WorldWideScience

Sample records for based radiobiological dosimetry

  1. Dosimetry for radiobiology experiments at GANIL

    Science.gov (United States)

    Durantel, Florent; Balanzat, Emmanuel; Cassimi, Amine; Chevalier, François; Ngono-Ravache, Yvette; Madi, Toiammou; Poully, Jean-Christophe; Ramillon, Jean-Marc; Rothard, Hermann; Ropars, Frédéric; Schwob, Lucas; Testard, Isabelle; Saintigny, Yannick

    2016-04-01

    Mainly encouraged by the increasing application of ion beams for cancer treatment (hadron-therapy) including carbon beams, the use of heavy ion facilities for radiobiology is expanding rapidly today. As an alternative to dedicated centers for treatment and medical research, accelerators like GANIL offer the possibility to undertake such experiments. Since 20 years, CIMAP, reinforced 15 years ago by the biological host laboratory LARIA, has been receiving researchers in radiobiology and assisted them in performing experiments in different fields such as hadron-therapy, space radioprotection and fundamental biological and physico-chemical mechanisms. We present here a short description of the beam line and the on-line equipments that allow the automatic irradiation of up to 24 biological samples at once. We also developed an original on-line beam monitoring procedure for low ion flux (low dose rates) based on the measurement of the K-shell X-rays emitted from a thin iron foil. This detector is calibrated on an absolute scale before each experiment by counting etched tracks on an irradiated CR39 polymer plate. We present the performances and limits of this method and finally give typical fluence (dose) uncertainties for a standard irradiation in radiobiology.

  2. Dosimetry for radiobiology experiments at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Durantel, Florent, E-mail: durantel@ganil.fr [CIMAP-GANIL, Caen (France); Balanzat, Emmanuel; Cassimi, Amine [CIMAP-GANIL, Caen (France); Chevalier, François [CEA/DSV/LARIA, Caen (France); Ngono-Ravache, Yvette; Madi, Toiammou; Poully, Jean-Christophe; Ramillon, Jean-Marc; Rothard, Hermann; Ropars, Frédéric; Schwob, Lucas [CIMAP-GANIL, Caen (France); Testard, Isabelle [CEA/DSV/CBM/iRTSV, Grenoble (France); Saintigny, Yannick [CEA/DSV/LARIA, Caen (France)

    2016-04-21

    Mainly encouraged by the increasing application of ion beams for cancer treatment (hadron-therapy) including carbon beams, the use of heavy ion facilities for radiobiology is expanding rapidly today. As an alternative to dedicated centers for treatment and medical research, accelerators like GANIL offer the possibility to undertake such experiments. Since 20 years, CIMAP, reinforced 15 years ago by the biological host laboratory LARIA, has been receiving researchers in radiobiology and assisted them in performing experiments in different fields such as hadron-therapy, space radioprotection and fundamental biological and physico-chemical mechanisms. We present here a short description of the beam line and the on-line equipments that allow the automatic irradiation of up to 24 biological samples at once. We also developed an original on-line beam monitoring procedure for low ion flux (low dose rates) based on the measurement of the K-shell X-rays emitted from a thin iron foil. This detector is calibrated on an absolute scale before each experiment by counting etched tracks on an irradiated CR39 polymer plate. We present the performances and limits of this method and finally give typical fluence (dose) uncertainties for a standard irradiation in radiobiology.

  3. Radioembolization of hepatocarcinoma with {sup 90}Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, C.; Maccauro, M.; Aliberti, G.; Padovano, B.; Seregni, E.; Crippa, F. [Foundation IRCCS Istituto Nazionale Tumori, Nuclear Medicine Division, Milan (Italy); Mira, M.; Negri, A. [University of Milan, Postgraduate Health Physics School, Milan (Italy); Spreafico, C.; Morosi, C.; Civelli, E.; Lanocita, R.; Marchiano, A. [Foundation IRCCS Istituto Nazionale Tumori, Radiology 2, Milan (Italy); Romito, R.; Sposito, C.; Bhoori, S.; Facciorusso, A.; Mazzaferro, V. [Foundation IRCCS Istituto Nazionale Tumori, Surgery 1, Milan (Italy); Camerini, T. [Foundation IRCCS Istituto Nazionale Tumori, Scientific Direction, Milan (Italy); Carrara, M. [Foundation IRCCS Istituto Nazionale Tumori, Health Physics, Milan (Italy); Pellizzari, S. [University La Sapienza, Engineering Faculty, Rome (Italy); Migliorisi, M. [Foundation IRCCS Istituto Nazionale Tumori, Nuclear Medicine Division, Milan (Italy); Foundation IRCCS Istituto Nazionale Tumori, Clinical Engineering, Milan (Italy); De Nile, M.C. [University of Pavia, Physics Faculty, Pavia, Lombardy (Italy)

    2015-10-15

    The aim of this study was to optimize the dosimetric approach and to review the absorbed doses delivered, taking into account radiobiology, in order to identify the optimal methodology for an individualized treatment planning strategy based on {sup 99m}Tc-macroaggregated albumin (MAA) single photon emission computed tomography (SPECT) images. We performed retrospective dosimetry of the standard TheraSphere registered treatment on 52 intermediate (n = 17) and advanced (i.e. portal vein thrombosis, n = 35) hepatocarcinoma patients with tumour burden < 50 % and without obstruction of the main portal vein trunk. Response was monitored with the densitometric radiological criterion (European Association for the Study of the Liver) and treatment-related liver decompensation was defined ad hoc with a time cut-off of 6 months. Adverse events clearly attributable to disease progression or other causes were not attributed to treatment. Voxel dosimetry was performed with the local deposition method on {sup 99m}Tc-MAA SPECT images. The reconstruction protocol was optimized. Concordance of {sup 99m}Tc-MAA and {sup 90}Y bremsstrahlung microsphere biodistributions was studied in 35 sequential patients. Two segmentation methods were used, based on SPECT alone (home-made code) or on coregistered SPECT/CT images (IMALYTICS trademark by Philips). STRATOS trademark absorbed dose calculation was validated for {sup 90}Y with a single time point. Radiobiology was used introducing other dosimetric variables besides the mean absorbed dose D: equivalent uniform dose (EUD), biologically effective dose averaged over voxel values (BED{sub ave}) and equivalent uniform biologically effective dose (EUBED). Two sets of radiobiological parameters, the first derived from microsphere irradiation and the second from external beam radiotherapy (EBRT), were used. A total of 16 possible methodologies were compared. Tumour control probability (TCP) and normal tissue complication probability (NTCP) were

  4. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry.

    Science.gov (United States)

    Meade, A D; Clarke, C; Byrne, H J; Lyng, F M

    2010-02-01

    The scientific literature contains an ever-growing number of reports of applications of vibrational spectroscopy as a multivariate non-invasive tool for analysis of biological effects at the molecular level. Recently, Fourier transform infrared microspectroscopy (FTIRM) has been demonstrated to be sensitive to molecular events occurring in cells and tissue after exposure to ionizing radiation. In this work the application of FTIRM in the examination of dose-dependent molecular effects occurring in skin cells after exposure to ionizing radiation with the use of partial least-squares regression (PLSR) and generalized regression neural networks (GRNN) was studied. The methodology is shown to be sensitive to molecular events occurring with radiation dose and time after exposure. The variation in molecular species with dose and time after irradiation is shown to be non-linear by virtue of the higher modeling efficiency yielded from the non-linear algorithms. Dose prediction efficiencies of approximately +/-10 mGy were achieved at 96 h after irradiation, highlighting the potential applications of the methodology in radiobiological dosimetry.

  5. Three-dimensional radiobiological dosimetry of kidneys for treatment planning in peptide receptor radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Sebastien; Hobbs, Robert F.; Boubaker, Ariane; Buchegger, Franz; He Bin; Frey, Eric C.; Sgouros, George [Institute of Radiation Physics, Lausanne University Hospital, 1007 Lausanne (Switzerland); Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231 (United States); Department of Nuclear Medicine, Lausanne University Hospital, 1011 Lausanne (Switzerland); Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231 (United States)

    2012-10-15

    Purpose: Peptide receptor radionuclide therapy (PRRT) delivers high absorbed doses to kidneys and may lead to permanent nephropathy. Reliable dosimetry of kidneys is thus critical for safe and effective PRRT. The aim of this work was to assess the feasibility of planning PRRT based on 3D radiobiological dosimetry (3D-RD) in order to optimize both the amount of activity to administer and the fractionation scheme, while limiting the absorbed dose and the biological effective dose (BED) to the renal cortex. Methods: Planar and SPECT data were available for a patient examined with {sup 111}In-DTPA-octreotide at 0.5 (planar only), 4, 24, and 48 h post-injection. Absorbed dose and BED distributions were calculated for common therapeutic radionuclides, i.e., {sup 111}In, {sup 90}Y and {sup 177}Lu, using the 3D-RD methodology. Dose-volume histograms were computed and mean absorbed doses to kidneys, renal cortices, and medullae were compared with results obtained using the MIRD schema (S-values) with the multiregion kidney dosimetry model. Two different treatment planning approaches based on (1) the fixed absorbed dose to the cortex and (2) the fixed BED to the cortex were then considered to optimize the activity to administer by varying the number of fractions. Results: Mean absorbed doses calculated with 3D-RD were in good agreement with those obtained with S-value-based SPECT dosimetry for {sup 90}Y and {sup 177}Lu. Nevertheless, for {sup 111}In, differences of 14% and 22% were found for the whole kidneys and the cortex, respectively. Moreover, the authors found that planar-based dosimetry systematically underestimates the absorbed dose in comparison with SPECT-based methods, up to 32%. Regarding the 3D-RD-based treatment planning using a fixed BED constraint to the renal cortex, the optimal number of fractions was found to be 3 or 4, depending on the radionuclide administered and the value of the fixed BED. Cumulative activities obtained using the proposed simulated

  6. Automation of the particle dosimetry and the dose application for radiobiological experiments at a vertical proton beam

    CERN Document Server

    Moertel, H; Eyrich, W; Fritsch, M; Distel, L

    2002-01-01

    A facility with a vertical beam for radiobiological experiments with low-energy protons has been setup at the Tandem accelerator at Erlangen. This energy region is optimal to investigate the biological effects of the linear energy transfer in the Bragg region under physiological conditions. A new automated data acquisition system for dosimetry and monitoring based on a personal computer was developed and optimized for this setup. A specially designed sample holder offers possibilities of cooling or changing of atmosphere during irradiation. First irradiations of biological samples have shown the functionality of the setup.

  7. Characterization and performances of DOSION, a dosimetry equipment dedicated to radiobiology experiments taking place at GANIL

    CERN Document Server

    Boissonnat, G; Balanzat, E; Boumard, F; Carniol, B; Colin, J; Cussol, D; Etasse, D; Fontbonne, C; Frelin, A -M; Hommet, J; Peronnel, J; Salvador, S

    2016-01-01

    Currently, radiobiology experiments using heavy ions at GANIL(Grand Acc\\'el\\'erateur National d'Ions Lourds) are conducted under the supervision of the CIMAP (Center for research on Ions, MAterials and Photonics). In this context, a new beam monitoring equipment named DOSION has been developed. It allows to perform measurements of accurate fluence and dose maps in near real time for each biological sample irradiated. In this paper, we present the detection system, its design, performances, calibration protocol and measurements performed during radiobiology experiments. This setup is currently available for any radiobiology experiments if one wishes to correlate one's own sample analysis to state of the art dosimetric references.

  8. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  9. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  10. Introduction to radiobiology of targeted radionuclide therapy

    Directory of Open Access Journals (Sweden)

    Jean-Pierre ePOUGET

    2015-03-01

    Full Text Available During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRT are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure and low absorbed dose rate differ from those of conventional EBRT (homogeneous irradiation, short exposure and high absorbed dose rate, and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related and non-targeted effects (assumed to be non-dose-related of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main

  11. Characterization of neutron beams for boron neutron capture therapy: in-air radiobiological dosimetry.

    Science.gov (United States)

    Yamamoto, Tetsuya; Matsumura, Akira; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Hori, Naohiko; Torii, Yoshiya; Shibata, Yasushi; Nose, Tadao

    2003-07-01

    The survival curves and the RBE for the dose components generated in boron neutron capture therapy (BNCT) were determined separately in neutron beams at Japan Research Reactor No. 4. The surviving fractions of V79 Chinese hamster cells with or without 10B were obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal (TNB-2) neutron beam; these beams were used or are planned for use in BNCT clinical trials. The cell killing effect of the neutron beam in the presence or absence of 10B was highly dependent on the neutron beam used and depended on the epithermal and fast-neutron content of the beam. The RBEs of the boron capture reaction for ENB, TNB-1 and TNB-2 were 4.07 +/- 0.22, 2.98 +/- 0.16 and 1.42 +/- 0.07, respectively. The RBEs of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50 +/- 0.32, 2.34 +/- 0.30 and 2.17 +/- 0.28 for ENB, TNB-1 and TNB-2, respectively. The RBEs of the neutron and photon components were 1.22 +/- 0.16, 1.23 +/- 0.16, and 1.21 +/- 0.16 for ENB, TNB-1 and TNB-2, respectively. The approach to the experimental determination of RBEs outlined in this paper allows the RBE-weighted dose calculation for each dose component of the neutron beams and contributes to an accurate inter-beam comparison of the neutron beams at the different facilities employed in ongoing and planned BNCT clinical trials.

  12. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  13. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground Based Accelerators

    Directory of Open Access Journals (Sweden)

    Myung-Hee Y Kim

    2015-06-01

    Full Text Available For research on the health risks of galactic cosmic rays (GCR ground-based accelerators have been used for radiobiology research with mono-energetic beams of single high charge, Z and energy, E (HZE particles. In this paper we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving understanding of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology

  14. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures

    Energy Technology Data Exchange (ETDEWEB)

    Mavroidis, Panayiotis [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University (Sweden); Ferreira, Brigida Costa [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University (Sweden); Shi, Chengyu [Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX (United States); Lind, Bengt K [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University (Sweden); Papanikolaou, Nikos [Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX (United States)

    2007-07-07

    The rapid implementation of advanced treatment planning and delivery technologies for radiation therapy has brought new challenges in evaluating the most effective treatment modality. Intensity-modulated radiotherapy (IMRT) using multi-leaf collimators (MLC) and helical tomotherapy (HT) are becoming popular modes of treatment delivery and their application and effectiveness continues to be investigated. Presently, there are several treatment planning systems (TPS) that can generate and optimize IMRT plans based on user-defined objective functions for the internal target volume (ITV) and organs at risk (OAR). However, the radiobiological parameters of the different tumours and normal tissues are typically not taken into account during dose prescription and optimization of a treatment plan or during plan evaluation. The suitability of a treatment plan is typically decided based on dosimetric criteria such as dose-volume histograms (DVH), maximum, minimum, mean and standard deviation of the dose distribution. For a more comprehensive treatment plan evaluation, the biologically effective uniform dose D-bar is applied together with the complication-free tumour control probability (P{sub +}). Its utilization is demonstrated using three clinical cases that were planned with two different forms of IMRT. In this study, three different cancer types at different anatomical sites were investigated: head and neck, lung and prostate cancers. For each cancer type, a linac MLC-based step-and-shoot IMRT plan and a HT plan were developed. The MLC-based IMRT treatment plans were developed on the Philips treatment-planning platform, using the Pinnacle 7.6 software release. For the tomotherapy HiArt plans, the dedicated tomotherapy treatment planning station was used, running version 2.1.2. By using D-bar as the common prescription point of the treatment plans and plotting the tissue response probabilities versus D-bar for a range of prescription doses, a number of plan trials can be

  15. DOSIMETRY

    CERN Multimedia

    2001-01-01

    From the month of May on, the neutron dosimeter will be worn in an extra package distinct from the usual film-badge. We will give you more ample information in Weekly Bulletin No. 18/2001 of April 30, 2001. In the week following Easter (17 - 20. 4. 2001) the Individual Dosimetry Service will be opened in the mornings from 8:30 to 11:30 h only. The Service will be closed on April 30.

  16. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, Lidia [Regina Elena National Cancer Institute, Laboratory of Medical Physics and Expert Systems, Rome (Italy); Konijnenberg, Mark [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Chiesa, Carlo [Instituto Nazionale Tumori, Department of Nuclear Medicine, Milan (Italy); Bardies, Manuel [UMR 1037 INSERM / Universite Paul Sabatier, Centre de Recherche en Cancerologie de Toulouse, Toulouse (France); Du, Yong [Royal Marsden NHS Foundation Trust, Department of Nuclear Medicine and PET/CT, Sutton, London (United Kingdom); Gleisner, Katarina Sjoegreen [Medical Radiation Physics, Clinical Sciences, Lund (Sweden); Lassmann, Michael [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Flux, Glenn [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Joint Department of Physics, Sutton (United Kingdom)

    2014-10-15

    Molecular radiotherapy (MRT) has demonstrated unique therapeutic advantages in the treatment of an increasing number of cancers. As with other treatment modalities, there is related toxicity to a number of organs at risk. Despite the large number of clinical trials over the past several decades, considerable uncertainties still remain regarding the optimization of this therapeutic approach and one of the vital issues to be answered is whether an absorbed radiation dose-response exists that could be used to guide personalized treatment. There are only limited and sporadic data investigating MRT dosimetry. The determination of dose-effect relationships for MRT has yet to be the explicit aim of a clinical trial. The aim of this article was to collate and discuss the available evidence for an absorbed radiation dose-effect relationships in MRT through a review of published data. Based on a PubMed search, 92 papers were found. Out of 79 studies investigating dosimetry, an absorbed dose-effect correlation was found in 48. The application of radiobiological modelling to clinical data is of increasing importance and the limited published data on absorbed dose-effect relationships based on these models are also reviewed. Based on National Cancer Institute guideline definition, the studies had a moderate or low rate of clinical relevance due to the limited number of studies investigating overall survival and absorbed dose. Nevertheless, the evidence strongly implies a correlation between the absorbed doses delivered and the response and toxicity, indicating that dosimetry-based personalized treatments would improve outcome and increase survival. (orig.)

  17. Radiobiological and standard data for radioprotection and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jammet, H.

    1972-09-01

    From ninth annual meeting of the European Society for Radiation Biology; Rome, Italy (26 Sep 1972). Radiobiological data provide the scientific bases for radioprotection norms and radiotherapy practices. Nevertheless numerous problems remain unsolved including dosimetry at the cellular and infracellular level, metabolic curves for the purlfication of radionuclides, dose-effect relations for stochastic phenomena, effect of high doses on conjunctive tissue, value of the calibration factor in time, RBE of high energy particles, and radiosensitivity as a function of age and sex. The scope of these problems is briefly indicated. (JSR)

  18. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    Science.gov (United States)

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  19. Concerted Uranium Research in Europe (CURE): toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure.

    Science.gov (United States)

    Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique

    2016-06-01

    The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.

  20. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peppa, V; Pappas, E; Pantelis, E; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens, Athens (Greece); Major, T; Polgar, C [National Institute of Oncology, Budapest (Hungary)

    2015-06-15

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research

  1. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    Science.gov (United States)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  2. An irradiation facility with a vertical beam for radiobiological studies

    CERN Document Server

    Besserer, J; Dellert, M; Gahn, C; Moosburger, M; Pemler, P; Quicken, P; Distel, L; Schuessler, H

    1999-01-01

    A vertical beam facility for radiobiological experiments was designed and constructed at the Munich Tandem-Accelerator Laboratory. The main part of the facility is a 90 deg. dipole magnet bending the beam of protons or heavy particles into a vertical upward direction, which is advantageous for wet-cell irradiation. After collimation the beam is spread out passively by thin scattering foils and dynamically by magnetic coils. A homogeneity of the radiation field better than +-5% has been achieved over the diameter of the exit window of 60 mm. The dose rate can be widely adjusted from single particles to more than 10 sup 1 sup 0 particles (i.e. hundreds of Grays) per second. The dose measurement is based on single-particle counting and on standard dosimeters. The detector system for dosimetry and irradiation control is described. In a first radiobiological experiment the cell survival of chinese hamster cells was measured after irradiation with 22.7 MeV protons and compared with the X-ray result.

  3. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy

    Science.gov (United States)

    Haworth, Annette; Mears, Christopher; Betts, John M.; Reynolds, Hayley M.; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A.

    2016-01-01

    Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The ‘biological optimisation’ considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.

  4. Validation of internal dosimetry protocols based on stochastic method

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Bruno M.; Fonseca, Telma C.F., E-mail: bmm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Almeida, Iassudara G.; Trindade, Bruno M.; Campos, Tarcisio P.R., E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    Computational phantoms adapted to Monte Carlo codes have been applied successfully in radiation dosimetry fields. NRI research group has been developing Internal Dosimetry Protocols - IDPs, addressing distinct methodologies, software and computational human-simulators, to perform internal dosimetry, especially for new radiopharmaceuticals. Validation of the IDPs is critical to ensure the reliability of the simulations results. Inter comparisons of data from literature with those produced by our IDPs is a suitable method for validation. The aim of this study was to validate the IDPs following such inter comparison procedure. The Golem phantom has been reconfigured to run on MCNP5. The specific absorbed fractions (SAF) for photon at 30, 100 and 1000 keV energies were simulated based on the IDPs and compared with reference values (RV) published by Zankl and Petoussi-Henss, 1998. The SAF average differences from RV and those obtained in IDP simulations was 2.3 %. The SAF largest differences were found in situations involving low energy photons at 30 keV. The Adrenals and thyroid, i.e. the lowest mass organs, had the highest SAF discrepancies towards RV as 7.2 % and 3.8 %, respectively. The statistic differences of SAF applying our IDPs from reference values were considered acceptable at the 30, 100 and 1000 keV spectra. We believe that the main reason for the discrepancies in IDPs run, found in lower masses organs, was due to our source definition methodology. Improvements of source spatial distribution in the voxels may provide outputs more consistent with reference values for lower masses organs. (author)

  5. Dynamic MLC-QA Based On Portal Dosimetry

    Directory of Open Access Journals (Sweden)

    Sajeev Surendran

    2014-05-01

    Full Text Available Purpose: Intensity modulated radiotherapy using dynamic delivery method requires accurate verification of MLC, its position and speed of motion. These parameter have major impact on dose delivery on patients. For quality assurance (QA procedure requires more time consumed in a radiotherapy department. The main purpose of this study was to investigate the potential use of amorphous silicon based EPID portal dosimetry for dMLC QA Methods and Materials: A varian Clinac_iX with On Board Imager (OBI and Rapid Arc facility ( VMAT equipped with 120 leaf Millennium MLC and with Amorphous Silicon Based EPID (aSi-1000, varian mounted on a Exact Robotic Arm is used. The dMLC QA consists of different dynamic MLC pattern provided by varian for checking positional accuracy, MLC gap, Leaf speed and complex dynamic field. Results and Discussion: Various dMLC tests were done using portal dosimetry. All results are within the tolerance limit. Picket fence test shows that leaf position errors of upto 0.2mm can be detected which are within the tolerance limit. Complex dynamic field were exposed to EPID, which shows the leaf speed and are within the tolerance limit.

  6. Radiobiological Research in JINR

    CERN Document Server

    Krasavin, E A

    2000-01-01

    The results of long-term radiobiological and radiation-genetical research in DRRR (Division of Radiobiology) are summarized. The different radiation-induced effects in bacteria, yeasts, mammalian and human cells after irradiation by gamma-rays and heavy charged particles are considered. The important role of DNA repair processes in biological effectiveness of different types of radiation were shown. The data on mutagenic action of such kinds of radiation on pro- and eukaryotic cells were analyzed. On the basis of our data the hypersensitivity of human and mammalian chromosomes after low doses of gamma-rays (10-20 sGy) was revealed. The radiobiological effect of ^{211}At - methylene blue complex on human melanoma cells was studied. The extremely high effectiveness of this complex on melanoma cells was shown.

  7. Development of a PET cyclotron based irradiation setup for proton radiobiology

    Science.gov (United States)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan

  8. Clinical impact of {sup 99m}Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with {sup 90}Y-loaded microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Garin, Etienne [Cancer Institute Eugene Marquis, Department of Nuclear Medicine, Rennes (France); University of Rennes 1, Rennes (France); INSERM, U-991, Liver Metabolisms and Cancer, Rennes (France); Rolland, Yan [Cancer Institute Eugene Marquis, Department of Medical Imaging, Rennes (France); Laffont, Sophie [University of Rennes 1, Rennes (France); Edeline, Julien [University of Rennes 1, Rennes (France); INSERM, U-991, Liver Metabolisms and Cancer, Rennes (France); Cancer Institute Eugene Marquis, Department of Medical Oncology, Rennes (France)

    2016-03-15

    Radioembolization with {sup 90}Y-loaded microspheres is increasingly used in the treatment of primary and secondary liver cancer. Technetium-99 m macroaggregated albumin (MAA) scintigraphy is used as a surrogate of microsphere distribution to assess lung or digestive shunting prior to therapy, based on tumoral targeting and dosimetry. To date, this has been the sole pre-therapeutic tool available for such evaluation. Several dosimetric approaches have been described using both glass and resin microspheres in hepatocellular carcinoma (HCC) and liver metastasis. Given that each product offers different specific activities and numbers of spheres injected, their radiobiological properties are believed to lightly differ. This paper summarizes and discusses the available studies focused on MAA-based dosimetry, particularly concentrating on potential confounding factors like clinical context, tumor size, cirrhosis, previous or concomitant therapy, and product used. In terms of the impact of tumoral dose in HCC, the results were concordant and a response relationship and tumoral threshold dose was clearly identified, especially in studies using glass microspheres. Tumoral dose has also been found to influence survival. The concept of treatment intensification has recently been introduced, yet despite several studies publishing interesting findings on the tumor dose-metastasis relationship, no consensus has been reached, and further clarification is thus required. Nor has the maximal tolerated dose to the liver been well documented, requiring more accurate evaluation. Lung dose was well described, despite recently identified factors influencing its evaluation, requiring further assessment. MAA SPECT/CT dosimetry is accurate in HCC and can now be used in order to achieve a fully customized approach, including treatment intensification. Yet further studies are warranted for the metastasis setting and evaluating the maximal tolerated liver dose. (orig.)

  9. With the Radiobiology Group

    CERN Multimedia

    1980-01-01

    The Radiobiology Group carries out experiments to study the effect of radiation on living cells. The photo shows the apparatus for growing broad beans which have been irradiated by 250 GeV protons. The roots are immersed in a tank of running water (CERN Weekly Bulletin 26 January 1981 and Annual Report 1980 p. 160). Karen Panman, Marilena Streit-Bianchi, Roger Paris.

  10. Dosimetry for SIRT; Dosimetrie bei der SIRT

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.P. [Universitatesklinikum Essen (Germany). Klinik fuer Nuklearmedizin

    2011-09-15

    Dosimetry is only one aspect of treatment planning for 'Selective internal radiotherapy' (SIRT) or 'transarterial radioembolization' (TARE) with Yttrium-90 Microspheres is an emerging palliative therapy for malignant hepatoma. Dosimetric considerations, together with interventional, oncological and hepatological aspects need to be considered for optimal treatment stratification. The product-specific dosimetric calculations for 2 commercially available microsphere products are compared and set in relation to the average doses to liver and tumor. Ostensible discrepancies between the dose-response of Y-90-microspheres and external beam radiation therapy are discussed in the context of radiobiological concepts. (orig.)

  11. Sensitivity of linear CCD array based film scanners used for film dosimetry.

    Science.gov (United States)

    Devic, Slobodan; Wang, Yi-Zhen; Tomic, Nada; Podgorsak, Ervin B

    2006-11-01

    Film dosimetry is commonly performed by using linear CCD array transmission optical densitometers. However, these devices suffer from a variation in response along the detector array. If not properly corrected for, this nonuniformity may lead to significant overestimations of the measured dose as one approaches regions close to the edges of the scanning region. In this note, we present measurements of the spatial response of an AGFA Arcus II document scanner used for radiochromic film dosimetry. Results and methods presented in this work can be generalized to other CCD based transmission scanners used for film dosimetry employing either radiochromic or radiographic films.

  12. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  13. Method for validating radiobiological samples using a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Brengues, Muriel [The University of Arizona College of Medicine, Center for Applied NanoBioscience and Medicine, Phoenix, AZ (United States); Liu, David; Korn, Ronald [Scottsdale Clinical Research Institute, Scottsdale Healthcare, Scottsdale, AZ (United States); Zenhausern, Frederic [The University of Arizona College of Medicine, Center for Applied NanoBioscience and Medicine, Phoenix, AZ (United States); Scottsdale Clinical Research Institute, Scottsdale Healthcare, Scottsdale, AZ (United States)

    2014-12-15

    There is an immediate need for rapid triage of the population in case of a large scale exposure to ionizing radiation. Knowing the dose absorbed by the body will allow clinicians to administer medical treatment for the best chance of recovery for the victim. In addition, today's radiotherapy treatment could benefit from additional information regarding the patient's sensitivity to radiation before starting the treatment. As of today, there is no system in place to respond to this demand. This paper will describe specific procedures to mimic the effects of human exposure to ionizing radiation creating the tools for optimization of administered radiation dosimetry for radiotherapy and/or to estimate the doses of radiation received accidentally during a radiation event that could pose a danger to the public. In order to obtain irradiated biological samples to study ionizing radiation absorbed by the body, we performed ex-vivo irradiation of human blood samples using the linear accelerator (LINAC). The LINAC was implemented and calibrated for irradiating human whole blood samples. To test the calibration, a 2 Gy test run was successfully performed on a tube filled with water with an accuracy of 3% in dose distribution. To validate our technique the blood samples were ex-vivo irradiated and the results were analyzed using a gene expression assay to follow the effect of the ionizing irradiation by characterizing dose responsive biomarkers from radiobiological assays. The response of 5 genes was monitored resulting in expression increase with the dose of radiation received. The blood samples treated with the LINAC can provide effective irradiated blood samples suitable for molecular profiling to validate radiobiological measurements via the gene-expression based biodosimetry tools. (orig.)

  14. Dosimetry in x-ray-based breast imaging

    Science.gov (United States)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  15. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  16. Research in radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Jee, W.S.S.

    1990-07-15

    This report discusses the technical progress made during the past year. Good progress has been made in the areas of bones cells at risk, bone cell morphometry, bone cell residence time, microdistribution of plutonium-239, and the calculation of cell-specific radiation dosimetry. 3 figs., 11 tabs. (KJD)

  17. Development a high-resolution radiation dosimetry system based on Fricke solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Mattea, F. [Universidad Nacional de Cordoba, Facultad de Ciencias Quimicas, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: josevedelago@gmail.com [Instituto de Fisica E. Gaviola, Oficina 102 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  18. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.

    Science.gov (United States)

    Diffenderfer, Eric S; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K; McDonough, James; Cengel, Keith A

    2014-03-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.

  19. Radiation Protection Research: Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  20. Comparison between real-time intra-operative ultrasound-based dosimetry and CT-based dosimetry for prostate brachytherapy using cesium-131.

    Science.gov (United States)

    Jacobs, B L; Gibbons, E P; Smith, R P; Beriwal, S; Komanduri, K; Benoit, R M

    2008-12-01

    The purpose of this study was to evaluate the correlation between real-time intra-operative ultrasound-based dosimetry (USD) and day 0 post-implant CT dosimetry (CTD) (131)Cs permanent prostate brachytherapy. Fifty-two consecutive patients who underwent prostate brachytherapy with (131)Cs were evaluated. Real time operating room planning was performed using VariSeed 7.1 software. Post-needle placement prostate volume was used for real-time planning. Targets for dosimetry were D(90) >110%, V(100) >90%, V(150) 15% difference between USD and CTD and 51.9% of patients had a >10% difference between these values. In contrast, the USD and CTD for V(100) were within 5% in 55.8% of patients and within 10% in 86.5% of patients. This study demonstrates a correlation between the mean intra-operative USD and post-implant day 0 CTD values only for V(200). Significant variation in D(90), V(150), and V(200) values existed for individual patients between USD and CTD. These results suggest that real-time intra-operative USD does not serve as a surrogate for post-operative CTD, and that post-operative CTD is still necessary.

  1. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  2. VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4.

    Science.gov (United States)

    Kost, Susan D; Dewaraja, Yuni K; Abramson, Richard G; Stabin, Michael G

    2015-02-01

    We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy ((131)I, (90)Y, (111)In, (177)Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by (131)I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression.

  3. SU-C-BRE-05: PTV Margin Determination Based On Tumor Radiobiological Characteristics and Geometric Uncertainties Derived From Daily Cone- Beam CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, J [Inlaks and Budhrani Hospital (India)

    2014-06-15

    Purpose: To determine required PTV margins for ≤1% loss in mean population TCP using systematic (Σ) and random (σ) errors calculated from daily cone-beam CT (CBCT) images of head and neck patients. Methods: Daily CBCT images were acquired for 50 head and neck patients. The CBCT image sets acquired at each fraction were registered with planning CT to obtain positional errors for each patient for each fraction. Systematic and random errors were calculated from data collected for 50 patients as described in IPEM On Target report. CTV delineation uncertainty of 2mm is added quadratically to systematic error. Assuming a spherical target volume, the dose in each voxel of target volume is summed for each fraction in the treatment by shifting the dose grid to calculate mean population TCP inclusive of geometric uncertainties using a Monte Carlo method. These simulations were repeated for the set of Σ and σ in each axis for different PTV margins and drop in TCP for each margin are obtained. In order to study the effect of dose-response curve on PTV margins, two different σα of 0.048 Gy-1 and 0.218 Gy-1 representing steep and shallow dose-response curves are studied. Σ were 2.5, 2.5, 2.1 mm and σ were 0.3, 0.3 0.2 mm respectively in x, y and z axis respectively. Results: PTV margins based on tumor radiobiological characteristics are 4.8, 4.8 and 4 mm in x, y and z axis assuming 25 treatment fractions for σα 0.048 Gy-1 (steep) and 4.2,4.2 and 2.2 for σα of 0.218 Gy-1 (shallow). While the TCP-based margins did not differ much in x and y axis, it is considerably smaller in z axis for shallow DRC. Conclusion: TCP based margins are substantially smaller than physical dose-based margin recipes. This study also demonstrates the importance of considering tumor radiobiological characteristics while deriving margins.

  4. Radiobiology and Epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C; Holmstock, L

    2001-04-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are: (1) to study cancer mortality in nuclear workers in Belgium and to co-ordinate the Belgian contribution to the 'International Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry'; (2) to elucidate the molecular basis of individual susceptibility to ionizing radiation in mammalian embryo during the early phases of its development; (3) to assess the genetic risk of maternal exposure to ionizing radiation; (4) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (5) to monitor the early variations of gene expression induced by ionising radiation and cytokines; (6) to evaluate the use of cytokines and natural substances for improving radiotherapy protocols; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 2000 are reported.

  5. Microirradiation techniques in radiobiological research

    Indian Academy of Sciences (India)

    Guido A Drexler; Miguel J Ruiz-Gómez

    2015-09-01

    The aim of this work is to review the uses of laser microirradiation and ion microbeam techniques within the scope of radiobiological research. Laser microirradiation techniques can be used for many different purposes. In a specific condition, through the use of pulsed lasers, cell lysis can be produced for subsequent separation of different analytes. Microsurgery allows for the identification and isolation of tissue sections, single cells and subcellular components, using different types of lasers. The generation of different types of DNA damage, via this type of microirradiation, allows for the investigation of DNA dynamics. Ion microbeams are important tools in radiobiological research. There are only a limited number of facilities worldwide where radiobiological experiments can be performed. In the beginning, research was mostly focused on the bystander effect. Nowadays, with more sophisticated molecular and cellular biological techniques, ion microirradiation is used to unravel molecular processes in the field of radiobiology. These include DNA repair protein kinetics or chromatin modifications at the site of DNA damage. With the increasing relevance of charged particles in tumour therapy and new concepts on how to generate them, ion microbeam facilities are able to address unresolved questions concerning particle tumour therapy.

  6. Development of a new software tool, based on ANN technology, in neutron spectrometry and dosimetry research

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, A.P. 336, 98000 Zacatecas (Mexico)

    2007-07-01

    Artificial Intelligence is a branch of study which enhances the capability of computers by giving them human-like intelligence. The brain architecture has been extensively studied and attempts have been made to emulate it as in the Artificial Neural Network technology. A large variety of neural network architectures have been developed and they have gained wide-spread popularity over the last few decades. Their application is considered as a substitute for many classical techniques that have been used for many years, as in the case of neutron spectrometry and dosimetry research areas. In previous works, a new approach called Robust Design of Artificial Neural network was applied to build an ANN topology capable to solve the neutron spectrometry and dosimetry problems within the Mat lab programming environment. In this work, the knowledge stored at Mat lab ANN's synaptic weights was extracted in order to develop for first time a customized software application based on ANN technology, which is proposed to be used in the neutron spectrometry and simultaneous dosimetry fields. (Author)

  7. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  8. Characterization of tumor dose heterogeneity for 90Y microsphere therapies using voxel- based dosimetry

    Directory of Open Access Journals (Sweden)

    Justin Mikell

    2014-03-01

    Full Text Available Purpose: Dosimetry for 90Y microsphere therapies (YMT with Standard (SM and Partition (PM models provide only uniform dose estimates to tumor and liver. Our objective is to calculate tumor dose heterogeneity, known to effect response, using voxel-based dosimetry and investigate the limitations of SM and PM.Methods: Voxel-based dosimetry was performed on 17 YMT patients using Monte Carlo DOSXYZnrc. 90Y activity and tissue/density distributions were based on quantitative 90Y bremsstrahlung SPECT/CT. Tumors (n=31, liver, and treatment lobe/segments were segmented on diagnostic CT or MR. Dose volume histograms (DVH were created for tumors and normal liver. Bland-Altman analysis compared voxel-based mean absorbed doses to tumor and liver with SM and PM. Tumor and normal liver absorbed dose heterogeneity were investigated through metrics: integral uniformity (IU, D10/D90, COV. Correlations of heterogeneity with voxel-based mean doses and volumes were evaluated.Results: Heterogeneity metrics (mean ± 1σ for tumor dose were COV = 0.48 ± 0.28, D10/D90 = 4.7 ± 3.9, and IU = 0.8 ± 0.18. Heterogeneity metrics correlated with tumor volume (r > 0.58 but not tumor mean doses (r < 0.20. Voxel-based tumor mean doses correlated with PM (r = 0.84 but not SM (r = 0.08. Both yielded poor limits of agreement with of 83 ± 174 and -28 ± 181 Gy, respectively. Normal liver heterogeneity metrics (mean ± 1σ were COV = 0.83 ± 0.29, D10/D90 = 12 ± 15, and IU = 0.97 ± 0.03. Only D10/D90 (r = 0.49 correlated with mean normal liver absorbed dose. Voxel-based normal liver/lobe mean doses correlated with PM (r = 0.96, but had poor limits of agreement (26 ± 29 Gy.Conclusion: Tumor doses have high levels of heterogeneity that increase with volume but are independent of dose. Voxel-based DVH and dose heterogeneity metrics will promote accurate characterization of tumor response following YMT.--------------------------------------Cite this article as: Mikell J, Mourtada F

  9. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Oregon Health & Science Univ (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  10. Hematological dosimetry. Dosimetrie hematologique

    Energy Technology Data Exchange (ETDEWEB)

    Fluery-Herard, A. (CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (FR). Direction des Sciences du Vivant)

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues.

  11. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  12. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  13. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Elke

    2010-09-10

    of damage for decreasing photon energy. For this reason, the assumed photon energy dependence was reconfirmed for a cell line other than human lymphocytes, an important finding that was discussed on the 2007 Retreat of the German Commission on Radiological Protection. After successful finalization of the photon experiments the focus of the present dissertation was directed to the realization of in vitro cell irradiation experiments with laser-accelerated electrons. This research was carried out in the frame of the project onCOOPtics that aims on the development of laser-based particle accelerators, which promise accelerators of potentially compact size and more cost-effectiveness suitable for a widespread medical application, especially for high precision hadron therapy. The unique properties, i.e., the ultrashort bunch length and resultant ultrahigh pulse dose rate, of these unconventional particle accelerators demand for extensive investigations with respect to potential effects on the dosimetric and radiobiological characterization. Based on the experiences gained at ELBE first experiments on the radiobiological characterization of laser-accelerated electrons have been performed at the Jena Titanium:Sapphire laser system. After beam optimization, a sophisticated dosimetry system was established that allow for the online control of the beam parameters and for the controlled delivery of dose to the cell sample. Finally, worldwide first systematic in vitro cell irradiation experiments were carried out resulting in a reduced biological effectiveness for laser-accelerated electrons relative to the 200 kV X-ray reference, irrespectively on the biological effect and cell lines examined. These successful results are the basis for future in vivo studies and experiments with laser-accelerated protons.

  14. Role of the parameters involved in the plan optimization based on the generalized equivalent uniform dose and radiobiological implications

    Science.gov (United States)

    Widesott, L.; Strigari, L.; Pressello, M. C.; Benassi, M.; Landoni, V.

    2008-03-01

    We investigated the role and the weight of the parameters involved in the intensity modulated radiation therapy (IMRT) optimization based on the generalized equivalent uniform dose (gEUD) method, for prostate and head-and-neck plans. We systematically varied the parameters (gEUDmax and weight) involved in the gEUD-based optimization of rectal wall and parotid glands. We found that the proper value of weight factor, still guaranteeing planning treatment volumes coverage, produced similar organs at risks dose-volume (DV) histograms for different gEUDmax with fixed a = 1. Most of all, we formulated a simple relation that links the reference gEUDmax and the associated weight factor. As secondary objective, we evaluated plans obtained with the gEUD-based optimization and ones based on DV criteria, using the normal tissue complication probability (NTCP) models. gEUD criteria seemed to improve sparing of rectum and parotid glands with respect to DV-based optimization: the mean dose, the V40 and V50 values to the rectal wall were decreased of about 10%, the mean dose to parotids decreased of about 20-30%. But more than the OARs sparing, we underlined the halving of the OARs optimization time with the implementation of the gEUD-based cost function. Using NTCP models we enhanced differences between the two optimization criteria for parotid glands, but no for rectum wall.

  15. Chemical dosimetry system for γ-ray irradiation based on the formation of phenol from aqueous benzene solutions.

    Science.gov (United States)

    Takeda, Kazuhiko

    2011-01-01

    A chemical dosimetry system based on the radiochemical formation of phenol from aqueous benzene solutions was applied to measure the intensity of γ-ray irradiation. Using a simple and sensitive isocratic fluorometric HPLC system, radiochemically generated phenol was determined. The radiochemical formation of phenol was linear up to 100 Gy and the lower limit of detection calculated from the detection limits of phenol was estimated to be 7 mGy. The phenol formation rates were not affected by the oxygen saturation. The chemical dosimetry system investigated in this study was sensitive and was easier to use than traditional chemical dosimeters.

  16. [Systemic approach to radiobiological studies].

    Science.gov (United States)

    Bulanova, K Ia; Lobanok, L M

    2004-01-01

    The principles of information theory were applied for analysis of radiobiological effects. The perception of ionizing radiations as a signal enables living organism to discern their benefits or harm, to react to absolute and relatively small deviations, to keep the logic and chronicle of events, to use the former experience for reacting in presence, to forecast consequences. The systemic analysis of organism's response to ionizing radiations allows explaining the peculiarities of effects of different absorbed doses, hormesis, apoptosis, remote consequences and other post-radiation effects.

  17. Radiobiology of human cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.R.

    1978-01-01

    The author has systematically collected and collated the scientific literature correlating the basic and clinical sciences in this field in order to produce a definitive treatise. The book thoroughly reviews the biology and biochemistry relevant to radiobiology and describes the critical locus for the extinction of cell reproductive capacity. Extensive coverage is given to oxygen effect, hyperthermia, high linear energy transfer, cell populations, and similar topics. Separate sections cover time, dose, and fractionation; radiation hematology; cancer chemotherapy; and cancer immunology. The book also contains invaluable discussions of techniques for optimizing radiotherapy alone and in combination with other therapies.

  18. Use of aspartame-based sweetener tablets in emergency dosimetry using EPR.

    Science.gov (United States)

    Maghraby, A; Salama, E

    2010-06-01

    Accident dosimetry aims to evaluate the unplanned radiation doses delivered to individuals through one of the objects exist in the area of the accident. The gamma dose response of free radicals generated in irradiated aspartame tablets and its usability for emergency dosimetry was studied. EPR spectra of unirradiated and irradiated aspartame-based sweetener were recorded. Two signals arise after irradiating, S(1) at g (S(1)) = 2.00229 +/- 0.00097 and S(2) at g (S(2)) = 2.00262 +/- 0.00088. Some EPR parameters were studied for radiation-induced radicals in aspartame sweeteners tablets, such as the microwave saturation behaviour, the effect of magnetic field modulation amplitude on the peak-to-peak height and peak-to-peak line width for both of S(1) and S(2). Responses of S(1) and S(2) to different radiation doses were studied and resulted in linear relationships, radicals persistence curves were plotted over a 49-d storage period. It was found that Aspartame sweeteners tablets are useful in the range from 0.96 to 39.96 Gy. Radiation-induced radicals possess reasonable stability.

  19. Stochastic method-based computational system for neutron/photon dosimetry applied to radiotherapy and radiology

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Bruno Machado; Campos, Tarcisio Passos Ribeiro de, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Program of Post-Graduation in Sciences and Nuclear Techniques

    2011-03-15

    Objective: The present paper describes a procedure for conversion of computed tomography or magnetic resonance images into a three-dimensional voxel model for dosimetry purposes. Such model is a personalized representation of the patient that can be utilized in nuclear particle transport simulations by means of the MCNP (Monte Carlo N-Particle) code, reproducing the stochastic process of nuclear particles interaction with human tissues. Materials and Methods: The developed computational system - SISCODES - is a tool designed for 3D planning of radiotherapy or radiological procedures. Based on tomographic images of the patient, the treatment plan is modeled and simulated. Then, the absorbed doses are shown by means of isodose curves superimposed on the model. The SISCODES couples the three dimensional model with the MCNP5 code, simulating the protocol of exposure to ionizing radiation. Results: The SISCODES has been utilized by the NRI/CNPq in the creation of anthropomorphic and anthropometric voxel models which are coupled with the MCNP code for modeling brachytherapy and teletherapy applied to lung, pelvis, spine, head and neck tumors, among others. The current SISCODES modules are presented together with examples of cases of radiotherapy planning. Conclusion: The SISCODES provides a fast method to create personalized voxel models of any patient which can be used in stochastic simulations. The combination of the MCNP simulation with a personalized model of the patient increases the dosimetry accuracy in radiotherapy. (author)

  20. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem?

    Science.gov (United States)

    Schmid, E; Panzer, W; Schlattl, H; Eder, H

    2012-09-01

    material. Even if it is uncertain whether the marked dependency of the RBE at low doses on photon energy for chromosome aberrations is also representative for late radiation effects in healthy subjects, it should be taken into account that several prospective cohort studies have shown positive associations between higher chromosome aberrations in lymphocytes of healthy subjects and increased cancer incidence. Thus, it can be concluded that any additional biological damage by radiation exposure of healthy subjects, e.g. by using certain non-lead based shielding materials of protective clothing, should be avoided.

  1. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    Energy Technology Data Exchange (ETDEWEB)

    Hubner, S., E-mail: stephan.huebner@helmholtz-muenchen.de [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-80219, Munich (Georgia)

    2014-08-15

    The personal monitoring service named Auswertungsstelle is part of the Helmholtz Zentrum Munchen, a non-profit-making research center in Germany. As one of the four monitoring services in Germany, we have been a reliable partner in radiation protection for more than 60 years. With about 1.9 million dose assessments per year, we are the largest monitoring service in Europe. For dozens of years, our main dosimeter used in whole-body dosimetry has been a film dosimeter. Although its dosimetric properties are still up to date, film dosimetry won.t be a sustainable technique for the use in monitoring services. Therefore, a project with the objective of investigating alternative dosimetric materials and methods was launched in the late 1990 at the Helmholtz Zentrum Munchen. Based on this research work, the use of Be O as an OSL dosimeter was studied by the radiation physics group of the Tu Dresden, by order and on account of the Auswertungsstelle at the Helmholtz Zentrum Munchen. It was shown, that ceramic Be O features promising dosimetric properties, making Be O detectors particularly suitable for being used in all applications in whole-body dosimetry measuring photons. Ceramic Be O material has an excellent resistance to environmental influences. The Be O chips are almost tissue equivalent. Therefore, these detectors show low photon energy dependence. A new personal dosimetry system based on the OSL dosimetry of Be O was developed. Applying this system, the Auswertungsstelle offers OSL-dosimeters for official monitoring of the Personal Dose Equivalent Hp(10) since 2011. This OSL-System is accredited according to DIN IEC 62387 and we obtained the corresponding type approval by the Ptb, the national metrology institute in Germany. Sophisticated logistics was developed and installed. High degree of automation was achieved by robots for dosimeter assembly and machines for packing, labelling and unpacking of the dosimeters. To become a sustainable dosimetry system not only

  2. Computational dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  3. Radioembolization dosimetry : the road ahead

    NARCIS (Netherlands)

    Smits, Maarten L J; Elschot, Mattijs; Sze, Daniel Y; Kao, Yung H; Nijsen, JFW; Iagaru, Andre H; de Jong, Hugo W A M; van den Bosch, Maurice A A J; Lam, Marnix G E H

    2015-01-01

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the o

  4. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    Science.gov (United States)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  5. Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling

    Science.gov (United States)

    Campbell, Jerry; Franzen, Allison; Van Landingham, Cynthia; Lumpkin, Michael; Crowell, Susan; Meredith, Clive; Loccisano, Anne; Gentry, Robinan; Clewell, Harvey

    2016-01-01

    Abstract Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities. PMID:27569524

  6. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  7. Development and evaluation of gallium nitride-based thin films for x-ray dosimetry.

    Science.gov (United States)

    Hofstetter, Markus; Howgate, John; Sharp, Ian D; Stutzmann, Martin; Thalhammer, Stefan

    2011-06-07

    X-ray radiation plays an important role in medical procedures ranging from diagnostics to therapeutics. Due to the harm such ionizing radiation can cause, it has become common practice to closely monitor the dosages received by patients. To this end, precise online dosimeters have been developed with the dual objectives of monitoring radiation in the region of interest and improving therapeutic methods. In this work, we evaluate GaN thin film high electron mobility heterostructures with sub-mm(2) detection areas as x-ray radiation detectors. Devices were tested using 40-300 kV Bremsstrahlung x-ray sources. We find that the photoconductive device response exhibits a large gain, is almost independent of the angle of irradiation, and is constant to within 2% of the signal throughout this medical diagnostic x-ray range, indicating that these sensors do not require recalibration for geometry or energy. Furthermore, the devices show a high sensitivity to x-ray intensity and can measure in the air kerma rate (free-in-air) range of 1 µGy s(-1) to 10 mGy s(-1) with a signal stability of ±1% and a linear total dose response over time. Medical conditions were simulated by measurements of device responses to irradiation through human torso phantoms. Direct x-ray imaging is demonstrated using the index finger and wrist sections of a human phantom. The results presented here indicate that GaN-based thin film devices exhibit a wide range of properties, which make them promising candidates for dosimetry applications. In addition, with potential detection volumes smaller than 10(-6) cm(3), they are well suited for high-resolution x-ray imaging. Moreover, with additional engineering steps, these devices can be adapted to potentially provide both in vivo biosensing and x-ray dosimetry.

  8. Development and evaluation of gallium nitride-based thin films for x-ray dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus; Thalhammer, Stefan [Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Howgate, John; Sharp, Ian D; Stutzmann, Martin, E-mail: stefan.thalhammer@helmholtz-muenchen.de [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2011-06-07

    X-ray radiation plays an important role in medical procedures ranging from diagnostics to therapeutics. Due to the harm such ionizing radiation can cause, it has become common practice to closely monitor the dosages received by patients. To this end, precise online dosimeters have been developed with the dual objectives of monitoring radiation in the region of interest and improving therapeutic methods. In this work, we evaluate GaN thin film high electron mobility heterostructures with sub-mm{sup 2} detection areas as x-ray radiation detectors. Devices were tested using 40-300 kV Bremsstrahlung x-ray sources. We find that the photoconductive device response exhibits a large gain, is almost independent of the angle of irradiation, and is constant to within 2% of the signal throughout this medical diagnostic x-ray range, indicating that these sensors do not require recalibration for geometry or energy. Furthermore, the devices show a high sensitivity to x-ray intensity and can measure in the air kerma rate (free-in-air) range of 1 {mu}Gy s{sup -1} to 10 mGy s{sup -1} with a signal stability of {+-}1% and a linear total dose response over time. Medical conditions were simulated by measurements of device responses to irradiation through human torso phantoms. Direct x-ray imaging is demonstrated using the index finger and wrist sections of a human phantom. The results presented here indicate that GaN-based thin film devices exhibit a wide range of properties, which make them promising candidates for dosimetry applications. In addition, with potential detection volumes smaller than 10{sup -6} cm{sup 3}, they are well suited for high-resolution x-ray imaging. Moreover, with additional engineering steps, these devices can be adapted to potentially provide both in vivo biosensing and x-ray dosimetry.

  9. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.;

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  10. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once every month. A regular read-out is indispensable to ensure periodic monitoring of your personal dose. You must read your dosimeter even if you have not visited the controlled areas. Film badges are no longer valid at CERN and holders of film badges are no longer allowed to enter the controlled radiation areas or work with a source. Dosimetry Service Tel. 72155 http://cern.ch/rp-dosimetry

  11. Epid Dosimetry

    Science.gov (United States)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  12. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vaezzadeh, Seyedali [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Allahverdi, Mahmoud, E-mail: alahverdi@sina.tums.ac.ir [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nedaie, Hasan A. [Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ay, Mohammadreza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shirazi, Alireza; Yarahmadi, Mehran [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  13. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification

    Directory of Open Access Journals (Sweden)

    Ali Jomehzadeh

    2016-01-01

    Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary.

  14. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    Science.gov (United States)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  15. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  16. Reference dosimetry for light-ion beams based on graphite calorimetry.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Duane, S; Bailey, M; Shipley, D; Bertrand, D; Romano, F; Cirrone, P; Cuttone, G; Vynckier, S

    2014-10-01

    Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large. This uncertainty is dominated by the beam quality correction factors, [Formula: see text], mainly due to the mean energy to produce one ion pair in air, wair. A method to reduce this uncertainty is to carry out primary dosimetry, using calorimetry. A [Formula: see text]-value can be derived from a direct comparison between calorimetry and ionometry. Here, this comparison is performed using a graphite calorimeter in an 80-MeV A(-1) carbon ion beam. Assuming recommended TRS-398 values of water-to-graphite stopping power ratio and the perturbation factor for an ionisation chamber, preliminary results indicate a wair-value of 35.5 ± 0.9 J C(-1).

  17. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    Science.gov (United States)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  18. 90Yttrium PET/MR-based dosimetry after liver radioembolization (SIRT).

    Science.gov (United States)

    Wissmeyer, Michael; Delattre, Bénédicte M A; Zaidi, Habib; Terraz, Sylvain; Ratib, Osman

    2015-04-01

    Biodistribution and dosimetric aspects are important issues in the preparation realization of radionuclide therapies and thus play an emerging role in radioembolization of liver malignancies. Biodistribution assessment of liver selective internal radiotherapy (SIRT) has been shown feasible using PET/CT PET/magnetic resonance (MR). Whereas prospective dosimetry using 99mTc macroaggregated albumin SPECT/CT is discussed controversially, retrospective 90Y PET/CT has been shown feasible for dosimetry of SIRT in recent studies. Considering the advantages of PET/MR with regard to lesion detection radiation dose reduction compared to PET/CT, especially when repeated scanning is intended, we investigated the use of PET/MR for dosimetry of liver SIRT.

  19. On source models for (192)Ir HDR brachytherapy dosimetry using model based algorithms.

    Science.gov (United States)

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-07

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic (192)Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the (192)Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis.

  20. Development of applicable software containing radiobiological and physical indices to evaluate radiotherapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seu Ran; Suh, Tae Suk [Dept. of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Park, Ji Yeon [Molecular Imaging Program at Stanford, Stafnord University, Richmond (United States)

    2014-11-15

    Adaptive radiation therapy (ART) provides more conformal dose distribution to the morphologically and physiologically changed tumor volumes during fractionated radiation therapy (RT). To develop an enhanced treatment plan evaluation tool based on multi-modality imaging which incorporates physical and radiobiological parameters, the software system was developed using MATLAB v.7.10.0499 (The Mathworks, Inc., Natick, MA). The application of plan evaluation can help the user choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately. The radiotherapy planning based on the multi-modality images had more accurate results than that of based on only CT images in both physical and radiobiological perspectives.

  1. Comparison of cytogenetic effects in bone marrow of mice after the flight on the biosatellite "BION-M1" and the ground-based radiobiological experiment

    Science.gov (United States)

    Dorozhkina, Olga; Vorozhtsova, Svetlana; Ivanov, Alexander

    2016-07-01

    During space flight, the astronauts are exposed to radiation exposure at low doses with low dose rates, so one of the actual areas of Radiobiology is research of action of ionizing radiation in low and ultra-low doses. Violation of the chromosome apparatus of living biosystems, ranging from viruses and bacteria to humans, is the most reliable evidence of exposure to ionizing radiation. In this regard, the study of cytogenetic damage in the cells of humans and animals is central to space radiobiology (Fedorenko B.S., 2006). In experiment "BION - M1" by anaphase method was determined level of chromosomal aberrations in bone marrow cells of tibia of mice. Flight duration biosatellite "BION - M1" (Sychev V.N. et al., 2014) was 30 days in Earth orbit. Euthanasia of experimental animals was carried out after 12 hours from the moment of landing satellite by method of cervical dislocation. The level of chromosomal aberrations in vivarium-housed control mice was 1,75 ± 0,6% and 1,8 ± 0,45%, while the mitotic index 1,46 ± 0,09% and 1,53 ± 0,05%. The content of animals in the experiment with onboard equipment led to some increase in aberrant mitosis (2,3 ± 0,4%) and reduction of the mitotic index (1,37 ± 0,02%). In the flight experiment "BION-M1" was a statistically significant increase in level of chromosome aberrations (29,7 ± 4,18%) and a decrease in the mitotic index (0,74 ± 0,07%). According to VA Shurshakova (2014), the radiation dose to mice ranged from 32 to 72 mGy and relate to a range of small doses (ICRP, 2012). In this connection we conducted a series of experiments in the ground conditions, the aim of which was the study of earliest effects of ionizing radiation in vivo in mice irradiated with low doses of γ-irradiation of 10 to 200 mGy in the first 24 hours after exposure, i.e. within the first post-radiation exposure cell cycle. Studies were carried out on adult female mice outbred ICR (CD-1) - SPF category at the age of 4-4.5 months with an average

  2. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  3. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States)], E-mail: wbolch@ufl.edu

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  4. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  5. Gallium nitride based thin films for photon and particle radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus

    2012-07-23

    , the measured signals can be calibrated against the corresponding dose rate. The sensors were tested in an X-ray energy regime of 10-200 keV. Although the active sensor volume of the GaN devices is about 10{sup 5} times smaller than ionization chambers, it was possible to produce partially comparable measurement results. By utilizing a two-dimensional electron gas, which is produced inside an AlGaN/GaN heterostructure, a further increase of the amplification factors of the devices was achievable. Therefore, measurement of photon intensities in the range of >10{sup 3} photons/s is possible. Since these structures are also used for the measurement of physiological parameters like the pH value, combined measurements of surface potentials and X-ray dosimetry were investigated. It could be shown that not only a measurement of physiological parameters during an irradiation is possible but also combined simultaneous measurements of radiation and the surface pH, while keeping a sensitivity of 57 mV/pH. Therefore the GaN sensors could be used as biosensing tools in radiation biophysics, in addition to their application as pure dosimeters. Biocompatibility and biofunctionality evaluations of gallium nitride show that no alterations of cellular systems in direct contact with the material are measureable. In summary, this work demonstrates a novel system for radiation detection based on gallium nitride, which possesses characteristics that could overcome difficulties of other technologies, such as these mentioned above. Furthermore, by utilizing a heterostructure, the devices could be used as biosensors, which work during external radiation exposure and allow multi-parameter measurements.

  6. Radioembolization Dosimetry: The Road Ahead

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Maarten L. J., E-mail: m.l.j.smits-3@umcutrecht.nl; Elschot, Mattijs [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Sze, Daniel Y. [Stanford University School of Medicine, Division of Interventional Radiology (United States); Kao, Yung H. [Austin Hospital, Department of Nuclear Medicine (Australia); Nijsen, Johannes F. W. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands); Iagaru, Andre H. [Stanford University School of Medicine, Division of Nuclear Medicine and Molecular Imaging (United States); Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  7. Radioembolization dosimetry: the road ahead.

    Science.gov (United States)

    Smits, Maarten L J; Elschot, Mattijs; Sze, Daniel Y; Kao, Yung H; Nijsen, Johannes F W; Iagaru, Andre H; de Jong, Hugo W A M; van den Bosch, Maurice A A J; Lam, Marnix G E H

    2015-04-01

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  8. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter every month at least once and preferably during the first week. A regular read-out is indispensable in order to ensure a periodic monitoring of the personal dose. You should read your dosimeter even if you have not visited the controlled areas. If you still have the old dosimeter (film badge), please send it immediately for evaluation to us (Bdg 24 E-011). After January 2005 there will be no developing process for the old film system. Information for Contractors: Please remember also to bring the form ‘Confirm Reception of a CERN Dosimeter' signed with ‘Feuille d'enregistrement du CERN'. Without these forms the dosimeter cannot be assigned. Thank you for your cooperation. Dosimetry Service Tel 767 2155 http://cern.ch/rp-dosimetry

  9. Radiation dosimetry.

    OpenAIRE

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  10. Dosimetric and radiobiological comparison of CyberKnife M6TM InCise multileaf collimator over IRISTM variable collimator in prostate stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Vindu Kathriarachchi

    2016-01-01

    Full Text Available The impetus behind our study was to establish a quantitative comparison between the IRIS collimator and the InCise multileaf collimator (MLC (Accuray Inc. Synnyvale, CA for prostate stereotactic body radiation therapy (SBRT. Treatment plans for ten prostate cancer patients were performed on MultiPlan™ 5.1.2 treatment planning system utilizing MLC and IRIS for 36.25 Gy in five fractions. To reduce the magnitude of variations between cases, the planning tumor volume (PTV was defined and outlined for treating prostate gland only, assuming no seminal vesicle or ex-capsule involvement. Evaluation indices of each plan include PTV coverage, conformity index (CI, Paddick's new CI, homogeneity index, and gradient index. Organ at risk (OAR dose sparing was analyzed by the bladder wall Dmaxand V37Gy, rectum Dmaxand V36Gy. The radiobiological response was evaluated by tumor control probability and normal tissue complication probability based on equivalent uniform dose. The dose delivery efficiency was evaluated on the basis of planned monitor units (MUs and the reported treatment time per fraction. Statistical significance was tested using the Wilcoxon signed rank test. The studies indicated that CyberKnife M6™ IRIS and InCise™ MLC produce equivalent SBRT prostate treatment plans in terms of dosimetry, radiobiology, and OAR sparing, except that the MLC plans offer improvement of the dose fall-off gradient by 29% over IRIS. The main advantage of replacing the IRIS collimator with MLC is the improved efficiency, determined from the reduction of MUs by 42%, and a 36% faster delivery time.

  11. Modeling the impact of prostate edema on LDR brachytherapy: a Monte Carlo dosimetry study based on a 3D biphasic finite element biomechanical model

    Science.gov (United States)

    Mountris, K. A.; Bert, J.; Noailly, J.; Rodriguez Aguilera, A.; Valeri, A.; Pradier, O.; Schick, U.; Promayon, E.; Gonzalez Ballester, M. A.; Troccaz, J.; Visvikis, D.

    2017-03-01

    Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model’s computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10–20% the Day30 urethra D10 dose metric is higher by 4.2%–10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.

  12. Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.K.

    2002-06-25

    Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mm is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results

  13. A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications

    Energy Technology Data Exchange (ETDEWEB)

    Alpan, F.A. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2011-07-01

    A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, the Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)

  14. Physical aspects of scintigraphy-based dosimetry for nuclear medicine therapy

    Energy Technology Data Exchange (ETDEWEB)

    Geworski, L.; Knoop, B.O. [Dept. of Radiation Protection and Medical Physics, Hannover Medical School, Hannover (Germany); Schaefer, A.; Kirsch, C.M. [Dept. of Nuclear Medicine, Saarland Univ. Medical Center, Homburg (Germany); Pinkert, J. [Bayer Vital GmbH, Leverkusen (Germany); Plotkin, M. [Clinic for Nuclear Medicine, Univ. Hospital Charitee, Berlin (Germany)

    2010-07-01

    In nuclear medicine therapy the treatment of tumours by radiation exposure from internally deposited labelled antibodies or labelled peptides is currently an active field of investigation. To permit the efficient delivery of high amounts of radiation dose to tumours while limiting the radiation dose to critical organs dosimetry calculations have to be performed. These are relying on scintigraphic data being input to the well known MIRD formalism. This paper focuses on the methods and the difficulties associated with the scintigraphic determination of organ kinetics. The physical properties of the well-known scintigraphic imaging modalities, PET, SPECT and planar scintigraphy, are discussed thereby taking into account the properties of the appropriate radionuclides currently being available for therapy and dosimetry. Several arguments are given and disputed for the limited clinical use of PET and SPECT in dosimetry and the ongoing preference of planar whole-body imaging as the method of choice. The quantitative restrictions still inherent to this method are also discussed in detail. Procedural recommendations are proposed covering all processes related to data acquisition, data correction and data analysis which finally lead to reliable estimations of organ dose. (orig.)

  15. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  16. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  17. Influence of oxygen on the chemical stage of radiobiological mechanism

    Science.gov (United States)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-07-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.

  18. Pre-clinical evaluation of a diode-based In vivo dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, G. [National Oncology Institute, Havana (Cuba)

    1998-12-31

    Diode detector systems are routinely used in a number of departments for the quality assurance of the delivered dose in radiation oncology (1,2,3,4,5). The main advantage of diode detectors for in vivo dosimetry (over TLDs, film dosimetry, ionization chambers) is that results are immediately available in real time, do not need external bias voltage and are more sensitive for the same detection volume than ionization chambers thereby allowing a direct and immediate check of the treatment accuracy. Also, is important to mention that is possible to obtain different accuracy levels. For example, in the case of the measurements designed for evaluating the dosimetric accuracy of a new treatment technique for dose escalation studies the action level should be tighter (the order of 2 % to 4 %, 2 standard deviations) than for routine measurements aiming to discover and correct for errors in the treatment of individual patients ({+-} 5 % - 10 % or to avoid mis administrations (10 % - 15 %). This work describes the calibration method adopted and the evaluation of the accuracy and precision of in vivo dosimetry at Co 60 and 23 MV photon energies. Extensive phantoms measurements were made to determine the influence of physical conditions on the diode response. Parameters investigated included diode linearity, leakage, and measurement reproducibility, as well as the field size, SSD, and angular dependence. the practical consequences of these measurements are reported. There is still some controversy as to whether in vivo (diode) dosemeters are required for routine quality assurance purposes. Our work has shown that while care must be taken in choosing and handling diode detector systems they are able to provide an efficient and effective method of ensuring the dose delivered to the patient during treatment is within acceptable limits. (Author)

  19. Experimental dosimetry of a {sup 32}P catheter-based endovascular brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Piermattei, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Fidanzio, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Perrone, F [Azienda Ospedaliera Pisana, UO Fisica Sanitaria, Pisa (Italy); Azario, L [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Grimaldi, L [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Viola, P [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Capote, R [Dpto Fisiologia Medica y Biofisica, Facultad de Medicina, Universidad de Sevilla, Avda Sanchez Pizjuan 4, E41009 Sevilla (Spain)

    2003-08-07

    The experimental dosimetry in a water phantom of a {sup 32}P linear source, 20 mm in length, used for the brachytherapy of coronary vessels is reported. The source content activity, A, was determined by means of a calibrated well ion-chamber and the value was compared with the contained activity reported in the manufacturer's certification. In this field of brachytherapy dosimetry, radiochromic film supplies a high enough spatial resolution. A highly sensitive radiochromic film, that presents only one active layer, was used in this work for the source dosimetry in a water phantom. The radiochromic film was characterized by electron beams produced by a clinical linac. A Monte Carlo calculation of beta spectra in water at different distances along the source transverse bisector axis allowed to take into account the low dependence of film response from the electron beam energy. The adopted experimental set-up, with the source in its catheter positioned on the film plane inside the water phantom, supplies accurate dosimetric information. The measured dose rate to water per unit of source activity at reference distance, D-dot (r{sub 0}, {theta}{sub 0})/A, in units of cGy s{sup -1} GBq{sup -1}, was in agreement with the value reported in the manufacturer's certification within the experimental uncertainty. The radial dose function, g(r), is in good agreement with the literature data. The anisotropy function F(r, {theta}) is also reported. The analysis of the dose profile obtained at 2 mm from the source longitudinal axis shows that the uniformity is within 10% along 75% of the 20 mm treatment length. The adopted experimental set-up seems to be adequate for the quality control procedure of the dose homogeneity distribution in the water medium.

  20. Evaluation of MRI-based Polymer Gel Dosimetry for Measurement of CT Dose Index (CTDI on 64 slices CT Scanners

    Directory of Open Access Journals (Sweden)

    Leaila Karimi-Afshar

    2009-06-01

    Full Text Available Introduction: Computed tomography (CT has numerous applications in clinical procedures but its main problem is its high radiation dose to the patients compared to other imaging modalities using x-ray. CT delivers approximately high doses to the nearby tissues due to the scattering effect, fan beam (beam divergence and limited collimator efficiency. The radiation dose from multi-slice scanners is greater than the single-slice scanners and since multi-slice scanners increasingly employ a wide beam, 100 mm ion chambers currently used in measuring the CTDI100, are not capable of accurately measuring the total dose profile of the slice width. Therefore, the CT dose is underestimated by using them. The purpose of this study is to measure the Computed Tomography Dose Index (CTDI of a GE multi-slice CT scanner (64-slice using polymer gel dosimetry based on MRI imaging (MRPD. CTDI is the sum of point doses along the central axis and estimates the average patient dose during CT scanning. Materials and Methods: For measuring CTDI, after designing and fabricating the phantom and preparing the MAGIC gel, MRI imaging using a 1.5 T Siemens MRI scanner was performed with the imaging parameters of ST = 2 mm, NEX = 1, TE = 20-640 ms and TR = 2000 ms. CTDI was measured with a 100 mm ion chamber (CTDI100 and also the MAGIC gel with MRPD method for 10 mm and 40 mm CT scan nominal widths. Results: Following the measurement of the CTDI100 for 10 mm and 40 mm nominal slice widths of the multi-slice scanner using both ion chamber and MAGIC gel, the results showed that the ion chamber underestimates CTDI100 by 28.71% and 14.03% compared to gel for 10 mm and 40 mm respectively. Discussion and Conclusion: It was concluded from this study that gel dosimeters have the capability to measure CTDI in wide beams of multi-slice CT scanners whereas 100 mm standard ion chamber due to its limited length is not reliable even for a 10 mm beam width. In addition, due to the 3

  1. Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.; Leichner, P.K. [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    1999-01-01

    The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transform (CHT) algorithm.

  2. 3D dosimetry in patients with early breast cancer undergoing Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) combined with external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia; Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Division of Medical Physics, Milan (Italy); De Cicco, Concetta; Calabrese, Michele; Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Sarnelli, Anna [IRCCS Istituto Romagnolo per lo Studio e la Cura dei Tumori, Medical Physics Unit, Meldola, FC (Italy); Pedicini, Piernicola [Centro Regionale Oncologico Basilicata (IRCCS-CROB), Department of Radiation Oncology, Rionero in Vulture, PZ (Italy); Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy)

    2012-11-15

    Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) is a novel targeted radionuclide therapy recently used in patients with early breast cancer. It is a radionuclide approach with {sup 90}Y-biotin combined with external beam radiotherapy (EBRT) to release a boost of radiation in the tumour bed. Two previous clinical trials using dosimetry based on the calculation of mean absorbed dose values with the hypothesis of uniform activity distribution (MIRD 16 method) assessed the feasibility and safety of IART {sup registered}. In the present retrospective study, a voxel dosimetry analysis was performed to investigate heterogeneity in distribution of the absorbed dose. The aim of this work was to compare dosimetric and radiobiological evaluations derived from average absorbed dose vs. voxel absorbed dose approaches. We evaluated 14 patients who were injected with avidin into the tumour bed after conservative surgery and 1 day later received an intravenous injection of 3.7 GBq of {sup 90}Y-biotin (together with 185 MBq {sup 111}In-biotin for imaging). Sequential images were used to estimate the absorbed dose in the target region according to the standard dosimetry method (SDM) and the voxel dosimetry method (VDM). The biologically effective dose (BED) distribution was also evaluated. Dose/volume and BED volume histograms were generated to derive equivalent uniform BED (EUBED) and equivalent uniform dose (EUD) values. No ''cold spots'' were highlighted by voxel dosimetry. The median absorbed-dose in the target region was 20 Gy (range 15-27 Gy) by SDM, and the median EUD was 20.4 Gy (range 16.5-29.4 Gy) by the VDM; SDM and VDM estimates differed by about 6 %. The EUD/mean voxel absorbed dose ratio was >0.9 in all patients, indicative of acceptable uniformity in the target. The median BED and EUBED values were 21.8 Gy (range 15.9-29.3 Gy) and 22.8 Gy (range 17.3-31.8 Gy), respectively. VDM highlighted the absence of significant

  3. Fusion dual-tracer SPECT-based hepatic dosimetry predicts outcome after radioembolization for a wide range of tumour cell types

    NARCIS (Netherlands)

    Lam, Marnix G. E. H.; Banerjee, Arjun; Goris, Michael L.; Iagaru, Andrei H.; Mittra, Erik S.; Louie, John D.; Sze, Daniel Y.

    2015-01-01

    Purpose Fusion dual-tracer SPECT imaging enables physiological rather than morphological voxel-based partitioning and dosimetry for Y-90 hepatic radioembolization (RE). We evaluated its prognostic value in a large heterogeneous cohort of patients with extensive hepatic malignancy. Methods A total of

  4. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, Viriato, E-mail: viriatoleal@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose Wilson [Universidade Federal de Pernambuco (UPE), Recife, PE (Brazil); Lima, Fernando Roberto de Andrade [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-09-15

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  5. Acrylonitrile Butadiene Styrene (ABS) plastic based low cost tissue equivalent phantom for verification dosimetry in IMRT.

    Science.gov (United States)

    Kumar, Rajesh; Sharma, S D; Deshpande, Sudesh; Ghadi, Yogesh; Shaiju, V S; Amols, H I; Mayya, Y S

    2009-12-17

    A novel IMRT phantom was designed and fabricated using Acrylonitrile Butadiene Styrene (ABS) plastic. Physical properties of ABS plastic related to radiation interaction and dosimetry were compared with commonly available phantom materials for dose measurements in radiotherapy. The ABS IMRT phantom has provisions to hold various types of detectors such as ion chambers, radiographic/radiochromic films, TLDs, MOSFETs, and gel dosimeters. The measurements related to pre-treatment dose verification in IMRT of carcinoma prostate were carried out using ABS and Scanditronics-Wellhoffer RW3 IMRT phantoms for five different cases. Point dose data were acquired using ionization chamber and TLD discs while Gafchromic EBT and radiographic EDR2 films were used for generating 2-D dose distributions. Treatment planning system (TPS) calculated and measured doses in ABS plastic and RW3 IMRT phantom were in agreement within +/-2%. The dose values at a point in a given patient acquired using ABS and RW3 phantoms were found comparable within 1%. Fluence maps and dose distributions of these patients generated by TPS and measured in ABS IMRT phantom were also found comparable both numerically and spatially. This study indicates that ABS plastic IMRT phantom is a tissue equivalent phantom and dosimetrically it is similar to solid/plastic water IMRT phantoms. Though this material is demonstrated for IMRT dose verification but it can be used as a tissue equivalent phantom material for other dosimetry purposes in radiotherapy.

  6. A perspective matrix-based seed reconstruction algorithm with applications to C-arm based intra-operative dosimetry

    Science.gov (United States)

    Narayanan, Sreeram; Cho, Paul S.

    2006-03-01

    Currently available seed reconstruction algorithms are based on the assumption that accurate information about the imaging geometry is known. The assumption is valid for isocentric x-ray units such as radiotherapy simulators. However, the large majority of the clinics performing prostate brachytherapy today use C-arms for which imaging parameters such as source to axis distance, image acquisition angles, central axis of the image are not accurately known. We propose a seed reconstruction algorithm that requires no such knowledge of geometry. The new algorithm makes use of perspective projection matrix, which can be easily derived from a set of known reference points. The perspective matrix calculates the transformation of a point in 3D space to the imaging coordinate system. An accurate representation of the imaging geometry can be derived from the generalized projection matrix (GPM) with eleven degrees of freedom. In this paper we show how GPM can be derived given a theoretical minimum number of reference points. We propose an algorithm to compute the line equation that defines the backprojection operation given the GPM. The algorithm can be extended to any ray-tracing based seed reconstruction algorithms. Reconstruction using the GPM does not require calibration of C-arms and the images can be acquired at arbitrary angles. The reconstruction is performed in near real-time. Our simulations show that reconstruction using GPM is robust and accuracy is independent of the source to detector distance and location of the reference points used to generate the GPM. Seed reconstruction from C-arm images acquired at unknown geometry provides a useful tool for intra-operative dosimetry in prostate brachytherapy.

  7. Image-based dosimetry for selective internal radiation therapy (SIRT) using yttrium-90 microspheres

    Science.gov (United States)

    Selwyn, Reed G.

    90Y-loaded microspheres are currently used as a palliative treatment for patients with primary and metastatic solid liver tumors. These microspheres contain radioactive 90Y, which decays via beta-minus transition to 90Zr. While the normal liver receives about 75% of its blood supply from the portal vein, hepatic tumors receive their blood supply almost exclusively from the hepatic artery. Taking advantage of this unique blood flow, radioactive microspheres are injected into the hepatic artery resulting in a preferential distribution to tumor sites within the liver. Studies show that the single best prognostic indicator for patient response is the tumor-to-normal tissue (T:N) activity uptake ratio. However, 90Y emits very few photons its broad bremsstrahlung spectrum leads to diffuse, low resolution images, which are insufficient for accurate T:N quantification. Thus, the first objective was to develop a PET-labeled microsphere as a surrogate for the therapeutic microsphere to provide accurate biodistribution information. Furthermore, patient outcome is also suspected to be linked to the mean tumor dose and tumor dose volume histogram. Therefore, a second objective was to develop and validate a method to calculate the dose distribution within the tumor and normal liver tissue. Computer software that generates three-dimensional (3D) dose distributions was validated by comparing results to experimental measurements. The novel development of a 3D gel dosimeter will be discussed as well as a new protocol for 2D film dosimetry. Both dosimetry methods were validated but only film provided the desired accuracy. The overall accuracy of the dose distribution depends on the uncertainty of the 90Y assay, which can extend to 15% at 1sigma. Therefore, the third objective was to develop an accurate non-destructive assay of 90Y. To this end, a new 90Y positron branching ratio was measured and a clinically relevant transfer standard was developed. In summation, this thesis will

  8. Monte Carlo-based diode design for correction-less small field dosimetry

    Science.gov (United States)

    Charles, P. H.; Crowe, S. B.; Kairn, T.; Knight, R. T.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2013-07-01

    Due to their small collecting volume, diodes are commonly used in small field dosimetry. However, the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore, this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm. The metric \\frac{{D_{w,Q} }}{{D_{Det,Q} }} used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting \\frac{{D_{w,Q} }}{{D_{Det,Q} }} as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which \\frac{{D_{w,Q} }}{{D_{Det,Q} }} was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3, 1.15 and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip, respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_{Q_{clin} ,Q_{msr} }^{f_{clin} ,f_{msr} } was equal to unity to within statistical uncertainty (0.5%) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The

  9. Fiber optic probes based on silver-only coated hollow glass waveguides for ionizing beam radiation dosimetry

    Science.gov (United States)

    Darafsheh, Arash; Liu, Haoyang; Melzer, Jeffrey E.; Taleei, Reza; Harrington, James A.; Kassaee, Alireza; Zhu, Timothy C.; Finlay, Jarod C.

    2016-03-01

    Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.

  10. Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shazad [University of Tehran, Tehran (India). School of Chemistry; Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ziaie, Farhood [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ghandi, Mehdi [University of Tehran, Tehran (India). School of Chemistry

    2015-05-01

    In this work characteristics of the polycarbonate films with 20 μm in thickness containing different weight percentage of Benzo-δ-sultam were studied for use as a high dose dosimetry system in radiation processing facilities. The sensitivity of the dosimeters and the linearity of dose-response curves were investigated under {sup 60}Co γ-rays in a dose range of 0-100 kGy, and obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the absorbance at 348 nm depends linearly on the dose in the investigated dose range. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight are also discussed. The results show that the dosimeters characteristics are stable within 1% at 25 C, 3 months after the irradiation.

  11. Occupational exposure to the whole body, extremities and to the eye lens in interventional radiology in Poland, as based on personnel dosimetry records at IFJ PAN

    Science.gov (United States)

    Szumska, Agnieszka; Budzanowski, M.; Kopeć, R.

    2014-11-01

    We report results of measurements of Hp(10) from whole body dosimeters (about 53 thousand readouts), of Hp(0.07) from finger ring dosimeters (23 thousand readouts) and of Hp(3) from eye lens dosimeters (100 readouts), issued in the years 2010-12 to over 150 medical departments in Poland which apply X-rays in radiology, interventional radiology (haemodynamic, angiology, cardiac surgery), urology, orthopaedics, electrophysiology or electro-cardiology. In all measurements thermoluminescence detectors (TLD) were used: the well-known standard MTS-N (LiF:Mg, Ti) for whole body and extremity dosimetry, and the high-sensitivity MCP-N (LiF:Mg, Cu, P) for eye lens dosimetry and environmental monitoring. We analysed the data base of the accredited Laboratory of Individual and Environmental Dosimetry (LADIS) at the Institute of Nuclear Physics PAN which offers its dosimetry service to these departments on a regular basis. We found that in the population of radiation workers that studied over the years 2010-2012 in 84%, 87%, and 34% of Hp(10), Hp(0.07) and Hp(3) measurements, respectively, the level of 0.1 mSv/quarter did not exceed, indicating lack of their occupational exposure. In the remaining 16%, 13% and 66% of individual cases, the 0.1 mSv/quarter exceeded, occasionally reaching several hundreds of mSv/quarter.

  12. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  13. Radiobiological studies using gamma and x rays.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.; Lin, Yong; Wilder, Julie; Hutt, Julie A.; Padilla, Mabel T.; Gott, Katherine M.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  14. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    Science.gov (United States)

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  15. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  16. Modeling detector response in solid-state systems for radiation therapy and radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Hugtenburg, R.P. [School of Physics and Astronomy, University of Birmingham, B15 2TT, UK (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH, UK (United Kingdom)

    2006-07-01

    -filled proportional counters (TEPC) where it is anticipated that intercomparisons with experiment will help to validate the use of such codes for the microdosimetry predictions on the sub-cellular scale in radiobiological systems. Monte Carlo based microdosimetry calculations are also expected to assist in explaining LET dependencies found in many solid-state detector systems. (Author)

  17. A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2007-02-26

    The future of manned space flight depends on an analysis of the numerous potential risks of travel into deep space. Currently no radiation dose limits have been established for these exploratory missions. To set these standards more information is needed about potential acute and late effects on human physiology from appropriate radiation exposure scenarios, including pertinent radiation types and dose rates. Cancer risks have long been considered the most serious late effect from chronic daily relatively low-dose exposures to the complex space radiation environment. However, other late effects from space radiation exposure scenarios are under study in ground-based accelerator facilities and have revealed some unique particle radiation effects not observed with conventional radiations. A comprehensive review of pertinent literature that considers tissue effects of radiation leading to functional detriments in specific organ systems has recently been published (NCRP National Council on Radiation Protection and Measurements, Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit, Report 153, Bethesda, MD, 2006). This paper highlights the review of two non-cancer concerns from this report: cardiovascular and immunological effects.

  18. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  19. Dosimetry of cosmic radiation in the troposphere based on the measurements at the summit of Mt. Fuji

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Yajima, K.; Yoshida, S. [National Insitute of Radiological Sciences, Chiba (Japan). Research Center for Radiation Protection

    2011-07-01

    Dose rate of cosmic-ray origin neutrons (abbreviated to ''cosmic neutrons'') at aviation altitude was estimated based on the measurements at Mt. Fuji. Cosmic neutrons were measured in a facility of the Mt. Fuji Weather Station located at the summit of Mt. Fuji, the highest mountain in Japan (3776m in altitude), in the summer of 2008 and 2009. The average of 1 cm ambient dose equivalent H*(10) for two measurements was verified by numerical model simulation and then used to empirically estimate the solar force field potential (FFP). The H*(10) rates at aviation altitude estimated from the measurements at Mt. Fuji were compared to those obtained in in-flight measurements onboard a civilian aircraft flying near Mt. Fuji at the time between the two measurements at the mountain. According to the results obtained, we expect that the empirical estimation based on the measurements at Mt. Fuji will work effectively for dosimetry of cosmic radiation in troposphere. (orig.)

  20. Radiobiology with heavy charged particles: a historical review

    Energy Technology Data Exchange (ETDEWEB)

    Skarsgard, L.D. [Dept. of Medical Biophysics, B.C. Cancer Research Centre and TRIUMF, Vancouver (Canada)

    1997-09-01

    The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)

  1. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification

    Science.gov (United States)

    Jomehzadeh, Ali; Shokrani, Parvaneh; Mohammadi, Mohammad; Amouheidari, Alireza

    2016-01-01

    Background: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans, both pretreatment and in vivo. The aim of this study is to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in vivo as well. Materials and Methods: Dose distributions were reconstructed from EPID images using a 2D EPID dosimetry algorithm inside a homogenous slab phantom for a simple 10 × 10 cm2 box technique, 3D conformal (prostate, head-and-neck, and lung), and intensity-modulated radiation therapy (IMRT) prostate plans inside an anthropomorphic (Alderson) phantom and in the patients (one fraction in vivo) for 3D conformal plans (prostate, head-and-neck and lung). Results: The planned and EPID dose difference at the isocenter, on an average, was 1.7% for pretreatment verification and less than 3% for all in vivo plans, except for head-and-neck, which was 3.6%. The mean γ values for a seven-field prostate IMRT plan delivered to the Alderson phantom varied from 0.28 to 0.65. For 3D conformal plans applied for the Alderson phantom, all γ1% values were within the tolerance level for all plans and in both anteroposterior and posteroanterior (AP-PA) beams. Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans) applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary. PMID:28028511

  2. Bone marrow dosimetry using blood-based models for {sup 131}i-anti-cd20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J. H.; Kim, H. G.; Choi, T. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)] (and others)

    2005-07-01

    Accurate estimations of radiation absorbed dose are essential part of evaluating the risks and benefits associated with radiotherapy. Determination of red marrow dose is important because myelotoxicity is often dose limiting in radioimmunotherapy. The aim of this study is to set up the procedures of dosimetry with activities in the blood and whole-body and to estimate the dose of patients according to MIRD schema. Therapy activities of 131I (136, 185, 200 mCi) were administrated to patients (n=3). Blood activity concentrations and whole-body images by gamma camera were collected from patients with non-Hodgkin's lymphoma (5min, 6h, 24h, 48h, 72h, 2week). Two kinds of patient specific approaches based on Sgouros bone marrow dosimetry methodology were considered to estimate bone marrow dose. The mean effective half-life in blood and whole-body were 25.2h and 27.1h respectively and the mean absorbed dose to bone marrow was 0.48Gy (0.22{approx}0.93Gy). The dominant contribution of dose was found to be from bone marrow self-dose (over 60%). The procedures of dosimetry with blood and gamma camera image were established. These enable to estimate the radioimmunotherapy patient's dose retrospectively. Some parts of the procedures need to be elaborated to obtain more accurate dose in the near future.

  3. Path forward for dosimetry cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J. [Sandia National Laboratories, Albuquerque, NM 87185-1146 (United States); Peters, C.D. [Sandia Staffing Alliance, Albuquerque, NM 87110 (United States)

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of

  4. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry.

    Science.gov (United States)

    Baechler, Sébastien; Hobbs, Robert F; Prideaux, Andrew R; Wahl, Richard L; Sgouros, George

    2008-03-01

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high alpha/beta), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the

  5. Ill-posed problem and regularization in reconstruction of radiobiological parameters from serial tumor imaging data

    Science.gov (United States)

    Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh

    2015-11-01

    The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more

  6. Protocol for emergency EPR dosimetry in fingernails

    OpenAIRE

    Trompier, F; Kornak, L.; Calas, C.; Romanyukha, A.; LeBlanc, B.; Mitchell, C. A.; Swartz, H M; Clairand, I.

    2007-01-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail...

  7. Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation

    Science.gov (United States)

    Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad

    2016-09-01

    There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.

  8. Biophysical and biomathematical adventures in radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.

    1991-01-01

    Highlights of my biophysical and biomathematical adventures in radiobiology is presented. Early adventures involved developing state-vector models'' for specific harmful effects (cell killing, life shortening) of exposure to radiation. More recent adventures led to developing hazard-function models'' for predicting biological effects (e.g., cell killing, mutations, tumor induction) of combined exposure to different toxicants. Hazard-function models were also developed for predicting harm to man from exposure to large radiation doses. Major conclusions derived from the modeling adventures are as follows: (1) synergistic effects of different genotoxic agents should not occur at low doses; (2) for exposure of the lung or bone marrow to large doses of photon radiation, low rates of exposure should be better tolerated than high rates; and (3) for some types of radiation (e.g., alpha particles and fission neutrons), moderate doses delivered at a low rate may be more harmful than the same dose given at a high rate. 53 refs., 7 figs.

  9. Database to manage personal dosimetry Hospital Universitario de La Ribera; Base de datos para gestionar la dosimetria personal del Hospital Universitario de La Ribera

    Energy Technology Data Exchange (ETDEWEB)

    Melchor, M.; Martinez, D.; Asensio, M.; Candela, F.; Camara, A.

    2011-07-01

    For the management of professionally exposed personnel dosimetry, da La are required for the use and return of dosimeters. in the Department of Radio Physics and Radiation Protection have designed and implemented a database management staff dosimetry Hospital and Area Health Centers. The specific objectives were easily import data from the National Center dosimetric dosimetry, consulting records in a simple dosimetry, dosimeters allow rotary handle, and also get reports from different periods of time to know the return data for users, services, etc.

  10. Dosimetry service removal

    CERN Multimedia

    Safety Commission

    2010-01-01

    Dear personal dosimeter user, Please note that the Dosimetry service has moved in building 55, the service is now located in the main floor: 55-R-004. Main floor instead of second floor. On your right hand when accessing in the building. Thank you Dosimetry Service

  11. MRI-based polymer gel dosimetry for validating plans with multiple matrices in Gamma Knife stereotactic radiosurgery.

    Science.gov (United States)

    Gopishankar, N; Watanabe, Yoichi; Subbiah, Vivekanandhan

    2011-01-31

    One of treatment planning techniques with Leksell GammaPlan (LGP) for Gamma Knife stereotactic radiosurgery (GKSRS) uses multiple matrices with multiple dose prescriptions. Computational complexity increases when shots are placed in multiple matrices with different grid sizes. Hence, the experimental validation of LGP calculated dose distributions is needed for those cases. For the current study, we used BANG3 polymer gel contained in a head-sized glass bottle to simulate the entire treatment process of GKSRS. A treatment plan with three 18 mm shots and one 8 mm shot in separate matrices was created with LGP. The prescribed maximum dose was 8 Gy to three shots and 16 Gy to one of the 18 mm shots. The 3D dose distribution recorded in the gel dosimeter was read using a Siemens 3T MRI scanner. The scanning parameters of a CPMG pulse sequence with 32 equidistant echoes were as follows: TR = 7 s, echo step = 13.6 ms, field-of-view = 256 mm × 256 mm, and pixel size = 1 mm × 1 mm. Interleaved acquisition mode was used to obtain 15 to 45 2-mm-thick slices. Using a calibration relationship between absorbed dose and the spin-spin relaxation rate (R2), we converted R2 images to dose images. MATLAB-based in-house programs were used for R2 estimation and dose comparison. Gamma-index analysis for the 3D data showed gamma values less than unity for 86% of the voxels. Through this study we accomplished the first application of polymer gel dosimetry for a true comparison between measured 3D dose distributions and LGP calculations for plans using multiple matrices for multiple targets.

  12. Clinical implementation of an electron monitor unit dosimetry system based on task group 71 report and a commercial calculation program

    Directory of Open Access Journals (Sweden)

    Huijun Xu

    2016-01-01

    Full Text Available Many clinics still use monitor unit (MU calculations for electron treatment planning and/or quality assurance (QA. This work (1 investigates the clinical implementation of a dosimetry system including a modified American Association of Physicists in Medicine-task group-71 (TG-71-based electron MU calculation protocol (modified TG-71 electron [mTG-71E] and an independent commercial calculation program and (2 provides the practice recommendations for clinical usage. Following the recently published TG-71 guidance, an organized mTG-71E databook was developed to facilitate data access and subsequent MU computation according to our clinical need. A recently released commercial secondary calculation program - Mobius3D (version 1.5.1 Electron Quick Calc (EQC (Mobius Medical System, LP, Houston, TX, USA, with inherent pencil beam algorithm and independent beam data, was used to corroborate the calculation results. For various setups, the calculation consistency and accuracy of mTG-71E and EQC were validated by their cross-comparison and the ion chamber measurements in a solid water phantom. Our results show good agreement between mTG-71E and EQC calculations, with average 2% difference. Both mTG-71E and EQC calculations match with measurements within 3%. In general, these differences increase with decreased cutout size, increased extended source to surface distance, and lower energy. It is feasible to use TG71 and Mobius3D clinically as primary and secondary electron MU calculations or vice versa. We recommend a practice that only requires patient-specific measurements in rare cases when mTG-71E and EQC calculations differ by 5% or more.

  13. TU-F-201-00: Radiochromic Film Dosimetry Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  14. Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)

    Science.gov (United States)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end–to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  15. Tail's Entropy and dose of critical annihilation: a new view of the problem radiobiological; Entropia de Tsallis y dosis de aniquilacion critica: una nueva vision del problema radiobiologico

    Energy Technology Data Exchange (ETDEWEB)

    Sotolongo Grau, O.; Rodriguez Perez, D.; Antoranz, J. C.

    2011-07-01

    The aim of this paper is to present a model based on a minimum radiobiological physical hypotheses containing known models as special cases, allowing to define operations of addition and multiplication dose survival probabilities to fit the experimental data.

  16. A fiber-dosimetry method based on OSL from Al2O3:C for radiotherapy applications

    DEFF Research Database (Denmark)

    Gaza, R.; McKeever, S.W.S.; Akselrod, M.S.;

    2004-01-01

    We describe a high-sensitivity, fiber-optic dosimetry system based on optically stimulated luminescence (OSL) and radioluminescence from Al2O3: C single-crystal fibers (detectors). The detectors are coupled to a fiber optic delivery system and OSL from the detector is stimulated via the optical...... fiber cable using light from a Nd:YAG laser. The OSL is guided back along the same fiber and is detected by a photomultiplier tube. The Al2O3: C detectors are small and demonstrate high sensitivity with a large signal-to-noise ratio. We describe two modes of operation of the system and discuss...

  17. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Frisson, T. [Universite de Lyon, F-69622 Lyon (France); CREATIS-LRMN, INSA, Batiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France)], E-mail: frisson@creatis.insa-lyon.fr; Zahra, N. [Universite de Lyon, F-69622 Lyon (France); IPNL - CNRS/IN2P3 UMR 5822, Universite Lyon 1, Batiment Paul Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France); Lautesse, P. [Universite de Lyon, F-69622 Lyon (France); IPNL - CNRS/IN2P3 UMR 5822, Universite Lyon 1, Batiment Paul Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Sarrut, D. [Universite de Lyon, F-69622 Lyon (France); CREATIS-LRMN, INSA, Batiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Centre Leon Berrard - 28 rue Laennec, F-69373 Lyon Cedex 08 (France)

    2009-07-21

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  18. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    Science.gov (United States)

    Frisson, T.; Zahra, N.; Lautesse, P.; Sarrut, D.

    2009-07-01

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  19. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic; Sistema de gerenciamento da dosimetria pessoal baseado na ISO 9001:2008 para radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner, E-mail: brasilrad@brasilrad.com.br [Brasilrad Consultoria em Radioprotecao, Florianopolis, SC (Brazil)

    2013-07-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers.

  20. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications

    Science.gov (United States)

    Abdel-Fattah, A. A.; Abdel-Rehim, F.; Soliman, Y. S.

    2012-01-01

    The dosimetric characteristics of γ-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon γ-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2 σ).

  1. Development and validation of a measurement-based source model for kilovoltage cone-beam CT Monte Carlo dosimetry simulations

    Science.gov (United States)

    McMillan, Kyle; McNitt-Gray, Michael; Ruan, Dan

    2013-01-01

    underestimated measurements by 1.35%–5.31% (mean difference = −3.42%, SD = 1.09%). Conclusions: This work demonstrates the feasibility of using a measurement-based kV CBCT source model to facilitate dose calculations with Monte Carlo methods for both the radiographic and CBCT mode of operation. While this initial work validates simulations against measurements for simple geometries, future work will involve utilizing the source model to investigate kV CBCT dosimetry with more complex anthropomorphic phantoms and patient specific models. PMID:24320440

  2. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, A.A.; Abdel-Rehim, F. [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 8029, Nasr City, Cairo (Egypt); Soliman, Y.S., E-mail: yasser_shabaan@hotmail.com [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 8029, Nasr City, Cairo (Egypt)

    2012-01-15

    The dosimetric characteristics of {gamma}-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon {gamma}-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2{sigma}). - Highlights: > Using 10,12-pentacosa-diynoic acid (PCDA) in preparation of label dosimeter. > PCDA polymerises upon {gamma}-rays exposure producing a blue coloured polymer. > Useful dose range is 15 Gy to 2 kGy depending on concentration of PCDA. > Overall uncertainty of label dosimeter was 6.06 at 2{sigma}.

  3. Web based dosimetry system for reading and monitoring dose through internet access

    Energy Technology Data Exchange (ETDEWEB)

    Perle, S.C.; Bennett, K.; Kahilainen, J.; Vuotila, M. [Mirion Technologies (United States); Mirion Technologies (Finland)

    2010-07-01

    The Instadose{sup TM} dosemeter from Mirion Technologies is a small, rugged device based on patented direct ion storage technology and is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) through NIST, bringing radiation monitoring into the digital age. Smaller than a flash drive, this dosemeter provides an instant read-out when connected to any computer with internet access and a USB connection. Instadose devices provide radiation workers with more flexibility than today's dosemeters. Non Volatile Analog Memory Cell surrounded by a Gas Filled Ion Chamber. Dose changes the amount of Electric Charge in the DIS Analog Memory. The total charge storage capacity of the memory determines the available dose range. The state of the Analog Memory is determined by measuring the voltage across the memory cell. AMP (Account Management Program) provides secure real time access to account details, device assignments, reports and all pertinent account information. Access can be restricted based on the role assignment assigned to an individual. A variety of reports are available for download and customizing. The Advantages of the Instadose dosemeter are: - Unlimited reading capability, - Concerns about a possible exposure can be addressed immediately, - Re-readability without loss of exposure data, with cumulative exposure maintained. (authors)

  4. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    Science.gov (United States)

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  5. Validation of human physiologically based pharmacokinetic model for vinyl acetate against human nasal dosimetry data.

    Science.gov (United States)

    Hinderliter, P M; Thrall, K D; Corley, R A; Bloemen, L J; Bogdanffy, M S

    2005-05-01

    Vinyl acetate has been shown to induce nasal lesions in rodents in inhalation bioassays. A physiologically based pharmacokinetic (PBPK) model for vinyl acetate has been used in human risk assessment, but previous in vivo validation was conducted only in rats. Controlled human exposures to vinyl acetate were conducted to provide validation data for the application of the model in humans. Five volunteers were exposed to 1, 5, and 10 ppm 13C1,13C2 vinyl acetate via inhalation. A probe inserted into the nasopharyngeal region sampled both 13C1,13C2 vinyl acetate and the major metabolite 13C1,13C2 acetaldehyde during rest and light exercise. Nasopharyngeal air concentrations were analyzed in real time by ion trap mass spectrometry (MS/MS). Experimental concentrations of both vinyl acetate and acetaldehyde were then compared to predicted concentrations calculated from the previously published human model. Model predictions of vinyl acetate nasal extraction compared favorably with measured values of vinyl acetate, as did predictions of nasopharyngeal acetaldehyde when compared to measured acetaldehyde. The results showed that the current PBPK model structure and parameterization are appropriate for vinyl acetate. These analyses were conducted from 1 to 10 ppm vinyl acetate, a range relevant to workplace exposure standards but which would not be expected to saturate vinyl acetate metabolism. Risk assessment based on this model further concluded that 24 h per day exposures up to 1 ppm do not present concern regarding cancer or non-cancer toxicity. Validation of the vinyl acetate human PBPK model provides support for these conclusions.

  6. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  7. Dosimetry studies in Zaborie village.

    Science.gov (United States)

    Takada, J; Hoshi, M; Endo, S; Stepanenko, V F; Kondrashov, A E; Petin, D; Skvortsov, V; Ivannikov, A; Tikounov, D; Gavrilin, Y; Snykov, V P

    2000-05-01

    Dosimetry studies in Zaborie, a territory in Russia highly contaminated by the Chernobyl accident, were carried out in July, 1997. Studies on dosimetry for people are important not only for epidemiology but also for recovery of local social activity. The local contamination of the soil was measured to be 1.5-6.3 MBq/m2 of Cs-137 with 0.7-4 microSv/h of dose rate. A case study for a villager presently 40 years old indicates estimations of 72 and 269 mSv as the expected internal and external doses during 50 years starting in 1997 based on data of a whole-body measurement of Cs-137 and environmental dose rates. Mean values of accumulated external and internal doses for the period from the year 1986 till 1996 are also estimated to be 130 mSv and 16 mSv for Zaborie. The estimation of the 1986-1996 accumulated dose on the basis of large scale ESR teeth enamel dosimetry provides for this village, the value of 180 mSv. For a short term visitor from Japan to this area, external and internal dose are estimated to be 0.13 mSv/9d (during visit in 1997) and 0.024 mSv/50y (during 50 years starting from 1997), respectively.

  8. Recombination methods in the dosimetry of mixed radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    The work describes the state of art of recombination methods developed for the dosimetry of mixed radiation fields. The existing theories of initial recombination of ions in gases is given. Recombination methods developed in IAE are reviewed in detail. The methods described here can be applied in mixed radiation fields of poorly known composition and practically unlimited energy range. Main dosimetric parameters such as absorbed dose, photon component to the absorbed dose, radiation quality factor, dose equivalent, ambient dose equivalent and some other quantities can be determined in single instrument. A novel method has been developed for determination of the energy loss distribution in the nanometric region. Experimental tests showed that the method is promising not only for radiation protection but also for radiobiological investigations. (author). 166 refs, 62 figs, 16 tabs.

  9. A portable microfluidic fluorescence spectrometer device for {gamma}-H2AX-based biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Pope, I.A.; Barber, P.R. [Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Horn, S.; Ainsbury, E. [Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot OX11 0RQ, Oxon (United Kingdom); Rothkamm, K., E-mail: kai.rothkamm@hpa.org.uk [Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot OX11 0RQ, Oxon (United Kingdom); Vojnovic, B. [Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom)

    2011-09-15

    Following a radiological incident the rapid identification of those individuals exposed to critically high radiation doses is important for initial triage and medical treatment. It has been previously demonstrated that scoring of radiation-induced foci of the phosphorylated histone {gamma}-H2AX, which form at the sites of DNA double-strand breaks, may be used to determine radiation exposure levels from blood samples. Although faster than the 'gold standard' dicentric assay, foci scoring is still impractical in a field situation where large numbers of people may need to be screened. To deal with such a situation, an inexpensive portable device with high throughput capacity is desirable. Here we describe a portable microfluidic fluorescence spectrometer device which passes a suspension of {gamma}-H2AX immunofluorescence-stained lymphocytes through a focused 488 nm laser beam in a microfluidic chamber and records emission spectra over the range 495-725 nm. The recorded emission spectra are spectrally unmixed into their constituent parts from which radiation exposure levels are determined. Proof of principle is demonstrated using cultured lymphoblastoid cells, exposed to X-ray doses between 0 and 8 Gy. With the current prototype setup it takes approximately 6 min to acquire and analyse 10,000 spectra. Further effort is required to fully develop this approach into a portable triage tool that could be used to help classify people into appropriate treatment categories based on radiation exposure levels.

  10. Dosimetry and optimization in digital radiography based on the detail contrast resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil); Gomes de C, A., E-mail: wilsonottobatista@gmail.com [Secretaria de Saude do Estado da Bahia, Salvador de Bahia (Brazil)

    2016-10-15

    In digital radiography, computed radiography systems (CR) and portable panels a-Si (DR) are adapted to equipment previously used for the system screen / film. Therefore it maintains the characteristics as grid, filtration, yield, etc. Otherwise, the systems dedicated with a-Si panels (DR), are designed to operate with these image receptors. The ability to detect in low contrast details is reduced for all systems with increasing ratio of scattered radiation / primary radiation. In this context there is a need to acquire experience and adjust exposure protocols to ensure the quality of the image with maintaining kerma values in the surface as low as possible. The contrast resolution is defined as the ability of the system to distinguish similar degrees of attenuation of the object and is a parameter used to maintain the quality index and comparison between different systems. The protocols were: chest (90 and 102 kV with the range of 2-20 m As) and abdomen (80 kV in the range of 10-80 m As). Kerma values were evaluated with a solid state sensors. Based on analysis of these curves C-D, which identified the technique would imply a lower kerma input surface while maintaining image quality from the point of view of contrast-detail resolution. The results show that the IQFinv varies little throughout the range of m As, while the value of kerma varies linearly with in m As. Also, the complete analysis of the curves indicate that there was an increase in the definition of detail with increasing m As. The conclusion is that, in the transition phase of the new receivers are needed to assess and adjust practiced protocols to ensure the quality index of the image taking into account aspects of radiation protection of the patient. And even with digital technology, good radiographic technique should be practiced. (Author)

  11. National Radiobiology Archives Distributed Access user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C.; Smith, S. (Pacific Northwest Lab., Richland, WA (United States)); Prather, J. (Linfield Coll., McMinnville, OR (United States))

    1991-11-01

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems.

  12. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  13. SU-E-J-214: MR Protocol Development to Visualize Sirius MRI Markers in Prostate Brachytherapy Patients for MR-Based Post-Implant Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lim, T; Wang, J; Frank, S; Stafford, R; Bruno, T; Bathala, T; Mahmood, U; Pugh, T; Ibbott, G; Kudchadker, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGR sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3

  14. A measurement-based X-ray source model characterization for CT dosimetry computations.

    Science.gov (United States)

    Sommerville, Mitchell; Poirier, Yannick; Tambasco, Mauro

    2015-11-08

    less than 3.50%. Thirty-five out of a total of 36 simulation conditions were within the experimental uncertainties associated with measurement reproducibility and chamber volume effects for the PMMA phantom. The agreement between calculation and measurement was within experimental uncertainty for 19 out of 20 simulation conditions at five points of interest in the anthropomorphic thorax phantom for the four beam energies modeled. The source model and characterization technique based on HVL measurements and nominal kVp can be used to accurately compute CT dose. This accuracy provides experimental validation of kVDoseCalc for computing CT dose.

  15. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: Xiaoxia.Yang@fda.hhs.gov; Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-07-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.

  16. Experimental radiotherapy and clinical radiobiology. Vol. 22. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 25. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Krause, Mechthild [Universitaetsklinikum Technische Univ. Dresden (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologie; Cordes, Nils [Universitaetsklinikum Technische Univ. Dresden (Germany). OncoRay - Nationales Zentrum fuer Strahlenforschung in der Radioonkologie; Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Petersen, Cordula [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie; Rodemann, H. Peter [Universitaetsklinikum Tuebingen (Germany). Sektion fuer Strahlenbiologie; Rothkamm, Kai [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Lab. fuer Strahlentherapie und Experimentelle Radioonkologie; Zips, Daniel (ed.) [Tuebingen Univ. (Germany). Universitaetsklinik fuer Radioonkologie

    2016-05-01

    The proceedings of the 25th symposium on experimental radiotherapy and clinical radiobiology include papers on the following issues: radiotherapy individualization based on imaging; pre-clinic imaging and new experimental methods; methods and models, micromilieu and metabolism, combined therapy; secondary tumors following radiotherapy; radiogenic effects in normal tissue; resistance mechanism of tumors and normal tissue; personalized radio-oncology - which biological data are needed; pre-clinic and personalized radio-oncology; biomarkers - pre-clinic and translational; translational examinations for personalized radio-oncology.

  17. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.

    Science.gov (United States)

    Esposito, J; Rosi, G; Agosteo, S

    2007-01-01

    A new thermal neutron irradiation facility, devoted to carry out both dosimetric and radiobiological studies on boron carriers, which are being developed in the framework of INFN BNCT project, has been installed at the ENEA Casaccia TAPIRO research fast reactor. The thermal column, based on an original, hybrid, neutron spectrum shifter configuration, has been recently become operative. In spite of its low power (5 kW), the new facility is able to provide a high thermal neutron flux level, uniformly distributed inside the irradiation cavity, with a quite low gamma background. The main features and preliminary benchmark measurements of the Beam-shaping assembly are here presented and discussed.

  18. IMRT patient-specific QA using the Delta4 dosimetry system and evaluation based on ICRU 83 recommendations

    Science.gov (United States)

    Nilsson, J.; Karlsson Hauer, A.; Bäck, A.

    2013-06-01

    Patient-specific IMRT QA is dependent on the dosimetry system and the evaluation procedure. The ICRU report 83 provides recommendations of tolerated deviations between measured and calculated absorbed dose distributions for QA of IMRT treatment plans. The result of doing IMRT patient-specific QA with the Delta4 dosimetry system and using the ICRU recommendations for evaluation is studied. To be able to investigate the QA procedure the original IMRT treatment plans were modified in the treatment planning system to create calculated dose distributions with dosimetric deviations from the original treatment plans. The modified dose distributions were compared to the dose distributions from the Delta4 measurements of the original treatment plans and the differences were evaluated with criteria and tolerance levels according to the recommendations from ICRU. The evaluation for all 28 modified dose distributions have gamma passing rates higher than the tolerance level recommended from ICRU and will therefore pass the patient-specific QA. More than half of the evaluations have a gamma passing rate of 100 %. Evaluation of the differences between the modified and the original calculated dose distributions revealed in several cases large unacceptable dose differences in the PTV volumes and the organs at risk, for example an increase in the near-maximum dose D2% to the spinal cord of 5.5 Gy. This study indicates that patient-specific QA with the Delta4 dosimetry system and the ICRU recommendations for evaluation can not be used to distinguish differences between planned and measured dose of dosimetrical relevance.

  19. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Science.gov (United States)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  20. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  1. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  2. Use of the GATE Monte Carlo package for dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [INSERM U650, LaTIM, University Hospital Medical School, F 29609 Brest (France)]. E-mail: Visvikis.Dimitris@univ-brest.fr; Bardies, M. [INSERM U601, CHU Nantes, F 44093 Nantes (France); Chiavassa, S. [INSERM U601, CHU Nantes, F 44093 Nantes (France); Danford, C. [Department of Medical Physics, MSKCC, New York (United States); Kirov, A. [Department of Medical Physics, MSKCC, New York (United States); Lamare, F. [INSERM U650, LaTIM, University Hospital Medical School, F 29609 Brest (France); Maigne, L. [Departement de Curietherapie-Radiotherapie, Centre Jean Perrin, F 63000 Clemont-Ferrand (France); Staelens, S. [UGent-ELIS, St-Pietersnieuwstraat, 41, B 9000 Gent (Belgium); Taschereau, R. [CRUMP Institute for Molecular Imaging, UCLA, Los Angeles (United States)

    2006-12-20

    One of the roles for Monte Carlo (MC) simulation studies is in the area of dosimetry. A number of different codes dedicated to dosimetry applications are available and widely used today, such as MCNP, EGSnrc and PTRAN. However, such codes do not easily facilitate the description of complicated 3D sources or emission tomography systems and associated data flow, which may be useful in different dosimetry application domains. Such problems can be overcome by the use of specific MC codes such as GATE (GEANT4 Application to Tomographic Emission), which is based on Geant4 libraries, providing a scripting interface with a number of advantages for the simulation of SPECT and PET systems. Despite this potential, its major disadvantage is in terms of efficiency involving long execution times for applications such as dosimetry. The strong points and disadvantages of GATE in comparison to other dosimetry specific codes are discussed and illustrated in terms of accuracy, efficiency and flexibility. A number of features, such as the use of voxelised and moving sources, as well as developments such as advanced visualization tools and the development of dose estimation maps allowing GATE to be used for dosimetry applications are presented. In addition, different examples from dosimetry applications with GATE are given. Finally, future directions with respect to the use of GATE for dosimetry applications are outlined.

  3. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  4. A dynamic dosimetry system for prostate brachytherapy

    Science.gov (United States)

    Kuo, Nathanael; Dehghan, Ehsan; Deguet, Anton; Song, Danny Y.; Prince, Jerry L.; Lee, Junghoon

    2013-03-01

    The lack of dynamic dosimetry tools for permanent prostate brachytherapy causes otherwise avoidable problems in prostate cancer patient care. The goal of this work is to satisfy this need in a readily adoptable manner. Using the ubiquitous ultrasound scanner and mobile non-isocentric C-arm, we show that dynamic dosimetry is now possible with only the addition of an arbitrarily configured marker-based fiducial. Not only is the system easily configured from accessible hardware, but it is also simple and convenient, requiring little training from technicians. Furthermore, the proposed system is built upon robust algorithms of seed segmentation, fiducial detection, seed reconstruction, and image registration. All individual steps of the pipeline have been thoroughly tested, and the system as a whole has been validated on a study of 25 patients. The system has shown excellent results of accurately computing dose, and does so with minimal manual intervention, therefore showing promise for widespread adoption of dynamic dosimetry.

  5. Model selection for radiochromic film dosimetry

    CERN Document Server

    Méndez, Ignasi

    2015-01-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to...

  6. Protocol for emergency EPR dosimetry in fingernails.

    Science.gov (United States)

    Trompier, F; Kornak, L; Calas, C; Romanyukha, A; Leblanc, B; Mitchell, C A; Swartz, H M; Clairand, I

    2007-08-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.

  7. Dosimetry procedures for an industrial irradiation plant

    Science.gov (United States)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  8. Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Tomic, Nada, E-mail: ntomic@roc.jgh.mcgill.ca; Quintero, Chrystian; Aldelaijan, Saad; Bekerat, Hamed; Liang, LiHeng; DeBlois, François; Devic, Slobodan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2 (Canada); Whiting, Bruce R. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada)

    2014-06-15

    Purpose: The authors investigated the energy response of XR-QA2 GafChromic{sup TM} film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, and power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·e{sup m} {sup netΔR} that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at K{sub air}{sup air} = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation in film response (netΔR at K{sub air}{sup air} = 8 cGy) amounts to ± 5%, while variation in K{sub air}{sup air} amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromic{sup TM} film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized.

  9. Optimization in brachytherapy with the implementation of Radiobiology; Optimizacion en Braquiterapia con la implementacion de la Radiobiologia

    Energy Technology Data Exchange (ETDEWEB)

    Duran, M.P.; Bourel, V.J.; Rodriguez, I.; Torre, M. de la; Caneva, S. [Braqui S.R.L. Viamonte 1861, Buenos Aires (Argentina)

    1998-12-31

    In the brachytherapy planning treatments with High dose rates (HDR), the optimization algorithms used are based in dosimetric considerations and/or geometric ones, ignoring the radiobiological response of the tissue treated. In this work we wish to show the implementation of radiobiological concepts in the optimization. Assuming that the subtiles differences that result in the dose distribution among the different optimization models which are not visible in an isodose plane, it is studied how is classically make it , the quality implant through natural histograms about dose volumes and the resulting parameters. Also is studied the necrosis probability which may be caused by the choice of some optimization model, allowing with this the choice of the best implant. (Author)

  10. SNL RML recommended dosimetry cross section compendium

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  11. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  12. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual DosimetryWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MAY/JUNE will be available from their usual dispatchers on Tuesday 2 May.Please have your films changed before the 12 May.The colour of the dosimeter valid in is MAY/JUNE is YELLOW.Individual Dosimetry Service will be closed on Friday 28 April.

  13. Status of radiation processing dosimetry

    DEFF Research Database (Denmark)

    Miller, A.

    1993-01-01

    Several milestones have marked the field of radiation processing dosimetry since IMRP 7. Among them are the IAEA symposium on High Dose Dosimetry for Radiation Processing and the international Workshops on Dosimetry for Radiation Processing organized by the ASTM. Several standards have been...... or are being published by the ASTM in this field, both on dosimetry procedures and on the proper use of specific dosimeter systems. Several individuals are involved in this international cooperation which contribute significantly to the broader understanding of the role of dosimetry in radiation processing....... The importance of dosimetry is emphasized in the standards on radiation sterilization which are currently drafted by the European standards organization CEN and by the international standards organization ISO. In both standards, dosimetry plays key roles in characterization of the facility, in qualification...

  14. Measuring hydrogen peroxide due to water radiolysis using a modified horseradish peroxidase based biosensor as an alternative dosimetry method.

    Science.gov (United States)

    Tavakoli, Hassan; Baghbanan, Amin Azam

    2015-08-01

    H2O2 generated during water radiolysis was measured electrochemically as an alternative dosimetry method. A biosensor was fabricated by immobilising modified horseradish peroxidase (HRP) on a glassy carbon electrode (GCE) followed by evaluation of its analytical parameters. Anthraquinone 2-carboxylic acid was used to modify HRP. To assess sensor performance, phosphate buffer solutions were irradiated with 0.510 Gy of gamma ray emitted from (60)Co. The results showed that this sensor can detect low quantities of hydrogen peroxide in water radiolysis. Sensitivity, detection limit and linear range of the biosensor were 260 nA/Gy, 0.392 Gy and 0.5-5 Gy, respectively. Long term stability studies showed that sensor responses were stable for at least a month. The cathodic peak current, as biosensor response, subsequently decreased to 20% of its initial value.

  15. Computational Techniques of Electromagnetic Dosimetry for Humans

    Science.gov (United States)

    Hirata, Akimasa; Fujiwara, Osamu

    There has been increasing public concern about the adverse health effects of human exposure to electromagnetic fields. This paper reviews the rationale of international safety guidelines for human protection against electromagnetic fields. Then, this paper also presents computational techniques to conduct dosimetry in anatomically-based human body models. Computational examples and remaining problems are also described briefly.

  16. New challenges in high-energy particle radiobiology.

    Science.gov (United States)

    Durante, M

    2014-03-01

    Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space.

  17. (RadioBiological Optimization of External-Beam Radiotherapy

    Directory of Open Access Journals (Sweden)

    Alan E. Nahum

    2012-01-01

    Full Text Available “Biological optimization” (BIOP means planning treatments using (radiobiological criteria and models, that is, tumour control probability and normal-tissue complication probability. Four different levels of BIOP are identified: Level I is “isotoxic” individualization of prescription dose at fixed fraction number. is varied to keep the NTCP of the organ at risk constant. Significant improvements in local control are expected for non-small-cell lung tumours. Level II involves the determination of an individualized isotoxic combination of and fractionation scheme. This approach is appropriate for “parallel” OARs (lung, parotids. Examples are given using our BioSuite software. Hypofractionated SABR for early-stage NSCLC is effectively Level-II BIOP. Level-III BIOP uses radiobiological functions as part of the inverse planning of IMRT, for example, maximizing TCP whilst not exceeding a given NTCP. This results in non-uniform target doses. The NTCP model parameters (reflecting tissue “architecture” drive the optimizer to emphasize different regions of the DVH, for example, penalising high doses for quasi-serial OARs such as rectum. Level-IV BIOP adds functional imaging information, for example, hypoxia or clonogen location, to Level III; examples are given of our prostate “dose painting” protocol, BioProp. The limitations of and uncertainties inherent in the radiobiological models are emphasized.

  18. The photon dose calculation algorithm used in breast radiotherapy has significant impact on the parameters of radiobiological models.

    Science.gov (United States)

    Petillion, Saskia; Swinnen, Ans; Defraene, Gilles; Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank

    2014-07-08

    The comparison of the pencil beam dose calculation algorithm with modified Batho heterogeneity correction (PBC-MB) and the analytical anisotropic algorithm (AAA) and the mutual comparison of advanced dose calculation algorithms used in breast radiotherapy have focused on the differences between the physical dose distributions. Studies on the radiobiological impact of the algorithm (both on the tumor control and the moderate breast fibrosis prediction) are lacking. We, therefore, investigated the radiobiological impact of the dose calculation algorithm in whole breast radiotherapy. The clinical dose distributions of 30 breast cancer patients, calculated with PBC-MB, were recalculated with fixed monitor units using more advanced algorithms: AAA and Acuros XB. For the latter, both dose reporting modes were used (i.e., dose-to-medium and dose-to-water). Next, the tumor control probability (TCP) and the normal tissue complication probability (NTCP) of each dose distribution were calculated with the Poisson model and with the relative seriality model, respectively. The endpoint for the NTCP calculation was moderate breast fibrosis five years post treatment. The differences were checked for significance with the paired t-test. The more advanced algorithms predicted a significantly lower TCP and NTCP of moderate breast fibrosis then found during the corresponding clinical follow-up study based on PBC calculations. The differences varied between 1% and 2.1% for the TCP and between 2.9% and 5.5% for the NTCP of moderate breast fibrosis. The significant differences were eliminated by determination of algorithm-specific model parameters using least square fitting. Application of the new parameters on a second group of 30 breast cancer patients proved their appropriateness. In this study, we assessed the impact of the dose calculation algorithms used in whole breast radiotherapy on the parameters of the radiobiological models. The radiobiological impact was eliminated by

  19. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    Science.gov (United States)

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  20. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 20. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel (eds.)

    2011-07-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  1. A radiobiological model of radiotherapy response and its correlation with prognostic imaging variables

    Science.gov (United States)

    Crispin-Ortuzar, Mireia; Jeong, Jeho; Fontanella, Andrew N.; Deasy, Joseph O.

    2017-04-01

    Radiobiological models of tumour control probability (TCP) can be personalized using imaging data. We propose an extension to a voxel-level radiobiological TCP model in order to describe patient-specific differences and intra-tumour heterogeneity. In the proposed model, tumour shrinkage is described by means of a novel kinetic Monte Carlo method for inter-voxel cell migration and tumour deformation. The model captures the spatiotemporal evolution of the tumour at the voxel level, and is designed to take imaging data as input. To test the performance of the model, three image-derived variables found to be predictive of outcome in the literature have been identified and calculated using the model’s own parameters. Simulating multiple tumours with different initial conditions makes it possible to perform an in silico study of the correlation of these variables with the dose for 50% tumour control (\\text{TC}{{\\text{D}}50} ) calculated by the model. We find that the three simulated variables correlate with the calculated \\text{TC}{{\\text{D}}50} . In addition, we find that different variables have different levels of sensitivity to the spatial distribution of hypoxia within the tumour, as well as to the dynamics of the migration mechanism. Finally, based on our results, we observe that an adequate combination of the variables may potentially result in higher predictive power.

  2. An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    Science.gov (United States)

    Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping

    2017-03-01

    A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.

  3. An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    Science.gov (United States)

    Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping

    2017-01-01

    A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy. PMID:28322329

  4. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  5. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  6. Individual dosimetry service

    CERN Document Server

    2004-01-01

    We inform all staff and users under regular dosimetry control that the dosimeters for the monitoring period JULY-AUGUST 2004 are available from their usual dispatchers. Please have your films changed before the 15 JULY 2004. The color of the dosimeter valid in July-August 2004 is PINK.

  7. First evaluation of PET based human biodistribution and dosimetry of (18)F-FAZA, a tracer for imaging tumor hypoxia.

    Science.gov (United States)

    Savi, Annarita; Incerti, Elena; Fallanca, Federico; Bettinardi, Valentino; Rossetti, Francesca; Monterisi, Cristina; Compierchio, Antonia; Negri, Giampiero; Zannini, Piero; Gianolli, Luigi; Picchio, Maria

    2017-02-16

    Fluorine-18 labelled fluoroazomycinarabinoside ((18)F-FAZA) is a positron emission tomography (PET) biomarker for non-invasive identification of regional tumor hypoxia. Aim of the present Phase I study was to firstly evaluate in non-small cell lung cancer patients the human biodistribution and dosimetry of (18)F-FAZA. Methods: Five patients awaiting surgical resection after histologically proven or radiologically suspected non-small cell lung cancer were prospectively enrolled for the study. The patients underwent a PET/computed tomography (CT) study after the injection of 371±32 MBq of (18)F-FAZA. The acquisition protocol consisted of a 10-minutes dynamic imaging of the heart to calculate the activity in blood, followed by four whole body PET/CT scans, from the vertex to mid-thigh, at: 10, 60, 120 and 240-minutes post-injection. Urine samples were collected after each imaging session and at 360-minutes post-injection. Volumes of interest were drawn around visually identifiable sources organs to generate time-activity-curves (TACs). Residence time were determined from TACs and effective dose (ED) to individual organs and whole body were calculated using OLINDA/EXM 1.2 for standard male and female. Results: Blood clearance was characterized by a rapid distribution phase, followed by a first order elimination phase. The highest uptakes were found in muscle and liver with peaks of 42.7±5.3% and 5.5±0.6% of injected activity, respectively. The total urinary excretion was 15% of the injected activity. The critical organ was urinary bladder wall with the highest radiation-absorbed doses of 0.047±0.008 mGy/MBq and 0.067±0.007 mGy/MBq calculating on 2 and 4 hours voiding intervals. The ED for standard male and female was 0.013±0.004 mSv/MBq and 0.014±0.004 mSv/MBq depending on the voiding schedule. Conclusion: With respect to available literature, the biodistribution of (18)F-FAZA appeared to be slightly different in humans than in mice, with a low clearance in

  8. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yimei, E-mail: yhuang2@hfhs.org; Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Boulevard, Detroit, Michigan 48202 (United States)

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  9. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.

    Science.gov (United States)

    Pötter, Richard; Haie-Meder, Christine; Van Limbergen, Erik; Barillot, Isabelle; De Brabandere, Marisol; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm3; optional 5 and 10 cm3. Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm3. Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD2)-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from

  10. An Automated Biological Dosimetry System

    Science.gov (United States)

    Lorch, T.; Bille, J.; Frieben, M.; Stephan, G.

    1986-04-01

    The scoring of structural chromosome aberrations in peripheral human blood lymphocytes can be used in biological dosimetry to estimate the radiation dose which an individual has received. Especially the dicentric chromosome is a rather specific indicator for an exposure to ionizing radiation. For statistical reasons, in the low dose range a great number of cells must be analysed, which is a very tedious task. The resulting high cost of a biological dose estimation limits the application of this method to cases of suspected irradiation for which physical dosimetry is not possible or not sufficient. Therefore an automated system has been designed to do the major part of the routine work. It uses a standard light microscope with motorized scanning stage, a Plumbicon TV-camera, a real-time hardware preprocessor, a binary and a grey level image buffer system. All computations are performed by a very powerful multi-microprocessor-system (POLYP) based on a MIMD-architecture. The task of the automated system can be split in finding the metaphases (see Figure 1) at low microscope magnification and scoring dicentrics at high magnification. The metaphase finding part has been completed and is now in routine use giving good results. The dicentric scoring part is still under development.

  11. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  12. Quantitative imaging for clinical dosimetry

    Science.gov (United States)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  13. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  14. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry Service.We inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period MARCH/APRIL will be available from their usual dispatchers on the third of March 2000.Please have your films changed before the 13th of March.The colour of the dosimeter valid in MARCH/APRIL is BLUE.

  15. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    1999-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact the Individual Dosimetry ServiceWe inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period JANUARY/FEBRUARY will be available from their usual dispatchers on Monday the third of January 2000.Please have your films changed:before the 12 January.The colour of the dosimeter valid in JANUARY/FEBRUARY is WHITE.

  16. Dosimetry: an ARDENT topic

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  17. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Avenida Professor Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, Pernambuco (Brazil); Centro Federal de Educacao Tecnologica de Pernambuco, Avenida Professor Luiz Freire 500, CEP 50740-540, Recife, Pernambuco, Brazil and Escola Politecnica, UPE, Rua Benfica 455, CEP 50751-460, Recife, Pernambuco (Brazil); Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UU (United Kingdom)

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  18. SU-E-T-494: A MOSFET-Based In-Vivo Dosimetry System for MR Image-Guided Radiation Therapy (MR-IGRT)

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, N; Li, H; Rodriguez, V; Hu, Y; Kashani, R; Wooten, H; Tanderup, K; Mutic, S; Green, O [Washington University School of Medicine, St Louis, MO (United States)

    2014-06-01

    Purpose: To determine if a MOSFET based in-vivo dosimetry system can be used for patients undergoing MR-IGRT. Methods: Standard and high sensitivity MOSFET detectors were used for in-field and out-of-field measurements respectively. The systems were benchmarked and calibrated against a calibrated ionization chamber on a standard 6 MV linear accelerator, and then on the MR-IGRT system. Known doses were delivered to a water phantom with the MOSFETs placed between the top of the phantom and underneath a layer of bolus and water equivalent plastic, using a 6 MV beam and a {sup 6} {sup 0}Co MR-IGRT beam. The latter was performed with and without real-time MRI-guidance during the beam delivery (MRIGRT). Results: The in-field dosimeter response was linear from 50-500 cGy with little evidence of energy dependence or change in response due to the permanent static magnetic field of the MR-IGRT system. The detector response varied by < 2% between 6 MV and {sup 6} {sup 0}Co without image guided delivery. The out-of-field dosimeter response was linear from 1-50 cGy; however the detectors did display dose rate and energy dependence as the response varied by > 20% depending on distance from isocenter used during calibration. Therefore, to use the dosimeters for out-of-field measurements they must be calibrated out-of-field. Regardless of the detector orientation in the coronal plan, the response of the MOSFETs during MRI-guided delivery increased by 5% due to induced currents from the dynamic magnetic field present with image guidance. During the MRI-guided delivery, some loss in image quality was seen when the MOSFETs were present in the imaging plane. This was mitigated by using a handheld reader without a transmitting wireless receiver. Conclusion: A MOSFET-based in-vivo dosimetry system can be used for patients receiving MR-IGRT; however the change in detector response due to the dynamic magnetic field requires a special calibration.

  19. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation.

  20. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Niroomand-Rad, A.

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  1. Variations in Rectal Volumes and Dosimetry Values Including NTCP due to Interfractional Variability When Administering 2D-Based IG-IMRT for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Hanada

    2014-01-01

    Full Text Available We estimated variations in rectal volumes and dosimetry values including NTCP with interfractional motion during prostate IG-IMRT. Rectal volumes, DVH parameters, and NTCPs of 20 patients were analyzed. For this patient population, the median (range volume on the initial plan for the rectum was 45.6 cc (31.3–82.0, showing on-treatment spread around the initial prediction based on the initial plan. DVH parameters of on-treatment CBCT analyses showed systematic regularity shift from the prediction based on the initial plan. Using the Lyman-Kutcher-Burman model, NTCPs of predicted late rectal bleeding toxicity of rectal grade ≥ 2 (RTOG and the QUANTEC update rectal toxicity for the prediction based on the initial plan were 0.09% (0.02–0.24 and 0.02% (0.00–0.07, respectively, with NTCPs from on-treatment CBCT analyses being 0.35% (0.01–6.16 and 0.12% (0.00–4.11, respectively. Using the relative seriality model, for grade ≥ 2 bleeding rectal toxicity, NTCP of the prediction based on the initial plan was 0.64% (0.15–1.22 versus 1.48% (0.18–7.66 for on-treatment CBCT analysis. Interfraction variations in rectal volumes occur in all patients due to physiological changes. Thus, rectal assessment during 2D-based IG-IMRT using NTCP models has the potential to provide useful and practical dosimetric verification.

  2. Radiobiological modeling with MarCell software

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, J.S.; Jones, T.D. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1999-01-01

    A nonlinear system of differential equations that models the bone marrow cellular kinetics associated with radiation injury, molecular repair, and compensatory cell proliferation has been extensively documented. Recently, that model has been implemented as MarCell, a user-friendly MS-DOS computer program that allows users with little knowledge of the original model to evaluate complex radiation exposure scenarios. The software allows modeling with the following radiations: tritium beta, 100 kVp X, 250 kVp X, 22 MV X, {sup 60}Co, {sup 137}Cs, 2 MeV electrons, triga neutrons, D-T neutrons, and 3 blends of mixed-field fission radiations. The possible cell lineages are stem, stroma, and leukemia/lymphoma, and the available species include mouse, rat, dog, sheep, swine, burro, and man. An attractive mathematical feature is that any protracted protocol can be expressed as an equivalent prompt dose for either the source used or for a reference, such as 250 kVp X rays or {sup 60}Co. Output from MarCell includes: risk of 30-day mortality; risk of cancer and leukemia based either on cytopenia or compensatory cell proliferation; cell survival plots as a function of time or dose; and 4-week recovery kinetics following treatment. In this article, the program`s applicability and ease of use are demonstrated by evaluating a medical total body irradiation protocol and a nuclear fallout scenario.

  3. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Science.gov (United States)

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  4. INDIVIDUAL DOSIMETRY SERVICE

    CERN Multimedia

    2000-01-01

    Personnel in the distribution groups Aleph, Delphi, L3, Opal who also work for other experiments than at LEP, should contact their dispatchers to explain their activities for the future, after LEP dismantling in order to be maintained on the regular distribution list at Individual Dosimetry ServiceWe inform all staffs and users under regular dosimetric control that the dosimeters for the monitoring period JULY/AUGUST are available from their usual dispatchers.Please have your films changed before the 10th of July.The colour of the dosimeter valid in JULY/AUGUST is PINK.

  5. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kundrat, Pavel [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic)

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  6. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.

    Science.gov (United States)

    Kundrát, Pavel

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  7. Transnational science and collaborative networks. The case of Genetics and Radiobiology in Mexico, 1950-1970.

    Science.gov (United States)

    Barahona, Ana

    2015-01-01

    The transnational approach of the science and technology studies (S&TS) abandons the nation as a unit of analysis in order to understand the development of science history. It also abandons Euro-US-centred narratives in order to explain the role of international collaborative networks and the circulation of knowledge, people, artefacts and scientific practices. It is precisely under this perspective that the development of genetics and radiobiology in Mexico shall be analyzed, together with the pioneering work of the Mexican physician-turned-geneticist Alfonso León de Garay who spent two years in the Galton Laboratory in London under the supervision of Lionel Penrose. Upon his return de Garay funded the Genetics and Radiobiology Program of the National Commission of Nuclear Energy based on local needs and the aim of working beyond geographical limitations to thus facilitate the circulation of knowledge, practices and people. The three main lines of research conducted in the years after its foundation that were in line with international projects while responding to the national context were, first, cytogenetic studies of certain abnormalities, and the cytogenetics and anthropological studies of the Olympic Games held in Mexico in 1968; second, the study of the effects of radiation on hereditary material; and third, the study of population genetics in Drosophila and in Mexican indigenous groups. The program played a key role in reshaping the scientific careers of Mexican geneticists, and in transferring locally sourced research into broader networks. This case shows the importance of international collaborative networks and circulation in the constitution of national scientific elites, and also shows the national and transnational concerns that shaped local practices.

  8. Development of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model to Determine Dosimetry and Cholinesterase Inhibition for a Binary Mixture of Chlorpyrifos and Diazinon in the Rat

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Poet, Torka S.

    2008-05-01

    Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than is DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.

  9. Operation and Maintenance of the National Radiobiology Archives

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anthony C. James; Stacey L. McCord

    2012-03-07

    The National Radiobiology Archives (NRA) are an archival program, started in 1989, to collect, organize and maintain data, laboratory notebooks, and animal tissue specimens from government (Department of Energy and its predecessor agencies) sponsored radiobiology life-span animal studies. These unique records, histopathology slides and paraffin embedded tissue blocks are maintained in a central facility and are available for further research study. The materials include electronic and paper records for each of more than 6,000 life-span-observations on dogs as well as details of major studies involving nearly 30,000 mice. Although these studies were performed over many years and at different laboratories with differing data management systems, the NRA has translated them into a standardized set of relational database tables. These can be distributed to interested individuals on written request. Specific Aims are: (1) To Maintain the Archive of Written Records from the Animal Experiments - The USTUR continued to maintain the NRA archives which consist of approximately 175 storage boxes containing laboratory notebooks, animal exposure records, animal pathologic records, and radiographs. These were stored in a 6,000 square foot leased facility in Richland, WA. Additionally, through a collaboration with Pacific Northwest National Laboratory's (PNNL) Low Dose Program, many of these records were scanned into digital files. These totaled 34 GB of data, which are saved in 2,407 separate PDF files that are organized by box number and animal identification number. (2) To Maintain the Archive of Animal Tissues at Washington State University - The USTUR continued to house the NRA dog tissue collection in the leased facility. The NRA tissue collection consisted of pathology slides and tissue blocks. Approximately 25% of the laboratory facility was dedicated to the storage of the NRA materials. (3) To Organize the Datasets of These Animals in the Context of Other Datasets so

  10. Three-dimensional dosimetry using magnetic resonance imaging of polymer gel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young Taek; Kang, Hae Jin; Kim, Mi Wha; Chun, Mi Son; Kang, Seung Hee [Ajou University School of Medicine, Suwon (Korea, Republic of); Suh, Chang Ok; Chu, Seong Sil; Seong, Jin Sil; Kim, Gwi Eon [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    Three-dimensional radiation dosimetry using magnetic resonance imaging of polymer gel was recently introduced. This dosimetry system is based on radiation induced chain polymerization of acrylic monomers in a muscle equivalent gel and provide accurate 3 dimensional dose distribution. We planned this study to evaluate the clinical value of this 3-dimensional dosimetry. The polymer gel poured into a cylindrical glass flask and a spherical glass flask. The cylindrical test tubes were for dose response evaluation and the spherical flasks, which is comparable to the human head, were for isodose curves. T2 maps from MR images were calculated using software, IDL. Dose distributions have been displayed for dosimetry. The same spherical flask of gel and the same irradiation technique was used for film and TLD dosimetry and compared with each other. The R2 of the gel respond linearly with radiation doses in the range of 2 to 15 Gy. The repeated dosimetry of spherical gel showed the same isodose curves. The isodose curves were identical to dose distributions from treatment planning system especially high dose range. In addition, the gel dosimetry system showed comparable or superior results with the film and TLD dosimetry. The 3-dimensional dosimetry for conformal radiation therapy using MRI of polymer gel showed stable and accurate results. Although more studies are needed for convenient clinical application, it appears to be a useful tool for conformal radiation therapy.

  11. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  12. Individualized dosimetry-based activity reduction of {sup 90}Y-DOTATOC prevents severe and rapid kidney function deterioration from peptide receptor radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Binnebeek, Sofie van; Baete, Kristof; Vanbilloen, Bert; Terwinghe, Christelle; Mortelmans, Luc [University Hospitals Leuven, Nuclear Medicine, Leuven (Belgium); KU Leuven, Department of Imaging and Pathology, Leuven (Belgium); Koole, Michel [University Medical Centre Groningen, Department of Nuclear Medicine, Groningen (Netherlands); Mottaghy, Felix M. [University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Clement, Paul M. [University Hospitals Leuven, Medical Oncology, Leuven (Belgium); KU Leuven, Laboratory of Experimental Oncology, Leuven (Belgium); Haustermans, Karin [University Hospitals Leuven, Radiation Oncology, Leuven (Belgium); KU Leuven, Department of Oncology, Leuven (Belgium); Cutsem, Eric van; Verslype, Chris [KU Leuven, Department of Oncology, Leuven (Belgium); University Hospitals Leuven, Division of Digestive Oncology, Leuven (Belgium); Verbruggen, Alfons [KU Leuven, Laboratory for Radiopharmacy, Leuven (Belgium); Bogaerts, Kris [KU Leuven, Division of Public Health and Primary Care (I-Biostat), Leuven (Belgium); Deroose, Christophe M. [University Hospitals Leuven, Nuclear Medicine, Leuven (Belgium); KU Leuven, Department of Imaging and Pathology, Leuven (Belgium); UZ Leuven, Nuclear Medicine, Leuven (Belgium)

    2014-06-15

    Assessment of kidney function evolution after {sup 90}Y-DOTATOC peptide receptor radionuclide therapy (PRRT) with capped activity administration based on a 37-Gy threshold of biological effective dose (BED) to the kidney. In a prospective phase II study, patients with metastasized neuroendocrine tumours were evaluated for therapy using 185 MBq {sup 111}In-pentetreotide with amino acid coinfusion. Planar whole-body images were acquired at four time-points after injection and kidney volumes were measured using CT/MRI. BED to the kidneys was estimated using an extended BED formula and biexponential renal clearance. Based on published BED dose-toxicity relationships, we allowed a maximal kidney BED of 37 Gy; if the calculated BED exceeded 37 Gy, treatment activity was reduced accordingly. Kidney function was assessed at baseline and at 18 months, predominantly using {sup 51}Cr-EDTA. The rate of renal function decline was expressed as annual glomerular filtration rate loss (aGFRL). Only 22 of 50 patients reached the 18-months time-point, with most missing patients having died due to disease progression. In the 22 patients who reached 18 months, no rapid kidney function deterioration was observed over the 18 months, aGFRL >33 % was not seen, and only three patients showed an increase of one toxicity grade and one patient an increase of two grades. No significant correlations between kidney volume (p = 0.35), baseline GFR (p = 0.18), risk factors for renal function loss (p = 0.74) and aGFRL were observed. Among the 28 patients who did not reach 18 months, one developed grade 4 kidney toxicity at 15 months after PRRT. Prospective dosimetry using a 37 Gy BED as the threshold for kidney toxicity is a good guide for {sup 90}Y-DOTATOC PRRT and is associated with a low risk of rapid renal function deterioration and evolution to severe nephrotoxicity. (orig.)

  13. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  14. Heavy ion radiobiology for hadrontherapy and space radiation protection.

    Science.gov (United States)

    Durante, Marco

    2004-12-01

    Research in the field of biological effects of heavy charged particles is needed for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions. Although the exposure conditions (e.g. high- vs. low-dose rate) and relevant endpoints (e.g. cell killing vs. neoplastic transformation) are different in the two fields, it is clear that a substantial overlap exists in several research topics. Three such topics are discussed in this short review: individual radiosensitivity, mixed radiation fields, and late stochastic effects of heavy ions. In addition, researchers involved either in experimental studies on space radiation protection or heavy-ion therapy will basically use the same accelerator facilities. It seems to be important that novel accelerator facilities planned (or under construction) for heavy-ion therapy reserve a substantial amount of beamtime to basic studies of heavy-ion radiobiology and its applications in space radiation research.

  15. Neutron dosimetry: problems, solutions, prospects and the role of trace detectors; Dosimetria neutronica: problemas, soluciones, perspectivas y el papel de los detectores de traza

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F. [Consejo de Seguridad Nuclear, Justo Dorado 11, 28040 Madrid (Spain)

    2009-10-15

    It is present in schematic way, the origin of the neutrons; their interaction with matter, until its application in the field of dosimetry. It describes some measuring instruments based on thermoluminescence dosimetry, some activation detectors and trace detectors. Finally, it summarizes the work in neutron dosimetry have been carried out at the Autonomous University of Barcelona. (Author)

  16. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  17. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  18. EPR dosimetry with tooth enamel: A review.

    Science.gov (United States)

    Fattibene, Paola; Callens, Freddy

    2010-11-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  19. EPR dosimetry with tooth enamel: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fattibene, Paola, E-mail: paola.fattibene@iss.i [Istituto Superiore di Sanita, Department of Technology and Health, Viale Regina Elena 299, I-00161 Rome (Italy); Callens, Freddy, E-mail: freddy.callens@ugent.b [Ghent University, Department of Solid State Sciences, Krijgslaan 281-S1, B-9000 Gent (Belgium)

    2010-11-15

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  20. Sensitivity studies associated with dosimetry experiment interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, S.; Soldevila, M. [CEA/DANS/DM2S/SERMA, CEA Saclay, 91191, Gif sur Yvette (France); Ferrer, A.; Gregoire, G.; Destouches, C.; Beretz, D. [CEA/DEN-CAD/DER/SPEX, CEA Cadarache, F13108, Saint Paul lez Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: Interpretation of reactor dosimetry experiments with C/E comparison requires precise knowledge of parameters involved in modeling. Some parameters have more weight than others on the calculated values. So, sensitivity studies should be conducted to verify the importance of these parameters. The conclusions of these studies are used to refine the experiment modeling, or to correct uncertainty calculations. The results of these sensitivity studies allow a post-irradiation analysis, which can justify the discarding of some atypical C/M values. Derived uncertainties may be improved by the sensitivity analyses. Beyond classical parameters as geometry or composition, this paper describes some specific sensitivity studies conducted for dosimetry irradiation in reactor, and presents conclusions. These studies are based on dosimeters irradiated in the EOLE reactor facility at Cadarache CEA center. Conclusions drawn from these studies are generic and can be applied to any dosimetry study. Calculations performed for these studies were realized using TRIPOLI-4 Monte Carlo code. (authors)

  1. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness.

    Science.gov (United States)

    Cometto, A; Russo, G; Bourhaleb, F; Milian, F M; Giordanengo, S; Marchetto, F; Cirio, R; Attili, A

    2014-12-07

    The relative biological effectiveness (RBE) concept is commonly used in treatment planning for ion beam therapy. Whether models based on in vitro/in vivo RBE data can be used to predict human response to treatments is an open issue. In this work an alternative method, based on an effective radiobiological parameterization directly derived from clinical data, is presented. The method has been applied to the analysis of prostate cancer trials with protons and carbon ions.Prostate cancer trials with proton and carbon ion beams reporting 5 year-local control (LC5) and grade 2 (G2) or higher genitourinary toxicity rates (TOX) were selected from literature to test the method. Treatment simulations were performed on a representative subset of patients to produce dose and linear energy transfer distribution, which were used as explicative physical variables for the radiobiological modelling. Two models were taken into consideration: the microdosimetric kinetic model (MKM) and a linear model (LM). The radiobiological parameters of the LM and MKM were obtained by coupling them with the tumor control probability and normal tissue complication probability models to fit the LC5 and TOX data through likelihood maximization. The model ranking was based on the Akaike information criterion.Results showed large confidence intervals due to the limited variety of available treatment schedules. RBE values, such as RBE = 1.1 for protons in the treated volume, were derived as a by-product of the method, showing a consistency with current approaches. Carbon ion RBE values were also derived, showing lower values than those assumed for the original treatment planning in the target region, whereas higher values were found in the bladder. Most importantly, this work shows the possibility to infer the radiobiological parametrization for proton and carbon ion treatment directly from clinical data.

  2. Hanford internal dosimetry program manual

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  3. Dosimetry considerations in phototherapy

    Energy Technology Data Exchange (ETDEWEB)

    Profio, A.E.; Doiron, D.R.

    Dosimetry in phototherapy involves a determination of the energy absorbed per unit mass of tissue, corrected for the quantum yield in a photochemical reaction. The dose rate in photochemotherapy of cancer with hematoporphyrin derivative and visible light is related to the extinction coefficient, quantum yield for singlet oxygen production, concentration of sensitizer and energy flux density at depth. Data or methods of determining these quantities are presented. Calculations have been performed for the energy flux density at depth, as a function of the total attenuation coefficient and ratio of scattering coefficient to total attenuation coefficient, for isotropic scattering in slab geometry. For small absorption, these depth dose curves exhibit a maximum within the tissue followed by an exponential decrease.

  4. Dosimetry considerations in phototherapy

    Energy Technology Data Exchange (ETDEWEB)

    Profio, A.E.; Doiron, D.R.

    1981-03-01

    Dosimetry in phototherapy involves a determination of the energy absorbed per unit mass of tissue, corrected for the quantum yield in a photochemical reaction. The dose rate in photochemotherapy of cancer with hematoporphyrin derivative and visible light is related to the extinction coefficient, quantum yield for singlet oxygen production, concentration of sensitizer and energy flux density at depth. Data or methods of determining these quantities are presented. Calculations have been performed for the energy flux density at depth, as a function of the total attenuation coefficient and ratio of scattering coefficient to total attenuation coefficient, for isotropic scattering in slab geometry. For small absorption, these depth dose curves exhibit a maximum within the tissue followed by an exponential decrease.

  5. Dosimetry of iodoantipyrine.

    Science.gov (United States)

    Chu, R Y; Ekeh, S; Basmadjian, G

    1989-01-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96 +/- 0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 7 mu Gray, 5 mu Gray and 29 mu Gray per MBq of 123I, 125I, and 131I administered respectively.

  6. Fundamentals of Radiation Dosimetry

    Science.gov (United States)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  7. Strahlungsmessung und Dosimetrie

    CERN Document Server

    Krieger, Hanno

    2013-01-01

    „Strahlungsquellen und Dosimetrie“ ist Teil einer Lehrbuchreihe zur Strahlungsphysik und zum Strahlenschutz. Der erste Teil befasst sich mit den physikalischen Grundlagen der Strahlungsdetektoren und der Strahlungsmessung. Im zweiten Teil werden die Konzepte und Verfahren der klinischen Dosimetrie dargestellt. Der dritte Abschnitt erläutert ausführlich die Dosisverteilungen der klinisch angewendeten Strahlungsarten. Im vierten Teil werden weitere Messaufgaben der Strahlungsphysik einschließlich der Messsysteme für die Bildgebung mit Röntgenstrahlung dargestellt. Neben den grundlegenden Ausführungen enthält dieser Band im laufenden Text zahlreiche Tabellen und Grafiken zur technischen und medizinischen Radiologie, die bei der praktischen Arbeit sehr hilfreich sein können und 199 Übungsaufgaben mit Lösungen zur Vertiefung der Inhalte. Für die zweite Auflage wurden die Darstellungen der Elektronen- und der Protonendosimetrie sowie der bildgebenden Verfahren mit Computertomografen deutlich erweit...

  8. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  9. Radiobiologic comparison of helical tomotherapy, intensity modulated radiotherapy, and conformal radiotherapy in treating lung cancer accounting for secondary malignancy risks

    Energy Technology Data Exchange (ETDEWEB)

    Komisopoulos, Georgios [Department of Medical Physics, Medical School, University of Patras, Patras (Greece); Mavroidis, Panayiotis, E-mail: mavroidis@uthscsa.edu [Department of Radiation Oncology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm (Sweden); Rodriguez, Salvador; Stathakis, Sotirios; Papanikolaou, Nikos [Department of Radiation Oncology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States); Nikiforidis, Georgios C.; Sakellaropoulos, Georgios C. [Department of Medical Physics, Medical School, University of Patras, Patras (Greece)

    2014-01-01

    The aim of the present study is to examine the importance of using measures to predict the risk of inducing secondary malignancies in association with the clinical effectiveness of treatment plans in terms of tumor control and normal tissue complication probabilities. This is achieved by using radiobiologic parameters and measures, which may provide a closer association between clinical outcome and treatment delivery. Overall, 4 patients having been treated for lung cancer were examined. For each of them, 3 treatment plans were developed based on the helical tomotherapy (HT), multileaf collimator-based intensity modulated radiation therapy (IMRT), and 3-dimensional conformal radiation therapy (CRT) modalities. The different plans were evaluated using the complication-free tumor control probability (p{sub +}), the overall probability of injury (p{sub I}), the overall probability of control/benefit (p{sub B}), and the biologically effective uniform dose (D{sup ¯¯}). These radiobiologic measures were used to develop dose-response curves (p-D{sup ¯¯} diagram), which can help to evaluate different treatment plans when used in conjunction with standard dosimetric criteria. The risks for secondary malignancies in the heart and the contralateral lung were calculated for the 3 radiation modalities based on the corresponding dose-volume histograms (DVHs) of each patient. Regarding the overall evaluation of the different radiation modalities based on the p{sub +} index, the average values of the HT, IMRT, and CRT are 67.3%, 61.2%, and 68.2%, respectively. The corresponding average values of p{sub B} are 75.6%, 70.5%, and 71.0%, respectively, whereas the average values of p{sub I} are 8.3%, 9.3%, and 2.8%, respectively. Among the organs at risk (OARs), lungs show the highest probabilities for complications, which are 7.1%, 8.0%, and 1.3% for the HT, IMRT, and CRT modalities, respectively. Similarly, the biologically effective prescription doses (D{sub B}{sup ¯¯}) for the

  10. SU-E-T-398: Evaluation of Radiobiological Parameters Using Serial Tumor Imaging During Radiotherapy as An Inverse Ill-Posed Problem

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, A; Sandison, G; Schwartz, J; Rengan, R [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: Combination of serial tumor imaging with radiobiological modeling can provide more accurate information on the nature of treatment response and what underlies resistance. The purpose of this article is to improve the algorithms related to imaging-based radiobilogical modeling of tumor response. Methods: Serial imaging of tumor response to radiation therapy represents a sum of tumor cell sensitivity, tumor growth rates, and the rate of cell loss which are not separated explicitly. Accurate treatment response assessment would require separation of these radiobiological determinants of treatment response because they define tumor control probability. We show that the problem of reconstruction of radiobiological parameters from serial imaging data can be considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind because it is governed by a sum of several exponential processes. Therefore, the parameter reconstruction can be solved using regularization methods. Results: To study the reconstruction problem, we used a set of serial CT imaging data for the head and neck cancer and a two-level cell population model of tumor response which separates the entire tumor cell population in two subpopulations of viable and lethally damage cells. The reconstruction was done using a least squared objective function and a simulated annealing algorithm. Using in vitro data for radiobiological parameters as reference data, we shown that the reconstructed values of cell surviving fractions and potential doubling time exhibit non-physical fluctuations if no stabilization algorithms are applied. The variational regularization allowed us to obtain statistical distribution for cell surviving fractions and cell number doubling times comparable to in vitro data. Conclusion: Our results indicate that using variational regularization can increase the number of free parameters in the model and open the way to development of more advanced

  11. Dosimetry tools and techniques for IMRT.

    Science.gov (United States)

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  12. In aqua vivo EPID dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  13. Fusion dual-tracer SPECT-based hepatic dosimetry predicts outcome after radioembolization for a wide range of tumour cell types

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Marnix G.E.H. [Stanford University, Division of Interventional Radiology, Stanford, CA (United States); University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Heidelberglaan 100, CX, Utrecht (Netherlands); Banerjee, Arjun; Louie, John D.; Sze, Daniel Y. [Stanford University, Division of Interventional Radiology, Stanford, CA (United States); Goris, Michael L.; Iagaru, Andrei H.; Mittra, Erik S. [Stanford University, Division of Nuclear Medicine and Molecular Imaging, Stanford, CA (United States)

    2015-07-15

    Fusion dual-tracer SPECT imaging enables physiological rather than morphological voxel-based partitioning and dosimetry for {sup 90}Y hepatic radioembolization (RE). We evaluated its prognostic value in a large heterogeneous cohort of patients with extensive hepatic malignancy. A total of 122 patients with primary or secondary liver malignancy (18 different cell types) underwent SPECT imaging after intraarterial injection of {sup 99m}Tc macroaggregated albumin (TcMAA) as a simulation of subsequent {sup 90}Y microsphere distribution, followed by administration of an excess of intravenous {sup 99m}Tc-labelled sulphur colloid (TcSC) as a biomarker for functional liver, and a second SPECT scan. TcMAA distribution was used to estimate {sup 90}Y radiation absorbed dose in tumour (D{sub T}) and in functional liver. Laboratory and clinical follow-up were recorded for 12 weeks after RE, and radiographic responses according to (m)RECIST were evaluated at 3 and 6 months. Dose-response relationships were determined for efficacy and toxicity. Patients were treated with a median of 1.73 GBq activity of resin microspheres (98 patients) or glass microspheres (24 patients), in a whole-liver approach (97 patients) or a lobar approach (25 patients). The objective response rate was 41 % at 3 months and 48 % at 6 months. Response was correlated with D{sub T} (P < 0.01). Median overall survival was 10.1 months (95 % confidence interval 7.4 - 12.8 months). Responders lived for 36.0 months compared to 8.7 months for nonresponders (P < 0.01). Stratified for tumour cell type, D{sub T} was independently associated with survival (P < 0.01). Absorbed dose in functional liver was correlated with toxicity grade change (P < 0.05) and RE-induced liver disease (P < 0.05). Fusion dual-tracer SPECT imaging offers a physiology-based functional imaging tool to predict efficacy and toxicity of RE. This technique can be refined to define dosing thresholds for specific tumour types and treatments, but

  14. A study of the radiobiological modeling of the conformal radiation therapy in cancer treatment

    Science.gov (United States)

    Pyakuryal, Anil Prasad

    control probability based on Poisson statistics model, and normal tissue complication probabilities based on Lyman-Kutcher-Burman model, were efficient to estimate the radiobiological outcomes of the treatments by taking into account of the dose-volume effects in the organs. Furthermore, a novel technique of spatial DVH analysis was also found to be useful to determine the primary cause of the complications in the critical organs in the treatments. The study also showed that the 3DCRT and IMRT techniques offer the promising results in the XRT treatment of the left-breast and the prostate cancer patients respectively. Unfortunately, several organs such as salivary glands and larynx, and esophagus, were found to be significantly vulnerable to the radiation toxicity in the treatment of the head and neck (HN), and left-lung cancer patients respectively. The radiobiological outcomes were also found to be consistent with the clinical results of the IMRT based treatments of a significant number of the HN cancer patients.

  15. Student perceptions of an online medical dosimetry program.

    Science.gov (United States)

    Lenards, Nishele

    2011-01-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  16. Upgrading the dosimetry at Ontario Hydro

    Energy Technology Data Exchange (ETDEWEB)

    Hirning, C.R. [Ontario Hydro, Whitby, ON (Canada). Health Physics Dept.

    1996-12-01

    Ontario Hydro has embarked upon a major programme to replace and upgrade its external dosimetry systems. In two year`s time, the utility expects to have two state-of-the-art dosimetry systems in place: a new TLD dosimetry of legal record that was designed nearly 30 years ago; and an electronic dosimetry system which could eventually replace the TLD as the primary system. (Author).

  17. Characterising an aluminium oxide dosimetry system.

    Science.gov (United States)

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  18. Relationship between student selection criteria and learner success for medical dosimetry students.

    Science.gov (United States)

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  19. Dosimetry of intravenously administered oxygen-15 labelled water in man: a model based on experimental human data from 21 subjects.

    Science.gov (United States)

    Smith, T; Tong, C; Lammertsma, A A; Butler, K R; Schnorr, L; Watson, J D; Ramsay, S; Clark, J C; Jones, T

    1994-10-01

    Models based on uniform distribution of tracer in total body water underestimate the absorbed dose from H2(15)O because of the short half-life (2.04 min) of 15O, which leads to non-uniform distribution of absorbed dose and also complicates the direct measurement of organ retention curves. However, organ absorbed doses can be predicted by the present kinetic model based on the convolution technique. The measured time course of arterial H2(15)O concentration following intravenous administration represents the input function to organs. The impulse response of a given organ is its transit time function determined by blood flow and the partition of water between tissue and blood. Values of these two parameters were taken from the literature. Integrals of the arterial input function and organ transit time functions were used to derive integrals of organ retention functions (organ residence times). The latter were used with absorbed dose calculation software (MIRDOSE-2) to obtain estimates for 24 organs. From the mean values of organ absorbed doses, the effective dose equivalent (EDE) and effective dose (ED) were calculated. From measurements on 21 subjects, the average value for both EDE and ED was calculated to be 1.2 microSv.MBq-1 compared with a value of about 0.5 microSv.MBq-1 predicted by uniform water distribution models. Based on the human data, a method of approximating H2(15)O absorbed dose values from body surface area is described.

  20. Dosimetry in nuclear power plants; Dosimetria en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Lastra B, J. A. [CFE, Central Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)

    2008-12-15

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  1. Nuclear accident dosimetry intercomparison studies.

    Science.gov (United States)

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  2. Dosimetry of intravenously administered oxygen-15 labelled water in man: a model based on experimental human data from 21 subjects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. (Section of Medical Physics, Clinical Research Centre, Harrow (United Kingdom)); Tong, C. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)); Lammertsma, A.A. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)); Butler, K.R. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)); Schnorr, L. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)); Watson, J.D.G. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)); Ramsay, S. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)); Clark, J.C. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom)); Jones, T. (MRC Cyclotron Unit, Hammersmith Hospital, London (United Kingdom))

    1994-10-01

    Models based on uniform distribution of tracer in total body water underestimate the absorbed dose from H[sub 2][sup 15]O because of the short half-life (2.04 min) of [sup 15]O, which leads to non-uniform distribution of absorbed dose and also complicates the direct measurement of organ retention curves. However, organ absorbed doses can be predicted by the present kinetic model based on the convolution technique. The measured time course of arterial H[sub 2][sup 15]O concentration following intravenous administration represents the input function to organs. The impulse response of a given organ is its transit time function determined by blood flow and the partition of water between tissue and blood. Values of these two parameters were taken from the literature. Integrals of the arterial input function and organ transit time functions were used to derive integrals of organ retention functions (organ residence times). The latter were used with absorbed dose calculation software (MIRDOSE-2) to obtain estimates for 24 organs. From the mean values of organ absorbed doses, the effective dose equivalent (EDE) and effective dose (ED) were calculated. From measurements on 21 subjects, the average value for both EDE and ED was calculated to be 1.2 [mu]Sv.MBq[sup -1] compared with a value of about 0.5 [mu]Sv.MBq[sup -1] predicted by uniform water distribution models. Based on the human data, a method of approximating H[sub 2][sup 15]O absorbed dose values from body surface area is described. (orig.)

  3. CHRONIC IRRADIATION OF SCOTS PINE TREES (PINUS SYLVESTRIS) IN THE CHERNOBYL EXCLUSION ZONE: DOSIMETRY AND RADIOBIOLOGICAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developed dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.

  4. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy Bremsstrahlung beam, onboard aircraft radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Jadrnickova, I. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic); Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, Brehova 7, 115 19 Prague 1 (Czech Republic); Spurny, F. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic)

    2006-07-01

    The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/{mu}m. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)

  5. Dosimetry of iodoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R.Y.L.; Ekeh, S. (Oklahoma Univ., Oklahoma City, OK (USA). Dept. of Radiological Sciences; Veterans Administration Medical Center, Oklahoma City, OK (USA)); Basmadjian, G. (Oklahoma Univ., Oklahoma City, OK (USA). Dept. of Pharmaceutical Sciences)

    1989-12-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of {sup 131}I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96+-0.55 h for blood. Cumulated activity estimates for {sup 123}I, {sup 125}I and {sup 131}I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 0.7 {mu}Gray, 0.5 {mu}Gray and 2.9 {mu}Gray per MBq of {sup 123}I, {sup 123}I, and {sup 131}I administered respectively. (orig.).

  6. Amchitka Radiobiological Program progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, L.D.; Sibley, T.H.; Nakatani, R.E.

    1980-07-01

    The objective of the Amchitka Radiobiological Program for the period 1970-1979 was to determine the extent of radionuclide contamination from world-wide atmospheric fallout and from the detonation of three underground nuclear blasts on Amchitka Island. The objective is achieved, by the collection and radiological analyses of biological and environmental samples and by background radiation measurements. Leakage of radionuclides from the underground sites of the Amchitka nuclear detonations would be suspected if the contamination was significntly greater than would be expected from world fallout. An account of the program from July 1970 to December 1978 has been given in nine previous reports from the Laboratory of Radiation Ecology to the Nevada Operations Office of the US Department of Energy. This report is an account of the program for calendar year 1979. The results of analyses of the samples collected in 1979 lead to the same conclusions as in previous years; i.e., there is no evidence that the radionuclide contamination at Amchitka Island is greater than would be expected from world fallout except for a slight contamination of the Long Shot Mud Pits with tritium.

  7. Feasibility of BNCT radiobiological experiments at the HYTHOR facility

    Science.gov (United States)

    Esposito, J.; Ceballos, C.; Soncin, M.; Fabris, C.; Friso, E.; Moro, D.; Colautti, P.; Jori, G.; Rosi, G.; Nava, E.

    2008-06-01

    HYTHOR (HYbrid Thermal spectrum sHifter tapirO Reactor) is a new thermal-neutron irradiation facility, which was installed and became operative in mid 2005 at the TAPIRO (TAratura PIla Rapida potenza 0) fast reactor, in the Casaccia research centre (near Rome) of ENEA (Ente per le Nuove tecnologie Energia ed Ambiente). The facility has been designed for in vivo radiobiological studies. In HYTHOR irradiation cavity, 1-6 mice can be simultaneously irradiated to study skin melanoma treatments with the BNCT (boron neutron capture therapy). The therapeutic effects of HYTHOR radiation field on mouse melanoma has been studied as a preliminary investigation before studying the tumour local control due to boron neutron capture effect after boronated molecule injection. The method to properly irradiate small animals has been precisely defined. Results show that HYTHOR radiation field is by itself effective in reducing the tumour-growth rate. This finding has to be taken into account in studying the effectiveness of new 10B carriers. A method to properly measure the reduction of the tumour-growth rate is reported and discussed.

  8. Reconstructing Organophosphorus Pesticide Doses Using the Reversed Dosimetry Approach in a Simple Physiologically-Based Pharmacokinetic Model

    Directory of Open Access Journals (Sweden)

    Chensheng Lu

    2012-01-01

    Full Text Available We illustrated the development of a simple pharmacokinetic (SPK model aiming to estimate the absorbed chlorpyrifos doses using urinary biomarker data, 3,5,6-trichlorpyridinol as the model input. The effectiveness of the SPK model in the pesticide risk assessment was evaluated by comparing dose estimates using different urinary composite data. The dose estimates resulting from the first morning voids appeared to be lower than but not significantly different to those using before bedtime, lunch or dinner voids. We found similar trend for dose estimates using three different urinary composite data. However, the dose estimates using the SPK model for individual children were significantly higher than those from the conventional physiologically based pharmacokinetic (PBPK modeling using aggregate environmental measurements of chlorpyrifos as the model inputs. The use of urinary data in the SPK model intuitively provided a plausible alternative to the conventional PBPK model in reconstructing the absorbed chlorpyrifos dose.

  9. Dosimetry of the mixed field irradiation facility CALIBAN

    Energy Technology Data Exchange (ETDEWEB)

    Trompier, F. [Institute for Radiological Protection and Nuclear Safety, 92265 Fontenay-aux-roses (France)], E-mail: francois.trompier@irsn.fr; Huet, C.; Medioni, R.; Robbes, I. [Institute for Radiological Protection and Nuclear Safety, 92265 Fontenay-aux-roses (France); Asselineau, B. [Institute of Radioprotection and Nuclear Safety, 13115 St Paul-Lez-Durance (France)

    2008-02-15

    The dosimetry of the experimental reactor CALIBAN was established for photon and neutron components, and the kerma variations were evaluated according to position (distance from the core, height, angle with the median room axis). Dosimetry was performed with TLD (Al{sub 2}O{sub 3}) for the photon component, and with passive silicon diodes, activation detectors (Au, In, Ni, Mg, Cu) and alanine pellets measured by EPR spectrometry for the neutron component. The neutron energy distribution was experimentally evaluated at various distances based on the activities measured at the activated foil using the SNAC2 software. It was then compared with those calculated with the Monte Carlo code MCNPX.

  10. Current state of the art brachytherapy treatment planning dosimetry algorithms.

    Science.gov (United States)

    Papagiannis, P; Pantelis, E; Karaiskos, P

    2014-09-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for (192)Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice.

  11. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  12. For information: Individual dosimetry service

    CERN Multimedia

    2004-01-01

    The service has noticed that there are dosimeter holders who have changed their activities and thus have no longer need of dosimeter as a permanent basis in their work (persons who go rarely to the controlled areas). The reduction of persons in the regular distribution list of dosimeters will lighten the work of the service (distribution, evaluation and consolidation of doses) as well as the work of the distributors, needless to say the economical input this would have for CERN. For the persons who only need a dosimeter temporarily we would like to remind that there is a quick and simple procedure to have one immediately from the Individual Dosimetry Service. Please contact the service (dosimetry.service@cern.ch) if you do not need a dosimeter regularly. Thank you for your cooperation. http://cern.ch/rp-dosimetry

  13. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: In June: Every morning from 8:30 to 12:00 In July: Mondays, Wednesdays and Fridays from 8:30 to 11:30 Closed all day on Tuesdays and Thursdays From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  14. 3D VMAT Verification Based on Monte Carlo Log File Simulation with Experimental Feedback from Film Dosimetry

    Science.gov (United States)

    Barbeiro, A. R.; Ureba, A.; Baeza, J. A.; Linares, R.; Perucha, M.; Jiménez-Ortega, E.; Velázquez, S.; Mateos, J. C.

    2016-01-01

    A model based on a specific phantom, called QuAArC, has been designed for the evaluation of planning and verification systems of complex radiotherapy treatments, such as volumetric modulated arc therapy (VMAT). This model uses the high accuracy provided by the Monte Carlo (MC) simulation of log files and allows the experimental feedback from the high spatial resolution of films hosted in QuAArC. This cylindrical phantom was specifically designed to host films rolled at different radial distances able to take into account the entrance fluence and the 3D dose distribution. Ionization chamber measurements are also included in the feedback process for absolute dose considerations. In this way, automated MC simulation of treatment log files is implemented to calculate the actual delivery geometries, while the monitor units are experimentally adjusted to reconstruct the dose-volume histogram (DVH) on the patient CT. Prostate and head and neck clinical cases, previously planned with Monaco and Pinnacle treatment planning systems and verified with two different commercial systems (Delta4 and COMPASS), were selected in order to test operational feasibility of the proposed model. The proper operation of the feedback procedure was proved through the achieved high agreement between reconstructed dose distributions and the film measurements (global gamma passing rates > 90% for the 2%/2 mm criteria). The necessary discretization level of the log file for dose calculation and the potential mismatching between calculated control points and detection grid in the verification process were discussed. Besides the effect of dose calculation accuracy of the analytic algorithm implemented in treatment planning systems for a dynamic technique, it was discussed the importance of the detection density level and its location in VMAT specific phantom to obtain a more reliable DVH in the patient CT. The proposed model also showed enough robustness and efficiency to be considered as a pre

  15. Phase space modulation method for EPID-based Monte Carlo dosimetry of IMRT and RapidArc plans

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Avery; Townson, Reid; Bush, Karl; Zavgorodni, Sergei, E-mail: szavgorodni@bccancer.bc.c

    2010-11-01

    Quality assurance for IMRT and VMAT require 3D evaluation of the dose distributions from the treatment planning system as compared to the distributions reconstructed from signals acquired during the plan delivery. This study presents the results of the dose reconstruction based on a novel method of Monte Carlo (MC) phase space modulation. Typically, in MC dose calculations the linear accelerator (linac) is modelled for each field in the plan and a phase space file (PSF) containing all relevant particle information is written for each field. Particles from the PSFs are then used in the dose calculation. This study investigates a method of omitting the modelling of the linac in cases where the treatment has been measured by an electronic portal imaging device. In this method each portal image is deconvolved using an empirically fit scatter kernel to obtain the primary photon fluence. The Phase Space Modulation (PSM) method consists of simulating the linac just once to create a large PSF for an open field and then modulating it using the delivered primary particle fluence. Reconstructed dose distributions in phantoms were produced using MC and the modulated PSFs. The kernel derived for this method accurately reproduced the dose distributions for 3x3, 10x10, and 15x15 cm{sup 2} field sizes (mean relative dose-difference along the beam central axis is under 1%). The method has been applied to IMRT pre-treatment verification of 10 patients (including one RapidArc{sup TM} case), mean dose in the structures of interest agreed with that calculated by MC directly within 1%, and 95% of the voxels passed 2%/2mm criteria.

  16. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  17. 77 FR 68155 - The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R-84

    Science.gov (United States)

    2012-11-15

    ... COMMISSION The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R... Operating License No. R-84 (Application), which currently authorizes the Armed Forces Radiobiology Research... the renewal of Facility Operating License No. R-84, which currently authorizes the licensee to...

  18. Preclinical animal research on therapy dosimetry with dual isotopes

    NARCIS (Netherlands)

    M.W. Konijnenberg (Mark); M. de Jong (Marion)

    2011-01-01

    textabstractPreclinical research into radionuclide therapies based on radiation dosimetry will enable the use of any LET-equivalent radionuclide. Radiation dose and dose rate have significant influence on dose effects in the tumour depending on its radiation sensitivity, possibilities for repair of

  19. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Kim, Won Woo; Park, In Hwan; Kim, Hee Jong; Lee, Eun Jin; Jung, Jae Hoon [Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Lawrence Chin Soo; Song, Chang W. [Dept. of Radiation Oncology, University of Minnesota Medical School, Minneapolis (United States)

    2015-12-15

    Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

  20. Radiobiological inactivation of Epstein-Barr virus. [UV and X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, E.; Heston, L.; Grogan, E.; Miller, G.

    1978-01-01

    Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either uv or x irradiation. No dose of irradiation increases the transforming capacity of EBV. The x-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to uv irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of uv damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of uv and x irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P/sub 3/HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction.

  1. Single-Ion Microbeam for Applications in Radiobiology: State of the Art

    Institute of Scientific and Technical Information of China (English)

    Hu Zhiwen; Wu Lijun; Yu Zengliang

    2005-01-01

    Single-Ion Microbeam (SIM) is uniquely capable of precisely delivering a predefined number of charged particles (precise doses of radiation) to individual cells or sub-cellular targets in situ. Since the early 1990's, there has been an ever-increasing interest in developing and applying the SIM technique to problems in radiobiology for studies of cell and tissue damaged by ionizing radiations. Potential applications for SIM in radiobiology continues to grow and have been diversified. There are currently more than 14 SIM facilities worldwide, and they have been in a constant state of evolution. This paper reviews the current state of SIM research worldwide and the related pivotal technological developments in the fields of both biophysics and radiobiology.Representative applications and the perspective of SIM are also introduced and discussed.

  2. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  3. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film...

  4. In vivo dosimetry in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus Erik;

    2013-01-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and th...

  5. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  6. In aqua vivo EPID dosimetry

    NARCIS (Netherlands)

    Wendling, M.; McDermott, L.N.; Mans, A.; Olaciregui-Ruiz, I.; Pecharroman-Gallego, R.; Sonke, J.J.; Stroom, J.; Herk, M. van; Mijnheer, B.J.

    2012-01-01

    PURPOSE: At the Netherlands Cancer Institute--Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because t

  7. Radiobiological compensation: A case study of uterine cervix cancer with concurrent chemotherapy

    Science.gov (United States)

    Herrera, Higmar; Yañez, Elvia; López, Jesús

    2012-10-01

    The case of a patient diagnosed with uterine cervix cancer is presented as an example of the clinical application of the radiobiological compensation method implemented at Centro Estatal de Cancerología de Durango. Radiotherapy treatment was initially modified to compensate for the chemotherapy component and, as medical complications arose during treatment delivery resulting in an 18 days gap, new compensation followed. All physical and radiobiological assumptions to calculate the Biologically Effective Dose in the external beam and brachytherapy parts of the treatment are presented. Good local control of the tumor was achieved, the theoretical tolerance limits for the organs at risk were not surpassed and the patient manifested no extensive morbidity.

  8. Radiobiological compensation: A case study of uterine cervix cancer with concurrent chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Higmar; Yanez, Elvia; Lopez, Jesus [Centro Estatal de Cancerologia de Durango, Victoria de Durango, Durango (Mexico); ISSSTE General Hospital Dr. Santiago Ramon y Cajal, Victoria de Durango, Durango (Mexico)

    2012-10-23

    The case of a patient diagnosed with uterine cervix cancer is presented as an example of the clinical application of the radiobiological compensation method implemented at Centro Estatal de Cancerologia de Durango. Radiotherapy treatment was initially modified to compensate for the chemotherapy component and, as medical complications arose during treatment delivery resulting in an 18 days gap, new compensation followed. All physical and radiobiological assumptions to calculate the Biologically Effective Dose in the external beam and brachytherapy parts of the treatment are presented. Good local control of the tumor was achieved, the theoretical tolerance limits for the organs at risk were not surpassed and the patient manifested no extensive morbidity.

  9. Official personnel dosimetry for medical personnel; Amtliche Personendosimetrie fuer Medizin-Personal

    Energy Technology Data Exchange (ETDEWEB)

    Hupe, Oliver [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Photonendosimetrie'

    2013-06-15

    After a description of the quality assurance of dosemeters by construction testing and calibration practical personnel dosimetry is considered. In this connection legally fixed dose limits are presented, which are based on the EURATOM directive 96/29. (HSI)

  10. Plutonium worker dosimetry.

    Science.gov (United States)

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  11. ESR dosimetry: achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Baffa, O., E-mail: baffa@usp.br [Universidade de Sao Paulo, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  12. Characterization of commercial MOSFETS electron dosimetry; Caracterizacion de MOSFETS comerciales para dosimetria con electrones

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, M. A.; Simancas, F.; Guirado, D.; Banqueri, J.; Vilches, M.; Lallena, A. M.; Palma, A. J.

    2011-07-01

    In recent years there have been commercial dosimetry devices based on transistors Metal-Oxide-Semiconductor (MOSFET) having a number of advantages over traditional systems for dosimetry in medical applications. These include the portability of the sensor element and a reading process quick and relatively simple dose, linearity, and so on. The use of electron beams is important in modern radiotherapy include its use in intra-operative radiotherapy (RIO). This paper presents an initial characterization of different business models MOSFET, not specific for radiation detection, to demonstrate their potential as sensors for electron beam dosimetry. (Author)

  13. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L; Fallin, Brent [Medical Physics Graduate Program, Duke University, Durham, NC 27705 (United States); Gunasingha, Rathnayaka; Yoshizumi, Terry T [Radiation Safety Division, Duke University, Durham, NC 27705 (United States); Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P [Department of Physics, Duke University, Durham, NC 27706 (United States); Dewhirst, Mark W, E-mail: yoshi003@mc.duke.ed [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-09-07

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the {sup 2}H(d,n){sup 3}He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  14. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging

    DEFF Research Database (Denmark)

    Persson, Morten; El Ali, Henrik H.; Binderup, Tina

    2014-01-01

    of another 64Cu-DOTA peptide-based tracer, 64Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using 64Cu-DOTA-TATE. ResultsHuman estimates of 64Cu-DOTA-AE105 revealed...

  15. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  16. Workshop on dosimetry for radon and radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.E.; Holoway, C.F.; Loebl, A.S. (eds.)

    1978-05-01

    Emphasis is placed on the dosimetry for radon and daughters, rather than on monitoring and instrumentation. The objectives of the meeting were to exchange scientific information, to identify problem areas in radon-daughter dosimetry, and to make any observations or recommendations by the participants through issuance of this report. The discussion topics included the history of dosimetry for radon and daughters, human data, aerosols, deposition and movement in the respiratory tract, dose calculations, dose-to-working-level-month (WLM) conversion factors, animal experiments, and the development of regulations and remedial criteria for reducing population exposures to radon daughters. This report contains a summary of Workshop discussions plus individual statements contributed by several of the participants. The outstanding problem areas from the standpoint of dosimetry appear to involve the appropriate lung organ mass to be used (average lung-tissue dose vs. high-level local dose); recognition of the discrete, rather than continuous, structure of the mucus; lack of knowledge about lung clearance; the variability of dose with the degree of disequilibrium and the unattached fraction of radon daughters for a given WLM; and questions about the character of uranium mine atmospheres actually breathed in the older mines from which much of the epidemiological information originates. The development of criteria for taking remedial action to reduce exposures involves additional concerns of basing long-term risk assessment on short-term sampling and applying WLM data for miners to general populations.

  17. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  18. Radiobiological effects of heavy ions and protons. [on cells of mammals, bacteria and viruses

    Science.gov (United States)

    Ryzhov, N. I.; Vorozhtsova, S. V.; Krasavin, Y. A.; Mashinskaya, T. Y.; Savchenko, N. Y.; Fedorov, B. S.; Khlaponina, V. F.; Shelegedin, V. N.; Gut, L.; Sabo, L.

    1974-01-01

    Radiobiological effects of heavy ions and protons are studied on cells of mammals, bacteria, viruses and DNA of bacteria. Results show that the dose effect dependence bears an exponential character; the reduction of RBE as LET of particle increases reflects the different character of microdistribution of absorbed energy in biological objects with different levels of biological organization.

  19. A community call for a dedicated radiobiological research facility to support particle beam cancer therapy

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Dosanjh, Manjit;

    2012-01-01

    Recently more than one hundred researchers followed an invitation to a brainstorming meeting on the topic of a future dedicated radio-biological and radio-physical research center. 100 more joint the meeting via webcast. After a day of presentations and discussions it was clear, that an urgent need...

  20. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents.

    Science.gov (United States)

    Khvostunov, I K; Ivannikov, A I; Skvortsov, V G; Nugis, V Yu; Golub, E V

    2015-03-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation.

  1. MISTI Shielding and Dosimetry Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable on-orbit dosimetry is necessary for understanding effects of space radiation environments on spacecraft microelectronics performance and comparison of...

  2. NOTE FROM THE DOSIMETRY SERVICE

    CERN Multimedia

    2002-01-01

    During March, the Dosimetry Service will be opened from 8h30 to 12h in the morning and closed every afternoon.   We have established that many people, who are provided regularly with a personal dosimeter (film badge), have changed their activity and do not need it anymore, because they do not, or only exceptionally, enter controlled areas. If you are one of these persons, please contact the Personal Dosimeter Service (tel: 72155). There is a simplified procedure for obtaining a dosimeter if you have an immediate need for short-term visits in controlled areas. A reduction of the number of persons on the regular distribution list of dosimeters would decrease our and the distributors workload. It would also contribute to significant savings in the dosimetry, and thus CERN, budget. We thank you in advance for your understanding and for your collaboration.

  3. Dosimetry for the external radiation therapy. Dosimetry with alanine; Dosimetrie fuer die externe Strahlentherapie. Dosimetrie mit Alanin

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Mathias [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Alanin-Dosimetrie'

    2013-06-15

    The alanine-ESR dosimetry in the PTB is described. The response power of alanine related to the water energy dose for X-rays with average energy of 10-1000 keV is presented. Furthermore the application of alanine for the quality assurance in the radiation therapy is described by means of the prostate irradiation and the therapy of a tumor in the neck region as examples. (HSI)

  4. DEGRO practical guidelines for radiotherapy of non-malignant disorders. Part I: physical principles, radiobiological mechanisms, and radiogenic risk

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Berthold [Hospital Weiden, Department of Radiotherapy and Radiation Oncology, Weiden (Germany); Block, Andreas [Hospital Dortmund, Institute for Medical Radiation Physics and Radiation Protection, Dortmund (Germany); Schaefer, Ulrich [Lippe Hospital, Dept. of Radiotherapy, Lemgo (Germany); Bert, Christoph; Mueller, Reinhold [University Hospitals Erlangen, Dept. of Radiation Oncology, Erlangen (Germany); Jung, Horst [University Hospital Hamburg-Eppendorf, Dept. of Radiotherapy and Radiation Oncology, Hamburg (Germany); Roedel, Franz [University Hospital Goethe-University, Dept. of Radiotherapy and Oncology, Frankfurt am Main (Germany); Collaboration: the German Cooperative Group on Radiotherapy for Benign Diseases (GCG-BD)

    2015-09-15

    Synopsis of the introductory paragraph of the DEGRO consensus S2e-guideline recommendations for the radiotherapy of benign disorders, including physical principles, radiobiological mechanisms, and radiogenic risk. This work is based on the S2e-guideline recommendations published November 14, 2013. The basic principles of radiation physics and treatment delivery, evaluation of putative underlying radiobiological mechanisms, and the assessment of genetic and cancer risk following low-dose irradiation will be presented. Radiation therapy of benign diseases is performed according to similar physical principles as those governing treatment of malignant diseases in radiation oncology, using the same techniques and workflows. These methods comprise usage of orthovoltage X-ray units, gamma irradiation facilities, linear accelerators (LINACs), and brachytherapy. Experimental in vitro and in vivo models recently confirmed the clinically observed anti-inflammatory effect of low-dose X-irradiation, and implicated a multitude of radiobiological mechanisms. These include modulation of different immunological pathways, as well as the activities of endothelial cells, mono- and polymorphonuclear leukocytes, and macrophages. The use of effective dose for radiogenic risk assessment and the corresponding tumor incidence rate of 5.5 %/Sv are currently controversially discussed. Some authors argue that the risk of radiation-induced cancers should be estimated on the basis of epidemiological data. However, such data are rarely available at present and associated with high variability. Current radiobiological studies clearly demonstrate a therapeutic effectiveness of radiation therapy used to treat benign diseases and implicate various molecular mechanisms. Radiogenic risks should be taken into account when applying radiation treatment for benign diseases. (orig.) [German] Zusammenfassung des einfuehrenden Kapitels der DEGRO-S2e-Leitlinie zur Strahlentherapie gutartiger Erkrankungen

  5. I-124 Imaging and Dosimetry

    Directory of Open Access Journals (Sweden)

    Russ Kuker

    2017-02-01

    Full Text Available Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed.

  6. Generalized EPID calibration for in vivo transit dosimetry.

    Science.gov (United States)

    Fidanzio, Andrea; Cilla, Savino; Greco, Francesca; Gargiulo, Laura; Azario, Luigi; Sabatino, Domenico; Piermattei, Angelo

    2011-01-01

    Many researchers are studying new in vivo dosimetry methods based on the use of Elelctronic portal imaging devices (EPIDs) that are simple and efficient in their daily use. However the need of time consuming implementation measurements with solid water phantoms for the in vivo dosimetry implementation can discourage someone in their use. In this paper a procedure has been proposed to calibrate aSi EPIDs for in vivo transit dosimetry. The dosimetric equivalence of three aSi Varian EPIDs has been investigated in terms of signal reproducibility and long term stability, signal linearity with MU and dose per pulse and signal dependence on the field dimensions. The signal reproducibility was within ± 0.5% (2SD), while the long term signal stability has been maintained well within ± 2%. The signal linearity with the monitor units (MU) was within ± 2% and within ± 0.5% for the EPIDs controlled by the IAS 2, and IAS 3 respectively. In particular it was verified that the correction factor for the signal linearity with the monitor units, k(lin), is independent of the beam quality, and the dose per pulse absorbed by the EPID. For 6, 10 and 15 MV photon beams, a generalized set of correlation functions F(TPR,w,L) and empirical factors f(TPR,d,L) as a function of the Tissue Phantom Ratio (TPR), the phantom thickness, w, the square field side, L, and the distance, d, between the phantom mid-plane and the isocentre were determined to reconstruct the isocenter dose. The tolerance levels of the present in vivo dosimetry method ranged between ± 5% and ± 6% depending on the tumor body location. In conclusion, the procedure proposed, that use generalized correlation functions, reduces the effort for the in vivo dosimetry method implementation for those photon beams with TPR within ± 0.3% as respect those here used.

  7. Monte Carlo simulations to replace film dosimetry in IMRT verification

    OpenAIRE

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assu...

  8. Monte Carlo simulations to optimize experimental dosimetry of narrow beams used in Gamma Knife radio-surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lymperopoulou, G. [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece)], E-mail: glymper@phys.uoa.gr; Petrokokkinos, L.; Papagiannis, P. [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Steiner, M.; Spevacek, V.; Semnicka, J.; Dvorak, P. [Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Department of Dosimetry and Application of Ionizing Radiation, Brehova 7 115 19, Prague 1 (Czech Republic); Seimenis, I. [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece)

    2007-09-21

    The Leksell Gamma Knife is a stereotactic radio-surgery unit for the treatment of small volumes (on the order of 25 mm{sup 3}) that employs a hemispherical configuration of 201 {sup 60}Co sources and appropriate configurations of collimation to form beams of 4, 8, 14 and 18 mm nominal diameter at the Unit Center Point (UCP). Although Monte Carlo (MC) simulation is well suited for narrow-beam dosimetry, experimental dosimetry is required at least for acceptance testing and quality assurance purposes. Besides other drawbacks of conventional point dosimeters, the main problems associated with narrow-beam dosimetry in stereotactic applications are accurate positioning and volume averaging. In this work, MCNPX and EGSnrc MC simulation dosimetry results for a Gamma Knife unit are benchmarked through their comparison to treatment planning software calculations based on radio-chromic film measurements. Then, MC dosimetry results are utilized to optimize the only three-dimensional experimental dosimetry method available; the polymer gel-Magnetic Resonance Imaging (MRI) method. MC results are used to select the spatial resolution in the imaging session of the irradiated gels and validate a mathematical tool for the localization of the UCP in the three-dimensional experimental dosimetry data acquired. Experimental results are compared with corresponding MC calculations and shown capable to provide accurate dosimetry, free of volume averaging and positioning uncertainties.

  9. Dosimetry on the radiological risks prevention in radiotherapy; La dosimetria en la prevencion de riesgos radiologicos en radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Fornet R, O. M.; Perez G, F., E-mail: nuclear2@citmahlg.holguin.inf.cu [Delegacion Territorial del CITMA, Peralta 16 esq. P. Feria, Rpto. Peralta, 80400 Holguin (Cuba)

    2014-08-15

    Dosimetry in its various forms plays a determining role on the radiological risks prevention in radiotherapy. To prove this in this paper is shown an analysis based on the risk matrix method, how the dosimetry can influence in each stages of a radiotherapy service; installation and acceptance, operation, maintenance and calibration. For each one of these stages the role that can play is analyzed as either the initiating event of a radiological accident or limiting barrier of these events of the dosimetric processes used for the individual dosimetry, the area monitoring, fixed or portable, for radiation beam dosimetry and of the patients for a radiotherapy service with cobalt-therapy equipment. The result of the study shows that the application of a prospective approach in the role evaluation of dosimetry in the prevention and mitigation of the consequences of a radiological accident in radiotherapy is crucial and should be subject to permanent evaluation at each development stage of these services. (author)

  10. Dosimetry requirements derived from the sterilization standards

    DEFF Research Database (Denmark)

    Miller, A.

    1998-01-01

    The main standards for radiation sterilization, ISO 11137 and EN 552, rest the documentation for the properly executed sterilization process on dosimetry. Both standards describe general requirements to the dosimetry system: The dose measurements must be traceable to national standards, the uncer...

  11. Paul Scherrer Institut annual report 1995. Annex II: PSI life sciences and institute for medical radiobiology newsletter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Blaeuenstein, P.; Gschwend, B. [eds.

    1996-09-01

    The newsletter presents the 1995 progress report of PSI F2-Department and of the Institute for Medical Radiobiology in the fields of radiation medicine, radiopharmacy and radiation hygiene. figs., tabs., refs.

  12. Accidental neutron dosimetry with human hair

    Science.gov (United States)

    Ekendahl, Daniela; Bečková, Věra; Zdychová, Vlasta; Bulánek, Boris; Prouza, Zdeněk; Štefánik, Milan

    2014-11-01

    Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials.

  13. Dosimetry for radiocolloid therapy of cystic craniopharyngiomas

    CERN Document Server

    Rojas, E L; Lallena, A M; Bodineau, C; Galan, P; Al-Dweri, Feras M.O.; Lallena, Antonio M.; Bodineau, Coral; Galan, Pedro

    2003-01-01

    The dosimetry for radiocolloid therapy of cystic craniopharyngiomas is investigated. Analytical calculations based on the Loevinger and the Berger formulae for electrons and photons, respectively, are compared with Monte Carlo simulations. The role of the material of which the colloid introduced inside the craniopharyngioma is made of as well as that forming the cyst wall is analyzed. It is found that the analytical approaches provide a very good description of the simulated data in the conditions where they can be applied (i.e., in the case of a uniform and infinite homogeneous medium). However, the consideration of the different materials and interfaces produces a strong reduction of the dose delivered to the cyst wall in relation to that predicted by the Loevinger and the Berger formulae.

  14. Radiation dosimetry by potassium feldspar

    Indian Academy of Sciences (India)

    Arun Pandya; S G Vaijapurkar; P K Bhatnagar

    2000-04-01

    The thermoluminescence (TL) properties of raw and annealed feldspar have been studied for their use in gamma dosimetry. The raw gamma exposed feldspar shows glow peaks at 120°C and 319°C. Gamma dose beyond 500 cGy can be measured without any significant fading even after 40 days of termination of exposure. The annealed feldspar shows a glow peak at 120°C after gamma exposure. This peak can be used to measure gamma doses beyond 25 cGy when the TL is measured after 24 h from termination of exposure.

  15. Personal Dosimetry Enhancement for Underground Workplaces

    Directory of Open Access Journals (Sweden)

    L. Thinová

    2005-01-01

    Full Text Available Personal dosimetry for underground workers mainly concerns measurement of the concentration of radon (and its daughters and the correct application of the data in dose calculation, using a biokinetic model for lung dosimetry. A conservative approach for estimating the potential dose in caves (or underground is based on solid state alpha track detector measurements. The obtained dataset is converted into an annual effective dose in agreement with the ICRP recommendations using the “cave factor”, the value of which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached and the attached fraction and on the equilibrium factor. The main difference between apartments and caves is the absence of aerosol sources, high humidity, low ventilation rate and the uneven surface in caves. A more precisely determined dose value would have a significant impact on radon remedies or on restricting the time workers stay underground. In order to determine  how the effective dose is calculated, it is necessary to divide these areas into distinct categories by the following measuring procedures: continual radon measurement (to capture the differences in EERC between working hours and night-time, and also between daily and seasonal radon concentration variations; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoils and in water inside/outside, a study of the radon sources in the cave; aerosol particle-size spectrum measurements to determine the free fraction; monitoring the behaviour of guides and workers to record the actual time spent in the cave, in relation to the continuously monitored levels of Rn concentration. 

  16. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  17. In vivo dosimetry during tangential breast treatment

    Energy Technology Data Exchange (ETDEWEB)

    Heukelom, S.; Lanson, J.H.; Tienhoven, G. van; Mijnheer, B.J. (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands))

    1991-12-01

    Three-dimensional (3-D) dose distribution as calculated in clinical practice for tangential breast treatment was verified through in vivo dosimetry. Clinical practice at Netherlands Cancer Institute implies use of 8MV X-ray beams, 2-D treatment planning system, collimator rotation and a limited set of patient data for dose calculations. By positioning diodes at the central beam axes as well as in the periphery of the breast the magnitude of dose values at the isocentre and in points situated in high-dose regions behind the lung could be assessed. The position of diodes was verified by means of an on-line portal imaging device. Reproducibility of these in vivo dose measurements was better than 2% (1SD). This study shows that on the average dose delivery at the isocentre is 2% less at the points behind the lung, 5.7% higher with respect to the calculated dose values. Detailed analysis of these in vivo dosimetry results, based on dose measurements performed with a breast shaped phantom, yielded the magnitudes of errors in predicted dose due to several limitations in dose calculation algorithms and dose calculation procedure. These limitations are each introducing an error of several percent but are compensating each other for the dose calculation at the isocentre. It is concluded that dose distribution in patient for this treatment technique and dose calculation procedure can be predicted with a 2-D treatment planning system in an acceptable way. A more accurate prediction of dose distribution can be performed but requires an estimation of the lack of scatter due to missing tissue, the change in the dose distribution due to oblique incident beams and incorporation of the actual output of the treatment machine in the assessment of the number of monitor units. (author). 28 refs.; 3 figs.; 4 tabs.

  18. Effects of radiobiological uncertainty on shield design for a 60-day lunar mission

    Science.gov (United States)

    Wilson, John W.; Nealy, John E.; Schimmerling, Walter

    1993-01-01

    Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray exposure are analyzed to determine their effect on engineering designs for a first lunar outpost - a 60-day mission. Quantitative estimates of shield mass requirements as a function of a radiobiological uncertainty factor are given for a simplified vehicle structure. The additional shield mass required for compensation is calculated as a function of the uncertainty in galactic cosmic ray exposure, and this mass is found to be as large as a factor of 3 for a lunar transfer vehicle. The additional cost resulting from this mass is also calculated. These cost estimates are then used to exemplify the cost-effectiveness of research.

  19. The impact of modeling nuclear fragmentation on delivered dose and radiobiology in ion therapy.

    Science.gov (United States)

    Lühr, Armin; Hansen, David C; Teiwes, Ricky; Sobolevsky, Nikolai; Jäkel, Oliver; Bassler, Niels

    2012-08-21

    The importance of nuclear interactions for ion therapy arises from the influence of the particle spectrum on, first, radiobiology and therefore also on treatment planning, second, the accuracy of measuring dose and, third, the delivered dose distribution. This study tries to determine the qualitative as well as the quantitative influence of the modeling of inelastic nuclear interactions on ion therapy. Thereby, three key disciplines are investigated, namely dose delivery, dose assessment and radiobiology. In order to perform a quantitative analysis, a relative comparison between six different descriptions of nuclear interactions is carried out for carbon ions. The particle transport is simulated with the Monte Carlo code SHIELD-HIT10A while dose planning and radiobiology are covered by the analytic treatment planning program for particles TRiP, which determines the relative biological effectiveness (RBE) with the local effect model. The obtained results show that the physical dose distribution can in principle be significantly influenced by the modeling of fragmentation (about 10% for a 20% change in all inelastic nuclear cross sections for a target volume ranging from 15 to 25 cm). While the impact of nuclear fragmentation on stopping power ratios can be neglected, the fluence correction factor may be influenced by the applied nuclear models. In contrast to the results for the physical dose, the variation of the RBE is only small (about 1% for a 20% change in all inelastic nuclear cross sections) suggesting a relatively weak dependence of radiobiology on the detailed composition of the particle energy spectrum of the mixed radiation field. Also, no significant change (about 0.2 mm) of the lateral penumbra of the RBE-weighted dose is observed.

  20. Fast neutrons set the pace. [Radiobiological investigations with fast neutrons at the CSIR cyclotron in Pretoria

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J.H.; Slabbert, J.P. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Accelerator Centre)

    1985-01-01

    Radiobiological investigations with fast neutrons have been initiated at the CSIR cyclotron in Pretoria. It was proposed some years ago to create a neutron therapy facility using the CSIR cyclotron. Neutrons are classified as high linear energy transfer (LET) particles. Biological damage occurring in tissue is a direct function of the LET of the incident radiation. To quantify the biological effects of different types of radiation on mammalian cells, several procedures and concepts have evolved from radiobiological research. Probably the most significant laboratory techniques developed, were the derivation of cell survival curves which are obtained by determining the number of cell colonies that have survived a certain radiation dose. A semi-logarithmic plot of surviving fraction versus the absorbed dose yields the survival curve. Dose modifying factors such as the relative biological effectiveness (RBE) of the radiation can be quantified in terms of this relationship. A radiobiological programme has to be undertaken before patients can receive neutron therapy at the CSIR cyclotron. The article is a discussion of this programme.

  1. Dosimetry using environmental and biological materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.; Kenner, G.; Hayes, R.

    1998-02-01

    This report summarizes a five year effort to improve the sensitivity and reliability of retrospective dosimetry methods, to collaborate with laboratories engaged in related research and to share the technology with startup laboratories seeking similar capabilities. This research program has focused on validation of electron paramagnetic resonance (EPR) as a dosimetry tool and on optimization of the technique by reducing the lower limits of detection, simplifying the process of sample preparation and analysis and speeding analysis to allow greater throughput in routine measurement situations. The authors have investigated the dosimetric signal of hard tissues in enamel, deorganified dentin, synthetic carbonated apatites and synthetic hydroxyapatite. This research has resulted in a total of 27 manuscripts which have been published, are in press, or have been submitted for publication. Of these manuscripts, 14 are included in this report and were indexed separately for inclusion in the data base.

  2. Development of CVD diamond detectors for clinical dosimetry

    Science.gov (United States)

    Piliero, M. A.; Hugtenburg, R. P.; Ryde, S. J. S.; Oliver, K.

    2014-11-01

    The use of chemical vapour deposition (CVD) methods for the manufacture of diamonds could lead to detectors for high-resolution radiotherapy dosimetry that are cheaper and more reproducible than detectors based on natural diamonds. In this work two prototype designs (Diamond Detectors Ltd, Poole) of CVD diamond detectors were considered. The detectors were encapsulated in a water-proof housing in a form-factor that would be suitable for dosimetry measurements in water, as well as solid material phantoms. Stability of the dosimeter over time, the dose-response, dose-rate response and angular-response were examined. The study demonstrated that the detector behaviour conformed with theory in terms of the dose-rate response and had acceptable properties for use in the clinic.

  3. Introduction to radiological physics and radiation dosimetry

    CERN Document Server

    Attix, Frank Herbert

    2004-01-01

    A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem

  4. SU-E-T-379: Evaluation of An EPID-Based System for Daily Dosimetry Check by Comparison with a Widely-Used Ionization Chamber-Based Device

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D; Koch, N; Peng, J; Jacqmin, D; Ashenafi, M; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2015-06-15

    Purpose: To examine the feasibility of using Varian’s EPID-based Machine Performance Check (MPC) system to track daily machine output through comparison with Sun Nuclear’s DailyQA3 (DQA) device. Methods: Daily machine outputs for two photon energies (6 and 16MV) and five electron energies (6, 9, 12, 16, 20MeV) were measured for one month using both MPC and DQA. Baselines measurements for MPC were taken at the start of the measurement series, while DQA baselines were set at an earlier date. In order to make absolute comparisons with MPC, all DQA readings were referenced to the average of the first three DQA readings in that series, minimizing systematic differences between the measurement techniques due to baseline differences. In addition to daily output measurements, weekly averages were also calculated and compared. Finally, the electron energy dependence of each measurement technique was examined by comparing energy-specific measurements to the average electron output of all energies each day. Results: For 6 and 16MV photons, the largest absolute percent differences between MPC and DQA were 0.60% and 0.73%, respectively. Weekly averages were within 0.17% and 0.23%, respectively. For all five electron energies, the greatest absolute percent differences between MPC and DQA for each energy ranged from 0.49%–0.83%. Weekly averages ranged from 0.07%–0.28%. DQA energy-specific electron readings matched the average electron output within 0.29% for all days and all energies. MPC energy-specific readings matched the average within 0.21% for 9–20MeV. However, 6MeV showed a larger distribution about the average with four days showing a difference greater than 0.30% and a maximum difference of 0.51%. Conclusion: MPC output measurements correlated well with the widely-used DQA3 for most beam energies, making it a reliable back up technique for daily output monitoring. However, MPC may display an energy dependence for lower electrons energies, requiring additional

  5. Dosimetry in radioiodine therapy of benign thyroid diseases. Background and practice; Dosimetrie bei Radioiodtherapie benigner Schilddruesenerkrankungen. Hintergrund und Durchfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Bockisch, A.; Sonnenschein, W.; Jentzen, W.; Hartung, V.; Goerges, R. [Universitaetsklinikum Essen (Germany). Klinik fuer Nuklearmedizin

    2008-09-15

    Radioiodine therapy of benign thyroid diseases (focal = [toxic adenoma], multifocal, disseminated autonomy, Grave's disease or clinical relevant goitre) needs to be and can be performed individually for each patient. Most frequently a radioiodine test is performed applying a small activity of iodine-131 ({sup 131}I). The paper discusses some protocols for pre- or posttherapeutic dosimetry and discusses their advantages and disadvantages. All are based on the volumetry of the target tissue as well as the radioiodine kinetics in the target volume what may be represented by maximum uptake and half life of iodine retention in the thyroid. Possible disturbances and measuring uncertainties of these parameters are presented and discussed. In spite of the discussed uncertainties in dosimetry, due to its high therapeutic width radioiodine therapy is a very successful procedure to cure hyperthyroidism or to reduce goitre volume with only little side effects. (orig.)

  6. Dosimetry using radiosensitive gels in radiotherapy: significance and methods; Dosimetrie par gels radiosensibles en radiotherapie. Interet et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Gibon, D. [Dept. de Radiotherapie, Centre Oscar Lambret, Lille Cedex (France); Bourel, P. [Lab. de Biophysique, Inst. de Technologie Medicale, Centre Hospitalier Universitaire, Lille (France); Castelain, B. [Dept. de Radiotherapie, Centre Oscar Lambret, Lille Cedex (France); Marchandise, X.; Rousseau, J. [Lab. de Biophysique, Inst. de Technologie Medicale, Centre Hospitalier Universitaire, Lille (France)

    2001-02-01

    The goal of conformal radiotherapy is to concentrate the dose in a well-defined volume by avoiding the neighbouring healthy structures. This technique requires powerful treatment planning software and a rigorous control of estimated dosimetry. The usual dosimetric tools are not adapted to visualize and validate complex 3D treatment. Dosimetry by radiosensitive gel permits visualization and measurement of the three-dimensional dose distribution. The objective of this work is to report on current work in this field and, based on our results and our experience, to draw prospects for an optimal use of this technique. Further developments will relate to the realization of new radiosensitive gels satisfying, as well as possible, cost requirements, easy realization and use, magnetic resonance imagery (MRI) sensitivity, tissue equivalence, and stability. Other developments focus on scanning methods, especially in MRI to measure T1 and T2. (author)

  7. Feasibility of bremsstrahlung dosimetry for direct dose estimation in patients undergoing treatment with {sup 90}Y-ibritumomab tiuxetan

    Energy Technology Data Exchange (ETDEWEB)

    Arrichiello, C.; Aloj, L.; Mormile, M.; D' Ambrosio, L.; Caraco, C.; De Martinis, F. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Frigeri, F.; Arcamone, M.; Pinto, A. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Hematology-Oncology, Napoli (Italy); Stem Cells Transplantation Unit, Department of Hematology, Napoli (Italy); Lastoria, S. [Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , Nuclear Medicine Department, Napoli (Italy); Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione ' ' G. Pascale' ' , IRCCS, Napoli (Italy)

    2012-06-15

    Radioimmunotherapy with {sup 90}Y-ibritumomab tiuxetan has been used successfully used in the treatment of CD20-positive non-Hodgkin's lymphoma (NHL). Pretherapy imaging with {sup 111}In-ibritumomab tiuxetan has been used in provisional dosimetry studies. Posttherapy imaging of {sup 90}Y-ibritumomab tiuxetan for clinical use is appealing as it would simplify the data acquisition process and allow measurements of actual doses absorbed during treatment. The study included 29 patients with non-Hodgkin's lymphoma, of whom 16 (group I) received a pretherapy {sup 111}In-ibritumomab tiuxetan diagnostic study and {sup 90}Y-ibritumomab tiuxetan treatment 1 week later, and 13 (group II) received only {sup 90}Y-ibritumomab tiuxetan treatment. Planar imaging and blood sampling were performed in all patients. The doses absorbed by organs at risk were calculated using a whole-body average attenuation correction factor (relative dosimetry approach) and, in the case of the {sup 111}In-ibritumomab tiuxetan image sets, also using organ-specific attenuation correction factors (absolute dosimetry method). Red marrow absorbed doses were based on gamma counting of blood samples. The estimated red marrow absorbed doses from {sup 111}In and {sup 90}Y data were equivalent. In all cases, the doses absorbed by organs at risk were found to be within prescribed limits. The relative dosimetry approach applied to both the {sup 90}Y and {sup 111}In data significantly underestimated the doses relative to those obtained with the {sup 111}In absolute dosimetry method which is generally accepted as the reference method (MIRD 16). In the case of {sup 111}In, the relative dosimetry approach values were highly correlated (R {sup 2} = 0.61) with the reference method values. Relative dosimetry estimates may be adjusted multiplying by a correction factor of 2.8. The {sup 90}Y-ibritumomab tiuxetan relative dosimetry data correlated poorly with the reference method values (R {sup 2} = 0.02). Based

  8. A new method for dosimetry with films radiochromic; Un nuevo metodo para la dosimetria con peliculas radiocromica

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Carot, I.

    2013-07-01

    in this paper a new method is presented and the results of the comparison between the calibration is summarized based on a planning reference and calibration obtained from the irradiated fragments measure different dose levels multichannel compare dosimetry based on the weighted average dosimetry described by Micke et al.(present in the FilmQAPro software) and, finally, show different results obtained with the method proposed in several applications clinics. (Author)

  9. Individualized dosimetry in patients undergoing therapy with {sup 177}Lu-DOTA-D-Phe{sup 1}-Tyr{sup 3}-octreotate

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Mattias [Uppsala University Hospital, Department of Oncology, Radiology and Clinical Immunology, Division of Medical Physics, Uppsala (Sweden); Uppsala University Hospital, Department of Hospital Physics, Uppsala (Sweden); Garske, Ulrike [Uppsala University Hospital, Department of Medical Sciences, Division of Nuclear Medicine, Uppsala (Sweden); Granberg, Dan [Uppsala University Hospital, Department of Medical Sciences, Division of Endocrine Oncology, Uppsala (Sweden); Sundin, Anders [Karolinska University Hospital, Department of Molecular Medicine and Surgery, Division of Diagnostic Radiology, Stockholm (Sweden); Lundqvist, Hans [Uppsala University, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden)

    2010-02-15

    In recent years, targeted radionuclide therapy with [{sup 177}Lu-DOTA{sup 0}, Tyr{sup 3}]octreotate for neuroendocrine tumours has yielded promising results. This therapy may be further improved by using individualized dosimetry allowing optimization of the absorbed dose to the tumours and the normal organs. The aim of this study was to investigate the feasibility and reliability of individualized dosimetry based on SPECT in comparison to conventional planar imaging. Attenuation-corrected SPECT data were analysed both by using organ-based volumes of interest (VOIs) to obtain the total radioactivity in the organ, and by using small VOIs to measure the tissue radioactivity concentration. During the first treatment session in 24 patients, imaging was performed 1, 24, 96 and 168 h after [{sup 177}Lu-DOTA{sup 0}, Tyr{sup 3}]octreotate infusion. Absorbed doses in non tumour-affected kidney, liver and spleen were calculated and compared for all three methods (planar imaging, SPECT organ VOIs, SPECT small VOIs). Planar and SPECT dosimetry were comparable in areas free of tumours, but due to overlap the planar dosimetry highly overestimated the absorbed dose in organs with tumours. Furthermore, SPECT dosimetry based on small VOIs proved to be more reliable than whole-organ dosimetry. We conclude that SPECT dosimetry based on small VOIs is feasible and more accurate than conventional planar dosimetry, and thus may contribute towards optimising targeted radionuclide therapy. (orig.)

  10. JENDL dosimetry file 99 (JENDL/D-99)

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Katsuhei [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Institute; Iguchi, Tetsuo [Nagoya Univ., Faculty of Engineering, Nagoya, Aichi (Japan); Iwasaki, Shin [Tohoku Univ., Faculty of Engineering, Sendai, Miyagi (JP)] [and others

    2002-01-01

    The JENDL Dosimetry File 99 (JENDL/D-99), which is a revised version of the JENDL Dosimetry File 91 (JENDL/D-91), has been compiled and released for the determination of neutron flux and energy spectra. This work was undertaken to remove the inconsistency between the cross sections and their covariances in JENDL/D-91 since the covariances were mainly taken from IRDF-85 although the cross sections were based on JENDL-3. Dosimetry cross sections have been evaluated for 67 reactions on 47 nuclides together with covariances. The cross sections for 34 major reactions and their covariances were simultaneously generated, and the remaining 33 reaction data were mainly taken from JENDL/D-91. Latest measurements were taken into account in the evaluation. The resultant evaluated data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-6 format. In order to confirm the reliability of the evaluated data, several integral tests have been carried out: comparisons with average cross sections measured in fission neutron fields, fast/thermal reactor spectra, DT neutron fields and Li(d,n) neutron fields. It was found from the comparisons that the cross sections calculated from JENDL/D-99 are generally in good agreement with the measured data. The contents of JENDL/D-99 and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form in the Appendix. (author)

  11. Proceedings of the second conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R. E.; Sims, C. S. [eds.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  12. Radiobiological analysis of the field in field technique in breast cancer radiotherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Medel B, E.; Vasquez R, M. A. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G., E-mail: marcosalivasquez@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue. (Mexico)

    2015-10-15

    Full text: In vivo dosimetry was performed in 6 unilateral breast cancer patients treated with external beam radiation therapy in order to evaluate the dose calculated by the radiotherapy treatment planning system (Xi O, ELEKTA). Results show a maximum difference of 0.473 Gy between the dose calculated by the treatment planning system and the dose measured in vivo using solid state detectors. Based on the DVHs statistics, tumor control probability (Tcp) was obtained using the Target-Poisson model, with the following Tcp parameters: α=0.288/Gy, α{sub s}pread= 0.13 and α/β=4.9 Gy. Tcp average obtained for the Clinical Tumor Volume (Ctv) is 35.1% and for Supra Clavicle Volume (Scv) is 35.345%. Finally using Lyman model Normal Tissue Complication Probability (Ntcp) was obtained for the following endpoints: contralateral breast fibrosis, lung radiation pneumonitis and heart pericarditis. Nonetheless the Ntcp values are not high; the improvement of the Tcp based on this plan makes Ntcp for lung radiation pneumonitis reach the 100% of probability in some cases. (Author)

  13. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  14. Development of radiation biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  15. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    Science.gov (United States)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  16. Dose Estimation from Daily and Weekly Dosimetry Data

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, G.

    2001-11-16

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the

  17. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    CERN Document Server

    2002-01-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation pro...

  18. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Partridge, Mike [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Carrington, Rhys [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Heath Park, Cardiff (United Kingdom); Crosby, Thomas [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hawkins, Maria A. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom)

    2014-10-01

    Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.

  19. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo V, A.; Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Resendiz G, G.; Posadas V, A. [Hospital Angeles Lomas, Av. Vialidad de la Barranca s/n, Col. Valle de las Palmas, 52763 Huixquilucan de Degallado, Estado de Mexico (Mexico); Mitsoura, E. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan, Esq. Jesus Carranza s/n, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico (Mexico); Rodriguez L, A.; Flores C, J. M., E-mail: armando.astudillo@inin.gob.mx [Hospital Medica Sur, Puente de Piedra 150, Col. Toriello Guerra, 14050 Tlalpan, Mexico D. F. (Mexico)

    2015-10-15

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)

  20. Experimental radiotherapy and clinical radiobiology. Vol. 22. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 22. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Cordes, Nils; Dikomey, Ekkehard; Krause, Mechthild; Petersen, Cordula; Rodemannn, H. Peter; Zips, Daniel (eds.)

    2013-03-01

    The proceedings of the 22th Symposium on experimental radiotherapy and clinical radiotherapy contain lectures and poster on the following issues: Radiation induced immuno-targeting of tumors; targeting in the radiotherapy; biomarkers; targeting; radio-oncological therapy of rectal carcinoma - contribution of radiobiology for therapy optimization; biomarkers for radiation sensibility; resistance mechanisms of tumors; resistance mechanisms of normal tissue; micro ambience, P13L inhibition in radiotherapy: improvement of the local tumor control by molecular mechanisms or the influence of the tumor micro-ambience? DNA repair; radiation effects and technical development.

  1. Experimental radiotherapy and clinical radiobiology. Vol. 18. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 18. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H. Peter; Zips, Daniel (eds.)

    2009-07-15

    The proceedings on experimental radiotherapy and clinical radiobiology contain two review articles (prediction of normal tissue reactions after radiotherapy, ?H2AX foci as a marker for DNA double-strand breaks) and 34 contributions to the following topics: Hypoxia and molecular mechanisms of radiation resistance; biological imaging of the tumor micromilieu; DNA repair, genomic instability and carcerogenesis; molecular factors of radiation resistance; actual controversial discussion on possible irradiation caused metastasis risk enhancement; EGFR inhibition and irradiation; biology of experimental radiation/ normal tissue toxicity.

  2. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  3. Dosimetry at a 400 keV accelerator

    DEFF Research Database (Denmark)

    Miller, A.

    1992-01-01

    Absolute calorimetric dosimetry and relative dose mapping methods are described for a 400 keV electron accelerator used for polymer curing and crosslinking experiments. These methods of dosimetry are also useful at accelerators used in gas cleaning processes.......Absolute calorimetric dosimetry and relative dose mapping methods are described for a 400 keV electron accelerator used for polymer curing and crosslinking experiments. These methods of dosimetry are also useful at accelerators used in gas cleaning processes....

  4. A feasibility study of Fricke dosimetry as an absorbed dose to water standard for 192Ir HDR sources.

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo deAlmeida

    Full Text Available High dose rate brachytherapy (HDR using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.

  5. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    Science.gov (United States)

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  6. Advances in nuclear particle dosimetry for radiation protection and medicine - Ninth Symposium on Neutron Dosimetry (Editorial Material, English)

    Energy Technology Data Exchange (ETDEWEB)

    Zoetelief, J; Bos, A J.; Schuhmacher, H; McDonald, Joseph C.; Schultz, F W.; Pihet, P

    2004-12-15

    The Ninth Symposium on Neutron Dosimetry has been expanded to cover not only neutron radiation but heavy charged particle dosimetry as well. The applications are found in such fields as radiation protection, aircrew dosimetry, medicine, nuclear power and accelerator health physics. Scientists from many countries from around the world presented their work, and described the latest developments in techniques and instrumentation.

  7. Hypo-fractionated treatment in radiotherapy: radio-biological models Tcp and NTCP; Tratamiento hipofraccionado en radioterapia: modelos radiobiologicos TCP y NTCP

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo V, A. J.; Mitsoura, E. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan s/n, 50180 Toluca, Estado de Mexico (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Resendiz G, G., E-mail: lydia.paredes@inin.gob.mx [Hospital Medica Sur, Departamento de Radioterapia, Puente de Piedra 150, Col. Toriello Guerra, 14050 Mexico D. F. (Mexico)

    2014-08-15

    At the present time the breast cancer in Mexico has the first place of incidence of the malignant neoplasia s in the women, and represents 11.34% of all the cancer cases. On the other hand, the treatments for cancer by means of ionizing radiations have been dominated under the approaches of the medical radio-oncologists which have been based on test and error by many years. The radio-biological models, as the Tcp, NTCP and dosimetric variables, for their clinical application in the conventional radiotherapy with hypo-fractionation have as purpose predicting personalized treatment plans that they present most probability of tumor control and minor probability of late reactions, becoming this way support tools in the decisions taking for the patient treatments planning of Medical Physicists and Radio-oncologists. (Author)

  8. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risø DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference......This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic...

  9. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    Science.gov (United States)

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  10. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  11. In vivo radiobiological assessment of the new clinical carbon ion beams at CNAO.

    Science.gov (United States)

    Facoetti, A; Vischioni, B; Ciocca, M; Ferrarini, M; Furusawa, Y; Mairani, A; Matsumoto, Y; Mirandola, A; Molinelli, S; Uzawa, A; Vilches, Freixas G; Orecchia, R

    2015-09-01

    In this article, the in vivo study performed to evaluate the uniformity of biological doses within an hypothetical target volume and calculate the values of relative biological effectiveness (RBE) at different depths in the spread-out Bragg peak (SOBP) of the new CNAO (National Centre for Oncological Hadrontherapy) carbon beams is presented, in the framework of a typical radiobiological beam calibration procedure. The RBE values (relative to (60)Co γ rays) of the CNAO active scanning carbon ion beams were determined using jejunal crypt regeneration in mice as biological system at the entrance, centre and distal end of a 6-cm SOBP. The RBE values calculated from the iso-effective doses to reduce crypt survival per circumference to 10, ranged from 1.52 at the middle of the SOBP to 1.75 at the distal position and are in agreement with those previously reported from other carbon ion facilities. In conclusion, this first set of in vivo experiments shows that the CNAO carbon beam is radiobiologically comparable with the NIRS (National Institute of Radiological Sciences, Chiba, Japan) and GSI (Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) ones.

  12. Past and Future Work on Radiobiology Mega-Studies: A Case Study At Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Haley, Benjamin; Wang, Qiong; Wanzer, Beau; Vogt, Stefan; Finney, Lydia; Yang, Ping Liu; Paunesku, Tatjana; Woloschak, Gayle

    2011-09-06

    Between 1952 and 1992, more than 200 large radiobiology studies were conducted in research institutes throughout Europe, North America, and Japan to determine the effects of external irradiation and internal emitters on the lifespan and tissue toxicity development in animals. At Argonne National Laboratory, 22 external beam studies were conducted on nearly 700 beagle dogs and 50,000 mice between 1969 and 1992. These studies helped to characterize the effects of neutron and gamma irradiation on lifespan, tumorigenesis, and mutagenesis across a range of doses and dosing patterns. The records and tissues collected at Argonne during that time period have been carefully preserved and redisseminated. Using these archived data, ongoing statistical work has been done and continues to characterize quality of radiation, dose, dose rate, tissue, and gender-specific differences in the radiation responses of exposed animals. The ongoing application of newly-developed molecular biology techniques to the archived tissues has revealed gene-specific mutation rates following exposure to ionizing irradiation. The original and ongoing work with this tissue archive is presented here as a case study of a more general trend in the radiobiology megastudies. These experiments helped form the modern understanding of radiation responses in animals and continue to inform development of new radiation models. Recent archival efforts have facilitated open access to the data and materials produced by these studies, and so a unique opportunity exists to expand this continued research.

  13. A model to describe potential effects of chemotherapy on critical radiobiological treatments

    Science.gov (United States)

    Rodríguez-Pérez, D.; Desco, M. M.; Antoranz, J. C.

    2016-08-01

    Although chemo- and radiotherapy can annihilate tumors on their own. they are also used in coadjuvancy: improving local effects of radiotherapy using chemotherapy as a radiosensit.izer. The effects of radiotherapy are well described by current radiobiological models. The goal of this work is to describe a discrete radiotherapy model, that has been previously used describe high radiation dose response as well as unusual radio-responses of some types of tumors (e.g. prostate cancer), to obtain a model of chemo+radiotherapy that can describe how the outcome of their combination is a more efficient removal of the tumor. Our hypothesis is that, although both treatments haven different mechanisms, both affect similar key points of cell metabolism and regulation, that lead to cellular death. Hence, we will consider a discrete model where chemotherapy may affect a fraction of the same targets destroyed by radiotherapy. Although radiotherapy reaches all cells equally, chemotherapy diffuses through a tumor attaining lower concentration in its center and higher in its surface. With our simulations we study the enhanced effect of combined therapy treatment and how it depends on the tissue critical parameters (the parameters of the lion-extensive radiobiological model), the number of “targets” aimed at by chemotherapy, and the concentration and diffusion rate of the drug inside the tumor. The results show that an equivalent, cliemo-radio-dose can be computed that allows the prediction of the lower radiation dose that causes the same effect than a radio-only treatment.

  14. Development of a soft X-ray microprobe for single cell radiobiology

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; YAN Jingwen; JIANG Shiping; YU Yang

    2009-01-01

    An X-ray microprobe for radiobiological studies was developed which deliver precise doses of radiation to the selected individual cells. The facility used synchrotron radiation as soft X-ray source. A zone plate combining with a pinhole produced a fine probe from bending magnet for single cell irradiating with defined doses. The diameter of microprobe at the target position was about 2 μm by scanning a knife-edge with an AXUV photo diode. The fluxes of soft X-rays at 516.7 eV (2.4 nm) were about 5.4×104 photons/s.100mA measured with the photo diode. The absorbed dose rate for typical yeast cells was about 11.34 Gy/s with the storage current of 100 mA. A preliminary experiment for yeast cells irradiation has shown that the microprobe had a definite biological effect for radiobiological investigations. The soft X-ray microprobe at "water window" region has provided a useful tool for single cell irradiating damage and a capability of individually irradiating a certain numbers of cells each time.

  15. Radiobiological characterization of post-lumpectomy focal brachytherapy with lipid nanoparticle-carried radionuclides

    Science.gov (United States)

    Hrycushko, Brian A.; Gutierrez, Alonso N.; Goins, Beth; Yan, Weiqiang; Phillips, William T.; Otto, Pamela M.; Bao, Ande

    2011-02-01

    Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. The primary objective of this work was to characterize, through dosimetric and radiobiological modeling, a novel focal brachytherapy technique which uses direct intracavitary infusion of β-emitting radionuclides (186Re/188Re) carried by lipid nanoparticles (liposomes). Absorbed dose calculations were performed for a spherical lumpectomy cavity with a uniformly injected activity distribution using a dose point kernel convolution technique. Radiobiological indices were used to relate predicted therapy outcome and normal tissue complication of this technique with equivalent external beam radiotherapy treatment regimens. Modeled stromal damage was used as a measure of the inhibition of the stimulatory effect on tumor growth driven by the wound healing response. A sample treatment plan delivering 50 Gy at a therapeutic range of 2.0 mm for 186Re-liposomes and 5.0 mm for 188Re-liposomes takes advantage of the dose delivery characteristics of the β-emissions, providing significant EUD (58.2 Gy and 72.5 Gy for 186Re and 188Re, respectively) with a minimal NTCP (0.046%) of the healthy ipsilateral breast. Modeling of kidney BED and ipsilateral breast NTCP showed that large injected activity concentrations of both radionuclides could be safely administered without significant complications.

  16. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context.

    Science.gov (United States)

    Schlaff, Cody D; Krauze, Andra; Belard, Arnaud; O'Connell, John J; Camphausen, Kevin A

    2014-03-28

    Radiotherapy for the treatment of cancer is undergoing an evolution, shifting to the use of heavier ion species. For a plethora of malignancies, current radiotherapy using photons or protons yields marginal benefits in local control and survival. One hypothesis is that these malignancies have acquired, or are inherently radioresistant to low LET radiation. In the last decade, carbon ion radiotherapy facilities have slowly been constructed in Europe and Asia, demonstrating favorable results for many of the malignancies that do poorly with conventional radiotherapy. However, from a radiobiological perspective, much of how this modality works in overcoming radioresistance, and extending local control and survival are not yet fully understood. In this review, we will explain from a radiobiological perspective how carbon ion radiotherapy can overcome the classical and recently postulated contributors of radioresistance (α/β ratio, hypoxia, cell proliferation, the tumor microenvironment and metabolism, and cancer stem cells). Furthermore, we will make recommendations on the important factors to consider, such as anatomical location, in the future design and implementation of clinical trials. With the existing data available we believe that the expansion of carbon ion facilities into the United States is warranted.

  17. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  18. Instrumentation for the individual dosimetry of workers

    CERN Document Server

    Thévenin, J C

    2003-01-01

    The control of the radiation dose exposure of workers and personnel exposed to ionizing radiations (nuclear industry, nuclear medicine, army, university laboratories etc..) is ensured by individual dosemeters. This dosimetry is mandatory for all workers susceptible to be exposed to more than 30% of the regulatory dose limit. dosemeters are worn on the chest and in some particular cases, on the finger (dosemeter rings) or on the wrist. Passive dosemeters allow to measure the dose a posteriori, while electronic dosemeters allow a direct reading and recording of the dose. This article presents successively: 1 - the general principles of individual dosimetry: situations of exposure, radiation detection, operational data, standardization, calibration and quality assurance, measurement uncertainties; 2 - goals and regulatory framework of individual dosimetry: regulation and recommendations, optimization, respect of dose limits, accidental situations; 3 - passive dosemeters: film, thermoluminescent, radio-photolumin...

  19. Quantitative read-out of Al2O3:C,Mg-based fluorescent nuclear track detectors using a commercial confocal microscope

    CERN Document Server

    Greilich, Steffen; Niklas, Martin; Lauer, Florian; Bestvater, Felix; Jäkel, Oliver

    2014-01-01

    Fluorescent nuclear track detectors (FNTD) show great potential for applications in ion-beam therapy research, such as dosimetry, advanced beam characterization, in-vivo use or as radiobiological assay. A essential feature of FNTDs is their ability to assess the energy loss of single ions yielding for example LET estimations. This article describes the basic characterisations of FNTDs and our read-out system (a Zeiss LSM710 confocal laser scanning microscope) to enable quantative measurements of energy loss.

  20. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success.

    Science.gov (United States)

    Pogue, Brian W; Elliott, Jonathan T; Kanick, Stephen C; Davis, Scott C; Samkoe, Kimberley S; Maytin, Edward V; Pereira, Stephen P; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  1. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success

    Science.gov (United States)

    Pogue, Brian W.; Elliott, Jonathan T.; Kanick, Stephen C.; Davis, Scott C.; Samkoe, Kimberley S.; Maytin, Edward V.; Pereira, Stephen P.; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  2. Preparation of laser-accelerated proton beams for radiobiological applications

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J., E-mail: j.metzkes@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Cowan, T.E. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Karsch, L. [OncoRay - National Center for Radiation Research in Oncology, TU Dresden, Fetscherstr. 74, 01307 Dresden (Germany); Kraft, S.D. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Pawelke, J.; Richter, C. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); OncoRay - National Center for Radiation Research in Oncology, TU Dresden, Fetscherstr. 74, 01307 Dresden (Germany); Richter, T.; Zeil, K. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Schramm, U., E-mail: u.schramm@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany)

    2011-10-11

    This paper presents the concept of transport and filtering of laser-accelerated proton pulses used for the first cell irradiation experiments performed with the Dresden 150 TW laser DRACO. Based on a simple non-focusing magnetic dipole equipped with two apertures the concept makes use of an energy dependent angular asymmetry of the proton spectra. For micron thin target foils protons of interest with energies above 7 MeV are observed to be significantly offset from target normal where low energy emission is dominantly centered. As the effect can be controlled via the target rotation with respect to the incoming light, it can be used to optimize the transport efficiency for high energy protons while simultaneously suppressing background radiation.

  3. MO-D-BRD-02: In Memoriam of Bengt Bjarngard: SBRT II: Small Field Dosimetry - TG155

    Energy Technology Data Exchange (ETDEWEB)

    Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States); Reft, C [University Chicago, Chicago, IL (United States)

    2014-06-15

    Specialized radiation treatment such as SRS/SRT. SBRT, IMRT, VMAT, Tomotherapy, CyberKnife and Gamma Knife use small fields or combination of small fields where dosimetry is challenging and uncertain due to non-equilibrium conditions such as longitudinal and lateral disequilibrium. Additionally the primary photon fluence is greatly affected by the obstruction of the source size by the jaws creating a large dose gradient across the field. Electronic equilibrium is a phenomenon associated with the range of secondary particles which depend on the beam energy, photon spectrum and the composition of the medium. Additionally, the finite size of detectors creates volume averaging and fluence perturbations especially in small fields. The IAEA/AAPM has provided a frame work for non-compliant reference dosimetry in small fields1. The AAPM TG-1552 has adopted this frame work to provide guidelines in relative dosimetry. This course provides the insight of TG-155 that defines small field, provides recommendations for suitable detectors and associated correction factors to convert reading to dose. Recommendations of a good working practice for relative dosimetry measurements (PDD, TMR, output factor, etc.) and dose calculations based on the new formulation is are elaborated. It also discusses beam modeling and dose calculations as a critical step in clinical utilization of small field radiotherapy. Small errors in beam data, approximations in dose algorithms, or misaligned of detectors and field settings can propagate into large errors in planned and delivered dose. The modeling and treatment planning aspects of small field dosimetry are reviewed with emphasis on the most critical parts for ensuring accurate and safe radiation therapy. Discussion on k(fmsr, fclin) for commercially available detectors are also provided.1 P. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjall, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich and S. Vatnitsky, “A new

  4. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  5. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  6. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  7. Monte Carlo simulations to replace film dosimetry in IMRT verification.

    Science.gov (United States)

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase.

  8. Radiological and Environmental Research Division, Center for Human Radiobiology. Annual report, July 1980-June 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    Separate abstracts were prepared for the 22 papers of this annual report of the Center for Human Radiobiology. Abstracts were not written for 2 appendices which contain data on the exposure and radium-induced malignancies of 2259 persons whose radium content has been determined at least once. (KRM)

  9. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  10. Kinetics model for lutate dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.F.; Mesquita, C.H., E-mail: mflima@ipen.br, E-mail: chmesqui@ipen.br [Instituto de Pesquisas Energeticas (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-11-01

    The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp Registered-Sign . The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)

  11. Thermoluminescent dosimetry in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lara C, A.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, Col. Irrigacion, 11500 Ciudad de Mexico (Mexico); Osorio V, M. [ISSSTE, Centro Medico Nacional 20 de Noviembre, Felix Cuevas 540, Col. del Valle, 03100 Ciudad de Mexico (Mexico); Hernandez O, O., E-mail: armando_lara_cam@yahoo.com.mx [Hospital General de Mexico, Dr. Balmis 148, Col. Doctores, 06726 Ciudad de Mexico (Mexico)

    2016-10-15

    In this work we studied the dosimetry performed on CT scan in two different equipment, SOMATOM and Phillips, with 16 and 64 slice respectively. We used 51 pellets of lithium fluoride doped with magnesium and titanium (LiF: Mg, Ti) also knows as TLD-100 due to its physical properties and its easy of use, in this study, first analysis a batch of 56 pellets, but only 53 pellets were optimal for this study, cesium-137 was used as source irradiation, then proceeded to calibrate the batch with X-rays source, measuring the corresponding dose in a Farmers ionization chamber, then, we obtained a calibration curve, and we used as reference to calculation of the applied dose, finally designing ergonomic mesh, were it was deposited a TLD 100, placed in a regions of interest were made to each scan type. Once characterized our material proceeded to testing in 30 patients, which were irradiated with X-ray tube, whose operation was performed at 80, 120 kV with a current of 100, 300 and 400 m A according to scanning protocol. Overall we measured dose of 5 mGy to 53 mGy, these measurements reflect significant dose to can induced cancer, due previous reports published, that doses greater than 20 mGy there is a risk of developing cancer in the long term, but in practice when it assigned a medical diagnosis, there are no dose limits due to benefits patients, however, IAEA publish recommendations that allow us to carry out optimum handling of ionizing radiation, among these is the quality control of the tomography equipment that helps greatly reduce patient dose. (Author)

  12. SU-E-T-87: A TG-100 Approach for Quality Improvement of Associated Dosimetry Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Manger, R; Pawlicki, T; Kim, G [UCSD Medical Center, La Jolla, CA (United States)

    2015-06-15

    Purpose: Dosimetry protocols devote so much time to the discussion of ionization chamber choice, use and performance that is easy to forget about the importance of the associated dosimetry equipment (ADE) in radiation dosimetry - barometer, thermometer, electrometer, phantoms, triaxial cables, etc. Improper use and inaccuracy of these devices may significantly affect the accuracy of radiation dosimetry. The purpose of this study is to evaluate the risk factors in the monthly output dosimetry procedure and recommend corrective actions using a TG-100 approach. Methods: A failure mode and effects analysis (FMEA) of the monthly linac output check procedure was performed to determine which steps and failure modes carried the greatest risk. In addition, a fault tree analysis (FTA) was performed to expand the initial list of failure modes making sure that none were overlooked. After determining the failure modes with the highest risk priority numbers (RPNs), 11 physicists were asked to score corrective actions based on their ease of implementation and potential impact. The results were aggregated into an impact map to determine the implementable corrective actions. Results: Three of the top five failure modes were related to the thermometer and barometer. The two highest RPN-ranked failure modes were related to barometric pressure inaccuracy due to their high lack-of-detectability scores. Six corrective actions were proposed to address barometric pressure inaccuracy, and the survey results found the following two corrective actions to be implementable: 1) send the barometer for recalibration at a calibration laboratory and 2) check the barometer accuracy against the local airport and correct for elevation. Conclusion: An FMEA on monthly output measurements displayed the importance of ADE for accurate radiation dosimetry. When brainstorming for corrective actions, an impact map is helpful for visualizing the overall impact versus the ease of implementation.

  13. Partial-body dosimetry for photons and beta radiation; Teilkoerperdosimetrie fuer Photonen und Betastrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Rolf [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Betadosimetrie'

    2013-06-15

    After a description of typical application positions of partial-body dosimetry in medicine the technical details of such dosemeters mostly based on thermoluminescence detectors are described. then especially eye and finger-ring dosemeters are described more detailedly. Finally different applied dosemeter types are considered. (HSI)

  14. A scintillating GEM for 2D-dosimetry in radiation therapy

    NARCIS (Netherlands)

    Timmer, JH; van Vuure, TL; Bom, [No Value; van Eijk, CW; de Haas, J; Schippers, JM

    2002-01-01

    The first results of a study on the properties of a gaseous scintillation detector based on a Gas Electron Multiplier (GEM) are reported. The detector is designed for use in position-sensitive dosimetry applications in radiation therapy. A double GEM system, operating in a 90 10% Ar-CO2 gas mixture

  15. Hadron Radiobiology : Investigation of the Inhibition of ten days Growth of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2 Hadron Radiobiology : Investigation of the Inhibition of ten days'Grown of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2

    CERN Multimedia

    2002-01-01

    Hadron Radiobiology : Investigation of the Inhibition of ten days Growth of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2 Hadron Radiobiology : Investigation of the Inhibition of ten days'Grown of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2

  16. WE-F-BRB-00: New Developments in Knowledge-Based Treatment Planning and Automation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, it is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented.

  17. RADON PROGENY AS AN EXPERIMENTAL TOOL FOR DOSIMETRY OF NANOAEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev; Ruzer, Lev S.; Apte, Michael G.

    2008-02-25

    The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry ?-- nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction.

  18. Modification of radiobiological effects of 171 MeV protons by elements of physical protection

    Science.gov (United States)

    Bulinina, Taisia; Shurshakov, Vyacheslav; Ivanov, Alexander; Molokanov, Alexander

    2016-07-01

    Space radiation includes protons of various energies. Physical protection is effective in the case of low energy protons (50-100 MeV) and becomes insufficient for radiation with a high part of high-energy protons. In the experiment performed on outbred mice, the purpose of the study was to evaluate the radiobiological effect of 171 MeV protons and protons modified by elements of physical protection of the spacecraft, on a complex of indicators of the functional condition of the system hematopoiesis and the central nervous system in 24 hours after irradiation at 20 cGy dose. The spacecraft radiation protection elements used in the experiment were a construction of wet hygiene wipes called a «protective curtain», and a glass plate imitating an ISS window. Mass thickness of the " protective curtain" in terms of water equivalent was ̴ 6,2 g/cm2. Physical shielding along the path of 171 MeV protons increases their linear energy transfer leading to the absorbed dose elevation and strengthening of the radiobiological effect. In the experiment, the two types of shielding together raised the absorbed dose from 20 to 23.2 cGy. Chemically different materials (glass and water in the wipes) were found to exert unequal modifying effects on physical and biological parameters of the proton-irradiated mice. There was a distinct dose-dependent reduction of bone marrow cellularity within the dose range from 20 cGy to 23.2 cGy in 24 hours after exposure. No modifying effect of the radiation protection elements on spontaneous motor activity was discovered when compared with entrance protons. The group of animals protected by the glass plate exhibited normal orientative-trying reactions and weakened grip with the forelimbs. The effects observed in the experiment indicate the necessity to carry out comprehensive radiobiological researches (physical, biological and mathematical) in assessing the effects of physical protection, that are actual for ensuring radiation safety of crews in

  19. Advances in reference and transfer dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, M.F. [Ionizing Radiation Division, Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    1999-07-01

    All prerequisites are now in place to create a fundamentally and radically different type of calibration service for the radiation processing industry. Advancements in dosimetry and information technology can be combined to provide industry with on-line calibrations, on demand at a low cost. The remote calibration service will serve as a basis for other areas of metrology. (Author)

  20. Dosimetry implant for treating restenosis and hyperplasia

    Science.gov (United States)

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  1. Personnel radiation dosimetry symposium: program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  2. Linearization of dose-response curve of the radiochromic film dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad; DeBlois, Francois; Seuntjens, Jan; Chan, Maria F.; Lewis, Dave [Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada); Executive Administration for Radiation Protection and Safety Medical Devices Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia 13312 (Saudi Arabia); Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada); Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center Basking Ridge, New Jersey 07920 (United States); Ashland Inc., Wayne, New Jersey 07470 (United States)

    2012-08-15

    found that criteria of 3%/3 mm for an IMRT QA plan and 3%/2 mm for a brachytherapy QA plan are passing 95% gamma function points. Conclusions: In this paper, we demonstrate the use of functional argument to linearize the inherently nonlinear response of a radiochromic film based reference dosimetry system. In this way, relative dosimetry can be conveniently performed using radiochromic film dosimetry system without the need of establishing calibration curve.

  3. Agent-Based Computational Modeling of Cell Culture: Understanding Dosimetry In Vitro as Part of In Vitro to In Vivo Extrapolation

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...

  4. Proton Radiobiology

    Directory of Open Access Journals (Sweden)

    Francesco Tommasino

    2015-02-01

    Full Text Available In addition to the physical advantages (Bragg peak, the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE, protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.

  5. SU-E-T-160: Evaluation of Accuracy for Target Margin Size Obtained From CBCT On Lung SBRT Based On Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Lee, M; Kim, M; Suh, T [The Catholic University of Korea, Seoul (Korea, Republic of); Park, J [Stanford University, Stanford, CA (United States); Park, S [The Catholic University of Korea, Seoul (Korea, Republic of); The Catholic University of Korea Uijeongbu St. Mary' s Hospital, Uijeongbu, Gyeonggi (Korea, Republic of)

    2014-06-01

    Purpose: To analysis delivered dose on target using gafchromic films for evaluating accuracy of target margin size obtained from cone beam computed tomography (CBCT) during lung stereotactic body radiation therapy (SBRT) Methods: The phantom consists of measurement part and driving part. The motor of Quasar motion phantom (Modus Medical Devices Inc, London, ON, Canada) was used for driving part and we developed measurement part which consist of cork cylindrical body and acrylic target with radiochromic film inserted into central and both ends of acrylic target. In this study lung SBRT cases through both four dimensional computed tomography (4DCT) and CBCT were selected. Target contouring including margin based on 4DCT is defined with a 1 cm margin around gross tumor volume (GTV) in all directions except for inferior direction. The moving range in inferior direction was larger than other directions thus, including 2 cm margin. In case of CBCT, the margin means blurring of target on CBCT images. This study was compared margin size determined through 4DCT and that of based on CBCT and we also evaluated dose profile and the length of margin in superior-inferior direction on CBCT compared with 4DCT. Results: The length of target including margin was 2.48 cm (based on CBCT) and 2.66 cm (based on 4DCT), respectively in superior-inferior direction. The difference of delivered dose on target between two margins was only within 1%. Conclusions: This study has shown the feasibility of determining target margin using CBCT for delivering more accurate prescription dose to lung cancer.

  6. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Science.gov (United States)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  7. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  8. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  9. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  10. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  11. Subwavelength films for standoff radiation dosimetry

    Science.gov (United States)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  12. Subwavelength films for standoff radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  13. Diamond dosimetry: Outcomes of the CANDIDO and CONRAD INFN projects

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M. [Dipartimento di Fisiopatologia dell' Universita and INFN, Florence (Italy)]. E-mail: marta@dfc.unifi.it; Borchi, E. [Dipartimento di Energetica dell' Universita and INFN, Florence (Italy); Bruzzi, M. [Dipartimento di Energetica dell' Universita and INFN, Florence (Italy); Casati, M. [Dipartimento di Fisiopatologia dell' Universita and INFN, Florence (Italy); Cirrone, P. [Laboratori Nazionali del SUD, INFN, Catania (Italy); Cuttone, G. [Laboratori Nazionali del SUD, INFN, Catania (Italy); De Angelis, C. [Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanita and INFN, Rome (Italy); Lovik, I. [Dipartimento di Fisiopatologia dell' Universita and INFN, Florence (Italy); Onori, S. [Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanita and INFN, Rome (Italy); Raffaele, L. [Laboratori Nazionali del SUD, INFN, Catania (Italy); Sciortino, S. [Dipartimento di Energetica dell' Universita and INFN, Florence (Italy)

    2005-10-21

    This paper reviews the main results of the study, carried out in the framework of the Italian National Institute of Nuclear Physics (INFN, Istituto Nazionale di Fisica Nucleare) projects, namely CANDIDO and CONRAD, on natural and synthetic diamond-based dosimeters for clinical radiotherapy. Characteristics of diamond such as radiation hardness, high sensitivity, tissue equivalence, etc., make this material interesting for dosimetry applications. For some years, natural diamonds have been commercially available for on-line radiotherapy dosimetry. Nevertheless, recent developments in the 'Chemical Vapour Deposition' (CVD) technique have addressed the attention on synthetic samples that potentially could be grown at low cost and with features suitable for dosimetric use. Several samples, differently grown and with different electrical contacts, have been compared by measuring their current response during irradiation with high-energy photon, electron and proton beams. Properties of dosimetric interest such as linearity, pre-irradiation dose, dose rate dependence, stability and rise time have been investigated. The results obtained so far within the INFN collaboration demonstrate the suitability of natural diamond detectors for many radiotherapy applications and the great potential of CVD diamond-based devices even though, at present, the commercial natural diamond dosimeters have a better behaviour with respect to the synthetic samples. Further efforts have to be made mainly to improve the dynamic of response and performance stability.

  14. Diamond dosimetry: Outcomes of the CANDIDO and CONRAD INFN projects

    Science.gov (United States)

    Bucciolini, M.; Borchi, E.; Bruzzi, M.; Casati, M.; Cirrone, P.; Cuttone, G.; De Angelis, C.; Lovik, I.; Onori, S.; Raffaele, L.; Sciortino, S.

    2005-10-01

    This paper reviews the main results of the study, carried out in the framework of the Italian National Institute of Nuclear Physics (INFN, Istituto Nazionale di Fisica Nucleare) projects, namely CANDIDO and CONRAD, on natural and synthetic diamond-based dosimeters for clinical radiotherapy. Characteristics of diamond such as radiation hardness, high sensitivity, tissue equivalence, etc., make this material interesting for dosimetry applications. For some years, natural diamonds have been commercially available for on-line radiotherapy dosimetry. Nevertheless, recent developments in the "Chemical Vapour Deposition" (CVD) technique have addressed the attention on synthetic samples that potentially could be grown at low cost and with features suitable for dosimetric use. Several samples, differently grown and with different electrical contacts, have been compared by measuring their current response during irradiation with high-energy photon, electron and proton beams. Properties of dosimetric interest such as linearity, pre-irradiation dose, dose rate dependence, stability and rise time have been investigated. The results obtained so far within the INFN collaboration demonstrate the suitability of natural diamond detectors for many radiotherapy applications and the great potential of CVD diamond-based devices even though, at present, the commercial natural diamond dosimeters have a better behaviour with respect to the synthetic samples. Further efforts have to be made mainly to improve the dynamic of response and performance stability.

  15. SCALING PARAMETERS FOR HOT-PARTICLE BETA DOSIMETRY.

    Science.gov (United States)

    Mangini, Colby D; Hamby, David M

    2016-12-01

    Scaling of dose-point kernel (DPK) values for beta particles transmitted by high-Z sources will overestimate dose at shallow depths while underestimating dose at greater depths due to spectral hardening. A new model has been developed based on a determination of the amount of monoenergetic electron absorption that occurs in a given source thickness through the use of EGSnrc (Electron Gamma Shower) Monte Carlo simulations. Integration over a particular beta spectrum provides the beta-particle DPK following self-absorption as a function of source thickness and radial depth in water, thereby accounting for spectral hardening that may occur in higher-Z materials. Beta spectra of varying spectral shapes and endpoint energies were used to test the model for select source materials with 7.42 ≤ Z ≤ 94. The results demonstrate that significant improvements can be made to DPK-based dosimetry models when dealing with high-Z volumetric sources. This new scaling model is currently being used to improve the accuracy of the beta-dosimetry calculations in VARSKIN 5.

  16. Production and characterization of compounds based on MgB{sub 4}O{sub 7} for application in dosimetry; Producao e caracterizacao de compostos a base de MgB{sub 4}O{sub 7} para aplicacao em dosimetria

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiza Freire de

    2016-07-01

    Many materials with luminescent properties are used for ionizing radiation dosimetry through the thermoluminescence (TL) and optically stimulated luminescence (OSL) techniques. Detectors based on lithium fluoride (LiF), calcium sulphate (CaSO{sub 4}) and aluminum oxide (Al{sub 2}O{sub 3}), doped or codoped with various elements, are the TL or OSL commercial dosimeters most widely used currently. However, several researches are focused to the development of new TL /OSL materials in intention to enhance the dosimetric properties, in view that no TL/OSL dosimeter has all the ideal characteristics for monitoring the radiation. In this context, magnesium tetraborate (MgB{sub 4}O{sub 7}), which has been presented in the literature as a material for dosimetry TL, was investigated in this work. As there are no reports on the structural characterization of this material or regarding to its applicability on OSL dosimetry, the proposal of the present work was to develop compounds based on MgB{sub 4}O{sub 7}, with different doping, by solid state synthesis. It was made the structural, optical, TL and OSL characterization of the compound to verify it feasibility for application on radiation dosimetry. Initially, it was determined the calcination temperature and time for MgB{sub 4}O{sub 7} formation, with the use of thermal analyses and x ray diffraction. The ideal calcination was found at 900 °C for 7 hours. It were produced , in powder form, the compounds: MgB{sub 4}O{sub 7}, MgB{sub 4}O{sub 7}:Dy, MgB{sub 4}O{sub 7}:Dy,Li, MgB{sub 4}O{sub 7}:Ce, MgB{sub 4}O{sub 7}:Ce,Li, MgB{sub 4}O{sub 7}:Nd and MgB{sub 4}O{sub 7}:Nd,Li. For TL and OSL analyses it were produced pellets sintering at 950 °C for 2 hours. The radioluminescence (RL) analyses of MgB{sub 4}O{sub 7}:Dy and MgB{sub 4}O{sub 7}:Dy,Li shows wavelength emissions at 490, 590, 670 and 760 nm. For MgB{sub 4}O{sub 7}:Ce and MgB{sub 4}O{sub 7}:Ce,Li RL was observed wide emission band in the ultraviolet region. For the Mg

  17. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, N. Patrik (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark); Niels Bohr Inst., Faculty of Sciences, Univ. of Copenhagen (Denmark)), e-mail: brodin.patrik@gmail.com; Munck af Rosenschoeld, Per; Aznar, Marianne C.; Vogelius, Ivan R. (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark)); Kiil-Berthelsen, Anne (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark); Dept. of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Investigations, Rigshospitalet, Univ. of Copenhagen (Denmark)); Nilsson, Per; Bjoerk-Eriksson, Thomas (Dept. of Oncology, Skaane Univ. Hospital and Lund Univ., Lund (Sweden)); Lannering, Birgitta (Dept. of Paediatric Oncology, The Queen Silvia Children' s Hospital, Gothenburg (Sweden))

    2011-08-15

    Introduction. The aim of this model study was to estimate and compare the risk of radiation-induced adverse late effects in pediatric patients with medulloblastoma (MB) treated with either three-dimensional conformal radiotherapy (3D CRT), inversely-optimized arc therapy (RapidArc (RA)) or spot-scanned intensity-modulated proton therapy (IMPT). The aim was also to find dose-volume toxicity parameters relevant to children undergoing RT to be used in the inverse planning of RA and IMPT, and to use in the risk estimations. Material and methods. Treatment plans were created for all three techniques on 10 pediatric patients that have been treated with craniospinal irradiation (CSI) at our institution in 2007-2009. Plans were generated for two prescription CSI doses, 23.4 Gy and 36 Gy. Risk estimates were based on childhood cancer survivor data when available and secondary cancer (SC) risks were estimated as a function of age at exposure and attained age according to the organ-equivalent dose (OED) concept. Results. Estimates of SC risk was higher for the RA plans and differentiable from the estimates for 3D CRT at attained ages above 40 years. The risk of developing heart failure, hearing loss, hypothyroidism and xerostomia was highest for the 3D CRT plans. The risks of all adverse effects were estimated as lowest for the IMPT plans, even when including secondary neutron (SN) irradiation with high values of the neutron radiation weighting factors (WR{sub neutron}). Conclusions. When comparing RA and 3D CRT treatment for pediatric MB it is a matter of comparing higher SC risk against higher risks of non-cancer adverse events. Considering time until onset of the different complications is necessary to fully assess patient benefit in such a comparison. The IMPT plans, including SN dose contribution, compared favorably to the photon techniques in terms of all radiobiological risk estimates

  18. AFRRI (Armed Forces Radiobiology Research Institute) reports, July, August and September 1986. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contents include: post-radiation regional cerebral blood flow in primates; heart-function studies in dogs after acute gamma irradiation of the precordium; the effect of anesthetic, sedative or narcotic drugs on intrahepatic and extrahepatic biliary kinetics; effect of gamma radiation on sodium channels in different conformations in neuroblastoma cells; effects of ethanol exposure on brain sodium channels; ionizing radiation alters the properties of sodium channels in rat brain synaptosomes; thymic hormones in thymus recovery from radiation injury; acute toxicity of petroleum- and shale-derived distillate fuel; light microscopic, hematologic, and serum chemistry studies; radioprotective properties of detoxified lipid A from Salmonella Minnesota R595; brain areas involved in production of morphine-induced locomotor hyperactivity of the C57B1/6J mouse; preliminary evaluation of US Army radiac detector DT-236/PD and radiac computer-indicator CP-696/UD; and calorimetric dose measurements and calorimetric system developed for the armed forces radiobiology research institute.

  19. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, G.A.; Schubert, W.W.; Marshall, T.M. (Jet Propulsion Lab., Pasadena, CA (United States))

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represents a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space. (author).

  20. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation

    Science.gov (United States)

    Nelson, G. A.; Schubert, W. W.; Marshall, T. M.

    1992-01-01

    The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space.

  1. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  2. The radiobiological principles of boron neutron capture therapy: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Hopewell, J.W., E-mail: john.hopewell@gtc.ox.ac.uk [Green Templeton College and Particle Therapy Cancer Research Institute, University of Oxford, Oxford (United Kingdom); Morris, G.M. [Medical Department, Brookhaven National Laboratory, Upton, NY (United States); Schwint, A. [Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission, San Martin, Buenos Aires (Argentina); Coderre, J.A. [Ora Inc, 300 Brickstone Square, Andover, MA (United States)

    2011-12-15

    The radiobiology of the dose components in a BNCT exposure is examined. The effect of exposure time in determining the biological effectiveness of {gamma}-rays, due to the repair of sublethal damage, has been largely overlooked in the application of BNCT. Recoil protons from fast neutrons vary in their relative biological effectiveness (RBE) as a function of energy and tissue endpoint. Thus the energy spectrum of a beam will influence the RBE of this dose component. Protons from the neutron capture reaction in nitrogen have not been studied but in practice protons from nitrogen capture have been combined with the recoil proton contribution into a total proton dose. The relative biological effectiveness of the products of the neutron capture reaction in boron is derived from two factors, the RBE of the short range particles and the bio-distribution of boron, referred to collectively as the compound biological effectiveness factor. Caution is needed in the application of these factors for different normal tissues and tumors. - Highlights: Black-Right-Pointing-Pointer Radiobiological properties of different dose components in BNCT are considered. Black-Right-Pointing-Pointer Effectiveness of {gamma}-ray dose depends strongly on exposure time due to sublethal damage repair. Black-Right-Pointing-Pointer Effectiveness of fast neutron dose depends on neutron energy spectrum. Black-Right-Pointing-Pointer {gamma}-ray and fast neutron characteristics vary between beams and thus weighting factors will differ. Black-Right-Pointing-Pointer Weighing factors for boron dose depend on the carrier, the tissue and its mode of administration.

  3. Chasing Ghosts in Space Radiobiology Research: The Lost Focus on Non-Targeted Effects

    Science.gov (United States)

    Cucinotta, Francis; Saganti, Premkumar; Cacao, Eliedonna

    2016-07-01

    The doses and dose-rates of astronaut exposures to galactic cosmic rays (GCR) are accurately known, and lead to particle hits per cell nucleus from high charge and energy (HZE) particles of much less than one hit per cell per week. A large number of experiments have shown that additivity of biological effects is a valid assumption for space radiation exposures, while experiments at higher doses and dose-rates than occur in space continue to be a focus of the majority of space radiobiology research. Furthermore HZE particle exposures with mono-energetic particles manifest themselves as a mixed-radiation field due to the contributions of delta-rays and the random impact parameter of a particles track core to DNA and non-DNA targets in cells and tissues. The mixed-field manifestation of mono-energetic HZE particle exposures is well known from theoretical studies of microdosimetry and track structure. Additional mixed-field effects occur for single species experiments due to nuclear fragmentation in particle accelerator beam-lines and biological samples along with energy straggling. In contrast to these well known aspects of space radiobiology there are many open questions on the contribution of non-targeted effects to low dose and dose-rate exposures. Non-targeted effects (NTEs) include bystander effects and genomic instability, and have been shown to be the most important outstanding question for reducing uncertainties in space radiation cancer risk assessment. The dose-rate and radiation quality dependence of NTE's has not been established, while there is an over-arching need to develop 21st century experimental models of human cancer risk. We review possible mechanisms of NTE's and how new experiments to address these issues could be designed.

  4. Dose reduction in computed tomography: the effect of eye and testicle shielding on radiation dose measured in patients with beryllium oxide-based optically stimulated luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Grobe, Henrik; Koch, Arne; Abolmaali, Nasreddin [Dresden University of Technology, OncoRay - Center for Radiation Research in Oncology, Molecular Imaging, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, P.O. Box 86, Dresden (Germany); Sommer, Marian; Henniger, Juergen [Dresden University of Technology, Radiation Physics Group, Institute of Nuclear and Particle Physics, Dresden (Germany); Hietschold, Volker [University Hospital Carl Gustav Carus, Institute and Policlinic of Radiological Diagnostics, Dresden (Germany)

    2009-05-15

    The aim of this study was to assess the effect of eye and testicle shielding on radiation dose to the lens and the testes of patients undergoing CT examinations. Fifty-one male patients underwent CT twice with identical protocols initially without, the second time with protective garments. Doses to the testes and the lenses were recorded with beryllium oxide-based dosimeters. The dose to the testes and lenses from CT exposure was reduced by 96.2% {+-} 1.7% and 28.2% {+-} 18.5%, when testicle and eye shielding was used, respectively. The effect of the eye shielding on the eye lens dose was found to depend on the x-ray tube position when the eye is primarily exposed during the scan. The maximum eye lens dose reduction achieved was found to be 43.2% {+-} 6.5% corresponding to the anterior position of the tube. A significant correlation between the patient's body mass index and dose exposure could not be found. Eye and testicle shields, apart from being inexpensive and easy to use, were proven to be effective in reducing eye lens and testicle radiation dose burden from CT exposures. (orig.)

  5. Low incidence of chest wall pain with a risk-adapted lung stereotactic body radiation therapy approach using three or five fractions based on chest wall dosimetry.

    Directory of Open Access Journals (Sweden)

    Thibaud P Coroller

    Full Text Available PURPOSE: To examine the frequency and potential of dose-volume predictors for chest wall (CW toxicity (pain and/or rib fracture for patients receiving lung stereotactic body radiotherapy (SBRT using treatment planning methods to minimize CW dose and a risk-adapted fractionation scheme. METHODS: We reviewed data from 72 treatment plans, from 69 lung SBRT patients with at least one year of follow-up or CW toxicity, who were treated at our center between 2010 and 2013. Treatment plans were optimized to reduce CW dose and patients received a risk-adapted fractionation of 18 Gy×3 fractions (54 Gy total if the CW V30 was less than 30 mL or 10-12 Gy×5 fractions (50-60 Gy total otherwise. The association between CW toxicity and patient characteristics, treatment parameters and dose metrics, including biologically equivalent dose, were analyzed using logistic regression. RESULTS: With a median follow-up of 20 months, 6 (8.3% patients developed CW pain including three (4.2% grade 1, two (2.8% grade 2 and one (1.4% grade 3. Five (6.9% patients developed rib fractures, one of which was symptomatic. No significant associations between CW toxicity and patient and dosimetric variables were identified on univariate nor multivariate analysis. CONCLUSIONS: Optimization of treatment plans to reduce CW dose and a risk-adapted fractionation strategy of three or five fractions based on the CW V30 resulted in a low incidence of CW toxicity. Under these conditions, none of the patient characteristics or dose metrics we examined appeared to be predictive of CW pain.

  6. Spectrometry and dosimetry of fast neutrons using pin diode detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zaki Dizaji, H., E-mail: hz.dizaji@znu.ac.ir [Physics Department, Faculty of Science, Zanjan University, Zanjan (Iran, Islamic Republic of); Kakavand, T. [Physics Department, Faculty of Science, International Imam Khomeini University, Qazvin (Iran, Islamic Republic of); Abbasi Davani, F. [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2014-03-21

    Elastic scattering of light nuclei, especially hydrogen, is widely used for detection of fast neutrons. Semiconductor devices based on silicon detectors are frequently used for different radiation detections. In this work, a neutron spectrometer consisting of a pin diode coupled with a polyethylene converter and aluminum degrader layers has been developed. Aluminum layers are used as discriminators of different neutron energies for detectors. The response of the converter–degrader–pin diode configuration, the optimum thickness of the converter and the degrader layers have been extracted using MCNP and SRIM simulation codes. The possibility of using this type of detector for fast neutron spectrometry and dosimetry has been investigated. A fairly good agreement was seen between neutron energy spectrum and dose obtained from our configurations and these specifications from an {sup 241}Am–Be neutron source. - Highlights: • Silicon pin diodes are applied to the fast neutron detection. • The technique of converter degrader pin diode is used for spectrometry of fast neutrons. • The method is used for dosimetry of fast neutron.

  7. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  8. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties.

    Science.gov (United States)

    Romm, Horst; Wilkins, Ruth C; Coleman, C Norman; Lillis-Hearne, Patricia K; Pellmar, Terry C; Livingston, Gordon K; Awa, Akio A; Jenkins, Mark S; Yoshida, Mitsuaki A; Oestreicher, Ursula; Prasanna, Pataje G S

    2011-03-01

    Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.

  9. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  10. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W E [University of Florida, Gainesville; Eckerman, Keith F [ORNL; Sgouros, George [Johns Hopkins University; Thomas, Steven R. [University of Cincinnati

    2009-03-01

    The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.

  11. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  12. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model

    Science.gov (United States)

    Swartling, Johannes; Höglund, Odd V.; Hansson, Kerstin; Södersten, Fredrik; Axelsson, Johan; Lagerstedt, Anne-Sofie

    2016-02-01

    Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.

  13. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature.

    Science.gov (United States)

    Bolch, Wesley E; Eckerman, Keith F; Sgouros, George; Thomas, Stephen R

    2009-03-01

    The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.

  14. Intercomparison of passive dosimetry technology at EDF facilities in France.

    Science.gov (United States)

    Garcier, Y; Cordier, G; Pauron, C; Fazileabasse, J

    2007-01-01

    Since the spring of 1999, new French radiation protection legislation has allowed the use of passive dosemeters, other than the silver emulsion film badge, for the measurement of H(p)(10). Faced with the eventual obsolescence of its dosimetry system, Electricité de France (EDF, the French electricity provider) initiated a comparative study of passive dosemeters, based on different technologies, that had received accreditation by national laboratories and regulatory bodies, namely: TLD, RPL and OSL. An extended field study in nuclear power stations and medical X-ray departments has shown that all technologies provide compatible dosimetric estimates. It also showed that the selected dosemeters based on RPL and OSL technologies gave better results due to their energy responses and to a lower detection threshold compliant with the new regulation. A final suggestion to implement a new OSL based dosimetric system is made due to its overall performance and to its lower cost of implementation.

  15. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  16. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Anthony [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Lo, Anthony T., E-mail: tonyho22003@yahoo.com [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chang, Steve G.; Adler, John R. [Department of Neurosurgery, Stanford University, Stanford, CA (United States)

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  17. Technical basis document for internal dosimetry

    CERN Document Server

    Hickman, D P

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosi...

  18. Absolute and relative dosimetry for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  19. Absolute and relative dosimetry for ELIMED

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  20. Development of probabilistic internal dosimetry computer code

    Science.gov (United States)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  1. Comp Plan: A computer program to generate dose and radiobiological metrics from dose-volume histogram files.

    Science.gov (United States)

    Holloway, Lois Charlotte; Miller, Julie-Anne; Kumar, Shivani; Whelan, Brendan M; Vinod, Shalini K

    2012-01-01

    Treatment planning studies often require the calculation of a large number of dose and radiobiological metrics. To streamline these calculations, a computer program called Comp Plan was developed using MATLAB. Comp Plan calculates common metrics, including equivalent uniform dose, tumor control probability, and normal tissue complication probability from dose-volume histogram data. The dose and radiobiological metrics can be calculated for the original data or for an adjusted fraction size using the linear quadratic model. A homogeneous boost dose can be added to a given structure if desired. The final output is written to an Excel file in a format convenient for further statistical analysis. Comp Plan was verified by independent calculations. A lung treatment planning study comparing 45 plans for 7 structures using up to 6 metrics for each structure was successfully analyzed within approximately 5 minutes with Comp Plan. The code is freely available from the authors on request.

  2. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  3. Reconstructive dosimetry for cutaneous radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Da Silva, F.C.A., E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Valverde, N.J. [Fundacao Eletronuclear de Assistencia Medica, Rio de Janeiro, RJ (Brazil)

    2015-10-15

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. (author)

  4. Methodological aspects of EPR dosimetry with teeth

    Energy Technology Data Exchange (ETDEWEB)

    Sholom, S.; Chumak, V. [Scientific Center for Radiation Medicine, Kiev (Ukraine)

    2001-07-01

    EPR dosimetry with tooth enamel is known today as one of the most reliable and accurate methods of retrospective dosimetry. In the present study a comprehensive analysis of influence of the major confounding factors (solar UV exposure and dental X-ray diagnostic procedures) on the accuracy of accidental dose reconstruction is given. In this analysis, the facts known from literature as well as own authors' results were considered. Among the latter it is worth to mention study of doses in enamel caused by X-ray diagnostic procedures as well as investigation of dose profiles in front teeth, which are most affected to solar radiation. As a main result, the variant of dosimetric technique is proposed. It comprises the optimal combination of strongest sides of existing techniques which allows to conduct routine reconstruction of accidental doses as low as few tens of mGy with errors of the same order of magnitude. The proposed technique is primarily destined for dosimetry of Chernobyl liquidators, but could be used for reconstruction of doses of other over-exposed categories. (orig.)

  5. In vivo dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mijnheer, Ben [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX (Netherlands); Beddar, Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Izewska, Joanna [Division of Human Health, International Atomic Energy Agency, Vienna 1400 (Austria); Reft, Chester [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois 60637 (United States)

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  6. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  7. Patient dosimetry in classical radiology;Dosimetrie patient en radiologie classique

    Energy Technology Data Exchange (ETDEWEB)

    Valero, M. [Autorite de Surete Nucleaire, 75 Paris (France); Sirinelli, D. [Tours Univ., 37 (France); Chateil, J.F. [CHU Bordeaux, 33 (France)

    2009-10-15

    The objective is to give to the participants the means to determine, by simple methods, the dose delivered to skin during a radiological examination (conventional or numerical). The message to remember is: the use of a numerical detector does not lead systematically to reduce the dose at the patient. The dose.length product is a risk indicator. It is important to compare our practices to the procedures written in the guide of procedures and to note and to send to I.R.S.N. the dosimetry data relative to the dosimetry reference levels. (N.C.)

  8. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    Science.gov (United States)

    Huerta-Parajon, M.; Martinez-Ballarin, R.; Abad, E.

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 106 protons/cm2 s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  9. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Huerta-Parajon, M., E-mail: mhuerta@essbilbao.org; Martinez-Ballarin, R., E-mail: rmartinez@essbilbao.org; Abad, E., E-mail: eabad@essbilbao.org

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 10{sup 6} protons/cm{sup 2} s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  10. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials.

    Science.gov (United States)

    Pal, Anoop K; Bello, Dhimiter; Cohen, Joel; Demokritou, Philip

    2015-01-01

    In vitro high throughput screening platforms based on mechanistic injury pathways are been used for hazard assessment of engineered nanomaterials (ENM). Toxicity screening and other in vitro nanotoxicology assessment efforts in essence compare and rank nanomaterials relative to each other. We hypothesize that this ranking of ENM is susceptible to dispersion and dosimetry protocols, which continue to be poorly standardized. Our objective was to quantitate the impact of dosimetry on toxicity ranking of ENM. A set of eight well-characterized and diverse low aspect ratio ENMs, were utilized. The recently developed in vitro dosimetry platform at Harvard, which includes preparation of fairly monodispersed suspensions, measurement of the effective density of formed agglomerates in culture media and fate and transport modeling was used for calculating the effective dose delivered to cells as a function of time. Changes in the dose-response relationships between the administered and delivered dose were investigated with two representative endpoints, cell viability and IL-8 production, in the human monocytic THP-1 cells. The slopes of administered/delivered dose-response relationships changed 1:4.94 times and were ENM-dependent. The overall relative ranking of ENM intrinsic toxicity also changed considerably, matching notably better the in vivo inflammation data (R(2 )= 0.97 versus 0.64). This standardized dispersion and dosimetry methodology presented here is generalizable to low aspect ratio ENMs. Our findings further reinforce the need to reanalyze and reinterpret in vitro ENM hazard ranking data published in the nanotoxicology literature in the light of dispersion and dosimetry considerations (or lack thereof) and to adopt these protocols in future in vitro nanotoxicology testing.

  11. A new formalism for reference dosimetry of small and nonstandard fields.

    Science.gov (United States)

    Alfonso, R; Andreo, P; Capote, R; Huq, M Saiful; Kilby, W; Kjäll, P; Mackie, T R; Palmans, H; Rosser, K; Seuntjens, J; Ullrich, W; Vatnitsky, S

    2008-11-01

    The use of small fields in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fields that are composed of small fields such as for intensity modulated radiation therapy (IMRT). This has been facilitated by the increased availability of standard and add-on multileaf collimators and a variety of new treatment units. For these fields, dosimetric errors have become considerably larger than in conventional beams mostly due to two reasons; (i) the reference conditions recommended by conventional Codes of Practice (CoPs) cannot be established in some machines and (ii) the measurement of absorbed dose to water in composite fields is not standardized. In order to develop standardized recommendations for dosimetry procedures and detectors, an international working group on reference dosimetry of small and nonstandard fields has been established by the International Atomic Energy Agency (IAEA) in cooperation with the American Association of Physicists in Medicine (AAPM) Therapy Physics Committee. This paper outlines a new formalism for the dosimetry of small and composite fields with the intention to extend recommendations given in conventional CoPs for clinical reference dosimetry based on absorbed dose to water. This formalism introduces the concept of two new intermediate calibration fields: (i) a static machine-specific reference field for those modalities that cannot establish conventional reference conditions and (ii) a plan-class specific reference field closer to the patient-specific clinical fields thereby facilitating standardization of composite field dosimetry. Prior to progressing with developing a CoP or other form of recommendation, the members of this IAEA working group welcome comments from the international medical physics community on the formalism presented here.

  12. Light ions radiobiological effects on human tumoral cells: measurements modelling and application to hadron-therapy; Mesures et modelisation des effets radiobiologiques des ions legers sur des cellules tumorales humaines: application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Jalade, P

    2005-11-15

    In classical radiotherapy, the characteristics of photons interactions undergo limits for the treatment of radioresistant and not well located tumours. Pioneering treatments of patients at the Lawrence Laboratory at Berkeley has demonstrated two advantages of hadrons beams: the Relative Biologic Effect (the RBE) and the ballistic of the beams. Since 1994, the clinical centre at Chiba, has demonstrated successfully the applicability of the method. A physics group, managed by G. Kraft, at Darmstadt in Germany, has underlined the advantages of carbon beams. An European pool, called ENGIGHT (European Network for LIGHt ion Therapy) has been created in which the French ETOILE project appeared. The purpose of the thesis concerns measurements and models of 'in vitro' human cells survival. In the first part, the nowadays situation in particles interactions, tracks and cells structures and radiobiology is presented here. The second is devoted to the models based on the beam tracks and localization of the physical dose. Discussion of sensitivity to various parameters of the model has been realized with the help of numerical simulations. Finally the predictions of the improved model has been compared to experimental irradiations of human cells with argon and carbon beams of the GANIL machine. Conclusion of such study shows the performance and limits of a local model for predicting the radiobiological efficiency of light ions in hadron-therapy. (author)

  13. Analysis of dosimetry from the H.B. Robinson unit 2 pressure vessel benchmark using RAPTOR-M3G and ALPAN

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.A. [Westinghouse Electric Company, LLC, 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States)

    2011-07-01

    Document available in abstract form only, full text of document follows: The dosimetry from the H. B. Robinson Unit 2 Pressure Vessel Benchmark is analyzed with a suite of Westinghouse-developed codes and data libraries. The radiation transport from the reactor core to the surveillance capsule and ex-vessel locations is performed by RAPTOR-M3G, a parallel deterministic radiation transport code that calculates high-resolution neutron flux information in three dimensions. The cross-section library used in this analysis is the ALPAN library, an Evaluated Nuclear Data File (ENDF)/B-VII.0-based library designed for reactor dosimetry and fluence analysis applications. Dosimetry is evaluated with the industry-standard SNLRML reactor dosimetry cross-section data library. (authors)

  14. A comparative analysis of radiobiological models for cell surviving fractions at high doses.

    Science.gov (United States)

    Andisheh, B; Edgren, M; Belkić, Dž; Mavroidis, P; Brahme, A; Lind, B K

    2013-04-01

    For many years the linear-quadratic (LQ) model has been widely used to describe the effects of total dose and dose per fraction at low-to-intermediate doses in conventional fractionated radiotherapy. Recent advances in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) have increased the interest in finding a reliable cell survival model, which will be accurate at high doses, as well. Different models have been proposed for improving descriptions of high dose survival responses, such as the Universal Survival Curve (USC), the Kavanagh-Newman (KN) and several generalizations of the LQ model, e.g. the Linear-Quadratic-Linear (LQL) model and the Pade Linear Quadratic (PLQ) model. The purpose of the present study is to compare a number of models in order to find the best option(s) which could successfully be used as a fractionation correction method in SRT. In this work, six independent experimental data sets were used: CHOAA8 (Chinese hamster fibroblast), H460 (non-small cell lung cancer, NSLC), NCI-H841 (small cell lung cancer, SCLC), CP3 and DU145 (human prostate carcinoma cell lines) and U1690 (SCLC). By detailed comparisons with these measurements, the performance of nine different radiobiological models was examined for the entire dose range, including high doses beyond the shoulder of the survival curves. Using the computed and measured cell surviving fractions, comparison of the goodness-of-fit for all the models was performed by means of the reduced χ (2)-test with a 95% confidence interval. The obtained results indicate that models with dose-independent final slopes and extrapolation numbers generally represent better choices for SRT. This is especially important at high doses where the final slope and extrapolation numbers are presently found to play a major role. The PLQ, USC and LQL models have the least number of shortcomings at all doses. The extrapolation numbers and final slopes of these models do not depend on dose. Their asymptotes

  15. Radioembolisation with {sup 90}Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cremonesi, Marta; Ferrari, Mahila; Pedroli, Guido [European Institute of Oncology, Unit of Medical Physics, Milan (Italy); Bartolomei, Mirco; Arico, Demetrio; De Cicco, Concetta [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Orsi, Franco; Bonomo, Guido [European Institute of Oncology, Unit of Interventistic Radiology, Milan (Italy); Mallia, Andrew [Gamma Unit, Radiology Department, St. Luke' s Hospital (Malta); Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy)

    2008-11-15

    Radioembolisation with {sup 90}Y-microspheres is a new locoregional treatment of hepatic lesions, usually applied as single cycle. Multi-cycle treatments might be considered as a strategy to improve the risk-benefit balance. With the aim to derive suitable information for patient tailored therapy, available patients' dosimetric data were reviewed according to the linear-quadratic model and converted into biological effective dose (BED) values. Single vs. multi-cycle approaches were compared through radiobiological perspective. Twenty patients with metastatic lesions underwent radioembolisation. The {sup 90}Y-administered activity (AA) was established in order to respect a precautionary limit dose (40 Gy) for the non-tumoral liver (NTL). BED was calculated setting {alpha}/{beta} = 2.5 Gy (NTL), 10 Gy (tumours); T{sub 1/2,eff} = T{sub 1/2,phys} = 64.2 h; T{sub 1/2,rep} = 2.5 h (NTL), 1.5 h (tumours). The BED to NTL was considered as a constraint for multi-cycle approach. The AA for two cycles and the percent variations of AA, tumour dose, BED were estimated. In one-cycle, for a prescribed BED to NTL of 64 Gy (NTL dose = 40 Gy), AA was 1.7 (0.9-3.2) GBq, tumour dose was 130 (65-235) Gy, and tumour BED was 170 (75-360) Gy. Considering two cycles, {proportional_to}15% increase was found for AA and dose to NTL, with unvaried BED for NTL. Tumour dose increase was 20 (10-35) Gy; tumour BED increase was 10 (3-11) Gy. In different protocols allowing 80 Gy to NTL, the BED sparing estimated was {proportional_to}50 Gy (two cycles) and 65 Gy (three cycles). From a radiobiological perspective, multi-cycle treatments would allow administering higher activities with increased tumour irradiation and preserved radiation effects on NTL. Trials comparing single vs. multiple cycles are suggested. (orig.)

  16. Wall Attenuation and Scatter Characteristics of Ionization Chambers at Armed Forces Radiobiology Research Institute

    Science.gov (United States)

    1986-12-01

    0.5 0.10 TE 155 Exradin Cylindrical 0.05 0.10 TE, tissue-equivalent plastic type A-150; GR, graphite; MG, magnesium For each wall thickness, the...11 to be used in AAPM protocol (reference 16) tExtrapolated from Table III in reference 16 DISCUSSION The results shown in Table 2 and Appendix B...Physicists in Medicine ( AAPM ) Task Group 21 protocol for High Energy Photon and Electron Dosimetry (16). In this protocol, the chamber wall correction

  17. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o...... of the order of +/-5% (1 sigma) for both Co-60 and electron beam plants. (C) 2000 Elsevier Science Ltd. All rights reserved....

  18. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  19. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    CERN Document Server

    Abler, Daniel; Carli, Christian; Dosanjh, Manjit; Peach, Ken; Orecchia, Roberto

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN’s competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR an...

  20. Internal dosimetry of plutonium using the late urinary excretion.

    Science.gov (United States)

    Sharma, R C; Abani, M C

    2000-10-01

    An attempt has been made to standardize the methodology of internal dose computation from the late urinary excretion data. The methodology was selected keeping in mind the most recent ICRP publications and the results of internal dosimetry intercomparison studies reported in literature. The key element of this methodology is the PC-based computational software LUDEP 2.05, which implements the new model of the human respiratory tract. Late urinary excretion data of three male subjects involved in accidental intakes of plutonium aerosols more than 25 years ago were interpreted in terms of intakes and internal doses with the aid of the standardized methodology. An important implication of this work is that late urinary excretion data of the occupational workers of any plutonium handling facility could be used to show the compliance with the life-time dose limit.

  1. Validation of the micronucleus-centromere assay for biological dosimetry

    Directory of Open Access Journals (Sweden)

    Wojcik A.

    2000-01-01

    Full Text Available The micronucleus assay is frequently used for purposes of biological dosimetry. Due to high interindividual variability in the spontaneous frequency of micronuclei, its sensitivity in the low dose region is poor. It has been suggested that this problem can be mitigated by selectively analyzing the frequency of those micronuclei which contain only acentric fragments. Using a pan-centromeric FISH probe we have studied the dose dependence of micronuclei with centromeres in peripheral lymphocytes of human donors. In contrast to previous publications, our approach is based on determining the relative frequency of micronuclei with and without centromeric signals. Our results confirm previous observations that in the low dose range of ionizing radiation, the micronucleus-centromere assay is more sensitive than the conventional micronucleus test.

  2. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  3. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    Science.gov (United States)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  4. Radiobiology and Reproduction—What Can We Learn from Mammalian Females?

    Directory of Open Access Journals (Sweden)

    Montserrat Garcia-Caldés

    2012-08-01

    Full Text Available Ionizing radiation damages DNA and induces mutations as well as chromosomal reorganizations. Although radiotherapy increases survival among cancer patients, this treatment does not come without secondary effects, among which the most problematic is gonadal dysfunction, especially in women. Even more, if radio-induced DNA damage occurs in germ cells during spermatogenesis and/or oogenesis, they can produce chromosomal reorganizations associated with meiosis malfunction, abortions, as well as hereditary effects. However, most of our current knowledge of ionizing radiation genotoxic effects is derived from in vitro studies performed in somatic cells and there are only some experimental data that shed light on how germ cells work when affected by DNA alterations produced by ionizing radiation. In addition, these few data are often related to mammalian males, making it difficult to extrapolate the results to females. Here, we review the current knowledge of radiobiology and reproduction, paying attention to mammalian females. In order to do that, we will navigate across the female meiotic/reproductive cycle/life taking into account the radiation-induced genotoxic effects analysis and animal models used, published in recent decades.

  5. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect Releases.

    Science.gov (United States)

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2015-06-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5-7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1-4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread.

  6. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Constanzo, J. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne (France); Fallavier, M., E-mail: m.fallavier@ipnl.in2p3.fr [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne (France); Alphonse, G. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); Faculté de Médecine Lyon-Sud, LRCM, F-69921 Oullins (France); Hospices-Civils-de-Lyon, CHLS, F-69495 Pierre-Bénite (France); Bernard, C. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne (France); Battiston-Montagne, P. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); Faculté de Médecine Lyon-Sud, LRCM, F-69921 Oullins (France); Rodriguez-Lafrasse, C. [Université de Lyon, F-69622, Lyon (France); Université Lyon 1, Villeurbanne (France); Faculté de Médecine Lyon-Sud, LRCM, F-69921 Oullins (France); Hospices-Civils-de-Lyon, CHLS, F-69495 Pierre-Bénite (France); and others

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  7. A parameterization method and application in breast tomosynthesis dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2013-09-15

    Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized using a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA

  8. Neutron dosimetry for low dose rate Cf-252 AT sources and adherence to recent clinical dosimetry protocol for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Radiation Oncology; Martin, R.C. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-01

    In 1995, the American Association of Physicists in Medicine Task Group 43 (AAPM TG-43) published a protocol obsoleting all mixed-field radiation dosimetry for Cf-252. Recommendations for a new brachytherapy dosimetry formalism made by this Task Group favor quantification of source strength in terms of air kerma rather than apparent Curies or other radiation units. Additionally, representation of this dosimetry data in terms of radial dose functions, anisotropy functions, geometric factors, and dose rate constants are in an angular and radial (spherical) coordinate system as recommended, rather than the along-away dosimetry data (Cartesian coordinate system) currently available. This paper presents the initial results of calculated neutron dosimetry in a water phantom for a Cf-252 applicator tube (AT) type medical source soon available from Oak Ridge National Laboratory (ORNL).

  9. In vivo light dosimetry for pleural PDT

    Science.gov (United States)

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Culligan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2009-02-01

    In-vivo light Dosimetry for patients undergoing photodynamic therapy (PDT) is one of the important dosimetry quantities critical for predicting PDT outcome. This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area, and its accuracy as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 year old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm^2 at 630nm. Fluence rate (mW/cm^2) and cumulative fluence (J/cm^2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate delivery varied from 37.84 to 94.05 mW/cm^2 and treatment time varied from 1762 to 5232s. We have established a correlation between the treatment time and the treatment volume. The results are discussed using an integrating sphere theory and the measured tissue optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  10. Eurados trial performance test for photon dosimetry

    DEFF Research Database (Denmark)

    Stadtmann, H.; Bordy, J.M.; Ambrosi, P.

    2001-01-01

    Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered....... This paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From...

  11. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@imnc.in2p3.fr [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406 (France); Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N. [Institut Curie - Centre de Protonthérapie d’Orsay, Campus Universitaire, Bât. 101, Orsay 91898 (France)

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  12. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  13. Neutron spectrometry and dosimetry with ANNs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], e-mail: fermineutron@yahoo.com

    2009-10-15

    Artificial neural networks technology has been applied to unfold the neutron spectra and to calculate the effective dose, the ambient equivalent dose, and the personal dose equivalent for {sup 252}Cf and {sup 241}AmBe neutron sources. A Bonner sphere spectrometry with a {sup 6}LiI(Eu) scintillator was utilized to measure the count rates of the spheres that were utilized as input in two artificial neural networks, one for spectrometry and another for dosimetry. Spectra and the ambient dose equivalent were also obtained with BUNKIUT code and the UTA4 response matrix. With both procedures spectra and ambient dose equivalent agrees in less than 10%. (author)

  14. Calibration of a He accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    The helium accumulation fluence monitor (HAFM) has been developed for a fast reactor dosimetry. The HAFM measurement system was calibrated using He gas and He implanted samples and the measurement accuracy was confirmed to be less than 5%. Based on the preliminary irradiation test in JOYO, the measured He in the {sup 10}B type HAFM agreed well with the calculated values using the JENDL-3.2 library. (author)

  15. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  16. Use of a liquid ionization chamber for stereotactic radiotherapy dosimetry.

    Science.gov (United States)

    Wagner, A; Crop, F; Lacornerie, T; Vandevelde, F; Reynaert, N

    2013-04-21

    Liquid ionization chambers (LICs) offer an interesting tool in the field of small beam dosimetry, allowing better spatial resolution and reduced perturbation effects. However, some aspects remain to be addressed, such as the higher recombination and the effects from the materials of the detector. Our aim was to investigate these issues and their impact. The first step was the evaluation of the recombination effects. Measurements were performed at different SSDs to vary the dose per pulse, and the collection efficiency was obtained. The BEAMnrc code was then used to model the Cyberknife head. Finally, the liquid ionization chamber itself was modelled using the EGSnrc-based code Cavity allowing the evaluation of the influence of the volume and the chamber materials. The liquid ionization charge collection efficiency is approximately 0.98 at 1.5 mGy pulse(-1), the highest dose per pulse that we have measured. Its impact on the accuracy of output factors is less than half a per cent. The detector modelling showed a significant contribution from the graphite electrode, up to 6% for the 5 mm collimator. The dependence of the average electronic mass collision stopping power of iso-octane with beam collimation is negligible and thus has no influence on output factor measurements. Finally, the volume effect reaches 5% for the small 5 mm collimator and becomes much smaller (<0.5%) for diameters above 10 mm. LICs can effectively be used for small beam relative dosimetry as long as adequate correction factors are applied, especially for the electrode and volume effects.

  17. New relations in basic dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rebigan, F. [Institute of Atomic Physics, Bucharest (Romania)

    1995-12-01

    Four new relations have been derived based on the definitions of the fundamental dosimetric quantities given in recent ICRU reports. These relations have the general form A.B=A.B, where A and B are respectively the dosimetric quantities and their rates.

  18. High value of the radiobiological parameter Dq correlates to expression of the transforming growth factor beta type II receptor in a panel of small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Krarup, M; Nørgaard, P;

    1998-01-01

    Our panel of SCLC cell lines have previously been examined for their radiobiological characteristics and sensitivity to treatment with TGF beta 1. In this study we examined the possible correlations between radiobiological parameters and the expression of the TGF beta type II receptor (TGF beta-r...... role for the repair of radiation induced DNA damage in SCLC....

  19. Dosimetry of ionising radiation in modern radiation oncology

    Science.gov (United States)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  20. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T.M.; Prud' homme-Lalonde, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E. [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S.; Mullins, D. [JERA Consulting (Canada); Qutob, S. [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D.

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  1. Monte Carlo simulations for heavy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, O.

    2006-07-26

    Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)

  2. Eleventh DOE workshop on personnel neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  3. Dosimetry of radium-223 and progeny

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R. [Pacific Northwest National Lab., Richland, WA (United States); Sgouros, G. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  4. Using soils for accident dosimetry: a preliminary study using optically stimulated luminescence from quartz

    DEFF Research Database (Denmark)

    Fujita, Hiroki; Jain, Mayank; Murray, Andrew S.

    2011-01-01

    The optimum conditions of preheat temperature, stimulation temperature, etc. in the single-aliquot regenerative optically stimulated luminescence (SAR OSL) method were examined specifically for measuring background dose in natural quartz extracted from soils collected around Tokai-mura in Japan....... The objective was to assess the potential of SAROSL dosimetry using soils for retrospective assessment of a radiation accident. Variation in dose with depth was also measured. The SAR data showed good reproducibility and dose recovery, and there was no evidence of fading of the quartz signal based on “delayed......, and no clear trend in dose depth profile was observed. From these results, we conclude that SAR OSL dosimetry using natural quartz extracted from soil could be used to evaluate the dose of an accident....

  5. Retrospective Dosimetry of Vver 440 Reactor Pressure Vessel at the 3RD Unit of Dukovany Npp

    Science.gov (United States)

    Marek, M.; Viererbl, L.; Sus, F.; Klupak, V.; Rataj, J.; Hogel, J.

    2009-08-01

    Reactor pressure vessel (RPV) residual lifetime of the Czech VVER-440 is currently monitored under Surveillance Specimens Programs (SSP) focused on reactor pressure vessel materials. Neutron fluence in the samples and its distribution in the RPV are determined by a combination of calculation results and the experimental data coming from the reactor dosimetry measurements both in the specimen containers and in the reactor cavity. The direct experimental assessment of the neutron flux density incident onto RPV and neutron fluence for the entire period of nuclear power plant unit operation can be based on the evaluation of the samples taken from the inner RPV cladding. The Retrospective Dosimetry was also used at Dukovany NPP at its 3rd unit after the 18th cycle. The paper describes methodology, experimental setup for sample extraction, measurement of activities, and the determination of the neutron flux and fluence averaged over the samples.

  6. Development of gas microstrip detectors for digital x-ray imaging and radiation dosimetry

    CERN Document Server

    Dixit, M S; Dubeau, J; Gobbi, D G; Johns, P C; Karlen, Dean A; Oakham, F G; Waker, A J

    1998-01-01

    Our recent work in the application of gas microstrip detector (GMD) technology to the fields of digital X-ray imaging and radiation dosimetry Is described. The GMD can measure the position and the energy of individual photons at the high counting rates encountered in X-ray imaging. GMD-based imaging systems have high detective quantum efficiency and permit improvement of image quality and contrast using display windowing and measured energy information. Results are presented on the performance of a prototype GMD imaging system operated with a xenon/methane 90/10 gas mixture at 1 atm. Results are also presented on the performance of a GMD filled with tissue equivalent gases for applications in the field of radiation dosimetry in mixed neutron and gamma fields. The results show that the GMD can be used for dosimetric discrimination between different types of radiation in mixed-field environments.

  7. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.; Antonio, Cheryl L.; Hill, Robin L.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and for assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  9. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation.

    Science.gov (United States)

    Shridhar, Ravi; Estabrook, William; Yudelev, Mark; Rakowski, Joseph; Burmeister, Jay; Wilson, George D; Joiner, Michael C

    2010-03-01

    Electronic brachytherapy systems are being developed that can deliver X rays of varying energy depending on the material of a secondary target. A copper target produces characteristic 8 keV X rays. Our aim was to determine whether 8 keV X rays might deliver greater biological effectiveness than megavoltage photons. Cells of the U251 human glioma cell line were used to compare the biological effects of 8 keV X rays and (60)Co gamma rays in terms of relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and DNA damage. The RBE at 50% and 10% survival was 2.6 and 1.9, respectively. At 50% survival, the OER for cells treated with 8 keV X rays was 1.6 compared with 3.0 for (60)Co gamma rays. The numbers of H2AX foci per Gy after treatment with 8 keV X rays and (60)Co gamma rays were similar; however, the size of the foci generated at 8 keV was significantly larger, possibly indicating more complex DNA damage. The mean area of H2AX foci generated by 8 keV X rays was 0.785 microm(2) (95% CI: 0.756-0.814) compared with 0.491 microm(2) (95% CI: 0.462-0.520) for (60)Co gamma rays (P X rays produce two to three times the biological effectiveness of megavoltage photons, with a radiobiological profile similar to higher-LET radiations.

  10. Dosimetry in myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2011-07-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  11. Patient dosimetry in diagnostic radiology

    Directory of Open Access Journals (Sweden)

    Ciraj-Bjelac Olivera F.

    2003-01-01

    Full Text Available The objective of this work is to assess patient organ doses, effective doses and entrance surface doses in conventional diagnostic radiology procedures for standard adult patient. The survey consists of measurements of doses delivered to 239 patients in nine types of X-ray examinations. Three types of data were collected: X-ray machine data, patient data, and output measurements. Entrance surface dose was assessed based on the survey data and subsequently, using conversion coefficients, the organ doses and effective doses were calculated. Values of the entrance surface dose and the effective dose were estimated to be 0.4 to 5.8 mGy and 0.03 to 3.00 mSv for different examinations. Derived doses were compared with recommended general diagnostic reference levels. The impact of examination parameters on dose values was discussed. Except for posterior-anterior chest examination, all estimated doses are lower than stated reference levels. Survey data are aimed at helping development of national quality control and radiation protection programmed for medical exposures.

  12. Application of Lead Sulphide Nanoparticles for Dosimetry of Ionizing Radiation

    OpenAIRE

    Dehtjars, J; Kovaļovs, P; Reisfeld, R.; Rešetņikova, A; Romanova, M.; Saraidarov, T; Surkova, I

    2015-01-01

    The aim of the research is to design a dosimeter that provides measurements of doses of ionizing radiation absorbed in nano-sized objects. Such dosimeters can be useful for radiobiology in order to study effects of radiation on nanosized biological structures such as DNA molecule. We offer to use radiation-sensitive semiconductor nanoparticles as nanosized active elements of the dosimeter. Nanoparticles have to be embedded into a dielectric matrix that provides physical and chemical stabil...

  13. Seminar | Development of a PET Cyclotron Based Irradiation Setup for Proton Radiobiology | 25 June

    CERN Multimedia

    2015-01-01

    Sharif Hasan Mahmoud Ghithan, a Palestinian postdoctoral researcher at the Laboratory of Instrumentation and Experimental Particle Physics (Portugal), will discuss the development of an out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinarily produces radioisotopes for Positron Emission Tomography (PET). The speaker will also discuss possible future use of the results of this research for CERN’s new LEIR biomedical facility. The seminar will be proposed in the framework of a meeting of the CERN Medical Applications Study Group.   25 June, 2 p.m. to 3 p.m. Room 13-2-005 ABSTRACT: In this new irradiation setup, the current from a 20 mm thick aluminum transmission foil is read out by homemade transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setu...

  14. Software for evaluation of EPR-dosimetry performance.

    Science.gov (United States)

    Shishkina, E A; Timofeev, Yu S; Ivanov, D V

    2014-06-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty.

  15. One click film (OCF) dosimetry system for routine QA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Yi, Byong Yong; Kim, Jong Hoon; Ahn, Seung Do; Lee, Sang Wook; Choi, Eun Kyoung [Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Joo, Kwan Sik [MyongJi University, Yongin (Korea, Republic of)

    2002-12-15

    To develop a practical film dosimetry system for routine Quality Assurance (QA). An One Click Film (OCF) Dosimetry system was designed to perform swift routine QA with functions including automatic fog value elimination, angle adjustment, automatic symmetry calculation, and realtime profile generation with the ability to display realtime three-dimensional dose distributions. The most frequently used functions for routine QA, such as the elimination of the fog value, conversion into an H and D curve, symmetry, and isodose distribution, can be achieved with only one click. Reliable results were achieved with the OCF dosimetry with simpler steps than other commercially available film dosimetry systems for routine QA. More research on the refined user interface will make this system be clinically useful.

  16. Proceedings of the third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  17. Retrospective dosimetry analyses of reactor vessel cladding samples

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L. R.; Soderquist, C. Z. [Battelle Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Fero, A. H. [Westinghouse Electric Company, Cranberry Twp., PA 16066 (United States)

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combined with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)

  18. Study for applying microwave power saturation technique on fingernail/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Choi, Hoon; Nam, Hyun Ill; Lee, Byung Ill [Radiation Health Research Institute, Seoul (Korea, Republic of)

    2012-10-15

    There is growing recognition worldwide of the need to develop effective uses of dosimetry methods to assess unexpected exposure to radiation in the event of a large scale event. One of physically based dosimetry methods electron paramagnetic resonance (EPR) spectroscopy has been applied to perform retrospective radiation dosimetry using extracted samples of tooth enamel and nail(fingernail and toenail), following radiation accidents and exposures resulting from weapon use, testing, and production. Human fingernails are composed largely of a keratin, which consists of {alpha} helical peptide chains that are twisted into a left handed coil and strengthened by disulphide cross links. Ionizing radiation generates free radicals in the keratin matrix, and these radicals are stable over a relatively long period (days to weeks). Most importantly, the number of radicals is proportional to the magnitude of the dose over a wide dose range (0{approx}30 Gy). Also, dose can be estimated at four different locations on the human body, providing information on the homogeneity of the radiation exposure. And The results from EPR nail dosimetry are immediately available However, relatively large background signal (BKS) converted from mechanically induced signal (MIS) after cutting process of fingernail, normally overlaps with the radiation induced signal (RIS), make it difficult to estimate accurate dose accidental exposure. Therefore, estimation method using dose response curve was difficult to ensure reliability below 5 Gy. In this study, In order to overcome these disadvantages, we measured the reactions of RIS and BKS (MIS) according to the change of Microwave power level, and researched about the applicability of the Power saturation technique at low dose.

  19. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  20. Development of a software tool for an internal dosimetry using MIRD method

    Science.gov (United States)

    Chaichana, A.; Tocharoenchai, C.

    2016-03-01

    Currently, many software packages for the internal radiation dosimetry have been developed. Many of them do not provide sufficient tools to perform all of the necessary steps from nuclear medicine image analysis for dose calculation. For this reason, we developed a CALRADDOSE software that can be performed internal dosimetry using MIRD method within a single environment. MATLAB software version 2015a was used as development tool. The calculation process of this software proceeds from collecting time-activity data from image data followed by residence time calculation and absorbed dose calculation using MIRD method. To evaluate the accuracy of this software, we calculate residence times and absorbed doses of 5 Ga- 67 studies and 5 I-131 MIBG studies and then compared the results with those obtained from OLINDA/EXM software. The results showed that the residence times and absorbed doses obtained from both software packages were not statistically significant differences. The CALRADDOSE software is a user-friendly, graphic user interface-based software for internal dosimetry. It provides fast and accurate results, which may be useful for a routine work.

  1. Hybrid 3D pregnant woman and fetus modeling from medical imaging for dosimetry studies

    Energy Technology Data Exchange (ETDEWEB)

    Bibin, Lazar; Anquez, Jeremie; Angelini, Elsa; Bloch, Isabelle [Telecom ParisTech, CNRS UMR 5141 LTCI, Institut TELECOM, Paris (France)

    2010-01-15

    Numerical simulations studying the interactions between radiations and biological tissues require the use of three-dimensional models of the human anatomy at various ages and in various positions. Several detailed and flexible models exist for adults and children and have been extensively used for dosimetry. On the other hand, progress of simulation studies focusing on pregnant women and the fetus have been limited by the fact that only a small number of models exist with rather coarse anatomical details and a poor representation of the anatomical variability of the fetus shape and its position over the entire gestation. In this paper, we propose a new computational framework to generate 3D hybrid models of pregnant women, composed of fetus shapes segmented from medical images and a generic maternal body envelope representing a synthetic woman scaled to the dimension of the uterus. The computational framework includes the following tasks: image segmentation, contour regularization, mesh-based surface reconstruction, and model integration. A series of models was created to represent pregnant women at different gestational stages and with the fetus in different positions, all including detailed tissues of the fetus and the utero-fetal unit, which play an important role in dosimetry. These models were anatomically validated by clinical obstetricians and radiologists who verified the accuracy and representativeness of the anatomical details, and the positioning of the fetus inside the maternal body. The computational framework enables the creation of detailed, realistic, and representative fetus models from medical images, directly exploitable for dosimetry simulations. (orig.)

  2. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Beretz, D.; Destouches, C. [CEA, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  3. Why is a high accuracy needed in dosimetry. [Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of ..gamma.. and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control.

  4. EPID dosimetry for pretreatment quality assurance with two commercial systems.

    Science.gov (United States)

    Bailey, Daniel W; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Malhotra, Harish K; Podgorsak, Matthew B

    2012-07-05

    This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the

  5. A practical three-dimensional dosimetry system for radiation therapy

    OpenAIRE

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE™) and a commercial optical computed tomography (CT) scanning system (OCTOPUS™). PRESAGE™ is a transparent material with com...

  6. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    OpenAIRE

    2016-01-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation f...

  7. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Directory of Open Access Journals (Sweden)

    Chrisler William B

    2010-11-01

    Full Text Available Abstract Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL. We have developed a computational model of solution particokinetics (sedimentation, diffusion and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation and the Stokes-Einstein equation (diffusion. Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm, 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a

  8. Optically stimulated luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...... accident. Since 1990 the exploration of this wide variety of applications has driven an intensive investigation and development programme at Riso, in measurement facilities and techniques. This paper reviews some of the outcomes of this programme, including (i) optimisation of stimulation and emission...... windows, and detection sensitivity, (ii) experience with various stimulation light sources, including filtered incandescent lamps (420-550 nm) and high intensity light emitting diodes (470 nm) and laser diodes (830-850 nm). We also discuss recently developed high-precision single-aliquot measurement...

  9. The radiation dosimetry of intrathecally administered radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G. [Oak Ridge Inst. for Science and Education, TN (United States); Evans, J.F. [Ohio State Univ., Columbus, OH (United States)

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  10. Review of the near-earth space radiation dosimetry

    Science.gov (United States)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  11. Fast neutron activation dosimetry with TLDS

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D.W.; Moran, P.R.

    1975-01-01

    Fast neutron activation using threshold reactions is the only neutron dosimetry method which offers complete discrimination against gamma-rays and preserves some information about the neutron energy. Conventional activation foil technique requires sensitive radiation detectors to count the decay of the neutron induced activity. For extensive measurements at low neutron fluences, vast outlays of counting equipment are required. TL dosimeters are inexpensive, extremely sensitive radiation detectors. The work of Mayhugh et al. (Proc. Third Int. Conf. on Luminescence Dosimetry, Riso Report 249, 1040, (1971)) showed that CaSO/sub 4/: DyTLDs could be used to measure the integrated dose from the decay of the radioactivity produced in the dosimeters by exposure to thermal neutrons. This neatly combines the activation detector and counter functions in one solid state device. This work has been expanded to fast neutron exposures and other TL phosphors. The reactions /sup 19/F(n, 2n)/sup 18/F, /sup 32/S(n,p)/sup 32/P, /sup 24/Mg(n,p)/sup 24/, and /sup 64/Zn(n,p)/sup 64/Cu were found useful for fast neutron activation in commercial TLDs. As each TLD is its own integrating decay particle counter, many activation measurements can be made at the same time. The subsequent readings of the TL signals can be done serially after the induced radioactivity has decayed, using only one TL reader. The neutron detection sensitivity is limited mainly by the number statistics of the neutron activations. The precision of the neutron measurement is within a factor of two of conventional foil activation for comparable mass detectors. Commercially available TLDs can measure neutron fluences of 10/sup 9/n/cm/sup 2/ with 10 percent precision.

  12. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  13. Dosimetry of low-energy beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.

    1996-08-01

    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy {beta} radiation field were studied and evaluated in this project. The four different techniques included were {beta} spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy {beta} radiation field a moderated spectrum from a {sup 14}C source (E{sub {beta}},{sub max} =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 {mu}m in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for {sup 147}Pm depth-dose profiles is also suitable for {beta} radiation from {sup 14}C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to {beta} radiation for radiation fields with maximum {beta} energies ranging from 67 keV to 2.27 MeV is reported. For maximum {beta} energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a {beta} dose higher than about 10 {mu}Gy can be measured with these dosemeters to within 0 to -20% independently of the {beta}energy for E{sub {beta}},{sub max} values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs.

  14. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois [Ecole polytechnique de Montreal, Departement de genie informatique et genie logiciel, 2500 chemin de Polytechnique, Montreal, QC, H3T 1J4 (Canada); Departement de radio-oncologie, Centre hospitalier universitaire de Quebec (CHUQ), 11 Cote du Palais, Quebec, QC, G1R 2J6 (Canada); Departement de physique, Universite de Montreal, Montreal, QC (Canada) and Departement de radio-oncologie and Centre de recherche du CHUM, Centre hospitalier de l' Universite de Montreal (CHUM), Montreal, QC, H2L 4M1 (Canada)

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  15. Isotropic three-dimensional MRI-Fricke-infused gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nai-Yu; Chu, Woei-Chyn [Institute of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan (China); Huang, Sung-Cheng [Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095 (United States); Chung, Wen-Yuh [Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China); Guo, Wan-Yuo [Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China)

    2013-05-15

    Purpose: Fricke-infused gel has been shown to be a simple and attainable method for the conformal measurement of absorbed radiation dose. Nevertheless, its accuracy is seriously hindered by the irreversible ferric ion diffusion during magnetic resonance imaging, particularly when three-dimensional (3D) dose measurement in radiosurgery is considered. In this study, the authors developed a fast three-dimensional spin-echo based Fricke gel dosimetry technique to reduce the adverse effects of ferric ion diffusion and to obtain an accurate isotropic 3D dose measurement. Methods: A skull shaped phantom containing Fricke-infused gel was irradiated using Leksell Gamma Knife. The rapid image-based dosimetry technique was applied with the use of a 3D fast spin-echo magnetic resonance imaging sequence. The authors mathematically derived and experimentally validated the correlations between dose-response characteristics and parameters of the 3D fast spin-echo MR imaging sequence. Absorbed dose profiles were assessed and compared to the calculated profiles given by the Gamma Knife treatment planning system. Coefficient of variance (CV%) and coefficient of determination (R{sup 2}) were used to evaluate the precision of dose-response curve estimation. The agreement between the measured and the planned 3D dose distributions was quantified by gamma-index analysis of two acceptance criteria. Results: Proper magnetic resonance imaging parameters were explored to render an accurate three-dimensional absorbed dose mapping with a 1 mm{sup 3} isotropic image resolution. The efficacy of the dose-response estimation was approved by an R{sup 2} > 0.99 and an average CV% of 1.6%. Average gamma pass-rate between the experimentally measured and GammaPlan calculated dose distributions were 83.8% and 99.7% for 2%/2 and 3%/3 mm criteria, respectively. Conclusions: With the designed MR imaging sequence and parameters, total 3D MR acquisition time was confined to within 20 min postirradiation

  16. Spinal cord response to altered fractionation and re-irradiation: Radiobiological considerations and role of bioeffect models

    Directory of Open Access Journals (Sweden)

    Supe Sanjay

    2006-01-01

    Full Text Available The aim of radiation oncologist is to implement an uncomplicated loco regional control of cancer by radiation therapy. The bioeffect of a physical dose depends on the nature of the tissue, fractionation scheme, dose rate and treatment time. The transformation of absorbed dose into a bioeffect dose is controlled by treatment variables and the radiobiological characteristics of the relevant tissue. Various bioeffect models have been proposed to predict the biological effect of radiotherapy treatments. Dale has proposed extrapolated response dose (ERD equations for external beam therapy, intracavitary brachytherapy and interstitial brachytherapy. Within the context of the LQ model, the parameter which quantifies the overall biological effect on a given tissue is the biologically effective dose (BED which is obtained by applying repopulation correction to ERD (Orton,. Thames proposed the total effect (TE concept based on the incomplete repair LQ model which accounts for the biological effect of a fractionated course of radiotherapy. Spinal cord myelitis limits the dose to tumours in the head and neck, thoracic and upper abdominal regions resulting in reduction of tumour control probability. Radiation myelopathy is one of the most devastating complications of clinical radiotherapy. Treatment techniques that are designed to minimize the risk of spinal cord injury are likely to underdose the tumour consequent failure to control the disease. Since radiation myelopathy results in severe and irreversible morbidity, it is important to establish the tolerance dose of the spinal cord. A number of patients have recently been reported to have developed radiation myelopathy following hyperfractionated accelerated radiotherapy. As the survival rates of patients increase, radiation oncologists are more frequently faced with the problem of treatment of late recurrence or second tumours situated within or close to previously treated site. A rationale for taking a

  17. Clinical radiobiology of glioblastoma multiforme. Estimation of tumor control probability from various radiotherapy fractionation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola [I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Nuclear Medicine, Department of Radiation and Metabolic Therapies, Rionero-in-Vulture (Italy); Department of Radiation and Metabolic Therapies, I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Radiotherapy, Rionero-in-Vulture (Italy); Fiorentino, Alba [Sacro Cuore - Don Calabria Hospital, Radiation Oncology Department, Negrar, Verona (Italy); Simeon, Vittorio [I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Laboratory of Preclinical and Translational Research, Rionero-in-Vulture (Italy); Tini, Paolo; Pirtoli, Luigi [University of Siena and Tuscany Tumor Institute, Unit of Radiation Oncology, Department of Medicine Surgery and Neurological Sciences, Siena (Italy); Chiumento, Costanza [Department of Radiation and Metabolic Therapies, I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Radiotherapy, Rionero-in-Vulture (Italy); Salvatore, Marco [I.R.C.C.S. SDN Foundation, Unit of Nuclear Medicine, Napoli (Italy); Storto, Giovanni [I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Nuclear Medicine, Department of Radiation and Metabolic Therapies, Rionero-in-Vulture (Italy)

    2014-10-15

    The aim of this study was to estimate a radiobiological set of parameters from the available clinical data on glioblastoma (GB). A number of clinical trial outcomes from patients affected by GB and treated with surgery and adjuvant radiochemotherapy were analyzed to estimate a set of radiobiological parameters for a tumor control probability (TCP) model. The analytical/graphical method employed to fit the clinical data allowed us to estimate the intrinsic tumor radiosensitivity (α), repair capability (b), and repopulation doubling time (T{sub d}) in a first phase, and subsequently the number of clonogens (N) and kick-off time for accelerated proliferation (T{sub k}). The results were used to formulate a hypothesis for a scheduleexpected to significantly improve local control. The 95 % confidence intervals (CI{sub 95} {sub %}) of all parameters are also discussed. The pooled analysis employed to estimate the parameters summarizes the data of 559 patients, while the studies selected to verify the results summarize data of 104 patients. The best estimates and the CI{sub 95} {sub %} are α = 0.12 Gy{sup -1} (0.10-0.14), b = 0.015 Gy{sup -2} (0.013-0.020), α/b = 8 Gy (5.0-10.8), T{sub d} = 15.4 days (13.2-19.5), N = 1 . 10{sup 4} (1.2 . 10{sup 3} - 1 . 10{sup 5}), and T{sub k} = 37 days (29-46). The dose required to offset the repopulation occurring after 1 day (D{sub prolif}) and starting after T{sub k} was estimated as 0.30 Gy/day (0.22-0.39). The analysis confirms a high value for the α/b ratio. Moreover, a high intrinsic radiosensitivity together with a long kick-off time for accelerated repopulation and moderate repopulation kinetics were found. The results indicate a substantial independence of the duration of the overall treatment and an improvement in the treatment effectiveness by increasing the total dose without increasing the dose fraction. (orig.) [German] Schaetzung eines strahlenbiologischen Parametersatzes auf der Grundlage klinischer Daten bei

  18. Extrapolation Ionization Chamber Do