image patch can be reconstructed by the dictionary and sparse representation coefficients of corresponding class of image patches. The result of the experiments demonstrated that the proposed algorithm has a better effect compared with the other algorithms.

  2. Validation of a satellite-based cyclogenesis technique over the ...

    Indian Academy of Sciences (India)

    Indian region is severely affected by the tropical cyclones (TCs) due to the long coast line of about 7500 km. Hence, whenever any low level circulation (LLC) forms over the Indian Seas, the prediction of its intensification into a TC is very essential for the management of TC disaster. Satellite Application Centre (SAC) of ...

  3. Satellite-based annual evaporation estimates of invasive alien plant ...

    African Journals Online (AJOL)

    The Surface Energy Balance Algorithm for Land (SEBAL) model, using MODIS satellite imagery, was used to estimate the annual total ET at 250 m pixel resolution. ET was estimated for 3 climatically different years for the Western Cape and KwaZulu-Natal. The average annual ET from areas under IAPs, native vegetation, ...

  4. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive

    International Nuclear Information System (INIS)

    Fraser, R H; Olthof, I; Carrière, M; Deschamps, A; Pouliot, D

    2011-01-01

    Analysis of coarse resolution (∼1 km) satellite imagery has provided evidence of vegetation changes in arctic regions since the mid-1980s that may be attributable to climate warming. Here we investigate finer-scale changes to northern vegetation over the same period using stacks of 30 m resolution Landsat TM and ETM + satellite images. Linear trends in the normalized difference vegetation index (NDVI) and tasseled cap indices are derived for four widely spaced national parks in northern Canada. The trends are related to predicted changes in fractional shrub and other vegetation covers using regression tree classifiers trained with plot measurements and high resolution imagery. We find a consistent pattern of greening (6.1–25.5% of areas increasing) and predicted increases in vascular vegetation in all four parks that is associated with positive temperature trends. Coarse resolution (3 km) NDVI trends were not detected in two of the parks that had less intense greening. A range of independent studies and observations corroborate many of the major changes observed.

  5. Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia

    Science.gov (United States)

    Sousa, Adélia M. O.; Gonçalves, Ana Cristina; Mesquita, Paulo; Marques da Silva, José R.

    2015-03-01

    Forest biomass has had a growing importance in the world economy as a global strategic reserve, due to applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. Current techniques used for forest inventory are usually time consuming and expensive. Thus, there is an urgent need to develop reliable, low cost methods that can be used for forest biomass estimation and monitoring. This study uses new techniques to process high spatial resolution satellite images (0.70 m) in order to assess and monitor forest biomass. Multi-resolution segmentation method and object oriented classification are used to obtain the area of tree canopy horizontal projection for Quercus rotundifolia. Forest inventory allows for calculation of tree and canopy horizontal projection and biomass, the latter with allometric functions. The two data sets are used to develop linear functions to assess above ground biomass, with crown horizontal projection as an independent variable. The functions for the cumulative values, both for inventory and satellite data, for a prediction error equal or smaller than the Portuguese national forest inventory (7%), correspond to stand areas of 0.5 ha, which include most of the Q.rotundifolia stands.

  6. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    Science.gov (United States)

    Baup, F.; Frappart, F.; Maubant, J.

    2014-05-01

    This study presents an approach to determining the volume of water in small lakes (manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications.

  7. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  8. Vegetation classification and quatification by satellite image processing. A case study in north Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Aranha, J.T. [Dept. Florestal, UTAD, 5001-801 Vila Real (Portugal); Viana, H.F. [Instituto Politecnico de Viseu, Escola Superior Agraria, Viseu (Portugal); Rodrigues, R. [Bioflag - Consulting - Santo Tirso (Portugal)

    2008-07-01

    The expected increase in Forest Biomass demand for energy production leads to derive expeditious and non-expensive techniques in order to classify vegetal land cover and evaluate the available biomass like to be harvested. Satellite image processing and classification, combined to field work, is a suitable tool to achieve these aims. A vegetation index (NDVI) was created by means of a Landsat TM image, from 2006, manipulation, in order to create a general vegetation map. Then, the same image was submitted to a supervised classification process in order to produce a land cover map (overall accuracy of 85%). In a second stage, they were collected NDVI values for each sampling plot, in order to update the database previous developed with data collected within forestry stands and shrubland. This data merging enabled to transform general vegetation map into available biomass within forestry stands and shrubland. The results showed a range of values from 0.25 up to 6.00 dry ton./ha for recent and former burnt areas recovered by Pinus pinaster (maritime pine) young trees and from 2.00 up to 9.00 dry ton./ha for recent and former burnt areas recovered by shrubs (e.g. genista or broom).

  9. TREND ASSESSMENT OF SPATIO-TEMPORAL CHANGE OF TEHRAN HEAT ISLAND USING SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. R. Saradjian

    2015-12-01

    Full Text Available Numerous investigations on Urban Heat Island (UHI show that land cover change is the main factor of increasing Land Surface Temperature (LST in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas. In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.

  10. Real time deforestation detection using ann and satellite images the Amazon rainforest study case

    CERN Document Server

    Nunes Kehl, Thiago; Roberto Veronez, Maurício; Cesar Cazella, Silvio

    2015-01-01

    The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not bee...

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    , the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then co-registered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image-coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or

  19. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain

    Directory of Open Access Journals (Sweden)

    Manuel A. Aguilar

    2015-06-01

    Full Text Available Greenhouse detection and mapping via remote sensing is a complex task, which has already been addressed in numerous studies. In this research, the innovative goal relies on the identification of greenhouse horticultural crops that were growing under plastic coverings on 30 September 2013. To this end, object-based image analysis (OBIA and a decision tree classifier (DT were applied to a set consisting of eight Landsat 8 OLI images collected from May to November 2013. Moreover, a single WorldView-2 satellite image acquired on 30 September 2013, was also used as a data source. In this approach, basic spectral information, textural features and several vegetation indices (VIs derived from Landsat 8 and WorldView-2 multi-temporal satellite data were computed on previously segmented image objects in order to identify four of the most popular autumn crops cultivated under greenhouse in Almería, Spain (i.e., tomato, pepper, cucumber and aubergine. The best classification accuracy (81.3% overall accuracy was achieved by using the full set of Landsat 8 time series. These results were considered good in the case of tomato and pepper crops, being significantly worse for cucumber and aubergine. These results were hardly improved by adding the information of the WorldView-2 image. The most important information for correct classification of different crops under greenhouses was related to the greenhouse management practices and not the spectral properties of the crops themselves.

  20. Estimation of landslide-triggering factors using clay minerals, ASTER satellite image and GIS in the Busan area, southeastern Korea

    Science.gov (United States)

    Jeong, G. C.; Kim, M. G.; Choi, J. J.; Ryu, J. O.; Nho, J. G.; Choo, C. O.

    2016-12-01

    This study aims at estimating landslide-inducing factors such as extreme rainfall, slope, and geological factors in Busan city, southeastern Korea, using clay mineralogy, DM analysis and DB construction in order to develop the landslide evaluation standards suitable for the country. GIS-based data collected from the study area include geological maps, topological maps, soil maps, forest maps and others in the DB construction. Data extraction and processing for landslide-induced factors consist of expandable clay minerals identified using XRD, along with XRF and weathering sensitivity analysis and fundamental soil analysis on 38 bulk samples composed of weathered rocks and soils. Finally landslide sensibility maps were constructed using ArcGIS, together with ASTER satellite images for identifying clay minerals on regional areas helpful for saving time and money. In Mt. Cheonma, 16 samples are composed of quartz, albite, illite, vermiculite, and kaolinite, with little difference in mineralogy. In Mt. Hwangryeong and Mt. Geumryeun, 12 samples consist of quartz, albite, illite, vermiculite, kaolinite and hornblende, with little difference in mineralogy. In Mt. Songhak, 10 samples are composed of quartz, illite, vermiculite, and kaolinite. Quartz, albite and illite are abundant in most samples, regardless of sites studied. IDW interpolation method was applied to the Busan area. The resolution of space grids consists of 5 m x 5 m. Especially, illite was used as the most effective factor that induces landslide using IDW interpolation and ASTER satellite images. In conclusion, sensibility maps constructed using 16 layers including illite content, weathered sensibility are well in accordance with the real sites where landslides took place, showing that areas with high sensibility are closely related to the high frequencies of landslide. This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded

  1. Estimativa de parâmetros biofísicos de plantios de café a partir de imagens orbitais de alta resolução espacial Estimation of biophysical parameters of coffee fields based on high-resolution satellite images

    Directory of Open Access Journals (Sweden)

    Gláucia M. Ramirez

    2010-06-01

    Full Text Available O uso de recursos de sensoriamento remoto orbital constitui um grande avanço no levantamento de dados sobre a cafeicultura, sobretudo por seu caráter temporal e baixo custo. Sendo assim, o objetivo do trabalho foi avaliar a utilização da imagem do satélite QUICKBIRD na determinação de parâmetros biofísicos importantes para a cultura cafeeira. Foram utilizados 25 talhões com plantios de café localizados entre os municípios de Ribeirão Corrente, Franca e Cristais Paulista (SP. Os parâmetros biofísicos utilizados foram os espaçamentos entre linhas e plantas, altura, IAF, diâmetro da copa, porcentagem de cobertura vegetal, rugosidade, variedade e biomassa. Foram utilizados valores de refletância real das bandas espectrais do satélite QUICKBIRD e os índices de vegetação NDVI, GVI, SAVI e RVI. A partir desses dados, foram feitas análises de regressão linear e não linear para a geração dos modelos de estimativa. A utilização de modelos de regressão baseados em equações não lineares mostrou-se mais adequado para determinar os parâmetros IAF e a porcentagem de biomassa, importantes como indicativos da produtividade da cultura cafeeira.Remote sensing data are each time more available and can be used to monitor the vegetal development of main agricultural crops, such as the Arabic coffee in Brazil, since that the relationship between spectral and agronomical data be well known. Therefore, this work had the main objective to assess the use of Quickbird satellite images to estimate biophysical parameters of coffee crop. Test area was composed by 25 coffee fields located between the cities of Ribeirão Corrente, Franca and Cristais Paulista (SP, Brazil, and the biophysical parameters used were row and between plants spacing, plant height, LAI, canopy diameter, percentage of vegetation cover, roughness and biomass. Spectral data were the reflectance of four bands of QUICKBIRD and values of four vegetations indexes (NDVI, GVI

  2. Ground-Based Global Navigation Satellite System Mixed Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Mixed Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  3. Goddard Satellite-Based Surface Turbulent Fluxes, Daily Grid F08 V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version 3 (GSSTF3) Dataset recently produced through a MEaSURES funded project led by Dr....

  4. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Monthly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  5. Highlights of satellite-based forest change recognition and tracking using the ForWarn System

    Science.gov (United States)

    Steven P. Norman; William W. Hargrove; Joseph P. Spruce; William M. Christie; Sean W. Schroeder

    2013-01-01

    For a higher resolution version of this file, please use the following link: www.geobabble.orgSatellite-based remote sensing can assist forest managers with their need to recognize disturbances and track recovery. Despite the long...

  6. Goddard Satellite-Based Surface Turbulent Fluxes, Daily Grid F10 V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version 3 (GSSTF3) Dataset recently produced through a MEaSURES funded project led by Dr....

  7. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  8. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  9. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (hourly files of all distinct navigation messages...

  10. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (daily files of all distinct navigation messages...

  11. Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations

    Directory of Open Access Journals (Sweden)

    Checchi Francesco

    2013-01-01

    Full Text Available Abstract Background Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Methods Our method consisted of multiplying (i manual counts of assumed residential structures on a satellite image and (ii estimates of the mean number of people per structure (structure occupancy obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons’ camps and two urban neighbourhoods with a mixture of residents and displaced ranging in population from 1,969 to 90,547, and compared these to “gold standard” reference population figures from census or other robust methods. Results Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of Conclusions In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method’s development.

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    . As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all

  15. Application of satellite images analysis to assess the variability of the surface thermal heat island distribution in urban areas

    Directory of Open Access Journals (Sweden)

    Fudała Janina

    2018-01-01

    Full Text Available One of the elements of the urban plans for adapting to climate change is to identify the range the urban heat island (UHI. To a relatively rare ground station network air temperature, one of the possible methods to identify this phenomenon in cities is the analysis of satellite images, and in particular the thermal images surface cities in conjunction with the land-use structure. In the publication is presented the application of indirect methods of determining surface characteristics of heat island in the cities of Upper Silesia Agglomeration on the basis of the analysis of the thermal images from the satellite Landsat for the period 1986-2016. It presents ways to interpret these images depending on the needs of determination the areas sensitive to the impact of the (UHI and define the areas where adaptation actions to the climate change should be undertaken.

  16. Application of satellite images analysis to assess the variability of the surface thermal heat island distribution in urban areas

    Science.gov (United States)

    Fudała, Janina; Nádudvari, Ádám; Bronder, Joachim; Fudała, Marta

    2018-01-01

    One of the elements of the urban plans for adapting to climate change is to identify the range the urban heat island (UHI). To a relatively rare ground station network air temperature, one of the possible methods to identify this phenomenon in cities is the analysis of satellite images, and in particular the thermal images surface cities in conjunction with the land-use structure. In the publication is presented the application of indirect methods of determining surface characteristics of heat island in the cities of Upper Silesia Agglomeration on the basis of the analysis of the thermal images from the satellite Landsat for the period 1986-2016. It presents ways to interpret these images depending on the needs of determination the areas sensitive to the impact of the (UHI) and define the areas where adaptation actions to the climate change should be undertaken.

  17. Connecting Satellite-Based Precipitation Estimates to Users

    Science.gov (United States)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric

    2018-01-01

    Beginning in 1997, the Merged Precipitation Group at NASA Goddard has distributed gridded global precipitation products built by combining satellite and surface gauge data. This started with the Global Precipitation Climatology Project (GPCP), then the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and recently the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). This 20+-year (and on-going) activity has yielded an important set of insights and lessons learned for making state-of-the-art precipitation data accessible to the diverse communities of users. Merged-data products critically depend on the input sensors and the retrieval algorithms providing accurate, reliable estimates, but it is also important to provide ancillary information that helps users determine suitability for their application. We typically provide fields of estimated random error, and recently reintroduced the quality index concept at user request. Also at user request we have added a (diagnostic) field of estimated precipitation phase. Over time, increasingly more ancillary fields have been introduced for intermediate products that give expert users insight into the detailed performance of the combination algorithm, such as individual merged microwave and microwave-calibrated infrared estimates, the contributing microwave sensor types, and the relative influence of the infrared estimate.

  18. Latitudinal variations of aerosol optical parameters over South Africa based on MISR satellite data

    CSIR Research Space (South Africa)

    Tesfaye M

    2010-09-01

    Full Text Available The latitudunal variation of the relative weight size distribution and optical properties of aerosols over South Africa is presented here. The study uses 10-years of Multi-angle Imaging SpectroRadiometer (MISR) satellite data, collected over South...

  19. Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan

    Directory of Open Access Journals (Sweden)

    M. Sjöström

    2009-01-01

    Full Text Available One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE approach. Satellite indices such as the Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI and the Shortwave Infrared Water Stress Index (SIWSI have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate NDVI, EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modeling within a water limited environment. Results show a strong correlation between vegetation indices and gross primary production (GPP, demonstrating the significance of vegetation indices for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modeling in similar semi-arid ecosystems is limited.

  20. A Feasibility Study of Sea Ice Motion and Deformation Measurements Using Multi-Sensor High-Resolution Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Chang-Uk Hyun

    2017-09-01

    Full Text Available Sea ice motion and deformation have generally been measured using low-resolution passive microwave or mid-resolution radar remote sensing datasets of daily (or few days intervals to monitor long-term trends over a wide polar area. This feasibility study presents an application of high-resolution optical images from operational satellites, which have become more available in polar regions, for sea ice motion and deformation measurements. The sea ice motion, i.e., Lagrangian vector, is measured by using a maximum cross-correlation (MCC technique and multi-temporal high-resolution images acquired on 14–15 August 2014 from multiple spaceborne sensors on board Korea Multi-Purpose Satellites (KOMPSATs with short acquisition time intervals. The sea ice motion extracted from the six image pairs of the spatial resolutions were resampled to 4 m and 15 m yields with vector length measurements of 57.7 m root mean square error (RMSE and −11.4 m bias and 60.7 m RMSE and −13.5 m bias, respectively, compared with buoy location records. The errors from both resolutions indicate more accurate measurements than from conventional sea ice motion datasets from passive microwave and radar data in ice and water mixed surface conditions. In the results of sea ice deformation caused by interaction of individual ice floes, while free drift patterns of ice floes were delineated from the 4 m spatial resolution images, the deformation was less revealing in the 15 m spatial resolution image pairs due to emphasized discretization uncertainty from coarser pixel sizes. The results demonstrate that using multi-temporal high-resolution optical satellite images enabled precise image block matching in the melting season, thus this approach could be used for expanding sea ice motion and deformation dataset, with an advantage of frequent image acquisition capability in multiple areas by means of many operational satellites.

  1. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS - Cloned

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (sub-hourly...

  2. Ground-Based Global Navigation Satellite System (GNSS) QZSS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Quasi-Zenith Satellite System (QZSS) Broadcast Ephemeris Data (daily files) from the...

  3. Ground-Based Global Navigation Satellite System (GNSS) QZSS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Quasi-Zenith Satellite System (QZSS) Broadcast Ephemeris Data (hourly files) from the...

  4. Ground-Based Global Navigation Satellite System (GNSS) QZSS Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Quasi-Zenith Satellite System (QZSS) Broadcast Ephemeris Data (sub-hourly files) from...

  5. Assessing satellite-based start-of-season trends in the US High Plains

    International Nuclear Information System (INIS)

    Lin, X; Sassenrath, G F; Hubbard, K G; Mahmood, R

    2014-01-01

    To adequately assess the effects of global warming it is necessary to address trends and impacts at the local level. This study examines phenological changes in the start-of-season (SOS) derived from satellite observations from 1982–2008 in the US High Plains region. The surface climate-based SOS was also evaluated. The averaged profiles of SOS from 37° to 49°N latitude by satellite- and climate-based methods were in reasonable agreement, especially for areas where croplands were masked out and an additional frost date threshold was adopted. The statistically significant trends of satellite-based SOS show a later spring arrival ranging from 0.1 to 4.9 days decade −1 over nine Level III ecoregions. We found the croplands generally exhibited larger trends (later arrival) than the non-croplands. The area-averaged satellite-based SOS for non-croplands (i.e. mostly grasslands) showed no significant trends. We examined the trends of temperatures, precipitation, and standardized precipitation index (SPI), as well as the strength of correlation between the satellite-based SOS and these climatic drivers. Our results indicate that satellite-based SOS trends are spatially and primarily related to annual maximum normalized difference vegetation index (NDVI, mostly in summertime) and/or annual minimum NDVI (mostly in wintertime) and these trends showed the best correlation with six-month SPI over the period 1982–2008 in the US High Plains region. (letter)

  6. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    ... an image based on feature-based attention model which mimic viewer's attention. The Curvelet Transform in combination with colour descriptors are used to represent each significant region in an image. Experimental results are analysed and compared with the state-of-the-art Region Based Image Retrieval Technique.

  7. Comparison of two satellite imaging platforms for evaluating quasi-circular vegetation patch in the Yellow River Delta, China

    Science.gov (United States)

    Liu, Qingsheng; Liang, Li; Liu, Gaohuan; Huang, Chong

    2017-09-01

    Vegetation often exists as patch in arid and semi-arid region throughout the world. Vegetation patch can be effectively monitored by remote sensing images. However, not all satellite platforms are suitable to study quasi-circular vegetation patch. This study compares fine (GF-1) and coarse (CBERS-04) resolution platforms, specifically focusing on the quasicircular vegetation patches in the Yellow River Delta (YRD), China. Vegetation patch features (area, shape) were extracted from GF-1 and CBERS-04 imagery using unsupervised classifier (K-Means) and object-oriented approach (Example-based feature extraction with SVM classifier) in order to analyze vegetation patterns. These features were then compared using vector overlay and differencing, and the Root Mean Squared Error (RMSE) was used to determine if the mapped vegetation patches were significantly different. Regardless of K-Means or Example-based feature extraction with SVM classification, it was found that the area of quasi-circular vegetation patches from visual interpretation from QuickBird image (ground truth data) was greater than that from both of GF-1 and CBERS-04, and the number of patches detected from GF-1 data was more than that of CBERS-04 image. It was seen that without expert's experience and professional training on object-oriented approach, K-Means was better than example-based feature extraction with SVM for detecting the patch. It indicated that CBERS-04 could be used to detect the patch with area of more than 300 m2, but GF-1 data was a sufficient source for patch detection in the YRD. However, in the future, finer resolution platforms such as Worldview are needed to gain more detailed insight on patch structures and components and formation mechanism.

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar- elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image- registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative- reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using

  15. Characterization of the deforestation effect in a semi-arid region by the use of satellite images

    Science.gov (United States)

    Benhanifia, Khatir; Haddouche, Driss; Smahi, Zakaria; Bensaid, Abdelkrim; Hamimed, Abderrahmane

    2004-02-01

    In Algeria, arid and semi-arid regions occupy over than 95% of whole territory. Forests in the semi arid zone constitutes a front face to the advance of the desert towards northern sides. Like in other regions of the world, deforestation phenomenon have a serious consequences on the fragile ecosystem. Severe continuous drought, fires, pasture, insects as well as the absence of a clear forest politics are so many factors that reduced forest areas in this country. However, the conservation of this patrimony must be a priority of any regional development project. This paper describes an evaluating study of the deforestation impact on forests in the region of Djelfa situated in the Saharian Atlas using multitemporal satellite remote sensing data. In order to establish a forest change map, a methodology based on the comparison between normalized difference vegetation indexes (NDVI) generated from satellite images was adopted. For this purpose, a pair of Landsat and (ETM+) images acquired over the region on April 11th, 1987 and march 24th, 2001 have been used. Until being processed, data used have been geometrically and atmospherically corrected. Then, an (NDVI) have been produced for each date. Resulting from compared (NDVI) image presents the forest change map in the study area. Radiometric values of resulting image have been regrouped into three classes according to change types as follow : Increased radiometry = more active vegetation Decreased radiometry = deterioration in vegetation activity Non changed areas = Non changed Investigations made on the terrain permitted to interpret many causes of detected evolutions. Regressive changes were considerable and demonstrates however, the degradation effect on the vegetation state. Some of regressed radiometry are related to forest fires that affected the region in 1994. Almost of regressive changes are due to a deterioration of vegetation caused by multiple factors. Drought, deceases, pasture and infection are considered

  16. Segmentation Based Fuzzy Classification of High Resolution Images

    Science.gov (United States)

    Rao, Mukund; Rao, Suryaprakash; Masser, Ian; Kasturirangan, K.

    Information extraction from satellite images is the process of delineation of entities in the image which pertain to some feature on the earth and to which on associating an attribute, a classification of the image is obtained. Classification is a common technique to extract information from remote sensing data and, by and large, the common classification techniques mainly exploit the spectral characteristics of remote sensing images and attempt to detect patterns in spectral information to classify images. These are based on a per-pixel analysis of the spectral information, "clustering" or "grouping" of pixels is done to generate meaningful thematic information. Most of the classification techniques apply statistical pattern recognition of image spectral vectors to "label" each pixel with appropriate class information from a set of training information. On the other hand, Segmentation is not new, but it is yet seldom used in image processing of remotely sensed data. Although there has been a lot of development in segmentation of grey tone images in this field and other fields, like robotic vision, there has been little progress in segmentation of colour or multi-band imagery. Especially within the last two years many new segmentation algorithms as well as applications were developed, but not all of them lead to qualitatively convincing results while being robust and operational. One reason is that the segmentation of an image into a given number of regions is a problem with a huge number of possible solutions. Newer algorithms based on fractal approach could eventually revolutionize image processing of remotely sensed data. The paper looks at applying spatial concepts to image processing, paving the way to algorithmically formulate some more advanced aspects of cognition and inference. In GIS-based spatial analysis, vector-based tools already have been able to support advanced tasks generating new knowledge. By identifying objects (as segmentation results) from

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstic