WorldWideScience

Sample records for based rf control

  1. Pc based RF control system for the Vincy cyclotron

    International Nuclear Information System (INIS)

    The concept and design procedure for the RF control system of the VINCY cyclotron are described. Special attention has been paid to the choice of computer support of this system. The merits and limitations of the chosen solution have been analyzed. A PC type computer has been selected as the platform for performing the functions of initiation, control, and supervision of the RF system. The integration of the hardware is carried out by direct connection to the PC bus via standard communication interfaces. The system software operates under a graphic oriented Windows operating system applying the modern concept of virtual instrumentation. The application of this concept allowed considerable simplification of the operator-RF system interaction and resulted in additional flexibility of the software to further extensions or modifications of the system. The selected open architecture of the computer platform allows a simple and economic upgrading of the realized system in accordance with future requirements. Tests of the realized RF control system prototype are in progress. (authors)

  2. Design of phase computation model for CSR RF control system based on FPGA

    International Nuclear Information System (INIS)

    CSR RF control system needs to do stable control of amplitude, phase and frequency of sinusoidal wave RF drive signal. And model for computing arctan (Q/I) is indispensable. It discusses one new way to calculate arctan (Q/I) based on FPGA platform and symmetric bipartite table method (SBTM). Detailed theoretical analysis, VHDL codes and realization result are given. The model with high accuracy and low cost can be used directly in CSR RF control system. (authors)

  3. RF Transceiver Based Hand-Motion Crane Control Systems

    Directory of Open Access Journals (Sweden)

    Mercy Lurthu S

    2014-04-01

    Full Text Available Human operators have facing many difficulties while driving cranes accurately,and safely because the heavy structure of the crane responds slowly and its payload oscillates.Manipulation difficulty is increased by non-intuitive control interfaces (such as buttons,levers,and joysticks.It needs more experience to master.This paper presents a new model control system that allows operators to drive a crane by simply moving a hand,which is given as the input of the sensor.The output of the sensor will be encrypted and it sends through the RF transmitter.In RF receiver side the signals will be decrypted and the crane will be controlled

  4. Simulation analysis of analog IQ based LLRF control of RF cavity

    International Nuclear Information System (INIS)

    This paper presents the simulation work and results in Matlab Simulink for the analogue Inphase-Quadrature (IQ) based Low Level Radio Frequency (LLRF) control of RF cavity voltage. The RF cavity chosen here is the Radio Frequency Quadrupole (RFQ) cavity in our RIB project. All the subsystems in the IQ based RF control were modelled using the Simulink blocks/components. The envelope simulation was carried out using the IQ model of RF cavity. The PI controller was properly tuned to achieve good control performance in time. The simulation graphs showing the time evolution of the RF cavity voltage with a step change of the input reference signal is presented. The simulation graphs showing the control response time needed to correct a disturbance is presented. The simulation results showing Nichols plots of the control loop and the gain and phase margin values obtained from them are presented, which are good enough for stability considerations. (author)

  5. Digital self-excited loop based RF control for the superconducting resonators of IUAC Linac

    International Nuclear Information System (INIS)

    Self-excited loop (SEL) is a convenient architecture of an RF control system for setting-up and stabilization of RF field in a superconducting resonator. The existing RF control for the resonators of 97 MHz Quarter Wave Resonators of IUAC Linac is based on SEL implemented in analog domain. In order to take the benefit of the recent advancements in the field of digital technology, a digital SEL based RF control system is being developed for these resonators. In the first phase a prototype system, incorporating RF control of one resonator has been developed. The system is based on sampling the input RF signals directly without resorting to down-conversion. Sampling is carried out at 4/9 of the reference frequency and the subsequent processing is carried out in an FPGA. Tests have been performed under both free running and locked mode of operation. The results are encouraging and a compact system incorporating control of four resonators in a single digital board is under design

  6. Initial experimental results of a machine learning-based temperature control system for an RF gun

    CERN Document Server

    Edelen, A L; Milton, S V; Chase, B E; Crawford, D J; Eddy, N; Edstrom, D; Harms, E R; Ruan, J; Santucci, J K; Stabile, P

    2015-01-01

    Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present initial test results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm. This is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in particle accelerator systems.

  7. Initial experimental results of a machine learning-based temperature control system for an RF gun

    OpenAIRE

    Edelen, A. L.; Biedron, S. G.; Milton, S.V.; Chase, B. E.; Crawford, D J; Eddy, N.; Edstrom Jr., D.; Harms, E. R.; Ruan, J.; Santucci, J. K.; Stabile, P.

    2015-01-01

    Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present initial test results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm. This is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in par...

  8. RF Based Spy

    Directory of Open Access Journals (Sweden)

    Robot Prerna Jain

    2014-04-01

    Full Text Available The intention of this paper is to reduce human victims in terrorist attack such as 26/11. So this problem can be overcome by designing the RF based spy robot which involves wireless camera. so that from this we can examine rivals when it required. This robot can quietly enter into enemy area and sends us the information via wireless camera. On the other hand one more feature is added in this robot that is colour sensor. Colour sensor senses the colour of surface and according to that robot will change its colour. Because of this feature this robot can’t easily detected by enemies. The movement of this robot is wirelessly controlled by a hand held RF transmitter to send commands to the RF receiver mounted on the moving robot. Since human life is always Valueable, these robots are the substitution of soldiers in war areas. This spy robot can also be used in star hotels, shopping malls, jewelry show rooms, etc where there can be threat from intruders or terrorists.

  9. Development of PLC based control system for frequency tuning loop of 31.6 MHz RF cavity

    International Nuclear Information System (INIS)

    Two storage rings, Indus-1 and Indus-2 are operational at RRCAT. Both the storage rings share a common injector system consisting of a Microtron and a Booster Synchrotron. The electrons are generated and accelerated to 20 MeV in Microtron and injected through a transfer line into the Booster Synchrotron where its energy is increased to 450 MeV/550 MeV. In Booster Synchrotron, a MHz RF system is installed. This RF System includes 1 kW RF amplifier, re-entrant type RF cavity and its tuning system. The RF system works in ramp mode. In RF cavities, resonant frequency changes due to beam loading and temperature effect. Our aim is to keep the RF Cavity at fixed resonance. Frequency Tuning Loop (FTL) will keep the cavities tuned by compensating for both beam loading and temperature effects. This is realized by means of a mechanism, driven by a stepper motor, which changes the volume of RF cavity by moving the plunger in/out and therefore its frequency. A Programmable Logic Controller (PLC) based Control system was developed to replace existing control system for FTL of RF Cavity installed in Booster Synchrotron. The main components of the control system are the phase detector, PLC with analog module, optical isolation card and touch screen interface. Control logic was developed in Step-7 MicroWin. The complete control logic, advantages over the earlier control system and scope for adaptability has been thoroughly discussed in this paper

  10. Some new methods of RF control

    International Nuclear Information System (INIS)

    The advent of accelerators intended for defense applications has driven research and development in many areas of technology. The important field of RF control is one of these areas. In order to reliably meet the unique objectives of these machines, such as remote operation and automatic startup, the need for a thorough, analytically-based system approach to the RF controls was perceived. This presentation focuses on several recent developments at Los Alamos in the area of RF control for accelerators. Included in the discussion is in-phase/quadrature (I/Q) field control, the application of six-port reflectometers for cavity instrumentation and resonance control, a technique for phase stabilization of critical RF cables, an application of state-variable feedback for field control, and the direct integration of RF and computer-interface hardware using the VXIbus standard

  11. RF Based Spy

    OpenAIRE

    Robot Prerna Jain; Pallavi N. Firke

    2014-01-01

    The intention of this paper is to reduce human victims in terrorist attack such as 26/11. So this problem can be overcome by designing the RF based spy robot which involves wireless camera. so that from this we can examine rivals when it required. This robot can quietly enter into enemy area and sends us the information via wireless camera. On the other hand one more feature is added in this robot that is colour sensor. Colour sensor senses the colour of surface and according ...

  12. Robust rf control of accelerators

    International Nuclear Information System (INIS)

    The problem of controlling the variations in the rf power systems can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. One can design wither a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and therefore, shall not be pursued. In contrast, the robust control method leads to simplified hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico has led to the development and implementation of a new rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating

  13. Robust RF control of accelerators

    International Nuclear Information System (INIS)

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. One can design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. The research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new rf power feedback system. In this paper, the authors report on their research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of their proof-of principle experiments are represented. In section three, they describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of their approach is that the control hardware is implemented directly in rf without demodulating, compensating, and the remodulating

  14. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  15. On active disturbance rejection based control design for superconducting RF cavities

    International Nuclear Information System (INIS)

    Superconducting RF (SRF) cavities are key components of modern linear particle accelerators. The National Superconducting Cyclotron Laboratory (NSCL) is building a 3 MeV/u re-accelerator (ReA3) using SRF cavities. Lightly loaded SRF cavities have very small bandwidths (high Q) making them very sensitive to mechanical perturbations whether external or self-induced. Additionally, some cavity types exhibit mechanical responses to perturbations that lead to high-order non-stationary transfer functions resulting in very complex control problems. A control system that can adapt to the changing perturbing conditions and transfer functions of these systems would be ideal. This paper describes the application of a control technique known as 'Active Disturbance Rejection Control' (ARDC) to this problem.

  16. RF control of ICR proton linac

    International Nuclear Information System (INIS)

    At the ICR Kyoto University, the proton linac has been developed. The RF high power is fed into the cavity from the klystron and the RF pulse width is 65 μsec. The RF amplitude and the phase in the cavity are affected by the beam loading and the pulse shape of the klystron cathode voltage. The fast RF stabilization system are required to accelerate the high beam stably. The stabilization system consists of the auto level control (ALC) and the phase locked loop (PLL). The designed band width is more than 1 MHz. The main modules of the circuit are the PIN diode attenuator, the fast phase detector, the phase shifter and the wideband feedback amplifier. The variation of the RF amplitude and the RF phase are 0.5 % with ALC and 5deg with PLL, respectively. (author)

  17. Design and development of Low Level RF (LLRF) control system

    International Nuclear Information System (INIS)

    All the linear accelerator cavities of Radioactive Ion Beam have separate RF power amplifiers. In these accelerators, high stabilities of the order of ± 0.5% in amplitude and ± 0.5° in phase of RF signal inside the cavities are required for proper and efficient acceleration of RIB. For this purpose, a low level RF (LLRF) control system is being designed which includes amplitude and phase controllers to ensure efficient and stable operation of the RF accelerators. The RF output of the LLRF system is finally amplified and fed to the accelerator cavities. The LLRF system is based on IQ (In-phase and Quadrature) modulation-demodulation technique in which an IQ modulator and a demodulator has been used to control the amplitude and phase of the RF carrier signal. The HigH-speed DAC and ADC have been used for processing the in-phase (I) and quadrature-phase (Q) components of the RF signal. This system is a closed-loop feedback control system. The feedback signal is obtained from the pick-up of accelerator cavity. PID control method is used to regulate the amplitude and phase of the RF signal to the desired/set value. The control system is optimized for minimum response time with satisfactory performance. The transfer function of the PID controller and the RF cavity is compared with the transfer function of a first order system and the values of proportional gain (Kp), integral gain (Ti) and derivative gain (Td) are obtained from Matlab- Simulink Simulation. The PID controller has been implemented into a high speed microcontroller (LPC2478) for fast operation. A GUI has been developed in NI LabView software to monitor the Amplitude and Phase of the RF signal and control manually if required. The detailed design and development of the control system will be discussed in this paper. (author)

  18. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  19. DC characteristics and analog/RF performance of novel polarity control GaAs-Ge based tunnel field effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Kondekar, Pravin; Sharma, Dheeraj

    2016-04-01

    In this paper, for the first time, DC characteristics and analog/RF performance of polarity control GaAs-Ge hetero TFET (GaAs-Ge H-TFET) structure have been analysed, using electrically doped dynamically configurable concept. For this, we have considered a hetero structure with two distinctive gates (Control gate and Polarity gate). Polarity gate induces p+ region at the source side and n+ region at the drain side, instead of relying on the abrupt doping profile at the junctions. Therefore, the fabrication process of the proposed device avoids ion-implantation, photo masking and complicated thermal budget. Hence, it shows high immunity against process variations, doping control issues and random dopant fluctuations (RDF). In order to optimize the device performance, interfacing of III-V groups materials with IV group semiconductor is done for hetero-junction. The introduction of hetero-junction and band gap engineering offer higher ION/IOFF ratio (5.1 × 1012), steep sub-threshold slope (18 mV/decade) and significantly change in analog/RF performance. The analog/RF figures of merit are analysed in term of transconductance (gm), output conductance (gds), gate to source capacitance (Cgs), gate to drain capacitance (Cgd), cutoff frequency (fT) and gain bandwidth (GBW) product. The proposed work would be beneficial for low power high frequency applications. The simulation results presented in this paper were carried out by using 2-D ATLAS.

  20. DOOCS patterns, reusable software components for FPGA based RF GUN field controller

    International Nuclear Information System (INIS)

    Modern accelerator technology combines software and hardware solutions to provide distributed, high efficiency digital systems for High Energy Physics experiments. Providing flexible, maintainable software is crucial for ensuring high availability of the whole system. In order to fulfil all these requirements, appropriate design and development techniques have to be used. Software patterns are well known solution for common programming issues, providing proven development paradigms, which can help to avoid many design issues. DOOCS patterns introduces new concepts of reusable software components for control system algorithms development and implementation in DOOCS framework. Chosen patterns have been described and usage examples have been presented in this paper. (orig.)

  1. DOOCS patterns: reusable software components for FPGA-based RF GUN field controller

    Science.gov (United States)

    Pucyk, Piotr

    2006-10-01

    Modern accelerator technology combines software and hardware solutions to provide distributed, high efficiency digital systems for High Energy Physics experiments. Providing flexible, maintainable software is crucial for ensuring high availability of the whole system. In order to fulfill all these requirements, appropriate design and development techniques have to be used. Software patterns are well known solution for common programming issues, providing proven development paradigms, which can help to avoid many design issues. DOOCS patterns introduces new concepts of reusable software components for control system algorithms development and implementation in DOOCS framework. Chosen patterns have been described and usage examples have been presented in this paper.

  2. UNCERTAIN SYSTEM MODELING OF SNS RF CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    S. KWON; A. REGAN; ET AL

    2001-06-01

    This paper addresses the modeling problem of the linear accelerator RF system for SNS. The cascade of the klystron and the cavity is modeled as a nominal system. In the real world, high voltage power supply ripple, Lorentz Force Detuning, microphonics, cavity RF parameter perturbations, distortions in RF components, and loop time delay imperfection exist inevitably, which must be analyzed. The analysis is based on the accurate modeling of the disturbances and uncertainties. In this paper, a modern control theory is applied for modeling the disturbances, uncertainties, and for analyzing the closed loop system robust performance.

  3. UNCERTAIN SYSTEM MODELING OF SNS RF CONTROL SYSTEM

    International Nuclear Information System (INIS)

    This paper addresses the modeling problem of the linear accelerator RF system for SNS. The cascade of the klystron and the cavity is modeled as a nominal system. In the real world, high voltage power supply ripple, Lorentz Force Detuning, microphonics, cavity RF parameter perturbations, distortions in RF components, and loop time delay imperfection exist inevitably, which must be analyzed. The analysis is based on the accurate modeling of the disturbances and uncertainties. In this paper, a modern control theory is applied for modeling the disturbances, uncertainties, and for analyzing the closed loop system robust performance

  4. Rf beam control for the AGS Booster

    International Nuclear Information System (INIS)

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made

  5. Si-based RF MEMS components.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  6. FPGA based real time RF cavity simulator for superconducting RF cavity

    International Nuclear Information System (INIS)

    RF cavity is one of the most important component in an accelerator, it is used for producing appropriate electromagnetic fields to accelerate the charged particles. The response of RF cavity to an input RF signal depends on the various operating conditions. Actual operating conditions of RF cavity are difficult to create in lab and also RF cavity is not easily available which limits the study and testing of RF systems that involve RF cavity. This calls for the requirement of a real time hardware model of the RF cavity which can be integrated with other RF systems for their testing in lab. This limitation is even more severe for superconducting RF cavities which need to be operated with the required cryogenics. Thus a real time hardware model of the superconducting RF cavity has been realized on FPGA. Real time RF Cavity simulator can be used to study the response of RF cavity under various operating conditions and for testing and optimization of other RF sub-systems particularly the Low Level RF feedback control systems in lab

  7. Computer control of rf at SLAC

    International Nuclear Information System (INIS)

    The Stanford Linear Accelerator is presently upgraded for the SLAC Linear Collider project. The energy is to be increased from approximately 31 GeV to 50 GeV. Two electron beams and one positron beam are to be accelerated with high demands on the quality of the beams. The beam specifications are shown. To meet these specifications, all parameters influencing the beams have to be under tight control and continuous surveillance. This task is accomplished by a new computer system implemented at SLAC which has, among many other functions, control over rf accelerating fields. 13 refs., 8 figs., 2 tabs

  8. Control interlock and monitoring system for 80 KW IOT based RF power amplifier system at 505.812 MHz for Indus-2

    International Nuclear Information System (INIS)

    For 80 kW inductive output tube (IOT) based RF power amplifier system at 505.812 MHz for Indus-2, a control, interlock and monitoring system is realized. This is to facilitate proper start-up and shutdown of the amplifier system, monitor various parameters to detect any malfunction during its operation and to bring the system in a safe stage, thereby assuring reliable operation of the amplifier system. This high power amplifier system incorporates interlocks such as cooling interlocks, various voltage and current interlocks and time critical RF interlocks. Processing of operation sequence, cooling interlocks and various voltage and current interlocks have been realized by using Siemens make S7-CPU-315-2DP (CPU) based programmable logic controller (PLC) system. While time critical or fast interlocks have been realized by using Siemens make FPGA based Boolean Co-processor FM-352-5 which operates in standalone mode. Siemens make operating panel OP277 6'' is being used as a human machine interface (HMI) device for command, data, alarm generation and process parameter monitoring. (author)

  9. Study of Control Grid Thermionic Cathode RF Gun

    CERN Document Server

    Xiao, Jin; Ming, Li; Xinfan, Yang; Xumin, Shen; Yanan, Chen; Zhou, Xu

    2004-01-01

    In this paper, the beam loading effect of RF Gun was analyzed. To minimize the energy spread, the grid control RF Gun was introduced. The result shows that the grid congrol RF Gun can increase electron beam within 1% energy spread.

  10. EFFICIENT FAN-OUT RF VECTOR CONTROL ALGORITHM *

    International Nuclear Information System (INIS)

    A new RF vector control algorithm for fan-out power distribution using reactive transmission line circuit parameters for maximum power efficiency is presented. This control with fan-out power distribution system is considered valuable for large scale SRF accelerator systems to reduce construction costs and save on operating costs. In a fan-out RF power distribution system, feeding multiple accelerating cavities with a single RF power generator can be accomplished by adjusting phase delays between the load cavities and reactive loads at the cavity inputs for independent control of cavity RF voltage vectors. In this approach, the RF control parameters for a set of specified cavity RF voltage vectors is determined for an entire fan-out system. The reactive loads and phase shifts can be realized using high power RF phase shifters.

  11. RF control hardware design for CYCIAE-100 cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  12. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    International Nuclear Information System (INIS)

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  13. RF Transceivers for Wireless Body Area Network Controllers

    Science.gov (United States)

    Eshra, Islam; Allam, Mootaz; Sayed, Alhassan; Benabid, Sorore; Aboushady, Hassan

    2015-11-01

    This paper focuses on the system and circuit level consideration of radio frequency front-end transceivers dedicated to WBAN controllers. We show how highly digitized transceivers employing sigma-delta modulators can achieve the frequency agility required by WBAN controllers. The paper compares the performance and highlights the pros and cons of I/Q transmitters and polar transmitters. For the receiver, different sigma-delta based RF receiver architectures are presented. These architectures are compared with more conventional architectures in terms of their suitability to WBAN controllers.

  14. Digital low-level RF control system using multi-intermediate frequencies

    International Nuclear Information System (INIS)

    In a superconducting accelerator, an FPGA-based low-level rf system is adopted and a digital feedback control system is utilized to satisfy the requirement of stability in the accelerating field. A digital low-level rf system using multi-intermediate frequencies (IF-Mixture technique) has been developed at STF (Superconducting rf Test Facility) in KEK. A superconducting cavity was operated using this IF-mixture technique and the stability under the feedback operation was measured. (author)

  15. The system of RF beam control for electron gun

    Science.gov (United States)

    Barnyakov, A. M.; Chernousov, Yu. D.; Ivannikov, V. I.; Levichev, A. E.; Shebolaev, I. V.

    2015-06-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described.

  16. The system of RF beam control for electron gun

    International Nuclear Information System (INIS)

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described

  17. Rf control system for a rocket-borne accelerator

    International Nuclear Information System (INIS)

    The Beam Experiments Aboard Rockets (BEAR) accelerator experiment imposes several nonstandard requirements on the rf control system. The experiment is entirely hands-off and must operate under local computer control. The rf control system must be extremely reliable, which implies excellence in design and fabrication as well as redundancy whenever possible. This paper describes the design of the frequency-source, frequency-control, and amplitude-control systems for the BEAR experiment

  18. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  19. Method of electron emission control in RF guns

    International Nuclear Information System (INIS)

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  20. Development and energization of IOT based RF amplifier

    International Nuclear Information System (INIS)

    A 704 MHz IOT based CW RF amplifier has been developed in VECC. It can also be used with proper tuning to power cavity modules operating at 650 MHz in high energy high intensity proton linear accelerator proposed to be built for ADSS/SNS programme in India and Project-X at Fermilab, USA. This IOT based amplifier provides up to 60 kW continuous wave RF power at 700 MHz. It required various power supplies, LCW cooling and forced air cooling for its operation. The auxiliary power supplies like Grid, Filament and Ion-pump, are floated and mounted on an isolated frame, i.e., HV deck. The mains inputs are electrically isolated by means of isolation transformer. Also, a Programmable Logic Controller (PLC) based interlocks along with high voltage collector power supply has been designed and developed for the safe operation of the RF amplifier. This paper discusses about various developments and energization of the IOT based RF amplifier with high power dummy load. (author)

  1. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  2. Embedded control system for high power RF amplifiers

    International Nuclear Information System (INIS)

    RF power devices are usually very sensitive to overheat and reflected RF power; hence a protective interlock system is required to be embedded with high power solid state RF amplifiers. The solid state RF amplifiers have salient features of graceful degradation and very low mean time to repair (MTTR). In order to exploit these features in favour of lowest system downtime, a real-time control system is embedded with high power RF amplifiers. The control system is developed with the features of monitoring, measurement and network publishing of various parameters, historical data logging, alarm generation, displaying data to the operator and tripping the system in case of any interlock failure. This paper discusses the design philosophy, features, functions and implementation details of the embedded control system. (author)

  3. Low-level RF control for the AFEL

    International Nuclear Information System (INIS)

    A limiting factor in the performance of the Los Alamos Advanced Free Electron Laser (AFEL) is the stability of the RF accelerating field. A high-performance low-level RF control system has been implemented that uses analog feedback and digital feed forward to regulate the RF field. This low-level RF control system has achieved long-term amplitude and phase stabilities better than ±0.25% and ±0.33 degree respectively. In order to improve the RF field stability further, a detailed system analysis and design is proceeding. Subsystem measurements are being used to model the system performance, predict the performance-limiting components, and determine possible improvements. Results to-date, modeling analyses, and suggested future improvements are presented

  4. SNS Low-Level RF Control System Design and Performance

    CERN Document Server

    Ma, Hengjie; Crofford, Mark; Doolittle, Lawrence; Kasemir, Kay-Uwe; Piller, Maurice; Ratti, Alessandro

    2005-01-01

    A full digital Low-Level RF controller has been developed for SNS LINAC. Its design is a good example of a modern digital implementation of the classic control theory. The digital hardware for all the control and DSP functionalities, including the final vector modulation, is implemented on a single high-density FPGA. Two models for the digital hardware have been written in VHDL and Verilog respectively, based on a very low latency control algorithm, and both have been being used for supporting the testing and commissioning the LINAC to the date. During the commissioning, the flexibility and ability for precise controls that only digital design on a larger FPGA can offer has proved to be a necessity for meeting the great challenge of a high-power pulsed SCL.

  5. Optically Controlled 30 GHz High Power Active RF Phase Switch for the CTF3 RF Pulse Compressor

    CERN Document Server

    Syratchev, Igor V; Kocharovsky, Vl; Kuzukov, S; Stepanov, A

    2005-01-01

    To achieve the high peak power level of 150 MW, necessary to demonstrate the full performance of the new CLIC accelerating structure, a 70 ns RF pulse compressor with resonant delay lines has been built and installed in the CTF3 test area. An active high power RF phase switch would make the operation of the whole 30 GHz power production complex more reliable and robust, with the potential to increase the compression efficiency. By itself, such a device can be used for many other applications. In this paper we propose a possible solution based on an over-moded RF circuit with active element made from a semiconductor controlled by a laser beam.

  6. RF system modeling and controller design for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Christian

    2011-06-15

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H{sub {infinity}} loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration

  7. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10-4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  8. RF pulse shape control using a recurrent algorithm for a FEL RF-gun cavity

    International Nuclear Information System (INIS)

    FEL application requires a very constant RF accelerating field during the pulse. A classical feedback regulation loop cannot be very efficient when pulse duration is just a few times longer than the filling time of the cavity as the loop gain cannot be high enough. For that reason, the authors decided to control the RF shape along the macropulse in a recurrent way: the pulse profile is corrected step by step by computation from the measurement of previous pulses and the desired shape. The control algorithm is given and its performances are presented

  9. Embedded software for the CEBAF RF Control Module

    International Nuclear Information System (INIS)

    The CEBAF accelerator control system employs a distributed computer strategy. As part of this strategy, the RF control sub-system uses 342 RF Control Modules, one for each of four warm section beam forming cavities (i.e., choppers, buncher, capture) and 338 superconducting accelerating cavities. Each control module has its own microprocessor, which provides local intelligence to automatically control over 100 parameters, while keeping the user interface simple. The microprocessor controls analog and digital I/O, including the phase and gradient section, high power amplifier (HPA), and interlocks. Presently, the embedded code is used to commission the 14 RF control modules in the injector. This paper describes the operational experience of this complex real-time control system

  10. Control of total voltage in the large distributed RF system of LEP

    CERN Document Server

    Ciapala, Edmond

    1995-01-01

    The LEP RF system is made up of a large number of independent RF units situated around the ring near the interaction points. These have different available RF voltages depending on their type and they may be inactive or unable to provide full voltage for certain periods. The original RF voltage control system was based on local RF unit voltage function generators pre-loaded with individual tables for energy ramping. This was replaced this year by a more flexible global RF voltage control system. A central controller in the main control room has direct access to the units over the LEP TDM system via multiplexers and local serial links. It continuously checks the state of all the units and adjusts their voltages to maintain the desired total voltage under all conditions. This voltage is distributed among the individual units to reduce the adverse effects of RF voltage asymmetry around the machine as far as possible. The central controller is a VME system with 68040 CPU and real time multitasking operating syste...

  11. Low power RF beam control electronics for the LEB

    International Nuclear Information System (INIS)

    Beam Control Electronics for the Low Energy Booster (LEB) should provide a fine reference phase and frequency for the High Power RF System. Corrections applied on the frequency of the rf signal will reduce dipole synchrotron oscillations due to power supply regulation errors, errors in frequency source or errors in the cavity voltage. It will allow programmed beam radial position control throughout the LEB acceleration cycle. Furthermore the rf signal provides necessary connections during, adiabatic capture of the beam as injected into the LEB by the Linac and will guarantee LEB rf phase synchronism with the Medium Energy Booster (MEB) rf at a programmed time in the LEB cycle between a unique LEB bucket and a unique MEB bucket. We show in this paper a design and possible interfaces with other subsystems of the LEB such as the beam instrumentation, High Power RF Stations, global accelerator controls and the precision timing system. The outline of various components of the beam control system is also presented followed by some test results

  12. Low power RF beam control electronics for the LEB

    Energy Technology Data Exchange (ETDEWEB)

    Mestha, L.K.; Mangino, J.; Brouk, V.; Uher, T.; Webber, R.C.

    1993-05-01

    Beam Control Electronics for the Low Energy Booster (LEB) should provide a fine reference phase and frequency for the High Power RF System. Corrections applied on the frequency of the rf signal will reduce dipole synchrotron oscillations due to power supply regulation errors, errors in frequency source or errors in the cavity voltage. It will allow programmed beam radial position control throughout the LEB acceleration cycle. Furthermore the rf signal provides necessary connections during, adiabatic capture of the beam as injected into the LEB by the Linac and will guarantee LEB rf phase synchronism with the Medium Energy Booster (MEB) rf at a programmed time in the LEB cycle between a unique LEB bucket and a unique MEB bucket. We show in this paper a design and possible interfaces with other subsystems of the LEB such as the beam instrumentation, High Power RF Stations, global accelerator controls and the precision timing system. The outline of various components of the beam control system is also presented followed by some test results.

  13. High Power RF Test of the Digital Feedback Control System for the PEFP Accelerator

    International Nuclear Information System (INIS)

    To control the RF field in the accelerating cavity for the PEFP (Proton Engineering Frontier Project) proton accelerator, a digital feedback control system has been developed. The stability requirements of the RF field are ±1% in amplitude and ± .deg. in phase. The digital feedback control system is based on the commercial FPGA PMC board hosted in VME board. The analog front-end was also developed which contains the IQ modulator, RF mixer, attenuators etc. To check the performance of the digital feedback control system, low power test with a dummy cavity has been performed with an intentional perturbation and shown that the feedback system rejected the perturbation as expected. High power RF test with a klystron has been performed and an accelerating field profile was measured. In addition, the pulse-to-pulse stability was checked by pulse operation with 0.1 Hz repetition rate. The detailed high power test results will be given in this paper

  14. Real time control of a fast RF impedance matching system

    International Nuclear Information System (INIS)

    A real time control system has been developed to maintain an RF impedance match in the ion cyclotron range of frequencies (ICRF). This system is designed to adjust output parameters with a cycle period of approximately 100 μseconds using commercially available VME based components and a UNIX workstation host. Advanced Ferrite Technologies (AFT) has developed the hybrid tuning system (HTS) which has the capability of tracking a mismatch on the time scale of milliseconds (2.5 MW, 60 MHz) by varying the magnetic field bias of ferrite loaded transmission lines. The control algorithm uses a combination of neural network and fuzzy logic techniques. Initial results of a test facility using a low power prototype are presented. 2 refs., 5 figs

  15. 基于SOC nRF24LE1的采煤机无线遥控系统的设计%Design of a remote control system for shearers based on SOC nRF24LE1

    Institute of Scientific and Technical Information of China (English)

    陈斯; 赵同彬; 游春霞

    2012-01-01

    A remote control system for the shearer was designed based on 2.4 GHz wireless SOC chip nRF24LE1.The system used nRF24LE1 as the core,and consisted of three parts that were palmtop remote controller,onboard transceiver and onboard PLC.The onboard transceiver collected all working parameters of the shearer and transmitted the data to the palmtop remote controller in wireless way,then the data displayed on LCD in real-time.At the same time,when receiving the button instructions,the onboard transceiver controlled all kinds of shearer actions by the onboard PLC.With the embedded high-performance microprocessors intelligent RF transceiver SOC chip nRF24LE1,the system possessed the features such as low cost,low power consumption and stable performance etc.%基于2.4GHz无线SOC芯片nRF24LE1设计了一种采煤机无线遥控系统。系统以nRF24LE1为核心,包括掌上摇控器、机载收发装置和机载PLC三部分。机载收发装置采集采煤机的各种工作参数,通过无线方式将数据传送至掌上遥控器,并实时显示在LCD上。机载收发装置接收到按键指令后,经机载PLC装置来控制采煤机的各种动作。由于采用了高性能的嵌入式微处理器智能射频收发SOC芯片nRF24LE1,系统具有低成本、低功耗及性能稳定等特点。

  16. RF field control for KAON Factory booster cavities

    International Nuclear Information System (INIS)

    A conceptual design is developed for control of the KAON Factory Booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluated the proposed controllers. These simulations indicated that adequate tuning performance can be obtained with the combination of adaptive feed-forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feedforward and proportional feedback control

  17. RF field control for Kaon Factory booster cavities

    International Nuclear Information System (INIS)

    A conceptual design is developed for control of the Kaon Factory booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluate the proposed controllers. These simulations indicate that adequate tuning performance can be obtained with the combination of adaptive feed forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feed forward and proportional feedback control. (Author) (figs., tabs.)

  18. RF low level control system at SCSS prototype accelerator

    International Nuclear Information System (INIS)

    The constriction of XFEL facilities is under progress at the SPring-8 site. The SCSS prototype accelerator to check the feasibility of XFEL is in operation. And the amplification of VUV light having a wavelength of 49 nm was observed in June. The stability and controllability requirements on an RF phase and amplitude, concerning with the RF system of the prototype accelerator, are less than 1 degree and 0.3%. To satisfy the requirements, we developed a low noise RF signal source, and an IQ (In phase and in Quardrature) modulator and an IQ demodulator. The RF phase and amplitude are controlled by the IQ modulator. The detection of them are performed by using the IQ demodulator. Both IQ functions of them are handled by VME DAC and ADC boards developed by us. Furthermore, the DAC module can handle the adaptive control method. We confirmed, that these instruments satisfied the requirements, by the beam test. The configuration of the RF low level system, its performance, and the preliminary results of the adaptive control experiment are described in this paper. (author)

  19. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  20. Precise RF control system of the SCSS test accelerator

    International Nuclear Information System (INIS)

    We present development and performance of the low-level rf control system of the SCSS test accelerator. The low-level rf system consists of IQ modulators / demodulators and VME waveform generators / digitizers. Recent improvements of them established high-resolution phase and amplitude setting capabilities of 0.01 degree and 0.01%, respectively. In addition, temperature drifts of the injector acceleration cavities were reduced by tuning a precise temperature regulation system. The temperature fluctuation was improved to be 0.01 K rms. As a result, the rf phase and amplitude stabilities of sub-harmonic buncher cavities were achieved to be 0.02 degree rms and 0.03% rms, respectively. The saturated FEL radiation in the wavelength region of 50-60 nm is stably generated by this improvement. (author)

  1. Operation of the rf controls in the CEBAF injector

    International Nuclear Information System (INIS)

    The CEBAF injector has produced its first relativistic beam with two superconducting cavities. Six RF control modules are used to control amplitude and phase in the chopper cavities, the buncher, the capture section, and the two superconducting cavities. In this paper the required stability and actual performance of the modules are discussed. For the superconducting cavity control, performance is consistent with energy stability of ∼10-4

  2. Performance analysis of switching based hybrid FSO/RF transmission

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Hybrid free space optical (FSO)/ radio frequency (RF) systems have emerged as a promising solution for high data rate wireless back haul.We present and analyze a switching based transmission scheme for hybrid FSO/RF system. Specifically, either FSO or RF link will be active at a certain time instance, with FSO link enjoying a higher priority. Analytical expressions have been obtained for the outage probability, average bit error rate and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with FSO only scenario.

  3. Electronics for the control of the rf system

    International Nuclear Information System (INIS)

    This note describes the operation of the major components used for controlling the phase and the field level of the PEP rf cavities. The block diagram of one rf station is decomposed into several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the field of each cell at the same level; the total gap voltage developed by a pair of cavities is obeying the command of the gap voltage controller; finally, the phase variation along the amplification chain and the klystron are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented. The purpose of this report is to acquaint interested people with the design philosophy and to allow them to evaluate the capabilities of this system and its behavior during operation of the machine. 5 refs., 16 figs

  4. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  5. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  6. Advanced closed-loop trimmer control system for fine tuning the RF Cavity of K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    The RF system of superconducting cyclotron operates between 9-27 MHz. The RF cavities are consisting of three numbers of half wave (λ/2) coaxial sections. RF power from the tuned RF amplifier is capacitively coupled to the dee (accelerating electrode) of the main resonant cavity through Coupler (Coupling capacitor). The coupler is used to match the high shunt impedance of the main resonant cavity to the 50 Ohm output impedance of final RF power amplifier. Owing to RF thermal instability the volume inside the cavity changes as results there is a shift in frequency of resonance, consequently sharp fall in Dee voltages. Hydraulic drive based Trimmer capacitor operates in closed loop for the adjustment of a small variation in tuned frequency due to thermal effect and beam loading of the cavity. The impedance matching during the close loop operation is maintained by trimmer movement system. The precise movement of trimmer is necessary to compensate the change in volume of the cavity due to thermal expansion and maintain impedance matching between RF amplifier and RF cavity. Phase detector is used to detect the cavity de-tuning angle by comparing the phase difference between the cavity pickup (Dee pick-up) signal and cavity driven signal. This signal is fed to the PLC based digital P.I. controller to control the movement of trimmer capacitor. The control system has been modelled, analyzed, optimized and is operating round-the-clock with the K-500 SC Cyclotron system successfully. (author)

  7. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  8. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  9. Internet-based Robot-supported RF and Wireless Laboratory for Engineering Education

    Directory of Open Access Journals (Sweden)

    Ananda Maiti

    2012-08-01

    Full Text Available The rapid growth of modern Radio Frequency (RF and wireless communication systems requires experienced professionals in the RF and wireless areas. In the curriculum of engineering education, university departments are introducing courses on high frequency telecommunication or radio communication related courses to equip students for the needs of industry. Effective learning in education can only be achieved by combining theoretical course with the corresponding laboratory. Distant access of robot-supported laboratories through the Internet is an important and new issue in distance education. This study is an application of new technologies for active learning methodologies, in order to increase both the self-learning and comprehension of the students. This study aims to find out requirements and needs to be fulfilled in developing a robot-supported remote-controlled RF and wireless laboratory. Development and implementation of a robot-operated internet-based RF and wireless laboratory is described in detail.

  10. Testing of inductive output tube based RF amplifier for 650 MHz SRF cavities

    International Nuclear Information System (INIS)

    A 650 MHz IOT based RF amplifier has been developed in VECC. It can be used to power several cavity modules in high energy high current proton linear accelerator to be built for ADSS programme in India and in Project-X at Fermilab, USA. The IOT based amplifier requires different powers supplies, water cooling and forced air cooling for its operation. A Programmable Logic Controller (PLC) based interlocks has been incorporated to take care of systematic on/off of the power supplies and driver amplifier, water flow, air flow and other interlocks for the safe operation of the RF System. In addition to that EPICS based RF operating console and data logging/monitoring system has been added. (author)

  11. HTS dc SQUID based rf amplifier: development concept

    DEFF Research Database (Denmark)

    Prokopenko, G.V.; Shitov, S.V.; Borisenko, I.V.; Mygind, Jesper

    We present a concept of a rf amplifier based on a directly coupled dc SQUID with bicrystal junctions, which have high saturation power and can be used with SIS mixers or possibly for satellite and cellular phone communications. A novel input resonant circuit is proposed using single layer of HTS...

  12. HTS dc SQUID based rf amplifier: development concept

    DEFF Research Database (Denmark)

    Prokopenko, G.V.; Shitov, S.V.; Borisenko, I.V.;

    2002-01-01

    We present a concept of a rf amplifier based on a directly coupled dc SQUID with bicrystal junctions, which have high saturation power and can be used with SIS mixers or possibly for satellite and cellular phone communications. A novel input resonant circuit is proposed using single layer of HTS...

  13. RF control system for 400 keV RFQ

    International Nuclear Information System (INIS)

    An RF control system has been developed for the 400 keV, 350 MHz RFQ coming up at BARC. This single cavity system consists of the functionalities of amplitude stabilization and frequency tracking for both continuous and pulsed mode of operation. The amplitude stabilization is implemented by modulating the attenuation across a fast modulator placed in the drive path. The frequency tracking is achieved by driving the FM port of a signal generator with a signal proportional to the phase shift across the resonator. The whole system is under computer control via CAMAC hardware. The paper describes the system architecture, housing and wiring of the system in a single instrumentation rack and development and testing of computer control. (author)

  14. Controlling satellite communication system unwanted emissions in congested RF spectrum

    Science.gov (United States)

    Olsen, Donald; Heymann, Roger

    2007-09-01

    The International Telecommunication Union (ITU), a United Nations (UN) agency, is the agency that, under an international treaty, sets radio spectrum usage regulations among member nations. Within the United States of America (USA), the organization that sets regulations, coordinates an application for use, and provides authorization for federal government/agency use of the radio frequency (RF) spectrum is the National Telecommunications and Information Administration (NTIA). In this regard, the NTIA defines which RF spectrum is available for federal government use in the USA, and how it is to be used. The NTIA is a component of the United States (U.S.) Department of Commerce of the federal government. The significance of ITU regulations is that ITU approval is required for U.S. federal government/agency permission to use the RF spectrum outside of U.S. boundaries. All member nations have signed a treaty to do so. U.S. federal regulations for federal use of the RF spectrum are found in the Manual of Regulations and Procedures for Federal Radio Frequency Management, and extracts of the manual are found in what is known as the Table of Frequency Allocations. Nonfederal government and private sector use of the RF spectrum within the U.S. is regulated by the Federal Communications Commission (FCC). There is a need to control "unwanted emissions" (defined to include out-of-band emissions, which are those immediately adjacent to the necessary and allocated bandwidth, plus spurious emissions) to preclude interference to all other authorized users. This paper discusses the causes, effects, and mitigation of unwanted RF emissions to systems in adjacent spectra. Digital modulations are widely used in today's satellite communications. Commercial communications sector standards are covered for the most part worldwide by Digital Video Broadcast - Satellite (DVB-S) and digital satellite news gathering (DSNG) evolutions and the second generation of DVB-S (DVB-S2) standard

  15. System integration of RF based negative ion experimental facility at IPR

    Science.gov (United States)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  16. System integration of RF based negative ion experimental facility at IPR

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, G; Bandyopadhyay, M; Singh, M J; Gahlaut, A; Soni, J; Pandya, K; Parmar, K G; Sonara, J; Chakraborty, A, E-mail: bansal@ipr.res.i [Institute for Plasma Research, Bhat, Gandhinagar (Gujarat) 382 428 (India)

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density {approx}5 x 10{sup 12} cm{sup -3}. The source can deliver a negative ion beam of {approx}10 A with a current density of {approx}30 mA/cm{sup 2} and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  17. Development of an on-line control system for the RF separated hadron beams to BEBC

    International Nuclear Information System (INIS)

    An on-line control system to tune and monitor separated particle beams to the Big European Bubble Chamber is described. The system includes controls of magnetic elements, collimators, rf-separators, multiwire proportional chambers and scintillation counters. Based on a PDP-8/e computer, the development of this system from a small satellite computer linked to a PDP-15 to a disc-based operating system is described. The hardware layout of the controls and the structure of the employed software are discussed. (Auth.)

  18. RF control at transient beamloading for high-duty-factor linacs

    International Nuclear Information System (INIS)

    An effective RF control with the transient beamloading is the major issue in the operation of the high-duty-factor linacs to suppress the undesirable beam loss. The RF control method is considered to obtain the control principle and the state equation, under the analysis of electrodynamical properties of the excitation in the resonator of the linac due to the transient beamloading. The concept of the directional selective coupling is applied for the RF system to define the main characteristics and to optimize the RF control parameters. (author)

  19. Characterization of quartz-based package for RF MEMS

    Science.gov (United States)

    Sordo, G.; Faes, A.; Resta, G.; Iannacci, J.

    2013-05-01

    In the last decade Micro-Electro-Mechanical Systems (MEMS) technology experienced a significant development in various fields of Information and Communication Technology (ICT). In particular MEMS for Radio Frequency (RF) applications have emerged as a remarkable solution in order to fabricate components with outstanding performances. The encapsulation of such devices is a relevant aspect to be addressed in order to enable wide exploitation of RF-MEMS technology in commercial applications. A MEMS package must not only protect fragile mechanical parts but also provide the interface to the next level of the packaging hierarchy in a cost effective technology. Additionally, in RF applications the electromagnetic impact of the package has to be carefully considered. Given such a scenario, the focus of this work is the characterization of a chip capping solution for RF-MEMS devices. Such solution uses a quartz cap having an epoxy-based dry film sealing ring. Relevant issues affecting RF-MEMS devices once packaged, e.g. the mechanical strain induced by the cap and the hermeticity of the sealing ring, are worth investigating. This work focuses on the study of induced strain, as a function of different bonding parameters. Dimensional features of the sealing ring (i.e. the width), and process parameters, like temperature and pressure, have been considered. The package characterization is performed by using basic test vehicles, such as strain gauges, designed to be integrated inside the internal cavity of the package itself. Polysilicon piezoresistors are used as strain gauges, whereas aluminum resistors are used as thermometers to assess the impact of temperature changes on strain measurements. Experimental data are reported including calibration of the sensors as well as environmental measurements with and without cap. In addition measurements of the shear stress of the proposed packaging solution are also reported.

  20. LMS-Based RF BIST Architecture for Multistandard Transmitters

    OpenAIRE

    Dogaru, Emanuel; Vinci Dos Santos, Filipe; Rebernak, William

    2013-01-01

    Software defined radios (SDR) platforms are increasingly complex systems which combine great flexibility and high performance. These two characteristics, together with highly integrated architectures make production test a challenging task. In this paper, we introduce an Radio Frequency (RF) Built-in Self-Test (BIST) strategy based on Periodically Nonuniform Sampling of the signal at the output stages of multistandard radios. We leverage the I/Q ADC channels and the DSP resources to extract t...

  1. Scaling of colliding-beam rings based on pulsed rf

    International Nuclear Information System (INIS)

    This note examines the cost-scaling of electron-positron storage rings based on pulsed RF systems. The first section uses the nomenclature of P. Wilson to obtain the basic relations between efficiency of power transfer and structure lengths required. The second section uses these properties to obtain the cost equations as a function of energy for an ''optimized'' machine. The optimized radius goes as the 1.7 power of the peak energy. 3 figs., 1 tab

  2. Short range RF communication for jet engine control

    Science.gov (United States)

    Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)

    2007-01-01

    A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.

  3. Design and construction of the advanced photon source 352-MHz rf system switching control

    International Nuclear Information System (INIS)

    A switching control system has been designed and built to provide the capability of rapidly switching the waveguide and low-level cabling between different klystrons to operate the Advanced Photon Source storage ring in the event of a failure of a klystron system or to perform necessary repairs and preventative maintenance. The twelve possible modes of operation allow for complete redundancy of the booster synchrotron rf system and either a maximum of two storage ring rf systems to be completely off-line or one system to be used as a power source for an rf test stand. A programmable controller is used to send commands to intermediate control panels which interface to WR2300 waveguide switches and phase shifters, rf cavity interlock and low-level rf distribution systems, and klystron power supply controls for rapid reconfiguration of the rf systems in response to a mode-selection command. Mode selection is a local manual operation using a keyswitch arrangement which prevents more than one mode from being selected at a time. The programmable controller also monitors for hardware malfunction and guards against open-quotes hot-switchingclose quotes of the rf systems. The rf switching controls system is monitored via the Experimental Physics and Industrial Control System (EPICS) for remote system status check

  4. A non-IQ sampling controller in low level RF system

    International Nuclear Information System (INIS)

    This paper describes a non-IQ controller for digital Low Level RF (LLRF) feedback control. Based on this non-IQ sampling method, arbitrary frequency relationship between ADC/DAC sampling clocks and IF signals can be employed. The nonlinearity in digital conversion can be reduced and the system dynamic performance improved. This paper analyzes the nonlinearity in conventional IQ sampling, gives the state variable description of the non-IQ algorithm, presents an implementation and its synchronization, and compares its performances with IQ sampling. (authors)

  5. A non-IQ sampling controller in low level RF system

    Science.gov (United States)

    Yin, Cheng-Ke; Dai, Zhi-Min; Liu, Jian-Fei; Zhao, Yu-Bin; Zhang, Tong-Xuan; Fu, Ze-Chuan; Liu, Wei-Qing

    2008-10-01

    This paper describes a non-IQ controller for digital Low Level RF (LLRF) feedback control. Based on this non-IQ sampling method, arbitrary frequency relationship between ADC/DAC sampling clocks and IF signals can be employed. The nonlinearity in digital conversion can be reduced and the system dynamic performance improved. This paper analyzes the nonlinearity in conventional IQ sampling, gives the state variable description of the non-IQ algorithm, presents an implementation and its synchronization, and compares its performances with IQ sampling. Supported by SSRF Project

  6. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Science.gov (United States)

    Li, Pengzhan; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-01

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called "DDS tuning" is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design.

  7. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  8. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  9. Electron dynamics in RF sources with a laser controlled emission

    International Nuclear Information System (INIS)

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed

  10. Emittance control and RF bunch compression in the NSRRC photoinjector

    Science.gov (United States)

    Lau, W. K.; Hung, S. B.; Lee, A. P.; Chou, C. S.; Huang, N. Y.

    2011-05-01

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  11. Emittance control and RF bunch compression in the NSRRC photoinjector

    International Nuclear Information System (INIS)

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  12. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2

    OpenAIRE

    Witt, Christian C; Stephanie H Witt; Lerche, Stefanie; Labeit, Dietmar; Back, Walter; Labeit, Siegfried

    2007-01-01

    The muscle-specific RING finger proteins MuRF1 and MuRF2 have been proposed to regulate protein degradation and gene expression in muscle tissues. We have tested the in vivo roles of MuRF1 and MuRF2 for muscle metabolism by using knockout (KO) mouse models. Single MuRF1 and MuRF2 KO mice are healthy and have normal muscles. Double knockout (dKO) mice obtained by the inactivation of all four MuRF1 and MuRF2 alleles developed extreme cardiac and milder skeletal muscle hypertrophy. Muscle hypert...

  13. Control of the Low Level RF System for J-Parc Linac

    CERN Document Server

    Michizono, S; Kadokura, E; Yamaguchi, S

    2004-01-01

    A low level RF (LLRF) system for J-Parc linac generates RF and clock signals, drives a klystron, and stabilizes accelerating fields in the cavities. The LLRF system is controlled by two units: a programmable logic controller (PLC) and a compact PCI (cPCI) controller. Functions of the PLC are ON/OFF and UP/DOWN controls, and STATUS and ANALOG monitors. The PLC is locally operated by a touch panel, and remotely operated by an EPICS IOC with Ethernet communication. The cPCI controller is for RF feedback and feed-forward controls, including a cavity tuner control, and then, locally and remotely operated by communication with the PLC. On the other hand, RF waveform data, which are stored in the memory of DSP and CPU boards in the cPCI, are directory transmitted to an EPICS OPI by a request from EPICS.

  14. Control Loops for the J-PARC RCS Digital Low-Level RF Control

    CERN Document Server

    Schnase, Alexander; Ezura, Eizi; Hara, Keigo; Nomura, Masahiro; Ohmori, Chihiro; Takagi, Akira; Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito

    2005-01-01

    The low-level radiofrequency control for the Rapic Cycling Synchrotron of J-PARC is based on digital signal processing. This system controls the acceleration voltages of 12 magnetic alloy loaded cavities. To achive a short overall delay, mandatory for stable loop operation, the data-processing is based on distributed arithmetics in FPGA. Due to the broadband characteristic of the acceleration cavities, no tuning loop is needed. To handle the large beam current, the RF system operates simultaneously with dual harmonics (h=2) and (h=4). The stability of the amplitude loops is limited by the delay of the FIR filters used after downconversion. The phase loop offers several operation modes to define the phase relation of (h=2) and (h=4) between the longitudinal beam signal and the vector-sum of the cavity voltages. Besides the FIR filters, we provide cascaded CIC filters with smoothly varying coefficients. Such a filter tracks the revolution frequency and has a substantially shorter delay, thereby increasing the s...

  15. Alternative modeling methods for plasma-based Rf ion sources

    Science.gov (United States)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  16. Alternative modeling methods for plasma-based Rf ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com; Beckwith, Kristian R. C., E-mail: beckwith@txcorp.com [Tech-X Corporation, Boulder, Colorado 80303 (United States)

    2016-02-15

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  17. Alternative modeling methods for plasma-based Rf ion sources.

    Science.gov (United States)

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  18. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    Science.gov (United States)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-07-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π-type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm3, which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band.

  19. A Compactrio-Based Beam Loss Monitor For The SNS RF Test Cave

    International Nuclear Information System (INIS)

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to the threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results

  20. Commissioning of the new low level RF control system for the S-DALINAC

    International Nuclear Information System (INIS)

    The high quality factor of the superconducting 3 GHz cavities of the S-DALINAC in combination with microphonic disturbances leads to permanent fluctuations in amplitude and phase of the accelerating field. These fluctuations would increase the energy spread of the beam if not compensated by a low level RF control system. In order to meet the stability requirements the existing analog control system had to be replaced by a digital one. The new system has been installed by now. It converts the 3 GHz signals down to the base band just as the previous analog control system did. Apart from that the signal processing is done in an FPGA which allows for more sophisticated control algorithms. The superconducting cavities are operated in a self-excited loop whereas a generator-driven approach is used for the normal-conducting cavities. This talk gives an overview over the hard- and software of the new RF control system and reports on results obtained recently.

  1. RF Based Fishing Vessel Surveillance System: An Integrated Approach

    Directory of Open Access Journals (Sweden)

    C.Pranit Jeba Samuel

    2013-04-01

    Full Text Available Surveillance is a key factor to ensure safety in various fields, here motivity of fishing boats in ocean/sea are monitored for illegal intrusion in other nations boundary. Hence an effective scheme isdesigned to overcome this threat with Global positioning system (GPS which provides dynamic location of fishing vessel in water and microcontroller which competes on GPS and predefined boundary locations to determine whether the boat have crossed the border or not. If so the fisherman is alerted and the message is transmitted to nearby coast guard ships through RF signals at VHF (30-300MHz range which covers wide area. On adumbrated the patrolling units can alert the fisherman from their position or if necessary the entire movement of the fishing vessel could be controlled remotely for trespassing. This measures fixes the cross boundary fishing problems between nations as the fisherman’s are unaware about their position in water.

  2. Up gradation of control system for RF subsystems of booster synchrotron and Indus-1 storage ring

    International Nuclear Information System (INIS)

    Indus-1 is a 450 MeV Synchronous radiation source at Raja Ramanna Center for Advanced Technology Indore. Booster Synchrotron was commissioned in 1995 and Indus-1 storage ring in 1999. Presently 6 beam lines are being used in round the clock mode, which are commissioned over the period. Indus-1 is comprises of many subsystems like Radio Frequency, Magnet Power Supplies, Pulsed Power Supplies, Vacuum System, Radiation Monitoring system and Low Conductive Water cooling system. All subsystems are connected to main control room by dedicated control systems. These control systems are Versa Module Europa bus (VMEbus) based systems and being operated since commissioning of Booster and Indus-l rings. This paper high lights the new features of developed hardware for Control System of Indus-1 RF

  3. Fast digital feedback control systems for accelerator RF system using FPGA

    International Nuclear Information System (INIS)

    Feedback control system plays important role for proper injection and acceleration of beam in particle accelerators by providing the required amplitude and phase stability of RF fields in accelerating structures. Advancement in the field of digital technology enables us to develop fast digital feedback control system for RF applications. Digital Low Level RF (LLRF) system offers the inherent advantages of Digital System like flexibility, adaptability, good repeatability and reduced long time drift errors compared to analog system. To implement the feedback control algorithm, I/Q control scheme is used. By properly sampling the down converted IF signal using fast ADC we get accurate feedback signal and also eliminates the need of two separate detectors for amplitude and phase detection. Controller is implemented in Vertex-4 FPGA. Codes for control algorithms which controls the amplitude and phase in all four quadrants with good accuracy are written in the VHDL. I/Q modulator works as common actuator for both amplitude and phase correction. Synchronization between RF, LO and ADC clock is indispensable and has been achieved by deriving the clock and LO signal from RF signal itself. Control system has been successfully tested in lab with phase and amplitude stability better then ±1% and ±1° respectively. High frequency RF signal is down converted to IF using the super heterodyne technique. Super heterodyne principal not only brings the RF signal to the Low IF frequency at which it can be easily processed but also enables us to use the same hardware and software for other RF frequencies with some minor modification. (author)

  4. Computer control of RF-manipulations in the CERN antiproton accumulator

    International Nuclear Information System (INIS)

    The CERN antiproton accumulator uses a conventional RF system for bunched beam manipulation within the ring. Several different manipulations are needed, often in close succession, so a fast, reliable and accurate method of switching between them is required. This has led to an unconventional computerized beam control system. For a desired set of beam manipulations, the computer calculates the needed voltage and frequency as functions of time, using a mathematical model of the beam and lattice. These are then loaded into function generators which subsequently operate independently of the computer. The RF system, a dual gap, ferrite loaded cavity driven by a 4CX25000 power tetrode, has three main uses: the stacking process to accumulate the antiprotons, the unstacking process to make the accumulated antiprotons available for extraction, and a variety of test and measurement purposes. Two digital function generators control voltage and frequency in the cavity. The voltage function is logarithmic and is fed into an AVC loop which contains a logarithmic detector and modulator to provide high voltage for stacking and low voltage for unstacking. The frequency function controls a 10 to 30 kHz quadrature VCO which is mixed with the output of a quadrature synthesizer producing an 1840 to 1860 kHz frequency range. RF phase and magnet noise were harmful while manipulating low emittance proton and antiproton bunches. A high-pass phase loop acquires beam cavity phase; adding AC corrections to the frequency program eliminated this problem. The cavity tune is maintained by a tuning loop acting on a DC ferrite base. Schematics are provided

  5. Sliding mode controller of rf cavity tuning loop

    International Nuclear Information System (INIS)

    Ferrite tuned cavities must operate under a wide range of accelerating frequencies. The tuning is done by modulating the current in the coil surrounding the ferrite. Feedback controllers are used to improve the tuning condition by sensing the phase error. The design of controllers currently in use is based on classical frequency domain techniques. Classical controllers in this application are sensitive to variations in the tuning system parameters. Also, these controllers generally fail to provide correct transient response when there is beam in the cavity, since the beam loading changes the transfer function of the system. We have designed a robust and adaptive controller based on sliding mode techniques for a cavity tuning system on the ISIS synchrotron. The techniques are extendable to other systems. 7 refs., 3 figs

  6. Sliding mode controller for RF cavity tuning loop

    International Nuclear Information System (INIS)

    Ferrite tuned cavities must operate under a wide range of accelerating frequencies. The tuning is done by modulating the current in the coil surrounding the ferrite. Feedback controllers are used to improve the tuning condition by sensing the phase error. The design of controllers currently in use is based on classical frequency domain techniques. Classical controllers in this application are sensitive to variations in the tuning system parameters. Also, these controllers generally fail to provide correct transient response when there is beam in the cavity, since the beam loading changes the transfer function of the system. The authors have designed a robust and adaptive controller based on sliding mode techniques for a cavity tuning system on the ISIS synchrotron. The techniques are extendable to other systems

  7. Measurement and control of field in RF GUN at FLASH

    Science.gov (United States)

    Brandt, A.; Hoffmann, M.; Koprek, W.; Pucyk, P.; Simrock, S.; Pozniak, K. T.; Romaniuk, R. S.

    2008-01-01

    The paper describes the hardware and software architecture of a control and measurement system for electromagnetic field stabilization inside the radio frequency electron gun, in FLASH experiment. A complete measurement path has been presented, including I and Q detectors and FPGA based, low latency digital controller. Algorithms used to stabilize the electromagnetic field have been presented as well as the software environment used to provide remote access to the control device. An input signal calibration procedure has been described as a crucial element of measurement process.

  8. Progress of the Moscow Meson Factory linac RF phase and amplitude control system

    International Nuclear Information System (INIS)

    The updated configuration of the MMF linac rf phase and amplitude control systems are presented. The structure of systems, controlling devices and specific feedback controller with Smith compensation and simulated feed-forward control loop are described. (Author) 2 refs., 5 figs

  9. Optical Emission Spectroscopy of the Laser Ablation Plume Controled by RF Plasma

    Science.gov (United States)

    Suda, Yoshiyuki; Nishimura, Takuma; Mizuno, Manabu; Bratescu, Maria Antoaneta; Sakai, Yosuke

    1999-10-01

    Recently, film deposition has been investigated using laser ablation methods which have a lot of advantages. For the purpose of control of the laser ablation plume, we introduced a radio frequency (RF) plasma. In this report we present position resolved optical emission spectra of the plume observed by an OMA (optical multichannel analyzer). The plume current is also measured. The RF plasma is generated in a helical coil installed between the substrate and the target. An ArF excimer laser (wavelength 193 nm, pulse duration time 20 ns) is used as a light source, and the target material is sintered carbon graphite. The laser fluence on the target surface is changed in a range from 1.2 to 6.4 J/cm^2. Ar gas is introduced to sustain the RF plasma. When the plume goes through the RF plasma, interaction of the plume with the plasma is expected. The possibility of control of the plume behavior is discussed.

  10. Light radiation at the exit of RFQ and RF-field control

    International Nuclear Information System (INIS)

    A high quality of beams and recurrence of their parameters are the important characteristic for RFQ-ion implanters. A qualitative run of the proposed designs depends on operative field control in a RF-cavity. The results of the first stage investigations of light emission at the exit of H and 2H RF-cavities unloaded by a beam are presented. A strong dependence of the intensity of light radiation on the material of the vacuum chamber beyond the exit aperture of the cavities, on the RF power value and independence of this intensity of vacuum conditions inside and outside the cavities (over a large range of pressure changes) are shown. This radiation generated by the electrons leaving the cavity through the exit aperture can be used for real-time nonperturbative RF-field control. 14 refs., 2 figs

  11. Systematic uncertainties in RF-based measurement of superconducting cavity quality factors

    Science.gov (United States)

    Holzbauer, J. P.; Pischalnikov, Yu.; Sergatskov, D. A.; Schappert, W.; Smith, S.

    2016-09-01

    Q0 determinations based on RF power measurements are subject to at least three potentially large systematic effects that have not been previously appreciated. Instrumental factors that can systematically bias RF based measurements of Q0 are quantified and steps that can be taken to improve the determination of Q0 are discussed.

  12. RF MEMS Based Tunable Bowtie Shaped Substrate Integrated Waveguide Filter

    Directory of Open Access Journals (Sweden)

    M. Z. Ur Rehman

    2015-04-01

    Full Text Available A tunable bandpass filter based on a technique that utilizes substrate integrated waveguide (SIW and double coupling is presented. The SIW based bandpass filter is implemented using a bowtie shaped resonator structure. The bowtie shaped filter exhibits similar performance as found in rectangular and circular shaped SIW based bandpass filters. This concept reduces the circuit foot print of SIW; along with miniaturization high quality factor is maintained by the structure. The design methodology for single-pole triangular resonator structure is presented. Two different inter-resonator couplings of the resonators are incorporated in the design of the two-pole bowtie shaped SIW bandpass filter, and switching between the two couplings using a packaged RF MEMS switch delivers the tunable filter. A tunning of 1 GHz is achieved for two frequency states of 6.3 and 7.3 GHz. The total size of the circuit is 70mm x 36mm x 0.787 mm (LxWxH.

  13. Design and development of embedded control system for high power RF test facility

    International Nuclear Information System (INIS)

    Design and development of an embedded control system for the control, interlock and operation of 1MW, 352.2 MHz TH2089 klystron based RF test facility. The key components of the control system are NI compact Re configurable Input Output (cRIO) system and Windows based PC. The cRIO system's rugged hardware architecture includes a 1.06 GHz Dual-Core embedded controller with Real Time (RT) Operating System, a reconfigurable Field Programmable Gate Array (FPGA) chassis for custom I/O timing, control and processing; and I/O modules. Windows based Graphical User Interface (GUI) has been developed to guide the user through start-up procedure, to set the operating parameters and also to display the status information of all the signals. The application software for data logging and publishing of the acquired data namely set, read back and status signals of auxiliary power supplies and machine safety interlocks has been developed in LabVIEW RT module and is running on embedded controller. Machine safety interlock logic has been implemented in FPGA to meet the time criticality. (author)

  14. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    Science.gov (United States)

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  15. CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE

    KAUST Repository

    Abdul Rahim, Farhan

    2014-05-01

    MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions and also provide more reliability and cause less power loss. A major problem with mechanical switches is bouncing. Bouncing is an undesirable characteristic which increases the switching time and causes damage to the switch structure affecting the overall switch life. This thesis proposes a new switch design that may be used to mitigate bouncing by using two voltage sources using a double electrode configuration. The effect of many switch’s tunable parameters is also discussed and an effective tuning technique is also provided. The results are compared to the current control schemes in literature and show that the double electrode scheme is a viable control option.

  16. CT-based temperature monitoring during hepatic RF ablation : Feasibility in an animal model

    NARCIS (Netherlands)

    Bruners, Philipp; Pandeya, Ganga D.; Levit, Elena; Roesch, Eva; Penzkofer, Tobias; Isfort, Peter; Schmidt, Bernhardt; Greuter, Marcel J. W.; Oudkerk, Matthijs; Schmitz-Rode, Thomas; Kuhl, Christiane K.; Mahnken, Andreas H.

    2012-01-01

    Purpose: The aim of this paper was to establish non-invasive CT-based temperature monitoring during hepatic radiofrequency (RF) ablation in an ex vivo porcine model followed by transfer of the technique into a feasibility in vivo experiment. Materials and methods: Bipolar RF ablations were performed

  17. Intelligent Platform Management Controller for Low Level RF Control System ATCA Carrier Board

    CERN Document Server

    Predki, Pawel

    2011-01-01

    High availability and reliability are among the most desirable features of control systems in modern High-Energy Physics (HEP) and other big-scale scientific experiments. One of the recent developments that has influenced this field was the emergence of the Advanced Telecommunications Computing Architecture (ATCA). Designed for the telecommunications industry it has been successfully applied in other domains such as accelerator control systems. A good example is the application of ATCA stan- dard for the design of Low Level RF (LLRF) control system for the X-Ray Free Electron Laser (XFEL) being developed in Deutsches Elektronen Synchrotron (DESY). Reliability and availability requirements for such a device play a crucial role among other parameters. Thus, the ATCA standard, with five- nines availability, is considered one of the best candidates for this system. This article focuses on the central management unit of every ATCA board, namely the Intelligent Platform Management Controller (IPMC), developed for t...

  18. Prototype development and design overview of low level RF control for DTL and RFQ cavities of High Current Injector facility at IUAC

    International Nuclear Information System (INIS)

    The High Current Injector (HCI) facility at IUAC consists of one RFQ cavity operating at 48.5 MHz and six IH-DTL cavities operating at 97 MHz. Maintaining the RF cavity field amplitude, phase and operating frequency at the desired level is the function of the Low Level RF (LLRF) control system. To ensure a successful implementation of LLRF control for the HCI RF cavities, the complete LLRF control system has been outlined considering the maximum possible operating conditions and the controllability. Control system requirements have been divided into different modules. Amplitude and phase control is based on Generator Driven Resonator (GDR) scheme and is fully analog. Proportional control has been planned to drive a mechanical tuner to control the cavity's operating frequency. The control system will also include safety interlocks, functionalities as per operating modes (tuning and steady state), RF measurements and diagnostic, temperature control. Initially a prototype Amplitude and Phase Control Loop based on fully analog GDR scheme has been developed. The amplitude and phase of the cavity field are controlled independently using PI type feedback control loops. The control circuits have successfully tuned the cavity and stabilized the amplitude and phase of the DTL cavity within 0.01 dB. The performances of the prototype controller with measured results and an overview of the techniques proposed to meet the control requirements will be presented in the paper. (author)

  19. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Science.gov (United States)

    Joshi, Gopal; Motiwala, Paresh D.; Randale, G. D.; Singh, Pitamber; Agarwal, Vivek; Kumar, Girish

    2015-09-01

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  20. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    International Nuclear Information System (INIS)

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications

  1. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-07-23

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  2. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  3. Digital low level RF control system at STF phase-1 in KEK

    International Nuclear Information System (INIS)

    At the Superconducting rf Test Facility (STF) in KEK, four superconducting cavities are operated with one klystron (STF Phase-1). In STF Phase-1, digital low-level rf (LLRF) control system is operated and the stabilities of the rf field under vector-sum feed-back control is examined. The stabilities of 0.007%(rms) in amplitude and 0.018deg.(rms) in phase at flat top are obtained with addition of suitable feed-forward and satisfied the requirements of the International Linear Collider (ILC). Various studies (IF-mixture, direct sampling and circulator elimination) concerning LLRF also have been conducted and results of these studies are summarized. (author)

  4. Construction of control system for J-PARC RF ion source and RFQ III test stand

    International Nuclear Information System (INIS)

    The installation of Cs-seeded RF-driven H- ion source (RF ion source) to J-PARC LINAC is scheduled in 2014, as well as the replacement of the current RFQ to RFQ III. The test stand of RF ion source and RFQ III has been completed in the J-PARC LINAC building for the beam acceleration test. We designed test stand control system in consideration of compatibility with J-PARC accelerator. In order to protect devices, the same MPS was adopted and EPICS was implemented on the test stand. The timing system was constructed for sending a timing signal to each accelerator component device. This report describes construction of the control system in the test stand. (author)

  5. RF MEMS and CSRRs-based tunable filter designed for Ku and K bands application

    OpenAIRE

    Ngasepam Monica Devi; Santanu Maity; Rajesh Saha; Sanjeev Kumar Metya

    2015-01-01

    This paper presents the design and simulation of a reconfigurable stop-band filter on a silicon substrate based on the combination of RF microelectromechanical system and metamaterial-based technologies. The device is implemented on coplanar waveguide structure by embedding complementary split-ring resonators on the central line and an RF MEMS varactor bridge supporting the neighboring ground planes. The response characteristics of this metamaterial-based filter can be dynamically tuned, thus...

  6. Application of RF-MEMS-Based Split Ring Resonators (SRRs to the Implementation of Reconfigurable Stopband Filters: A Review

    Directory of Open Access Journals (Sweden)

    Ferran Martín

    2014-12-01

    Full Text Available In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii cantilever-type RF-MEMS on top of SRRs; and (iii cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs. Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented.

  7. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    Science.gov (United States)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  8. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    Science.gov (United States)

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field

  9. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized...

  10. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, AlphaSense, Inc. (AI) and the Carnegie Mellon University (CMU) detail the development of RF front end based on MEMS components for miniaturized...

  11. Improving controllability in RF-MEMS switches using resistive damping

    OpenAIRE

    Spasos, M.; Charalampidis, N; Tsiakmakis, K.; Nilavalan, R

    2011-01-01

    An efficient way to control the impact velocity in order to achieve soft landing and fewer bouncing phenomena is the resistive damping. This control method is also referred as charge drive and presented for first time by Castaner and Senturia [1]. Under charge control the Pull-in phenomenon of the Constant Voltage controlled electrostatic actuators does not exist and if the current drive is ideal, any position across the gap is stable. The main reason for this behavior is that the electros...

  12. Low Level RF Including a Sophisticated Phase Control System for CTF3

    CERN Document Server

    Mourier, J; Nonglaton, J M; Syratchev, I V; Tanner, L

    2004-01-01

    CTF3 (CLIC Test Facility 3), currently under construction at CERN, is a test facility designed to demonstrate the key feasibility issues of the CLIC (Compact LInear Collider) two-beam scheme. When completed, this facility will consist of a 150 MeV linac followed by two rings for bunch-interleaving, and a test stand where 30 GHz power will be generated. In this paper, the work that has been carried out on the linac's low power RF system is described. This includes, in particular, a sophisticated phase control system for the RF pulse compressor to produce a flat-top rectangular pulse over 1.4 µs.

  13. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    International Nuclear Information System (INIS)

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRF cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated

  14. Development of beam current control system in RF-knockout slow extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, K., E-mail: mizshima@nirs.go.jp [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K. [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-12-15

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  15. Recent advances in high power RF systems of Indus synchrotron

    International Nuclear Information System (INIS)

    In Indus accelerator complex at Raja Ramanna Centre for Advanced Technology, three major RF systems namely booster synchrotron RF system, Indus-1 Storage ring RF System and Indus-2 Storage ring RF System were commissioned and are running in round the clock operation mode for beam line users. High Power RF amplifier system of a particle accelerator required for energizing the Resonating structures is complex in nature and to run it smoothly with better performance various up gradations are needed. Booster and Indus-1 RF system operating at 31.6 MHz were conventional tetrode tube based system and were being used for more than 10 years. Indus-2 RF system consists of four Klystron based amplifier system with maximum output power of 64 kW each at 505.8 MHz. With recent advances in solid state RF amplifying devices and its inherent advantages like graceful degradation, low maintenance, better quality of signal, absence of high voltage points as compared to traditional tube based RF amplifiers, SSPAs of several tens of kW of RF power level are being successfully deployed in RF systems of Indus synchrotron. Booster RF system and Indus-1 RF system has been already replaced by Solid State RF amplifier system and is working satisfactorily. Presently three Klystron based RF systems for Indus-2 are already replaced with Solid State RF amplifier system with total installed power of 200 kW. In particle accelerators the beam parameters depend highly on the stability of the RF field. Due to dynamic beam loading conditions the variations in RF parameters of accelerating structures needs to be controlled precisely, hence low level RF feedback control system plays vital role. Considering revolutionary development in the field of digital electronics and inherent advantages of digital systems, FPGA based digital LLRF control system development work was taken up. In this paper recent up gradation in RF Systems of Indus Synchrotron will be presented. (author)

  16. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen;

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence. In...... addition, we introduce an extended version with a WURST modulation (Frank-WURST). The new pulses exhibit interesting and flexible spin tagging properties and are easily implemented in existing MR sequences, where they can substitute slice-selective pulses with no additional alterations....

  17. Advanced process control of mask dry-etching using RF sensor

    Science.gov (United States)

    Handa, Hitoshi; Yamauchi, Satoshi; Hosono, Koji; Maruyama, Hiroshi; Nakamura, Daisuke; Yokoyama, Toshifumi; Naito, Akihiko

    2006-05-01

    Advanced process control (APC) of photomask dry-etching has been studied for strict mean control of both CD and phase angle of phase shift masks (PSMs). Equations to correlate process information with actual etching results have been developed for this purpose. It is showed that plasma reactance measured with RF sensor has noticeable correlation with Cr etching bias, which is affected by Cr load and condition of etching chamber. Simulation of etching bias based on plasma reactance shows the good agreement with the trend of actual etching results. Expectation of process capability index (Cpk) for mean-to-target (MTT) within 5.2nm is about 1.27, corresponding to CD yield more than 99.9%. In case of MoSi based PSMs, monitoring the sensor outputs is also useful to simulate the etching rate of phase shifter. One simple relationship can be also derived as the case of Cr etching bias. Expected phase error is within 1.5degree in almost cases. In actual photomask fabrication, maintenance of the equation for APC is a critical issue to guarantee the high process yield for a long period. It is showed that trend of the plasma reactance gives the meaningful information effective in automatic maintenance of the equations. As a conclusion, it is proved that our APC method is one of the answers to give the highest MTT yield for both CD and phase angle.

  18. RF-Based Charger Placement for Duty Cycle Guarantee in Battery-Free Sensor Networks

    OpenAIRE

    Li, Yanjun; Fu, Lingkun; Chen, Min; Chi, Kaikai; Zhu, Yi-hua

    2015-01-01

    Battery-free sensor networks have emerged as a promising solution to conquer the lifetime limitation of battery-powered systems. In this paper, we study a sensor network built from battery-free sensor nodes which harvest energy from radio frequency (RF) signals transmitted by RF-based chargers, e.g., radio frequency identification (RFID) readers. Due to the insufficiency of harvested energy, the sensor nodes have to work in duty cycles to harvest enough energy before turning active and perfor...

  19. Safe and Secure Wireless Power Transfer Networks: Challenges and Opportunities in RF-Based Systems

    OpenAIRE

    Liu, Qingzhi; Yıldırım, Kasım Sinan; Pawełczak, Przemysław; Warnier, Martijn

    2016-01-01

    RF-based wireless power transfer networks (WPTNs) are deployed to transfer power to embedded devices over the air via RF waves. Up until now, a considerable amount of effort has been devoted by researchers to design WPTNs that maximize several objectives such as harvested power, energy outage and charging delay. However, inherent security and safety issues are generally overlooked and these need to be solved if WPTNs are to be become widespread. This article focuses on safety and security pro...

  20. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    Directory of Open Access Journals (Sweden)

    Сaputo J.G

    2015-01-01

    Full Text Available Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability. In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness is much smaller than the wavelength.

  1. Improved Controls for Fusion RF Systems. Final technical report

    International Nuclear Information System (INIS)

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration

  2. Improved Controls for Fusion RF Systems. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Jeffrey A. [Rockfield Research Inc., Las Vegas, NV (United States)

    2011-11-08

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.

  3. A space-based classification system for RF transients

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.R.; Call, D.; Johnson, S.; Payne, T.; Ford, W.; Spencer, K.; Wilkerson, J.F. [Los Alamos National Lab., NM (United States); Baumgart, C. [EG and G, Inc., Los Alamos, NM (United States)

    1993-12-01

    The FORTE (Fast On-Orbit Recording of Transient Events) small satellite is scheduled for launch in mid 1995. The mission is to measure and classify VHF (30--300 MHz) electromagnetic pulses, primarily due to lightning, within a high noise environment dominated by continuous wave carriers such as TV and FM stations. The FORTE Event Classifier will use specialized hardware to implement signal processing and neural network algorithms that perform onboard classification of RF transients and carriers. Lightning events will also be characterized with optical data telemetered to the ground. A primary mission science goal is to develop a comprehensive understanding of the correlation between the optical flash and the VHF emissions from lightning. By combining FORTE measurements with ground measurements and/or active transmitters, other science issues can be addressed. Examples include the correlation of global precipitation rates with lightning flash rates and location, the effects of large scale structures within the ionosphere (such as traveling ionospheric disturbances and horizontal gradients in the total electron content) on the propagation of broad bandwidth RF signals, and various areas of lightning physics. Event classification is a key feature of the FORTE mission. Neural networks are promising candidates for this application. The authors describe the proposed FORTE Event Classifier flight system, which consists of a commercially available digital signal processing board and a custom board, and discuss work on signal processing and neural network algorithms.

  4. A space-based classification system for RF transients

    International Nuclear Information System (INIS)

    The FORTE (Fast On-Orbit Recording of Transient Events) small satellite is scheduled for launch in mid 1995. The mission is to measure and classify VHF (30--300 MHz) electromagnetic pulses, primarily due to lightning, within a high noise environment dominated by continuous wave carriers such as TV and FM stations. The FORTE Event Classifier will use specialized hardware to implement signal processing and neural network algorithms that perform onboard classification of RF transients and carriers. Lightning events will also be characterized with optical data telemetered to the ground. A primary mission science goal is to develop a comprehensive understanding of the correlation between the optical flash and the VHF emissions from lightning. By combining FORTE measurements with ground measurements and/or active transmitters, other science issues can be addressed. Examples include the correlation of global precipitation rates with lightning flash rates and location, the effects of large scale structures within the ionosphere (such as traveling ionospheric disturbances and horizontal gradients in the total electron content) on the propagation of broad bandwidth RF signals, and various areas of lightning physics. Event classification is a key feature of the FORTE mission. Neural networks are promising candidates for this application. The authors describe the proposed FORTE Event Classifier flight system, which consists of a commercially available digital signal processing board and a custom board, and discuss work on signal processing and neural network algorithms

  5. New Control Structure of the 10 MHz RF System in the CERN PS

    CERN Document Server

    Damerau, H

    2013-01-01

    The 10MHz cavities comprise the main RF system in the CERN PS and the only one that allows acceleration. In total 11 tunable cavities (10 operational and a hot spare, grouped into 3+1 tuning groups and up to presently 6 voltage program groups) are distributed all around the circumference of the PS ring. Next to the RF drive signal each of the cavities is controlled by a voltage program and timing pulses to open and close the relays to short-circuit the cavity gaps. These control signals are presently generated by a dedicated hardware matrix. It translates voltage functions and relay timing pulses per cavity group into functions and timings per cavity. However, due to its central position in the RF beam control system, the dedicated hardware matrix can cause significant downtime in case of a major hardware failure. Instead of upgrading the existing obsolete hardware, this note suggests a replacement by standard controls hardware and dedicated application software. Thanks to advanced software concepts like “M...

  6. Integration of 31.6 MHz, 1 KW solid state RF power amplifier in the booster RF system

    International Nuclear Information System (INIS)

    Like the conventional high power RF amplifier of early age, RF amplifier for injector Booster Synchrotron of Indus complex was tetrode tube based high power RF power amplifier. A 1 kW RF power Amplifier based on the solid state technology has been designed developed, tested and commissioned in Booster RF system. In addition to traditional advantage of solid state amplifier over tube based MOSFET RF devices have rare chance of thermal runway and secondary break down.1 kW 31.613 MHz Solid state RF amplifier system was developed with 45% efficiency and -30dB second harmonic level. The basic building block is 250 watts RF power module combined together using Wilkinson type power combiner to get the 1 kW RF power. The installation of solid state RF power Amplifier has not only improved the efficiency and eliminated the high voltage problems but has also brought down the audio noise which was there in earlier air cooled tetrode tube based RF power amplifier. 1 kW RF Amplifier has been successfully installed and integrated in the Booster Synchrotron to energise RF cavity with Amplitude control loop (ACL), Phase Control Loop (PCL) and frequency tuner loop in place. With new solid state RF amplifier in Booster, Indus-1 and Indus-2 Storage rings are being regularly operated at 120 mA at the rate 450 MeV and 100 mA. at the rate 2 GeV respectively. (author)

  7. RF control system for the KEK 40 MeV proton linac

    International Nuclear Information System (INIS)

    The KEK 40 MeV proton linac comprises a pre-buncher, the first tank (750 keV to 20 MeV), the second tank(20 MeV to 40 MeV) and a de-buncher. As routine operation, negative hydrogen ion (H-) beams of 5 mA with a beam pulse duration of about 80 μs are accelerated and transported to the Booster Synchrotron. In April 1992 negative deuterium ion (D-) beams of about 2.5 mA were accelerated under the 4 π-mode operation. At present, in order to accelerate H- or D- beams, the accelerating field strength in each of the four cavities and the phase differences between the cavities are manually tuned by watching many beam monitors installed on the transport lines. Operation of the KEK 40 MeV proton linac has therefore not been very easy. An RF control system with a feedback (ALC and PLL) system has thus been developed in order to stabilize the accelerating RF fields and to deal with the acceleration mode, which would be used to select parameters of the accelerating field for the acceleration of various particle beams. This report describes the RF control system under development and the tested results. (Author) 5 refs., 6 figs

  8. Theory and experiments on RF plasma heating, current drive and profile control in TORE SUPRA

    International Nuclear Information System (INIS)

    This paper reviews the main experimental and theoretical achievements related to the study of RF heating and non-inductive current drive and particularly phenomena related to the current density profile control and the potentiality of producing stationary enhanced performance regimes: description of the Lower Hybrid (LH) and Ion Cyclotron Resonant Frequency (ICRF) systems; long pulse coupling performance of the RF systems; observation of the transition to the so-called ''stationary LHEP regime'' in which the (flat) central current density and (peaked) electron temperature profiles are fully decoupled; experiments on ICRF sawtooth stabilization with the combined effect of LHCD modifying the current density profile; diffusion of fast electrons generated by LH waves; ramp-up experiments in which the LH power provided a significant part of the resistive poloidal flux and flux consumption scaling; theory of spectral wave diffusion and multipass absorption; fast wave current drive modelling with the Alcyon full wave code; a reflector LH antenna concept. 18 figs., 48 refs

  9. Technology development for RF accelerators

    International Nuclear Information System (INIS)

    Accelerator Control Division (ACnD) is having mandate for the design and development of key technologies in RF particle accelerators and for specialized applications in the field of RF Power, Controls, Magnetism, Superconductivity, Beam diagnostics and magnetic and electric field measurements. The activities being carried out in ACnD are mainly divided into three sectors, viz. (1) The Indian Accelerator program, (2) Accelerator development in collaboration with international laboratories and (3) specialized and specific applications for physics and material science applications. For the LEHIPA project at BARC, ACnD is involved in the development of Low level RF control systems, RF protection interlock systems, RF power systems and transmission lines, Drift Tube Linac and Permanent Magnets Based Drift Tubes. ACnD is also working in collaboration with international laboratories like Fermi National Accelerator Laboratory (FNAL), USA and GANIL, France. Under these collaborations, ACnD is responsible for the design and delivery of Low level RF controls and interlock systems, Solid state RF power amplifiers, Beam handling systems including warm quadrupoles and Superconducting focusing magnets and Beam diagnostics elements. ACnD is also working in specialized fields including high field magnets for MHD studies, magnetic sensors and magnetic flow meters for ITER (International Thermonuclear Experimental Reactor); focusing magnets for miniature klystron for mission critical applications, Field press and Pulsed field magnetizers for permanent magnets development, and High uniformity magnets for heavy ion penning traps. (author)

  10. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. We have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, we have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling. 4 refs., 4 figs., 2 tabs

  11. Digital low-level RF control system for high intensity proton RFQ accelerator

    International Nuclear Information System (INIS)

    The resonant frequency of the high intensity proton RFQ accelerator at the Institute of High Energy Physics is 352.2 MHz, and the control precision of the accelerating field is ± 1 degree in phase, respectively. In order to accomplish these requirements, a digital low-level RF (LLRF) control system is adopted. This system includes three parts: the accelerating field amplitude and phase control, the cavity resonant frequency control and the high power interlock protection. The down-conversion of the cavity sampling signal and the up-conversion of the feedback excitation signal are realized by the analog devices. The real time feedback control of amplitude and phase adopts digital I/Q demodulation, and is assembled in a FPGA block, where three DSP blocks are used for communication and cooperate the FPGA to process data. The online debugging result satisfies the requirements of the control precision. (authors)

  12. Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Gary; Martin, Allen; Noonan, John

    2010-10-30

    The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.

  13. Practical Switching-Based Hybrid FSO/RF Transmission and Its Performance Analysis

    KAUST Repository

    Usman, Muneer

    2014-10-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless backhaul. We present and analyze a switching-based transmission scheme for the hybrid FSO/RF system. Specifically, either the FSO or RF link will be active at a certain time instance, with the FSO link enjoying a higher priority. We considered both a single-threshold case and a dual-threshold case for FSO link operation. Analytical expressions have been obtained for the outage probability, average bit error rate, and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with the FSO-only scenario.

  14. Volterra series based predistortion for broadband RF power amplifiers with memory effects

    Institute of Scientific and Technical Information of China (English)

    Jin Zhe; Song Zhihuan; He Jiaming

    2008-01-01

    RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.

  15. Compact narrow-band THz radiation source based on photocathode rf gun

    International Nuclear Information System (INIS)

    Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m). (authors)

  16. Architecture design of the application software for the low-level RF control system of the free-electron laser at Hamburg

    International Nuclear Information System (INIS)

    The superconducting linear accelerator of the Free-Electron Laser at Hamburg (FLASH) provides high performance electron beams to the lasing system to generate synchrotron radiation to various users. The Low-Level RF (LLRF) system is used to maintain the beam stabilities by stabilizing the RF field in the superconducting cavities with feedback and feed forward algorithms. The LLRF applications are sets of software to perform RF system model identification, control parameters optimization, exception detection and handling, so as to improve the precision, robustness and operability of the LLRF system. In order to implement the LLRF applications in the hardware with multiple distributed processors, an optimized architecture of the software is required for good understandability, maintainability and extendibility. This paper presents the design of the LLRF application software architecture based on the software engineering approach for FLASH. (authors)

  17. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, Alessandro [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Camarchia, Vittorio, E-mail: vittorio.camarchia@polito.it [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Quaglia, Roberto; Pirola, Marco [Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Pandolfi, Paolo [Politronica Inkjet Printing S.r.l., C/O i3p, Corso Castelfidardo 30/A, 10129 Torino (Italy); Pirri, Candido Fabrizio [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-12-05

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  18. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    International Nuclear Information System (INIS)

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  19. A broadband dc SQUID based rf amplifier: experimental basics and development concept

    DEFF Research Database (Denmark)

    Prokopenko, G.V.; Shitov, S.V.; Mygind, Jesper

    2002-01-01

    We present a concept of a broadband IF amplifier based on experimental results obtained with a dc SQUID rf amplifier (SQA). The frequency range is broadened by using several SQAs, each one tuned to its own central frequency at both input and output; the numerical simulations are presented. A...

  20. A broadband dc SQUID based rf amplifier: experimental basics and development concept

    DEFF Research Database (Denmark)

    Prokopenko, G.V.; Shitov, S.V.; Mygind, Jesper

    2002-01-01

    We present a concept of a broadband IF amplifier based on experimental results obtained with a dc SQUID rf amplifier (SQA). The frequency range is broadened by using several SQAs, each one tuned to its own central frequency at both input and output; the numerical simulations are presented. A.......(C) 2002 Elsevier Science B.V. All rights reserved....

  1. R and D of control system of compact self-bunching RF gun test facility

    International Nuclear Information System (INIS)

    An experimental device was recently constructed for testing the beam characteristics of a compact self-bunching RF gun at the National Synchrotron Radiation Laboratory. It designs an independent monitor and control system for the experimental device so as not to disturb the operation of 200MeV LINAC. According to the three-level architecture of a general control scheme, the proposed system consists of circuits that execute kernel control, photosignal emission/reception, and switch values input/output, respectively. It performs timing control, device status monitoring as well as interlock protection, and it can be remotely operated with the assistance of PC software. Testing results show that our system achieves the specified performance and meets the requirement of experimental device stably and reliably. Our proposed system can also be applied to control other small-scale accelerators. (authors)

  2. GaN quantum dot density control by rf-plasma molecular beam epitaxy

    OpenAIRE

    Brown, J.; F Wu; Petroff, P. M.; J. S. Speck

    2004-01-01

    We report on the growth of GaN quantum dots and the control of their density in the Stranski-Krastanov mode on AlN (0001) by rf-plasma molecular beam epitaxy at 750 degreesC. After depositing the equivalent of 2-3 ML GaN coverage, as limited by N fluence under Ga-droplet growth conditions, excess Ga was desorbed and Stranski-Krastanov islands formed under vacuum. We present the dependence of island density as a function of GaN coverage (for two growth rates: 0.10 and 0.23 ML/s), as estimated ...

  3. RF Heating Optimisation on TORE SUPRA Using Feedback Control of Infrared Measurements

    International Nuclear Information System (INIS)

    Plasma Facing Components (PFCs) of modern fusion devices are submitted to large heat fluxes. Understanding and preventing overheating of these components during long pulse discharges is a crucial issue for next step tokamak ITER and future fusion reactors. Lower heat loads can be achieved by reducing the additional power resulting in a decrease of the plasma performance. So real time power optimisation is needed. Tore Supra, as a superconductor tokamak with water-cooled PFCs, is perfectly suited to tackle such a problem. A real time infrared thermography diagnostics [D. Guilhem et al. QIRT journal, 2 No 1 p. 77 to 96 (2005)] has been implemented in Tore Supra as part of the CIMES project [B. Beaumont et al. Fusion Engineering and Design, 56-57 667-672 (2001)] allowing real time temperature monitoring of the most sensitive components. While the toroidal pumped limiter has been designed to sustain heat fluxes of 10 MW/m2 in steady state, the most critical points are ICRH heating antennae and LHCD launchers, where hot spots or overheating of large areas can be observed during high-injected power plasma discharges. The analysis of the heating processes identified the role of private power, cross interactions between antennas and launchers and formation of loose deposits. Using the thermography diagnostics, a new feedback control has been implemented to prevent PFCs overheating. Before a shot, sensitive areas and associated temperature threshold are selected on the PFCs and physical interaction process is associated to each area (private power or cross interaction with other RF heating systems). During the shot, the central plasma controller unit decides whether the power has to be reduced and which RF heating system the reduction is applied on. RF power reduction is thus limited to the minimum necessary to preserve PFCs integrity. Thermography feedback control has been successfully used to detect and extinguish electric arcs on LHCD launchers too. The infrared feedback

  4. System control and data acquisition of the two new FWCD RF systems at DIII-D

    International Nuclear Information System (INIS)

    The Fast Wave Current Drive (FWCD) system at DIII-D has increased its available radio frequency (RF) power capabilities with the addition of two new high power transmitters along with their associated transmission line systems. A Sun Sparc-10 workstation, functioning as the FWCD operator console, is being used to control transmitter operating parameters and transmission line tuning parameters, along with acquiring data and making data available for integration into the DIII-D data acquisition system. Labview, a graphical user interface application, is used to manage and control the above processes. This paper will discuss the three primary branches of the FWCD computer control system: transmitter control, transmission line tuning control, and FWCD data acquisition. The main control program developed uses VXI, GPIB, CAMAC, Serial, and Ethernet protocols to blend the three branches together into one cohesive system. The control of the transmitters utilizes VXI technology to communicate with the transmitter's digital interface. A GPIB network allows for communication with various instruments and CAMAC crate controllers. CAMAC crates are located at each phase-shifter/stub-tuner station and are used to digitize transmission line parameters along with transmission line fault detection during RF transmission. The phase-shifter/stub-tuner stations are located through out the DIII-D facility and are controlled from the FWCD operator console via the workstation's Serial port. The Sun workstation has an Ethernet connection allowing for the utilization of the DIII-D data acquisition open-quotes Open Systemclose quotes architecture and of course providing communication with the rest of the world

  5. System control and data acquisition of the two new FWCD RF systems at DIII-D

    International Nuclear Information System (INIS)

    The Fast Wave Current Drive (FWCD) system at DIII-D has increased its available radio frequency (RF) power capabilities with the addition of two new high power transmitters along with their associated transmission line systems. A Sun Sparc-10 workstation, functioning as the FWCD operator console, is being used to control transmitter operating parameters and transmission line tuning parameters, along with acquiring data and making data available for integration into the DIII-D data acquisition system. Labview, a graphical user interface application, is used to manage and control the above processes. This paper will discuss the three primary branches of the FWCD computer control system: transmitter control, transmission line tuning control, and FWCD data acquisition. The main control program developed uses VXI, GPIB, CAMAC, Serial, and Ethernet protocols to blend the three branches together into one cohesive system. The control of the transmitters utilizes VXI technology to communicate with the transmitter's digital interface. A GPIB network allows for communication with various instruments and CAMAC crate controllers. CAMAC crates are located at each phase-shifter/stub-tuner station and are used to digitize transmission line parameters along with transmission line fault detection during RF transmission. The phase-shifter/stub-tuner stations are located throughout the DIII-D facility and are controlled from the FWCD operator console via the workstation's Serial port. The Sun workstation has an Ethernet connection allowing for the utilization of the DIII-D data acquisition Open System architecture and of course providing communication with the rest of the world

  6. A 'Proof-of-Concept' Demonstration of RF-Based Technologies for UF6 Cylinder Tracking at Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    This effort describes how radio-frequency (RF) technology can be integrated into a uranium enrichment facility's nuclear materials accounting and control program to enhance uranium hexafluoride (UF6) cylinder tracking and thus provide benefits to both domestic and international safeguards. Approved industry-standard cylinders are used to handle and store UF6 feed, product, tails, and samples at uranium enrichment plants. In the international arena, the International Atomic Energy Agency (IAEA) relies on time-consuming manual cylinder inventory and tracking techniques to verify operator declarations and to detect potential diversion of UF6. Development of a reliable, automated, and tamper-resistant process for tracking and monitoring UF6 cylinders would greatly reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a 'proof-of concept' system that was designed show the feasibility of using RF based technologies to track individual UF6 cylinders throughout their entire life cycle, and thus ensure both increased domestic accountability of materials and a more effective and efficient method for application of IAEA international safeguards at the site level. The proposed system incorporates RF-based identification devices, which provide a mechanism for a reliable, automated, and tamper-resistant tracking network. We explore how securely attached RF tags can be integrated with other safeguards technologies to better detect diversion of cylinders. The tracking system could also provide a foundation for integration of other types of safeguards that would further enhance detection of undeclared activities

  7. Microwave and RF Applications for Micro-resonator based Frequency Combs

    CERN Document Server

    Nguyen, Thach G; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contr...

  8. Ultra-Low-Voltage CMOS-Based Current Bleeding Mixer with High LO-RF Isolation

    Directory of Open Access Journals (Sweden)

    Gim Heng Tan

    2014-01-01

    Full Text Available This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF of 2.4 GHz, an input third-order intercept point (IIP3 of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm2.

  9. RF MEMS Based Tunable Bowtie Shaped Substrate Integrated Waveguide Filter

    OpenAIRE

    Ur Rehman, M. Z.; Z. Baharudin; M. A. Zakariya; Khir, M. H. M.; M.T. Jilani

    2015-01-01

    A tunable bandpass filter based on a technique that utilizes substrate integrated waveguide (SIW) and double coupling is presented. The SIW based bandpass filter is implemented using a bowtie shaped resonator structure. The bowtie shaped filter exhibits similar performance as found in rectangular and circular shaped SIW based bandpass filters. This concept reduces the circuit foot print of SIW; along with miniaturization high quality factor is maintained by the structure. The design methodolo...

  10. Fabrication, tests, and RF control of the 50 superconducting resonators of the Saclay heavy ion linac

    International Nuclear Information System (INIS)

    Two types of niobium superconducting resonators are currently in use in the linac Outer cylinder and RF ports are identical for both designs but internal structures are different full wave helix (λ) with three gaps behavior or half-wave (λ/2) with two gaps behavior. The λ structure is based on a Karlsruhe design. All cavities (34 λ and 16 λ/2) are now fabricated, tested for field, and mounted in the eight machine cryostats. Resonator characteristics are listed. Frequencies are multiples of the low energy bunching frequency (13.5 MHz). The high magnetic fields arise at the welds joining helix to can (λ/2) or half-helices together (λ)

  11. Digitally Controlled Envelope Tracking Power Supply for an RF Power Amplifier

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2007-01-01

    due to clock frequency quantization. An envelope tracking power supply for an RF Power Amplifier (RFPA) can help improve system efficiency by reducing the power consumption of the RFPA. To show the advantage of the DiSOM over traditional counter based Digital PWM modulators two designs were compared...... in both simulation and by experiment. The results shows that the DiSOM could give an increase in open loop bandwidth by more than a factor of two and an reduce the closed loop output impedance of the power supply by a factor of 5 at the output filter resonance frequency....

  12. Selecting RF Amplifiers for Impedance Controlled LLRF Systems - Nonlinear Effects and System Implications

    Energy Technology Data Exchange (ETDEWEB)

    Fox, John D.; Mastorides, Themis; Rivetta, Claudio Hector; Van Winkle, Daniel; /SLAC

    2007-07-06

    Several high-current accelerators use feedback techniques in the accelerating RF systems to control the impedances seen by the circulating beam. These Direct and Comb Loop architectures put the high power klystron and LLRF signal processing components inside feedback loops, and the ultimate behavior of the systems depends on the individual sub-component properties. Imperfections and non-idealities in the signal processing leads to reduced effectiveness in the impedance control loops. In the PEP-II LLRF systems non-linear effects have been shown to reduce the achievable beam currents, increase low-mode longitudinal growth rates and reduce the margins and stability of the LLRF control loops. We present measurements of the driver amplifiers used in the PEP-II systems, and present measurement techniques needed to quantify the small-signal gain, linearity, transient response and image frequency generation of these amplifiers.

  13. Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid

    International Nuclear Information System (INIS)

    Preparation of superhydrophobic silica-based thin film by adjusting different concentration of reverse (W/O) emulsion of resorcinol formaldehyde resin (re-RF) which was hybridised with silica sol has been developed. The hybrid films were coated by the mixing solution which included precursor solution (sol-gel process) and re-RF (sol-gel process). Rough surfaces were obtained by removing the organic polymer at high temperature and then the hydrophobic groups bonded onto the films were obtained by the reaction with trimethylchlorosilane (TMCS). Characteristic properties of the as-prepared cross-section and surface of the films were analyzed by scanning electron microscopy (SEM) and atom force microscopy (AFM). The experimental parameters are mainly varied the weight ratio of re-RF to silica sol from 0.2 to 4.0. The result showed that the contact angle of the modified silica film was greater than 160o when the weight ratio of re-RF to silica sol was 2.0.

  14. Controlled Fluxes of Silicon Nanoparticles By Extraction from a Pulsed RF Plasma

    Science.gov (United States)

    Girshick, Steven; Larriba-Andaluz, Carlos

    2015-09-01

    Deposition of silicon nanoparticles onto substrates may be a means of growing monocrystalline silicon films at low substrate temperature if the nanoparticles' impact energy and size can be controlled to provide melting or amorphization of the nanoparticle without damaging the underlying film. In order to explore conditions that could produce such controlled fluxes of nanoparticles we numerically model a pulsed RF argon-silane plasma, with a positive DC bias applied during the afterglow phase of each pulse so as to extract and accelerate negatively charged silicon particles. Operating parameters studied include pulse on time, pulse off time, DC bias voltage, RF voltage and pressure. This set of parameters is tested to find conditions under which one can achieve a periodic steady state with repeatable pulse-to-pulse conditions that maximize silicon film growth rates while maintaining nanoparticle impact energies in the range 0.5-2.0 eV/atom. We utilize a previously developed 1-D dusty plasma numerical model, modified to consider pulsing and applied substrate bias. This model self-consistently solves for the coupled behavior of plasma, chemistry, and aerosol. Results show that it is possible by this method to produce nanoparticle fluxes that are tailored with respect to their distribution of impact energies and mass deposition rates. Partially supported by US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), US National Science Foundation (CHE-124752), and Minnesota Supercomputing Institute.

  15. Investigation of analog/RF performance of staggered heterojunctions based nanowire tunneling field-effect transistors

    Science.gov (United States)

    Chakraborty, Avik; Sarkar, Angsuman

    2015-04-01

    In this paper, the analog/RF performance of an III-V semiconductor based staggered hetero-tunnel-junction (HETJ) n-type nanowire (NW) tunneling FET (n-TFET) is investigated, for the first time. The device performance figure-of-merits governing the analog/RF performance such as transconductance (gm), transconductance-to-drive current ratio (gm/IDS), output resistance (Rout), intrinsic gain and unity-gain cutoff frequency (fT) have been studied. The analog/RF performance parameters is compared between HETJ NW TFET and a homojunction (HJ) NW n-type TFET of similar dimensions. In addition to enhanced ION and subthreshold swing, a significant improvement in the analog/RF performance parameters obtained by the HETJ n-TFET over HJ counterpart for use in analog/mixed signal System-on-Chip (SoC) applications is reported. Moreover, the analog/RF performance parameters of a III-V based staggered HETJ NW TFET is also compared with a heterojunction (HETJ) NW n-type MOSFET having same material as HETJ n-TFET and equal dimension in order to provide a systematic comparison between HETJ-TFET and HETJ-MOSFET for use in analog/mixed-signal applications. The results reveal that HETJ n-TFET provides higher Rout and hence, a higher intrinsic gain, an improved gm/IDS ratio, and reasonable fT at lower values of gate-overdrive voltage as compared to the HETJ NW n-MOSFET.

  16. Improvements of Low Level RF Control Systems for J-PARC LINAC 400-MeV Upgrade

    Science.gov (United States)

    Fang, Z.; Futatsukawa, K.; Fukui, Y.; Kobayashi, T.; Michizono, S.; Sato, F.; Shinozaki, S.; Chishiro, E.

    The low level RF (LLRF) control systems have been successfully improved for the J-PARC LINAC upgrade. After the installation of 972-MHz high-β acceleration section behind the 324-MHz low-β section beginning in the summer of 2013, the proton beam was successfully accelerated to 400 MeV in January 2014. Many improvements in the LLRF control systems have been carried out to facilitate the operation of the J-PARC LINAC at 400 MeV. The reference 12-MHz signal delay settings for the feedback control systems have been optimized using 12-MHz delay modules. The stability performances of the 972-MHz RF&CLK (Clock) and Mixer&IQ (Mixer & IQ-modulator) boards have been improved using temperature-compensation techniques. By improving the hardware of the feedback control systems, very good stability of the RF systems has been achieved.

  17. Operation experience with the LHC RF system

    CERN Document Server

    Arnaudon, L; Brunner, O; Butterworth, A

    2010-01-01

    The LHC ACS RF system is composed of 16 superconducting cavities, eight per ring, housed in a total of four cryomodules each containing four cavities. Each cavity is powered by a 300 kW klystron. The ACS RF power control system is based on industrial Programmable Logic Controllers (PLCs), with additional fast RF interlock protection systems. The Low Level RF (LLRF) is implemented in VME crates. Operational performance and reliability are described. A full set of user interfaces, both for experts and operators has been developed, with user feedback and maintenance issues as key points. Operational experience with the full RF chain, including the low level system, the beam control, the synchronization system and optical fibers distribution is presented. Last but not least overall performance and reliability based on experience with first beam are reviewed and perspectives for future improvement outlined.

  18. Stabilization of a klystron anode voltage of a LINAC RF power system by microcontroller based feedback

    International Nuclear Information System (INIS)

    Nuclear-physics experimentation on linear electron accelerator LU-40 requires the long-term instability of average electron energy to be better than ± 0.5 %. The analysis of the instability factors has shown that one of the reasons is the instability of a klystron current of a linac RF power system. Estimations have resulted to the following: the relative error of electron energy has actually linear dependence on the relative error of a klystron current. It means that the klystron current stability should be also maintained within error of ± 0.5 %. The method of the klystron current maintenance utilizing automated control of a klystron anode voltage has been proposed and implemented. The method was implemented by the introduction of a microcontroller based feedback loop with a PID regulating algorithm. The klystron anode voltage is measured by the developed integrating dual-slope A/D converter that allowed to measure with the accuracy up to ± 0.05 %.

  19. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Dagang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Jiang, Shouxiang, E-mail: kinor.j@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Zhao, Hongmei [Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao (China); Shang, Songmin; Chen, Zhuoming [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-12-15

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films.

  20. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films

  1. Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Technology.

    Directory of Open Access Journals (Sweden)

    Y. Ravindra Babu,

    2014-11-01

    Full Text Available For vehicle safety and safety for passengers in vehicle is an important parameter. Most of the vehicles get accident because no proper safety measures are taken especially at curves and hair pin bends humps and any obstacles in front of the vehicle. This system can be used for the prevention of such a problem by indicating a pre indication and also reducing the speed of vehicles by reducing the fuel rate of vehicle. As the action is in terms of fuel rate so the vehicle automatically goes to control and avoids the accidents. At curves and hair pin bends the line of sight is not possible for the drivers so the special kind of transmitter which is tuned at a frequency of 433MHZ are mounted as these transmitters continuously radiate a RF signal for some particular area. As the vehicle come within this radiation the receiver in the vehicle gets activate. The transmitter used here is a coded transmitter which is encoded with encoder. The encoder provides a 4 bit binary data which is serially transmitted to transmitter. The transmitter used here is ASK type (amplitude shift keying which emits the RF radiation.

  2. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  3. INEMO: Distributed RF-Based Indoor Location Determination with Confidence Indicator

    Directory of Open Access Journals (Sweden)

    Youxian Sun

    2007-12-01

    Full Text Available Using radio signal strength (RSS in sensor networks localization is an attractive method since it is a cost-efficient method to provide range indication. In this paper, we present a two-tier distributed approach for RF-based indoor location determination. Our approach, namely, INEMO, provides positioning accuracy of room granularity and office cube granularity. A target can first give a room granularity request and the background anchor nodes cooperate to accomplish the positioning process. Anchors in the same room can give cube granularity if the target requires further accuracy. Fixed anchor nodes keep monitoring status of nearby anchors and local reference matching is used to support room separation. Furthermore, we utilize the RSS difference to infer the positioning confidence. The simulation results demonstrate the efficiency of the proposed RF-based indoor location determination.

  4. A passive FPAA based RF scatter meteor detector

    CERN Document Server

    Popowicz, Adam; Bernacki, Krzysztof; Fietkiewicz, Karol

    2015-01-01

    In the article we present a hardware meteor detector. The detection principle is based on the electromagnetic wave reflection from the ionized meteor trail in the atmosphere. The detector uses the ANADIGM field programmable analogue array (FPAA), which is an attractive alternative for a typically used detecting equipment - a PC computer with dedicated software. We implement an analog signal path using most of available FPAA resources to obtain precise audio signal detection. Our new detector was verified in collaboration with the Polish Fireball Network - the organization which monitors meteor activity in Poland. When compared with currently used signal processing PC software employing real radio meteor scatter signals, our low-cost detector proved to be more precise and reliable. Due to its cost and efficiency superiority over the current solution, the presented module is going to be implemented in the planned distributed detectors system.

  5. Maintenance and operation procedure, and feedback controls of the J-PARC RF-driven H− ion source

    International Nuclear Information System (INIS)

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H− ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H− ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The maintenance and operation procedure to minimize the plasma chamber (PCH) replacement time on the beam line, which is very important to maximize the J-PARC beam time especially for an antenna failure, is presented in this paper. The PCH preserved by filling argon (Ar) gas inside after pre-conditioning including pre-cesiation to produce the required beam at a test-stand successfully produced the required beam on the beam line with slight addition of cesium (Cs). The methods of the feedback controls of a 2MHz-RF-matching, an H− ion beam intensity and the addition of Cs are also presented. The RF-matching feedback by using two vacuum variable capacitors (VVCs) and RF-frequency shift produced the almost perfect matching with negligibly small reflected RF-power. The H− ion beam intensity was controlled within errors of ±0.1mA by the RF-power feedback. The amount of Cs was also controlled by remotely opening a Cs-valve to keep the RF-power lower than a settled value

  6. Wireless Communication System with RF-based Energy Harvesting: From Information Theory to Green System

    OpenAIRE

    Li, Tao; Fan, Pingyi; Letaief, Khaled Ben

    2014-01-01

    Harvesting energy from ambient environment is a new promising solution to free electronic devices from electric wire or limited-lifetime battery, which may find very significant applications in sensor networks and body-area networks. This paper mainly investigate the fundamental limits of information transmission in wireless communication system with RF-based energy harvesting, in which a master node acts not only as an information source but also an energy source for child node while only in...

  7. RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping

    OpenAIRE

    Santiago Ezpeleta; Claver, José M.; Pérez-Solano, Juan J.; Martí, José V.

    2015-01-01

    Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper...

  8. Direct RF Subsampling Receivers for Breast Cancer Detection with Impulse-Based UWB Signals

    OpenAIRE

    Strackx, Maarten; D'Agostino, Emiliano; Leroux, Paul; Reynaert, Patrick

    2015-01-01

    The implementation of a Direct RF subsampling receiver in CMOS is presented for the application of breast cancer detection using impulse-based ultrawideband (UWB) signals. Such a receiver inherently benefits from CMOS scaling since its speed-accuracy tradeoff depends only on technological process parameters. With a proper choice of antenna matching media, the current signal processing requested resolution could be translated into feasible hardware specifications. The track-and-hold (T/H) circ...

  9. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [Microxact Inc.

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  10. A dedicated multi-process controller for a LEP RF unit

    International Nuclear Information System (INIS)

    The operation of each RF unit for LEP requires that several control processes can be run at the same time. Local and remote access is required to around 2,500 individual parameters and status indications inside the unit. Normal operation of the unit involves complex procedures involving a considerable amount of sequential access of equipment within the unit. Optimum performance and overall maintainability is achieved by calling up locally resident procedures. In addition the surveillance and alarm monitoring needed can run locally, making a summary status available for the control center. The local process controller (data manager) hardware is realized as a hybrid VME/G64 crate with a 68020 VME module as the main processor. Two 68000 VME slave processors having G64 ports handle communication with equipment buses. VME high resolution graphics interfaces provide interactive local control via a touch screen and seperate data display. A VME MIL-1553 interface provides the connection to the control system. Local control, remote control and surveillance run concurrently on the main processor under the OS-9/68K multitasking operating system. Apart from specific device drivers all software is written in C. 4 refs., 4 figs

  11. An analytic study of TTF of standing wave RF gap based on Bessel–Fourier expansion

    International Nuclear Information System (INIS)

    Transit time factor (TTF) is important in design and simulation of standing wave RF gaps. The TTF is usually constructed on the basis of a square wave model, and it is always expanded as a function of reduced velocity and structure factors. In order to express the particle's motion more authentically, the TTF is studied based on the Bessel–Fourier (B–F) expansion which is realized in BEAMPATH code. By expanding square wave electric field into harmonic electric fields, the voltage component and the TTF component of each order are obtained from corresponding harmonic electric field. The ratios of each order of voltage components and integral voltage form the weights working as coefficients of TTF components. Consequently, the effective resultant TTF depends on not only the particle's velocity and the structure factors, but also the RF phase the particle experiences. Simple expressions are derived after simplifying the complicated TTF equation in this paper

  12. Wavelet network based predistortion method for wideband RF power amplifiers exhibiting memory effects

    Institute of Scientific and Technical Information of China (English)

    JIN Zhe; SONG Zhi-huan; HE Jia-ming

    2007-01-01

    RF power amplifiers (PAs) are usually considered as memoryless devices in most existing predistortion techniques.Nevertheless, in wideband communication systems, PA memory effects can no longer be ignored and memoryless predistortion cannot linearize PAs effectively. After analyzing PA memory effects, a novel predistortion method based on wavelet networks (WNs) is proposed to linearize wideband RF power amplifiers. A complex wavelet network with tapped delay lines is applied to construct the predistorter and then a complex backpropagation algorithm is developed to train the predistorter parameters. The simulation results show that compared with the previously published feed-forward neural network predistortion method, the proposed method provides faster convergence rate and better performance in reducing out-of-band spectral regrowth.

  13. Realization of 50-way RF cavity combiner for planar triode based pulse power source at 325 MHz

    International Nuclear Information System (INIS)

    Using Planar triodes, it is proposed to realize pulse RF power system which is capable of delivering few 100 kW RF power at a design frequency in the frequency range of 300-1500 MHz; realizing its advantage of high degree of amplitude and phase stability, linearity and capability of withstanding high VSWR. Within its power and operating frequency range, Planar triode based system offers advantage over both klystron/lOT as well as solid-state devices based RF power system. Unlike klystron/lOT based, planar triode is operated with comparatively moderate anode voltage- in the range of 5-10 kV-thus avoiding issues related to high voltage operation; and unlike solid state devices, it require much less supply current to handle and simple thermal management system. For that a 50-way cavity combiner was realized at 325 MHz which can combine RF output available from 5 kW planar triode based RF amplifiers to deliver more than 200 kW pulse RF power system at its design frequency. The combining structure is configured in form of a cylindrical cavity which is coupled to planar triode based amplifiers by means of door-knob type coupler positioned around its periphery at a radial distance decided by required value of coupling factor. For combined RF output, E-field coupling is realized in form of a capacitive stub which provide required coupling between E-probe and the cavity. The overall structure is designed and simulated for the required performance in terms of phase and amplitude imbalance caused due to manufacturing tolerances, insertion losses, isolation between combing ports etc. In the paper design of combining structure is discussed and a scheme is presented to realize pulse RF power source which is capable of delivering few 100 kW pulse RF power at 325 MHz. (author)

  14. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng-Guang; HUANG Tong-Ming; XU Jin-Qiang

    2011-01-01

    The Beijing X-ray Energy Recovery Linac(BXERL)test facility is proposed in Institute of High Physics(IHEP).In this proposal,the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current.An injector based on DC gun technology is the first candidate electron source for BXERL.However,the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV.Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility.We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code.In this paper,we present the optimized design of the gun cavity,the gun RF parameters and the set-up of the whole injector system.The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalizedemittance 1.0 πmm.mrad,bunch length 0.77 mm,beam energy 5.0 MeV and energy spread 0.60%.

  15. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    Science.gov (United States)

    Liu, Sheng-Guang; Huang, Tong-Ming; Xu, Jin-Qiang

    2011-09-01

    The Beijing X-ray Energy Recovery Linac (BXERL) test facility is proposed in Institute of High Physics (IHEP). In this proposal, the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current. An injector based on DC gun technology is the first candidate electron source for BXERL. However, the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV. Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility. We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code. In this paper, we present the optimized design of the gun cavity, the gun RF parameters and the set-up of the whole injector system. The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalized emittance 1.0 πmm·mrad, bunch length 0.77 mm, beam energy 5.0 MeV and energy spread 0.60%.

  16. Effect of low-frequency ambient magnetic fields on the control unit and RF head of a commercial SQUID magnetometer

    Science.gov (United States)

    Marcus, C. M.

    1984-01-01

    The control unit and RF head of the SHE model 330XRFSQUID system are shown to be sensitive to ambient ac magnetic fields below 1 HZ, which cause the appearance of false signals corresponding to a magnetometer signal of 0.000001 phi(0) per gauss of field applied. The control unit shows a sensitivity that is linear with frequency, suggesting that the signal is generated by Faraday induction. In contrast, the RF head response is independent of frequency and shows a strong second-harmonic coversion. This response may be due to the magnetic field sensitivity of the ferrite core inductor in the tuned amplifier of the RF head. These signals induced by ambient fields are a potential source of error in Stanford's Relativity Gyroscope experiment, which uses SQUID's on board a rolling satellite as part of the gyroscope readout system. The extent of the magnetic field sensitivity in these components necessitates the use of additional magnetic shielding aboard the satellite.

  17. EPICS-based surveillance of cooling water for J-PARC MR-RF using PLC/Linux

    International Nuclear Information System (INIS)

    In J-PARC MR, Magnet and RF used common cooling water. However, the copper ion (Magnet origin) in cooling water had a bad influence on RF apparatus. In order to make the cooling-water lines of both groups independent, a new cooling-water line was prepared for RF. Then, supervising system for the line was developed using PLC/Linux, which is used in MR control system (EPICS). Using PLC/Linux has the merit of building systems quickly and reducing the cost. (author)

  18. Photonic-Based RF Transceiver for UWB Multi-Carrier Wireless Systems

    Directory of Open Access Journals (Sweden)

    Filippo Scotti

    2014-05-01

    Full Text Available In this paper an all-optical system exploitable as the core structure for a photonic-based RF transceiver is presented. The proposed scheme is able to simultaneously perform either up- or down-conversion of multiple frequency Ultra-Wide Band (UWB RF signals, employing a single Mode-Locking Laser (MLL. The system has been experimentally demonstrated and tested by up- and down-converting orthogonal frequency division multiplexing (OFDM signals over a bandwidth of about 4 GHz. The scheme’s performance has been validated by measuring the error vector magnitude (EVM of the OFDM signals over the whole considered RF spectrum (from 5 GHz to 26.5 GHz, both in up-conversion and in down-conversion. The measurements show negligible power penalties, lower than 0.5 dB. Since the proposed scheme can act either as an up- or down-converter, and it is composed by easily integratable devices, two identical structures can be combined on a single integrated platform, sharing a single MLL, to build a compact and efficient UWB transceiver.

  19. Campus Access Control System RFID Based

    Directory of Open Access Journals (Sweden)

    Mr. SANTHOSH S

    2012-06-01

    Full Text Available Radio frequency identification (RFID technology has helped many organizations to reduce cost. Nevertheless, there are challenges and issues associated with RFID adoption. The most common internal challenge for many organizations is justifying the investment and modification of processes. The focus of this project is to show the business value of RFID technology and its applications. The important issue is the security level of the whole campus because it needs to be carefully differentiated. Dormitories and special research laboratories should benefit from higher levels of security than any other campuses. The key to the problem is represented by the new Radio Frequency Identification (RFID which can support contactless cards with memory. The most important feature of the proposed system is the updating of access permission level at any time for the user based on the availability of that user. The data transfer from the reader to the database was done using wireless communication (RF communication. To achieve this here RF transmitter and the RF receiver is used. The data which is read by the reader is sent to the microcontroller. Then from the controller we can transfer the data to the database by using the UART module (serial communication which is inbuilt in the microcontroller through RF transmitter. RF receiver of the same frequency at the receiver end receives and then stores the data in the database. RF transmitter and Receiver – frequency for transmitting and receiving the data depends on the user as per the requirement for the application and it is based on the range of distance. For the data encoding and decoding process HCS-101 protocol is used.

  20. High Precision Temperature Control of Normal-Conducting RF GUN for a High Duty Cycle Free-Electron Laser

    OpenAIRE

    Kruppa, K.; Pfeiffer, Sven; Lichtenberg, G.; Brinker, Frank; Decking, Winfried; Floettmann, Klaus; Krebs, Olaf; Schlarb, Holger; Schreiber, Siegfried

    2015-01-01

    High precision temperature control of the RF GUN is necessary to optimally accelerate thousands of electrons within the injection part of the European X-ray free-electron laser XFEL and the Free Electron Laser FLASH. A difference of the RF GUN temperature from the reference value of only 0.01 K leads to detuning of the cavity and thus limits the performance of the whole facility. Especially in steady-state operation there are some undesired temperature oscillations when using classical standa...

  1. Inkjet-printing- and electroless-plating- based fabrication of RF circuit structures on high-frequency substrates

    International Nuclear Information System (INIS)

    In this paper, a method to fabricate radio frequency (RF) circuit structures is described. This method involves inkjet printing of a silver nanoparticle-based ink on a functional substrate material to create the seed track (i.e., the seed layer), onto which copper is subsequently deposited by an electroless plating method, to obtain the desired thickness and conductivity of the RF structures. This process combination was validated by fabricating an S-band filter on a high-frequency substrate and comparing the RF performance of this filter with that of a filter fabricated using the conventional lithography-based method. The adhesion of the circuit structures to the substrate was qualitatively ascertained by the scotch tape test method. The performance of the inkjet-printed–electroless-plated filter was comparable to that of the conventional filter, thus proving the suitability of this novel method for practical RF applications

  2. Inkjet-printing- and electroless-plating- based fabrication of RF circuit structures on high-frequency substrates

    Science.gov (United States)

    Sridhar, A.; Reiding, J.; Adelaar, H.; Achterhoek, F.; van Dijk, D. J.; Akkerman, R.

    2009-08-01

    In this paper, a method to fabricate radio frequency (RF) circuit structures is described. This method involves inkjet printing of a silver nanoparticle-based ink on a functional substrate material to create the seed track (i.e., the seed layer), onto which copper is subsequently deposited by an electroless plating method, to obtain the desired thickness and conductivity of the RF structures. This process combination was validated by fabricating an S-band filter on a high-frequency substrate and comparing the RF performance of this filter with that of a filter fabricated using the conventional lithography-based method. The adhesion of the circuit structures to the substrate was qualitatively ascertained by the scotch tape test method. The performance of the inkjet-printed-electroless-plated filter was comparable to that of the conventional filter, thus proving the suitability of this novel method for practical RF applications.

  3. Microwave and RF applications for micro-resonator based frequency combs

    Science.gov (United States)

    Nguyen, Thach G.; Shoeiby, Mehrdad; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2016-02-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  4. 基于nRF905的智能封锁雷无线通讯技术%Study on Wireless Communication Technology of Intelligent Blockade Land Mine Based on nRF905

    Institute of Scientific and Technical Information of China (English)

    顾强; 李晓晨; 张亚; 安晓红

    2011-01-01

    This article proposed a method to wireless communication of intelligent blockade landmine based on the radio communication of nRF905. It provided the design scheme and the program flow chart of the communication system on intelligent blockade landmine. For advancing the security and the antijamming performance of data transmission, it adopted AT89S52 as control unit which is a kind of high performance MCU, and realized frequency hopping communication among the nRF905 modules. In this article, it successfully designed the prototype instrument, and did the correlative experiment about antijamming performance, send-receive velocity, effective communication distance. It is proved that the system can realize the data transmission of intelligent blockade landmine effectively.%提出了一种基于无线射频模块nRF905的智能封锁雷无线通讯方法,给出了智能封锁雷通讯系统的设计方案和系统程序流程图.为了提高数据传输的保密性及抗干扰性,采用了高性能单片机AT89S52作为控制部件,实现了nRF905模块之间的跳频通讯.制作了原理样机,并且进行了系统抗干扰性、收发速率、有效通讯距离等室内外相关实验,通过实验证明该系统能够有效地实现智能封锁雷的数据传输.

  5. Effect of low-frequency ambient magnetic fields on the control unit and rf head of a commercial SQUID magnetometer

    International Nuclear Information System (INIS)

    The control unit and rf head of the SHE model 330X rf SQUID system are shown to be sensitive to ambient ac magnetic fields below 1 Hz, which cause the appearance of false signals corresponding to a magnetometer signal of 10-6 phi0 per gauss of field applied. The control unit shows a sensitivity that is linear with frequency, suggesting that the signal is generated by Faraday induction. In contrast, the rf head response is independent of frequency and shows a strong second-harmonic conversion. This response may be due to the magnetic field sensitivity of the ferrite core inductor in the tuned amplifier of the rf head. These signals induced by ambient fields are a potential source of error in Stanford's Relativity Gyroscope experiment, which uses SQUID's on board a rolling satellite as part of the gyroscope readout system. The extent of the magnetic field sensitivity in these components necessitates the use of additional magnetic shielding aboard the satellite

  6. RF MEMS and CSRRs-based tunable filter designed for Ku and K bands application

    Directory of Open Access Journals (Sweden)

    Ngasepam Monica Devi

    2015-12-01

    Full Text Available This paper presents the design and simulation of a reconfigurable stop-band filter on a silicon substrate based on the combination of RF microelectromechanical system and metamaterial-based technologies. The device is implemented on coplanar waveguide structure by embedding complementary split-ring resonators on the central line and an RF MEMS varactor bridge supporting the neighboring ground planes. The response characteristics of this metamaterial-based filter can be dynamically tuned, thus enhancing its usefulness. The device operates within a frequency range of 16.5–19.5 GHz, giving a tuning range of 15%, and can be tuned from Ku-frequency band to K-frequency band. It works with a comparative low pull-in voltage of 17.42 V and a faster switching time of 0.138 µs. A thorough electromechanical analysis has been done by varying various structural and material parameters. Moreover, a comparative electrical performance of silicon and glass has been shown to overcome the cons of silicon by high-resistivity glass.

  7. Stress-Matched RF and Thermal Control Coatings for Membrane Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of multi-meter diameter radiofrequency (RF) antennas for NASA and DoD will have a significant impact of future space programs. Polymer membrane...

  8. 972-MHz RF digital feedback control system for J-PARC linac

    International Nuclear Information System (INIS)

    A 972-MHz RF system is being developed for 400-MeV upgrade of the J-PARC linac. The accelerating field stabilities should be less than +/-1% in amplitude and +/-1deg in phase. The basic digital LLRF (Low-Level RF) concept is the same as that of the present 324-MHz system with a compact-PCI crate. The main alterations are RF and clock generator (RF and CLK), mixer and I/Q modulator (IQ and Mixer) and digital LLRF algorithm. Since the typical decay time of the new system is faster (because its operational frequency is higher than that of the present 324-MHz cavity), chopped beam compensation is essential. The performance study of the digital feedback system with a cavity simulator is summarized. (author)

  9. Stress-Matched RF and Thermal Control Coatings for Membrane Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of multi-meter diameter radiofrequency (RF) antennas is an area of intense research for NASA and DoD organizations. Polymer membrane technologies offer...

  10. Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main Linacs

    International Nuclear Information System (INIS)

    The proposed RF distribution scheme for the two 15 km long ILC LINACs, uses one klystron to feed 26 superconducting RF cavities operating at 1.3 GHz. For a precise control of the vector sum of the signals coming from the SC cavities, the control system needs a high performance, low cost, reliable and modular multichannel receiver. At Fermilab we developed a 96 channel, 1.3 GHz analog/digital receiver for the ILC LINAC LLRF control system. In the paper we present a balanced design approach to the specifications of each receiver section, the design choices made to fulfill the goals and a description of the prototyped system. The design is tested by measuring standard performance parameters, such as noise figure, linearity and temperature sensitivity. Measurements show that the design meets the specifications and it is comparable to other similar systems developed at other laboratories, in terms of performance

  11. Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main LINACs

    International Nuclear Information System (INIS)

    The proposed RF distribution scheme for the two 15 km long ILC LINACs uses one klystron to feed 26 superconducting RF cavities operating at 1.3 GHz. For a precise control of the vector sum of the signals coming from the SC cavities, the control system needs a high-performance, low-cost, reliable and modular multichannel receiver. At Fermilab we developed a 96-channel, 1.3 GHz analog/digital receiver for the ILC LINAC LLRF control system. In this paper we present a balanced design approach to the specifications of each receiver section, the design choices made to fulfill the goals and a description of the prototyped system. The design is tested by measuring standard performance parameters, such as noise figure, linearity and temperature sensitivity. Measurements show that the design meets the specifications and it is comparable to other similar systems developed at other laboratories, in terms of performance

  12. A compact proton synchrotron based on a low emittance beam extraction scheme using transverse RF noise

    International Nuclear Information System (INIS)

    A compact proton synchrotron for cancer therapy is presented. In the synchrotron, a new operating scheme for resonant beam extraction is applied with a combined function lattice in order to realize small emittance of the extracted beam with simple control for the accelerator system. In the extraction, the amplitude of the betatron oscillations of the particles inside the separatrix is increased by a transverse RF noise with a narrow bandwidth. During the extraction, the separatrix is kept constant, that is, the magnet currents related to the resonance are kept constant. The emittance of the extracted beam can be kept lower than about 0.1πmm · mrad without dynamic control of the closed orbit. (author)

  13. Profile Control by Biased Electrodes in Large Diameter RF Produced Pl asma

    Science.gov (United States)

    Shinohara, Shunjiro; Matsuoka, Norikazu; Yoshinaka, Toshiro

    1998-10-01

    Control of the plasma profile has been carried out, using the voltage biasing method in the large diameter (45 cm) RF (radio frequency) produced plasma in the presence of the uniform magnetic field (less than 1200 G). Under the low filling pressure condition of 0.16 mTorr, changing the biasing voltages to the three individual end plates with concentric circular ring shapes, the radial electron density (about 10^10 cm-3) profile could be changed from the hollow to the peaked one. On the contrary, the nearly flat electron temperature (several eV) profile did not change appreciably. The azimuthal rotation velocity measured by the Mach probe, i.e. directional probe, showed the different radial profiles (but nearly uniform along the axis) depending on the biasing voltage. This velocity became slower with the low magnetic field (less than 200 G) or in the higher pressure regime up to 20 mTorr with the higher electron density. The experimental results by other biasing methods will also be presented.

  14. Physics-based statistical model and simulation method of RF propagation in urban environments

    Science.gov (United States)

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  15. Adaptive RF front-ends for hand-held applications

    CERN Document Server

    van Bezooijen, Andre; van Roermund, Arthur

    2010-01-01

    The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. ""Adaptive RF Front-Ends for Hand-Held Applications"" presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control,

  16. On the feasibility of superjunction thick-SOI power LDMOS transistors for RF base station applications

    Science.gov (United States)

    Cortes, I.; Roig, J.; Flores, D.; Hidalgo, S.; Rebollo, J.

    2007-02-01

    The feasibility of applying the superjunction (SJ) concept to a thick-SOI LDMOS transistor for base station applications is studied in this paper. An extensive comparison with conventional RF LDMOS structures is performed in terms of breakdown voltage (VBR) versus drift resistance (Rdr) values. Unlike conventional LDMOS structures, the Rdr value in SJ LDMOS structures not only depends on the doping concentration but especially on the characteristics of P and N pillars. The charge compensation due to inter-diffusion between adjacent pillars is responsible for the observed Rdr increase. In order to accomplish an optimum pillar formation with the minimum possible transition between P and N pillars with inherent net doping reduction, high energy multi-implantations and a small thermal budget must be used. Moreover, the distance between P and N pillar implantation windows must be properly set to alleviate the doping inter-diffusion effect. The VBR/Rdr ratio value is a good indicator to evaluate the SJ LDMOS feasibility for RF applications.

  17. An X band RF MEMS switch based on silicon-on-glass architecture

    Indian Academy of Sciences (India)

    M S Giridhar; Ashwini Jambhalikar; J John; R Islam; C L Nagendra; T K Alex

    2009-08-01

    Communication systems such as those used on satellite platforms demand high performance from individual components that make up the varoius systems and sub-systems. Switching and routing of RF signals between various modules is a routine and critical operation that determines the overall efficiency of the entire system. In this paper, we present the design and fabrication aspects of a direct contact RF MEMS switch designed to operate in the X band (8–12 GHz) with a target insertion of about 0·5 dB and isolation better than 30 dB. The actuation voltage is expected to be around 50 V. The die size is designed to be 3 mm (H) × 3 mm(W) × 2 mm(H). The switch is built from a low residual stress device layer of a highly conducting (0·005 Ohms-cm) silicon on insulator (SOI) wafer. After subsequent lithographic steps, the wafer is bonded to a Pyrex glass wafer which has been previously patterned with gold transmission lines and pull in electrodes. Being built from a single crystal silicon structure, the mechanical robustness of the actuator is much greater than the those in similar membrane-based devices. A 6 mask fabrication process utilizing Deep Reactive Ion Etching to achieve high aspect ratio stiction free structures was developed and implemented. Devices from the first fabrication run are being analysed in our laboratory.

  18. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    Science.gov (United States)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  19. Noise Analysis and Detection Based on RF Energy Duration in wireless LAN

    Directory of Open Access Journals (Sweden)

    Dr.R.Seshadri

    2011-10-01

    Full Text Available Noise is the major problem while working with wireless LAN. In this paper we analyze the noise byusing active receiving antenna and also propose the detection mechanism based on RF energyduration. The standard back off mechanism of 802.11 wireless LAN (WLAN increases the contentionwindow when a transmission failure occurs in order to alleviate contentions in a WLAN. In addition,many proposed schemes for 802.11 WLAN behave adaptively to transmission failures. Transmissionfailures in WLANs occur mostly by two causes: collision and channel noise. However, in 802.11 WLAN,a station cannot know the cause of a transmission failure, thus the adaptive schemes assume the idealsituation in which all transmission failures occur by only one of two causes. For this reason, they maybehave erroneously in a real world where transmission failures occur by both causes. In this paper, wepropose a novel scheme to detect collision, which utilizes transmission time information and RF energyduration on the channel. By detecting collisions, a station can differentiate the causes of transmissionfailures and the adaptive schemes can operate correctly by using the detection information.

  20. Noise Analysis and Detection Based on RF Energy Duration in wireless LAN

    CERN Document Server

    Seshadri, R

    2011-01-01

    Noise is the major problem while working with wireless LAN. In this paper we analyze the noise by using active receiving antenna and also propose the detection mechanism based on RF energy duration. The standard back off mechanism of 802.11 wireless LAN (WLAN) increases the contention window when a transmission failure occurs in order to alleviate contentions in a WLAN. In addition, many proposed schemes for 802.11 WLAN behave adaptively to transmission failures. Transmission failures in WLANs occur mostly by two causes: collision and channel noise. However, in 802.11 WLAN, a station cannot know the cause of a transmission failure, thus the adaptive schemes assume the ideal situation in which all transmission failures occur by only one of two causes. For this reason, they may behave erroneously in a real world where transmission failures occur by both causes. In this paper, we propose a novel scheme to detect collision, which utilizes transmission time information and RF energy duration on the channel. By det...

  1. RF Phase Reference Distribution System for the TESLA Technology Based Projects

    CERN Document Server

    Czuba, K; Romaniuk, R S

    2013-01-01

    Since many decades physicists have been building particle accelerators and usually new projects became more advanced, more complicated and larger than predecessors. The importance and complexity of the phase reference distribution systems used in these accelerators have grown significantly during recent years. Amongst the most advanced of currently developed accelerators are projects based on the TESLA technology. These projects require synchronization of many RF devices with accuracy reaching femtosecond levels over kilometre distances. Design of a phase reference distribution system fulfilling such requirements is a challenging scientific task. There are many interdisciplinary problems which must be solved during the system design. Many, usually negligible issues, may became very important in such system. Furthermore, the design of a distribution system on a scale required for the TESLA technology based projects is a new challenge and there is almost no literature sufficiently covering this subject. This th...

  2. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control

    International Nuclear Information System (INIS)

    Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54-cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Far-field acoustic measurements demonstrated similar trends in the overall sound pressure level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2-1.5 dB in both cases. We conclude that pulsed RF actuators demonstrate flow

  3. MobileRF: A Robust Device-Free Tracking System Based On a Hybrid Neural Network HMM Classifier

    OpenAIRE

    Paul, Anindya S.; Wan, Eric A.; Adenwala, Fatema; Schafermeyer, Erich; Preiser, Nick; Kaye, Jeffrey; Jacobs, Peter G.

    2014-01-01

    We present a device-free indoor tracking system that uses received signal strength (RSS) from radio frequency (RF) transceivers to estimate the location of a person. While many RSS-based tracking systems use a body-worn device or tag, this approach requires no such tag. The approach is based on the key principle that RF signals between wall-mounted transceivers reflect and absorb differently depending on a person’s movement within their home. A hierarchical neural network hidden Markov model ...

  4. Low-level RF LabVIEW reg-sign control software user's manual: Version 1.0

    International Nuclear Information System (INIS)

    This document details information on the low-level radio frequency (LLRF) software control package. The chapters in this manual cover the following topics: Chapter one describes the general operating principles of the LabVIEW software package, and also discusses the high-level menu panels which allow access to the individual control panels. Chapter two covers the control panels used for conditioning the cavity, and for controlling the accelerator under normal operating conditions. Chapter three provides information on the resonance detection and reflectometer calibration function, including the setup and status panels for each. Chapter four contain instructions on the use of those panels dedicated to controlling the cavity RF field. Chapter five discusses the control panels that provide setup and status information on the diagnostic monitor subsystem. Chapter six outlines those panels used to control the timing functions provided by the LLRF system. Finally, chapter seven describes the control panels used to monitor and adjust the alarm and limit functions of the system. Throughout the document, it is assumed that the reader has a general working knowledge of accelerators, high-power amplifier equipment, and low-level RF (LLRF) control systems. References are listed as footnotes as they occur in the text

  5. High transverse field muSR with pi/2-RF pulse spin control technique

    Energy Technology Data Exchange (ETDEWEB)

    Kadono, R., E-mail: ryosuke.kadono@kek.j [Muon Science Laboratory, Institute for Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Department of Materials Structure Science, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Satoh, K.H. [Department of Materials Structure Science, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Koda, A. [Muon Science Laboratory, Institute for Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Department of Materials Structure Science, The Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Nishiyama, K. [Muon Science Laboratory, Institute for Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Mihara, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2009-04-15

    We report on the time-differential muSR measurement at 200 MHz (under a transverse field of 1.475 T) using a pulsed muon beam at KEK (deltaapprox =50ns). The initial muon spin direction is flipped by 90{sup 0} using a radio-frequency (RF) pulse immediately after muon implantation, which allows observation of muSR time spectra without limitation of beam pulse width delta. A prospect for the routine use of this pi/2-RF pulse technique at the J-PARC MUSE is discussed.

  6. RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping

    Directory of Open Access Journals (Sweden)

    Santiago Ezpeleta

    2015-10-01

    Full Text Available Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken.

  7. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  8. JAERI superconducting RF linac-based free-electron laser-facility

    International Nuclear Information System (INIS)

    Recently, the JAERI superconducting RF linac based FEL has been successfully lased to produce 0.36 kW of FEL light using a 100 kW electron beam in quasi-continuous wave operation. A 1 kW class laser is our present program goal, and will be achieved by improving the optical out coupling in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. Our next 5-year program goal is to produce a 100 kW-class FEL laser and multi-MW class electron beam in average, quasi-continuous wave operation. Conceptual and engineering design options needed for such a very high-power operation will be discussed to improve and to upgrade the existing facility

  9. An RF LDMOS with excellent efficiency and ruggedness based on a modified CMOS process

    International Nuclear Information System (INIS)

    Two types of RF LDMOS devices, specified for application in the driver stage and output stage of a power amplifier, are designed based on a modified CMOS process. By optimizing the layout and process, the output capacitance per unit of gate width is as low as 225 fF/mm. The driver stage and output stage devices achieve an output power of 44 W with a PAE of 82% and 230 W with a PAE of 72.3%, respectively (P3dB compression) at 1 GHz. Both devices are capable of withstanding extremely severe ruggedness tests without any performance degradation. These tests are 3–5 dB overdrive, 10:1 voltage standing wave ratio mismatch load through all phase angles, and 40% drain overvoltage elevation at a working point of P3dB. (semiconductor devices)

  10. IT-based soil quality evaluation for agroecologically smart land-use planning in RF conditions

    Science.gov (United States)

    Vasenev, Ivan

    2016-04-01

    Activated in the first decades of XXI century global climate, economy and farming changes sharply actualized novel IT-based approaches in soil quality evaluation to address modern agricultural issues with agroecologically smart land-use planning. Despite global projected climate changes will affect a general decline of crop yields (IPCC 2014), RF boreal and subboreal regions will benefit from predicted and already particularly verified temperature warming and increased precipitation (Valentini, Vasenev, 2015) due to essential increasing of growing season length and mild climate conditions favorable for most prospective crops and best available agrotechnologies. However, the essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central European region of Russia which is one of the biggest «food baskets» in RF. In these conditions potentially favorable climate circumstances will increase not only soil fertility and workability features but also their dynamics and spatial variability that determine crucial issues of IT-based soil quality evaluation systems development and agroecologically smart farming planning. Developed and verified within the LAMP project (RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for smart farming agroecological optimization in global climate and farming changes challenges. Information basis for agroecologically smart land-use planning consists of crops and agrotechnologies requirements, regional and local systems of agroecological zoning, local landscape and soil cover patterns, land quality and degradation risk assessments, current and previous farming practices results, agroclimatic predictions and production agroecological models, environmental limitations and planned profitability, fertilizing efficiency DSS ACORD-R. Smart land-use practice refers to sustainable balance

  11. 基于nRF24L01的无线传感网络应用研究%Research on Wireless Sensor Network Application Based on nRF24L01

    Institute of Scientific and Technical Information of China (English)

    朱山川

    2014-01-01

    The wireless sensor network has more advantages than traditional network. This article,taking tem-perature monitoring for example,designed the hardware software system of temperature measurement modes based on the nRF24L01,a wireless RF transceiver chip. The system used MSP430 F2012,a low power con-sumption MUS,as a control unit,and collected temperature data with temperature sensor DS18B20. This ar-ticle designed the collection between the elements for hardware system and used block diagram to explain the workflow for the software system. It also introduced the software design of temperature data collection module and FR transceiver/receiver module. The experiments show that this system has low power consump-tion,high reliability and practical value.%无线传感网络系统相对于传统网络系统有很多方面的优势。以温度监控为例,进行基于无线收发芯片nRF24L01的测温节点的硬件和软件设计。利用低功耗单片机MSP430 F2012进行控制,结合温度传感器DS18B20进行温度数据采集。本文对硬件部分设计各元件之间的连接,对软件部分以框图形式说明工作流程,介绍温度数据采集模块和数据无线收发模块的软件设计。实验表明,本文所设计系统功耗低,可靠性较高,具有一定的实用价值。

  12. IT-based soil quality evaluation for agroecologically smart land-use planning in RF conditions

    Science.gov (United States)

    Vasenev, Ivan

    2016-04-01

    Activated in the first decades of XXI century global climate, economy and farming changes sharply actualized novel IT-based approaches in soil quality evaluation to address modern agricultural issues with agroecologically smart land-use planning. Despite global projected climate changes will affect a general decline of crop yields (IPCC 2014), RF boreal and subboreal regions will benefit from predicted and already particularly verified temperature warming and increased precipitation (Valentini, Vasenev, 2015) due to essential increasing of growing season length and mild climate conditions favorable for most prospective crops and best available agrotechnologies. However, the essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central European region of Russia which is one of the biggest «food baskets» in RF. In these conditions potentially favorable climate circumstances will increase not only soil fertility and workability features but also their dynamics and spatial variability that determine crucial issues of IT-based soil quality evaluation systems development and agroecologically smart farming planning. Developed and verified within the LAMP project (RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for smart farming agroecological optimization in global climate and farming changes challenges. Information basis for agroecologically smart land-use planning consists of crops and agrotechnologies requirements, regional and local systems of agroecological zoning, local landscape and soil cover patterns, land quality and degradation risk assessments, current and previous farming practices results, agroclimatic predictions and production agroecological models, environmental limitations and planned profitability, fertilizing efficiency DSS ACORD-R. Smart land-use practice refers to sustainable balance

  13. Robust linearization of RF amplifiers using nonlinear internal model control method

    OpenAIRE

    Bachir, Smail; Duvanaud, Claude

    2009-01-01

    In the present paper, the nonlinear Internal Model Control (IMC) method is introduced and applied to linearize high frequency Power Amplifiers (PAs). The IMC is based on the description of a process model and of a controller. It is shown that baseband frequency descriptions are suitable for the model and the controller. Their description parameters are derived from input and output modulation signals processed in Cartesian form. Simulation results are given to illustrate the design procedure ...

  14. Beam-Based Diagnostics of RF-Breakdown in the Two-Beam Test-Stand in CTF3

    CERN Document Server

    Johnson, M

    2007-01-01

    The general outline of a beam-based diagnostic method of RF-breakdown, using BPMs, at the two-beam test-stand in CTF3 is discussed. The basic components of the set-up and their functions in the diagnostic are described. Estimations of the expected error in the measured parameters are performed.

  15. DDS signal acquisition and PI feedback algorithm design based on FPGA for RF system of the synchrotron for proton therapy

    International Nuclear Information System (INIS)

    In this paper,we report the configuration of frequency sweeping mode and PI feedback control in the low-level RF system of the proton synchrotron for proton therapy. Altera Stratix II FPGA and AD9858 are adopted to get the direct digital synthesizer (DDS) signal of frequency sweeping mode by compiling Verilog HDL code. A PI feedback algorithm is designed to control the amplitude and phase of cavity voltage, with high precision and stability. (authors)

  16. Rf power sources

    International Nuclear Information System (INIS)

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  17. RF transport

    OpenAIRE

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems.

  18. Bluetooth Based Android Controlled Robot

    Directory of Open Access Journals (Sweden)

    Rowjatul Zannat Eshita

    2016-06-01

    Full Text Available The project aims in designing a Robot that can be operated using Android Apps. The controlling of the Robot is done wirelessly through Android smart phone using the Bluetooth module feature present in it. Here in the project the Android smart phone is used as a remote control for operating the Robot. Android is a software stack for mobile devices that includes an operating system, middleware and key applications. Android boasts a healthy array of connectivity options, including Wi-Fi, Bluetooth, and wireless data over a cellular connection (for example, GPRS, EDGE (Enhanced Data rates for GSM Evolution, and 3G. Android provides access to a wide range of useful libraries and tools that can be used to build rich applications. Bluetooth is an open standard specification for a radio frequency (RF-based, short-range connectivity technology that promises to change the face of computing and wireless communication. It is designed to be an inexpensive, wireless networking system for all classes of portable devices, such as laptops, PDAs (personal digital assistants, and mobile phones. The controlling device of the whole system is a Microcontroller. Bluetooth module, DC motors are interfaced to the Microcontroller. The data received by the Bluetooth module from Android smart phone is fed as input to the controller. The controller acts accordingly on the DC motors of the Robot. The robot in the project can be made to move in all the four directions using the Android phone. The direction of the robot is indicated using LED indicators of the Robot system. In achieving the task the controller is loaded with a program written using Embedded ‘C’ language.

  19. Interaction between beam control and rf feedback loops for high Q cavities an heavy beam loading. Revision A

    International Nuclear Information System (INIS)

    An open-loop state space model of all the major low-level rf feedback control loops is derived. The model has control and state variables for fast-cycling machines to apply modern multivariable feedback techniques. A condition is derived to know when exactly we can cross the boundaries between time-varying and time-invariant approaches for a fast-cycling machine like the Low Energy Booster (LEB). The conditions are dependent on the Q of the cavity and the rate at which the frequency changes with time. Apart from capturing the time-variant characteristics, the errors in the magnetic field are accounted in the model to study the effects on synchronization with the Medium Energy Booster (MEB). The control model is useful to study the effects on beam control due to heavy beam loading at high intensities, voltage transients just after injection especially due to time-varying voltages, instability thresholds created by the cavity tuning feedback system, cross coupling between feedback loops with and without direct rf feedback etc. As a special case we have shown that the model agrees with the well known Pedersen model derived for the CERN PS booster. As an application of the model we undertook a detailed study of the cross coupling between the loops by considering all of them at once for varying time, Q and beam intensities. A discussion of the method to identify the coupling is shown. At the end a summary of the identified loop interactions is presented

  20. ENHANCING NETWORK SECURITY USING 'LEARNING-FROM-SIGNALS' AND FRACTIONAL FOURIER TRANSFORM BASED RF-DNA FINGERPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, Mark A [ORNL; Bobrek, Miljko [ORNL; Farquhar, Ethan [ORNL; Harmer, Paul K [Air Force Institute of Technology; Temple, Michael A [Air Force Institute of Technology

    2011-01-01

    Wireless Access Points (WAP) remain one of the top 10 network security threats. This research is part of an effort to develop a physical (PHY) layer aware Radio Frequency (RF) air monitoring system with multi-factor authentication to provide a first-line of defense for network security--stopping attackers before they can gain access to critical infrastructure networks through vulnerable WAPs. This paper presents early results on the identification of OFDM-based 802.11a WiFi devices using RF Distinct Native Attribute (RF-DNA) fingerprints produced by the Fractional Fourier Transform (FRFT). These fingerprints are input to a "Learning from Signals" (LFS) classifier which uses hybrid Differential Evolution/Conjugate Gradient (DECG) optimization to determine the optimal features for a low-rank model to be used for future predictions. Results are presented for devices under the most challenging conditions of intra-manufacturer classification, i.e., same-manufacturer, same-model, differing only in serial number. The results of Fractional Fourier Domain (FRFD) RF-DNA fingerprints demonstrate significant improvement over results based on Time Domain (TD), Spectral Domain (SD) and even Wavelet Domain (WD) fingerprints.

  1. NUSS-RF: stochastic sampling-based tool for nuclear data sensitivity and uncertainty quantification

    International Nuclear Information System (INIS)

    The “blackbox” approach of stochastic sampling (SS) methods for simultaneous nuclear data uncertainty quantification is powerful except it reveals little of the individual uncertainty contributions. In this work, the SS-based tool “NUSS” (nuclear data uncertainty stochastic sampling) developed at PSI is updated to “NUSS-RF” which estimates individual nuclear data uncertainty contributions to the total output uncertainty. The new capability is based on the Random balance design and Fourier amplitude sensitivity testing methods, both belonging to the so-called global sensitivity analysis. First, the implementation of NUSS-RF is tested using a mathematical function, followed by the sensitivity and uncertainty analysis for 235U(n,γ) and 238U(n,γ) cross sections in Godiva and BWR pincell benchmarks, respectively. The results are compared to the deterministic sensitivity/uncertainty “Sandwich Rule” approach which is local. For uncorrelated inputs, both methods have the equivalent interpretation of the input uncertainty contribution (in terms of variance fraction and sensitivity index), hence producing good agreement in the results. For correlated inputs, the discrepancy between the two methods broadens with the extent of the correlations. (author)

  2. Low-level RF - Part I: Longitudinal dynamics and beam-based loops in synchrotrons

    OpenAIRE

    Baudrenghien, P.

    2012-01-01

    The low-level RF system (LLRF) generates the drive sent to the high-power equipment. In synchrotrons, it uses signals from beam pick-ups (radial and longitudinal) to minimize the beam losses and provide a beam with reproducible parameters (intensity, bunch length, average momentum and momentum spread) for either the next accelerator or the physicists. This presentation is the first of three: it considers synchrotrons in the lowintensity regime where the voltage in the RF cavity is not influen...

  3. Evaluation of a RF-Based Approach for Tracking UF6 Cylinders at a Uranium Enrichment Plant

    International Nuclear Information System (INIS)

    Approved industry-standard cylinders are used globally to handle and store uranium hexafluoride (UF6) feed, product, tails, and samples at uranium enrichment plants. The International Atomic Energy Agency (IAEA) relies on time-consuming physical inspections to verify operator declarations and detect possible diversion of UF6. Development of a reliable, automated, and tamper-resistant system for near real-time tracking and monitoring UF6 cylinders (as they move within an enrichment facility) would greatly improve the inspector function. This type of system can reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a proof-of-concept approach that was designed to evaluate the feasibility of using radio frequency (RF)-based technologies to track individual UF6 cylinders throughout a portion of their life cycle, and thus demonstrate the potential for improved domestic accountability of materials, and a more effective and efficient method for application of site-level IAEA safeguards. The evaluation system incorporates RF-based identification devices (RFID) which provide a foundation for establishing a reliable, automated, and near real-time tracking system that can be set up to utilize site-specific, rules-based detection algorithms. This paper will report results from a proof-of-concept demonstration at a real enrichment facility that is specifically designed to evaluate both the feasibility of using RF to track cylinders and the durability of the RF equipment to survive the rigors of operational processing and handling. The paper also discusses methods for securely attaching RF devices and describes how the technology can effectively be layered with other safeguard systems and approaches to build a robust system for detecting cylinder diversion. Additionally, concepts for off

  4. 15158A SP6T RF switch based on IBM SOI CMOS technology

    Science.gov (United States)

    Zhiqun, Cheng; Guoguo, Yan; Wayne, Ni; Dandan, Zhu; Hannah, Ni; Jin, Li; Shuai, Chen; Guohua, Liu

    2016-05-01

    This paper presents the design of single-pole six-throw (SP6T) RF switch with IBM 0.18 μm SOI CMOS technology, which can be widely used in a wireless communication system with its high performance and low cost. The circuit is designed and simulated by using an idea that the total load is divided into six branches and SOI special structures. The insertion loss is less than 0.6 dB, isolation is more than 30 dB, the input power P0.1dB for 0.1 dB compression point is more than 37.5 dBm, IIP3 is more than 70 dBm, the 2nd and the 3rd harmonic compressions are more than 96 dBc, and the control voltage is (+2.46 V, 0, ‑2.46 V) in the frequency from 0.1 to 2.7 GHz. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001).

  5. RF system for a 30 GHz, 5 TeV linear collider based on conventional technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.; Raubenheimer, T.; Ruth, R.D.

    1997-07-01

    In order that it may be built within a reasonable length and with reasonable ac power consumption, a 5 TeV linear collider must employ an accelerating gradient and rf frequency which are both higher than for present 1 TeV collider designs. The required rf power per meter, which will also be higher than for 1 TeV designs, can be provided either by relatively conventional rf technology or by a two-beam scheme such as that proposed for CLIC. In this paper the first alternative, a 30 GHz rf system employing microwave tube power sources together with rf pulse compression, is described which produces an accelerating gradient on the order of 200 MV per meter. Limitations on the peak power that can be obtained from conventional klystrons as a function of frequency are discussed; it is found that such klystrons are only marginally adequate as a power source at 30 GHz. Several alternative rf sources, such as multiple-beam klystrons, sheet-beam klystrons, gyroklystrons and annular-beam ubitrons are described which are capable of providing the required power, after pulse compression, of about 600 MW per meter.

  6. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  7. Commissioning experience of 31.6 MHz 2 kW solid state RF amplifier for Indus-1

    International Nuclear Information System (INIS)

    Indus-1 450 MeV, 100 mA synchrotron radiation source uses 31.6 MHz RF system to generate sufficient accelerating field and provide beam power to compensate synchrotron radiation losses. Total RF power requirement for cavity gap voltage production and synchrotron loss compensation is 1.6 kW. RF amplifier system of Indus-1 SRS was earlier based on tetrode tube. The need to replace tetrode tube based amplifier was arisen due to its non availability. Hence 2 kW, 31.6 MHz Solid state RF amplifier was developed, installed and commissioned in Indus-1 RF system. The amplifier consists of 250 watts MOSFET based RF amplifier module combined using high power coaxial cable based RF power combiners along with upgraded interlocks system for protection of RF system. This paper will present the solid paper amplifier based Indus-1 RF system deployment and testing. The amplifier was rigorously tested in lab and then installed in Indus-1 ring area. Different safety interlock of RF system was incorporated and remote operation from the control room was insured. RF radiation survey was carried out and RF radiations were found well below the harmful radiation range. The amplifier was installed in March 2012 and commissioned with Indus-1 SRS successfully. Since then it is being regularly used in for beam current operation more than 100 mA at 450 MeV. The results of RF system operation in Indus-1 will also be presented. (author)

  8. Repetitive sub-gigawatt rf source based on gyromagnetic nonlinear transmission line.

    Science.gov (United States)

    Romanchenko, Ilya V; Rostov, Vladislav V; Gubanov, Vladimir P; Stepchenko, Alexey S; Gunin, Alexander V; Kurkan, Ivan K

    2012-07-01

    We demonstrate a high power repetitive rf source using gyromagnetic nonlinear transmission line to produce rf oscillations. Saturated NiZn ferrites act as active nonlinear medium first sharpening the pumping high voltage nanosecond pulse and then radiating at central frequency of about 1 GHz: shock rise time excites gyromagnetic precession in ferrites forming damping rf oscillations. The optimal length of nonlinear transmission line was found to be of about 1 m. SINUS-200 high voltage driver with Tesla transformer incorporated into pulse forming line has been designed and fabricated to produce bursts of 1000 pulses with 200 Hz repetition rate. A band-pass filter and mode-converter have been designed to extract rf pulse from low-frequency component and to form TE(11) mode of circular waveguide with linear polarization. A wide-band horn antenna has been fabricated to form Gaussian distribution of radiation pattern. The peak value of electric field strength of a radiated pulse at the distance of 3.5 m away from antenna is measured to be 160 kV/m. The corresponding rf peak power of 260 MW was achieved. PMID:22852710

  9. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Surmenev, R.A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmeneva, M.A.; Mukhametkaliyev, T. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Loza, K.; Prymak, O.; Epple, M. [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2015-02-28

    Highlights: • A biocomposite of hydroxyapatite film and silver nanoparticles (AgNPs) was tested. • The concentration of the released silver in phosphate or acetate buffer was studied. • The concentration and release rate of AgNPs can be controlled in a tailored manner. - Abstract: In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential −21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL{sup −1} and 0.54 ± 0.02 μg mL{sup −1} for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect.

  10. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • A biocomposite of hydroxyapatite film and silver nanoparticles (AgNPs) was tested. • The concentration of the released silver in phosphate or acetate buffer was studied. • The concentration and release rate of AgNPs can be controlled in a tailored manner. - Abstract: In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential −21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL−1 and 0.54 ± 0.02 μg mL−1 for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect

  11. Precision master trigger system for SLC based on the accelerator rf drive system

    International Nuclear Information System (INIS)

    A new trigger system consisting of a single 476 MHz rf doublet pulse superimposed on the main 476 MHz rf Drive Line signal that transits the 3 km accelerator has been implemented and is working well. This paper describes the general concept of this system, outlines the operation of the main master trigger generator, the fiducial (476 MHz doublet) generator, and the fiducial pickoff system. A companion paper by Paffrath et al describes the counter electronics that produces precision timed triggers for all SLC operations along the accelerator

  12. Grain size and stoichiometry control over RF-sputtered multiferroic BiFeO3 thin films on silicon substrates

    International Nuclear Information System (INIS)

    This work reports the morphological and chemical characterization of multiferroic BiFeO3 polycrystalline thin films grown on Si(111) by RF-sputtering. Results are shown for a large set of samples and a wide array of experimental techniques, including imaging (atomic/piezoresponse force microscopy) and spectroscopic (μ-Raman, X-ray photoemission, X-ray diffraction) probes. Through growth and post-growth annealing treatment, a fine control over stoichiometry, grain size, grain orientation, crystal order and surface roughness is achieved. In particular, the grain size can be tailored from nanocrystals to large micrometric plates as a function of the annealing temperature. For the optimal stoichiometric sample, an additional X-ray absorption and magnetic circular dichroism analysis has been carried out, which provides high quality spectra comparable with epitaxial films and further proves the expected strong local antiferromagnetic order. - Highlights: • We show the growth of polycristalline multiferroic BiFeO3 on Si(111) by RF-sputtering. • Multi-technique (AFM/PFM,XPS,XRD,XAS,XMCD,Raman) characterization is given. • Crystal size, homogeneity and chemistry are tailored by growth or post-growth annealing. • In optimal conditions, piezoelectricity, ferroelectricity and magnetism are found

  13. FPGA based Smart Wireless MIMO Control System

    International Nuclear Information System (INIS)

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input and Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively

  14. FPGA based Smart Wireless MIMO Control System

    Science.gov (United States)

    Usman Ali, Syed M.; Hussain, Sajid; Akber Siddiqui, Ali; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-12-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input & Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively.

  15. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  16. Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...

  17. COMPUTER BASED ENVIRONMENT CONTROLS

    OpenAIRE

    Macoveiciuc Pastorel

    2011-01-01

    The aim of these notes is to give an overview of the main activities of computer based activities controls. The basic principles of computer controls should be common to all sectors and to most types of hardware and software. The absence of a common definition of computer control may, in part, be due to the relative newness of computer controls. A key feature of many organisations today is change. Although not necessarily the driver of change, IT is invariably an intrinsec component and much ...

  18. A short report on voltage-to-frequency conversion for HISTRAP RF system tuning control loops

    International Nuclear Information System (INIS)

    One of the requirements of the HISTRAP RF accelerating system is that the frequency of the accelerating voltage for the cavity must keep in step with the change in the magnetic field. As the energy of the particle increases, the magnetic field is increased to keep the radius of the particle orbit constant. At the same time, the frequency of the electric field must be changed to insure that it is synchronized with the angular movement of the particle. So we need to generate the frequency of the accelerating voltage in relation to the magnetic field. The frequency generation can be accomplished in two stages. The first stage of frequency generation consists of measuring the magnetic field in terms of voltage which is already developed. The second stage is to convert this voltage into frequency. Final frequency precision can be achieved by deriving a frequency-correcting signal from the beam position. This project is concerned with generating the frequency from the analog voltage. The speed of response required will place very stringent requirements on both hardware and software. Technology is available to carry out this task. A hardware configuration has been established and software has been developed. In the following section, we describe the implementation strategy, the hardware configuration, and the desired specifications. Next, we present the software developed, results obtained, along with capabilities and limitations of the system. Finally, we suggest alternate solutions to overcome some of the limitations toward meeting our goal. In the appendices, we include program listings

  19. Effects of RF/MW Exposure from Mobile-phone Base-Stations on the Growth of Green Mint Plant using Chl a Fluorescence Emission

    OpenAIRE

    S. T. Kafi; Ahmed, A. M.; M. K. Sabah-Alkhair; Mohamed, D. A.; R.S. Ahmed; Z. O. Hassaan

    2014-01-01

    We report on the effects of RF/MW on plants.Green Mint plant exposed to different levels ofradiation (from 0.5 to 10.5 μW/cm2) for thispurpose. A USB2000 spectrophotometer wasused to record fluorescence signals from intactleaves.Spectroscopic data (P.I.R and A.R)together with vegetative data (leafdimensions and weight), revealed stressingeffects on plant due to RF/MW in all groupsexcept the control which was free of exposure.

  20. A SILICON LDMOS BASED RF POWER AMPLIFIER FOR WIRELESS BASE STATION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Thiyagarajan Krishnan

    2013-10-01

    Full Text Available Radio Frequency Power amplifier is one of the essential module in the transmission chain of wireless Base stations. There is always a trade-off exists between power efficiency and linearity of the power amplifier. The design of power amplifier using LDMOS based active devices will give cost-effective solution. This work presents the design of a Class A power amplifier for unlicensed ISM band wireless Base station requirements. The design is carried out using Si-LDMOS (Silicon - Laterally Diffused Metal Oxide Semiconductor technology and is built on Epoxy-FR4 (Flame Retardant, woven glass reinforced epoxy resin board with a dielectric constant of 4.6 and substrate thickness of 1.6 mm. The amplifier design uses Free scale Si-LDMOS MW6S004NT1 transistor model in Agilent’s Advanced Design System (ADS 2011. The simulation was carried out to analyze the behaviour of power amplifier in the 2.4GHz ISM band. The simulated results has shown an acceptable behaviour with a gain of 16.558 dB, power added efficiency of 61.897% at 2.4 GHz, which allow the use of the device in the wireless base station application requirements.

  1. Hilbert Transform based Quadrature Hybrid RF Photonic Coupler via a Micro-Resonator Optical Frequency Comb Source

    CERN Document Server

    Nguyen, Thach G; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  2. DSP-based Mitigation of RF Front-end Non-linearity in Cognitive Wideband Receivers

    Science.gov (United States)

    Grimm, Michael; Sharma, Rajesh K.; Hein, Matthias A.; Thomä, Reiner S.

    2012-09-01

    Software defined radios are increasingly used in modern communication systems, especially in cognitive radio. Since this technology has been commercially available, more and more practical deployments are emerging and its challenges and realistic limitations are being revealed. One of the main problems is the RF performance of the front-end over a wide bandwidth. This paper presents an analysis and mitigation of RF impairments in wideband front-ends for software defined radios, focussing on non-linear distortions in the receiver. We discuss the effects of non-linear distortions upon spectrum sensing in cognitive radio and analyse the performance of a typical wideband software-defined receiver. Digital signal processing techniques are used to alleviate non-linear distortions in the baseband signal. A feed-forward mitigation algorithm with an adaptive filter is implemented and applied to real measurement data. The results obtained show that distortions can be suppressed significantly and thus increasing the reliability of spectrum sensing.

  3. Low-level RF - Part I: Longitudinal dynamics and beam-based loops in synchrotrons

    CERN Document Server

    Baudrenghien, P

    2011-01-01

    The low-level RF system (LLRF) generates the drive sent to the high-power equipment. In synchrotrons, it uses signals from beam pick-ups (radial and longitudinal) to minimize the beam losses and provide a beam with reproducible parameters (intensity, bunch length, average momentum and momentum spread) for either the next accelerator or the physicists. This presentation is the first of three: it considers synchrotrons in the lowintensity regime where the voltage in the RF cavity is not influenced by the beam. As the author is in charge of the LHC LLRF and currently commissioning it, much material is particularly relevant to hadron machines. A section is concerned with radiation damping in lepton machines.

  4. Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits

    International Nuclear Information System (INIS)

    This special issue presents devices and the results of a tunable microwave microsystem associating RF circuits and microfluidic components. A channel is buried inside the substrate of a microstrip waveguide. This channel is located beneath a resonant stub. With this configuration a microfluidic passive tunable filter can be fabricated. Dielectric fluids are used to disrupt the electric field in a microstrip structure and thus modify the effective permittivity of the substrate. In this work, a notch filter is realized with an open-ended quarter-wavelength stub placed on top of a hollow SU-8 structure. This structure offers two advantages: channels can easily be fabricated and a reduction of SU8 losses. The filter shows a good performance; the initial cut-off frequency of 25 GHz shifts more than 20% when deionized water is used in fluidic channels. And the shape of RF function is kept throughout the range. (paper)

  5. Design of Wireless Temperature Measuring System Based on the nRF24l01

    Directory of Open Access Journals (Sweden)

    Song Liu

    2016-02-01

    Full Text Available Wireless data transmission system which composed of wireless data transmission device nRF24L01, temperature sensor [DS18B20,] and STC89C52. The system can collect and transmit temperature information and display it on LED, when the temperature excess the set value, the system will alarm by the buzzer. The hardware and software of the design are explained in detail. Finally, the application of this system in wireless temperature collection system is discussed.

  6. Development of the rf system at the KEK Proton Synchrotron

    International Nuclear Information System (INIS)

    The improvement of the KEK-PS RF system is explained. The feedback loops in the rf system and the bunch motion are described in terms of control theory. Recent operation of the rf system is also summarized. (author)

  7. Measurements of RF/MW radiation emitted from selected mobile-phone base-stations in Sudan

    International Nuclear Information System (INIS)

    Scattering of mobile-phone base-stations within populated areas is a source of some misscomfortableness to many people. As there is no one agreed on safety level for the MPE for RF/MW all over the world, measurements of radiation emitted from base-stations is a necessity. In this work we screened out some mobile-phone base-stations inside and outside Khartoum city in Sudan. Measurements were done indoor and outdoor to maximum horizontal distance of about 300 m from the base of the base-stations. Results obtained were then compared to the maximum and minimum MPE values admitted in different countries in the world. The maximum MPE value (i.e- 0.57 mW/cm2) consider only the thermal effects of the RF/MW, while other values tend to reduce the exposure limits to as minimum as possible for safety considerations (considering non-thermal effects). Some of the values obtained were consistent with some reported biological effects. We recommended the removal of some base-stations from sensitive areas like schools, kindergardens, hostels, hospitals, etc. (author)

  8. Development and deployment of CW and pulsed digital low level RF systems for accelerators at RRCAT

    International Nuclear Information System (INIS)

    Indus-2, a 2.5 GeV synchrotron radiation source has four 505.8 MHz RF stations to increase the electron beam energy and compensate the synchrotron radiation losses. Each RF station consists of RF cavity, high power RF amplifier and Low Level RF (LLRF) system operating in CW mode. LLRF control system is used to keep the amplitude and phase of the RF field stable in the RF cavity. The LLRF system of Indus-2 was based on analogue technology and had its inherent limitations. In last few years significant up gradation has been done in Indus-2 RF system that includes development, installation and commissioning of CW, Digital LLRF systems in all four RF stations. These Digital LLRF systems have replaced analogue LLRF systems resulting in improved performance of Indus-2 by providing better RF cavity field stability. Digital LLRF systems are more reliable, adaptable, reproducible, precise and immune to noise and drift errors. All these properties play important role in enhancing the quality and increasing the availability of the synchrotron radiation for the users. In this paper, we shall discuss the development, installation and commissioning of CW Digital LLRF systems in Indus-2 and development of pulsed Digital LLRF system for IRFEL. The results of their deployment and experience of optimization for Klystron and solid state RF amplifier will also be presented

  9. RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, Chris A [ORNL; Kovacic, Donald N [ORNL; Morgan, Jim [Innovative Solutions; Younkin, James R [ORNL; Carrick, Bernie [USEC, Inc.; Ken, Whittle [USEC, Inc.; Johns, R E [Pacific Northwest National Laboratory (PNNL)

    2008-09-01

    Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF{sub 6} cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms, and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF{sub 6}) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF{sub 6} cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to

  10. RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY

    International Nuclear Information System (INIS)

    Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF6) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF6 cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms, and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF6) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF6 cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to add tamper

  11. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].

    Science.gov (United States)

    Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao

    2016-03-01

    Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period. PMID:27400527

  12. RF measurement made over 24 hours around mobile telephone base station (MTBS) in Malaysia

    International Nuclear Information System (INIS)

    The fact that so many people use of mobile phone has been accompanied by public debate about possible adverse effects on human health. The concern relate to the emissions of radiofrequency (RF) radiation from the mobile phone and from the MTBS that receive and transmit the signal. A study had been carried out by Nuclear Malaysia with aims to assess the levels of radiofrequency radiation and to analyze the radiation pattern against time for period of 24 hours. The finding of this study confirms that the MTBS transmit radiofrequency radiation with low level and vary against time. (Author)

  13. RF strip-line anodes for Psec large-area MCP-based photodetectors

    International Nuclear Information System (INIS)

    We have designed and tested economical large-area RF strip-line anodes made by silk-screening silver onto inexpensive plate glass, for use in microchannel plate photodetectors to provide measurements of time, position, integrated charge, and pulse waveform shapes. The 229-mm-long anodes are modular, and can be attached in series for economy in electronics channel-count. Measurements of the anode impedance, bandwidth and cross-talk due to inter-strip coupling are presented. The analog bandwidth, a key determinant of timing resolution, decreases from 1.6 GHz to 0.4 GHz as the anode length increases from 289 mm to 916 mm

  14. Computational Benefits Using an Advanced Concatenation Scheme Based on Reduced Order Models for RF Structures

    CERN Document Server

    Heller, Johann; Van Rienen, Ursula; 10.1016/j.phpro.2015.11.060

    2015-01-01

    The computation of electromagnetic fields and parameters derived thereof for lossless radio frequency (RF) structures filled with isotropic media is an important task for the design and operation of particle accelerators. Unfortunately, these computations are often highly demanding with regard to computational effort. The entire computational demand of the problem can be reduced using decomposition schemes in order to solve the field problems on standard workstations. This paper presents one of the first detailed comparisons between the recently proposed state-space concatenation approach (SSC) and a direct computation for an accelerator cavity with coupler-elements that break the rotational symmetry.

  15. Assessment and comparison of total RF-EMF exposure in femto-cell and macrocell base station scenarios

    International Nuclear Information System (INIS)

    The indoor coverage of a mobile service can be drastically improved by deployment of an indoor femto-cell base station (FBS). However, the impact of its proximity on the total exposure of the human body to radio-frequency (RF) electromagnetic fields (EMFs) is unknown. Using a framework designed for the combination of near-field and far-field exposure, the authors assessed and compared the RF-EMF exposure of a mobile-phone (MP) user that is either connected to an FBS or a conventional macrocell base station while in an office environment. It is found that, in average macrocell coverage and MP use-time conditions and for Universal Mobile Telecommunications System technology, the total exposure can be reduced by a factor of 20-40 by using an FBS, mostly due to the significant decrease in the output power of the MP. In general, the framework presented in this study can be used for any exposure scenario, featuring any number of technologies, base stations and/or access points, users and duration. (authors)

  16. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  17. Application of an RF Biased Langmuir Probe to Etch Reactor Chamber Matching, Fault Detection and Process Control

    Science.gov (United States)

    Keil, Douglas; Booth, Jean-Paul; Benjamin, Neil; Thorgrimsson, Chris; Brooks, Mitchell; Nagai, Mikio; Albarede, Luc; Kim, Jung

    2008-10-01

    Semiconductor device manufacturing typically occurs in an environment of both increasing equipment costs and per unit sale price shrinkage. Profitability in such a conflicted economic environment depends critically on yield, throughput and cost-of-ownership. This has resulted in increasing interest in improved fault detection, process diagnosis, and advanced process control. Achieving advances in these areas requires an integrated understanding of the basic physical principles driving the processes of interest and the realities of commercial manufacturing. Following this trend, this work examines the usefulness of an RF-biased planar Langmuir probe^1. This method delivers precise real-time (10 Hz) measurements of ion flux and tail weighted electron temperature. However, it is also mechanically non-intrusive, reliable and insensitive to contamination and deposition on the probe. Since the measured parameters are closely related to physical processes occurring at the wafer-plasma interface, significant improvements in process control, chamber matching and fault detection are achieved. Examples illustrating the improvements possible will be given. ^1J.P. Booth, N. St. J. Braithwaite, A. Goodyear and P. Barroy, Rev.Sci.Inst., Vol.71, No.7, July 2000, pgs. 2722-2727.

  18. Experimental study of bleeding control on liver biopsy in rabbit: N-butyl 2-cyanoacrylate(NBCA) injection and RF electrocauterization

    International Nuclear Information System (INIS)

    To evaluate the hemostatic effect of N-butyl 2-cyanoacrylate(NBCA) injection and RF electrocauterization of the tract after fine needle biopsy of the liver, and the histopathologic changes of the liver. Three lobes of rabbit liver were selected and separately punctured four times with 21 gauge biopsy needles. According to the hemostatic procedure on fine needle biopsy, three groups (1, 2, 3) were found : group 1, in which there was no maneuver for bleeding control, was the control group; group 2, in which NBCA was injected into the puncture tract while slowly removing the needle; group 3, in which RF electrocauterization of the tract was carried out. After completely removing the needle, each group was evaluated for amount of bleeding and histologic change. The amount of bleeding was 0.407gm ±0.245 in group 1, 0.028gm ± 0.036 in group 2 and 0.035gm ±0.028 in group 3. As compared with the control group(group 1), injecting NBCA into the biopsy tract(P=0.0002) and RF electrocauterization of the tract(P=0.0003) significantly reduced the amount of bleeding after liver biopsy. The amount of bleeding was not statistically different between group 2 and 3, however (P=0.58). In Group 1, the tract was fully filled with blood. Group 2 showed NBCA embolized in the biopsy tract, adhering to hepatocytes and mixed with blood; small vessels adjacent to the puncture tract were filled with NBCA. Group 3 showed tissue degeneration, including necrosis of hepatocytes, vacuolation and neutrophil infiltration. Injection of NBCA and RF electrocauterization of the tract after puncture of the liver for biopsy efficiently controlled bleeding. In particular, the efficiency of NBCA injection was due to its effect of plugging the tract and causing the embolization of adjacent small vessels. With regard to procedural handling, RF electrocauterization of the tract is superior to injection of NBCA

  19. Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Application and optimization of reactive RF magnetron sputtering for homogeneous nanoporous ZnO thin film formation. • Exploiting nanoporous ZnO thin film as a good porous framework with large surface area/volume for having stable immobilized enzyme with minimum loss of activity. • Application of impedimetric assessment for urea biosensing due to its rapidity, sensitivity, and repeatability. - Abstract: Uniform sputtered nanoporous zinc oxide (Nano-ZnO) thin film on the conductive fluorinated-tin oxide (FTO) layer was applied to immobilize urease enzyme (Urs) for urea detection. Highly uniform nanoporous ZnO thin film were obtained by reactive radio frequency (RF) magnetron sputtering system at the optimized instrumental deposition conditions. Characterization of the surface morphology and roughness of ZnO thin film by field emission-scanning electron microscopy (FE-SEM) exhibits cavities of nanoporous film as an effective biosensing area for enzyme immobilization. Step by step monitoring of FTO/Nano-ZnO/Urs biosensor fabrication were performed using electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Fabricated FTO/Nano-ZnO/Urs biosensor was used for urea determination using EIS experiments. The impedimetric results show high sensitivity for urea detection within 0.83–23.24 mM and limit of detection as 0.40 mM

  20. Image-based modeling and characterization of RF ablation lesions in cardiac arrhythmia therapy

    Science.gov (United States)

    Linte, Cristian A.; Camp, Jon J.; Rettmann, Maryam E.; Holmes, David R.; Robb, Richard A.

    2013-03-01

    In spite of significant efforts to enhance guidance for catheter navigation, limited research has been conducted to consider the changes that occur in the tissue during ablation as means to provide useful feedback on the progression of therapy delivery. We propose a technique to visualize lesion progression and monitor the effects of the RF energy delivery using a surrogate thermal ablation model. The model incorporates both physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution in the tissue and geometry of the generated lesion in near real time. The ablation model has been calibrated and evaluated using ex vivo beef muscle tissue in a clinically relevant ablation protocol. To validate the model, the predicted temperature distribution was assessed against that measured directly using fiberoptic temperature probes inserted in the tissue. Moreover, the model-predicted lesions were compared to the lesions observed in the post-ablation digital images. Results showed an agreement within 5°C between the model-predicted and experimentally measured tissue temperatures, as well as comparable predicted and observed lesion characteristics and geometry. These results suggest that the proposed technique is capable of providing reasonably accurate and sufficiently fast representations of the created RF ablation lesions, to generate lesion maps in near real time. These maps can be used to guide the placement of successive lesions to ensure continuous and enduring suppression of the arrhythmic pathway.

  1. Erbium-Doped Amorphous Carbon-Based Thin Films: A Photonic Material Prepared by Low-Temperature RF-PEMOCVD

    Directory of Open Access Journals (Sweden)

    Hui-Lin Hsu

    2014-02-01

    Full Text Available The integration of photonic materials into CMOS processing involves the use of new materials. A simple one-step metal-organic radio frequency plasma enhanced chemical vapor deposition system (RF-PEMOCVD was deployed to grow erbium-doped amorphous carbon thin films (a-C:(Er on Si substrates at low temperatures (<200 °C. A partially fluorinated metal-organic compound, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5- octanedionate Erbium(+III or abbreviated Er(fod3, was incorporated in situ into a-C based host. Six-fold enhancement of Er room-temperature photoluminescence at 1.54 µm was demonstrated by deuteration of the a-C host. Furthermore, the effect of RF power and substrate temperature on the photoluminescence of a-C:D(Er films was investigated and analyzed in terms of the film structure. Photoluminescence signal increases with increasing RF power, which is the result of an increase in [O]/[Er] ratio and the respective erbium-oxygen coordination number. Moreover, photoluminescence intensity decreases with increasing substrate temperature, which is attributed to an increased desorption rate or a lower sticking coefficient of the fluorinated fragments during film growth and hence [Er] decreases. In addition, it is observed that Er concentration quenching begins at ~2.2 at% and continues to increase until 5.5 at% in the studied a-C:D(Er matrix. This technique provides the capability of doping Er in a vertically uniform profile.

  2. Multi-mode stepper motor controller-driver for RF cavity adjustment of LINAC resonator

    International Nuclear Information System (INIS)

    Multi-mode stepper motor controller-driver accepts input from three different sources to control the stepper motors which are used to operate tuner and coupler for LINAC booster. User can operate this system in remote mode either by CAMAC MFC CM41 module or via RS-232 connectivity apart from direct operation in local mode through the front panel keypad. The system is designed to drive four stepper motors, one at a time. The speed, direction and selection of the motor are user programmable. The alphanumeric LCD panel displays the current motor number and its rotation continuously irrespective of the mode of control. Emphasis is given on generation of high torque at higher speed of motor and flexibility of operation for multiple modes of usages. Improved design considerations have minimized heat dissipation and thereby made the unit very compact. (author)

  3. Running experience with the laser system for the RF gun based injector at the TESLA Test Facility linac

    International Nuclear Information System (INIS)

    During the run 1998/1999, the new injector based on a laser driven RF gun was brought into operation at the TESLA Test Facility Linac (TTFL) at DESY. A key element of the injector is the laser system to illuminate the RF gun cathode to produce short (ps) electron bunches of high charge (nC). This electron beam is used to perform various experiments for the future TESLA linear collider, and to drive the free electron laser TTF-FEL. The laser design is challenged by the unusual requirement of providing synchronized ps UV pulses in 0.8 ms long trains with ambitious stability requirements. The design was also driven by the requirement to have an operational system with a high reliability. The system is based on a mode locked solid-state (Nd:YLF) pulse train oscillator followed by a linear amplifier chain. In a first phase, a laser pulse rate of 1 MHz within the train has been realized, 2.25 MHz and 9 are in preparation. Performance and running experiences with the laser system during the last TTF run are reported

  4. Realization of digital AFC and AVC based on beam loading in RF system of a petal-shaped E-beam irradiator

    International Nuclear Information System (INIS)

    In this paper, we report the coupling system of RF power, accelerating cavity and beam acceleration of the petal-shaped accelerator developed at Ningbo Superpower High-tech Co., Ltd. The stability requirement on amplitude-frequency characteristics are derived by considering the beam loading and cavity detuning. The implementation scheme of low level controller based on digital AFC and AVC is proposed. The working process and implementation method of AFC and PID algorithm are described. Test results show that the stability index of cavity voltage is less than 0.8%, and the digital AFC and AVC closed-loop function has been proved by a 24-h test operation of the system. (authors)

  5. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  6. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  7. Better dynamic closed loop control of the PSB rf accelerating system

    Energy Technology Data Exchange (ETDEWEB)

    Gelato, G.; Magnani, L.

    1977-06-01

    The introduction of pulse-to-pulse modulation (PPM) in the Proton Synchrotron Booster (PSB) requires that a large number of settings be changed on a pulse-to-pulse basis, imposing a very heavy load on the control system and the operators. Many systems, originally not designed for this type of operation, have to be modified either to accept new settings every cycle (values to be adjusted by the operators, switching to be performed by the control system), or to be self-adaptive, i.e., automatically adjusting to the required conditions. The second approach seems preferable, if feasible without excessive increase in complexity or decrease in reliability. In some cases it was actually possible to reduce the complexity and increase the reliability. The modifications in the beam control system are discussed. While reviewing the system's design, additional improvements were found to be possible at moderate cost: they were also, or will be, introduced, and are mentioned accordingly. Mention is made also of a relatively simple method of longitudinal stabilization which has been tested at the PSB.

  8. Better dynamic closed loop control of the PSB rf accelerating system

    International Nuclear Information System (INIS)

    The introduction of pulse-to-pulse modulation (PPM) in the Proton Synchrotron Booster (PSB) requires that a large number of settings be changed on a pulse-to-pulse basis, imposing a very heavy load on the control system and the operators. Many systems, originally not designed for this type of operation, have to be modified either to accept new settings every cycle (values to be adjusted by the operators, switching to be performed by the control system), or to be self-adaptive, i.e., automatically adjusting to the required conditions. The second approach seems preferable, if feasible without excessive increase in complexity or decrease in reliability. In some cases it was actually possible to reduce the complexity and increase the reliability. The modifications in the beam control system are discussed. While reviewing the system's design, additional improvements were found to be possible at moderate cost: they were also, or will be, introduced, and are mentioned accordingly. Mention is made also of a relatively simple method of longitudinal stabilization which has been tested at the PSB

  9. Physical design of FEL injector based on the performance-enhanced EC-ITC RF gun

    International Nuclear Information System (INIS)

    To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ∼200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ∼14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start-to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably. (authors)

  10. Physical design of FEL injector based on performance-enhanced EC-ITC RF gun

    CERN Document Server

    Hu, Tong-ning; Pei, Yuan-ji; Li, Ji; Qin, Bin

    2013-01-01

    To meet requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. Thermionic cathode was chosen to emit electrons instead of photo-cathode with complex structure and high cost. The effective bunch charge was improved to ~200pC by adopting enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches, and back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14MeV, while focusing system was applied for emittance suppressing and bunch state maintenance. Physical design and beam dynamics of key components for FEL injector were analyzed. Furthermore, start-to-end simulations with multi-pulses were performed by using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with low energy spread and emittance could be obtained stably.

  11. Metal–insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    Science.gov (United States)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal–insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  12. Risk-based configuration control

    International Nuclear Information System (INIS)

    The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)

  13. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    Science.gov (United States)

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680

  14. Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform

    Science.gov (United States)

    Anand, Sunny; Sarin, R. K.

    2016-09-01

    In this paper for the first time, InAs based doping-less Tunnel FET is proposed and investigated. This paper also demonstrates and discusses the impact of gate stacking (SiO2 + HfO2) with equivalent oxide thickness EOT = 0.8 for analog/RF performance. The charge plasma technique is used to form source/drain region on an intrinsic InAs body by selecting proper work function of metal electrode. The paper compares different combinations of gate stacking (SiO2 and HfO2) on the basis of different analog and RF parameters such as transconductance (gm), transconductance to drive current ratio (gm/ID), output conductance (gd), intrinsic gain (AV), total gate capacitance (Cgg) and unity-gain cutoff frequency (fT). The proposed device produces an ON state current of ION ∼6 mA along with ION/IOFF ∼1012, point subthreshold slope (SS ∼ 1.9 mV/dec), average subthreshold slope (AV-SS ∼ 14.2 mV/dec) and cut-off frequency in Terahertz. The focus of this work is to eliminate the fabrication issues and providing the enhanced performance compared to doped device.

  15. FEL injector control system on the base of EPICS

    CERN Document Server

    Salikova, T V; Kurkin, G Ya; Oreshkov, A D; Scheglov, M A; Tribendis, A G

    2001-01-01

    The control system of the 1.5 MeV FEL injector is built on the base of ported EPICS. It uses low-cost hardware: personal computers with the processor Intel x86 and CAMAC equipment produced by our institute. At present time, the distributed control system includes one Pentium at OPerator Interface (OPI) level and two IOC (Input Output Controllers) under supervision of the real time operating system LynxOS/x86 at the low-level. Each IOC is used for monitoring of autonomous parts of the injector. The first IOC operates the Radio Frequency (RF) system. The second IOC operates the injector equipment

  16. Assessment of RF radiation levels in the vicinity of 60 GSM mobile phone base stations in Iran

    International Nuclear Information System (INIS)

    Increasing development of mobile communication infrastructure while enhancing availability of the technology raises concerns among the public, who see more cell towers erected each day, about possible health effects of electromagnetic radiations. Thereon, a survey of radio-frequency radiation from 60 GSM base stations was carried out in Tehran, Iran at several places mostly located in major medical and educational centres. Measurements were performed at 15 locations near each base station site, i.e. 900 locations in total. Since there are other RF radiation sources such as broadcasting services whose carrier frequencies are <3 GHz, the whole band of 27 MHz to 3 GHz has been assessed for hazardous exposures as well. The results were compared with the relevant guideline of International Commission on Non-Ionising Radiation Protection and that of Iran, confirming radiation exposure levels being satisfactorily below defined limits and non-detrimental. (authors)

  17. Study of effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire Tunnel FET

    Science.gov (United States)

    Biswal, Sudhansu Mohan; Baral, Biswajit; De, Debashis; Sarkar, Angsuman

    2016-03-01

    In this paper, we present a simulation study to report the effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire (NW) Tunnel FET (TFET). The different RF/analog and linearity figure of merits such as gm, RO, gm*RO, fT, fmax, GBW and 1-dB compression point of a NW TFET are extracted and the influence of gate-length downscaling on these parameters is analyzed. The RF/analog performance parameters obtained from InAs TFET is compared with an InAs MOSFET of identical dimension. Results reveal that superior RF and Linearity performance was obtained with gate-length downscaling for both devices under consideration. However, advantages of achieving improved RF performance with gate-length downscaling diminishes in terms of poor analog performance with gate-length downscaling for both the devices. This clearly indicates a trade-off between the analog and RF performance of a down-scaled InAs-based NW TFET and MOSFET. The results reveal that InAs TFET provides better fT, fmax and linearity performance in the saturation region than its MOSFET counterpart. It provides a reasonable RO, gm*RO at lower values of gate-overdrive voltage as compared to the InAs MOSFET. Therefore, this paper concludes that InAs NW TFETs have enormous potential to be a promising contender to the conventional bulk MOSFETs for realization of future generation low-power analog/RF applications.

  18. Fuzzy-logic-based LLRF control for the RFT-30 cyclotron

    Science.gov (United States)

    Kong, Young-Bae; Lee, Eun-Je; Hur, Min-Goo; Park, Jeong-Hoon; Park, Yong-Dae; Yang, Seung-Dae; Jung, In-Su; Park, Yeun-Soo

    2015-10-01

    A RFT-30 cyclotron can be used for various applications such as radioisotope production and fundamental research. A low level radio frequency (LLRF) system adjusts the parameters for stable operation of the radio frequency (RF) system. It is important for the LLRF system to maintain a stable resonance condition during its operation. In this paper, we propose a fuzzy-based LLRF control for the RFT-30 cyclotron. The proposed approach stabilizes the resonance condition by moving the fine tuner based on a fuzzy logic controller (FLC). Performance results show that the FLC approach maintains a stable resonance condition for the RF system.

  19. Development of a multichannel RF field detector for the low-level RF control of the free-electron laser at Hamburg

    International Nuclear Information System (INIS)

    Modern free electron lasers produce synchrotron radiation with constantly shortening wavelengths of up to 6 nm and pulse widths of up to 100 fs. That requires a constantly increasing stability of the beam energy and arrival time of the electron beam at the undulator entrance which is situated at the end of the accelerator. At the same time, the increasing speed of digital signal processing and data acquisition facilitates new possibilities for the digital radio frequency control and field detection. In this thesis the development of a multichannel radio frequency field detector for the low level radio frequency (LLRF) control of the superconducting cavities of the Free-Electron Laser at Hamburg (FLASH) is described. The applied method of IF sampling is state of the technology and is utilized in many areas of digital communication. It is evaluated concerning its applicability for the LLRF control. Analytical and numerical investigations of the noise behavior and transport in the control loop have been accomplished to define the requirements for the measurement accuracy of the field detector that was to be developed. Therefore, simplified models of the noise behavior of each system component of the control loop, e.g. amplifier, radio frequency mixer and analog-to-digital converter, were established and subsequently assorted to a the model of the control loop. Due to the application of the vector-sum control, where several separately measured field vectors are added to a vector-sum, requirements concerning the allowable compression error of the detector nonlinearity were defined. These were investigated by analytical and numerical methods, as well. Requirements for the hardware that was to be developed were compiled from the simulation results. For the development of the field detector, a modular and EMC-compatible concept with a high-level passive front-end for an improvement of the signal-to-noise ratio was chosen. The following tests in the lab delivered the

  20. Development of a multichannel RF field detector for the low-level RF control of the free-electron laser at Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Matthias

    2008-10-15

    Modern free electron lasers produce synchrotron radiation with constantly shortening wavelengths of up to 6 nm and pulse widths of up to 100 fs. That requires a constantly increasing stability of the beam energy and arrival time of the electron beam at the undulator entrance which is situated at the end of the accelerator. At the same time, the increasing speed of digital signal processing and data acquisition facilitates new possibilities for the digital radio frequency control and field detection. In this thesis the development of a multichannel radio frequency field detector for the low level radio frequency (LLRF) control of the superconducting cavities of the Free-Electron Laser at Hamburg (FLASH) is described. The applied method of IF sampling is state of the technology and is utilized in many areas of digital communication. It is evaluated concerning its applicability for the LLRF control. Analytical and numerical investigations of the noise behavior and transport in the control loop have been accomplished to define the requirements for the measurement accuracy of the field detector that was to be developed. Therefore, simplified models of the noise behavior of each system component of the control loop, e.g. amplifier, radio frequency mixer and analog-to-digital converter, were established and subsequently assorted to a the model of the control loop. Due to the application of the vector-sum control, where several separately measured field vectors are added to a vector-sum, requirements concerning the allowable compression error of the detector nonlinearity were defined. These were investigated by analytical and numerical methods, as well. Requirements for the hardware that was to be developed were compiled from the simulation results. For the development of the field detector, a modular and EMC-compatible concept with a high-level passive front-end for an improvement of the signal-to-noise ratio was chosen. The following tests in the lab delivered the

  1. Multi-objective Optimizations of a Normal Conducting RF Gun Based Ultra Fast Electron Diffraction Beamline

    CERN Document Server

    Gulliford, C; Maxson, J; Bazarov, I

    2016-01-01

    We present the results of multi-objective genetic algorithm optimizations of a potential single shot ultra fast electron diffraction beamline utilizing a 100 MV/m 1.6 cell normal conducting rf (NCRF) gun, as well as a 9 cell 2pi/3 bunching cavity placed between two solenoids. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for a charge of 1e6 electrons. Analysis of the solutions is discussed, as are the effects of disorder induced heating. In particular, for a charge of $10^6$ electrons and final beam size greater than or equal to 25 microns, we found a relative coherence length of 0.07, 0.1, and 0.2 nm/micron for a final bunch length of approximately 5, 30, and 100 fs, respectively. These results demonstrate the viability of using geneti...

  2. Thermal management of space-based, high-power solid-state RF amplifiers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rose, M.F.; Chow, L.C.; Johnson, J.H.

    1990-08-01

    The advanced weapons concepts envisioned by the SDIO employed a wide array of highly energetic devices, which due to inefficiencies, generate large quantities of waste heat. Power and thermal management are integrally related. In the vacuum of space, disposing of waste energy is a major problem which can contribute as much as 50% to the overall spacecraft mass and volume. The problem becomes more acute as the temperature at which the energy must be rejected is lowered. In an earlier study, thermal management issues associated with megawatt class RF microwave tubes were explored to determine if there were simple, approximately mass neutral schemes which might be adapted to dispose of the waste energy generated within a tube collector operating in space. The assumptions for that study were: (1) Tubes were in the megawatt class-70% efficient for single simple collector and 90% efficient for depressed collectors, (2) On-board, super critical hydrogen was available at a pressure of 35 bars and a temperature of 35 K. (3) The largest single event run time was 500 seconds. (4) The device would be dormant for long periods of time, be required to become active in tens of seconds followed by long periods of dormancy. (5) The only allowable effluent is hydrogen. (6) System impact must be minimal.

  3. Throughput Characterization for Cooperative Wireless Information Transmission with RF Energy Harvesting-Based Relay

    Directory of Open Access Journals (Sweden)

    Yuanyuan Yao

    2016-01-01

    Full Text Available The simultaneous wireless information and power transfer (SWIPT in a cooperative relaying system is investigated, where the relay node is self-sustained by harvesting radiofrequency (RF energy from the source node. In this paper, we propose a time switching and power splitting (TSPS protocol for the cooperative system with a mobile destination node. In the first part of the transmission slot, a portion of the received signal power is used for energy transfer, and the remaining power is used for information transmission from the source to the relay. For the remaining time of the transmission slot, information is transmitted from the relay to a mobile destination node. To coordinate the wireless information and power transfer, two transmission modes are investigated, namely, relay-assisted transmission mode and nonrelay mode, respectively. Under these two modes, the outage probability and the network throughput are characterized. By joint optimization of the power splitting and the time switching ratios, we further compare the network throughput under the two transmission modes with different parameters. Results indicate that the relay-assisted transmission mode significantly improves the throughput of the wireless network.

  4. Broadband RF front-end using microwave photonics filter.

    Science.gov (United States)

    Wang, Jingjing; Chen, Minghua; Liang, Yunhua; Chen, Hongwei; Yang, Sigang; Xie, Shizhong

    2015-01-26

    We propose and demonstrate a novel RF front-end with broadened processing bandwidth, where a tunable microwave photonic filter based on optical frequency comb (OFC) is incorporated to accomplish simultaneous down-conversion and filtering. By designing additional phase shaping and time delay controlling, the frequency tunability of the system could be enhanced. More importantly, the beating interferences generated from broadband RF input could also be suppressed, which help to break the limitation on the processing bandwidth. In our experiments, a photonics RF receiver front-end for RF input with wide bandwidth of almost 20 GHz was realized using 10-GHz-space OFC, where the center frequency of the pass band signals could be tuned continuously. PMID:25835844

  5. The RF System for the International Muon Ionisation Cooling Experiment

    CERN Document Server

    Ronald, K.; Dick, A.J.; Speirs, D.C.; Moss, A.; Grant, A.; White, C.; Griffiths, S.; Stanley, T.; Li, D.; DeMello, A.J.; Virostek, S.; Moretti, A.; Pasquinelli, R.; Peterson, D.; Schultz, R.; Volk, J.; Popovic, M.; Torun, Y.; Hanlet, P.; Alsari, S.; Long, K.; Pasternak, J.; Hunt, C.; Summers, D.; Luo, T.; Smith, P.J.

    2014-01-01

    The International Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the effectiveness of ionisation cooling to reduce the phase space footprint of a charged particle beam, principally to allow the subsequent acceleration of muons for next generation colliders and/or neutrino factories. The experiment (and indeed any subsequent accelerator cooling channel based on the same principles) poses certain unusual requirements on its RF system, whilst the precision measurement of the ionisation cooling process demands special diagnostics. This paper shall outline the key features of the RF system, including the low level RF control, the power amplifier chain, distribution network, cavities, tuners and couplers, many parts of which are required to operate in a high magnetic field environment. The RF diagnostics which, in conjunction with the other MICE diagnostics, shall allow detailed knowledge of the amplitude and phase of the acceleration field during the transit of each individual muon will also ...

  6. Modeling and simulation of Inductively Coupled Plasma (ICP) generation at 2 MHz frequency for RF based H- ion source

    International Nuclear Information System (INIS)

    The RF based multicusp H- ion source with external antenna has the high operational life time and most promising method of H- ion beam current with low emittance. In this paper a 3D simulation work of ICP discharge based on Octa-pole multicusp field confine hydrogen plasma chamber in 6 turn solenoid antenna with ferrite and filter field is presented using multiphysics Comsol simulation software. The simulation was carried out for 2 MHz RF frequency and coil current of 400 A for hydrogen gas at 5.5 x 10-2 mbar gas pressure at different time periods. The distribution of plasma parameters, i.e. electron density, electron temperature; plasma potential inside the plasma chamber was obtained using 3D simulations. Field generated due to antenna, filter magnet and multi cusp configuration was also simulated and results show that ICP discharge equilibrium peak electron density of 1.85 x 1018 m-3 , which occurs near the axis of plasma chamber underneath the antenna coil. This was due to the squeezing of plasma by the joint effect of electromagnetic field generated by antenna in the presence of multicusp field due to permanent magnets. Electron temperature shows variation inside the chamber and its maximum occur near the coil body was 14 eV and around 3 eV near the axis of plasma chamber. The effective current density and magnetic field induced were maximum near the antenna coil leading to higher electron temperature. Plasma potential was maximum in the centre of plasma chamber. Results obtained were found to be in agreement with the recent results reported by Linac4 group

  7. 60kV, 10Amp DC power supply multiple input control and monitoring provision for the operation of various high power RF generation systems

    International Nuclear Information System (INIS)

    A 60 kV, 10 A DC power supply is used for testing of high power RF and microwave tubes e.g. Klystron, Gyrotron. Two 500 kW, 3.7 GHz klystrons, and one 82.6 GHz Gyrotron are located in SST1 Hall where as 200 kW; 28 GHz Gyrotron is located in Aditya Hall. The same power supply is required to operate, control and monitor various systems at different locations with easy change over from one system to other as per experimental requirements. An off line, control change over system, is designed to accomplish the above requirements, with control panels installed at desired different locations. The input (0 to 11 kV) A.C. voltage to power supply is given from a motorized voltage variation system (VVS). The control panels provide indication of A.C. input voltage to power supply from 11 kV potential transformers of VVS. In addition, the control panel is provided with 11 kV circuit breaker status indication and control i.e. Emergency OFF switch. The control panels are designed and developed indigenously which are successfully installed and are in continuous use for the safe and easy operation of different high power rf systems from the same DC power supply. The paper presents the design of the controls, monitoring and indications. Safety aspects of the system are also highlighted.

  8. 60kV, 10Amp DC power supply multiple input control and monitoring provision for the operation of various high power RF generation systems

    Science.gov (United States)

    Parmar, Kirit M.; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    A 60 kV, 10 A DC power supply is used for testing of high power RF and microwave tubes e.g. Klystron, Gyrotron. Two 500 kW, 3.7 GHz klystrons, and one 82.6 GHz Gyrotron are located in SST1 Hall where as 200 kW; 28 GHz Gyrotron is located in Aditya Hall. The same power supply is required to operate, control and monitor various systems at different locations with easy change over from one system to other as per experimental requirements. An off line, control change over system, is designed to accomplish the above requirements, with control panels installed at desired different locations. The input (0 to 11 kV) A.C. voltage to power supply is given from a motorized voltage variation system (VVS). The control panels provide indication of A.C. input voltage to power supply from 11 kV potential transformers of VVS. In addition, the control panel is provided with 11 kV circuit breaker status indication and control i.e. Emergency OFF switch. The control panels are designed and developed indigenously which are successfully installed and are in continuous use for the safe and easy operation of different high power rf systems from the same DC power supply. The paper presents the design of the controls, monitoring and indications. Safety aspects of the system are also highlighted.

  9. The TESLA RF System

    International Nuclear Information System (INIS)

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  10. The TESLA RF System

    Science.gov (United States)

    Choroba, S.

    2003-12-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ˜600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components.

  11. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  12. An ELM-resilient RF arc detection system for DIII-D based on electromagnetic and sound emissions from the arc

    International Nuclear Information System (INIS)

    Two detection methods based solely on sound and electromagnetic emissions from the arc are presented. Detection of arc induced sound signals 40 to 50 dB above background noise are observed. Detection of arc induced low radio frequency (HF) electromagnetic noise levels 20 to 60 dB above background are observed. The arc noise is randomly strongest on side A and/or B of the DIII-D rf system. The sum of these sensors correlates with tripping due to an increase in the rf reflection coefficient. The sensors are resilient to ELMs and other plasma noise. copyright 1997 American Institute of Physics

  13. An ELM-resilient rf arc detection system for DIII-D based on electromagnetic and sound emissions from the arc

    International Nuclear Information System (INIS)

    Two detection methods based solely on sound and electromagnetic emissions form the arc are presented. Detection of arc induced sound signals 40 to 50 dB above background noise are observed. Detection of arc induced low radio frequency (HF) electromagnetic noise levels 20 to 60 dB above background are observed. The arc noise is randomly strongest on side A and/or B of the DIII-D rf system. The sum of these sensors correlates with tripping due to an increase in the rf reflection coefficient. The sensors are resilient to ELMs and other plasma noise

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs,...

  15. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  16. A SQUID-Based RF Cavity Search for Dark Matter Axions

    Science.gov (United States)

    Hotz, Michael T.

    The axion is a hypothetical elementary particle resulting from a solution to the "Strong-CP" problem. This serious problem in the standard model of particle physics is manifested as a 1010 discrepancy between the measured upper limit and the calculated value of the neutron's electric dipole moment. Furthermore, a light (~mueV) axion is an ideal dark matter candidate: axions would have been copiously produced during the Big Bang and would be the primary component of the dark matter in the universe. The resolution of the Strong-CP problem and the discovery of the composition of dark matter are two of the most pressing problems in physics. The observation of a light, dark-matter axion would resolve both of these problems. The Axion Dark Matter eXperiment (ADMX) is the most sensitive search for dark-matter axions. Axions in our Milky Way Galaxy may scatter off a magnetic field and convert into microwave photons. ADMX consists of a tunable high-Q RF cavity within the bore of a large, 8.5 Tesla superconducting solenoidal magnet. When the cavity's resonant frequency matches the axion's total energy, the probability of axion-to-photon conversion is enhanced. The cavity's narrow bandwidth requires ADMX to slowly scan possible axion masses. A receiver amplifies, mixes, and digitizes the power developed in the cavity from possible axion-to-photon conversions. This is the most sensitive spectral receiver of microwave radiation in the world. The resulting data is scrutinized for an axion signal above the thermal background. ADMX first operated from 1995-2005 and produced exclusion limits on the energy of dark-matter axions from 1.9 mueV to 3.3 mueV. In order to improve on these limits and continue the search for plausible dark-matter axions, the system was considerably upgraded from 2005 until 2008. In the upgrade, the key technical advance was the use of a dc Superconducting QUantum Interference Device (SQUID) as a microwave amplifier. The SQUID amplifier's noise level is near

  17. 基于nRF2401的藏区蔬菜大棚管理系统的设计与实现%Design and realization of Tibetan vegetable greenhouse management system based on nRF2401

    Institute of Scientific and Technical Information of China (English)

    边巴旺堆; 代森; 张巧玲; 益西拉姆

    2013-01-01

    Vegetable greenhouse plays an indispensable role in the Tibetan vegetable supply; to capacitate peasants manage vegetable greenhouses more expediently, and enable the vegetable greenhouse to get a widespread popularization, the paper, combining nRF2401 wireless transmission with SPCE061A single chip microcomputer, realized the design of Tibetan intelligent vegetable greenhouse management system. Relevant sensors controlled by SPCE061A are taken advantage of to samples data of indicators such as temperature, carbon dioxide concentration in the vegetable greenhouse, and then transmit sampling data by nRF2401 wireless models; the background center will display the spot data on the LCD in time, and when the indicators go over appropriate values, the system wiD give users a speech warning. There are many advantages in The Tibetan vegetable greenhouse management system. For instance, sensitive monitor, convenient operation, display of both Tibetan and Chinese interfaces, speech warning of both Tibetan and Chinese etc.%蔬菜大棚在西藏的蔬菜供应中起着不可或缺的作用,为方便农户对蔬菜大棚的管理,使蔬菜大棚在藏区得到广泛的推广,文中结合nRF2401无线传输[1]和SPCE061A单片机[2]实现了藏区蔬菜大棚管理系统的设计.本项目通过SPCE061A单片机控制相关传感器进行蔬菜大棚内温度、二氧化碳浓度等指标采集,然后将采集的数据通过nRF2401进行传输;后台中心将接收的前台数据在LCD上实时显示出来,并当指标超过了适宜值时,系统便会对农户进行语音提示.本文设计的藏区蔬菜大棚管理系统具有监测灵敏、可操作性强、藏汉双语界面显示、双语报警等优点.

  18. Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate

    International Nuclear Information System (INIS)

    Morphologically novel tungsten nanorods (WNRs) with the co-existence of two crystalline phases, α-W (thermodynamically stable) and β-W, were fabricated by glancing angle RF magnetron sputtering technique under various Ar pressures and flow rates. For these nanorods, a significant variation in their morphology and surface roughness was observed. These structures could be useful in a wide range of applications such as field emission, robust superhydrophobic coatings, energy, and medicine.

  19. Quantum Control in the Cs 6S_{1/2} Ground Manifold Using rf and {\\mu}w Magnetic Fields

    OpenAIRE

    Smith, A.; Anderson, B. E.; Sosa-Martinez, H.; Riofrío, C. A.; Deutsch, I. H.; Jessen, P. S.

    2013-01-01

    We implement arbitrary maps between pure states in the 16-dimensional Hilbert space associated with the ground electronic manifold of Cs. This is accomplished by driving atoms with phase modulated rf and {\\mu}w fields, using modulation waveforms found via numerical optimization and designed to work robustly in the presence of imperfections. We evaluate the performance of a sample of randomly chosen state maps by randomized benchmarking, obtaining an average fidelity >99%. Our protocol advance...

  20. Cyclic nanoindentation studies on CrN thin films prepared by RF sputtering on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Cyclic nanoindentation tests were carried out to study the influence of the chromium nitride thin films on the mechanical properties of Zr-based metallic glass. Chromium nitride thin coatings have been deposited on Zr50Cu40Al10 metallic glass substrate by RF sputtering. The deposition process was done at room temperature under nitrogen reactive gas using a metallic chromium target. The CrN films have a thickness of 300 nm. Several cyclic nanoindentation measurements were conducted on CrN films and Zr50Cu40Al10 metallic glass substrate samples at various loading rate values. We have found that the coated metallic glass sample shows high mechanical properties such as hardness and reduced elastic modulus. Cyclic nanoindentation results show a hardening behaviour for these CrN coatings. Moreover, the CrN coated on Zr-based metallic glass was found to have a high value of resistance to crack propagation, as being analysed through the SEM pictures of the residual Vickers indentation impressions.

  1. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    this work is quite enabling, since it provides a much less expensive method than microwave CVD based alternatives for depositing doped CVD diamond over large wafers (e.g., 8") for batch fabrication. The first three methods described so far focus on a single vibrating disk resonator and improve its electrical equivalent modeling, C x/Co, and Q. Once we craft the resonator that meets the challenging design requirements of RF channel-select filters, the last method presents a design hierarchy that achieves the desired filter response with a specific center frequency, bandwidth, and filter termination resistance. The design procedure culminates in specific values for all mechanical geometry variables necessary for the filter layout, such as disk radii, and beam widths; and process design variables such as resonator material thickness and capacitive actuation gap spacing. Finally, the experimental results introduce a 39nm-gap capacitive transducer, voltage-controlled frequency tuning, and a stress relieving coupled array design that enable a 0.09% bandwidth 223.4 MHz channel-select filter with only 2.7dB of in-band insertion loss and 50dB rejection of out-of-band interferers. This amount of rejection is more than 23dB better than previous capacitive-gap transduced filter designs that did not benefit from sub-50nm gaps. It also comes in tandem with a 20dB shape factor of 2.7 realized by a hierarchical mechanical circuit design utilizing 206 micromechanical circuit elements, all contained in an area footprint of only 600mumx420mum. The key to such low insertion loss for this tiny percent bandwidth is Q's>8,800 supplied by polysilicon disk resonators employing for the first time capacitive transducer gaps small enough to generate coupling strengths of C x/Co ˜0.1%, which is a 6.1x improvement over previous efforts. The filter structure utilizes electrical tuning to correct frequency mismatches due to process variations, where a dc tuning voltage of 12.1 V improves the filter

  2. IOT based RF power systems as an alternative to klystron amplifier in Indus-2 at the rate 505.812 MHz

    International Nuclear Information System (INIS)

    Due to non-availability of replacement Klystron tube in Indus-2, an IOT based high power RF amplifier system is realized. It is based on E2V make 80 kW IOTD2130 tube with its circuit assembly IMD2000ST. This amplifier system is easily available commercially due to its application in DTV broadcast. It has inherent advantages over klystron amplifier viz. high efficiency (η), less phase and amplitude sensitivity to HV ripple, higher linearity, compactness and less cooling requirement. This high power IOT amplifier is tested with its required control system, cooling system, electron gun auxiliary supplies, beam supply and focusing supply. The nominal beam voltage for this IOT is -36 kV however amplifier was tested successfully with indigenously developed -32 kV, crowbar less power supply. The optimum load impedance for IOT beam was calculated for this bias voltage ( 32kV). For the required load impedance, coupling coefficient (β) of output coupler to the O/P cavity was estimated and accordingly loop angle was adjusted. The amplifier has been tested up to 50 kW with amplifier efficiency 60% and gain 23 dB at - 32 kV beam voltage. (author)

  3. Rf sources developments

    International Nuclear Information System (INIS)

    The continuing need for accelerators of increasingly sophisticated characteristics requires a great variety of rf sources to provide the energy used by these accelerators. The present status of gridded tubes will be reviewed briefly. Klystrons, which are used in most large accelerators, will be considered in some detail. Their limitations in power and frequency will be reviewed and a study of their reliability will be presented. Improvements in their efficiency will be discussed, and trends for the future will be considered. Some limitations caused by material problems will become evident and a review of some of the potential improvements in that area will be considered. Finally, new types of rf sources based on rotating electron beams which are now in the development stage will be described and compared to existing tube types

  4. On Smart Home Networking Technology Based on nRF24E1%基于nRF24E1的智能家居组网技术研究

    Institute of Scientific and Technical Information of China (English)

    黄小芬

    2014-01-01

    This paper brings up a new approach to form smart home wireless networking based on nRF24E1 chips. A star topology smart home networking composed of a master mode and a plurality of slave nodes is designed. The overall architecture and designing principles of smart home wireless network system is also discussed. This paper also explains the hardware and software designing solution in detail. This networking is designed for smart home and has many advantages, such as low cost, simple structure, high reliability, easily expanded function, high practicality.%给出了以nRF24E1芯片的智能家居无线组网新方法。设计一个主节点节点和多个从节点节点构成的星型结构智能家居网络。介绍了智能家居无线组网系统的总体结构和工作原理,给出了硬件电路和软件设计方案。该组网方案针对智能家居设计,具有成本低,结构简单,可靠性强,功能易扩展,实用性强等优点。

  5. Barrier RF stacking at Fermilab

    International Nuclear Information System (INIS)

    A key issue to upgrade the luminosity of the Tevatron Run2 program and to meet the neutrino requirement of the NuMI experiment at Fermilab is to increase the proton intensity on the target. This paper introduces a new scheme to double the number of protons FR-om the Main Injector (MI) to the pbar production target (Run2) and to the pion production target (NuMI). It is based on the fact that the MI momentum acceptance is about a factor of four larger than the momentum spread of the Booster beam. Two RF barriers--one fixed, another moving--are employed to confine the proton beam. The Booster beams are injected off-momentum into the MI and are continuously reflected and compressed by the two barriers. Calculations and simulations show that this scheme could work provided that the Booster beam momentum spread can be kept under control. Compared with slip stacking, a main advantage of this new method is small beam loading effect thanks to the low peak beam current. The RF barriers can be generated by an inductive device, which uses nanocrystal magnet alloy (Finemet) cores and fast high voltage MOSFET switches. This device has been designed and fabricated by a Fermilab-KEK-Caltech team. The first bench test was successful. Beam experiments are being planned

  6. The RF system for the CEBAF polarized photo injector

    International Nuclear Information System (INIS)

    Jefferson Lab's CEBAF electron accelerator has recently begun delivering spin-polarized electrons for nuclear experiments. Spin-polarized electrons are emitted from a GaAs photocathode that is illuminated with pulsed laser light from a diode laser synchronized to the 3rd subharmonic (499 MHz) of the accelerating cavity frequency (1497 MHz). Up to three experimental halls (A, B, and C) are served by the photoinjector each with their own beam requirements. To accomplish this, three independent diode lasers are synchronized and combined to illuminate the GaAs photocathode emitting a 1497 MHz pulse train of electrons. In addition, an RF bunching cavity, approximately 2m downstream from the photocathode is used to compensate for space charge effects at the higher beam currents. The RF system that controls these elements is a modified VME based system. Custom RF VME modules control phase and amplitude for each laser diode and the bunching cavity. Power requirements were satisfied with commercial RF amplifiers, 5 W for the diode lasers and 10 W for the bunching cavity. Simple software algorithms using the EPICS control system correct phase and amplitude drifts. The RF system is compact, simple and allows for easy hardware or software modifications

  7. Implementation of Low Cost RF Based Attendance Management System Using PSOC 5 and GSM Module

    Directory of Open Access Journals (Sweden)

    Sk. Khamuruddeen

    2013-11-01

    Full Text Available An Attendance Management System (AMS based on TCP/IP protocol is designed and realized. This paper expounds the principle of the RFID reader device in AMS, its hardware and software design. The reader device takes ARM LM3S9B90 as the core and Philips’s MFRC531 as the transceiver chip of RFID reader. In application, the system works stable and has good real-time performance.

  8. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  9. IFMIF LLRF control system architecture based on EPICS

    International Nuclear Information System (INIS)

    The IFMIF-EVEDA (International Fusion Materials Irradiation Facility - Engineering Validation and Engineering Design Activity) linear accelerator will be a 9 MeV, 125 mA CW (Continuous Wave) deuteron accelerator prototype to validate the technical options of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor. The RF (Radio Frequency) power system of IFMIF-EVEDA consists of 18 RF chains working at 175 MHz with three amplification stages each. The LLRF (Low-Level Radio Frequency) controls the amplitude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency of the cavities. The system is based on a commercial cPCI (Compact Peripheral Component Interconnect) FPGA (Field Programmable Gate Array) board provided by Lyrtech and controlled by a Windows Host PC. For this purpose, it is mandatory to communicate the cPCI FPGA Board with an EPICS Channel Access, building an IOC (Input Output Controller). A new software architecture to design a device support, using AsynPortDriver class and CSS as a GUI (Graphical User Interface), is also presented. (authors)

  10. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios.

    Science.gov (United States)

    Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan

    2016-01-01

    Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system's starting oscillation is determined, and the simulation results of the system's response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928

  11. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Zhi-Ling Tang

    2016-06-01

    Full Text Available Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.

  12. The annealing induced extraordinary properties of SI based ZNO film grown by RF sputtering

    CERN Document Server

    Li, Jing; Wu, Suntao

    2007-01-01

    Pb(Zr0.52Ti0.48)O3 (PZT) thin films were in situ deposited by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si substrates using a template layer derived by sol-gel method. A 0.1-$\\mu$m-thick PZT layer with (111) or (100)-preferred orientation was first deposited onto Pt/Ti/SiO2/Si substrates using the sol-gel method, and than a PZT layer with thickness of 1$\\mu$m was in situ deposited by PLD on the above-mentioned PZT layer. The crystalline phases and the preferred orientations of the PZT films were investigated by X-ray diffraction analysis. Surface and cross-sectional morphologies were observed by scanning electron microscopy and transmission electron microscopy. The electrical properties of the films were evaluated by measuring their P-E hysteresis loops and dielectric constants. The preferred orientation of the films can be controlled using the template layer derived by the sol-gel method. The deposition temperature required to obtain the perovskite phase in this process is approximately 460 degrees C, and ...

  13. ZIGBEE Based Voice Control System for Smart Home

    Directory of Open Access Journals (Sweden)

    Y. Bala Krishna

    2012-01-01

    Full Text Available This paper details the overall design of a wireless home automation system (WHAS. This is fuelled by the need to provide supporting systems for the elderly and the disabled, especially those who live alone. The automation centre’s on recognition of voice commands and uses low-power RF ZigBee wireless communication modules which are relatively cheap. The home automation system is intended to control all lights and electrical appliances in a home or office using voice commands. The zigbee can receive the voice and send the voice data to the ARM9 controller and then the controller converts the voice into required format and then again send the data through the zigbee to the another zigbee and to the micro controller where the devices are attached to it. Based on the message it received it either turns ON/OFF the devices.

  14. Femtosecond stabilization of optical fiber links based on RF power detection

    International Nuclear Information System (INIS)

    X-ray light sources like the free electron laser FLASH in Hamburg or the future XFEL generate light pulses with durations in the order of a few ten femtoseconds. To fulfill the requirements for the synchronisation of various components on this timescale, optical synchronisation systems are already successfully used. In this diploma thesis a novel photodiode-based, detection principle for the measurement of drifts in the optical links of such a synchronisation system is developed. The detection principle is nearly drift-free and highly robust. It is demonstrated that the long term stability of the assembled detector over 33 h is below 5 fs (peak to peak) at a standard deviation of 0.86 fs. Furthermore, an active stabilisation of a fibre link using this detector is successfully achieved. (orig.)

  15. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    International Nuclear Information System (INIS)

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes

  16. Development of the rf-SQUID Based Multiplexing System for the HOLMES Experiment

    Science.gov (United States)

    Puiu, A.; Becker, D.; Bennett, D.; Faverzani, M.; Ferri, E.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Maino, M.; Mates, J.; Nucciotti, A.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2015-12-01

    Measuring the neutrino mass is one of the most compelling issues in particle physics. The European Research Council has funded HOLMES, a new experiment for a direct measurement of neutrino mass that started in 2014. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of ^{163} Ho in order to extract information on neutrino mass with a sensitivity as low as 0.4 eV. HOLMES, in its final configuration, will deploy a 1000 pixel array of low-temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a transition edge sensor thermometer. The read out for an array of 1000 cryogenic detectors is a crucial matter: for HOLMES, a special radio-frequency-based multiplexing system is being developed. In this contribution, we outline the performance and special features of the multiplexing system and readout methods chosen for HOLMES.

  17. Safety assessment of RF and microwave radiation emitted by the mobile telephone base station (MTBS) in Malaysia: experience and challenge

    International Nuclear Information System (INIS)

    Non-ionising radiation (NIR) is known to be hazardous if the amount received is excessive. It is a fact that NIR, including extremely low frequency (ELF) electromagnetic fields, radiofrequency (RF) and microwave radiation can be found almost everywhere generated by both natural and man-made source. This is due to increase in demand for telecommunication and wireless technology which is become very important and as part of our lives. However, the widespread of the relevant technology contributed more NIR man-made sources exposure to the human. Due to public concern their potential of causing such health hazard, members of public and companies approached and request NIR Group of Nuclear Malaysia to carry out surveys and safety assessments of radiofrequency and microwave radiation emitted by the mobile telephone base station (MTBS) erected near the residential area or installed on the rooftop of the commercial building. Objective of the survey was to assess the presence of radiofrequency and microwave radiation and to identify radiation level which may lead to significant personnel exposure. Findings of the survey was compared to the standard guidelines issued by Malaysian Communication and Multimedia Commission (MCMC) and International Committee on Non-Ionising Radiation Protection (ICNIRP). This paper highlights the works that had been carried out by NIR Group of Nuclear Malaysia from 1997 to 2007. We will share the experience and challenge in carried out the NIR safety assessment at mobile telephone base station. Results of the assessment work will be used to develop non-ionising radiation database for future reference in Malaysia. (Author)

  18. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  19. TARN rf stacking system

    International Nuclear Information System (INIS)

    Repetitive rf stacking system for the TARN was developed. The developed system consists of ferrite loaded rf cavity, rf power amplifier, ferrite bias power supply and low level rf electronics. Ferrite material and rf signal source were studied to obtain a high-duty and precise moving rf bucket. Phase lock technic worked at a low intensity beam was also studied. Repetition rate of 50 Hz and final stacking number of 50 were attained at the injection beam energy of 7 MeV/u. (author)

  20. Recycler barrier RF buckets

    CERN Document Server

    Bhat, C M

    2012-01-01

    The Recycler Ring at Fermilab uses a barrier rf system for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf systems, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  1. Effect of Humidity on Dielectric Charging Process in Electrostatic Capacitive RF MEMS Switches Based on Kelvin Probe Force Microscopy Surface Potential Measurements

    OpenAIRE

    Zaghloul, Heiba; Papaioannou, G.; Coccetti, Fabio; Pons, Patrick; Plana, Robert

    2009-01-01

    In this article we investigate the effect of relative humidity on dielectric charging/discharging processes in electrostatically actuated MEMS devices. The assessment procedure is based on surface potential measurements using Kelvin Probe Force Microscopy (KPFM) and it targets in this specific work PECVD silicon nitride films in view of application in electrostatic capacitive RF MEMS switches. Charges have been injected through the AFM tip and the induced surface potential has been measured u...

  2. On the Impact of Relative Humidity and Environment Gases on Dielectric Charging Process in Capacitive RF MEMS Switches Based on Kelvin Probe Force Microscopy

    OpenAIRE

    Zaghloul, Heiba; Bhushan, Bharat; Pons, Patrick; Papaioannou, George; Coccetti, Fabio; Plana, Robert

    2010-01-01

    Dielectric charging is among the major reliability issues that have prevented the commercialization of RF-MEMS Capacitive switches in spite of the extensive study performed on the topic. Moreover, a little work has been performed to study the effect of the relative humidity (RH) and environment gases on the dielectric charging process. In this work we present the effect of RH and the environment gases on the charging/discharging processes in PECVD silicon nitride films based on Kelvin Probe F...

  3. Ag nanoparticle-based inkjet printed planar transmission lines for RF and microwave applications: considerations on ink composition, nanoparticle size distribution and sintering time

    OpenAIRE

    Pirola, Marco; Ghione, Giovanni; Camarchia, Vittorio; Chiolerio, Alessandro

    2012-01-01

    Sintering of Ag Nanoparticle (NP) - based inkjet printed tracks is a crucial process for the next-generation digitally printed electronics. In particular, while the digital printing, as additive technology, is now well settled for what concerns either DC or signal applications both on rigid and on flexible substrates, this technology has not been demonstrated yet in the RF or microwave field, and a few works appear considering vacuum-evaporated films, screen-printed pastes or inkjet printed i...

  4. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Jeffrey S. [University of Connecticut, Department of Physics, Unit 3046 Storrs, CT 06269-3046 (United States)]. E-mail: schweitz@phys.uconn.edu; Trombka, Jacob I. [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Floyd, Samuel [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Selavka, Carl [Massachusetts State Police Crime Laboratory, 59 Horse Pond Road, Sudbury, MA 01776 (United States); Zeosky, Gerald [Forensic Investigation Center, Crime Laboratory Building, 22 State Campus, Albany, NY 12226 (United States); Gahn, Norman [Assistant District Attorney, Milwaukee County, District Attorney' s Office, 821 West State Street, Milwaukee, WI 53233-1427 (United States); McClanahan, Timothy [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Burbine, Thomas [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States)

    2005-12-15

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  5. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  6. Spallation neutron source RF cavity bias system

    International Nuclear Information System (INIS)

    The Spallation Neutron Source r.f. cavity bias system is described under the topic headings: bias system, r.f. cavity, cables, d.c. bias power supply, transistor regulator and control system. Calculation of 4 core 300 mm solid aluminium cable inductance, coaxial shunt frequency response and transistor regulator computed frequency response, are discussed in appendices 1-3. (U.K.)

  7. Wafer-level packaging technology for RF applications based on a rigid low-loss spacer substrate

    NARCIS (Netherlands)

    Polyakov, A.

    2006-01-01

    As mobile portable devices such as cellular system/phones, smart handheld devices and laptop computers acquire wireless connectivity there is a growing demand for greater levels of RF integration. The holy grail of integration is to have a whole set of different components integrated into one chip.

  8. Grain size and stoichiometry control over RF-sputtered multiferroic BiFeO{sub 3} thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Giovanni, E-mail: g.drera@dmf.unicatt.it; Giampietri, Alessio; Alessandri, Ivano; Magnano, Elena; Bondino, Federica; Nappini, Silvia

    2015-08-31

    This work reports the morphological and chemical characterization of multiferroic BiFeO{sub 3} polycrystalline thin films grown on Si(111) by RF-sputtering. Results are shown for a large set of samples and a wide array of experimental techniques, including imaging (atomic/piezoresponse force microscopy) and spectroscopic (μ-Raman, X-ray photoemission, X-ray diffraction) probes. Through growth and post-growth annealing treatment, a fine control over stoichiometry, grain size, grain orientation, crystal order and surface roughness is achieved. In particular, the grain size can be tailored from nanocrystals to large micrometric plates as a function of the annealing temperature. For the optimal stoichiometric sample, an additional X-ray absorption and magnetic circular dichroism analysis has been carried out, which provides high quality spectra comparable with epitaxial films and further proves the expected strong local antiferromagnetic order. - Highlights: • We show the growth of polycristalline multiferroic BiFeO{sub 3} on Si(111) by RF-sputtering. • Multi-technique (AFM/PFM,XPS,XRD,XAS,XMCD,Raman) characterization is given. • Crystal size, homogeneity and chemistry are tailored by growth or post-growth annealing. • In optimal conditions, piezoelectricity, ferroelectricity and magnetism are found.

  9. Development of Adaptive Feedback Control System of Both Spatial and Temporal Beam Shaping for UV-Laser Light Source for RF Gun

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2004-01-01

    The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the bot...

  10. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  11. SYSTEM IDENTIFICATION OF THE LINAC RF SYSTEM USING A WAVELET METHOD AND ITS APPLICATIONS IN THE SNS LLRF CONTROL SYSTEM

    International Nuclear Information System (INIS)

    For a pulsed LINAC such as the SNS, an adaptive feed-forward algorithm plays an important role in reducing the repetitive disturbance caused by the pulsed operation conditions. In most modern feed-forward control algorithms, accurate real time system identification is required to make the algorithm more effective. In this paper, an efficient wavelet method is applied to the system identification in which the Haar function is used as the base wavelet. The advantage of this method is that the Fourier transform of the Haar function in the time domain is a sine function in the frequency domain. Thus we can directly obtain the system transfer function in the frequency domain from the coefficients of the time domain system response

  12. ZnO Nanowire Formation by Two-Step Deposition Method Using Energy-Controlled Hollow-Type Magnetron RF Plasma

    Directory of Open Access Journals (Sweden)

    Hideki Ono

    2011-01-01

    Full Text Available ZnO nanowire was produced in RF (radio frequency discharge plasma. We employed here a two-step deposition technique. In the 1st step, zinc atoms were sputtered from a zinc target to create zinc nuclei on a substrate before the growth of ZnO nanostructure. Here, we used pure argon plasma for physical sputtering. In the 2nd step, we employed an oxygen discharge mixed with argon, where oxygen radicals reacted with zinc nuclei to form ZnO nanostructures. Experimental parameters such as gas flow ratio and target bias voltage were controlled in O2/Ar plasma. Properties of the depositions were analysed by SEM and Raman spectroscopy. We found that many folded and bundled nanowires formed in the 2nd step. The diameter of wires was typically 10–100 nm. We also discussed a growth mechanism of ZnO nanowires.

  13. High linearity 1.5-2.5 GHz RF-MEMS and varactor diodes based tunable filters for wireless applications

    OpenAIRE

    El-Tanani, Mohammed Ahmed

    2009-01-01

    The dissertation presents tunable banpass filters in the 1.5-2.5 GHz frequency range targeted for wireless applications. The tunable filters are designed for size miniaturization, good linearity and constant absolute bandwidth characteristics while maintaining low insertion loss. The improved linearity has been demonstrated using back-to-back varactor diodes and using RF MEMS devices. The constant absolute bandwidth characteristics was achieved using a novel corrugatedcoupled lines approach a...

  14. An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor

    OpenAIRE

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μ m TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when ...

  15. Fuzzy logic based robotic controller

    Science.gov (United States)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  16. Design and realization of digital low level RF system for SSRF

    International Nuclear Information System (INIS)

    Based on digital technology, using the up and down converter, IQ modulator and demodulator techniques, the magnitude control, frequency control and feedback phase control are realized and the low level RF system for Shanghai synchrotion radiation facility(SSRF) is designed. The beam current of SSRF is about 300 mA. In order to suppress the Robinson instability and the zero-mode beam instability, the RF feedback and zero-mode beam feedback will be added. How to design the up and down converter,IQ modulator and demodulator, clock distribution and phase locked techniques will be discussed in this paper. The results of the system testing at high power are given in this paper. The low level RF system has realized the design requirements: amplitude control accuracy rate of ±1%, frequency control accuracy 4-10 Hz, phase control accuracy of ±1 degree. (authors)

  17. RF switching network: a novel technique for IR sensing

    Science.gov (United States)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-05-01

    Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation

  18. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  19. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  20. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    Science.gov (United States)

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants. PMID:25473933

  1. Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.

    2016-07-01

    Modern phased array radars depend highly on digital signal processing (DSP) to extract the echo signal information and to accomplish reliability along with programmability and flexibility. The advent of ASIC technology has made various digital signal processing steps to be realized in one DSP chip, which can be programmed as per the application and can handle high data rates, to be used in the radar receiver to process the received signal. Further, recent days field programmable gate array (FPGA) chips, which can be re-programmed, also present an opportunity to utilize them to process the radar signal. A multi-channel direct IF/RF digital receiver (MCDRx) is developed at NARL, taking the advantage of high speed ADCs and high performance DSP chips/FPGAs, to be used for atmospheric radars working in HF/VHF bands. Multiple channels facilitate the radar t be operated in multi-receiver modes and also to obtain the wind vector with improved time resolution, without switching the antenna beam. MCDRx has six channels, implemented on a custom built digital board, which is realized using six numbers of ADCs for simultaneous processing of the six input signals, Xilinx vertex5 FPGA and Spartan6 FPGA, and two ADSPTS201 DSP chips, each of which performs one phase of processing. MCDRx unit interfaces with the data storage/display computer via two gigabit ethernet (GbE) links. One of the six channels is used for Doppler beam swinging (DBS) mode and the other five channels are used for multi-receiver mode operations, dedicatedly. Each channel has (i) ADC block, to digitize RF/IF signal, (ii) DDC block for digital down conversion of the digitized signal, (iii) decoding block to decode the phase coded signal, and (iv) coherent integration block for integrating the data preserving phase intact. ADC block consists of Analog devices make AD9467 16-bit ADCs, to digitize the input signal at 80 MSPS. The output of ADC is centered around (80 MHz - input frequency). The digitized data is fed

  2. R and D ERL: Low level RF

    International Nuclear Information System (INIS)

    A superconducting RF (SRF) Energy Recovery Linac (ERL) is currently under development at the Collider-Accelerator Department (C-AD) at Brookhaven National Laboratory (BNL). The major components from an RF perspective are (a) a 5-cell SRF ERL cavity, (b) an SRF photocathode electron gun, and (c) a drive laser for the photocathode gun. Each of these RF subsystems has its own set of RF performance requirements, as well as common requirements for ensuring correct synchronism between them. A low level RF (LLRF) control system is currently under development, which seeks to leverage both technology and experience gained from the recently commissioned RHIC LLRF system upgrade. This note will review the LLRF system requirements and describe the system to be installed at the ERL.

  3. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  4. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    Energy Technology Data Exchange (ETDEWEB)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G; Efimenko, V F; Ilyantsev, A I; Russ III, G P

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.

  5. Influence of rf-magnetron Sputtered ITO and Al:ZnO on Photovoltaic Behaviour Related to CuInSe2-Based Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    This paper describes several investigations, made in the CIEMAT, on the capability of depositing transparent conducting oxides at room temperature by rf-magnetron sputtering, and their application in CuInSe2-based photovoltaic solar cells. ITO and Al:ZnO thin films having simultaneously high transmittance in the visible range and low resistivity, 103 -10 -4 Ωcm, can be obtained only if oxygen mass-flow rate is constrained to a very narrow range (0.5 - 1 sccm). Cell efficiency enhance when transparent conducting oxides are made without intentional heating and, after, the total devices are annealed in air at 200 degree centigree. (Author) 40 refs

  6. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  7. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  8. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  9. RF guns: a review

    International Nuclear Information System (INIS)

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  10. RF gymnastics in synchrotrons

    OpenAIRE

    Garoby, R.

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most c...

  11. Power gain assessment of ITO based Transparent Gate Recessed Channel (TGRC) MOSFET for RF/wireless applications

    Science.gov (United States)

    Kumar, Ajay; Gupta, Neha; Chaujar, Rishu

    2016-03-01

    In this work, power gain assessment and intrinsic delay of Transparent Gate Recessed Channel (TGRC) MOSFET have been observed for RF applications and the results so obtained have been compared with Conventional Recessed Channel (CRC) MOSFET. Simulation results show that TGRC architecture has significantly improved the power gains in terms of maximum available power gain (Gma), maximum transducer power gain (GMT), maximum stable power gain (Gms) and appreciable reduction in intrinsic delay as compared to CRC-MOSFET owing to indium tin oxide (ITO) in recessed channel as a conducting gate material and thus providing its efficacy for low power switching applications. Further, effect of gate length scaling has also been observed on TGRC MOSFET and it has been found that the cut-off frequency (fT) and maximum oscillator frequency (fMAX) enhances by 66% and 36% respectively as channel length scales down to 20 nm. Further, the effect of negative junction depth, oxide thickness and substrate doping have also been investigated for TGRC-MOSFET. This TCAD assessment has been done at frequencies of several THz which fortify its use for high frequency RF/wireless applications.

  12. Development of the coherent transition radiation FT-THz spectroscopy based on Michelson interferometer with RF detector

    International Nuclear Information System (INIS)

    The high-power terahertz radiation sources and the terahertz imaging system have been developed using an S-band compact electron linac at AIST. The linac consists of a Ce-Te photocathode RF-gun, two acceleration tubes and a magnetic bunch compressor. The linac generates the electron beam with the energy of 30 MeV, the bunch charge of 1 nC, and the bunch length of less than 1 ps. In this study, the THz radiation is generated by coherent transition radiation (CTR). We have constructed the Michelson interferometer on THz frequency range. The interferogram has been measured by changing the optical delay, frequency spectrum has been derived from it by Fourier Transform (FT). The absorption spectrum of the sample in the THz region can be obtained from the spectrum deference between w/ and w/o sample. In this paper, we will describe results of the FT-THz spectroscopy using Michelson interferometer with the THz-CTR and an RF detector. (author)

  13. rf SQUID system as tunable flux qubit

    International Nuclear Information System (INIS)

    We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits

  14. Driver stage RF amplifier manufacture for Decy-13 proton cyclotron using LDMOS BLF578

    International Nuclear Information System (INIS)

    Driver stage of the RF generator for 13 MeV proton cyclotron has been manufactured. RF generator will be used as a source of alternating voltage accelerating of DECY-13 cyclotron which is has been designing by PTAPB-BATAN. Based on the basic design documents that has been made, the Decy-13 accelerating frequency will work at 77.667 MHz with RF power of ±10 kW. At the previous research it was manufactured an RF exciter using Direct Digital Synthesizer (DDS). In order exciter can drive RF power amplifier, a driver stage amplifier is required, which is output should be able to control the RF power output that is expected. RF driver amplifier that currently widely used for accelerator applications is LDMOS transistor technology. After comparing several types of LDMOS transistor prototypes that have been manufactured, it is selected using type of LDMOS transistors BLF578. Test results with a working voltage of the driving amplifier 42 Vdc and output RF power 400 W, it is required DC current of 15.3 A and driving power 1.4 W. After calculating the data of test results, it is obtained a linear correlation coefficient value between input and output with R2 = 0.992, power gain of 23.98 to 24.88, power-added efficiency 62% and the highest heat dissipation of 270 W. From the test results it can be concluded that the prototype of driver stage RF amplifier is already functioning and the results are as expected, but the cooling of transistors BLF578 still need to be refined in order the generated heat during it operation still within limits. (author)

  15. The Bipolar Field-Effect Transistor: VII. The Unipolar Current Mode for Analog-RF Operation (Two-MOS-Gates on Pure-Base)

    International Nuclear Information System (INIS)

    This paper reports the DC steady-state current-voltage and conductance-voltage characteristics of a Bipolar Field-Effect Transistor (BiFET) under the unipolar (electron) current mode of operation, with bipolar (electron and hole) charge distributions considered. The model BiFET example presented has two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both edges of the thin base. The hole contacts on both edges of the thin pure base layer are grounded to give zero hole current. This 1-transistor analog-RF Basic Building Block nMOS amplifier circuit, operated in the unipolar current mode, complements the 1-transistor digital Basic Build Block CMOS voltage inverter circuit, operated in the bipolar-current mode just presented by us.

  16. The Bipolar Field-Effect Transistor:Ⅶ. The Unipolar Current Mode for Analog-RF Operation(Two-MOS-Gates on Pure-Base

    Institute of Scientific and Technical Information of China (English)

    Jie Binbin; Sah Chih-Tang

    2009-01-01

    This paper reports the DC steady-state current-voltage and conductance-voltage characteristics of a Bipolar Field-Effect Transistor (BiFET) under the unipolar (electron) current mode of operation, with bipolar (elec-tron and hole) charge distributions considered. The model BiFET example presented has two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both edges of the thin base. The hole contacts on both edges of the thin pure base layer are grounded to give zero hole current. This 1-transistor analog-RF Basic Building Block nMOS amplifier circuit, operated in the unipolar current mode, complements the 1-transistor digital Basic Build Block CMOS voltage inverter circuit, operated in the bipolar-current mode just presented by us.

  17. Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus

    Science.gov (United States)

    Meo, Sultan Ayoub; Alsubaie, Yazeed; Almubarak, Zaid; Almutawa, Hisham; AlQasem, Yazeed; Muhammed Hasanato, Rana

    2015-01-01

    Installation of mobile phone base stations in residential areas has initiated public debate about possible adverse effects on human health. This study aimed to determine the association of exposure to radio frequency electromagnetic field radiation (RF-EMFR) generated by mobile phone base stations with glycated hemoglobin (HbA1c) and occurrence of type 2 diabetes mellitus. For this study, two different elementary schools (school-1 and school-2) were selected. We recruited 159 students in total; 96 male students from school-1, with age range 12–16 years, and 63 male students with age range 12–17 years from school-2. Mobile phone base stations with towers existed about 200 m away from the school buildings. RF-EMFR was measured inside both schools. In school-1, RF-EMFR was 9.601 nW/cm2 at frequency of 925 MHz, and students had been exposed to RF-EMFR for a duration of 6 h daily, five days in a week. In school-2, RF-EMFR was 1.909 nW/cm2 at frequency of 925 MHz and students had been exposed for 6 h daily, five days in a week. 5–6 mL blood was collected from all the students and HbA1c was measured by using a Dimension Xpand Plus Integrated Chemistry System, Siemens. The mean HbA1c for the students who were exposed to high RF-EMFR was significantly higher (5.44 ± 0.22) than the mean HbA1c for the students who were exposed to low RF-EMFR (5.32 ± 0.34) (p = 0.007). Moreover, students who were exposed to high RF-EMFR generated by MPBS had a significantly higher risk of type 2 diabetes mellitus (p = 0.016) relative to their counterparts who were exposed to low RF-EMFR. It is concluded that exposure to high RF-EMFR generated by MPBS is associated with elevated levels of HbA1c and risk of type 2 diabetes mellitus. PMID:26580639

  18. Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c and Risk of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2015-11-01

    Full Text Available Installation of mobile phone base stations in residential areas has initiated public debate about possible adverse effects on human health. This study aimed to determine the association of exposure to radio frequency electromagnetic field radiation (RF-EMFR generated by mobile phone base stations with glycated hemoglobin (HbA1c and occurrence of type 2 diabetes mellitus. For this study, two different elementary schools (school-1 and school-2 were selected. We recruited 159 students in total; 96 male students from school-1, with age range 12–16 years, and 63 male students with age range 12–17 years from school-2. Mobile phone base stations with towers existed about 200 m away from the school buildings. RF-EMFR was measured inside both schools. In school-1, RF-EMFR was 9.601 nW/cm2 at frequency of 925 MHz, and students had been exposed to RF-EMFR for a duration of 6 h daily, five days in a week. In school-2, RF-EMFR was 1.909 nW/cm2 at frequency of 925 MHz and students had been exposed for 6 h daily, five days in a week. 5–6 mL blood was collected from all the students and HbA1c was measured by using a Dimension Xpand Plus Integrated Chemistry System, Siemens. The mean HbA1c for the students who were exposed to high RF-EMFR was significantly higher (5.44 ± 0.22 than the mean HbA1c for the students who were exposed to low RF-EMFR (5.32 ± 0.34 (p = 0.007. Moreover, students who were exposed to high RF-EMFR generated by MPBS had a significantly higher risk of type 2 diabetes mellitus (p = 0.016 relative to their counterparts who were exposed to low RF-EMFR. It is concluded that exposure to high RF-EMFR generated by MPBS is associated with elevated levels of HbA1c and risk of type 2 diabetes mellitus.

  19. Phase synchronization of multiple klystrons in RF system

    International Nuclear Information System (INIS)

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of the Acceleration Production of Tritium (APT) accelerator. The first LEDA RF system includes three, 1.2 MW, 350 MHz, continuous wave, klystrons driving a radio frequency quadrupole (RFQ). A phase control loop is necessary for each individual klystron in order to guarantee the phase matching of these klystrons. To meet this objective, they propose adaptive PI controllers which are based on simple adaptive control. These controllers guarantee not only phase matching but also amplitude matching

  20. Spectrographic approach for the diagnosis of rf breakdown in accelerating rf structures

    Energy Technology Data Exchange (ETDEWEB)

    Tomizawa, H.; Taniuchi, T.; Hanaki, H.; Igarashi, Y.; Yamaguchi, S.; Enomoto, A

    2004-07-31

    The acceleration gradient of an electron linac is limited by rf breakdown in its accelerating structure. We applied an imaging spectrograph system to study the mechanism of rf breakdown phenomena in accelerating rf structures. Excited gases released from the surface emit light during rf breakdown with the type of gases dependent upon surface treatments and rinsing methods. To study rf breakdown, we used 2-m-long accelerating structures and investigated the effects of a high-pressure ultrapure water rinsing (HPR) treatment applied to these rf structures. We performed experiments to study the gases released from the surface of rf structures with quadrupole mass spectroscopy and imaging spectrography of atomic lines. As a result, just after rf breakdown, we could observe instantly increasing signals at mass numbers 2 (H{sub 2}), 28 (CO), and 44 (CO{sub 2}), but not 18 (H{sub 2}O). We also conducted spectral imaging of the light emissions from the atoms and ions in a vacuum excited through rf breakdown. Using an accelerating structure without HPR treatment, we observed atomic lines at 511 nm (Cu I), 622 nm (Cu II), and 711 nm (C I). With HPR treatment, the atomic lines were observed at 395 nm (O I), 459 nm (O II), 511 nm (Cu I), 538 nm (C I), 570 nm (Cu I), 578 nm (Cu I), 656 nm (H: Balmer alpha), and 740 nm (Cu II). In an additional surface analysis, we found carbon as the most dominant element, with the exception of copper, on the blackened surface of the rf-conditioned accelerating structure without HPR treatment. Based on these experiments, we concluded that some components of the plasma can affect a copper surface. We also have provided a phenomenological review of our experimental results and a simple explanation of rf conditioning with rf breakdown.

  1. Spectrographic approach for the diagnosis of rf breakdown in accelerating rf structures

    International Nuclear Information System (INIS)

    The acceleration gradient of an electron linac is limited by rf breakdown in its accelerating structure. We applied an imaging spectrograph system to study the mechanism of rf breakdown phenomena in accelerating rf structures. Excited gases released from the surface emit light during rf breakdown with the type of gases dependent upon surface treatments and rinsing methods. To study rf breakdown, we used 2-m-long accelerating structures and investigated the effects of a high-pressure ultrapure water rinsing (HPR) treatment applied to these rf structures. We performed experiments to study the gases released from the surface of rf structures with quadrupole mass spectroscopy and imaging spectrography of atomic lines. As a result, just after rf breakdown, we could observe instantly increasing signals at mass numbers 2 (H2), 28 (CO), and 44 (CO2), but not 18 (H2O). We also conducted spectral imaging of the light emissions from the atoms and ions in a vacuum excited through rf breakdown. Using an accelerating structure without HPR treatment, we observed atomic lines at 511 nm (Cu I), 622 nm (Cu II), and 711 nm (C I). With HPR treatment, the atomic lines were observed at 395 nm (O I), 459 nm (O II), 511 nm (Cu I), 538 nm (C I), 570 nm (Cu I), 578 nm (Cu I), 656 nm (H: Balmer alpha), and 740 nm (Cu II). In an additional surface analysis, we found carbon as the most dominant element, with the exception of copper, on the blackened surface of the rf-conditioned accelerating structure without HPR treatment. Based on these experiments, we concluded that some components of the plasma can affect a copper surface. We also have provided a phenomenological review of our experimental results and a simple explanation of rf conditioning with rf breakdown

  2. Development of directional RF power sensor

    International Nuclear Information System (INIS)

    High power (1 kW) directional RF power sensor have been designed and developed for their use in solid state Radio Frequency (RF) power amplifiers and associated RF components. The sensor is a two channel thru line RF power measurement device with built-in feature of digital conversion and scaling of data. The converted data is represented in direct milli-dBm unit and is communicated on standard RS422/485 interface. The advantage gained with this conversion is daisy chaining of many of such sensors on a common bus with a reduced numbers of wires and simple cabling. This sensor system will be deployed in the high power solid state radio frequency amplifier, systems to measure forward and reflected powers of all the amplifiers in each unit. As there is a large number of amplifiers working simultaneously in a single unit, a large number of such power measurement channels are required in each rack of solid state RF amplifier. Presently, for-exampIe, in Indus-2 SRS machine, there are 3 RF stations which are based on 75 kW solid state amplifiers. Each of the station has 6 units each combining powers received from 32 RF amplifier modules. Hence, a great requirement exists for accurate and reliable measurement of forward as well as reflected powers of the amplifiers. Therefore this development work is take up for future amplifier systems. Furthermore, the measurement system has to work in high power RF systems under extra ordinary EMI environment. Due care has been taken in the selection of components and technology and design of circuit, board layout and enclosure. The sensor is rigorously tested at low and high RF power at various frequencies. For its further EMI susceptibility testing it was put in high power RF amplifier racks with data logging for a period of 15 days. The test and measurement results are excellent. (author)

  3. Wear and Corrosion Resistance of CrN-based Coatings Deposited by R.F Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    K. Bouzid

    2015-03-01

    Full Text Available A comparative study was conducted to evaluate the performances against wear and corrosion of CrN, CrMoN, CrZrN, CrVN single layer thin films. The latest are synthesized onto steel substrates (DIN 90CrMoV8, using R.F reactive magnetron co-sputtering. The experimental work was achieved using ball-on-disc configuration in dry conditions against WC balls. The main conclusions are: (i electrochemical tests in 0.3 wt.% NaCl solution indicated that CrZrN are improved anticorrosion performance when compared to CrN, while CrMoN demonstrated a poor corrosion resistance;(ii the CrN coating presents the better tribological properties when compared to the ternary nitride coatings.

  4. Development of ultra-violet femtosecond pulse radiolysis system based on a photocathode rf electron-gun linac

    International Nuclear Information System (INIS)

    Two important radical species of alkyl radical (R·) and hydroxyl radicals (OH·) in nuclear fuel reprocessing or radiation cancer therapy have absorption bands around the 250 nm in Ultra-violet region. Despite the OH· and R· are important active species in the radiation chemistry, since those absorption coefficients are small and lack of time resolution of pulse radiolysis, a direct study of the reaction dynamics has been difficult until now. In order to elucidate the formation and reaction with solutes, measurable wavelength was extended to ultraviolet of the femtosecond pulse radiolysis system using a photocathode RF gun accelerator. Problems of ultraviolet femtosecond pulse radiolysis measurement, the time dependent behaviors of R· and OH· are reported. (author)

  5. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    Science.gov (United States)

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic. PMID:25986227

  6. MR compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation

    International Nuclear Information System (INIS)

    The combination of Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) into a single device is being considered a promising tool for molecular imaging as it combines the high sensitivity of PET with the functional and anatomical images of MRI. For highest performance, a scalable, MR compatible detector architecture with a small form factor is needed, targeting at excellent PET signal-to-noise ratios and time-of-flight information. Therefore it is desirable to use silicon photo multipliers and to digitize their signals directly in the detector modules inside the MRI bore. A preclinical PET/RF insert for clinical MRI scanner was built to demonstrate a new architecture and to study the interactions between the two modalities. The disturbance of the MRI’s static magnetic field stays below 2 ppm peak-to-peak within a diameter of 56 mm (90 mm using standard automatic volume shimming). MRI SNR is decreased by 14%, RF artefacts (dotted lines) are only visible in sequences with very low SNR. Ghosting artefacts are visible to the eye in about 26% of the EPI images, severe ghosting only in 7.6%. Eddy-current related heating effects during long EPI sequences are noticeable but with low influence of 2% on the coincidences count rate. The time resolution of 2.5 ns, the energy resolution of 29.7% and the volumetric spatial resolution of 1.8 mm3 in the PET isocentre stay unaffected during MRI operation. Phantom studies show no signs of other artefacts or distortion in both modalities. A living rat was simultaneously imaged after the injection with 18F-Fluorodeoxyglucose (FDG) proving the in vivo capabilities of the system. (paper)

  7. RF-based two-dimensional cardiac strain estimation: a validation study in a tissue-mimicking phantom.

    Science.gov (United States)

    Langeland, Stian; D'hooge, Jan; Claessens, Tom; Claus, Piet; Verdonck, Pascal; Suetens, Paul; Sutherland, George R; Bijnens, Bart

    2004-11-01

    Strain and strain rate imaging have been shown to be useful techniques for the assessment of cardiac function. However, one of the major problems of these techniques is their angle dependency. In order to overcome this problem, a new method for estimating the strain (rate) tensor had previously been proposed by our lab. The aim of this study was to validate this methodology in a phantom setup. A tubular thick-walled tissue-mimicking phantom was fixed in a water tank. Varying the intraluminal pressure resulted in a cyclic radial deformation. The 2D strain was calculated from the 2D velocity estimates, obtained from 2D radio frequency (RF) tracking using a 1D kernel. Additionally, ultrasonic microcrystals were implanted on the outer and inner walls of the tube in order to give an independent measurement of the instantaneous wall thickness. The two methods were compared by means of linear regression, the correlation coefficient, and Bland-Altman statistics. As expected, the strain estimates dominated by the azimuth velocity component were less accurate than the ones dominated by the axial velocity component. Correlation coefficients were found to be r = 0.78 for the former estimates and r = 0.83 was found for the latter. Given that the overall shape and timing of the 2D deformation were very accurate (r = 0.95 and r = 0.84), these results were within acceptable limits for clinical applications. The 2D RF-tracking using a 1D kernel thus allows for 2D, and therefore angle-independent, strain estimation. PMID:15600099

  8. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  9. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  10. A RF-MEMS Based Tunable Matching Network for 2.45-GHz Discrete-Resizing CMOS Power Amplifiers

    Directory of Open Access Journals (Sweden)

    F. Alimenti

    2014-04-01

    Full Text Available This paper deals with the design and experimental validation of a tunable matching network for discrete-resizing CMOS power amplifiers operating at 2.45 GHz (i.e. in the WiFi frequency band. The network is based on a two stages ladder configuration and exploits high-Q MEMS capacitors to achieve the impedance tuning. Furthermore, since these capacitors can be programmed through a 3-wires serial interface, a fully digital control of the transformed impedance is achieved.

  11. Development of 650 MHz solid state RF amplifier for proton accelerator

    International Nuclear Information System (INIS)

    Design and development of 30 kW high powers RF source at 650 MHz, using solid RF state technology, has been initiated at RRCAT. The indigenous technology development efforts will be useful for the proposed high power proton accelerators for SNS/ADS applications. In this 650 MHz amplifier scheme, 30 kW CW RF power will be generated using modular combination of 8 kW amplifier units. Necessary studies were carried out for device selection, choice of amplifier architecture and design of high power combiners and dividers. Presently RF amplifier delivering 250 W at 650 MHz has been fabricated and tested. Towards development of high power RF components, design and engineering prototyping of 16-port power combiner, directional coupler and RF dummy loads has been completed. The basic 8 kW amplifier unit is designed to provide power gain of 50 dB, bandwidth of 20 MHz and spurious response below 30 dB from fundamental signal. Based on the results of circuit simulation studies and engineering prototyping of amplifier module, two RF transistor viz. MRF3450 and MRF 61K were selected as solid state active devices. Impedance matching network in amplifier module is designed using balanced push pull configuration with transmission line BALUN. Due to high circulating current near drain side, metal clad RF capacitors were selected which helps in avoiding hot spot from output transmission path, ensuring continuous operation at rated RF power without damage to RF board. 350 W circulator is used to protect the RF devices from reflected power. Based on the prototype design and measured performance, one of these RF transistors will be selected to be used as workhorse for all amplifier modules. Two amplifier modules are mounted on water cooled copper heat-sink ensuring proper operating temperature for reliable and safe operation of amplifier. Also real time control system and data logger has been developed to provide DAQ and controls in each rack. For power combining and power measurement

  12. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  13. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  14. Brushless DC Motor Speed Control Based on Emotional Intelligent Controller

    OpenAIRE

    Gholamreza ArabMarkadeh; Ehsan Drayabeigi

    2014-01-01

    This paper presents an emotional controller for brushless DC motor (BLDC) drive. The proposed controller is called brain emotional learning based intelligent controller (BELBIC). The utilization of the new controller is based on the emotion processing mechanism in brain. This intelligent control is inspired by the limbic system of mammalian brain, especially amygdala. The controller is successfully implemented in simulation using MATLAB software, brushless dc drive with trapezoidal back-emf. ...

  15. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    OpenAIRE

    M. Jamal Deen; Mohammed BenSaleh; Syed Manzoor Qasim; El-Desouki, Munir M.

    2013-01-01

    Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based tra...

  16. Broadband photonic RF quadrifilar with reconfigurable power splitting ratio

    Science.gov (United States)

    Yuan, C.; Chan, E. H. W.; Wang, X.; Feng, X.; Guan, B.

    2016-07-01

    An all-optical 4-way photonic RF power splitter with quadrature-phase outputs is presented. It is based on using the new power splitting and independent optical phase control function in a Fourier-domain optical processor to split a single-wavelength phase modulated optical signal into four with the desired optical phases at different frequencies and route them to four different output ports. It solves the large phase error problem in the electrical quadrature-phase power dividers, and has the advantages of infinite isolation and a reconfigurable RF power splitting ratio. Experimental results are presented that demonstrate a 4-way photonic RF hybrid splitter with a 3-dB operating frequency range from 10.5 GHz to 26.5 GHz, an amplitude imbalance of less than 1 dB and a phase error of less than ±0.35°. The reconfigurable RF power splitting ratio of the hybrid splitter is also demonstrated experimentally.

  17. FPGA based VME boards for Indus-2 timing control system

    International Nuclear Information System (INIS)

    FPGA based two VME boards are developed and deployed recently for Indus-2 timing control system at RRCAT Indore. New FPGA based 5-channel programmable (Coarse-Fine) delay generator board has replaced three 2-channel coarse and one 4-channel fine existing delay generator boards. Introduction of this board has improved the fine delay resolution (to 0.5ns) as well as channel to channel jitter (to 0.8ns) of the system. It has also improved the coarse delay resolution from previous 33ns to 8ns with the possibility to work at divided Indus-2 RF clock. These improved parameters have resulted in better injection rate of beam. Old coincidence generator board is also replaced with FPGA based newly developed Coincidence clock generator VME board, which has resulted in successful controlled filling of beam (single, multi and 3-symmetrical bucket filling) in Indus-2. Three more existing boards will be replaced by single FPGA based delay generator card in near future. This paper presents the design, test results and features of new boards. (author)

  18. RF gymnastics in synchrotrons

    CERN Document Server

    Garoby, R

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  19. RF Gymnastics in Synchrotrons

    CERN Document Server

    Garoby, R

    2005-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. "RF gymnastics" designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  20. Geolocation of RF signals

    CERN Document Server

    Progri, Ilir

    2011-01-01

    ""Geolocation of RF Signals - Principles and Simulations"" offers an overview of the best practices and innovative techniques in the art and science of geolocation over the last twenty years. It covers all research and development aspects including theoretical analysis, RF signals, geolocation techniques, key block diagrams, and practical principle simulation examples in the frequency band from 100 MHz to 18 GHz or even 60 GHz. Starting with RF signals, the book progressively examines various signal bands - such as VLF, LF, MF, HF, VHF, UHF, L, S, C, X, Ku, and, K and the corresponding geoloca

  1. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  2. Fuzzy cascade control based on control's history for superheated temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Guangjun; LI Gang; SHEN Shuguang

    2007-01-01

    To address the characteristics of the large delay and uncertainty of superheated temperature,a new cascade control system is presented based on control's history.Based on the analysis of the control objects' dynamic characteristics,historical control information (substituting for the deviation change rate) is used as the basis for decision-making of the fuzzy control.Therefore,the changing trend of the controlled variable can be accurately reflected.Furthermore,a proportional component is introduced,the advantages of PID and fuzzy controllers are integrated,and the structure weaknesses of conventional fuzzy controllers are overcome.Simulation shows that this control method can effectively reduce the adverse impact of the delay on control effects and,therefore,exhibit strong adaptability by comparing the superheated temperature control system by this controller with PID and conventional fuzzy controllers.

  3. Structural, optical, and electrical properties of Schottky diodes based on undoped and cobalt-doped ZnO nanorods prepared by RF-magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salman, Husam S., E-mail: husam.shakir@yahoo.com [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, College of Science, University of Basrah, Basrah (Iraq); Abdullah, M.J. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2013-09-20

    Highlights: • Cobalt-doped ZnO nanorods were synthesized using RF-magnetron sputtering. • The nanorod arrays are vertically grow on the SiO{sub 2} substrate with length of 382.3 nm. • The Shotteky diode of undoped ZnO nanostructure has barrier height of 0.85 eV. • The barrier height decreases after annealing at 500 °C for 2 h to achieve 0.82 eV. • The annealing step enhanced the ideality factor and reduced the saturation current. -- Abstract: Cobalt-doped ZnO nanorods were successfully synthesized on Si/SiO{sub 2} substrate using RF-magnetron sputtering at room temperature. The undoped and Co-doped ZnO nanostructures were characterized by XRD, FE-SEM, AFM, and PL spectra. The results showed that Co{sup 2+} replaced Zn{sup 2+} in the ZnO lattice without changing the wurtzite structure. The ZnO structure became high crystallite and was gradually converted into nanorods without extra phases as increased cobalt doping levels to 3 at.% and 4 at.%. The as-synthesized nanorod arrays were dense and vertically grew on the substrate with lengths of approximately 341 and 382.3 nm for 3 at.% and 4 at.% CO, respectively. PL analysis revealed that the ultraviolet (UV) emission intensity decreased and exhibited a blue shift with increased Co atomic percentage. This result was consistent with the energy bandgap values (3.26–3.3 eV) obtained from UV–vis spectra. The I–V characteristics revealed that the Shottky diodes based on Co-doped ZnO nanostructure with Pd electrodes have high barrier height (0.715–0.797 eV) and low saturation current (0.035–0.841 μA). The barrier height decreased after annealing the diodes at 500 °C for 2 h. To the best of our knowledge, Schottky diodes based on Co-doped ZnO nanorods prepared by RF-magnetron sputtering have not yet been reported.

  4. Structural and electrical characteristics of RF-sputtered HfO 2 high-k based MOS capacitors

    Science.gov (United States)

    Tirmali, P. M.; Khairnar, Anil G.; Joshi, Bhavana N.; Mahajan, A. M.

    2011-08-01

    The HfO 2 high-k thin films have been deposited on p-type (1 0 0) silicon wafer using RF magnetron sputtering technique. The XRD, AFM and Ellipsometric characterizations have been performed for crystal structure, surface morphology and thickness measurements respectively. The monoclinic structured, smooth surface HfO 2 thin films with 9.45 nm thickness have been used for Al/HfO 2/p-Si metal-oxide-semiconductor (MOS) structures fabrication. The fabricated Al/HfO2/Si structure have been used for extracting electrical properties viz dielectric constant, EOT, barrier height, doping concentration and interface trap density through capacitance voltage and current-voltage measurements. The dielectric constant, EOT, barrier height, effective charge carriers, interface trap density and leakage current density are determined are 22.47, 1.64 nm, 1.28 eV, 0.93 × 10 10, 9.25 × 10 11 cm -2 eV -1 and 9.12 × 10 -6 A/cm 2 respectively for annealed HfO 2 thin films.

  5. CAS - CERN Accelerator School: RF for Accelerators

    CERN Document Server

    2012-01-01

    These proceedings present the lectures given at the twenty-fourth specialized course organized by the CERN Accelerator School (CAS). The course was held in Ebeltoft, Denmark, from 8-17 June, 2010 in collaboration with Aarhus University, with the topic 'RF for Accelerators' While this topic has been covered by CAS previously, early in the 1990s and again in 2000, it was recognized that recent advances in the field warranted an updated course. Following introductory courses covering the background physics, the course attempted to cover all aspects of RF for accelerators; from RF power generation and transport, through cavity and coupler design, electronics and low level control, to beam diagnostics and RF gymnastics. The lectures were supplemented with several sessions of exercises, which were completed by discussion sessions on the solutions.

  6. SMS BASED REMOTE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Reecha Ranjan Singh , Sangeeta Agrawal , Saurabh Kapoor ,S. Sharma

    2011-08-01

    Full Text Available A modern world contains varieties of electronic equipment and systems like: TV, security system, Hi-fi equipment, central heating systems, fire alarm systems, security alarm systems, lighting systems, SET Top Box, AC (Air Conditioner etc., we need to handle, ON/OFF or monitor these electrical devices remotely or to communicate with these but, if you are not at the home or that place and you want to communicate with these device. So the new technology for handled these devices remotely and for communication to required the GSM, mobile technology, SMS (short message service and some hardware resources. SMS based remote control for home appliances is beneficial for the human generation, because mobile is most recently used technology nowadays.

  7. The Telemetering System for the Rotative Speed of Motor Engines Based on RF401 IC Die%基于RF401的汽车发动机转速遥测系统

    Institute of Scientific and Technical Information of China (English)

    刘皓宇; 金长星; 王海明; 苏海青

    2003-01-01

    介绍一种基于RF401的汽车发动机转速遥测系统.该系统使用了挪威Nordic公司最新推出的无线收发一体的集成电路芯片,使系统方便地解决了汽车发动机转速的遥测问题.

  8. Reconfigurable RF Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space microelectronics and hardening technologies and products, to research and develop a novel rad hard/tolerant RF...

  9. A Micromechanical RF Channelizer

    OpenAIRE

    Akgul, Mehmet

    2014-01-01

    AbstractA Micromechanical RF ChannelizerbyMehmet AkgulDoctor of Philosophy in Engineering - Electrical Engineering and Computer SciencesUniversity of California, BerkeleyProfessor Clark T.-C. Nguyen, ChairThe power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency chann...

  10. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  11. A divide-down RF source generation system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    A divide-down rf source system has been designed and built at Argonne National Laboratory to provide harmonically-related and phase-locked rf source signals between the APS 352-MHz storage ring and booster synchrotron rf systems and the 9.77-MHz and 117-MHz positron accumulator ring rf systems. The design provides rapid switching capability back to individual rf synthesizers for each one. The system also contains a digital bucket phase shifter for injection bucket selection. Input 352-MHz rf from a master synthesizer is supplied to a VXI-based ECL divider board which produces 117-MHz and 9.77-MHz square-wave outputs. These outputs are passed through low-pass filters to produce pure signals at the required fundamental frequencies. These signals, plus signals at the same frequencies from independent synthesizers, are fed to an interface chassis where source selection is made via local/remote control of coaxial relays. This chassis also produces buffered outputs at each frequency for monitoring and synchronization of ancillary equipment

  12. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  13. Control of Unknown Chaotic Systems Based on Neural Predictive Control

    Institute of Scientific and Technical Information of China (English)

    LIDong-Mei; WANGZheng-Ou

    2003-01-01

    We introduce the predictive control into the control of chaotic system and propose a neural network control algorithm based on predictive control. The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. The proposed algorithm is simple and its convergence speed is much higher than existing similar algorithms. The control system can control hyperchaos. We analyze the stability of the control system and prove the convergence property of the neural controller. The theoretic derivation and simulations demonstrate the effectiveness of the algorithm.

  14. Expectation-based intelligent control

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Michail [Jet Propulsion Laboratory, California Institute of Technology, Advanced Computing Algorithms and IVHM Group, 4800 Oak Grove Drive, M/s 126-347 Pasadena, CA 91109-8099 (United States)]. E-mail: Michail.Zak@jpl.nasa.gov

    2006-05-15

    New dynamics paradigms-negative diffusion and terminal attractors-are introduced to control noise and chaos. The applied control forces are composed of expectations governed by the associated Fokker-Planck and Liouville equations. The approach is expanded to a general concept of intelligent control via expectations. Relevance to control in livings is emphasized and illustrated by neural nets with mirror neurons.

  15. Chassis Control based on Fuzzy Logic

    OpenAIRE

    Vivas Lopez, Carlos Albertos; Morales-Menendez, Ruben; Ramirez-Mendoza, Ricardo,; Sename, Olivier; Dugard, Luc

    2016-01-01

    Based on a Global Chassis Control system with three-layers architecture (decision, control, and physical layers) a Fuzzy Logic (FL) approach is exploited. The FL based decision layer identifies the current driving condition of the vehicle and decides the control strategy to take care of this driving condition. A confusion matrix validates the classification results. The control strategy is implemented through the subsystems (suspension, steering, and braking) at the FL based control layer. Th...

  16. RF-system design of proton synchrotron for hadron therapy

    International Nuclear Information System (INIS)

    A conceptual design of the RF-system for the medical proton synchrotron is presented. The synchrotron will be able to accelerate high-intensity proton beam of 6.25 · 1010 protons per pulse till the energy of 60 - 220 MeV with the repetition rate of 1 Hz. The RF-system consists of a RF-cavity with a magnetic material, a power amplifier, a tuning control system and a beam control system. The RF-system must supply 2 kV peak voltage in the frequency range from 1 to 5 MHz

  17. Modeling and Characterization of VCOs with MOS Varactors for RF Transceivers

    Directory of Open Access Journals (Sweden)

    Siu Chris

    2006-01-01

    Full Text Available As more broadband wireless standards are introduced and ratified, the complexity of wireless communication systems increases, which necessitates extra care and vigilance in their design. In this paper, various aspects of popular voltage-controlled oscillators (VCOs as key components in RF transceivers are discussed. The importance of phase noise of these key blocks in the overall performance of RF transceivers is highlighted. Varactors are identified as an important component of LC-based oscillators. A new model for accumulation-mode MOS varactors is introduced. The model is experimentally verified through measurements on LC-based VCOs designed in a standard m CMOS process.

  18. Digitization of NAX-500RF Gastroenteric X-ray Machine Based on CR%基于CR的NAX-500RF型胃肠X线机数字化

    Institute of Scientific and Technical Information of China (English)

    张莎莎; 陈平

    2012-01-01

    Objective To upgrade the Neusoft NAX-500RF gastroenteric X-ray machine for digitization in order to improve the ability of X-ray diagnosis. Methods NAX-500RF gastroenteric X-ray machine was digitized using DC2005 CR system. Through linking with PACS of the hospital by DICOM 3.0 standards, digitized image sharing diagnosis was realized. Results After upgraded for digitization, image was magnified to 14 inxl7 in. The image post-processing function was powerful, by which the image resolution was improved, but the exposure of X-ray was reduced. Conclusion Digitization of X-ray machine based on CR is convenient and simple with good image quality, so it is a feasible method to upgrade traditional X-ray machine.%目的:为提高医院门诊放射诊断能力,对东软NAX-500RF型胃肠X-ray机进行数字化升级改造.方法:采用DC2005型CR系统,实现NAX-500RF胃肠X-ray机数字化升级;基于Dicom3.0标准的数字化图像,接入医院PACS,实现数字化影像共享诊断.结果:数字化升级后,影像图像可增大到14 in×17 in;数字化影像后处理功能强大,提高了图像的密度分辨率,降低了X线曝光量.结论:基于CR的数字化改造方便简捷,图像质量优良,可实现传统摄影向数字化摄影的升级.

  19. Predictive PID Control Based on GPC Control of Inverted Pendulum

    Directory of Open Access Journals (Sweden)

    Safa Bouhajar

    2014-05-01

    Full Text Available Having regard to the large application of the inverted pendulum in robotic system, this study is interested in controlling this process with two strategies of controls. The first proposed control is the state feedback with an observer based on the Generalized Predictive Control (GPC algorithm. In the second proposed control we used the characteristic of predictive control GPC to improve the performance of the classical PID controller. The obtained results have been discussed and compared; the simulation results obtained by the predictive PID control are mentioned.

  20. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 (13C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13C based endogenous contrast agents used in molecular imaging

  1. Glass-based confined structures enabling light control

    International Nuclear Information System (INIS)

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties

  2. Glass-based confined structures enabling light control

    Energy Technology Data Exchange (ETDEWEB)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Lukowiak, Anna [Institute of Low Temperature and Structure Research PAS, Okolna St. 2, 50-422 Wroclaw (Poland); Vasilchenko, Iustyna [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, via Sommarive 14 Povo, 38123Trento (Italy); Ristic, Davor [Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb (Croatia); Boulard, Brigitte [IMMM, CNRS Equipe Fluorures, Université du Maine, Av. Messiaen, 72085 Le Mans cedex 9 (France); Dorosz, Dominik [Department of Power Engineering, Photonics and Lighting Technology, Bialystok University of Technology, Wiejska Street 45D, 15-351 Bialystok (Poland); Scotognella, Francesco [Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan (Italy); Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vaccari, Alessandro [FBK -CMM, ARES Unit, 38123 Trento (Italy); Taccheo, Stefano [College of Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea (United Kingdom); Pelli, Stefano; Righini, Giancarlo C. [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Museo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma (Italy); Conti, Gualtiero Nunzi [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Ramponi, Roberta [Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); and others

    2015-04-24

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.

  3. The Design of Rechargeable and Portable Multimedia Laser Pointer Based on nRF24L01%基于nRF24L01可充电多媒体激光笔的设计

    Institute of Scientific and Technical Information of China (English)

    雷明

    2012-01-01

    针对目前市场上大多数多媒体激光笔不具备便携充电等的缺点,结合nRF24L01无线传输技术与锂电池充放电管理技术,设计制作了一款能够利用USB电源进行充电的便携式多媒体激光笔.该便携式多媒体激光笔具有体积小、功耗低、性能稳定等特点.

  4. ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM

    OpenAIRE

    A.PURNA CHANDRA RAO; Y. P. OBULESU,; CH. SAI BABU

    2010-01-01

    All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor driv...

  5. Optimization of RF Compressor in the SPARX Injector

    CERN Document Server

    Ronsivalle, Concetta; Ferrario, Massimo; Serafini, Luca; Spataro, Bruno

    2005-01-01

    The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.

  6. Control of Unknown Chaotic Systems Based on Neural Predictive Control

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Mei; WANG Zheng-Ou

    2003-01-01

    We introduce the predictive control into the control of chaotic system and propose a neural networkcontrol algorithm based on predictive control. The proposed control system stabilizes the chaotic motion in an unknownchaotic system onto the desired target trajectory. The proposed algorithm is simple and its convergence speed is muchhigher than existing similar algorithms. The control system can control hyperchaos. We analyze the stability of thecontrol system and prove the convergence property of the neural controller. The theoretic derivation and simulationsdemonstrate the effectiveness of the algorithm.

  7. 基于nRF24AP2的无线液压参数检测系统设计%Wireless hydraulic parameter detection system based on the nRF24AP2

    Institute of Scientific and Technical Information of China (English)

    黄莺

    2013-01-01

    In the system,the hardware and software of wireless hydraulic detection system are designed.Ultra-low-power chip nRF24AP2 and microcontroller are used and the software is programmed through Visual Basic 6.0,which can achieve realtime detection.The temperature,pressure can be detected,saved and printed online.The experiment shows that the system is characterized by steady performance,convenient operation and cost-effective to meet the testing requirements of the hydraulic components and plays an important role in the other hydraulic system.%采用超低功耗的芯片nRF24AP2和单片机构成无线液压检测系统,可以检测液压系统的主要参数温度和压力,阐述了系统软件和硬件设计,并用Visual Basic 6.0为开发液压检测软件,可以实现参数实时检测,并能够实现保存、打印功能.实验表明该系统稳定、操作快捷、性价比高,能够满足液压元件测试要求,可以应用其它到液压系统.

  8. Audit-based compliance control

    NARCIS (Netherlands)

    Cederquist, J.G.; Corin, R.J.; Dekker, M.A.C.; Etalle, S.; Hartog, den J.I.; Lenzini, G.; Dimitrakos, T.; Martinelli, F.; Ryan, P.Y.A.; Schneider, S.

    2007-01-01

    In this paper we introduce a new framework for controlling compliance to discretionary access control policies [Cederquist et al. in Proceedings of the International Workshop on Policies for Distributed Systems and Networks (POLICY), 2005; Corin et al. in Proceedings of the IFIP Workshop on Formal A

  9. The RF system for accelerator production of tritium

    International Nuclear Information System (INIS)

    A high-power proton linac (linear accelerator) is being proposed for the next generation tritium source for accelerator production of tritium (APT). The proposed proton linac requires a substantial continuous wave (CW) RF system. This paper presents an overview of accelerator-based tritium production and the details of the CW RF system design. Based on the current tritium production requirement, the proposed accelerator will require in excess of 200 MW of installed CW RF power. The availability requirements for the RF system are quite high and an efficient low-cost approach to providing redundancy will be discussed. Also presented are the baseline choices for the RF sources as well as the technology development goals and how they impact the RF system design

  10. Implementation of PLC Based Elevator Control System

    OpenAIRE

    Sandar Htay; Su Su Yi Mon

    2014-01-01

    This paper describes programmable logic controller based elevator control system. An elevator is one of the important aspects in electronics control module in automotive application. Nowadays, Myanmar is a developing country and there is enormous increase in high-rise building in Myanmar. This paper mainly focuses on using programmable logic controller to control the circuit and building the elevator model. Hall Effect sensor is used for the elevator position. DC Motor is used to control the ...

  11. Quantitative MR Imaging of the Electric Properties and Local SAR based on Improved RF Transmit Field Mapping

    OpenAIRE

    Voigt, Tobias

    2011-01-01

    This work presents three new quantitative methods for magnetic resonance imaging. A method for simultaneous mapping of B1 and T1 (MTM) is developed and validated. Electric Properties Tomography (EPT), a method for quantitative imaging of dielectric properties of tissue, is presented. Based on EPT, separate (phase-based) conductivity and (amplitude-based) permittivity measurements are introduced. Finally, a B1-based method for patient-specific local SAR measurements is presented.

  12. Plotter with CNC based control

    OpenAIRE

    Žavbi, Ana

    2012-01-01

    The purpose of this thesis was to build a plotter for printing vector graphics on paper. The plotter is computer controlled by a Mach3 program. Mach3 is a control software for CNC (Computer Numerical Control) machines. The components of the plotter software are Mach3 and a G code generating program. Mach3 has a large amount of functions because it is intended for CNC machines. However many of these functions are not needed for the plotter. Thus I have only focused on these aspects of contr...

  13. Polarity Control and Threading Dislocation Reduction in RF-MBE Grown GaN on Sapphire Substrates%蓝宝石衬底上RF-MBE生长的GaN中的极性控制和螺旋位错的降低

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    近年来人们报道了用MBE方法生长GaN的飞速进展,利用RF-MBE方法可以获得高的GAN生长速率和高的电子迁移率.本文讨论了用RF-MBE方法在蓝宝石衬底上生长GaN过程中的极性控制和螺旋位错的降低.在充分氮化的蓝宝石衬底上直接生长GaN,使GaN的极性控制为N-极性,并用高温生长的AlN核化层实现GaN的Ga-极性.对于N-和Ga-极性的GaN这两种情况,高温生长的AlN中间迭层的引入,可以有效地抑制螺旋位错的扩散.位错的降低使GaN的室温电子迁移率得到提高,对于Ga-极性的GaN,其值为332cm2/V·s;而对于N-极性的GaN,其值为688cm2/V·s.%As recently remarkable developments for MBE-grown GaN have been reported, a high growth rate of GaN by RF-MBE, and the high electron mobility values could be obtained. The polarity control and the threading dislocation reduction in GaN layers grown on sapphire sub strates by RF-MBE are discussed in this paper. The polarity of GaN was controlled to N-polarity by growing GaN directly on sufficiently nitrided sapphires, and Ga-polar GaN was realized by uti lizing the high-temperature-grown A1N nucleation layers. For both N- and Ga-polar GaN, the in troducing high-temperature-grown AIN multiple intermediate layers is effective to suppress the threading dislocation propagation. The reduction of dislocation brought about the improved room temperature electron mobility, 332cm2/V's for Ga-polar GaN and 688cm2/V's for N-polar GaN.

  14. Architecture and Performance of the PEP-II Low-Level RF System

    International Nuclear Information System (INIS)

    Heavy beam loading in the PEP-II B Factory along with large ring circumferences places unique requirements upon the low-level rf (LLRF) system. RF feedback loops must reduce the impedance observed by the beam while ignoring the cavity transients caused by the ion clearing gap. Special attention must be placed on the cavity tuner loops to allow matching the ion clearing gap transients in the high energy ring and the low energy ring. A wideband fiber optic connection to the longitudinal feedback system allows a rf station to operate as a powerful ''sub-woofer'' to damp residual low order coupled bunch motion. This paper describes the design and performance of the VXI based, EPICS controlled, PEP-II low-level rf system(s). Baseband in-phase and quadrature (IQ) signal processing using both analog and modern digital techniques are used throughout the system. A family of digital down converters provide extremely accurate measurements of many rf signals throughout the system. Each system incorporates a built-in network analyzer and arbitrary rf function generator which interface with Matlab to provide a wide range of functions ranging from automated configuration of each feedback loop to cavity FM processing. EPICS based sequences make the entire system a turn-key operation requiring minimal operator intervention. In the event of a fault, fast history buffers throughout the system write selected rf signals to disk files which can be viewed later to help diagnose problems. Actual data from commissioning runs of PEP-II is presented

  15. Adaptive fuzzy controllers based on variable universe

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    1999-01-01

    Adaptive fuzzy controllers by means of variable universe are proposed based on interpolation forms of fuzzy control. First, monotonicity of control rules is defined, and it is proved that the monotonicity of interpolation functions of fuzzy control is equivalent to the monotonicity of control rules. This means that there is not any contradiction among the control rules under the condition for the control rules being monotonic. Then structure of the contraction-expansion factor is discussed. At last, three models of adaptive fuzzy control based on variable universe are given which are adaptive fuzzy control model with potential heredity, adaptive fuzzy control model with obvious heredity and adaptive fuzzy control model with successively obvious heredity.

  16. Investigation of non-inductive plasma current start-up by RF on QUEST

    International Nuclear Information System (INIS)

    Formations of a closed flux surface (CFS) on QUEST are achieved by fully non-inductive current start-up driven by RF, which is 8.2 GHz in frequency and more than 40 kW in power. It found that appropriate magnetic configuration with positive n-index and reduction of particle recycling was crucial to achieve the non-inductive plasma current start-up (PCS) successfully. Especially the controllability of particle recycling should be improved by wall conditioning based on successive plasma production and wall cleaning with electron cyclotron resonance heating (ECR) plasmas induced by RF in frequency of 2.45 GHz.

  17. Analysis of back-propagation and RF pilot-tone based nonlinearity compensation for a 9x224Gb/s POLMUX-16QAM system

    OpenAIRE

    Díaz Souto, Alberto; Napoli, Antonio; Adhikari, Susmita; Maalej, Zied; Lobato Polo, Adriana P.; Kuschnerov, Maxim; Prat Gomà, Josep Joan

    2012-01-01

    We investigate the joint implementation of back-propagation and RF-pilot tone for fiber nonlinear compensation in POLMUX-16QAM and show that the nonlinear tolerance is drastically improved when compared to OFDM system Peer Reviewed

  18. Adaptive Control Based On Neural Network

    OpenAIRE

    Wei, Sun; Lujin, Zhang; Jinhai, Zou; Siyi, Miao

    2009-01-01

    In this paper, the adaptive control based on neural network is studied. Firstly, a neural network based adaptive robust tracking control design is proposed for robotic systems under the existence of uncertainties. In this proposed control strategy, the NN is used to identify the modeling uncertainties, and then the disadvantageous effects caused by neural network approximating error and external disturbances in robotic system are counteracted by robust controller. Especially the proposed cont...

  19. Adaptive Fuzzy Knowledge Based Controller for Autonomous Robot Motion Control

    Directory of Open Access Journals (Sweden)

    Mbaitiga Zacharie

    2010-01-01

    Full Text Available Problem statement: Research into robot motion control offers research opportunities that will change scientists and engineers for year to come. Autonomous robots are increasingly evident in many aspects of industry and everyday life and a robust robot motion control can be used for homeland security and many consumer applications. This study discussed the adaptive fuzzy knowledge based controller for robot motion control in indoor and outdoor environment. Approach: The proposed method consisted of two components: the process monitor that detects changes in the process characteristics and the adaptation mechanism that used information passed to it by the process monitor to update the controller parameters. Results: Experimental evaluation had been done in both indoor and outdoor environment where the robot communicates with the base station through its Wireless fidelity antenna and the performance monitor used a set of five performance criteria to access the fuzzy knowledge based controller. Conclusion: The proposed method had been found to be robust.

  20. 基于nRF905的无线水表自动抄表系统设计%Design of wireless meter reading for water system based on nRF905

    Institute of Scientific and Technical Information of China (English)

    张在新; 孔繁军

    2012-01-01

    The development of the wireless water gauge reading system is introduced.It realized the wireless reading and data transmission functions by nRF905.As a result it solves the difficulty of manpower reading meter.The article illustrated the hardware and software design of the system.The system has a long life-span battery and a higher reliability by using low power settle method and reasonable communication protocols.As a universal module design it is the same with all near wireless communications.%论述了目前无线自动抄表技术的发展状况,系统采用nRF905构建无线通信模块,实现了无线方式的自动抄表,解决了人工抄表费时费力的现状。文章阐述了无线水表自动抄表系统硬件和软件设计方法,采用有效的低功耗设计方案,解决了电池使用寿命低的问题;通过构建合理的通信协议,保证了通信的可靠性。系统模块设计具有通用性,适用于各种近距离无线数据传输领域,具有较高的实用价值。

  1. Brushless DC Motor Speed Control Based on Emotional Intelligent Controller

    Directory of Open Access Journals (Sweden)

    Gholamreza ArabMarkadeh

    2014-03-01

    Full Text Available This paper presents an emotional controller for brushless DC motor (BLDC drive. The proposed controller is called brain emotional learning based intelligent controller (BELBIC. The utilization of the new controller is based on the emotion processing mechanism in brain. This intelligent control is inspired by the limbic system of mammalian brain, especially amygdala. The controller is successfully implemented in simulation using MATLAB software, brushless dc drive with trapezoidal back-emf. In this work, a novel and simple implementation of BLDC motor drive system is achieved by using the intelligent controller, which controls the motor speed accurately. This emotional intelligent controller has simple structure with high auto learning feature. Simulation results show that both accurate steady state and fast transient speed responses can be achieved in wide range of speed from 20 to 300 [rpm]. Moreover, to evaluate this emotional controller, the performance of the proposed control scheme is compared with both Fuzzy Logic (FL and PID controllers, in different conditions. This indicates proper operating in comparison to the FLC and PID controllers. And also shows excellent promise for industrial scale utilization.

  2. RF Power Amplifier Analysis

    OpenAIRE

    M. Lokay; K. Pelikan

    1993-01-01

    The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  3. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  4. AC/RF Superconductivity

    OpenAIRE

    Ciovati, G.

    2015-01-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  5. Ferrite loaded rf cavity

    International Nuclear Information System (INIS)

    The mechanism of a ferrite-loaded rf cavity is explained from the point of view of its operation. Then, an analysis of the automatic cavity-tuning system is presented using the transfer function; and a systematic analysis of a beam-feedback system using transfer functions is also presented. (author)

  6. RF linacs for esoteric applications

    International Nuclear Information System (INIS)

    Particle accelerators of various types have been considered for many years in terms of their application to national defense. Recently, the Strategic Defense Initiative has focused and emphasized such applications. After appropriate and extensive development, accelerators could fulfill important roles in a defensive-system architecture and could compete effectively with other technologies. A great deal of the required development is engineering. Aspects of the R and D program on rf-linac-based applications are discussed, and potential long-term influences on accelerator technology are outlined

  7. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    induction motor (IM) drives. The control design, based on synchronously rotating d-q frame model of the machine, has a simple structure that combines the proportional portion of a conventional PI control and output of the observer. The observer is predicted to estimate the disturbances caused by parameters......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...... change in current control loop and, also to remove undesired cross coupling existing between components of the stator current. The observer uses the measured stator currents and estimated PWM voltages, and produces a disturbance signal with a low pass filter. The proposed control scheme reduces cross...

  8. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  9. Component protection based automatic control

    International Nuclear Information System (INIS)

    Control and safety systems as well as operation procedures are designed on the basis of critical process parameters limits. The expectation is that short and long term mechanical damage and process failures will be avoided by operating the plant within the specified constraints envelopes. In this paper, one of the Advanced Liquid Metal Reactor (ALMR) design duty cycles events is discussed to corroborate that the time has come to explicitly make component protection part of the control system. Component stress assessment and aging data should be an integral part of the control system. Then transient trajectory planning and operating limits could be aimed at minimizing component specific and overall plant component damage cost functions. The impact of transients on critical components could then be managed according to plant lifetime design goals. The need for developing methodologies for online transient trajectory planning and assessment of operating limits in order to facilitate the explicit incorporation of damage assessment capabilities to the plant control and protection systems is discussed. 12 refs

  10. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    Science.gov (United States)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-05-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  11. RF measurements on improved design model of 75 MHz RFQ

    International Nuclear Information System (INIS)

    A three RF cell model of improved design RFQ operating at 75 MHz was fabricated for the ECR based Heavy Ion Accelerator at BARC. The RF characterization of the RFQ consisting of resonant frequency, Quality Factor, Shunt Impedance is completed. The quadrupole profiling along the transverse directions and longitudinal field stability measurements are in progress. The measured parameters are discussed in light of the simulated results. The continuous wave RF power conditioning of the improved design model of RFQ is undertaken with the available 1 kW RF amplifier and results are discussed. (author)

  12. Implementation of Directional Control System for Autonomous Robot Based on Voice Command Controller

    Directory of Open Access Journals (Sweden)

    Han Nilar Htay

    2014-10-01

    Full Text Available The main idea of this research is to process analog voice signal. The paper is implemented for controlling the robot by voice command. The implemented system involves voice recognition unit, digital data processing unit with DC switching section. The proposed system consists of a microcontroller and a voice recognition processor that can recognize a limited number of voice patterns. This is voice based guidance system, which uses the special voice recognition IC HM2007 for speech enhancement. It also generates different desired signals according to the spoken words which further used to control the movement of robot. The microcontroller used is PIC16F877A, to give the instructions to the robot for its operation. Backup power is included in this research to retain the voice commands while the system is powered off. The R.F transmitter and receiver are used here, for the wireless transmission purpose. The constructed system can be commanded in the voice of English as well as Myanmar.

  13. Transputer-based readout controller

    International Nuclear Information System (INIS)

    A bus-oriented readout controller is described that uses a transputer both as a direct memory access (DMA) device and a crate processor. It achieves data transfer rates of up to 13 Mbytes/s, yet is very simple in design. Data transfer is reduced to moving arrays within memory, which eliminates the need for bus arbitration and interfacing logic. A trivial extension of the basic design results in a twofold increase in the maximum data transfer speed, to 27 Mbytes/s. A second transputer, added to the crate controller for extra flexibility and processing power, enables it to form part of a second level data acquisition system, with a total of 8 links (maximum link speed 20 Mbits/s) available for intercrate communications. This design was developed for the readout system of the ZEUS Central Tracking Detector. (orig.)

  14. Transputer-based readout controller

    Science.gov (United States)

    Belusevic, R.; Nixon, G.

    1989-05-01

    A bus-oriented readout controller is described that uses a transputer both as a direct memory access (DMA) device and a crate processor. It achieves data transfer rates of up to 13 Mbytes/s, yet is very simple in design. Data transfer is reduced to moving arrays within memory, which eliminates the need for bus arbitration and interfacing logic. A trivial extension of the basic design results in a twofold increase in the maximum data transfer speed, to 27 Mbytes/s. A second transputer, added to the crate controller for extra flexibility and processing power, enables it to form part of a second level data acquisition system, with a total of 8 links (maximum link speed 20 Mbits/s) available for intercrate communications. This design was developed for the readout system of the ZEUS Central Tracking Detector.

  15. A CAMAC based knob controller for the LAMPF control system

    International Nuclear Information System (INIS)

    The control computer for the Los Alamos Meson Physics Facility (LAMPF) has been recently upgraded from an SEL-840 to a VAX 11/780 running the VMS operating system. As part of this upgrade, a CAMAC-based knob controller was developed for the new control system. The knobs allow the facility operators to have slew control over software selectable accelerator devices. An alphanumeric display associated with each knob monitors the progress of the selected device. This paper describes the system requirements for the new LAMPF knob controller, and the resulting hardware and software design

  16. Model-based control versus classical control for parallel robots

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    Praha : ÚTIA AV ČR, 2004 - ( And rýsek, J.; Kárný, M.; Kracík, J.), s. 1-9 [Computer-Intensive Methods in Control and Data Processing. CMP'04: Towards Electronic Democracy. Praha (CZ), 12.05.2004-14.05.2004] R&D Projects: GA ČR GA101/03/0620 Institutional research plan: CEZ:AV0Z1075907 Keywords : model based control * classical PSD control * global and local levels of control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0106263.pdf

  17. Model Based Control of Solidification

    OpenAIRE

    Furenes, Beathe

    2009-01-01

    The objective of this thesis is to develop models for use in the control of a solidification process. Solidification is the phase change from liquid to solid, and takes place in many important processes ranging from production engineering to solid-state physics. Often during solidification, undesired e¤ects like e.g. variation of composition, microstructure, etc. occur. The solidification structure and its associated defects often persist throughout the subsequent operations, and thus good co...

  18. Versatile microcomputer-based temperature controller

    Energy Technology Data Exchange (ETDEWEB)

    Yarberry, V.R.

    1980-09-01

    The wide range of thermal responses required in laboratory and scientific equipment requires a temperature controller with a great deal of flexibility. While a number of analog temperature controllers are commercially available, they have certain limitations, such as inflexible parameter control or insufficient precision. Most lack digital interface capabilities--a necessity when the temperature controller is part of a computer-controlled automatic data acquisition system. We have developed an extremely versatile microcomputer-based temperature controller to fulfill this need in a variety of equipment. The control algorithm used allows optimal tailoring of parameters to control overshoot, response time, and accuracy. This microcomputer-based temperature controller can be used as a standalone instrument (with a teletype used to enter para-meters), or it can be integrated into a data acquisition system (with a computer used to pass parameters by way of an IEE-488 instrumentation bus).

  19. Successful development of innovative fabrication technique based on laser welding, for superconducting RF cavities - results and path ahead

    International Nuclear Information System (INIS)

    Superconducting radio frequency (SCRF) cavities are the heart of any particle accelerator based on SCRF technology. All over the world, efforts are being made to develop a technique which can bring down the cost and time of fabrication of these cavities. The present day fabrication method of SCRF cavities uses Electron beam welding (EBW) technique. The cavities fabricated by this method turn out to be expensive and take long fabrication time. To overcome such difficulties related with EBW process, an innovative concept for fabrication of SCRF cavities based on laser welding was formulated at RRCAT. International patent application was immediately launched for this work, to protect intellectual property rights of DAE

  20. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  1. VHF Injector Pumping Slot RF Shielding Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Staples, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2007-08-08

    The effectiveness of the shielding of the pumping slots is calculated for two radial depths of the slots with Mafia-2 and compared to a simple recipe that calculates the RF attenuation in a slot. CBP Technical Note 378 describes the pumping configuration of the 100 MHz VHF photoinjector. The cavity is surrounded by 36 slots, 4.9 cm wide, separated by bars, also 4.9 cm wide. The radial depth of the bars controls the attenuation of the RF from the cavity proper to the annular plenum outside the bars where the getter pumps are located. This note describes calculations of the level of RF fields in the plenum for two different values of the radial depth of the bars and two different values of the spacing between the outer dimension of the bars and the outer plenum wall.

  2. Development of a photo-cathode rf electron gun for ultra-short bunch generation

    International Nuclear Information System (INIS)

    The photocathode rf electron gun is a high brightness electron source because the initial electron bunch shape can be controlled by the cathode illuminating laser pulse and then the bunch is rapidly accelerated by the high gradient electric field in the rf gun cavity. The rf guns are widely used not only as a injector for large facility but also application researches. At Waseda University, I and collaborators have been developing an rf electron gun since 1999. We performed optimization of cavity structure, improvement of rf tuner and development of photocathode material, then we succeeded in operating 3.6 cell rf gun. In these backgrounds, I conceived a new type rf gun cavity structure for ultra-short electron bunch generation, named Energy-Chirping-Cell attached rf gun (ECC rf gun). Less than 100 fs (rms) bunch can be produced with 100 pC charge by this ECC rf gun in the simulation. Such a high peak current bunch has a possibility to apply for the coherent THz radiation source and single shot electron diffraction microscope. Encouraged by this successful simulation results, we manufactured an ECC rf gun and measured the bunch length at Waseda University. The experimental results showed a good agreement with simulation and we found that the bunch length from ECC rf gun was less than 500 fs (rms). In this paper, the introduction of the photocathode rf gun, principle and experimental results of ECC rf gun, and future prospective will be described. (author)

  3. Preparations for Upgrading the RF Systems of the PS Booster

    CERN Document Server

    Albright, Simon; Shaposhnikova, Elena

    2016-01-01

    The accelerators of the LHC injector chain need to be upgraded to provide the HL-LHC beams. The PS Booster, the first synchrotron in the LHC injection chain, uses three different RF systems (first, second and up to tenth harmonic) in each of its four rings. As part of the LHC Injector Upgrade the current ferrite RF systems will be replaced with broadband Finemet cavities, increasing the flexibility of the RF system. A Finemet test cavity has been installed in Ring 4 to investigate its effect on machine performance, especially beam stability, during extensive experimental studies. Due to large space charge impedance Landau damping is lost through most of the cycle in single harmonic operation, but is recovered when using the second harmonic and controlled longitudinal emittance blow-up. This paper compares beam parameters during acceleration with and without the Finemet test cavity. Comparisons were made using beam measurements and simulations with the BLonD code based on a full PS Booster impedance model. Thi...

  4. Development of 505.8 MHz solid state RF amplifiers at RRCAT

    International Nuclear Information System (INIS)

    Indus-2 RF power system was designed and built using four Klystron based RF stations, each delivering 60 kW at 505.8 MHz, making up total installed capacity of 240 kW of RF power. Due to uncertainty in getting Klystron tubes, it was decided to develop alternate high power RF source using solid state RF technology. In this scheme 60 kW CW RF power will be generated using scalable and modular combination of 8 kW amplifier units operating at 505.8 MHz. For this work necessary efforts were carried out for design studies, amplifier architecture selection, component selection and RF characterization. 15 kW RF amplifier has been fabricated by combining RF power from two 8 kW units. Two such 15 kW units have been developed and deployed at Indus-2

  5. Automatic high power RF processing system using PLC

    International Nuclear Information System (INIS)

    We have developed the automatic control system using Programmable Logic Controller (PLC) for the high power RF processing, which is used for the C-band (5712-MHz) accelerating structure and the klystron in SPring-8 Compact SASE Source (SCSS) project. The PLC has been used in industry to have many advantages, such as reliable, compact, low-cost. In addition the PLC is recently able to communicate with the upper-layer controller through a network. We use this system for the klystron RF power test. In this paper, we will describe the configuration of the system and the detail of the high power RF processing. (author)

  6. Quality control review: implementing a scientifically based quality control system.

    Science.gov (United States)

    Westgard, James O; Westgard, Sten A

    2016-01-01

    This review focuses on statistical quality control in the context of a quality management system. It describes the use of a 'Sigma-metric' for validating the performance of a new examination procedure, developing a total quality control strategy, selecting a statistical quality control procedure and monitoring ongoing quality on the sigma scale. Acceptable method performance is a prerequisite to the design and implementation of statistical quality control procedures. Statistical quality control can only monitor performance, and when properly designed, alert analysts to the presence of additional errors that occur because of unstable performance. A new statistical quality control planning tool, called 'Westgard Sigma Rules,' provides a simple and quick way for selecting control rules and the number of control measurements needed to detect medically important errors. The concept of a quality control plan is described, along with alternative adaptations of a total quality control plan and a risk-based individualized quality control plan. Finally, the ongoing monitoring of analytic performance and test quality are discussed, including determination of measurement uncertainty from statistical quality control data collected under intermediate precision conditions and bias determined from proficiency testing/external quality assessment surveys. A new graphical tool, called the Sigma Quality Assessment Chart, is recommended for demonstrating the quality of current examination procedures on the sigma scale. PMID:26150675

  7. Development of timing system for RF ion source and RFQ III test stand

    International Nuclear Information System (INIS)

    J-PARC LINAC is scheduled for installation of cesium seeded RF-driven H- ion source (RF ion source) and 50 mA RFQ (RFQ III) for achieving high current beam in 2014. Therefore, we were implemented beam test at RF ion source and RFQ III test stand since 2013. The control system for RF ion source and RFQ III test stand was designed considering compatibility to the control system in J-PARC LINAC. But the timing parameter for RF ion source is different from the timing parameter for H- ion source is operating in J-PARC, because method of generating H- plasma is different. Therefore, we develop the timing system for RF ion source using the timing parameter of RF ion source, and were used it at RF ion source and RFQ III test stand. This report is described mainly the timing system. (author)

  8. A large-scale RF-based Indoor Localization System Using Low-complexity Gaussian filter and improved Bayesian inference

    Directory of Open Access Journals (Sweden)

    L. Xiao

    2013-04-01

    Full Text Available The growing convergence among mobile computing device and smart sensors boosts the development of ubiquitous computing and smart spaces, where localization is an essential part to realize the big vision. The general localization methods based on GPS and cellular techniques are not suitable for tracking numerous small size and limited power objects in the indoor case. In this paper, we propose and demonstrate a new localization method, this method is an easy-setup and cost-effective indoor localization system based on off-the-shelf active RFID technology. Our system is not only compatible with the future smart spaces and ubiquitous computing systems, but also suitable for large-scale indoor localization. The use of low-complexity Gaussian Filter (GF, Wheel Graph Model (WGM and Probabilistic Localization Algorithm (PLA make the proposed algorithm robust and suitable for large-scale indoor positioning from uncertainty, self-adjective to varying indoor environment. Using MATLAB simulation, we study the system performances, especially the dependence on a number of system and environment parameters, and their statistical properties. The simulation results prove that our proposed system is an accurate and cost-effective candidate for indoor localization.

  9. Frontiers of RF Photoinjectors

    CERN Document Server

    Ferrario, Massimo

    2005-01-01

    New ideas have been recently proposed to achieve ultra-high brightness electron beams, as particularly needed in SASE-FEL experiments, and to produce flat beams, as required in linear colliders. Low emittance schemes already foreseen for split normal conducting photoinjectors have been applied to the superconducting case in order to produce high peak and high average beam brightness. RF compressor techniques have been partially confirmed by experimental results and more compact RF photoinjector designs including compression scheme are under development. Research and experiments in the flat beam production from a photoinjector as a possible alternative to damping rings are in progress. An overview of recent advancements and future perspectives in photoinjector beam physics is reported in this talk.

  10. Development of a large proton accelerator for innovative researches; development of high power RF source

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K. H.; Lee, K. O.; Shin, H. M.; Chung, I. Y. [KAPRA, Seoul (Korea); Kim, D. I. [Inha University, Incheon (Korea); Noh, S. J. [Dankook University, Seoul (Korea); Ko, S. K. [Ulsan University, Ulsan (Korea); Lee, H. J. [Cheju National University, Cheju (Korea); Choi, W. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-05-01

    This study was performed with objective to design and develop the KOMAC proton accelerator RF system. For the development of the high power RF source for CCDTL(coupled cavity drift tube linac), the medium power RF system using the UHF klystron for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. 16 refs., 64 figs., 27 tabs. (Author)

  11. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  12. RF superconducting cavities

    CERN Document Server

    Kojima, Y

    1980-01-01

    The history and present activity in research on RF superconducting cavities in various countries are reviewed. The program of the July 1980 Karlsruhe workshop is reproduced and research activity in this field at Stanford HEPL and SLAC, Cornell, Oregon, Brookhaven, KEK (Japan), Weismann (Israel), Genoa, CERN and Karlsruhe (KfK) listed. The theoretical basis of surface resistance and intracavity magnetic field, multipacing and non-resonant electron loading are outlined. (20 refs).

  13. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  14. Dusty RF discharges

    International Nuclear Information System (INIS)

    One-dimensional dusty RF discharges between two plane electrodes in argon are investigated by PIC/MC simulation. Immobile dust particles of given size and density are distributed uniformly in the interelectrode gap. Spatial distributions of discharge parameters across the interelectrode gap were simulated at various densities of dust particles. Obtained results show that dusty RF discharges have non-uniform quasi-neutral central parts with low electric fields and non-stationary sheaths with strong electric fields separating the electrodes from the central parts. The dust particles essentially influence the spatial distribution of the discharge parameters, in particular an increase of a dust particle density causes an expansion of sheaths. Simulations show that electron energy distribution functions time-averaged in various points of the non-uniform quasi-neutral central parts of the RF discharges are depended on the argon pressure. At the low pressure, the functions coincide practically in the high-energy region due to a free mixing of fast electrons in the almost equipotential center region that causes non-trivial non-monotonic spatial distributions of the dust particle charge. (author)

  15. Rf field emission in superconducting cavities

    International Nuclear Information System (INIS)

    Field emission is the most serious problem faced today to achieve higher gradients in superconducting accelerator cavities. Both multipacting and thermal breakdown, which used to be dominant problems of the past are well understood and under control in accelerating cavities designed for velocity of light particles. Experience at CERN, Cornell, DESY, KEK and Wuppertal show that FE is now the usual mechanism limiting achievable accelerating fields for single and multi-cell structures. Peak surface electric fields between 12 and 30 Mv/m and peak surface magnetic fields between 200 and 600 Oersted are achieved in full scale structures corresponding to accelerating gradients between 5 and 12 MeV/m. In single cell cavities peak surface electric fields up to 60 Mv/m and magnetic fields up to 1050 Oe have been achieved. When compared with the 200 Mv/m dc surface fields achieved with cm2 size, clean, heat-treated Nb surfaces, and with the 2400 Oe theoretical rf critical magnetic field capability of Nb it is clear that there remains much room for improvement with Nb cavities. Results with 3000 Mhz heat treated cavities have shown that overall FE loading is less after heat treatment and high fields can be reached more frequently. To improve the understanding of FE behavior in rf fields from cold surfaces, a high speed, superfluid He, thermometer based diagnostic system has been completed. Studies indicate that condensed gases play an important role in FE, so that it would be a worthwhile attempt to look for comparable phenomena in dc FE studies. It has also been established that a Nb surface which can withstand a field of 30 Mv/m does not degrade on exposure to dust-free air, so that this avenue is not a rich source of emitters. 11 references, 13 figures, 1 table

  16. Beam dynamics studies for photocathode RF gun

    International Nuclear Information System (INIS)

    Photocathode RF guns are very popular choice as injector for low emittance beams especially to light sources world wide. In demand for these gun is increasing steadily and efforts are on to make 2.6 cell RF Gun as SAMEER as proto type for future use at various laboratories. The base design of this 2.6 cell RF Gun is ready and fabrication is planned in near future. In this paper, we present beam dynamic study results of the gun and methodology to arrive at the operating point. Simulation results for Gaussian with nano-second pulse length will be discussed in detail and proposal for generation of few MeV beam will be presented. (author)

  17. ZnO Nanowire Formation by Two-Step Deposition Method Using Energy-Controlled Hollow-Type Magnetron RF Plasma

    OpenAIRE

    Satoru Iizuka; Hideki Ono

    2011-01-01

    ZnO nanowire was produced in RF (radio frequency) discharge plasma. We employed here a two-step deposition technique. In the 1st step, zinc atoms were sputtered from a zinc target to create zinc nuclei on a substrate before the growth of ZnO nanostructure. Here, we used pure argon plasma for physical sputtering. In the 2nd step, we employed an oxygen discharge mixed with argon, where oxygen radicals reacted with zinc nuclei to form ZnO nanostructures. Experimental parameters such as gas flow ...

  18. Time- and space-resolved rf-plasma measurements from a displacement- current-based electric probe diagnostic

    International Nuclear Information System (INIS)

    A displacement-current-based, Langmuir probe technique was developed to measure time-resolved and spatially-dependent electron energy distribution functions (EEDF) in a 100 mTorr argon plasma. This diagnostic was designed to take consideration of the changes in displacement current collected at the probe due to changes in the probe tip sheath potential. The EEDFs collected displayed evidence of a time-dependent as well as spatially-dependent electron beam component. The beam energy was seen to increase with the instantaneous plasma potential. The electron density was found to be 3.2±1.1·109 CM-3, 1.0±1.5·1010 CM-3, and 2.7±1.0·109 CM-3 at locations 0.6cm, 1.8cm, and 2.8cm from the grounded electrode respectively. Mean electron energies were also spatially dependent, measuring 8.7±0.8 eV, 11.3±1.0 eV, and 6.9±0.7 eV at locations 0.6cm, 1.8cm, and 2.8cm from the grounded electrode respectively. Determination of displacement current at the probe tip permitted an estimate of probe sheath capacitance (15pF--27pF) as a function of the probe tip sheath potential (OV--10OV). 25 Refs

  19. Linearizing Control of Induction Motor Based on Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.

  20. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  1. ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM

    Directory of Open Access Journals (Sweden)

    A.PURNA CHANDRA RAO

    2010-11-01

    Full Text Available All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor drive. The mathematical model of brushless dc motor (BLDC is presented for control design. In addition the robustness of the control strategy is discussed. The proposed control strategy possesses good transient responses and good load disturbance response. In addition, the proposed control strategy possesses good tracking ability. To test the effectiveness of the proposed strategy, the BLDC is represented in transfer function model and later implemented in test system. The results are presented to validate the proposed control strategy for BLDC drive.

  2. Bilateral based robust load frequency control

    International Nuclear Information System (INIS)

    Load frequency control (Lc) has been one of the major subjects in electric power system design/operation and is becoming much more significant today in accordance with increasing size and the changing structure and complexity of interconnected power systems. In practice, power systems use simple proportional-integral (PI) controllers for frequency regulation and load tracking. However, since the PI controller parameters are usually tuned based on classical or trial and error approaches, they are incapable of obtaining good dynamical performance for a wide range of operating conditions and various load changes scenarios in a restructured power system. This paper addresses a new decentralized robust Lc design in a deregulated power system under a bilateral based policy scheme. In each control area, the effect of bilateral contracts is taken into account as a set of new input signals in a modified traditional dynamical model. The Lc problem is formulated as a multi-objective control problem via a mixed H2/H∞ control technique. In order to design a robust PI controller, the control problem is reduced to a static output feedback control synthesis, and then, it is solved using a developed iterative linear matrix inequalities algorithm to get a robust performance index close to a specified optimal one. The proposed method is applied to a 3 control area power system with possible contract scenarios and a wide range of load changes. The results of the proposed multi-objective PI controllers are compared with H2/H∞ dynamic controllers

  3. Cu{sub 2}ZnSnS{sub 4} thin films: Facile and cost-effective preparation by RF-magnetron sputtering and texture control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiansheng; Li, Song; Cai, Jiajia; Shen, Bo; Ren, Yuping [Key Lab for Anisotropy and Texture of Materials (MoE), Northeastern University, Shenyang 110819 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Lab for Anisotropy and Texture of Materials (MoE), Northeastern University, Shenyang 110819 (China)

    2013-03-05

    Highlights: ► Highly (1 1 2) oriented Cu{sub 2}ZnSnS{sub 4} (CZTS) films were grown on glass using RF magnetron sputtering. ► We report a single process to fabricate Cu{sub 2}ZnSnS{sub 4} thin film without sulfuration or post annealing. ► Morphology of Cu{sub 2}ZnSnS{sub 4} films is tuned from smooth to flower-like by substrate temperature. -- Abstract: Cu{sub 2}ZnSnS{sub 4} photovoltaic semiconductor films (CZTS) were deposited by RF magnetron sputtering using a home-made Cu{sub 2}S–ZnS–SnS{sub 2}–S mixed powder target. The phase information of the CZTS films was studied via X-ray diffraction and Raman scattering techniques. The films prepared at substrate temperatures between 150 °C and 200 °C exhibited strong preferential orientation of grains along <1 1 2>. Higher substrate temperature (over 200 °C) induced a flower-like structure of CZTS films without preferred orientation and the light absorption coefficients were largely enhanced. The energy band gaps of CZTS films deposited at different substrate temperatures were approximate 1.7 eV.

  4. PID Controller Based on Memristive CMAC Network

    Directory of Open Access Journals (Sweden)

    Lidan Wang

    2013-01-01

    Full Text Available Compound controller which consists of CMAC network and PID network is mainly used in control system, especially in robot control. It can realize nonlinear tracking control of the real-time dynamic trajectory and possesses good approximation effect. According to the structure and principle of the compound controller, memristor is introduced to CMAC network to be a compound controller in this paper. The new PID controller based on memristive CMAC network is built up by replacing the synapse in the original controller by memristors. The effect of curve approximation is obtained by MATLAB simulation experiments. This network improves the response and learning speed of the system and processes better robustness and antidisturbance performance.

  5. Model-based control of networked systems

    CERN Document Server

    Garcia, Eloy; Montestruque, Luis A

    2014-01-01

    This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled.   The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control.   Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...

  6. Control of acrobot based on Lyapunov function

    Institute of Scientific and Technical Information of China (English)

    赖旭芝; 吴敏; 佘锦华

    2004-01-01

    Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an acrobot to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from upswing to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.

  7. A model-based control system concept

    International Nuclear Information System (INIS)

    This paper presents an overview of a new concept for DCSs developed within the KBRTCS (Knowledge-Based Real-Time Control Systems) project performed between 1988 and 1991 as a part of the Swedish IT4 programme. The partners of the project have been the Department of Automatic Control at Lund University, Asea Brown Boveri, and during parts of the project, SattControl, and TeleLogic. The aim of the project has been to develop a concept for future generations of DCSs based on a plant database containing a description of the plant together with the control system. The database is object-based and supports multiple views of an objects. A demonstrator is presented where a DCS system of this type is emulated. The demonstrator contains a number of control, monitoring, and diagnosis applications that execute in real time against a simulations of Steritherm sterilization process. (25 refs.)

  8. Operational performance and future upgrades for Indus-1 RF systems

    International Nuclear Information System (INIS)

    The Indus-1 RF system is in operational state since August 1997. Indus-1 RF system has demonstrated to be very reliable and flexible and low failure rate usually did not cause interruption of machine operation. The low level control system has been completely installed in the year 1999 with the installation of phase loop to the desired stability, the amplitude and tuning loop was installed in the beginning phase. For the beam of 192 ma. (Max.) at 450 MeV no Home tuners were needed, as no dangerous frequencies were present. With 100 m.a. of beam stored at 450 MeV sufficiently good lifetime was achieved with Ion Clearing Electrodes Supply put On. The Booster Synchrotron RF system has been in operation since 1995. In addition to total 8000 hours of Indus-1 RF system run, Booster Synchrotron RF system has run for around 16000 hours. New upgrades of both the systems are discussed

  9. Reconfigurable transceiver architecture for multiband RF-frontends

    CERN Document Server

    Gonzalez Rodriguez, Erick

    2016-01-01

      This book investigates and discusses the hardware design and implementation to achieve smart air interfaces with a reduced number of Radio Frequency (RF) transmitter and receiver chains, or even with a single reconfigurable RF-Frontend in the user terminal. Various hardware challenges are identified and addressed to enable the implementation of autonomous reconfigurable RF-Frontend architectures. Such challenges are (i) the conception of a transceiver with wide tuning range of at least up to 6 GHz, (ii) the system integration of reconfigurable technologies targeting current compact devices that demand voltages up to 100 V for adaptive controlling and (iii) the realization of a multiband and multistandard antenna module employing agile components to provide flexible frequency coverage. A solid design of a reconfigurable frontend is proposed from the RF part to the digital baseband. The system integration of different components in the reconfigurable RF-Frontend of a portable-oriented device architecture is ...

  10. RF design and characterisation of Indus-1 RF cavity

    International Nuclear Information System (INIS)

    A new capacitive loaded torrespherical RF cavity at 31.613 MHz was designed, developed and tested for INDUS-1 storage ring. The torrespherical shape is chosen because of its compactness and simplicity in fabrication. The new cavity is made of Stainless Steel and its internal surface is plated with copper to reduce the power loss. The cavity is capable of handling 30 kV gap voltage with calculated 0.635 MΩ shunt impedance. This cavity is equipped with three tuners for the frequency tuning during operation with measured tuning range of ±45 kHz with each tuner. Low power RF characterization and cavity tuning was carried out for this RF cavity. New INDUS-1 RF cavity had been tested up to 1.6 kW RF power during high power RF testing. The new RF cavity in INDUS-1 storage ring has been successfully commissioned and beam current up to 150 mA has been stored at 450 MeV. This paper describes the design feature, low power RF characterisation and high power testing of the new INDUS-1 RF cavity. (author)

  11. Cloud-based Networked Visual Servo Control

    DEFF Research Database (Denmark)

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung;

    2013-01-01

    , which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitting large volume image data on a cloud computing platform, which enables high sampling rate visual......The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control...... feedback, ii) a stabilizing control law for the networked visual servo control system with time-varying feedback time delay, and iii) a sending rate scheduling strategy aiming at reducing the communication network load. The performance of the networked visual servo control system with sending rate...

  12. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  13. Event-Based Control Strategy for Mobile Robots in Wireless Environments

    Directory of Open Access Journals (Sweden)

    Rafael Socas

    2015-12-01

    Full Text Available In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.

  14. Implementation of PLC Based Elevator Control System

    Directory of Open Access Journals (Sweden)

    Sandar Htay

    2014-03-01

    Full Text Available This paper describes programmable logic controller based elevator control system. An elevator is one of the important aspects in electronics control module in automotive application. Nowadays, Myanmar is a developing country and there is enormous increase in high-rise building in Myanmar. This paper mainly focuses on using programmable logic controller to control the circuit and building the elevator model. Hall Effect sensor is used for the elevator position. DC Motor is used to control the up and down movement of the elevator car. Push buttons are used to call the elevator car. The elevator position is described by using the display unit. In this paper, Auto Station Software ladder logic program is used for four floors control system

  15. RF Characterization of Superconducting Samples

    CERN Document Server

    Junginger, T; Welsch, C

    2009-01-01

    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented.

  16. RF power generation

    CERN Document Server

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  17. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  18. SPS RF cavity

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. A power of up to 790 kW can be supplied to each giving a total accelerating voltage of about 8 MV. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities.

  19. RF modal quantity gaging

    Science.gov (United States)

    Vanleuven, K.

    1989-05-01

    The primary objective is to provide a concept of a radio frequency (RF) modal resonance technique which is being investigated as a method for gaging the quantities of subcritical cryogenic propellants in metallic tanks. Of special interest are the potential applications of the technique to microgravity propellant gaging situations. The results of concept testing using cryogenic oxygen, hydrogen, and nitrogen, as well as paraffin simulations of microgravity fluid orientations, are reported. These test results were positive and showed that the gaging concept was viable.

  20. Vector Control Based on SVPWM for ACIM

    Directory of Open Access Journals (Sweden)

    Zhu Jun

    2013-05-01

    Full Text Available To solve the large torque ripple and current harmonics, low DC bus voltage problems, a new control strategy is proposed for AC induction motor by using space vector pulse width modulation, so that the static and dynamic performance are improved. The system simulation experiment mode was established based on SVPWM to verify the effectiveness of the system control mode. It is showed that it can reduce the current ripple and torque ripple, improve the utilization of DC bus voltage. It means that the control strategy based SVPWM can improve dynamic and static performance effectively for the ACIM servo system.