WorldWideScience

Sample records for based primary pumping

  1. Assertion based verification methodology for HDL designs of primary sodium pump speed and eddy current flow measurement systems of PFBR

    International Nuclear Information System (INIS)

    With the growing complexity and size of digital designs, functional verification has become a huge challenge. The validation and testing process accounts for a significant percentage of the overall development effort and cost for electronic systems. Many studies have shown that up to 70% of the design development time and resources are spent on functional verification. Functional errors manifest themselves very early in the design flow, and unless they are detected upfront, they can result in severe consequences - both financially and from a safety viewpoint. This paper covers the various types of verification methodologies and focuses on Assertion Based Verification Methodology for HDL designs, taking as case studies, the Primary Sodium Pump Speed and Eddy Current Flow Measurement Systems of PFBR. (author)

  2. Vibration analysis of primary air pump JE01 AP003

    International Nuclear Information System (INIS)

    JE01 AP003 primary coolant pump is one of the main components in the safe operation of the reactor so that needs to be done early detection of damage types and levels of its constituent components. The main components of the pump that is often damaged bearing. The purpose of this paper is to know the symptoms of bearing damage and the level of damage based on vibration analysis. One indication of the bearing has been damaged, that is the vibration or temperature rise in the bearing. One way to detect early symptoms of damage to the pump is to use the vibration response peak Based on the analysis of the measurement results cited the obtained results that the primary coolant pump JE01 AP003 has been damage to a free end looseness bearing with moderate levels of damage. Need JE01 AP003 bearing replacement even though the damage is not severe. (author)

  3. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  4. Primary pump vibration under accident conditions

    International Nuclear Information System (INIS)

    This report presents the results of an international survey on the subject of vibration in nuclear primary coolant pumps due to two-phase flow, accident conditions. The literature search also revealed few Canadian references other than those of Ontario Hydro. Ontario Hydro's work has been extensive. Confidence in the mechanical integrity of the pumpsets is good, given the extent of the testing. However, conclusions with respect to piping integrity and thermal-hydraulic performance are difficult to determine due to the inexact geometry of the piping and the difficulties in estimating fluid conditions at the pump. The tests help to understand the phenomena and provide background information for analysis, but should be applied with caution to plant analyses. Much of the discussion in the report relates to pump head instability. This is perceived to be the most important flow regime causing vibration, as attested by the emphasis of the reviewed literature. A method for quantitative assessment of the forcing functions acting on the pump-piping system due to void generation and collapse is recommended. A relatively fundamental analytical approach is proposed, supplemented by reduced scale testing in the latter stages. 151 refs

  5. Development of ANC-type empirical two-phase pump model for full size CANDU primary heat transport pump

    International Nuclear Information System (INIS)

    The development of an ANC-type empirical two-phase pump model for CANDU (Canadian Deuterium) reactor primary heat transport pumps is described in the present paper. The model was developed based on Ontario Hydro Technologies' full scale Darlington pump first quadrant test data. The functional form of the ANC model which is widely used was chosen to facilitate the implementation of the model into existing computer codes. The work is part of a bigger test program with the aims: (1) to produce high quality pump performance data under off-normal operating conditions using both full-size and model scale pumps; (2) to advance our basic understanding of the dominant mechanisms affecting pump performance based on more detailed local measurements; and (3) to develop a 'best-estimate' or improved pump model for use in reactor licensing and safety analyses. (author)

  6. A reliability-centered maintenance program for primary reactor pumps

    International Nuclear Information System (INIS)

    Reactor coolant and recirculation pumps require significant outage times to repair and, as a consequence, are a major contributor to plant downtime and lost capacity. To improve reliability of these primary reactor pumps, a comprehensive preventative maintenance program has been developed using the principles of reliability-centered maintenance. This method establishes the frequency of past failures, estimates the probability of future occurrences, and assesses the effect of all potential functional failures of the pump. Maintenance tasks are then defined to address those specific failure modes that have the largest probability of occurrence and the greatest impact on plant availability. Benefits include: improved reliability, a maintenance program that satisfies the industry initiative on maintenance, prudence documentation in support of unforeseen outages, and documented justification for rate-base increases for maintenance costs

  7. Determination of the Design Speed of the Primary Cooling Pump in the Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyungi; Seo, Kyoungwoo; Chi, Daeyoung; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    An open-pool type research reactor is widely designed in consideration of the reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom. rimary cooling system circulates the coolant from the reactor core to the heat exchanger. Therefore the heat generated from the reactor core is continuously removed. After the primary cooling pumps stop, the decay heat is removed by the coastdown flow induced by the inertia force of a flywheel attached to each primary cooling pump. A pump coastdown flow means that the pump operates with the angular momentums of the shaft, impeller, and flywheel when a loss of electricity occurs. The primary cooling pump consists of the pump, flywheel, and moto. They are connected by flexible couplings. The primary cooling pump is conceptually designed based on the required flow rate and system constraints. A centrifugal pump of Case 1 with a non-dimensional specific speed of 0.59 and specific diameter of 4.94 is chosen as the primary cooling pump based on the hydraulic performance and mechanical integrity.

  8. Effect of hydrogen combustion in the primary pump compartment

    International Nuclear Information System (INIS)

    Hydrogen combustion in a nuclear power plant may threaten the integrity of some important systems and components. In this paper, the effect of hydrogen combustion in the primary pump compartment is analyzed by different initial hydrogen concentration and igniter locations using Computational Fluid Dynamics method. The results show that the combustion is confined to a limited area without pump damage at about 6.6% hydrogen volume fraction. Once igniting the hydrogen, the combustion affects the whole compartment at the 12% hydrogen volume fraction. The stress caused by the great temperature gradient or high temperature may damage the primary pump. Igniters at the lower location accelerate the combustion process and cause a threat to the pump integrity. (authors)

  9. Design and evaluation of a primary/secondary pumping system for a heat pump assisted solar thermal loop

    Science.gov (United States)

    Krockenberger, Kyle G.

    A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.

  10. RELAP5 analysis of an EOP based on mobile pumps, at a generic VVER-1000 NPP in case of a total loss of the primary heat sink (for DBDA conditions)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus Muellner [Institute of Risk Research (Vienna University), Tuerkenschanzstr. 17/8, A-1180 Vienna (Austria); Walter Giannotti; Francesco D' Auria [University of Pisa, Via Diotisalvi 2, 56100 Pisa (Italy)

    2005-07-01

    Full text of publication follows: The loss of the primary heat sink is one of the most relevant DBDA scenarios. If the capability to remove heat from the primary side cannot be restored, the primary side will be subjected to high pressure for a long period of time. The actuation of the ECCS will be inhibited, PS inventory will be lost, finally the core will be in dryout conditions. The EOP which is investigated in this paper proposes to utilize mobile pumps (e.g. using fire brigade trucks) to make additional sources of feedwater available and thereby restore the primary heat sink at least for a limited period of time. After a certain time (which should be determined by calculations) of this measure, the PORV-valve and/or the gas-removal system should be opened to lower the pressure in the primary side and actuate the ECCS (primary side bleed and feed mode). The calculations indicate that this procedure is capable of saving the plant, or at least extending the grace period. Three cases are presented: the effect of only primary side feed and bleed, the beneficial effect of utilising mobile pumps first, and a scenario which assumes no operator action. (authors)

  11. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  12. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  13. Comparison of two arthroscopic pump systems based on image quality

    OpenAIRE

    Tuijthof, G. J. M.; van den Boomen, H.; van Heerwaarden, R. J.; Dijk, C. N. Van

    2008-01-01

    The effectiveness of arthroscopic pump systems has been investigated with either subjective measures or measures that were unrelated to the image quality. The goal of this study is to determine the performance of an automated pump in comparison to a gravity pump based on objective assessment of the quality of the arthroscopic view. Ten arthroscopic operations performed with a gravity pump and ten performed with an automated pump (FMS Duo system) were matched on duration of the surgery and sha...

  14. Which Breast Pump for Which Mother: An Evidenced-Based Approach to Individualizing Breast Pump Technology

    Science.gov (United States)

    Meier, Paula P.; Patel, Aloka L.; Hoban, Rebecca; Engstrom, Janet L.

    2015-01-01

    The majority of new mothers in the United States use breast pumps in the first four months post-birth in order to achieve their personal human milk feeding goals. Although these mothers seek guidance from health care professionals with respect to the type and use of breast pumps, there are few evidence-based guidelines to guide this professional advice. This paper reviews the evidence to facilitate professional individualization of breast pump recommendations using three categories of literature: the infant as the gold standard to which the pump is compared; the degree of maternal breast pump dependency (e.g., the extent to which the breast pump replaces the infant for milk removal and mammary gland stimulation); and the stage of lactation for which the pump replaces the infant. This review can also serve to inform public and private payers with respect to individualizing breast pump type to mother-dyad characteristics. PMID:26914013

  15. Cavitation characterization by the acoustic method. Application to a pump model and to the primary pump of the Super Phenix fast reactor

    International Nuclear Information System (INIS)

    In order to study the pumps of fast reactors, water tests were first carried out on a model and then on the primary pumps of Super Phenix. The aim of these tests is to define cavitation acoustic criteria. The results obtained show that noise in a pump varies with the drop in characteristics and can therefore represent a state of cavitation

  16. Properties of Graphene Based Parametric Pump

    Institute of Scientific and Technical Information of China (English)

    LUO Song-Lin; WEI Ya-Dong

    2009-01-01

    The adiabatic parametric electron pump of the infinite zigzag graphene ribbons and the infinite armchair graphene ribbons is investigated by the tight binding method. The pumping signals are added by two gates around the ribbons. It is shown that the dc current can be pumped out by cyclically varying the two gate voltages and the pumped current strongly depends on the driving frequency, the pumping amplitude and the phase difference of the gate voltages. The pumped current is mediated by the graphene energy levels and its peaks occur around the energies where transmission coefficients and density of states are large. The pump current may give one peak or two opposite peaks corresponding to each transmission peak or transmission pair peaks. The height and width of the current peaks increase with the amplitude of the pumping driving voltages. The pumped current is antisymmetric about the phase difference φ=π and for small pumping amplitude the pumped current is a sinusoidal function of the phase difference. Some graphene ribbons, although with different widths, have very similar contours of the transmission coefficients and give the same pumped current figures.

  17. Estimation of pump operational state with model-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina [Institute of Energy Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland); Kestilae, Juha [ABB Drives, P.O. Box 184, FI-00381 Helsinki (Finland)

    2010-06-15

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently. (author)

  18. Linear peristaltic pump based on electromagnetic actuators

    Directory of Open Access Journals (Sweden)

    Maddoui Lotfi

    2014-01-01

    Full Text Available In this paper a study and design of a linear peristaltic pump are presented. A set of electromagnetic (solenoid actuators is used as the active tools to drag the liquid by crushing an elastic tube. The pump consists of six serially-connected electromagnetic actuators controlled via an electronic board. This may be considered as a simulated peristalsis action of intestines. The dynamic performances of the pump are investigated analytically and experimentally.

  19. Primary heat transport pump trip by ground fault (deterioration of insulation in the cable quick disconnect)

    International Nuclear Information System (INIS)

    At 08:29 Sept. 1, 1988, Wolsong unit 1 was operating at 100% full power when a primary heat transport pump was suddenly tripped by breaker trip due to ground fault in the power distribution connector assembly. Soon after the pump trip, the reactor was shut down automatically on low heat transport flow. Operators tried to restart the pump twice but failed. A field operator reported to the shift supervisor that he found an electrical spark and smoke at the vicinity of the pump when the pump started to run. Inspection showed that a power distribution connector assembly for making fast and easy power connections to the PHT pump motor, 3312-PM2, was damaged severely by thermal shock. Particularly, broken parts of the insulating plug flew away across the boiler room and dropped to the floor. Direct causes of the failure were bad contact and deterioration of integrity along the creep paths between the insulating plug and the connector housing. The failed connector assembly had been used for more than 7 years. Its status had been checked infrequently during the in-service period. The standard torque value was not applied to the installation of connectors. Therefore, we concluded that long term inservice in combinations of application of improper torque value induced failure of insulation. This paper describes the scenarios, causes of the event and corrective actions to prevent recurrence of this event. (author)

  20. PLC-Based Pressure Control in Multi-Pump Applications

    Directory of Open Access Journals (Sweden)

    Vodovozov Valery

    2015-12-01

    Full Text Available The paper is devoted to the centrifugal pumps represented the most popular type of pumping equipment used in different areas. The pressure control approach for variable speed driven (VSD parallel connected centrifugal pumps is reported. The goal of the study is optimization of some quality indices, such as efficiency, consumed power, productivity, energy carrier temperature, heat irradiation, etc. One of them – efficiency – has been studied in the paper more carefully. The mathematical model of pumping process is discussed and a vector-matrix description of the multi-pump application is given. The program-based pressure control system is developed which productivity is changed by regulating the number of working pumps. The paper introduces new pressure control algorithms based on the working point estimation intended for programmable logical controllers (PLC. Experiments prove correctness of the offered methodology.

  1. Development of an 85,000 gpm (19,303 m3/h) LMFBR primary pump

    International Nuclear Information System (INIS)

    The development of an 85,000 gpm two-stage primary pump for liquid metal fast breeder reactor (LMFBR) applications is described. The design was supported by air and cavitation model testing of the hyraulics, and development and feature testing of the level control system and the adjustable frequency solid state power supply. Important fabrication and water test items are also discussed, along with some unique assembly tooling requirements

  2. Analysis of a single primary coolant pump trip scenario in a PHWR

    International Nuclear Information System (INIS)

    This paper addresses the analysis of a single primary coolant pump (PCP) trip scenario in a 220 MWe Indian pressurized heavy water reactor (PHWR). The analysis is carried out using a lumped parameter model. The time dependent mass, momentum and energy for conservation equations for the primary system are solved using finite difference scheme. The predictions of the model for the time required to reach the over-pressure trip value was in good agreement with the plant data. Parametric studies are carried out to study the influences of the isolation of the failed branch and a delay in the trip of the diagonally opposite PCP. (author). 2 refs., 13 figs., 1 tab

  3. Novel sucker rod pumping system based on linear motor technology

    Institute of Scientific and Technical Information of China (English)

    李立毅; 李立清; 吴红星; 胡余生; 邹积岩

    2004-01-01

    Obtaining petroleum at the cost of electrical energy is a common problem in almost all oil fields, and it is mainly caused by low duty radio of induction motor used in beam pumping units. Traditional beam-pumping units have many intrinsic disadvantages such as low efficiency, complex transmission devices, poor flexibility,tremendous volume and weight in long stroke, etc. Therefore, a novel direct driven linear electromagnetic pumping unit (EMPU) has been developed by combining oil extraction technology with linear motor technology. The thrust of EMPU matches the changing of suspension center load to improve the system efficiency and cut down the consumption of energy. Based on previous experience, a small-scale prototype was developed and a simulation was conducted with it. Both theoretical analyses and experimental study showed that the problems exiting in beam pumping units can be solved with EMPU system, and this is a new method which can be used to solve high energy waste in oil fields.

  4. The numerical simulation based on CFD of hydraulic turbine pump

    Science.gov (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  5. Experimental performance evaluation of heat pump-based steam supply system

    Science.gov (United States)

    Kaida, T.; Sakuraba, I.; Hashimoto, K.; Hasegawa, H.

    2015-08-01

    Heat pumps have become increasingly important as a technology to reduce primary energy consumption and greenhouse effect gas emission. They are presently used mainly on residential air-conditioning and domestic hot water and are expected to spread to industrial heating processes. In 2011, Kobe Steel, Ltd. developed and commercialized two heat pump- based steam supply systems; the high efficiency steam supply system with a steam temperature of 120°C (SGH120) and the system which enables a steam temperature of 165°C (sGh165). For promoting the spread of these industrial heat pumps and enhancing the reliability of them, we investigate experimentally steam generation rate, energy efficiency and controlled performance of the SGH165 under various operating conditions on the assumption of actual different industrial processes, and evaluate technical possibilities for better performance.

  6. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-01

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  7. Peristaltic pump-based low range pressure sensor calibration system

    Science.gov (United States)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  8. Peristaltic pump-based low range pressure sensor calibration system

    International Nuclear Information System (INIS)

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory

  9. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. PMID:26628178

  10. Peristaltic pump-based low range pressure sensor calibration system

    Energy Technology Data Exchange (ETDEWEB)

    Vinayakumar, K. B. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 5600012 (India); Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012 (India); Naveen Kumar, G.; Rajanna, K., E-mail: kraj@isu.iisc.ernet.in, E-mail: krajanna2011@gmail.com [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 5600012 (India); Nayak, M. M. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 5600012 (India); Dinesh, N. S. [Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012 (India)

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  11. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  12. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.

    Science.gov (United States)

    Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R

    2016-04-26

    Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps. PMID:27046145

  13. Pumping characteristics of Ti-based non-evaporable getter

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yan; WEI; Xiu-ying; XIONG; Yu-hua; QIN; Guang-rong

    2005-01-01

    The application of non-evaporable getters is increasing, they have been widely used in sealed-off vacuum or controlled atmosphere devices. A new type of Ti-based sintered non-evaporable getter has been studied. The room temperature pumping speeds under three activation processes for H2 were measured as a function of sorbed gas quantities in this paper. At the same time, the optimal activation processes were discussed. The results indicate that the getter combines high porosity and large specific surface area which confirm good performances at room temperature. The threshold of activation temperature is about 500 ℃ and optimal pumping speed and pumping capacity can be achieved with activation temperature around 600℃ for 30 min. Besides, different configurations can be available in accordance with requirements.

  14. Optimization of centrifugal pump cavitation performance based on CFD

    Science.gov (United States)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  15. Model Based Fault Detection in a Centrifugal Pump Application

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Cocquempot, Vincent; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    A model based approach for fault detection in a centrifugal pump, driven by an induction motor, is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, observer design and Analytical Redundancy Relation (ARR) design. Structural considerations...

  16. Optimization for Cavitation Inception Performance of Pump-Turbine in Pump Mode Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ran Tao

    2014-01-01

    Full Text Available Cavitation is a negative factor of hydraulic machinery because of its undesirable effects on the operation stability and safety. For reversible pump-turbines, the improvement of cavitation inception performance in pump mode is very important due to the strict requirements. The geometry of blade leading edge is crucial for the local flow separation which affects the scale and position of pressure drop. Hence, the optimization of leading edge shape is helpful for the improvement of cavitation inception performance. Based on the genetic algorithm, optimization under multiple flow rate conditions was conducted by modifying the leading edge ellipse ratio and blade thickness on the front 20% meanline. By using CFD simulation, optimization was completed with obvious improvements on the cavitation inception performance. CFD results show that the pressure drop location had moved downstream with the increasement of the minimum pressure coefficient. Experimental verifications also got an obvious enhancement of cavitation inception performance. The stability and safety was improved by moving the cavitation inception curve out of the operating range. This optimization is proved applicable and effective for the engineering applications of reversible pump-turbines.

  17. Study of an electromagnetic pump applied to a primary main pump of a large scale sodium cooled reactor

    International Nuclear Information System (INIS)

    This paper describes a future innovative design options with a parallel electromagnetic pump (EMP) system as the main circulating pump of the JSFR design. A conceptual design of EMPs integrated with an intermediate heat exchanger (IHX) is carried out. The major design parameters are consistent with the current JSFR design, where the main flow rate is 630 m3/min and the flow halving time is the same of the mechanical pump with the similar reliability. As a result of several design studies, a five parallel EMPs with IHX system has been selected from the geometry suitability for JSFR design. The EMP advantages comparing with mechanical pumps are investigated from the views of in-service inspection, maintenance and reliability. Numerical analysis with two dimensional MHD codes is conducted on a former experiment of a 160 m3/min flow rate EMP. The overall trend of the experimental data and the numerical results agrees with that in small-scale EMPs. However, the difference between the experimental data and the numerical results seems larger compared with the small-scale EMPs, which comes from large magnetic Reynolds number and interaction parameter of 160 m3/min EMP. (author)

  18. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  19. A MEMS-based valveless impedance pump utilizing electromagnetic actuation

    International Nuclear Information System (INIS)

    This study presents a planar valveless impedance-based micro pump for biomedical applications. The micro pump comprises four major components, namely a lower glass substrate containing a copper micro coil, a microchannel, an upper glass cover plate and a PDMS diaphragm with a magnet mounted on its upper surface. When a current is passed through the micro coil, an electromagnetic force is established between the coil and the magnet. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. The performance of the micro pump is characterized both experimentally and numerically using Ansoft/Maxwell3D FEA software. The results show that the mechanical integrity of the micro pump is assured provided that the diaphragm deflection does not exceed 110 µm. This deflection is obtained by supplying the micro coil with an input current of 0.6 A, and results in a flow rate of 7.2 ml min−1 when the PDMS membrane is driven by an actuating frequency of 200 Hz

  20. A MEMS-based valveless impedance pump utilizing electromagnetic actuation

    Science.gov (United States)

    Lee, Chia-Yen; Chang, Hsien-Tsung; Wen, Chih-Yung

    2008-03-01

    This study presents a planar valveless impedance-based micro pump for biomedical applications. The micro pump comprises four major components, namely a lower glass substrate containing a copper micro coil, a microchannel, an upper glass cover plate and a PDMS diaphragm with a magnet mounted on its upper surface. When a current is passed through the micro coil, an electromagnetic force is established between the coil and the magnet. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. The performance of the micro pump is characterized both experimentally and numerically using Ansoft/Maxwell3D FEA software. The results show that the mechanical integrity of the micro pump is assured provided that the diaphragm deflection does not exceed 110 µm. This deflection is obtained by supplying the micro coil with an input current of 0.6 A, and results in a flow rate of 7.2 ml min-1 when the PDMS membrane is driven by an actuating frequency of 200 Hz.

  1. Polarization-insensitive fiber optical parametric amplifier based on polarization diversity technique with dual parallel pumps

    Institute of Scientific and Technical Information of China (English)

    YIN Lu; SANG Xin-zhu; ZHANG Qi; XIN Xiang-jun; YU Chong-xiu; Da-xiong

    2011-01-01

    By analyzing the principle of dual-pump parametric amplification and the polarization dependent gain of fiber optical parametric amplifier (FOPA), a polarization-insensitive FOPA based on polarization-diversity technique with dual parallel pumps is presented. The performances of polarization-insensitivity, gain and BER are theoretically analyzed and numerically simulated by comparing the proposed scheme with parallel pump solution and orthogonal pump solution. The presented solution can reduce the complexity of state of polarization (SoP) of pumps.

  2. Performance analysis of photovoltaic based submersible water pump

    Directory of Open Access Journals (Sweden)

    Shiv Lal

    2013-04-01

    Full Text Available The performance of a photovoltaic (PV array based water pumping system situated at Kota Rajasthan (25.18 N and 75.83 E, India has been studied. A 2hp DC motor with 2200W (10 panels of each 225W have been used for discharge 30 m water head. The maximum discharge logged 163litre/minute between 11AM to 2PM at PV power output between 75 to 85W/m2and the system is operating approximately 8 hours in the of November of the winter season. The full day discharge has found 70995litre and it is more than the average discharge given by the manufacturer at 50m depth. It is revealed that PV array based water pumping system is suitable and feasible option for off-grid and drip irrigation system like the interior area of Kota, where clear sky days are more than 250 in a year.

  3. Analysis of primary coolant pump seal water distribution influence to chemical and volume system design

    International Nuclear Information System (INIS)

    The possible influences to Chemical and Volume Control System design caused by coolant pump seal water distribution are discussed. The essential reason is picked out in this paper. The temperature drop of charging flow at the regenerative heat exchanger outlet is calculated, and the feasible retrofits of the Chemical and Volume Control System are illustrated. The thermal hydraulic software Flowmaster 7.5 is employed to numerically investigate the possible capability of charging pump with different coolant pump seal requirements. (authors)

  4. Pipe flow of pumping wet shotcrete based on lubrication layer.

    Science.gov (United States)

    Chen, Lianjun; Liu, Guoming; Cheng, Weimin; Pan, Gang

    2016-01-01

    Wet shotcrete can reduce dust and improve supporting strength, however, safe and efficient pipage is a key technical part of wet shotcrete process. The paper studied the pipe flow law of wet shotcrete based on lubrication layer by build the experimental pumping circuit of wet shotcrete that can carry out a number of full-scale pumping tests. The experimental results show there was a linear relationship between pressure loss and flow rate. Combined with the Buckingham rheological equation, the computing equations of the yield shear stress and plastic viscosity were deduced through linear regression. A simple analytical method allowing for a rough estimation of the pumping pressure was proposed and used when considering the lubrication layer of wet shotcrete in pipes. In addition, two kinds of particulate distributive models were established along the time axial to analyze the formation of lubrication layer which is related with particles migration. By computational fluid dynamics simulation, the lubrication layer thickness of different mix proportions was estimated. A new method for measuring the thickness of lubrication layer was proposed to verify it by binarization processing. Finally, according to the comparative analysis of experiments, simulation and computed value, it can be seen that the lubrication layer plays a key role in the process of wet shotcrete flow and with the increase of lubrication layer thickness pipe pressure declines gradually. PMID:27386389

  5. The Association between Bile Salt Export Pump Single-Nucleotide Polymorphisms and Primary Biliary Cirrhosis Susceptibility and Ursodeoxycholic Acid Response

    OpenAIRE

    Rui-rui Chen; Yuan-jun Li; Xin-min Zhou; Lu Wang; Juan Xing; Shuang Han; Li-na Cui; Lin-hua Zheng; Kai-chun Wu; Yong-quan Shi; Zhe-yi Han; Ying Han; Dai-ming Fan

    2014-01-01

    Background. Primary biliary cirrhosis (PBC) is a chronic and progressive cholestasis liver disease. Bile salt export pump (BSEP) is the predominant bile salt efflux system of hepatocytes. BSEP gene has been attached great importance in the susceptibility of PBC and the response rate of ursodeoxycholic acid (UDCA) treatment of PBC patients. Methods. In this study, TaqMan assay was used to genotype four variants of BSEP, and the Barcelona criteria were used for evaluating the response rate of U...

  6. 10 CFR 830 Major Modification Determination for Replacement of ATR Primary Coolant Pumps and Motors

    Energy Technology Data Exchange (ETDEWEB)

    Noel Duckwitz

    2011-05-01

    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the 50-year-old obsolescent marine diesels with commercial power that is backed with safety related emergency diesel generators, switchgear, and uninterruptible power supply (UPS). The second project, the subject of this major modification determination, will replace the four, obsolete, original primary coolant pumps (PCPs) and motors. Completion of this and the two other age-related projects (replacement of the ATR diesel bus [E-3] and switchgear and replacement of the existent emergency firewater injection system) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification: 1. Evaluation Criteria #3 (Change of existing process). The proposed strategy for equipping the replacement PCPs with VFDs

  7. Phase Sensitive Amplifier Based on Ultrashort Pump Pulses

    CERN Document Server

    Gershikov, Alexander

    2016-01-01

    We demonstrate a narrow band phase sensitive amplifier in the pump degenerate configuration which employs ps pump pulses. Control of the amplifier bandwidth is achieved via changes of the pump spectral width. A phase sensitive gain between -6 and 6 decibels, with an overall system gain of 28dB was demonstrated.

  8. The results of an ultrasonic examination of a flywheel attached to a primary cooling pump in HANARO

    International Nuclear Information System (INIS)

    In HANARO, a multi-purpose research reactor of 30 MWth, the primary cooling system (PCS as below) is composed of two heat exchangers, two pumps, piping including valves and instruments for cooling the nuclear fission heat during a normal operation. At a loss of electric power, a flywheel attached to each pump motor shaft provides an inertia force to ensure a slow decrease in the coolant flow in order to prevent a fuel melting. During an operation at a normal speed, a flywheel has a sufficient kinetic energy to produce high-energy missiles, and excessive vibrations of the reactor coolant pump assembly. An excess speed of the pump rotor assembly during a transient increases both the potential energy for a failure and the kinetic energy of a flywheel. The safety consequences could be significant because of possible damage to the PCS, the containment, other equipments or systems important to its safety. This year we conducted an ultrasonic examination of a flywheel to verify its structural integrity during its second 10 years periodic in-service inspection period. This paper describes the results of the ultrasonic examination. It was confirmed that the structural integrity of each flywheel is maintained through the test results in that a marked defect was not found. (author)

  9. The influence of hospital drug formulary policies on the prescribing patterns of proton pump inhibitors in primary care

    DEFF Research Database (Denmark)

    Larsen, Michael Due; Schou, Mette; Kristiansen, Anja Sparre;

    2014-01-01

    for the recommended PPIs pantoprazole and lansoprazole to 14.6 and 26.1 %, respectively. The effect of a large discount on expensive PPI to hospital was 14.7 %, and this decreased to 2.6 % when coordinating drug policy in hospital and primary care. CONCLUSION: The likelihood of having an expensive PPI prescribed......AIM: This study had two aims: Firstly, to describe how prescriptions for proton pump inhibitor (PPI) in primary care were influenced by a change of the hospital drug policy, and secondly, to describe if a large discount on an expensive PPI (esomeprazole) to a hospital would influence prescribing...... policy on prescribings in primary care was measured by the likelihood of having a high-cost PPI prescribed before and after change of drug policy. RESULTS: In total, 9,341 hospital stays in 2009 and 2010 were included. The probability of a patient to be prescribed an expensive PPI after discharge...

  10. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane

    DEFF Research Database (Denmark)

    Fuglsang, AT; Kristensen, A; Cuin, TA;

    2014-01-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+ -ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro...... heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2...

  11. A fused side-pumping optical fiber coupler based on twisting

    Science.gov (United States)

    Yi, Bokai; Chang, Xinzu; Zhou, Xuanfeng; Chen, Zilun; Zhao, Guomin

    2014-12-01

    Pumping coupler technology is one of the critical technologies for high power laser and amplifier. Side-pumping technology can couple pumping beam into inner cladding of the double-clad fiber through the side of the fiber. Compared to the end-pumping technology by tapered fused bundle (TFB), it has many superiorities. That the signal fiber was not disconnected guarantees high transmission efficiency, providing the possibility of transmitting a high power signal. Additionally, the pump light is coupled into the double-cladding fiber all along the coupler's body (~5-10 cm long), which reduces the thermal effects caused by leakage of pumping light, resulting in high pump power handling capabilities. For the realization of reliable, rugged and efficient high power fiber amplifiers and fiber laser systems, a novel kind of fused side-pumping coupler based on twisting is developed. The complete simulations were carried out for the process of side-pumping. From detailed information about simulations, we found that the pump efficiencies, one of the vital parameters of pumping coupler, have a significant influence with coupling length, the numerical aperture (NA) and taper ratio of pump fiber. However, the diversification of the parameters drops the high transmission efficiency barely. Optimized the parameters in the simulations, the pump and signal coupling efficiencies are 97.3% and 99.4%, respectively. Based on theoretical analysis, the side-pumping coupler was demonstrated at the pump and signal coupling efficiencies are 91.2% and 98.4%, respectively. This fiber coupler can be implemented in almost any fiber laser or amplifier architecture.

  12. GaAs-based high temperature electrically pumped polariton laser

    International Nuclear Information System (INIS)

    Strong coupling effects and polariton lasing are observed at 155 K with an edge-emitting GaAs-based microcavity diode with a single Al0.31Ga0.69As/Al0.41Ga0.59As quantum well as the emitter. The threshold for polariton lasing is observed at 90 A/cm2, accompanied by a reduction of the emission linewidth to 0.85 meV and a blueshift of the emission wavelength by 0.89 meV. Polariton lasing is confirmed by the observation of a polariton population redistribution in momentum space and spatial coherence. Conventional photon lasing is recorded in the same device at higher pump powers

  13. Impeller-shaft connection, especially for a PWR primary coolant pump

    International Nuclear Information System (INIS)

    The pump has: - a rotation shaft - an impeller mounted on the shaft - a thermal barrier placed above the impeller. An hydrostatic bearing is mounted on the extension belt of the impeller the impeller-shaft connection is made by a fixation device, a centering device and a coupling transmission device

  14. Electrokinetic pumping system based on nanochannel membrane for liquid delivery

    Institute of Scientific and Technical Information of China (English)

    Ling Xin Chen; Qing Ling Li; Xiao Lei Wang; Hai Long Wang; Ya Feng Guan

    2007-01-01

    Nonmechanical pumping of liquids is of key importance for applications from the biomedical microfluidic chip to drug delivery systems. In this paper, a new electrokinetic pump (EOP) system with polycarbonate nanochannel membrane sandwiched between two membrane holders was constructed. The pump was tested with water and phosphate buffer at 1-6 V applied voltage, the maximum pressure and flow rate are 0.32 MPa (3.2 atm) and 4.2 μL/min for phosphate buffer, respectively. This proof-of-concept pump shows its potential use for drugs or chemical agents delivery by the usage of different membrane materials.

  15. Experimental and analytical investigations of primary coolant pump coastdown phenomena for the Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alatrash, Yazan [Advanced Nuclear Engineering System Department, Korea University of Science and Technology (UST), 217 Gajeong-ro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kang, Han-ok; Yoon, Hyun-gi; Seo, Kyoungwoo; Chi, Dae-Young [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Yoon, Juhyeon, E-mail: yoonj@kaeri.re.kr [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon (Korea, Republic of)

    2015-05-15

    Highlights: • Core flow coastdown phenomena of a research reactor are investigated experimentally. • The experimental dataset is well predicted by a simulation software package, MMS. • The validity and consistency of the experimental dataset are confirmed. • The designed coastdown half time is confirmed to be well above the design requirement. - Abstract: Many low-power research reactors including the Jordan Research and Training Reactor (JRTR) are designed to have a downward core flow during a normal operation mode for many convenient operating features. This design feature requires maintaining the downward core flow for a short period of time right after a loss of off-site power (LOOP) accident to guarantee nuclear fuel integrity. In the JRTR, a big flywheel is installed on a primary cooling system (PCS) pump shaft to passively provide the inertial downward core flow at an initial stage of the LOOP accident. The inertial pumping capability during the coastdown period is experimentally investigated to confirm whether the coastdown half time requirement given by safety analyses is being satisfied. The validity and consistency of the experimental dataset are evaluated using a simulation software package, modular modeling system (MMS). In the MMS simulation model, all of the design data that affect the pump coastdown behavior are reflected. The experimental dataset is well predicted by the MMS model, and is confirmed to be valid and consistent. The designed coastdown half time is confirmed to be well above the value required by safety analysis results. (wwwyoon@gmail.com)

  16. Model Based Diagnosis of an Air Source Heat Pump

    OpenAIRE

    Alfredsson, Sandra

    2011-01-01

    The purpose of a heat pump is to control the temperature of an enclosed space. This is done by using heat exchange with a heat source, for example water, air, or ground. In the air source heat pump that has been studied during this master thesis, a refrigerant exchanges heat with the outdoor air and with a water distribution system. The heat pump is controlled through the circuit containing the refrigerant and it is therefore crucial that this circuit is functional. To ensure this, a diagnosi...

  17. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices

    Energy Technology Data Exchange (ETDEWEB)

    Benicewicz, Brian

    2014-02-26

    Electrochemical hydrogen pumping using a high temperature (>100°C) PBI membrane was demonstrated under non-humidified and humidified conditions at ambient pressures. Relatively low voltages were required to operate the pump over a wide range of hydrogen flow rates. The advantages of the high temperature capability were shown by operating the pump on reformate feed gas mixtures containing various amounts of CO and CO{sub 2}. Gas purity measurements on the cathode gas product were conducted and significant reductions in gas impurities were detected. The applicability of the PBI membrane for electrochemical hydrogen pumping and its durability under typical operating conditions was established with tests that lasted for nearly 4000 hours.

  18. Proton pump inhibitors in cirrhosis: Tradition or evidence based practice?

    Institute of Scientific and Technical Information of China (English)

    Francesca Lodato; Francesco Azzaroli; Maria Di Girolamo; Valentina Feletti; Paolo Cecinato; Andrea Lisotti; Davide Festi; Enrico Roda; Giuseppe Mazzella

    2008-01-01

    Proton Pump Inhibitors (PPI) are very effective in inhibiting acid secretion and are extensively used in many acid related diseases. They are also often used in patients with cirrhosis sometimes in the absence of a specific acid related disease, with the aim of preventing peptic complications in patients with variceal or hypertensive gastropathic bleeding receiving multidrug treatment. Contradicting reports support their use in cirrhosis and evidence of their efficacy in this condition is poor. Moreover there are convincing papers suggesting that acid secretion is reduced in patients with liver cirrhosis. With regard to H pylori infection, its prevalence in patients with cirrhosis is largely variable among different studies, and it seems that H pylori eradication does not prevent gastro-duodenal ulcer formation and bleeding. With regard to the prevention and treatment of oesophageal complications after banding or sclerotherapy of oesophageal varices, there is little evidence for a protective role of PPI. Moreover, due to liver metabolism of PPI, the dose of most available PPIs should be reduced in cirrhotics. In conclusion, the use of this class of drugs seems more habit related than evidence-based eventually leading to an increase in health costs.

  19. A Novel All-optical Wavelength Converter Based on Self-pump Four-wave Mixing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianxiao; CHEN Zhangyuan; TAO Zhenning; WU Deming; XU Anshi; WANG Ziyu

    2002-01-01

    A novel scheme of all-optical wavelength converter(AOWC) based on dual pump four-wave mixing(DP-FWM) was demonstrated. To suppress the ASE noise of the semiconductor optical amplifier (SOA), one of the two pumps was generated interiorly from a loop laser constructed mainly by tunable optical filter and SOA. The theoretical model and some experimental results were presented.

  20. Transient stress-based and strain-based hemolysis estimation in a simplified blood pump.

    Science.gov (United States)

    Pauli, Lutz; Nam, Jaewook; Pasquali, Matteo; Behr, Marek

    2013-10-01

    We compare two approaches to numerical estimation of mechanical hemolysis in a simplified blood pump model. The stress-based model relies on the instantaneous shear stress in the blood flow, whereas the strain-based model uses an additional tensor equation to relate distortion of red blood cells to a shear stress measure. We use the newly proposed least-squares finite element method (LSFEM) to prevent negative concentration fields and show a stable and volume preserving LSFEM for the tensor equation. Application of both models to a simplified centrifugal blood pump at three different operating conditions shows that the stress-based model overestimates the rate of hemolysis. The strain-based model is found to deliver lower hemolysis rates because it incorporates a more detailed description of biophysical phenomena into the simulation process. PMID:23922311

  1. Electromagnetic liquid pistons for capillarity-based pumping.

    Science.gov (United States)

    Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H

    2011-02-01

    The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces.

  2. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.

    Science.gov (United States)

    Yu, Hai; Janiga, Gábor; Thévenin, Dominique

    2016-04-01

    An optimization method suitable for improving the performance of Archimedes screw axial rotary blood pumps is described in the present article. In order to achieve a more robust design and to save computational resources, this method combines the advantages of the established pump design theory with modern computer-aided, computational fluid dynamics (CFD)-based design optimization (CFD-O) relying on evolutionary algorithms and computational fluid dynamics. The main purposes of this project are to: (i) integrate pump design theory within the already existing CFD-based optimization; (ii) demonstrate that the resulting procedure is suitable for optimizing an Archimedes screw blood pump in terms of efficiency. Results obtained in this study demonstrate that the developed tool is able to meet both objectives. Finally, the resulting level of hemolysis can be numerically assessed for the optimal design, as hemolysis is an issue of overwhelming importance for blood pumps.

  3. A relevance vector machine-based approach with application to oil sand pump prognostics.

    Science.gov (United States)

    Hu, Jinfei; Tse, Peter W

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.

  4. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  5. Model-based Optimizing Control of a Water-to-Water Heat Pump Unit

    OpenAIRE

    Morten C. Svensson

    1996-01-01

    This paper outlines the basic principles of on-line model-based steady-state optimizing control of continuous processes, and illustrates how this control approach can be used to optimize the operating conditions of heat pumps.

  6. High-efficiency resonantly pumped 1550-nm fiber-based laser transmitter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight proposes the development of high efficiency, high average power 1550-nm laser transmitter system that is based on Er-doped fiber amplifier resonantly pumped...

  7. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  8. Studies of cryocooler based cryosorption pump with activated carbon panels operating at 11K

    Science.gov (United States)

    Kasthurirengan, S.; Behera, Upendra; Gangradey, Ranjana; Udgata, Swarup; Krishnamoorthy, V.

    2012-11-01

    Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about ~50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.

  9. In vivo assessment of a new method of pulsatile perfusion based on a centrifugal pump.

    Science.gov (United States)

    Herreros, Jesús; Ubilla, Matías; Berjano, Enrique J; Vila-Nuñez, Juan E; Páramo, José A; Sola, Josu; Mercé, Salvador

    2010-02-01

    The aim of this study was to assess platelet dysfunction and damage to organs after extracorporeal circulation using a pump based on a new method that adds a pulsatile flow to the continuous flow provided by a centrifugal pump. The continuous component of the total flow (2-3 L/min) is created by a Bio-Pump centrifugal pump, while the pulsatile component is created by the pulsating of an inner membrane pneumatically controlled by an intra-aortic counterpulsation balloon console (systolic volume of 37.5 mL in an asynchronous way with a frequency of 60 bpm). Six pigs were subjected to a partial cardiopulmonary bypass lasting 180 min and were sacrificed 60 min after extracorporeal circulation was suspended. The hematological study included the measurement of hematocrit, hemoglobin, leukocytes, and platelet function. The new pump did not significantly alter either platelet count or platelet function. In contrast, hematocrit and hemoglobin were significantly reduced during extracorporeal circulation (approximately 5% P = 0.011, and 2 g/dL P = 0.01, respectively). The leukocyte count during extracorporeal circulation showed a tendency to decrease, but this was not significant. In general, the short-term use of the new pump (4 h) did not cause any serious morphological damage to the heart, lung, kidney, or liver. The results suggest that the hemodynamic performance of the new pump is similar to a conventional centrifugal pump and could therefore be appropriate for use in extracorporeal circulation.

  10. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.;

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  11. Research on the Energy Consumption Evaluation and Energy Saving Technical Reconstruction of Centrifugal Pump System Based on Actual Demand

    OpenAIRE

    Luo Yin; Shouqi Yuan; Tang Yue; Yuan Jianping

    2013-01-01

    A new method for calculating the operational efficiency of a pumping station has been developed based on the integral principle and operation rules of the pump flow rate. To determine the energy saving space of a pumping system and to reflect the relationship between supply and demand, a new method for evaluating the energy consumption rate of a pump system has been developed based on the principle of an inverter-controlled water supply with varying pressures. These methods have been applied ...

  12. Finite element method-based investigation of deformation of pump diaphragm and its influence on pump perfomance

    OpenAIRE

    Fernandez Mallart, Joana

    2009-01-01

    Diaphragm (membrane) pumps are reciprocating positive displacement pumps. Transport of liquid is achieved through reciprocating motion of the diaphragm. In the case of hydraulically actuated diaphragm pumps, diaphragm displacement is realized through the action of hydraulic fluid. Advantage of this approach is more uniform stress distribution across the diaphragm. The further development of this type of pumps is limited by largely unknown mechanical behavior of diaphragm structure, uninvestig...

  13. Rapidly increasing use of proton pump inhibitors prescribed in primary care: a nationwide observational study

    DEFF Research Database (Denmark)

    Haastrup, Peter; Jarbøl, Dorte Ejg; Hansen, Jane Møller

    Background: Antisecretory drugs (ADs) are often prescribed in primary care for upper gastrointestinal symptoms. Reimbursement modifications have been made in Denmark to minimize costs related to use of ADs. However knowledge about development in use of ADs over the past decade and the impacts...... of the reimbursement modifications is sparse. Research questions: How has use of ADs developed in Denmark 2001-2011? Which impacts have the reimbursement modifications had on the use of ADs? Methods: The Register of Medicinal Product Statistics includes all sales and redeemed prescriptions nationwide covering...... through the years 2001-2011 were used. Data from prescriptions redeemed by persons younger than 20 years were excluded. Prescriptions for ulcerogenic drugs (acetylsalicylic acid and non-steroidal anti-inflammatory drugs) redeemed by persons aged 65 years and older were included since ulcer prophylaxis...

  14. Pump dependence of the dynamics of quantum dot based waveguide absorbers

    Science.gov (United States)

    Viktorov, Evgeny A.; Erneux, Thomas; Piwonski, Tomasz; Pulka, Jaroslaw; Huyet, Guillaume; Houlihan, John

    2012-06-01

    The nonlinear two stage recovery of quantum dot based reverse-biased waveguide absorbers is investigated experimentally and analytically as a function of the initial ground state occupation probability of the dot. The latter is controlled experimentally by the pump pulse power. The slow stage of the recovery is exponential and its basic timescale is independent of pump power. The fast stage of the recovery is a logistic function which we analyze in detail. The relative strength of slow to fast components is highlighted and the importance of higher order absorption processes at the highest pump level is demonstrated.

  15. Cryogenic Subsystem to Provide for Nominal Operation and Fast Regeneration of the ITER Primary Cryo-sorption Vacuum Pumps

    International Nuclear Information System (INIS)

    The ITER cryogenic system includes provision for cooling the eight cryo-sorption pumps that maintain vacuum conditions within the tokamak plasma vacuum vessel. The eight pumps are operated such that at any given instant four pumps pump the plasma vessel and four pumps are undergoing four sequential stages of regeneration, each having a duration of 150 s. The regeneration includes a cold helium exhaust stage, warm-up from 4.5 K to 80-100 K, desorption and pump-out of released gases and cool-down from 80-100 K to 4.5 K. Thus after every 150 s of operation one of the four pumps is taken off-line for regeneration and another just-regenerated pump is restored to the set of four pumps that provide the nominal pumping.This paper presents the current design status of the cryogenic subsystems for cooling and heating the cryopumps during pumping and fast regeneration and details of the fluid-dynamic numerical analysis of the cryopumps (Vincenta code) used to study the transient behaviour of helium flow in the cryo-sorption panels during regeneration

  16. Thermodynamic and kinetic investigation of a chemical reaction-based miniature heat pump

    OpenAIRE

    Flueckiger, Scott M.; Volle, Fabien; Garimella, S V; Mongia, Rajiv K.

    2012-01-01

    Representative reversible endothermic chemical reactions (paraldehyde depolymerization and 2-proponal dehydrogenation) are theoretically assessed for their use in a chemical heat pump design for compact thermal management applications. Equilibrium and dynamic simulations are undertaken to explore the operation of the heat pump which upgrades waste heat from near room temperature by approximately 20 in a minimized system volume. A model is developed based on system mass and energy balances cou...

  17. Atomistic study of a nanometer-scale pump based on the thermal ratchet concept

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, J. H.; Zambrano, Harvey

    In this study, a novel concept of nanoscale pump fabricated using Carbon Nanotubes (CNTs) is presented. The development of nanofluidic systems provides unprecedented possibilities for the control of biology and chemistry at the molecular level with potential applications in low energy cost device...... dynamics simulations, we explore the possibility to design thermophoretic pumping devices fabricated of CNTs for water transport in nanoconduits. The design of the nanopumps is based on the concept of the Feynman-Smoluchowski ratchet....

  18. Pump impeller

    International Nuclear Information System (INIS)

    A mixed-flow pump impeller, which may be used, for example, as a primary pump for circulating sodium as the primary coolant in a fast nuclear reactor, is described which comprises an impeller with evenly-spaced blades. Some of the blades, which are symmetrically disposed around the axis of rotation of the impeller, extend beyond the ends of the other blades towards the suction side of the pump to form an inducer. The channels defined between the extensions of the extended blades follow helical paths parallel to the axis of rotation. The leading edges of the unextended blades are interposed between the extended blades in the region of divergence of flow from the axis of rotation. The provision of the inducer reduces the risk of cavitation in the pump, which could cause rapid wear of the impeller. A shroud may be provided for the unextended blades. (author)

  19. Remaining useful life prediction based on the Wiener process for an aviation axial piston pump

    Institute of Scientific and Technical Information of China (English)

    Wang Xingjian; Lin Siru; Wang Shaoping; He Zhaomin; Zhang Chao

    2016-01-01

    An aviation hydraulic axial piston pump’s degradation from comprehensive wear is a typical gradual failure model. Accurate wear prediction is difficult as random and uncertain char-acteristics must be factored into the estimation. The internal wear status of the axial piston pump is characterized by the return oil flow based on fault mechanism analysis of the main frictional pairs in the pump. The performance degradation model is described by the Wiener process to predict the remaining useful life (RUL) of the pump. Maximum likelihood estimation (MLE) is performed by utilizing the expectation maximization (EM) algorithm to estimate the initial parameters of the Wiener process while recursive estimation is conducted utilizing the Kalman filter method to estimate the drift coefficient of the Wiener process. The RUL of the pump is then calculated accord-ing to the performance degradation model based on the Wiener process. Experimental results indi-cate that the return oil flow is a suitable characteristic for reflecting the internal wear status of the axial piston pump, and thus the Wiener process-based method may effectively predicate the RUL of the pump.

  20. The Association between Bile Salt Export Pump Single-Nucleotide Polymorphisms and Primary Biliary Cirrhosis Susceptibility and Ursodeoxycholic Acid Response

    Directory of Open Access Journals (Sweden)

    Rui-rui Chen

    2014-01-01

    Full Text Available Background. Primary biliary cirrhosis (PBC is a chronic and progressive cholestasis liver disease. Bile salt export pump (BSEP is the predominant bile salt efflux system of hepatocytes. BSEP gene has been attached great importance in the susceptibility of PBC and the response rate of ursodeoxycholic acid (UDCA treatment of PBC patients. Methods. In this study, TaqMan assay was used to genotype four variants of BSEP, and the Barcelona criteria were used for evaluating the response rate of UDCA treatment. Results. Variant A allele of BSEP rs473351 (dominant model, OR = 2.063; 95% CI, 1.254–3.393; P=0.004 was highly associated with PBC susceptibility. On the contrary, variant A allele of BSEP rs2287618 (dominant model, OR = 0.617; 95% CI, 0.411–0.928; P=0.020 provided a protective role and Barcelona evaluation criterion indicated that the frequency of variant allele at BSEP rs2287618 was significantly decreased in UDCA-responsive PBC patients (P=0.021. Conclusion. These results suggested that BSEP rs473351 was closely associated with the susceptibility of PBC and if people with BSEP rs2287618 were diagnosed as PBC, the UDCA treatment was not satisfactory. Larger studies with mixed ethnicity subjects and stratified by clinical and subclinical characteristics are needed to validate our findings.

  1. Improvement of photovoltaic pumping systems based on standard frequency converters by means of programmable logic controllers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ramos, Jose [Departamento de Electronica, Universidad de Malaga, Complejo Tecnologico de Teatinos (2.2.39), 29071 Malaga (Spain); Narvarte-Fernandez, Luis; Poza-Saura, Fernando [Instituto de Energia Solar, Universidad Politecnica de Madrid (IES-UPM), Avenida Complutense s/n (204), 28040 Madrid (Spain)

    2010-01-15

    Photovoltaic pumping systems (PVPS) based on standard frequency converters (SFCs) are currently experiencing a growing interest in pumping programmes implemented in remote areas because of their high performance in terms of component reliability, low cost, high power range and good availability of components virtually anywhere in the world. However, in practical applications there have appeared a number of problems related to the adaptation of the SFCs to the requirements of the photovoltaic pumping systems (PVPS). Another disadvantage of dedicated PVPS is the difficulty in implementing maximum power point tracking (MPPT). This paper shows that these problems can be solved through the addition of a basic industrial programmable logic controller (PLC) to the system. This PLC does not increase the cost and complexity of the system, but improves the adaptation of the SFC to the photovoltaic pumping system, and increases the overall performance of the system. (author)

  2. A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance

    International Nuclear Information System (INIS)

    This paper reports a new membrane-based pneumatic micropump with new serpentine-shape (S-shape) pneumatic channels intended for achieving high-throughput pumping in a microfluidic system at a relatively low pumping rate and a board flow rate range. The key feature of this design is the ability to modulate the pumping rates by fine-tuning the fluidic resistance of injected compressed air in the designed pneumatic microchannels and the chambers of the micropump. In the study, several S-shape pneumatic micropumps with various layouts were designed and fabricated based on thick-film photoresist lithography and polydimethylsiloxane (PDMS) replication processes. To investigate designs with a suitable pumping performance, S-shape pneumatic micropumps with varied lengths (1000, 5000 and 10 000 µm), varied widths (20, 40 and 200 µm) of the pneumatic microchannel bridging two rectangular pneumatic chambers, and different numbers of pneumatic channel bends (two and four U-shape bends) were designed and evaluated experimentally by using high-speed CCD-coupled microscopic observation of the movement of PDMS membrane pulsation and pumping rate measurements. The results revealed that under the experimental conditions studied, the layout of the S-shape pneumatic micropump with three rectangular pneumatic chambers, 5000 µm long and 40 µm wide pneumatic microchannel and four U-shape bends in the pneumatic microchannel was found to be capable of providing a broader pumping rate range from 0 to 539 µl h−1 compared to the other designs. As a whole, the experimental results demonstrate the use of fluidic resistance of injected air in a pneumatic micropump with S-shape layout to control its pumping performance, which largely expands the flexibility of its pumping application in a microfluidic system

  3. Fault Detection And Diagnosis For Air Conditioners And Heat Pumps Based On Virtual Sensors

    OpenAIRE

    Kim, Woohyun

    2013-01-01

    The primary goal of this research is to develop and demonstrate an integrated, on-line performance monitoring and diagnostic system with low cost sensors for air conditioning and heat pump equipment. Automated fault detection and diagnostics (FDD) has the potential for improving energy efficiency along with reducing service costs and comfort complaints. To achieve this goal, virtual sensors with low cost measurements and simple models were developed to estimate quantities that would be expens...

  4. Numerical Investigation and Optimization of SBS-Based Slow-Light Using Filtered Incoherent Pump

    Institute of Scientific and Technical Information of China (English)

    ZHENG Di; PAN Wei; YAN Lian-Shan; LUO Bin; ZOU Xi-Hua; WEN Kun-Hua; JIANG Ning

    2009-01-01

    The performance of stimulated Brillouin scattering(SBS)-based slow light using a novel spectrally-sliced broad band incoherent pump source is numerically studied.The profile of the pump-power spectrum is determined by the transmission spectra of the optical filter followed by the polarized broadband incoherent pump source.We also investigate the performance of Gaussian-type and super-Gaussian-type filtering under different spectrally-sliced bandwidths and pump power levels for 2.5 Gbit/s return-to-zero pulse(50% duty-cycle).The pulse broadening is characterized by the full width of half maximum(FWHM)and the rms pulse width,respectively.However,the results obtained by the two kinds of measurement methods deviate from each other with increasing pump power.Compared with the regular Gaussian-type filtering,the pulse broadening can be significantly reduced using super-Gaussian-type filtering at the cost of a small reduction in delay time.Furthermore,the maximum improvement in pulse broadening of △B_(FWHM) = 28.4% and △B_(RMS)= 10.4% is achieved by using a five-order super-Gaussian-type filter and a pump power of 500mw.

  5. A Subfemtotesla Atomic Magnetometer Based on Hybrid Optical Pumping of Potassium and Rubidium

    Science.gov (United States)

    Li, Yang; Cai, Hongwei; Ding, Ming; Quan, Wei; Fang, Jiancheng

    2016-05-01

    Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have been researched and applied extensively. Higher sensitivity and spatial resolution combined with no cryogenic cooling of atomic magnetometers would enable many applications with low cost, including the magnetoencephalography (MEG). Ultrahigh sensitivity atomic magnetometer is considered to be the main development direction for the future. Hybrid optical pumping has been proposed to improve the efficiency of nuclear polarization. But it can also be used for magnetic field measurement. This method can control absorption of optical pumping light, which is benefit for improving the uniformity of alkali metal atoms polarization and the sensitivity of atomic magnetometer. In addition, it allows optical pumping in the absence of quenching gas. We conduct experiments with a hybrid optically pumped atomic magnetometer using a cell containing potassium and rubidium. By adjusting the density ratio of alkali metal and the pumping laser conditions, we measured the magnetic field sensitivity better than 0.7 fT/sqrt(Hz).

  6. Numerical Investigation and Optimization of SBS-Based Slow-Light Using Filtered Incoherent Pump

    International Nuclear Information System (INIS)

    The performance of stimulated Brillouin scattering (SBS)-based slow light using a novel spectrally-sliced broadband incoherent pump source is numerically studied. The profile of the pump-power spectrum is determined by the transmission spectra of the optical filter followed by the polarized broadband incoherent pump source. We also investigate the performance of Gaussian-type and super-Gaussian-type filtering under different spectrally-sliced bandwidths and pump power levels for 2.5 Gbit/s return-to-zero pulse (50% duty-cycle). The pulse broadening is characterized by the full width of half maximum (FWHM) and the rms pulse width, respectively. However, the results obtained by the two kinds of measurement methods deviate from each other with increasing pump power. Compared with the regular Gaussian-type filtering, the pulse broadening can be significantly reduced using super-Gaussian-type filtering at the cost of a small reduction in delay time. Furthermore, the maximum improvement in pulse broadening of ΔBFWHM = 28.4% and λBRMS = 10.4% is achieved by using a five-order super-Gaussian-type filter and a pump power of 500 mW

  7. NOISE IDENTIFICATION FOR HYDRAULIC AXIAL PISTON PUMP BASED ON ARTIFICIAL NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The noise identification model of the neural networks is established for the 63SCY14-1B hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully carried out for hydraulic axial piston pump based on experiments with the MATLAB and the toolbox of neural networks. The operating pressure, the flow rate of hydraulic axial piston pump, the temperature of hydraulic oil, and bulk modulus of hydraulic oil are the main parameters having influences on the noise of hydraulic axial piston pump. These four parameters are used as inputs of neural networks, and experimental data of the noise are used as outputs of neural networks. Error of noise identification is less than 1% after the neural networks have been trained. The results show that the noise identification of hydraulic axial piston pump is feasible and reliable by using artificial neural networks. The method of noise identification with neural networks is also creative one of noise theoretical research for hydraulic axial piston pump.

  8. Improvement of four-wave mixing-based wavelength conversion efficiency in dispersion shifted fiber by 40-GHz clock pumping

    Institute of Scientific and Technical Information of China (English)

    Aiying Yang; Yunan Sun

    2008-01-01

    @@ 40-GHz clock modulated signal as a pump to improve the efficiency of four-wave mixing (FWM)-based wavelength conversion in a 26.5-km dispersion shifted fiber (DSF) is investigated. The experimental results demonstrate that the conjugated FWM component has higher intensity with the clock pumping than that with the continuous-wave (CW) light pumping. The improvement of FWM-based wavelength conversion efficiency is negligible when the pump power is less than Brillouin threshold. But when the pump power is greater than Brillouin threshold, the improvement becomes significant and increases with the increment of pump power. The improvement can increase up to 9 dB if pump power reaches 17 dBm.

  9. EXERGY-BASED ECOLOGICAL ANALYSIS OF GENERALIZED IRREVERSIBLE HEAT PUMP SYSTEM

    Directory of Open Access Journals (Sweden)

    GOVIND MAHESHWARI

    2011-10-01

    Full Text Available A reverse Carnot cycle forms the basis of all heat-pump cycles in providing heating and cooling loads. The optimal exergy-based Ecological analysis of an irreversible Heat-pump system with the losses of heat resistance, heat leak and internal irreversibility has been carried out by taking into account Exergy based ecological function (E as an objective in the viewpoint of Finite-Time-Thermodynamics (FTT or Entropy Generation Minimization (EGM. Exergy is defined here as the power required minus the lost power. The effects of irreversibilities along with internal heat leakage on coefficient on the performance of the system are investigated. The exergy based Ecological function decreases steadily with irreversibilites and heat leakages in the system. COP in such a system increases with the cycle temperature ratio. If a heat pump cycle is optimized with above mentioned criterion, there is a trade-off between its coefficient of Performance and the heating load it provides.

  10. A high-efficiency electrically-pumped single-photon source based on a photonics nanowire

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper;

    An electrically-pumped single-photon source design with a predicted efficiency of 89% is proposed. The design is based on a quantum dot embedded in a photonic nanowire with tailored ends and optimized contact electrodes. Unlike cavity-based approaches, the photonic nanowire features broadband...

  11. Heat pump-based geothermal energy. Technical and economic study. The costs of heat-pump-based geothermal energy

    International Nuclear Information System (INIS)

    This study aims at identifying the financial basis on which actors of a geothermal project for heating, cooling and hot water production can rely. It also aims at describing the three main technical solutions for very-low-energy geothermal: horizontal sensors, vertical probes, and geothermal doublets on aquifer. After a presentation of the adopted methodology and of the different economic, thermal and technical hypotheses, the respective costs of these technical solutions are assessed and a comparison between these systems and conventional energies is reported. The economic study is performed for different markets: individual housing, collective housing, and office building. Different aspects of each operation are studied: underground works (drilling) and surface equipment (heat pump and support). Investment, maintenance and operational costs are analysed

  12. Language-Based Reasoning in Primary Science

    Science.gov (United States)

    Hackling, Mark; Sherriff, Barbara

    2015-01-01

    Language is critical in the mediation of scientific reasoning, higher-order thinking and the development of scientific literacy. This study investigated how an exemplary primary science teacher scaffolds and supports students' reasoning during a Year 4 materials unit. Lessons captured on video, teacher and student interviews and micro-ethnographic…

  13. Heat pumps and the economy. Part 1. Primary energy consumption in houses; Warmtepompen en economie. Deel 1. Primair energiegebruik in woningen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    In a positioning paper of the NL Agency the economic perspective of heat pumps is outlined. In three parts the chapters of the paper are summarized. This first part focuses on primary energy consumption in Dutch houses [Dutch] In een positioning paper van het Agentschap NL wordt het economisch perspectief van warmtepompen belicht. In 3 delen wordt steeds 1 hoofdstuk uit deze paper samengevat. Dit eerste deel gaat in op primair energiegebruik in Nederlandse woningen.

  14. Combined loss of primary and secondary coolant AC pump power design-basis event for the K-reactor safety analysis report

    International Nuclear Information System (INIS)

    The combined loss of alternating-current (ac) power to the primary coolant and secondary coolant system pumps has been included as a design-basis event in Chap. 15 of the safety analysis report for the K reactor at the U.S. Department of Energy's Savannah River site (SRS) nuclear materials production complex near Aiken, South Carolina. This event can arise from a disruption of the entire 115-kV SRS power grid or a lesser disturbance affecting the K-reactor area, combined with a failure of the standby emergency power sources. The first scenario is referred to as a open-quotes station blackout,close quotes and the second scenario is designated as a open-quotes mini-blackout.close quotes This is a condition-11 event (incident of moderate frequency) per the criterion (frequency of occurrence ≥ 1 x 10-6 per year) for credible eventualities in the design-basis envelope. The event causes the primary coolant flow to drop and stabilize at ∼27% of its full level (5.83 + 05 ell/min). Likewise, the secondary coolant flow drops and settles also at ∼27% of its full level (6.36 x 105 ell/min). The final primary coolant flow is maintained by the reduced pumping provided by diesel powered direct-current motors. The final secondary coolant flow is driven by gravity from the height differential between the supply and discharge basins. Both flows coast down gradually due to the action of flywheels in all of the six primary coolant pumps and in two of the ten secondary coolant pumps

  15. A new heating system based on coupled air source absorption heat pump for cold regions: Energy saving analysis

    International Nuclear Information System (INIS)

    Highlights: • A double-stage coupled air source absorption heat pump (ASAHP) is proposed. • The coupled ASAHP exhibits stable and high performance in very cold regions. • Energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. - Abstract: Energy consumption for heating and domestic hot water is very high. The heating system based on an air source absorption heat pump (ASAHP) had been assessed to have great energy saving potential. However, the single-stage ASAHP exhibits poor performance when the outdoor air temperature is very low. A double-stage coupled ASAHP is proposed to improve the energy-saving potential of single-stage ASAHP in cold regions. The heating capacity and primary energy efficiency (PEE) of the proposed system operated in both coupled mode and single-stage mode are simulated under various working conditions. The building load and primary energy consumption of different heating systems applied in cold regions are analyzed comparatively to investigate the energy-saving potential of the coupled ASAHP. Results show that the coupled ASAHP exhibits stable PEE and provides high heating capacity in very cold conditions. The energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. In addition, the energy-saving potential of the single-stage ASAHP in severely cold areas can be improved obviously by coupled ASAHP, with an improvement of 7.73% in Harbin

  16. Controlling a Conventional LS-pump based on Electrically Measured LS-pressure

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    for being able to generate a hydraulic pilot pressure. In this paper controlling a hydraulic variable pump is considered. The LS-pressure is measured electrically and the hydraulic pilot pressure is generated using a small spool valve. From a control point of view there are two approaches for controlling...... this system, by either generating a copy of the LS-pressure, the LS-pressure being the output, or letting the output be the pump pressure. The focus of the current paper is on the controller design based on the first approach. Specifically a controlled leakage flow is used to avoid the need for a switching...

  17. A case-based reasoning approach for estimating the costs of pump station projects

    Directory of Open Access Journals (Sweden)

    Mohamed M. Marzouk

    2011-10-01

    Full Text Available The effective estimation of costs is crucial to the success of construction projects. Cost estimates are used to evaluate, approve and/or fund projects. Organizations use some form of classification system to identify the various types of estimates that may be prepared during the lifecycle of a project. This research presents a parametric-cost model for pump station projects. Fourteen factors have been identified as important to the influence of the cost of pump station projects. A data set that consists of forty-four pump station projects (fifteen water and twenty-nine waste water are collected to build a Case-Based Reasoning (CBR library and to test its performance. The results obtained from the CBR tool are processed and adopted to improve the accuracy of the results. A numerical example is presented to demonstrate the development of the effectiveness of the tool.

  18. A real option-based simulation model to evaluate investments in pump storage plants

    International Nuclear Information System (INIS)

    Investments in pump storage plants are expected to grow especially due to their ability to store an excess of supply from wind power plants. In order to evaluate these investments correctly the peculiarities of pump storage plants and the characteristics of liberalized power markets have to be considered. The main characteristics of power markets are the strong power price volatility and the occurrence of prices spikes. In this article a valuation model is developed capturing these aspects using power price simulation, optimization of unit commitment and capital market theory. This valuation model is able to value a future price-based unit commitment planning that corresponds to future scope of actions also called real options. The resulting real option value for the pump storage plant is compared with the traditional net present value approach. Because this approach is not able to evaluate scope of actions correctly it results in strongly smaller investment values and forces wrong investment decisions. (author)

  19. Impellers of low specific speed centrifugal pump based on the draughting technology

    International Nuclear Information System (INIS)

    The authors analyzed the reasons of low efficiency under different operation condition based on the performance test and CFD numerical simulation approach. And the analysis focuses on the relationship between pump efficiency and inner flow characteristics. In order to improve the internal flow and increase efficiency of the pump, some draughting methods of improving the internal flow structure have been proposed, and some new impellers were developed by these methods. The main geometric parameters of the impellers, such as diameter, width and installation of the size, were consistent with the original impeller. The experimental results show that the efficiency of new impellers was improved significantly. The authors' work has opened up a new direction for further improving the efficiency of the low specific speed centrifugal pump.

  20. Active radiation hardening of Tm-doped silica fiber based on pump bleaching.

    Science.gov (United States)

    Xing, Ying-bin; Zhao, Nan; Liao, Lei; Wang, Yi-bo; Li, Hai-qing; Peng, Jing-gang; Yang, Lv-yun; Dai, Neng-li; Li, Jin-yan

    2015-09-21

    Tm-doped fiber laser or amplifier can be applied in varied adverse environments. In this work, we demonstrate the pump bleaching of Tm-doped silica fiber with 793nm pump source under gamma-ray irradiation in the range 50Gy-675Gy. The recovery time, the fiber slope efficiency and the fiber cladding absorption spectra after irradiation and bleaching have been measured. It is found that the recovery time and radiation induce absorption are positively associated with doses, however, the fiber slope efficiency of irradiated TDF and bleached TDF are both negatively correlated with doses. Based on the simulation of the fiber core temperature, the probable mechanism of pump bleaching is also discussed.

  1. Model based fault diagnosis in a centrifugal pump application using structural analysis

    DEFF Research Database (Denmark)

    Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik;

    2004-01-01

    A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...

  2. Model Based Fault Diagnosis in a Centrifugal Pump Application using Structural Analysis

    DEFF Research Database (Denmark)

    Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik;

    2004-01-01

    A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...

  3. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  4. Development of optical sensing system for detection of Fe ions using conductive polymer actuator based microfluidic pump

    OpenAIRE

    Kim, Jung Ho; Lau, King-Tong; Fay, Cormac; Diamond, Dermot

    2008-01-01

    In this paper, we present a novel microfluidic optical sensing system by combining a low-power conductive polymer -based microfluidic pump and a microfluidic chip integrated with an optical sensor. A self priming microfluidic pump is developed using a polypyrrole. A microfluidic chip- optical detector module that contained an optical cuvette with LED and photo-diode optical sensing module was fabricated. Integration of the micro pump and the microfluidic chips complete...

  5. RESEARCH OF INNER FLOW IN A DOUBLE BLADES PUMP BASED ON OPENFOAM

    Institute of Scientific and Technical Information of China (English)

    LIU Hou-lin; REN Yun; WANG Kai; WU Deng-hao; RU Wei-min; TAN Ming-gao

    2012-01-01

    The inner flow analysis of centrifugal pumps has gradually become an important issue for the hydraulic design and performance improvement.Nowadays,CFD simulation toolbox of pump inner flow mainly contains commercial tools and open source tools.There are some detects for commercial CFD software for the numerical simulation of 3-D turbulent internal flow in pump,especially in capturing the flow characteristics under the off-design operating conditions.Additionally,it is difficult for researchers to do further investigation because of the undeclared source.Therefore,an open source software like Open Field Operation and Manipulation (OpenFOAM) is increasingly popular with researchers from all over the world.In this paper,a new computational study was implemented based on the original solver and was used to directly simulate the steady-state inner flow in a double blades pump,with the specific speed is 111.In order to disclose the characteristics deeply,three research schemes were conducted.The ratios (Q/Qd) of the flow rate are 0.8,1.0 and 1.2,respectively.The simulation results were verified with the Particle Imaging Velocimetry (PIV) experimental results,and the numerical calculation results agree well with the experimental data.Meanwhile,the phenomena of flow separation under the off-design operating conditions are well captured by OpenFOAM.The results indicate that OpenFOAM possesses obvious strong predominance in computing the internal flow field of pump.The analysis results can also be used as the basis for the further research and the improvement of centrifugal pump.

  6. Micro pumping methods based on AC electrokinetics and Electrorheologically actuated PDMS valves

    Science.gov (United States)

    Soni, Gaurav; Squires, Todd; Meinhart, Carl

    2006-11-01

    We have developed 2 different micropumping methods for transporting ionic fluids through microchannels. The first method is based on Induced Charge Electroosmosis (ICEO) and AC flow field-effect. We used an AC electric field to produce a symmetric ICEO flow on a planar electrode, called `gate'. In order to break the symmetry of ICEO, we applied an additional AC voltage to the gate electrode. Such modulation of the gate potential is called field effect and produces a unidirectional pumping over the gate surface. We used micro PIV to measure pumping velocities for a range of ionic concentration, AC frequency and gate voltage. We have also conducted numerical simulations to understand the deteriorating effect of lateral conduction of surface charge on the pumping velocities. The second method is based on vibration of a flexible PDMS diaphragm actuated by an electrorheological (ER) fluid. ER fluid is a colloidal suspension exhibiting a reversible liquid-to-solid transition under an electric field. This liquid-to-solid transition can yield very high shear stress and can be used to open and close a PDMS valve. Three such valves were fabricated and actuated in a peristaltic fashion in order to achieve positive displacement pumping of fluids.

  7. Estimation of the Pumping Pressure from Concrete Composition Based on the Identified Tribological Parameters

    Directory of Open Access Journals (Sweden)

    Chanh-Trung Mai

    2014-01-01

    Full Text Available A new method is proposed to estimate pumping pressure based on concrete composition without experimental measurements. Previous studies show that the pumping pressure depends on the interface friction between concrete and the wall of the pumping pipes. This friction is determined by the thickness and the rheology of the boundary layer formed at the interface. The latter is mainly formed by water, cement, and fine sand particles which come from concrete. Hence, interface parameters, which are the viscous constant and the interface yield stress, are directly related to concrete composition. In this work, at the first time the interface yield stress model is suggested and validated thanks to an experimental database also carried out in this study with a precision of around 13%. Then, the pressure estimation method is proposed using the two models to calculate the interface parameters. The validation of the method is carried out basing on the comparison with real measurements on the building site. This method enables the calculation of the pumping pressure with a precision of around 15%.

  8. A comparison of diesel, biodiesel and solar PV-based water pumping systems in the context of rural Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Pokharel, Govind Raj; Østergaard, Poul Alberg

    2014-01-01

    using petro-diesel, jatropha-based biodiesel and solar photovoltaic pumps. The technical system design consists of system sizing of prime mover (engine, solar panel and pumps) and estimation of reservoir capacity, which are based on the annual aggregate water demand modelling. With these investigations......, detailed financial modelling is carried out in a spreadsheet to compare the alternatives on the basis of the economic parameters; net present value, equivalent annualised cost and levelised cost of water pumping. Analysis is carried out considering different influential parameters; water head, discharge......, incentives on the investments, which have effects on the cost of pumped water. Likewise, in case of biodiesel-based system, different yield rate of jatropha plants is also considered in estimating the cost of producing biodiesel. It is found that for operating a biodiesel-based pumping system for the study...

  9. Transient Stress- and Strain-Based Hemolysis Estimation in a Simplified Blood Pump

    OpenAIRE

    Pauli, L.; Nam, J.; Pasquali, M.; BEHR, M

    2013-01-01

    We compare two approaches to numerical estimation of mechanical hemolysis in a simplified blood pump model. The stress-based model relies on the instantaneous shear stress in the blood flow, whereas the strain-based model uses an additional tensor equation to relate distortion of red blood cells to a shear stress measure. We use the newly proposed least-squares finite element method (LSFEM) to prevent negative concentration fields and show a stable and volume preserving LSFEM for the tensor e...

  10. Computation of stress distribution in a mixed flow pump based on fluid-structure interaction analysis

    Science.gov (United States)

    Hu, F. F.; Chen, T.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    The internal flow evolution of the pump was induced with impeller movement. In various conditions, the peak load on centrifugal blade under the change of rotational speed or flow rate was also changed. It would cause an error when inertia load with a safety coefficient (that was difficult to ascertain) was applied in structure design. In order to accurately analyze the impeller stress under various conditions and improve the reliability of pump, based on a mixed flow pump model, the stress distribution characteristic was analyzed under different flow rates and rotational speeds. Based on a three-dimensional calculation model including impeller, guide blade, inlet and outlet, the three-dimension incompressible turbulence flow in the centrifugal pump was simulated by using the standard k-epsilon turbulence model. Based on the sequentially coupled simulation approach, a three-dimensional finite element model of impeller was established, and the fluid-structure interaction method of the blade load transfer was discussed. The blades pressure from flow simulation, together with inertia force acting on the blade, was used as the blade loading on solid surface. The Finite Element Method (FEM) was used to calculate the stress distribution of the blade respectively under inertia load, or fluid load, or combined load. The results showed that the blade stress changed with flow rate and rotational speed. In all cases, the maximum stress on the blade appeared on the pressure side near the hub, and the maximum static stress increased with the decreasing of the flow rate and the increasing of rotational speed. There was a big difference on the static stress when inertia load, fluid load and combined loads was applied respectively. In order to more accurately calculate the stress distribution, the structure analysis should be conducted due to combined loads. The results could provide basis for the stress analysis and structure optimization of pump.

  11. Characterization of zeolite-based coatings for adsorption heat pumps

    CERN Document Server

    Freni, Angelo; Bonaccorsi, Lucio; Chmielewski, Stefanie; Frazzica, Andrea; Calabrese, Luigi; Restuccia, Giovanni

    2015-01-01

    This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle. Adsorptive Heat Transformers (AHT), especially adsorption chillers and

  12. Modeling and Simulation on Axial Piston Pump Based on Virtual Prototype Technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; XU Bing; XIA Chunlin; YANG Huayong

    2009-01-01

    A particular emphasis is placed on the virtual prototype technology (VPT) of axial piston pump. With this technology it is convenient and flexible to build a complicated 3D virtual based on real physical model. The actual kinematics pairs of the parts were added on the model. The fluid characters were calculated by hydraulic software. The shape of the parts, the flexible body of parts, etc were improved in this prototype. So the virtual prototype of piston pump can work in computer like a real piston pump, and the flow ripple, pressure pulsation, motion principle, stress of parts, etc can be investigated. The development of the VPT is introduced at the beginning, and the modeling process of the virtual prototype is explained. Then a special emphasis is laid on the relationship between the dynamics model and the hydraulic model, and the simulations on the flow ripple, pressure pulsation, motion principle, the stress and strain distribution of the middle shaft and piston are operated. Finally, the advantages and disadvantages of the VPT are discussed. The improved virtual prototype of piston pump more tally with the real situation and the VPT has a great potential in simulation on hydraulic components.

  13. Performance evaluation of organic and titanium based working fluids for high-temperature heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2009-12-10

    In this paper, selected organic and titanium based fluids (biphenyl, biphenylmethane, naphthalene, isoquinoline, titanium tetrabromide and titanium tetraiodide) are assessed thermodynamically as potential working fluids for high temperature mechanical heat pumps. Various applications, such as thermo-chemical cycles for hydrogen production, chemical processes comprising endothermic reactions, steam generators and metallurgical processes, can benefit from such heat pumps as 'green' sources of high temperature heat. The environmental benefit occurs from avoiding fossil fuel heating and therefore reducing carbon dioxide and other pollutant emissions. Through heat pumps, a low-grade heat source from nuclear reactors, industrial waste, geothermal, etc. can be upgraded to high temperatures through a work-to-heat conversion. The work itself can originate from any source of renewable energy (wind, hydro, biomass, solar, etc.). In this paper, available thermo-physical parameters of the selected fluids are presented and appropriate equations of state are constructed to allow a heat pump thermodynamic analysis. Among these working fluids, only biphenyl, naphthalene, titanium tetrabromide and titanium tetraiodide have promising potential. For these fluids, a further parametric study is conducted to investigate the COP for a range of relevant operating conditions, in terms of temperature and pressure. The range of COP values is large, ranging from 1.9 to 7.3, depending on the fluid and temperature levels; the highest COP is obtained with TiI{sub 4}.

  14. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for middle ear surgery

    Science.gov (United States)

    Stock, Karl; Wurm, Holger; Hausladen, Florian

    2016-02-01

    Flashlamp pumped Er:YAG lasers are successfully used clinically for both precise soft and hard tissue ablation. Since several years a novel diode pumped Er:YAG laser system (Pantec Engineering AG) is available, with mean laser power up to 40 W and pulse repetition rate up to 1 kHz. The aim of the study was to investigate the suitability of the laser system specifically for stapedotomy. Firstly an experimental setup was realized with a beam focusing unit and a computer controlled translation stage to move the samples (slices of porcine bone) with a defined velocity while irradiation with various laser parameters. A microphone was positioned in a defined distance to the ablation point and the resulting acoustic signal of the ablation process was recorded. For comparison, measurements were also performed with a flash lamp pumped Er:YAG laser system. After irradiation the resulting ablation quality and efficacy were determined using light microscopy. Using a high speed camera and "Töpler-Schlierentechnik" the cavitation bubble in water after perforation of a bone slice was investigated. The results show efficient bone ablation using the diode pumped Er:YAG laser system. Also a decrease of the sound level and of the cavitation bubble volume was observed with decreasing pulse duration. Higher repetition rates lead to a slightly increase of thermal side effects but have no influence on the ablation efficiency. In conclusion, these first experiments demonstrate the high potential of the diode pumped Er:YAG laser system for use in middle ear surgery.

  15. Temperature in the Primary Heat Transport Pump Bearing of the Nuclear Power Plant 'Embalse Rio Tercero' in view of the Cutting of the Service Water

    International Nuclear Information System (INIS)

    This study contains the analysis of the Primary Heat Transport Pump Bearing of the Nuclear Power Plant 'Embalse Rio Tercero', Cordoba, Argentine, in view of the cutting of the Service Water refrigeration which cools the Gland Seal System.This takes two ways: One is the study of the temperature rise of the water that cools the carbon bearing and the time involved.This is supported upon manuals and drawings.The other, on the temperature distribution in different operating conditions.This has been done by the simulation of the normal and transient conditions in the software COSMOS/M

  16. 核主泵屏蔽电机温度场研究%Temperature Field Investigation of Canned Primary Pump Motors in Nuclear Power Stations

    Institute of Scientific and Technical Information of China (English)

    丁树业; 孟繁东; 葛云中

    2012-01-01

    The canned primary pump motor is an important part in nuclear power stations, its safe operation and stability is very important to a loop system of the nuclear island. The motor works in high temperature and high pressure conditions, its heat and cooling are complex. According to hydromechanics and heat transfer theory, a physical model of three dimensional fluid and temperature coupled field was established for 5 500 kW large canned motor of nuclear primary pump as an example in this paper. The temperature distribution of the motor under the nominal operating condition was calculated using the finite volume method. Calculation results revealed the regularity of temperature distribution for the canned primary pump motor, and provided the theory basis for cooling structure design and accurate temperature calculation of canned primary pump motors of larger capacity.%核主泵屏蔽电机是核电站的重要组成部分,其安全稳定的运行对核岛一次回路系统来说非常重要.针对核主泵屏蔽电机内发热与冷却的复杂性以及核主泵屏蔽电机工作在高温高压条件下的特点,以一台5 500 kW核主泵屏蔽电机为例,根据流体力学及传热学理论,建立三维流体场与三维温度场耦合的求解域物理模型,采用有限体积法计算额定工况下电机的温度分布.通过计算揭示了核主泵屏蔽电机内温度的分布规律,并分析了其原因,可为核主泵屏蔽电机的冷却结构设计以及更大容量核主泵屏蔽电机温度场的准确计算提供理论依据.

  17. Prognostic for hydraulic pump based upon DCT-composite spectrum and the modified echo state network.

    Science.gov (United States)

    Sun, Jian; Li, Hongru; Xu, Baohua

    2016-01-01

    Prognostic is a key step of the condition-based maintenance (CBM). In order to improve the predicting performance, a novel method for prognostic for the hydraulic pump is proposed in this paper. Based on the improvement of the traditional composite spectrum, the DCT-composite spectrum (DCS) fusion algorithm is initially presented to make fusion of multi-channel vibration signals. The DCS composite spectrum entropy is extracted as the feature. Furthermore, the modified echo state networks (ESN) model is established for prognostic using the extracted feature. The reservoir is updated and the elements of the neighboring matrix are redefined for improving predicting accuracy. Analysis of the application in the hydraulic pump degradation experiment demonstrates that the proposed algorithm is feasible and is meaningful for CBM. PMID:27547667

  18. Prognostic for hydraulic pump based upon DCT-composite spectrum and the modified echo state network.

    Science.gov (United States)

    Sun, Jian; Li, Hongru; Xu, Baohua

    2016-01-01

    Prognostic is a key step of the condition-based maintenance (CBM). In order to improve the predicting performance, a novel method for prognostic for the hydraulic pump is proposed in this paper. Based on the improvement of the traditional composite spectrum, the DCT-composite spectrum (DCS) fusion algorithm is initially presented to make fusion of multi-channel vibration signals. The DCS composite spectrum entropy is extracted as the feature. Furthermore, the modified echo state networks (ESN) model is established for prognostic using the extracted feature. The reservoir is updated and the elements of the neighboring matrix are redefined for improving predicting accuracy. Analysis of the application in the hydraulic pump degradation experiment demonstrates that the proposed algorithm is feasible and is meaningful for CBM.

  19. Dynamic stress analysis of sewage centrifugal pump impeller based on two-way coupling method

    Science.gov (United States)

    Pei, Ji; Yuan, Shouqi; Yuan, Jianping

    2014-03-01

    Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-ω turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.

  20. Study and Design of Diaphragm Pump Vibration Detection Fault Diagnosis System Based on FFT

    OpenAIRE

    Jia Yin; Jiande Wu; Xuyi Yuan; Xiaodong Wang; Yugang Fan

    2013-01-01

    This study has proposed a fault diagnosis system based on vibration detection. The system mainly includes four modules: signal acquisition module, signal processing module, state identification module, fault diagnosis and alarm module. The system uses CMSS 2200 acceleration sensor to collect vibration signals, processing spectrum with FFT (Fast Fourier Transform) which is used effectively in current industry and finally achieve fault diagnosis and prediction for diaphragm pump. Through collec...

  1. Structure of microprocessor-based automation system of oil pumping station “Alexndrovskaya”

    Directory of Open Access Journals (Sweden)

    Dmitriyenko Margarita A.

    2014-01-01

    Full Text Available Structure of microprocessed-based automation system (MBAS of oil pumping station (OPS «Alexandrovskaya», located on the territory of Tomsk region and forming part of the Oil Transporting Joint Stock Company «Transneft», developed in accordance with the requirements of the guidance document «Complex of the typical design choices automation of OPSs and crude storages on the basis of modern standard solutions and components».

  2. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    International Nuclear Information System (INIS)

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development's (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing

  3. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, R.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Maret, D.; Seniuk, P.; Smith, L.

    1996-12-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development`s (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing.

  4. Study and Design of Diaphragm Pump Vibration Detection Fault Diagnosis System Based on FFT

    Directory of Open Access Journals (Sweden)

    Jia Yin

    2013-02-01

    Full Text Available This study has proposed a fault diagnosis system based on vibration detection. The system mainly includes four modules: signal acquisition module, signal processing module, state identification module, fault diagnosis and alarm module. The system uses CMSS 2200 acceleration sensor to collect vibration signals, processing spectrum with FFT (Fast Fourier Transform which is used effectively in current industry and finally achieve fault diagnosis and prediction for diaphragm pump. Through collection and analysis of the history signal data, set threshold value in the fault diagnosis system. According to the characteristics of different types, set the corresponding effective threshold value. The simulation results show that, the spectrum after FFT transformation processing, can really and effectively reflect equipment operating condition of the diaphragm. This system is not only simple and stable, but also can predict pump failure effectively, so that it reduces equipment downtime, plan maintenance time and unplanned maintenance time.

  5. THEORETICAL AND EXPERIMENTAL STUDY ON THE PRESSURE AND VACUUM CONTINUOUS CONTROL SYSTEM BASED ON HYBRID PUMP

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis on the system are implemented in order to study the relationships among the characteristics, parameters and working points of the system. The experimental investigations on the system characteristics are presented with the adoption of a fuzzy-PID controller. The simulation and experimental results indicate that the pressure and vacuum continuous control system based on hybrid pump has good dynamic and static performance, strong robustness and satisfactory adaptability to various system parameters. According to the results, system can successfully gain high accuracy and fast response signal. Also, the mathematical model of system is also testified by the experimental results.

  6. SEQUENTIAL DIAGNOSIS FOR A CENTRIFUGAL PUMP BASED ON FUZZY NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiong; WANG Huaqing; CHEN Peng; TANG Yike

    2008-01-01

    A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.

  7. A Force-Based Grid Manipulator for ALE Calculations in a Lobe Pump

    Institute of Scientific and Technical Information of China (English)

    John Vande Voorde; Jan Vierendeels; Erik Dick

    2003-01-01

    In this paper, a time-dependant calculation of flow in a lobe pump is presented. Calculations are performed using the arbitrary Lagrangean Eulerean (ALE) method. A grid manipulator is needed to move the nodes between time steps. The used grid manipulator is based on the pseudo-force idea. This means that each node is fictitiously connected with its 8 neighbours via fictitious springs. The equilibrium of the resulting pseudo spring forces defines the altered position of the nodes. The grid manipulator was coupled with a commercial flow solver and the whole was tested on the flow through a three-lobe lobe pump. Results were obtained for a rotational speed of 460 rpm and incompressible silicon oil as fluid.

  8. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre.

    Science.gov (United States)

    Kobtsev, Sergey; Kukarin, Sergey; Kokhanovskiy, Alexey

    2015-07-13

    Reported for the first time is picosecond-range pulse generation in an all-fibre Raman laser based on P₂O₅-doped silica fibre. Employment of phosphor-silicate fibre made possible single-cascade spectral transformation of pumping pulses at 1084 nm into 270-ps long Raman laser pulses at 1270 nm. The highest observed fraction of the Stokes component radiation at 1270 nm in the total output of the Raman laser amounted to 30%. The identified optimal duration of the input pulses at which the amount of Stokes component radiation in a ~16-m long phosphorus-based Raman fibre converter reaches its maximum was 140-180 ps.

  9. Electrically pumped random lasing based on an Au-ZnO nanowire Schottky junction.

    Science.gov (United States)

    Gao, Fan; Morshed, Muhammad M; Bashar, Sunayna B; Zheng, Youdou; Shi, Yi; Liu, Jianlin

    2015-06-01

    Electrically pumped random lasing based on an Au-ZnO nanowire Schottky junction diode is demonstrated. The device exhibits typical Schottky diode current-voltage characteristics with a turn-on voltage of 0.7 V. Electroluminescence characterization shows good random lasing behavior and the output power is about 67 nW at a drive current of 100 mA. Excitonic recombination is responsible for lasing generation. Zn plasma is only observed under high applied bias, which can be distinguished from the random lasing spectral features near 380 nm. The laser diode based on the Schottky junction provides an alternative approach towards semiconductor random lasers. PMID:25946977

  10. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  11. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  12. Optimum IMFs Selection Based Envelope Analysis of Bearing Fault Diagnosis in Plunger Pump

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2016-01-01

    Full Text Available As the plunger pump always works in a complicated environment and the hydraulic cycle has an intrinsic fluid-structure interaction character, the fault information is submerged in the noise and the disturbance impact signals. For the fault diagnosis of the bearings in plunger pump, an optimum intrinsic mode functions (IMFs selection based envelope analysis was proposed. Firstly, the Wigner-Ville distribution was calculated for the acquired vibration signals, and the resonance frequency brought on by fault was obtained. Secondly, the empirical mode decomposition (EMD was employed for the vibration signal, and the optimum IMFs and the filter bandwidth were selected according to the Wigner-Ville distribution. Finally, the envelope analysis was utilized for the selected IMFs filtered by the band pass filter, and the fault type was recognized by compared with the bearing character frequencies. For the two modes, inner race fault and compound fault in the inner race and roller of rolling element bearing in plunger pump, the experiments show that a promising result is achieved.

  13. A dynamic model of mobile concrete pump boom based on discrete time transfer matrix method

    Science.gov (United States)

    Ren, Wu; Wu, Yunxin; Zhang, Zhaowei

    2013-12-01

    Mobile concrete pump boom is typical multibody large-scale motion manipulator. Due to posture constantly change in working process, kinematic rule and dynamic characteristic are difficult to solve. A dynamics model of a mobile concrete pump boom is established based on discrete time transfer matrix method (DTTMM). The boom system is divided into sub-structure A and substructure B. Sub-structure A is composed by the 1st boom and hydraulic actuator as well as the support. And substructure B is consists of the other three booms and corresponding hydraulic actuators. In the model, the booms and links are regarded as rigid elements and the hydraulic cylinders are equivalent to spring-damper. The booms are driven by the controllable hydraulic actuators. The overall dynamic equation and transfer matrix of the model can be assembled by sub-structures A and B. To get a precise result, step size and integration parameters are studied then. Next the tip displacement is calculated and compared with the result of ADAMS software. The displacement and rotation angle curves of the proposed method fit well with the ADAMS model. Besides it is convenient in modeling and saves time. So it is suitable for mobile concrete pump boom real-time monitoring and dynamic analysis. All of these provide reference to boom optimize and engineering application of such mechanisms.

  14. Global design optimization for an axial-flow tandem pump based on surrogate method

    Science.gov (United States)

    Li, D. H.; Zhao, Y.; Y Wang, G.

    2013-12-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Better cavitation performance and significant reduction of the axial geometry scale is important for high-speed propulsion. This study presents a global design optimization method based on surrogated method for an axial-flow tandem pump to enhance trade-off performances: energy and cavitation performances. At the same time, interactions between impellers and impacts on the performances are analyzed. Fixed angle of blades in impellers and phase angle are performed as design variables. Efficiency and minimum average pressure coefficient (MAPC) on axial sectional surface in front impeller are the objective function, which can represent energy and cavitation performances well. Different surrogate models are constructed, and Global Sensitivity Analysis and Pareto Front method are used. The results show that, 1) Influence from phase angle on performances can be neglected compared with other two design variables, 2) Impact ratio of fixed angle of blades in two impellers on efficiency are the same as their designed loading distributions, which is 4:6, 3) The optimization results can enhance the trade-off performances well: efficiency is improved by 0.6%, and the MAPC is improved by 4.5%.

  15. Analysis on the blade inlet pressure fluctuation of the centrifugal pump based on LES

    Science.gov (United States)

    Wang, W. J.; Cui, Y. R.; Wang, Y.; Li, G. D.; Liang, Q. H.; Yin, G.

    2013-12-01

    In order to study the characteristics of the blade inlet pressure fluctuation under unsteady flow in centrifugal pump, a three-dimensional model of a pump ns=50 was built. Based on large eddy simulation (LES), the inner flow field of the pump was simulated by the flow field simulation software Fluent in design condition and off-design conditions. The pressure fluctuation of the monitored points was obtained at the blade suction surface and pressure surface at impeller inlet, which was analyzed by time and frequency domain with Fast Fourier Transformation (FFT). The results show that the pressure fluctuation of inlet and outlet in large flow rate is more obvious than low flow rate. It is easily found that the static pressure of outlet in 1.2Qd condition has five peaks and five valleys, but this phenomenon does not exist in 0.6 Qd condition. In the time domain spectrums, the static pressure curve has five peaks and five valleys that the maximum pressure is positive number and the minimum pressure is negative number. In the frequency domains spectrums, the frequency of FFT factors peak is lower than the blade passing frequency 241.65Hz.

  16. Global design optimization for an axial-flow tandem pump based on surrogate method

    International Nuclear Information System (INIS)

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Better cavitation performance and significant reduction of the axial geometry scale is important for high-speed propulsion. This study presents a global design optimization method based on surrogated method for an axial-flow tandem pump to enhance trade-off performances: energy and cavitation performances. At the same time, interactions between impellers and impacts on the performances are analyzed. Fixed angle of blades in impellers and phase angle are performed as design variables. Efficiency and minimum average pressure coefficient (MAPC) on axial sectional surface in front impeller are the objective function, which can represent energy and cavitation performances well. Different surrogate models are constructed, and Global Sensitivity Analysis and Pareto Front method are used. The results show that, 1) Influence from phase angle on performances can be neglected compared with other two design variables, 2) Impact ratio of fixed angle of blades in two impellers on efficiency are the same as their designed loading distributions, which is 4:6, 3) The optimization results can enhance the trade-off performances well: efficiency is improved by 0.6%, and the MAPC is improved by 4.5%

  17. A novel high-temperature and high-pressure hydraulic pump based on mononeuron control

    Institute of Scientific and Technical Information of China (English)

    Linhui ZHAO; Xin FANG

    2009-01-01

    Based on structures and characteristics of traditional hydraulic pumps, this paper proposes a novel high-temperature and high-pressure hydraulic pump (HHHP) that can work under 150℃ and 28MPa to overcome problems of traditional high-temperature plun-ger pumps. The HHHP is designed with the structure of mechanical division and double cylinder parallel. The control signals of two cylinders are two separate triangle waveforms with 90℃ phase difference. Because the output waveforms of two cylinders have the same characteristics as the control signals, the HHHP can obtain a stable output after two separate waveforms are superposed. A mono-neuron self-adaptive PID control algorithm is also improved by modifying parameters K and η. Two improved controllers are used to control the two cylinders,respectively, making two displacements of plungers match each other. Therefore, reduced fluctuations and stable pressure output is obtained. Besides simulation, tests on the built prototype test system are carried out to verify the performance of HHHP. Results show that the improved control approach can limit fluctuations to a lower level and the HHHP system attains good outputs under different signal periods and different pressures.

  18. Automated Web-based Monitoring of a Pump and Treat System at the Hanford Site

    Science.gov (United States)

    Webber, W.; Versteeg, R.; Richardson, A.; Ankeny, M.; Gilmore, T.; Morse, J.; Thompson, M.

    2006-05-01

    Automated and autonomous monitoring of environmental conditions can be used to improve operational efficiency, verify remedial action decisions, and promote confidence in the monitoring process by making data and associated derived information readily accessible to regulators and stakeholders. Ultimately autonomous monitoring systems can reduce overall costs associated with regulatory compliance of performance and long- term monitoring. As part of a joint decision between DOE and the WA Department of Ecology to put on "cold standby" a pump and treat system that has been operating on the Department of Energy's Hanford site in Washington State since 1995, a web site was developed to display the automated water level network around the pump and treat system. The automated water level network consists of nineteen wells with water level transducers and temperature and conductivity probes for selected wells. Data from this network will be used to evaluate the impacts of the pump-and-treat system and the response of the aquifer to shutdown of the system. The website will provide access to data from the automated network along with additional information pertaining to the shutdown of the pump and treat system to the various stakeholders in a convenient and timely fashion. This will allow the various stakeholders to observe the impacts of the shutdown as the aquifer responds. There are future plans to expand this web-based data reporting platform to other environmental data that pertains to the various remedial actions planned at the Hanford site. The benefits of the web site application for monitoring and stewardship are: consistency of data processing and analyses with automated and on demand data and information delivery. The system and data access is password controlled and access to various data or fields can be restricted to specified users. An important feature is that the stakeholders have access to the data in near-real time providing a checks-and-balance system

  19. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization

    Institute of Scientific and Technical Information of China (English)

    Yong-gang PENG; Jun WANG; Wei WEI

    2014-01-01

    In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure pro-portion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.

  20. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  1. Generating an indicator for pump impeller damage using half and full spectra, fuzzy preference-based rough sets and PCA

    International Nuclear Information System (INIS)

    Parameters that vary monotonically with damage propagation are useful in condition monitoring. However, it is not easy to find such parameters especially for complex systems like pumps. A method using half and full spectra, fuzzy preference-based rough sets and principal component analysis (PCA) is proposed to generate such an indicator for tracking impeller damage in a centrifugal slurry pump. Half and full spectra are used for extracting features related to pump health status. A fuzzy preference-based rough set model is employed in the process of selecting features reflecting the damage propagation monotonically. PCA is used to condense the features and generate an indicator which represents the damage propagation. The effectiveness of the proposed method is tested using laboratory experimental data. Results show that the indicator generated by the proposed method can clearly and monotonically distinguish the health status of the pump impeller. (paper)

  2. Investigation of pump-wavelength dependence of terahertz-wave parametric oscillator based on LiNbO3

    Institute of Scientific and Technical Information of China (English)

    Sun Bo; Liu Jin-Song; Li En-Bang; Yao Jian-Quan

    2009-01-01

    This paper investigates the performances of terahertz-wave parametric oscillators (TPOs) based on the LiNbO3 crystal at different pump wavelengths. The calculated results show that TPO characteristics, including the frequency tuning range, the THz-wave gain and the stability of THz-wave output direction based on the Si-prism coupler, can be significantly improved by using a short-wavelength pump. It also demonstrates that a long-wavelength-pump allows the employment of a short TPO cavity due to an enlarged phase-matching angle, that is, an increased angular separation between the pump and oscillated Stokes beams under the THz-wave generation at a specific frequency. The study provides an useful guide and a theoretical basis for the further improvement of TPO systems.

  3. Large electromagnetic pumps. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kilman, G.B.

    1976-01-01

    The development of large electromagnetic pumps for the liquid metal heat transfer systems of fission reactors has progressed for a number of years. Such pumps are now planned for fusion reactors and solar plants as well. The Einstein-Szilard (annular) pump has been selected as the preferred configuration. Some of the reasons that electromagnetic pumps may be preferred over mechanical pumps and why the annular configuration was selected are discussed. A detailed electromagnetic analysis of the annular pump, based on slug flow, is presented. The analysis is then used to explore the implications of large size and power on considerations of electromagnetic skin effect, geometric skin effect and the cylindrical geometry.

  4. Small Scroll Pump for Cryogenic Liquids Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  5. A Pressure Control Method for Emulsion Pump Station Based on Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2015-01-01

    Full Text Available In order to realize pressure control of emulsion pump station which is key equipment of coal mine in the safety production, the control requirements were analyzed and a pressure control method based on Elman neural network was proposed. The key techniques such as system framework, pressure prediction model, pressure control model, and the flowchart of proposed approach were presented. Finally, a simulation example was carried out and comparison results indicated that the proposed approach was feasible and efficient and outperformed others.

  6. Helmholtz resonance in a piezoelectric–hydraulic pump-based hybrid actuator

    International Nuclear Information System (INIS)

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric–hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator

  7. The Development of Gear Pump CAD/CAPP Based on Solid Works

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nowadays, many kinds of software, which have succes sf ully created the integration of CAD, CAPP and CAM, find their disadvantages in p ractical manufacturing. As a result, it is welcomed to develop small CAD/CAPP sy stems on a proper CAD platform, which aim at requirements of factories. Based on the one of the most popular three-dimensional design software SolidWorks, we successfully developed a set of gear pump CAD /CAPP software for Huaiyin Gene ral Factory of Mechanics. 1 The architecture and func...

  8. Alternative ethanol based cooling carriers with corrosion inhibitors in geothermal heat pump systems

    OpenAIRE

    Gustafsson, Isac

    2015-01-01

    Ground source heat pumps are very popular in the Nordic countries. The method of exchanging heat with the ground is based on the principle that a secondary fluid is circulating through a U-pipe borehole heat exchanger inserted into energy wells. Water is a very good secondary fluid, but aqueous solutions of ethanol are recommended in Sweden as a secondary fluid for such application. One reason is the fact that addition of ethanol decreases the freezing point of the fluid, which is preferred s...

  9. Disulphide cross linked pullulan based cationic polymer for improved gene delivery and efflux pump inhibition.

    Science.gov (United States)

    S, Priya S; R, Rekha M

    2016-10-01

    Multidrug resistance is a hurdle to successful cancer chemotherapy. Over expression of P-glycoprotein (P-gp) is a prime contributing factor for drug resistance. In this study, a disulphide cross-linked pullulan-based cationic polymer (PPSS) was synthesized to act simultaneously as gene delivery vehicle and efflux pump inhibitor. The PPSS nanoplexes were of size p53/PPSS/DOX nanoplexes was attributed to the synergistic effect of P-gp inhibition and p53 transfection efficiency. Therefore, this multifunctional polymeric system may have significant promise for therapeutic application against cancer drug resistance. PMID:27459414

  10. Vane Pump Casing Machining of Dumpling Machine Based on CAD/CAM

    Science.gov (United States)

    Huang, Yusen; Li, Shilong; Li, Chengcheng; Yang, Zhen

    Automatic dumpling forming machine is also called dumpling machine, which makes dumplings through mechanical motions. This paper adopts the stuffing delivery mechanism featuring the improved and specially-designed vane pump casing, which can contribute to the formation of dumplings. Its 3D modeling in Pro/E software, machining process planning, milling path optimization, simulation based on UG and compiling post program were introduced and verified. The results indicated that adoption of CAD/CAM offers firms the potential to pursue new innovative strategies.

  11. Predicting performance of axial pump inducer of LOX booster turbo-pump of staged combustion cycle based rocket engine using CFD

    Science.gov (United States)

    Mishra, Arpit; Ghosh, Parthasarathi

    2015-12-01

    For low cost, high thrust, space missions with high specific impulse and high reliability, inert weight needs to be minimized and thereby increasing the delivered payload. Turbopump feed system for a liquid propellant rocket engine (LPRE) has the highest power to weight ratio. Turbopumps are primarily equipped with an axial flow inducer to achieve the high angular velocity and low suction pressure in combination with increased system reliability. Performance of the turbopump strongly depends on the performance of the inducer. Thus, for designing a LPRE turbopump, demands optimization of the inducer geometry based on the performance of different off-design operating regimes. In this paper, steady-state CFD analysis of the inducer of a liquid oxygen (LOX) axial pump used as a booster pump for an oxygen rich staged combustion cycle rocket engine has been presented using ANSYS® CFX. Attempts have been made to obtain the performance characteristic curves for the LOX pump inducer. The formalism has been used to predict the performance of the inducer for the throttling range varying from 80% to 113% of nominal thrust and for the different rotational velocities from 4500 to 7500 rpm. The results have been analysed to determine the region of cavitation inception for different inlet pressure.

  12. Pump for Saturated Liquids

    Science.gov (United States)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  13. Generation of synchronized signal and pump pulses for an optical parametric chirped pulse amplification based multi-terawatt Nd:glass laser system

    Indian Academy of Sciences (India)

    M Raghuramaiah; R K Patidar; R A Joshi; P A Naik; P D Gupta

    2010-11-01

    Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse amplification based Nd:glass laser system. As the chirped signal pulse and the pump pulse originated from the same oscillator, the time jitter between the pump pulse and the signal pulse can be <50 ps.

  14. MODEL-BASED DEVELOPMENT OF REAL-TIME SOFTWARE SYSTEM FOR ELECTRONIC UNIT PUMP SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YU Shitao; YANG Shiwei; YANG Lin; GONG Yuanming; ZHUO Bin

    2007-01-01

    A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.

  15. Excited state Faraday anomalous dispersion optical filters based on indirect laser pumping.

    Science.gov (United States)

    Yin, Longfei; Luo, Bin; Chen, Zhongjie; Zhong, Lei; Guo, Hong

    2014-02-15

    The direct pump method now used in excited state Faraday anomalous dispersion optical filters (ES-FADOFs) requires that the transition between the target and the ground state is an electric dipole allowed transition and that a laser that operates at the exact pump wavelength is available. This is not always satisfied in practice. An indirect laser pump method for ES-FADOF is proposed and experimentally realized. Compared with the commonly used direct pump method, this indirect pump method can reach the same performance using lasers at very different wavelengths. This method can greatly extend the wavelength range of FADOF and provide a novel scheme for ES-FADOF design. PMID:24562221

  16. Insulin pumps.

    Science.gov (United States)

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing to see more research on the psychosocial aspects of CSII during the year, both from the point of view of how psychological beliefs influence outcomes on CSII (is there a type of patient who does particularly well or poorly on CSII?) and how CSII affects psychological factors like mood, behaviour and quality of life. Quality of

  17. A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis

    OpenAIRE

    Lam, Ping; Xu, Shuhua; Soroka, Carol J.; Boyer, James L.

    2012-01-01

    The liver specific bile salt export pump (BSEP) is crucial for bile-acid dependent bile flow at the apical membrane. BSEP, a member of the family of structurally related ATP-Binding Cassette (ABC) proteins, is composed of 12 transmembrane segments (TMS) and 2 large cytoplasmic nucleotide binding domains (NBD). The regulation of trafficking of BSEP to and from the cell surface is not well understood, but is believed to play an important role in cholestatic liver diseases such as primary famili...

  18. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping.

    Science.gov (United States)

    Jia, Xin-Hong; Rao, Yun-Jiang; Yuan, Cheng-Xu; Li, Jin; Yan, Xiao-Dong; Wang, Zi-Nan; Zhang, Wei-Li; Wu, Han; Zhu, Ye-Yu; Peng, Fei

    2013-10-21

    A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4 km with 5 m spatial resolution and ~ ± 1.4 °C temperature uncertainty is successfully demonstrated.

  19. Photonic crystal-based RGB primary colour optical filter

    Science.gov (United States)

    Singh, Brahm Raj; Rawal, Swati; Sinha, R. K.

    2016-08-01

    We have presented an RGB optical filter, based on photonic crystal (PhC) waveguides, with the hexagonal arrangement of GaP rods in air. It filters out the three primary colours of the visible range, red (R, λ = 648 nm), green (G, λ = 540 nm) and blue (B, λ = 470 nm). The plane wave expansion method is applied for estimating the dispersion curves and finite element method is utilized in examining the propagation characteristics of the designed PhC-based optical filter. Transmittance, extinction ratio and tolerance analysis have further been calculated to confirm the performance of the proposed optical filter to work in the visible range of optical spectrum and filter out the three primary colours (red, green, blue) along different output ports.

  20. Jet pumps for thermoacoustic applications: design guidelines based on a numerical parameter study

    CERN Document Server

    Oosterhuis, Joris P; Wilcox, Douglas; van der Meer, Theo H

    2015-01-01

    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that t...

  1. Transition to an elastomeric infusion pump in home care: an evidence-based approach.

    Science.gov (United States)

    Broadhurst, Daphne

    2012-01-01

    A fatal overdose of a chemotherapeutic agent delivered to a patient via an electronic infusion device served as a stark reminder of the risks that infusion therapy poses to patients and health care providers and as the impetus for a strategy to optimize safe and efficient delivery of home infusion therapy. The Academic Center for Evidence-Based Practice Star Model of Knowledge Transformation was used as the evidence-based framework for the implementation of a portable infusion pump that supports home infusion of high-risk medications, leading to increased patient and caregiver satisfaction. Evaluation of this implementation supports the use of an elastomeric infusion device for a high-risk therapy. PMID:22498484

  2. Maintenance strategy based on reliability functions for an oil centrifugal pump

    Directory of Open Access Journals (Sweden)

    Denis Carlos Mengue

    2013-06-01

    Full Text Available The purpose of this article was to define the most appropriate maintenance strategy for a centrifugal pump (preventive, predictive, corrective or emergency, based on reliability calculation. The research method was the quantitative modeling, applied in a petroleum plant. The study may contribute to the development of a strategic model for the management of the industrial plant maintenance. In the company's information system, records of eleven years have been gathered on times between failures and times for repair of the equipment. These times were modeled by probability distributions. From the results obtained were calculated Reliability and Maintainability functions R(t and M(t. By combining their expected values (MTBF and MTTR, Av availability was calculated. The figures for MTBF, MTTR and Av were respectively 3,936 hours, 133 hours and 96.73%. The most likely shape factor of the Weibull distribution which modeled the time between failures was 0.69. So, it was possible to affirm that the pump is in the infant mortality phase. The theoretical framework of RCM indicated corrective  maintenance as the strategy for the item. This strategy aims to eliminate the defects of equipment design, reinforce items that usually break and remove the causes of the failures.

  3. Analysis on pressure characteristics of pump turbine guide bearing rotating sump based on VOF model

    International Nuclear Information System (INIS)

    With the technology of Computational Fluid Dynamics (CFD), this paper conducts a 3D numerical simulation for the oil and gas flow field in the Pump turbine guide bearing rotating sump. VOF model is adopted in this simulation. This study calculates distribution of the oil-air phase and characteristics of the pressure. The influence of sump rotating speed, oil level and oil viscosity on the pressure at the inlet of oil-immersion plate are discussed. The results demonstrate that the static pressure at the inlet is roughly proportional to oil level. Too low level may result in the separation between lubrication oil and supply hole on the oil-immersion plate, which then disables the oil supply. The static pressure at the inlet increases parabola as the sump rotating speed increases. To ensure the supply pressure, the unit is not suitable for long time operation under low rotating speed. The temperature-viscosity effect of the lubricant oil has little influence on the oil pressure at the supply hole. This paper provides a theoretical base for the safe design and operation of the pump turbine rotating sump, and offers the inlet boundary condition for the analysis of the oil film dynamic characteristics of the turbine guide bearing

  4. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    Science.gov (United States)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  5. Expression and functioning of retinal-based proton pumps in a saltern crystallizer brine.

    Science.gov (United States)

    Oren, Aharon; Abu-Ghosh, Said; Argov, Tal; Kara-Ivanov, Eliahu; Shitrit, Dror; Volpert, Adi; Horwitz, Rael

    2016-01-01

    We examined the presence of bacteriorhodopsin and other retinal protein pigments in the microbial community of the saltern crystallizer ponds in Eilat, Israel, and assessed the effect of the retinal-based proton pumps on the metabolic activity. The biota of the hypersaline (~309 g salts l(-1)) brine consisted of ~2200 β-carotene-rich Dunaliella cells and ~3.5 × 10(7) prokaryotes ml(-1), most of which were flat, square or rectangular Haloquadratum-like archaea. No indications were obtained for massive presence of Salinibacter. We estimated a concentration of bacteriorhodopsin and bacteriorhodopsin-like pigments of 3.6 nmol l(-1). When illuminated, the community respiration activity of the brine samples in which oxygenic photosynthesis was inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea, decreased by 40-43 %. This effect was interpreted to be the result of competition between two energy yielding systems: the bacteriorhodopsin proton pump and the respiratory chain. The results presented have important implications for the interpretation of many published data on photosynthetic and respiratory activities in hypersaline environments. PMID:26507954

  6. REMOTE CONTROLLING OF AN AGRICULTURAL PUMP SYSTEM BASED ON THE DUAL TONE MULTI-FREQUENCY (DTMF TECHNIQUE

    Directory of Open Access Journals (Sweden)

    BEZA N. GETU

    2015-10-01

    Full Text Available In modern days, as a result of advances in technology, human beings are interested to remotely control different systems and applications. In this work, telephone signalling technique using Dual Tone Multi-Frequency (DTMF signalling, is used to control switching of electrical loads such as agricultural pumps located in remote areas. A DTMF tone command sent from a transmitting fixed or mobile phone terminal will be used to SWITCH ON/OFF the motors used to pump water for agricultural fields. A processing electronic system at the receiving side is designed to interpret the tone commands and sends an appropriate signal to the motor driving circuit to complete the pump switching states. In the design methodology, it is possible to control several water pumps distributed in a certain agricultural site, however, in this work we considered four pumps and the paper presents the complete electronic design and simulation results at the different stages of the design. The electronic design is based on discrete passive and active electronic components and the system is tested and simulated using Multism program. The results of the simulation show that the design is capable of controlling the switching state of the motors. For a certain DTMF command, it is possible to switch ON/OFF a specific motor pump or all of the four motors.

  7. Progress and challenges in electrically pumped GaN-based VCSELs

    Science.gov (United States)

    Haglund, A.; Hashemi, E.; Bengtsson, J.; Gustavsson, J.; Stattin, M.; Calciati, M.; Goano, M.

    2016-04-01

    ABSTRACT The Vertical-Cavity Surface-Emitting Laser (VCSEL) is an established optical source in short-distance optical communication links, computer mice and tailored infrared power heating systems. Its low power consumption, easy integration into two-dimensional arrays, and low-cost manufacturing also make this type of semiconductor laser suitable for application in areas such as high-resolution printing, medical applications, and general lighting. However, these applications require emission wavelengths in the blue-UV instead of the established infrared regime, which can be achieved by using GaN-based instead of GaAs-based materials. The development of GaN-based VCSELs is challenging, but during recent years several groups have managed to demonstrate electrically pumped GaN-based VCSELs with close to 1 mW of optical output power and threshold current densities between 3-16 kA/cm2. The performance is limited by challenges such as achieving high-reflectivity mirrors, vertical and lateral carrier confinement, efficient lateral current spreading, accurate cavity length control and lateral optical mode confinement. This paper summarizes different strategies to solve these issues in electrically pumped GaN-VCSELs together with state-of-the-art results. We will highlight our work on combined transverse current and optical mode confinement, where we show that many structures used for current confinement result in unintentionally optically anti-guided resonators. Such resonators can have a very high optical loss, which easily doubles the threshold gain for lasing. We will also present an alternative to the use of distributed Bragg reflectors as high-reflectivity mirrors, namely TiO2/air high contrast gratings (HCGs). Fabricated HCGs of this type show a high reflectivity (>95%) over a 25 nm wavelength span.

  8. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.

    Science.gov (United States)

    Watanabe, Nobuo; Masuda, Takaya; Iida, Tomoya; Kataoka, Hiroyuki; Fujimoto, Tetsuo; Takatani, Setsuo

    2005-01-01

    Secondary flow in the centrifugal blood pump helps to enhance the washout effect and to minimize thrombus formation. On the other hand, it has an adverse effect on pump efficiency. Excessive secondary flow may induce hemolytic effects. Understanding the secondary flow is thus important to the design of a compact, efficient, biocompatible blood pump. This study examined the secondary flow in a radial coupled centrifugal blood pump based on a simple particle tracking velocimetry (PTV) technique. A radial magnetically coupled centrifugal blood pump has a bell-shaped narrow clearance between the impeller inner radius and the pump casing. In order to vary the flow levels through the clearance area, clearance widths of 0.25 mm and 0.50 mm and impeller washout holes with diameters of 0 mm, 2.5 mm, and 4 mm were prepared. A high-speed video camera (2000 frames per second) was used to capture the particle images from which radial flow components were derived. The flow in the space behind the impeller was assumed to be laminar and Couette type. The larger the inner clearance or diameter of washout hole, the greater was the secondary flow rate. Without washout holes, the flow behind the impeller resulted in convection. The radial flow through the washout holes of the impeller was conserved in the radial as well as in the axial direction behind the impeller. The increase in the secondary flow reduced the net pump efficiency. Simple PTV was successful in quantifying the flow in the space behind the impeller. The results verified the hypothesis that the flow behind the impeller was theoretically Couette along the circumferential direction. The convection flow observed behind the impeller agreed with the reports of other researchers. Simple PTV was effective in understanding the fluid dynamics to help improve the compact, efficient, and biocompatible centrifugal blood pump for safe clinical applications.

  9. 超高层建筑空调二次泵水系统运行分析%Study on the Design of Chilled Water System With Primary-secondary Pumps in Super High-rise

    Institute of Scientific and Technical Information of China (English)

    方伟

    2014-01-01

    本文主要阐述了超高层建筑空调二次泵水系统的原理、盈亏管的设置及系统的运行控制策略,并给出了实际工程中超高层建筑空调二次泵水系统遇到的常见问题及解决方式,旨在为空调二次泵水系统设计提供参考。%This paper provides main points of the primary-secondary pumps system in super high-rise, the design of the profit and loss tube, and the ways of the primary-secondary pumps system control. This paper also provides several solu-tions of the primary-secondary pumps problems in the project commissioning , in order to provide a reference design of air condition Primary-secondary Pumps system.

  10. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    Directory of Open Access Journals (Sweden)

    Zengkai Liu

    Full Text Available This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.

  11. Research on Three-Dimensional Unsteady Turbulent Flow in Multistage Centrifugal Pump and Performance Prediction Based on CFD

    OpenAIRE

    Zhi-jian Wang; Jian-she Zheng; Lu-lu Li; Shuai Luo

    2013-01-01

    The three-dimensional flow physical model of any stage of the 20BZ4 multistage centrifugal pump is built which includes inlet region, impeller flow region, guide-vane flow region and exit region. The three-dimensional unsteady turbulent flow numerical model is created based on Navier-Stoke solver and standard k-ε turbulent equations. The method of multireference frame (MRF) and SIMPLE algorithm are used to simulate the flow in multistage centrifugal pump based on FLUENT software. The distribu...

  12. Vibration Signal Analysis of Main Coolant Pump Flywheel Based on Hilbert-Huang Transform

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meiru; Xia, Hong; Yang, Yang [Harbin Engineering University, Harbin (China)

    2014-08-15

    In this paper, a 3D model for the dynamic analysis of flywheel based on finite element method is presented. The static structure analysis for the model provides stress and strain distribution cloud charts. The modal analysis provides the basis of dynamic analysis due to its ability to obtain the natural frequencies and the vibration-made vectors of the first 10 orders. The results show the main faults are attrition and crack that also indicated the locations and patterns of faults. Fault dynamic simulation has been performed to gain the vibration signals of flywheel under different faults' condition. In this paper, we attempt to present an algorithm for the application of Hilbert-Huang transform (HHT) for the analysis of flywheel vibration. This simulation indicated that the proposed flywheel vibration signal analysis method performs well, so that the method can be used for the detection of attrition and crack fault diagnosis in reactor main coolant pump.

  13. Virtual Training System for Hydraulic Pump Cart Based on Virtual Reality

    Directory of Open Access Journals (Sweden)

    Wusha Huang

    2013-08-01

    Full Text Available This paper dissertates the application of Virtual Reality Technology in the training process. Virtual training system has more advantages than traditional training system. The design of virtual training system based on PTC DIVISION Mockup software, position tracker and 3-D mouse is proposed. The system is divided into two parts: directing part and operating part. Collision detection is discussed to improve the sense of reality in the virtual environment .This system is applied to the training process of hydraulic pump cart’s assembly and disassembly. More immersive training effect is obtained in this system. The goal of reducing training costs and improving the efficiency of training can be achieved in the virtual training system.  

  14. Simulation Based Assessment of Heat Pumping Potential in Non-Residential Buildings – Part 1: Modeling

    OpenAIRE

    Bertagnolio, Stéphane; Stabat, Pascal; Soccal, Benjamin; Gendebien, Samuel; Andre, Philippe

    2010-01-01

    1 Introduction A solution to reduce the energy consumption in office and health care buildings consist in better exploiting the potential of the heat pump technology. This can be done by recovering heat at the condenser when the chiller is used to produce cold (simultaneous heating and cooling demands) or by using the chiller in heat pump mode (non-simultaneous heating and cooling demands). Both strategies appear particularly feasible when cooling and heating needs and the heat pump techno...

  15. Advanced high-power optical parametric oscillators synchronously pumped by ultrafast fibre-based sources

    OpenAIRE

    Kienle, Florian

    2012-01-01

    This thesis is concerned with investigating the generation of ultra short, tunable pulses at high average power and / or high pulse energy using synchronously pumped optical parametric oscillators (OPO) and appropriate power-scalable fibre-amplifier pump sources. Two types of pump sources with average powers up to ? 100W are considered: (1) a picosecond, all-fiberised, high-power, variable-repetition-rate, Yb:fibre-amplified, gain-switched laser diode system and (2) a femtosecond, high-power,...

  16. Dynamic analysis of the pump system based on MOC–CFD coupled method

    International Nuclear Information System (INIS)

    Highlights: • MOC–CFD coupled method was proposed to get the pump internal and external characteristics. • The coupled strategy and procedure were explained. • Some typical simulation cases were made for different factors. • The pump head deviation grows with the severity of the transient. • Valve closure law in linear and longer pipeline will cause higher pump head deviation. - Abstract: The dynamic characteristics of pump response to transient events were investigated by combining the Method of Characteristic (MOC) and Computational Fluid Dynamics (CFD) together. In a typical pump–pipeline–valve system, similar to the reactor system, the pump is treated as three-dimensional CFD model using Fluent code, whereas the rest is represented by one-dimensional components using MOC. A description of the coupling theory and procedure ensuring proper communication within the two codes is given. Several transient flow operations have been carried out. In the initial steady-state simulation, the coupled method could accurately find the operating condition of the pump when the valve is fully open. When the valve is closed rapidly, preliminary comparative calculations demonstrate that the coupled method is efficient in simulating the dynamic behavior of the pump and capable of getting detailed fluid field evolutions inside the pump. Deviation between the dynamic pump head and the value given by the steady-state curve at the same instantaneous flow-rate was established, and the cause of the deviation was further explained by the comparison of pump internal and external characteristics. Furthermore, it was found that the deviation grows with the severity of the transient. In addition, the effects of valve closure laws and pipe length on the pump dynamic performances were evaluated. All the results showed that MOC–CFD is an efficient and promising way for simulating the interaction between pump model and piping system

  17. Magnetocaloric heat-pump cycles based on the AF-F transition in Fe-Rh alloys

    Energy Technology Data Exchange (ETDEWEB)

    Annaorazov, M.P. E-mail: annaoraz@bahcesehir.edu.trannaoraz@hotmail.com; Uenal, M.; Nikitin, S.A.; Tyurin, A.L.; Asatryan, K.A

    2002-10-01

    The proposal involves a heat-pumping scheme based upon the first-order antiferromagnetism-ferromagnetism transition in FeRh alloy. Using the model S-T diagram for this alloy, the heat-pump cycles, are drawn up based on the transition latent heat absorption and emission when the transition is induced by applying magnetic field. The calculated values of heat coefficient {phi} for the cycles are {approx}39 at {delta}T=5 K and {approx}30 at {delta}T=10 K, where {delta}T is the difference between the temperature surrounding and that of the heat receiver. These values are achieved using the comparatively low magnetic fields of {approx}2x10{sup 6} A m{sup -1}. The high values of {phi}, together with high value of cooling capacity, make it possible to consider Fe-Rh alloys as an effective magnetic heat-pump working body near the room temperature.

  18. The KALPUREX-process – A new vacuum pumping process for exhaust gases in fusion power plants

    International Nuclear Information System (INIS)

    Highlights: • A new vacuum pumping process for fusion power plants has been developed and is presented in this paper. • This process works continuously and non-cryogenic what leads to a strong reduction of the tritium inventory in the fuel cycle. • This pumping process is based on the use of a liquid metal (mercury) as working fluid and is called KALPUREX process. • The KALPUREX process is the technical realization of the DIR concept using a set of three vacuum pumps (metal foil pump/diffusion pump/liquid ring pump). • This paper discusses the arrangement of the pumps and also the required infrastructure for operation. - Abstract: The Karlsruhe Institute of Technology (KIT) is developing a continuously working and non-cryogenic pumping solution for torus exhaust pumping of a demonstration power plant (DEMO) including Direct Internal Recycling (DIR). This full pumping system consists of three pumps, namely a metal foil pump for gas separation, a linear diffusion pump as primary pump and a liquid ring pump as backing pump. The latter two pumps apply mercury as working fluid due to its perfect tritium compatibility. This asks for a baffle system on both sides of the pumping train to control working fluid vapour and to avoid any mercury propagation in the machine. In this paper, the arrangement of all torus pumps required for a power plant reactor as well as the corresponding infrastructure and its effect on the DEMO machine design is presented and discussed. The full pumping process is called ‘Karlsruhe liquid metal based pumping process for fusion reactor exhaust gases’ (KALPUREX process, patent pending)

  19. Threshold values of autoresonant pumping

    OpenAIRE

    Kiselev, O. M.

    2013-01-01

    There exists stable growing solution of primary resonant equation for a autoresonant pumping with decreasing amplitude. The primary term of asymptotics is $O(\\sqrt{t})$ and does not depend on order of the force from some interval. We point to the interval for the amplitude of the pumping for which the growing stable solution exists.

  20. Efficacy of Intra-aortic Balloon Pump before versus after Primary Percutaneous Coronary Intervention in Patients with Cardiogenic Shock from ST-elevation Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    Lin Yuan; Shao-Ping Nie

    2016-01-01

    Background:Previous studies showed that patients with cardiogenic shock (CS) from ST-elevation acute myocardial infarction (STEMI) supported by intra-aortic balloon pump (IABP) before primary percutaneous coronary intervention (PCI) decreased the risk of in-hospital mortality than patients who received IABP after PCI.However,little evidence is available on the optimal order of IABP insertion and primary PCI.The aim of this study was to investigate the impact of the sequence of IABP support and PCI and its association with major adverse cardiac and cerebrovascular events (MACCEs).Methods:Data were obtained from 218 consecutive patients with CS due to STEMI in Beijing Anzhen Hospital between 2008 and 2014,who were treated with IABP and PCI.The patients were divided into two groups:Group A in whom IABP received before PCI (n =106)and Group B in whom IABP received after PCI (n =112).We evaluated the myocardial perfusion using myocardial blush grade and resolution of ST-segment elevation.The primary endpoint was 12-month risk of MACCE.Results:Most baseline characteristics were similar in patients between the two groups.However,patients received IABP before PCI were associated with a delay of door-to-balloon time (DBT) and higher troponin Ⅰ level (P < 0.05).However,myocardial perfusion was significantly improved in patients treated with IABP before PCI (P < 0.05).Overall,IABP support before PCI was not associated with significantly lower risk of MACCE (P > 0.05).In addition,risk of all-cause mortality,bleeding,and acute kidney injury (AKI)was similar between two groups (P > 0.05).Multivariate analysis showed that DBT (odds ratio [OR] 2.5,95% confidence interval [CI]1.1-4.8,P=0.04),IABP support after PCI (OR 5.7,95% CI 2.7-8.4,P=0.01),and AKI (OR 7.4,95% CI 4.9-10.8,P=0.01) were the independent predictors of mortality at 12-month follow-up.Conclusions:Early IABP insertion before primary PCI is associated with improved myocardial perfusion although DBT

  1. The pipeline oil pumping engineering based on the Plant Wide Control technology

    OpenAIRE

    Starikov, Dmitry Pavlovich; Rybakov, Evgeniy Aleksandrovich; Gromakov, Evgeny Ivanovich

    2015-01-01

    This article provides recommendations for the use technology Plant Wide Control to control the pumping of oil through the pipeline. The proposed engineering using pipeline management in general (Pipe Wide Control) will reduce the loss of electric power at the expense of the balance of pumping stations located along the pipeline route.

  2. STUDY ON POWER SPARE COEFFICIENT OF ELECTRICAL MOTOR IN LARGE PUMP STATION BASED ON RELIABILITY

    Institute of Scientific and Technical Information of China (English)

    Qiu Baoyun; Huang Jiyan; Yuan Shouqi

    2004-01-01

    Characters of head of low head pump station and the pump shaft power are analyzed. Influence of each single factor on pump shaft power is expressed as change of specific shaft power (non-dimensional) and the probability density function is determined. Influences of multiple factors on pump shaft power are analyzed. Method of calculating none over-loaded probability of motor by integration by successive reductions is put forward and then relation between power spare coefficient and none over-loaded reliability of electric motor is established. Influences of all factors on pump shaft power being considered completely; power spare coefficients of motor are calculated in three kinds of heads (changing and unchanging), two kinds of dirty-out conditions. Electrical motor power spare coefficients should be chosen as 1.20~1.44, 1.11~1.19, 1.09~1.14 respectively when pump heads are 4, 7, 9.5 m. The results mean much to reasonable choose of electrical motors in large pump stations, increasing reliability of pump units and saving equipment investment.

  3. Development of RCNP polarized He-3 ion source based on electron pumping

    NARCIS (Netherlands)

    Yamagata, T; Tanaka, M; Yonehara, K; Arimoto, Y; Takeuchi, T; Fujiwara, M; Plis, YA; Anderson, LW; Morgenstern, R

    1998-01-01

    We constructed a new polarized He-3 ion source in order to establish a method of principle of "electron pumping" and experimentally prove its validity. Electron pumping utilizes multiple electron capture and stripping collisions of He-3(+) with rubidium atoms whose vapor thickness is much thicker th

  4. Method for Lumped Parameter simulation of Digital Displacement pumps/motors based on CFD

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.;

    2013-01-01

    Digital displacement fluid power pumps/motors offers improved efficiency and performance compared to traditional variable displacement pump/motors. These improvements are made possible by using efficient electronically controlled seat valves and careful design of the flow geometry. To optimize th...

  5. Wavelength stabilizer based on dual fiber Bragg gratings for 980nm Mini-uncooled pump laser

    Science.gov (United States)

    Hu, Shuangshuang; Li, Yi; Jiang, Qunjie; Wu, Bin; Yu, Xiaojing; Wang, Haifang

    2008-12-01

    High power 980nm pump lasers are the key components in optical fiber amplifier. Wavelength stability for 980nm Miniuncooled pump laser is required to maintain the amplifier's efficiency throughout its lifetime. In this paper, a new type of wavelength stabilizer for uncooled pump laser which utilizes two fiber Bragg gratings (FBGs) matched in wavelength, bandwidth, and reflectivity is presented. The characteristics of transmissivity and reflectivity for the dual FBGs stabilized 980nm pump laser are theoretically modeled and experimentally studied. The results show that the output spectral characteristics of the uncooled pump laser with the dual FBGs have been greatly improved. The laser module can work steadily over a wide temperature range from 0°C to 70°C, with 0.2nm wavelength shift, along with more than 45dB side mode suppression ratio, and less than 1.57nm spectral bandwidth.

  6. [Research on flow characteristics in a non-blade centrifugal blood pump based on CFD technology].

    Science.gov (United States)

    Cheng, Yunzhang; Luo, Binhai; Wu, Wenquan; Jiang, Lei

    2010-10-01

    The problem of thrombus and hemolysis in blood pump has always been an important topic to study in the development of the blood pump. Numbers of research results show that it is the complicated flow and the high shear stress of the mechanical movement that result in the thrombus and hemolysis. In this study, with the cooperation of Shanghai Children's Medical Center, we have used computational fluid dynamics (CFD) commercial software FLUENT to compute and analyze the flow characteristics in a non-blade centrifugal blood pump. The results figure out that this pump has a reasonable flow distribution and the shear stress distribution is under the critical broken state of red blood cell; meanwhile, there is less thrombus and hemolysis in this pump. So it is in the foreground for clinical use.

  7. Accuracy of a New Patch Pump Based on a Microelectromechanical System (MEMS) Compared to Other Commercially Available Insulin Pumps: Results of the First In Vitro and In Vivo Studies

    OpenAIRE

    Borot, Sophie; Franc, Sylvia; Cristante, Justine; Penfornis, Alfred; Benhamou, Pierre-Yves; Guerci, Bruno; Hanaire, Hélène; Renard, Eric; Reznik, Yves; Simon, Chantal; Charpentier, Guillaume

    2014-01-01

    The JewelPUMP™ (JP) is a new patch pump based on a microelectromechanical system that operates without any plunger. The study aimed to evaluate the infusion accuracy of the JP in vitro and in vivo. For the in vitro studies, commercially available pumps meeting the ISO standard were compared to the JP: the MiniMed® Paradigm® 712 (MP), Accu-Chek® Combo (AC), OmniPod® (OP), Animas® Vibe™ (AN). Pump accuracy was measured over 24 hours using a continuous microweighing method, at 0.1 and 1 IU/h bas...

  8. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  9. Synchronously Pumped Femtosecond Optical Parametric Oscillator Based on MgO-Doped Periodically Poled LiNbO3

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiang-Feng; ZHONG Xin; TENG Hao; SUN Jing-Hua; WEI Zhi-Yi

    2007-01-01

    We report a femtosecond optical parametric oscillator based on MgO-doped PPLN synchronously pumped by a mode-locked Ti:sapphire laser. The wavelengths of the signal and idler are continuously tuned from 1100 to 1300 nm and from 2080 to 2930 nm, respectively, by changing the pump wavelength and the OPO cavity length.The maximum signal output power of 130 mW at the wavelength of 1225 nm is obtained, pumped by 900 mW of 800nm laser radiation. This corresponds to a total conversion efficiency of 22.1%. The signal pulse duration is measured to be 167fs by intensity autocorrelation with chirped mirrors for intracavity dispersion compensation.

  10. 33 CFR 183.524 - Fuel pumps.

    Science.gov (United States)

    2010-07-01

    ... diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each electrically operated fuel pump must not operate except when the engine is operating or when the engine is started. (c) If tested under § 183.590, each fuel pump, as installed in the boat, must not leak more than...

  11. Workplace-based assessment in a primary-care setting.

    Science.gov (United States)

    Hecker, Kent G; Norris, Jill; Coe, Jason B

    2012-01-01

    Workplace-based assessment (WBA) is the process of directly observing students' work within a clinical setting, assessing their performance, and providing specific, goal oriented feedback. Assessment methods used for workplace-based assessment include tools developed for clinical interaction (e.g., the mini clinical evaluation exercise [mini-CEX]), for procedural or technical skills (e.g., the direct observation of procedural skills [DOPS]), and multi-source feedback tools to assess interpersonal and technical skills. While several of these assessment methods are being adopted by veterinary schools to evaluate students' progress through their clinical rotations, there is little reported at this time about their utility and effectiveness within the veterinary context. This article provides an introduction to the use of these tools and offers guidance in selecting appropriate methods for assessment in the primary health care setting. PMID:22951458

  12. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  13. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light.

    Science.gov (United States)

    Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian

    2015-11-24

    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids. PMID:26349036

  14. Development of Stepper motor based Two DOF Robotic Arm Transferring Liquid using Peristaltic Pump

    Directory of Open Access Journals (Sweden)

    Padma Thiagarajan

    2013-02-01

    Full Text Available The aim of this work is to transfer liquid contents from one micro cell to another using two stepper motors and a peristaltic pump. There are two objectives here. One is to develop a low cost roboticarm using stepper motors. The second objective is the control and calibration of the peristaltic pump. All parts are controlled and operated by their respective microcontrollers. Fulfillment of both the objectives leads to an integrated system to transfer liquids from one cell to another. The end effecter of the robotic arm is connected to the peristaltic pump. The pump has two pipes connected to it. Through one pipe it takes in the liquid and through the other pipe it delivers the liquid into the second cell. After transferring one sample of liquid, the arm moves to a cleaning module where the end effecter is cleaned to avoid cross contamination. The robotic arm is built using stepper motors and controlled using Atmega32 microcontroller whereas the peristaltic pump is controlled and calibrated using 8051 microcontroller. The pumping is done with the help of DC motors. As a result, the working of the robotic arm and theperistaltic pump is verified experimentally.

  15. Analysis of the performances of an axial flow tandem pump based on CFD computations

    Science.gov (United States)

    Zhao, Y.; Bai, Z. Y.; Zhang, M. D.; Wang, G. Y.

    2012-11-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Significant reduction of the axial geometry scale, resulting from lack of guide vanes, makes great sense to high-speed propulsion. Direct interactions between front and rear impellers may lead to special flows, which are different from those in a multistage pump. There are few studies of these differences. In this article, CFD computations of flows in an axial flow tandem pump are conducted to predict the performances. FBM turbulence model, which is introduced to commercial software, is used for the simulations. Circulation coefficient is defined to help analyze energy characteristics. The results demonstrate that power of the tandem pump increases slowly as discharge is getting larger. The tandem pump has better adaptability under large discharge conditions. The head of the rear impeller is not sensitive to discharge's change, which results from that the front impeller weakens the influence of discharge's change on the rear impeller, so pump's energy characteristics may be improved.

  16. Development of a pump-turbine runner based on multiobjective optimization

    International Nuclear Information System (INIS)

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses

  17. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    Science.gov (United States)

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089.

  18. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    Science.gov (United States)

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089. PMID:25868241

  19. PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump

    Science.gov (United States)

    Domijan, Alexander, Jr.; Buchh, Tariq Aslam

    1995-01-01

    A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.

  20. Liquid Metal Pump Technologies for Nuclear Surface Power

    Science.gov (United States)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  1. Theoretical study of thermally driven heat pumps based on double organic rankine cycle

    OpenAIRE

    Demierre, Jonathan; Favrat, Daniel

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] This study deals with a type of thermally driven heat pumps that consists of a reverse Rankine heat pump cycle, the compressor of which is driven by the turbine of a supercritical Organi...

  2. The Impeller Improvement of the Centrifugal Pump Based on BVF Diagnostic Method

    OpenAIRE

    Xin Zhou; Yongxue Zhang; Zhongli Ji; Long Chen

    2014-01-01

    Selecting one IS 150-125-250 centrifugal pump as reference model, impeller with 3D blades has been designed using two-dimensional theory. Numerical simulations using Reynolds averaged N-S equations with a RNG k-ε two-equation turbulence model and log-law wall function are used to estimate the hydraulic performance of pump and obtain BVF distributions on impeller blade pressure surfaces and suction surfaces. The results show that, compared with IS150-125-250 pump, the designed one shows better...

  3. Analysis of the application of an open-cycle absorption heat pump in industrial convection drying

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Gasparella, A.; Longo, G.A. [Dipt. di Tecnica e Gestione dei Sistemi Industriali, Univ. degli Studi di Padova, Vicenza (Italy)

    1999-07-01

    Heat recovery in convection driers has been investigated comparing different solutions (regenerative heat exchanger, vapour compression heat pump, sorption dehumidification heat pump) in a specific application of food industry. Systems based on chemical dehumidification show the best performance allowing a primary energy saving higher than 40% with respect to traditional plants. (orig.)

  4. Principle study of temperature measurement based on primary colors

    Institute of Scientific and Technical Information of China (English)

    程晓舫; 周洲

    1997-01-01

    The Plank law reflecting the actual radiation of an object is ingeniously combined with the principle of primary colors which is the basis of the object’s color reappearing and the principle of primary colors temperature measurement is established.

  5. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  6. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis.

    Directory of Open Access Journals (Sweden)

    Ah Reum Choi

    Full Text Available A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax  = 544 nm at pH 7. The pKa of proton acceptor (Asp121 for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4. In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids.

  7. Development of Stepper motor based Two DOF Robotic Arm Transferring Liquid using Peristaltic Pump

    OpenAIRE

    Padma Thiagarajan; Sudha Ramasamy; Karthikesh.R; Manikandan.P

    2013-01-01

    The aim of this work is to transfer liquid contents from one micro cell to another using two stepper motors and a peristaltic pump. There are two objectives here. One is to develop a low cost roboticarm using stepper motors. The second objective is the control and calibration of the peristaltic pump. All parts are controlled and operated by their respective microcontrollers. Fulfillment of both the objectives leads to an integrated system to transfer liquids from one cell to another. The end ...

  8. Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis

    OpenAIRE

    Wang, Guorong; Zhong, Lin; He, Xia; Lei, Zhongqing; Hu, Gang; Li, Rong; Wang, Yunhai

    2015-01-01

    The influence of spring stiffness and valve quality on the motion behaviors of reciprocating plunger pump discharge valves was investigated by fluid structure interaction (FSI) simulation and experimental analysis. The mathematical model of the discharge valve motion of a 2000-fracturing pump was developed and the discrete differential equations were solved according to FSI and results obtained by ANDINA software. Results indicate that spring stiffness influences the maximum lift, the opening...

  9. Analysis on Energy Conversion of Screw Centrifugal Pump in Impeller Domain Based on Profile Lines

    OpenAIRE

    Hui Quan; Rennian Li; Qingmiao Su; Wei Han; Pengcheng Wang

    2013-01-01

    In order to study the power capability of impeller and energy conversion mechanism of screw centrifugal pump, the methods of theoretical analysis and numerical simulation by computational fluid dynamics theory (CFD) were adopted, specifically discussing the conditions of internal flow such as velocity, pressure, and concentration. When the medium is sand-water two-phase flow and dividing the rim of the lines and wheel lines of screw centrifugal pump to segments to analyze energy conversion ca...

  10. A research on an energy-saving software for pumping units based on FNN intelligent control

    Institute of Scientific and Technical Information of China (English)

    丁宝; 齐维贵; 王凤平

    2004-01-01

    An energy-saving scheme for pumping units via intermission start-stop performance is proposed. Because of the complexity of the oil extraction process, Fuzzy Neural Network (FNN) intelligent control is adopted. The structure of the Takagi-Sugeno (T-S) fuzzy neural network model is introduced and modified. FNNs are trained with sample information from oil fields and expert knowledge. Finally, pumping unit energy-saving FNN software, which cuts down power costs substantially, is presented.

  11. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    Science.gov (United States)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  12. Erosion predictions of stock pump impellers based on liquid-solid two-phase fluid simulations

    International Nuclear Information System (INIS)

    Stock pumps cost 25 percent of total power consumption in a modern paper mill. Owing to the severe erosion of pump casing and impeller during operation, stock pump often results in efficiency drop and rising power consumption. A favourable prediction of the impeller wearing character can effective guide optimization design of stock pump impeller. Thereby it can reduce impeller wear and extend stock pump performance life. We simulated the three-dimensional unsteady solid-liquid two-phase flow characteristic in the hydraulic channel of a low specific speed stock pump with open and three blades impeller. The standard k- ε turbulent model and the pseudo-fluid model were adopted in simulation. Clearance between covers and impeller is taken into consideration in modelling, and pulp is simplified into mixtures of solid particles and water. The Finnie prediction model is applied to predict impeller erosion character. The simulation results of different solid particle size are compared with practical impeller erosion character, and the effects of solid particle size on impeller erosion character are obtained. Thus, numerical method to simulate impeller erosion characteristics of fibered pulp is investigated

  13. Erosion predictions of stock pump impellers based on liquid-solid two-phase fluid simulations

    Science.gov (United States)

    Xiao, Y. X.; Fang, B.; Zeng, C. J.; Yang, L. B.; Wang, F.; Wang, Z. W.

    2013-12-01

    Stock pumps cost 25 percent of total power consumption in a modern paper mill. Owing to the severe erosion of pump casing and impeller during operation, stock pump often results in efficiency drop and rising power consumption. A favourable prediction of the impeller wearing character can effective guide optimization design of stock pump impeller. Thereby it can reduce impeller wear and extend stock pump performance life. We simulated the three-dimensional unsteady solid-liquid two-phase flow characteristic in the hydraulic channel of a low specific speed stock pump with open and three blades impeller. The standard k- ε turbulent model and the pseudo-fluid model were adopted in simulation. Clearance between covers and impeller is taken into consideration in modelling, and pulp is simplified into mixtures of solid particles and water. The Finnie prediction model is applied to predict impeller erosion character. The simulation results of different solid particle size are compared with practical impeller erosion character, and the effects of solid particle size on impeller erosion character are obtained. Thus, numerical method to simulate impeller erosion characteristics of fibered pulp is investigated.

  14. Electrically pumped near-ultraviolet lasing from ZnO Nanowire Based Heterojunctions

    Science.gov (United States)

    Mu, Richard; Xu, Haiyang; Liu, Yichun

    2014-03-01

    ZnO with a band gap (3.37 eV) and an exciton binding energy (60 meV) is a promising material for ultraviolet (UV) light-emitting diodes (LEDs) and low-threshold lasing diodes. Much progress has been made recently to enhance band edge emission of ZnO nanowire (NW) structure through surface passivation and local surface plasmon enahncement with metal nanparticles. Efforts have been made to fabricate electrically pumped near-ultraviolet lasing devices with metal/insulator/semiconductor laser diode based on ZnO/MgO core/shell nanowires with and without metal nanoparticle presences. The nanowire diode shows higher emission intensity at relatively low operating current density compared with the planar device. The improved efficiency is attributed to enhanced exciton oscillator strength and superior carrier transport properties of single-crystalline ZnO nanowires, and effective surface passivation by MgO coating. Random laser action was confirmed by the calculation of quality factor and the real-time changes of lasing spectra. The results reveal that the MgO coating serves as electron blocking, hole supplying and surface passivation layer for the nanowire heterostructure. Other approaches will also be presented and discussed in the presentation. DMR-0423914, NSF-CREST HRD-0420516, and DOD W911NF-11-1-0156 and -13-1-0153.

  15. Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy.

    Science.gov (United States)

    Tanabe, Tadao; Ragam, Srinivasa; Oyama, Yutaka

    2009-11-01

    We constructed a high resolution terahertz (THz) spectroscopic system with an automatic scanning control using a continuous wave (cw) THz wave generator based on difference frequency generation method by excitation of phonon-polariton mode in GaP. The pump and signals lasers were compact, tunable external cavity laser, and distributed feedback (DFB) lasers, respectively. The generated THz waves were tuned automatically by changing the temperature of the DFB laser using a system control. We present the water vapor transmission characteristics of the THz wave and also absorption spectrum of a white polyethylene in the frequency range of 1.97-2.45 THz. The spectroscopic measurements performed at an output power level of 2 nW, which was obtained with a 15-mm-long GaP crystal at 2 THz. The advantage of this cw THz spectrometer is wide frequency tuning range (0.7-4.42 THz) with an estimated linewidth of full width at quarter maximum <8 MHz and this system has a potential application in high resolution spectroscopy. PMID:19947715

  16. A Neural Network Based MPPT Technique Controller for Photovoltaic Pumping System

    Directory of Open Access Journals (Sweden)

    Mohammed Yaichi

    2014-03-01

    Full Text Available The article proposes a novel method using the artificial neural network (ANN for the improvement of the performances of a photovoltaic system composed of a photovoltaic (PV array, an inverter, a motor asynchronous and a centrifugal pump. For this type of system, different optimization strategies have been proposed to improve the over of the PV system efficiency, i.e. the PV generator is forced to operate at its maximum power point “MPPT”, generally, by the insertion of DC/DC boost converter between the photovoltaic array and the inverter. In this work we propose an approach, where optimization is realized without need adding a DC/DC converter to the chain, using field-oriented control through the monitoring of the voltage-fed inverter frequency. The motor is also ensured in all insolation conditions. A multilayer feed forward perception type NN is proposed for MPPT control, and the back-propagation algorithm is used for training. The performances of the drive with ANN-based MPPT are excellent. The maximum power point (MPP can be easily obtained to frequency-controlled drive.

  17. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    Science.gov (United States)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/‑16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g‑1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  18. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    Science.gov (United States)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  19. Study on water lubricated bearings of high speed pump based on numerical simulation

    Science.gov (United States)

    Bai, Y. X.; Kong, F. Y.; Sun, J. R.; Yuan, X.

    2016-05-01

    A method is presented for calculating and analyzing the performance of water lubricated bearing of high speed pump under different structure. In present work, six kinds of bearings in different radial clearance(C), which are 0.02, 0.04, 0.06, 0.08, 0.10and0.12 respectively, under the same minimum water film thickness, have been designed. The models are built by CREO and numerical simulated by ansys. The main content of the present work is to analyze the relationship between the pressure and the load carrying capacity with different radial clearance(C) by ansys workbench based on Fluid-Solid coupling through ansys workbench.The stress deformations of bearings are also acquired through thermal-structure coupling. From the comparing result among the numerical analysis under the six different model of water lubricated bearing, the relationship between radial clearance(C) and load carrying capacity, as well as the deformation of bearing under different radial clearance(C), are obtained. Further, results indicates that, a proper selection of radial clearance(C) is essential to enhance the bearing performance.

  20. Ferromagnetic Resonance Spin Pumping and Electrical Spin Injection in Silicon-Based Metal-Oxide-Semiconductor Heterostructures

    Science.gov (United States)

    Pu, Y.; Odenthal, P. M.; Adur, R.; Beardsley, J.; Swartz, A. G.; Pelekhov, D. V.; Flatté, M. E.; Kawakami, R. K.; Pelz, J.; Hammel, P. C.; Johnston-Halperin, E.

    2015-12-01

    We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage Vs that is suppressed as an applied field is rotated to the out-of-plane direction, i.e., the oblique Hanle geometry. Comparison of Vs between these two spin injection mechanisms reveals an anomalously strong suppression of FMR-driven spin pumping with increasing out-of-plane field Happz . We propose that the presence of the large ac component to the spin current generated by the spin pumping approach, expected to exceed the dc value by 2 orders of magnitude, is the origin of this discrepancy through its influence on the spin dynamics at the oxide-silicon interface. This convolution, wherein the dynamics of both the injector and the interface play a significant role in the spin accumulation, represents a new regime for spin injection that is not well described by existing models of either FMR-driven spin pumping or electrical spin injection.

  1. Light: an experiments based learning approach with primary school children

    Science.gov (United States)

    Abreu, Cátia; Noversa, Silvana; Varela, Paulo; Costa, Manuel F.

    2014-07-01

    A pedagogical intervention project was carried out at a primary school in the municipality of Vila Verde, Braga in Portugal. In a class of the 3rd grade, composed of 16 students, a practice of inquiry-based science teaching was implemented, addressing the curricular topic "Light Experiments". Various experimental activities were planned within this topic, including: What is light? How does light travel? Does light travel through every material? How is light reflected by a mirror? This project adopted an action research methodology and had as its main objectives: a) to promote a practical and experimental approach to the science component of the Environmental Studies curricular area; b) to describe the scientific meaning construction process inherent to the topics addressed in the classroom with the children, c) to assess the learning steps and children' achievements. Class diaries were prepared, based on field notes and audio recordings taken in the classroom. Through the analysis of the class diary concerning the topic "materials that let light travel through them" we intend to illustrate the process of construction of scientific meanings promoted in the classroom with our approach.

  2. Optimization of compound gear pump

    Institute of Scientific and Technical Information of China (English)

    栾振辉

    2002-01-01

    This paper introduces the performances of compound gear pump. Based on the target of having the smallest mass per unit volume, the paper established a mathematical model of optimization, and obtained the results of optimization of the pump.

  3. Orbital Liquid Oxygen Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed work will develop a pump, which is based on two novel and unique design features. The first feature is a lobed pumping mechanism which operates with...

  4. High repetition rate collisional soft x-ray lasers based on grazing incidence pumping

    Energy Technology Data Exchange (ETDEWEB)

    Luther, B M; Wang, Y; Larotonda, M A; Alessi, D; Berrill, M; Rocca, J J; Dunn, J; Keenan, R; Shlyaptsev, V N

    2005-11-18

    We discuss the demonstration of gain-saturated high repetition rate table-top soft x-ray lasers producing microwatt average powers at wavelengths ranging from 13.9 to 33 nm. The results were obtained heating a pre-created plasma with a picosecond optical laser pulse impinging at grazing incidence onto a pre-created plasma. This pumping geometry increases the energy deposition efficiency of the pump beam into the gain region, making it possible to saturate soft x-ray lasers in this wavelength range with a short pulse pump energy of only 1 J at 800 nm wavelength. Results corresponding to 5 Hz repetition rate operation of gain-saturated 14.7 nm Ni-like Pd and 32.6 nm line Ne-like Ti lasers pumped by a table-top Ti:sapphire laser are reported. We also discuss results obtained using a 1 {omega} 1054 nm pre-pulse and 2{omega} 527 nm short pulse from a Nd:glass pump laser. This work demonstrates the feasibility of producing compact high average power soft x-ray lasers for applications.

  5. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  6. Observer based Model Identification of Heat Pumps in a Smart Grid

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom S.; Nielsen, Kirsten M.

    2012-01-01

    The extensive growth of installed wind energy plants in Denmark leads to increasing balancing problems in the power grid due to the nature of wind fields and variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction....... A part of a solution can be to take advantage of floor heat capacity in single-family houses using heat pumps.This large heat capacity makes it possible to move consumption without compromising the comfort of house residents. In a Danish research project a virtual power plant using centralized control...... of a large number of houses with heat pumps is established. In order to make the control algorithm a vital part is a dynamic model of each house. The model predicts the house indoor temperature when heat pump power and outdoor temperature is known. The model must be able to describe a large variety of heat...

  7. Tunable optical parametric generator based on the pump spatial walk-off

    CERN Document Server

    Cavanna, Andrea; Sharapova, Polina R; Taheri, Michael; Leuchs, Gerd; Chekhova, Maria V

    2015-01-01

    We suggest a novel optical parametric generator (OPG) in which one of the down-converted beams is spontaneously generated along the Poynting vector of the pump beam. In this configuration, the generation takes advantage of the walk-off of the extraordinary pump rather than being degraded by it. As a result the generated beams, signal and idler, are bright, due to a high conversion efficiency, spatially nearly single-mode, due to the preferred direction of the Poynting vector, tuneable over a wide range of wavelengths, and broadband. The two beams are also correlated in frequency and in the photon number per pulse. Furthermore due to their thermal statistics these beams can be used as a pump to efficiently generate other nonlinear processes.

  8. Numerical prediction of pressure fluctuations in a prototype pump turbine base on PANS methods

    Science.gov (United States)

    Liu, J. T.; Li, Y.; Gao, Y.; Hu, Q.; Wu, Y. L.

    2016-05-01

    Unsteady flow and pressure fluctuations within a prototypel pump turbine are numerically studied using a nonlinear Partial Averaged Navier Stokes (PANS) model. Pump turbine operating at different conditions with guide vanes opening angle 6° is simulated. Results revealed that the predictions of performance and relative peak-to-peak amplitude by PANS approach agree well with the experimental data. The amplitude of the pressure fluctuation in the vaneless space at turbine mode on a “S” curve increases with the decrease of the flow rate, and it has maximum value when it runs close to runaway line at turbine braking mode. The amplitude of the pressure fluctuation in the vaneless space at turbine braking mode on a “S” curve decreases with the reduce of the flow rate. The above high pressure fluctuations should be avoided during the design of pump turbines especially those operating at high-head condition.

  9. ZnO film based surface acoustic wave micro-pump

    International Nuclear Information System (INIS)

    In this study, a micro-pump unit based on surface acoustic wave (SAW) on piezoelectric ZnO film is designed and fabricated as a micro-fluidic device. It employs a mechanical wave, which is generated electrically using an aluminum interdigital transducer (IDT), and propagates on the surface of the ZnO film. The ZnO film was used in this study because it has a high electromechanical coefficient and an excellent bonding with various substrate materials, in particular silicon. The sputtering parameters for ZnO film deposition have been optimized, and the ZnO films with different thickness from 1 micron to 5.5 microns were prepared. The film properties have been characterized using different methods, such as scanning electron microscopy, X-ray diffraction and atomic force microscopy. Aluminum IDT with a finger width and spacing of 8 microns was patterned on the ZnO film using a lift-off process. The frequency generated was measured using a network analyzer, and it varies from 130 MHz to 180 MHz as a function of film thickness. A signal generator was used to generate the frequency with a power amplifier to amplify the signal, which was then applied to aluminum IDT to generate the surface acoustic wave. If a liquid droplet exists on the surface carrying the acoustic wave, the energy and the momentum of the SAW will be coupled into the fluid, causing the liquid to vibrate and move on film surface. The strength of this movement is determined by the applied voltage and frequency. The volume of the liquid drop loaded on the SAW device in this study is of several hundreds of nanoliters. The movement of the liquid inside the droplet and also on the ZnO film surface can be demonstrated. The performance of ZnO SAW device was characterized as a function of film thickness

  10. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    Science.gov (United States)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  11. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  12. Evaporation based micro pump integrated into a scanning force microscope probe

    OpenAIRE

    Heuck, F.; Hug, T.; Akiyama, Terunobu; Frederix, P. L. T. M.; Engel, A.; Meister, André; Heinzelmann, Harry; de Rooij, Nicolaas F.; Staufer, Urs

    2010-01-01

    A micro pump was integrated into a scanning force microscope probe for circulating liquid through its hollow cantilever and tip. The interior cross section of the cantilever was 2.25 μm × 3.75 μm. All fluidic parts were made of SiO2, while the tip apex was made of Si3N4. The key fabrication techniques were silicon wafer bonding and wet-oxidation. The pumping mechanism was relying on the enhanced evaporation at an enlarged water/air interface at the exit of the microchannel. Capillary forces c...

  13. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  14. Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis

    Science.gov (United States)

    Wang, Guorong; Zhong, Lin; He, Xia; Lei, Zhongqing; Hu, Gang; Li, Rong; Wang, Yunhai

    2015-01-01

    The influence of spring stiffness and valve quality on the motion behaviors of reciprocating plunger pump discharge valves was investigated by fluid structure interaction (FSI) simulation and experimental analysis. The mathematical model of the discharge valve motion of a 2000-fracturing pump was developed and the discrete differential equations were solved according to FSI and results obtained by ANDINA software. Results indicate that spring stiffness influences the maximum lift, the opening resistance and shut-off lag angle, as well as the fluid velocity of the clearance, the impact stress and the volume efficiency of the pump valve in relation to the valve quality. An optimal spring stiffness parameter of 14.6 N/mm was obtained, and the volumetric efficiency of the pumping valve increased by 4‰ in comparison to results obtained with the original spring stiffness of 10.09N/mm. The experimental results indicated that the mathematical model and FSI method could provide an effective approach for the subsequent improvement of valve reliability, volumetric efficiency and lifespan. PMID:26488290

  15. Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis.

    Directory of Open Access Journals (Sweden)

    Guorong Wang

    Full Text Available The influence of spring stiffness and valve quality on the motion behaviors of reciprocating plunger pump discharge valves was investigated by fluid structure interaction (FSI simulation and experimental analysis. The mathematical model of the discharge valve motion of a 2000-fracturing pump was developed and the discrete differential equations were solved according to FSI and results obtained by ANDINA software. Results indicate that spring stiffness influences the maximum lift, the opening resistance and shut-off lag angle, as well as the fluid velocity of the clearance, the impact stress and the volume efficiency of the pump valve in relation to the valve quality. An optimal spring stiffness parameter of 14.6 N/mm was obtained, and the volumetric efficiency of the pumping valve increased by 4‰ in comparison to results obtained with the original spring stiffness of 10.09N/mm. The experimental results indicated that the mathematical model and FSI method could provide an effective approach for the subsequent improvement of valve reliability, volumetric efficiency and lifespan.

  16. Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis.

    Science.gov (United States)

    Wang, Guorong; Zhong, Lin; He, Xia; Lei, Zhongqing; Hu, Gang; Li, Rong; Wang, Yunhai

    2015-01-01

    The influence of spring stiffness and valve quality on the motion behaviors of reciprocating plunger pump discharge valves was investigated by fluid structure interaction (FSI) simulation and experimental analysis. The mathematical model of the discharge valve motion of a 2000-fracturing pump was developed and the discrete differential equations were solved according to FSI and results obtained by ANDINA software. Results indicate that spring stiffness influences the maximum lift, the opening resistance and shut-off lag angle, as well as the fluid velocity of the clearance, the impact stress and the volume efficiency of the pump valve in relation to the valve quality. An optimal spring stiffness parameter of 14.6 N/mm was obtained, and the volumetric efficiency of the pumping valve increased by 4‰ in comparison to results obtained with the original spring stiffness of 10.09N/mm. The experimental results indicated that the mathematical model and FSI method could provide an effective approach for the subsequent improvement of valve reliability, volumetric efficiency and lifespan. PMID:26488290

  17. Research on Three-Dimensional Unsteady Turbulent Flow in Multistage Centrifugal Pump and Performance Prediction Based on CFD

    Directory of Open Access Journals (Sweden)

    Zhi-jian Wang

    2013-01-01

    Full Text Available The three-dimensional flow physical model of any stage of the 20BZ4 multistage centrifugal pump is built which includes inlet region, impeller flow region, guide-vane flow region and exit region. The three-dimensional unsteady turbulent flow numerical model is created based on Navier-Stoke solver and standard k-ε turbulent equations. The method of multireference frame (MRF and SIMPLE algorithm are used to simulate the flow in multistage centrifugal pump based on FLUENT software. The distributions of relative velocity, absolute velocity, static pressure, and total pressure in guide vanes and impellers under design condition are analyzed. The simulation results show that the flow in impeller is mostly uniform, without eddy, backflow, and separation flow, and jet-wake phenomenon appears only along individual blades. There is secondary flow at blade end and exit of guide vane. Due to the different blade numbers of guide vane and impeller, the total pressure distribution is asymmetric. This paper also simulates the flow under different working conditions to predict the hydraulic performances of centrifugal pump and external characteristics including flow-lift, flow-shaft power, and flow-efficiency are attained. The simulation results are compared with the experimental results, and because of the mechanical losses and volume loss ignored, there is a little difference between them.

  18. All-optical logical gates based on pump-induced resonant nonlinearity in an erbium-doped fiber coupler.

    Science.gov (United States)

    Li, Qiliang; Zhang, Zhen; Li, Dongqiang; Zhu, Mengyun; Tang, Xianghong; Li, Shuqin

    2014-12-01

    In this paper, we theoretically investigate all-optical logical gates based on the pump-induced resonant nonlinearity in an erbium-doped fiber coupler. The resonant nonlinearity yielded by the optical transitions between the (4)I(15/2) states and (4)I(13/2) states in Er(3+) induces the refractive index to change, which leads to switching between two output ports. First, we do a study on the switching performance, and calculate the extinction ratio (Xratio) of the device. Second, using the Xratio, we obtain the truth tables of the device. The results reveal that compared with other undoped nonlinear couplers, the erbium-doped fiber coupler can drop the switching threshold power. We also obtain different logic gates and logic operations in the cases of the same phase and different phase of two initial signals by changing the pump power.

  19. Numerical Simulation of Self-Pumped Phase Conjugate Plane-Curve Loop Mirror Based on Photorefractive Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Mehran Vahdani Moghaddam; Zeynab Chenari; Hamid Latifi; Vladimir Vladimirovich Shuvalov; Konestantin Valentinovich Rudenko

    2008-01-01

    @@ We deal with computer simulation of a transient process in a self-pumped phase conjugate plane-curve loop mirror based on BaTiO3. In optimal circumstances the nonlinear reflectivity and fidelity of such a mirror respectively achieve 0.80-0.90 and 0.95-0.98. The generation of conjugate wave-front occurs due to scattering from the dynamic hologram which is produced in the region of self-intersection of forward and backward beams. In such a model the scenario of passing to unstable generation regimes is similar to the self-pumped phase conjugate plane-plane loop mirror and substantially differs from a single-crystal double phase conjugate mirror.

  20. Research on an Intelligent Decision Support System for a Conceptual Innovation Design of Pumping Units Based on TRIZ

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decision-making and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.

  1. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit

    Science.gov (United States)

    Aloulou, R.; De Peslouan, P.-O. Lucas; Mnif, H.; Alicalapa, F.; Luk, J. D. Lan Sun; Loulou, M.

    2016-05-01

    Energy Harvesting circuits are developed as an alternative solution to supply energy to autonomous sensor nodes in Wireless Sensor Networks. In this context, this paper presents a micro-power management system for multi energy sources based on a novel design of charge pump circuit to allow the total autonomy of self-powered sensors. This work proposes a low-voltage and high performance charge pump (CP) suitable for implementation in standard complementary metal oxide semiconductor (CMOS) technologies. The CP design was implemented using Cadence Virtuoso with AMS 0.35μm CMOS technology parameters. Its active area is 0.112 mm2. Consistent results were obtained between the measured findings of the chip testing and the simulation results. The circuit can operate with an 800 mV supply and generate a boosted output voltage of 2.835 V with 1 MHz as frequency.

  2. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis.

    Science.gov (United States)

    Fu, Xiaotong; Mavrogiannis, Nicholas; Doria, Steven; Gagnon, Zachary

    2015-09-01

    Over the past decade, many microfluidic platforms for fluid processing have been developed in order to perform on-chip fluidic manipulations. Many of these methods, however, require expensive and bulky external supporting equipment, which are not typically applicable for microsystems requiring portability. We have developed a new type of portable contactless metal electro-osmotic micropump capable of on-chip fluid pumping, routing and metering. The pump operates using two pairs of gallium metal electrodes, which are activated using an external voltage source, and separated from a main flow channel by a thin micron-scale PDMS membrane. The thin contactless membrane allows for field penetration and electro-osmotic (EO) flow within the microchannel, but eliminates electrode damage and sample contamination commonly associated with traditional DC electro-osmotic pumps that utilize electrodes in direct contact with the working fluid. The maximum flow rates and pressures generated by the pump using DI water as a working buffer are 10 nL min(-1) and 30 Pa, respectively. With our current design, the maximum operational conductivity where fluid flow is observed is 0.1 mS cm(-1). Due to the small size and simple fabrication procedure, multiple micropump units can be integrated into a single microfluidic device for automated on-chip routing and sample metering applications. We experimentally demonstrated the ability to quantify micropump electro-osmotic flowrate and pressure as a function of applied voltage, and developed a mathematical model capable of predicting the performance of a contactless micropump for a given external load and internal hydrodynamic microchannel resistance. Finally, we showed that by activating specific pumps within a microchannel network, our micropumps are capable of routing microchannel fluid flow and generating plugs of solute. PMID:26053965

  3. Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging

    International Nuclear Information System (INIS)

    We present our experimental studies on the effects of the pumping sizes on THz radiation based on ultrashort light pulse optical rectification for high spatial resolution T-Ray imaging. Our experiments show that high spatial resolution T-ray imaging requires both thin THz emitter and sample, and rigorous tolerance of the gap between the sample and the emitter, as well as small pumping size which usually much smaller compared with THz wavelength. Such a small pumping size results in dramatic decrease of the THz wave power, which originates from strong diffraction of THz wave, the depolarization of the focused tightly pumping beam, the spatial filtering of the emitter exit-surface, and the strong phase-mismatching between the pumping and the high spatial Fourier components of the THz signal, rather than two-photon absorption

  4. Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging

    Institute of Scientific and Technical Information of China (English)

    XU Shi-Xiang; DAI Xiao-Ming; YANG Xiao-Hua; LI Jing-Zhen

    2008-01-01

    @@ We present our experimental studies on the effects of the pumping sizes on THz radiation based on ultrashort light pulse optical rectification for high spatial resolution T-Ray imaging.Our experiments show that high spatial resolution T-ray imaging requires both thin THz emitter and sample, and rigorous tolerance of the gap between the sample and the emitter, as well as small pumping size which usually much smaller compared with THz wavelength.Such a small pumping size results in dramatic decrease of the THz wave power, which originates from strong diffraction of THz wave, the depolarization of the focused tightly pumping beam, the spatial filtering of the emitter exit-surface, and the strong phase-mismatching between the pumping and the high spatial Fourier components of the THz signal, rather than two-photon absorption.

  5. Normetex Pump Alternatives Study

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  6. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers.

    Science.gov (United States)

    Sintov, Yoav; Malka, Dror; Zalevsky, Zeev

    2014-08-15

    By employing large hollow-core Kagome fiber in a double-clad configuration, the performance of a potentially rubidium vapor-based fiber laser is explored. The absorbed power and laser efficiency versus pump power are calculated utilizing a simple laser model. Our results show that a Kagome-based high-power fiber laser is feasible provided that the value of the collisional fine-structure mixing rate will be elevated by increasing the ambient temperature or by increasing the helium pressure.

  7. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  8. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  9. In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell.

    Science.gov (United States)

    Liu, Yuhan; Lu, Keding; Dong, Huabin; Li, Xin; Cheng, Peng; Zou, Qi; Wu, Yusheng; Liu, Xingang; Zhang, Yuanhang

    2016-05-01

    In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid (HONO). We developed a HONO detection system based on long path photometry which consists of three independent modules i.e., sampling module, fluid propulsion module and detection module. In the propulsion module, solenoid pumps are applied. With solenoid pumps the pulsed flow can be computer controlled both in terms of pump stroke volume and pulse frequency, which enables the attainment of a very stable flow rate. In the detection module, a customized Liquid Waveguide Capillary Cell (LWCC) is used. The customized LWCC pre-sets the optical fiber in-coupling with the liquid wave guide, providing the option of fast startup and easy maintenance of the absorption photometry. In summer 2014, our system was deployed in a comprehensive campaign at a rural site in the North China Plain. More than one month of high quality HONO data spanning from the limit of detection to 5ppb were collected. Intercomparison of our system with another established system from Forschungszentrum Juelich is presented and discussed. In conclusion, our instrument achieved a detection limit of 10pptV within 2min and a measurement uncertainty of 7%, which is well suited for investigation of the HONO budget from urban to rural conditions in China. PMID:27155434

  10. A compact diode-pumped pulsed Nd:YAG slab laser based on a master oscillator power amplifier configuration

    Science.gov (United States)

    Maleki, A.; Kavosh Tehrani, M.; Saghafifar, H.; Moghtader Dindarlu, M. H.; Ebadian, H.

    2016-02-01

    In this paper, the design and construction of a pulsed Nd:YAG laser is described. The structure of this laser is based on a master oscillator power amplifier system. A master oscillator is an electro-optical Q-switched Nd:YAG rod laser. Face-pumping is used for the excitation of the slab structure, and a double-pass method is designed for the amplification stages. Two Nd:YAG zigzag slabs are utilized as power amplification stages in this laser. The laser diodes are stacked in a compact configuration and are used for rod and slabs pumping. The total pump energy in the amplifier stages is 3200 mJ at 808 nm. The output pulse energy achieved at 1064 nm is about 850 mJ of 10 ns pulse duration corresponding to 26.5% optical-to-optical conversion efficiency. Moreover, this laser can generate pulse energies around 430 mJ at 532 nm. The dependence of the output energy of MOPA and second harmonic generation operations on different pulse repetition rates (PRRs) from 1 to 100 Hz has been investigated. Experimental results show that the maximum fluctuations of the output energies are about 2.5 and 4% for 1064 and 532 nm, respectively.

  11. Kilohertz high power extracavity KGW yellow raman lasers based on pulse LD side-pumped ceramic Nd: YAG

    Science.gov (United States)

    Bai, Y.; Chen, X. M.; Guo, J. X.; Zhang, H. L.; Bai, J. T.; Ren, Z. Y.

    2012-03-01

    We report an efficient operation of a kilohertz nanosecond extracavity KGd(WO4)2 (KGW) crystal Raman yellow laser, which is pumped by a 532 nm lasers based on pulse laser diode (LD) side-pumped ceramic Nd: YAG, BBO electro-optical Q-switched and LBO crystal extracavity frequency doubling. With the 5 W, 10 ns and 1 kHz output power pumped at 532 nm, we obtained 2.58 W, 7.4 ns, 1 kHz second Stokes Raman laser output at 579.54 nm for 768 cm-1 Raman shift of KGW crystal, corresponding to a conversion efficiency of 51.4%. By changing the KGW crystal orientation, we further obtained 3.18 W, 7.8 ns, 1 kHz Raman pulses at 588.33 nm for 901 cm-1 Raman shift, corresponding to a conversion efficiency of 63.3%. The beam quality factors M2 of 579.54 and 588.33 nm were ( M {/x-579.54 2} = 5.829, M {/y-579.54 2} = 6.336) and ( M {/x-588.33 2} = 6.405, M {/y-588.33 2} = 6.895), respectively.

  12. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  13. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    International Nuclear Information System (INIS)

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  14. Process-based approach of heat pump projects; Procesmatig werken bij warmtepompprojecten

    Energy Technology Data Exchange (ETDEWEB)

    Ten Bolscher, G.H. [DWA Installatie- en Energieadvies, Bodegraven (Netherlands)

    2012-04-15

    A process-oriented approach in heat pump projects can prevent various kinds of problems, for example complaints of users on too high energy costs, mediocre temperature control or being bound by a contract for exploitation and maintenance. [Dutch] Met een procesmatige aanpak in warmtepompprojecten kunnen diverse problemen worden voorkomen. Bijvoorbeeld klachten van gebruikers over te hoge energiekosten, matige temperatuurregeling of de gebondenheid aan een exploitatie- en onderhoudscontract.

  15. Multi-tap photonic microwave filter based on two-pump fiber optical parametric amplifier

    OpenAIRE

    Li, J.; Cheung, KKY; Xu, X; Wong, KKY

    2009-01-01

    We propose and demonstrate a novel approach to implement a multi-tap photonic microwave filter. By using a two-pump fiber optical parametric amplifier (OPA), the number of signal laser sources needed is only half of the number of filter taps because new frequency components idlers are generated. Moreover, the free spectral range (FSR) of the proposed filter can be changed by simply changing the wavelength spacing between the signals. In our experiment, an 8-tap photonic microwave filter has b...

  16. A novel static frequency converter based on multilevel cascaded H-bridge used for the startup of synchronous motor in pumped-storage power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang Feng, E-mail: sjtuwfeng@hotmail.co [Key Lab of Control of Power Transmission and Transformation, Ministry of Education, Department of Electrical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240 (China); Jiang Jianguo, E-mail: jiang@sjtu.edu.c [Key Lab of Control of Power Transmission and Transformation, Ministry of Education, Department of Electrical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240 (China)

    2011-05-15

    Research highlights: {yields} A novel Static Frequency Converter (SFC) based on multilevel cascaded H-bridge (CHB) topology is proposed and used for the reversible pump-generating units in pumped-storage power station. {yields} The novel SFC based on CHB has compact configuration, low current harmonic distortion and fast speed response. {yields} Rotor position and Grid connection are realized successfully by the novel SFC. -- Abstract: A novel static frequency converter (SFC) is proposed and is used firstly to start the reversible pump-generating units in pumped-storage power station. Multilevel cascaded H-bridge (CHB) topology and Insulated Gate Bipolar Transistor (IGBT) are applied in the novel SFC. In comparison with the conventional SFC adopting load-commutated inverter (LCI) which is composed of silicon-controlled rectifier (SCR), the novel one has plenty of advantages such as compact configuration, low current harmonic distortion and fast speed response, and these advantages have been verified during 2-year operation at Xiang Hong Dian Pumped-storage power station in China. This application shows that the novel SFC greatly enhances the reliability and success rate of connecting to grid for starting up the pump-generating units. The principle, characteristic and performance of the novel SFC are described in this paper, and some key issues related to the startup of the units of the pumped-storage power station are also presented.

  17. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  18. Use of expert judgment in the development and evaluation of risk-based inservice testing strategies for pumps and valves

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, W.J.; Perdue, R.K.; Balkey, K.R.; Closky, N.B. [and others

    1996-12-01

    This paper describes a rigorous approach for quantitatively evaluating inservice testing effectiveness that evolved from two pilot plant studies. These studies prototyped methodologies for designing and selecting inservice testing (IST) strategies in a manner structured to insure that the targeted components will perform their required safety functions while minimizing life cycle inservice testing costs. The paper concentrates on the use of expert judgment in developing test effectiveness measures that move risk-based methods beyond ranking to optimization of plant IST programs. Selected results for check valves and pumps are shown to illustrate the practical significance of the approach.

  19. Use of expert judgment in the development and evaluation of risk-based inservice testing strategies for pumps and valves

    International Nuclear Information System (INIS)

    This paper describes a rigorous approach for quantitatively evaluating inservice testing effectiveness that evolved from two pilot plant studies. These studies prototyped methodologies for designing and selecting inservice testing (IST) strategies in a manner structured to insure that the targeted components will perform their required safety functions while minimizing life cycle inservice testing costs. The paper concentrates on the use of expert judgment in developing test effectiveness measures that move risk-based methods beyond ranking to optimization of plant IST programs. Selected results for check valves and pumps are shown to illustrate the practical significance of the approach

  20. LD Side-Pumped Passive Mode-Locked TEM00 Nd:YAG Laser Based on SESAM

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling; GUO Lin; XIONG Bo; YU Hai-Juan; SUN Lu; HOU Wei; LIN Xue-Chun; LI Jin-Min

    2010-01-01

    @@ We report an LD side-pumped continuous-wave passive mode-locked Nd:YA G laser with a Z-type folded cavity based on a semiconductor saturable absorber mirror (SESAM).The average output power 2.95 W of mode-locked laser with electro-optical conversion efficiency of 1.3% and high beam quality (M2x=1.25 and M2y=1.22) is achieved.The repetition rate of mode-locked pulse of 88 MHz with pulse energy of 34 nJ is obtained.

  1. Means-End based Functional Modeling for Intelligent Control: Modeling and Experiments with an Industrial Heat Pump System

    DEFF Research Database (Denmark)

    Saleem, Arshad

    2007-01-01

    The purpose of this paper is to present a Multilevel Flow Model (MFM) of an industrial heat pump system and its use for diagnostic reasoning. MFM is functional modeling language supporting an explicit means-ends intelligent control strategy for large industrial process plants. The model is used...... in several diagnostic experiments analyzing different fault scenarios. The model and results of the experiments are explained and it is shown how MFM based intelligent modeling and automated reasoning can improve the fault diagnosis process significantly....

  2. SHINE Vacuum Pump Test Verification

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards

  3. District heating and gas engine heat pump: Economic analysis based on a case study

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Noro, M. [Department of Management and Engineering, University of Padova, Stradella, S. Nicola, 3, 36100 Vicenza (Italy)

    2006-02-01

    'S. Nicola' HVAC plant in Vicenza features innovative and significant energy savings characteristics. It has been set up by a gas engine heat pump (coupled to two condensing boilers) whose performances are here evaluated during three years of operation. Due to a grid expansion, the University received the offer of being connected to the district heating grid. This possibility that is often considered advantageous was economically evaluated. As a result of this, a significant increasing of the building annual energy bill was demonstrated in case of acceptance. (author)

  4. Bidirectional Wavelength Reconfigurable Module Based on Tunable Fiber Bragg Grating and Remote Pump Amplifier

    Science.gov (United States)

    Yu, Yi-Lin; Liaw, Shien-Kuei; Skaljo, Edvin; Le Minh, Hoa; Ghassemlooy, Zabih

    2014-09-01

    This article presents a novel bidirectional wavelength reconfigurable optical network utilizing a remotely pumped erbium-doped fiber amplifier and tunable fiber Bragg gratings. The system is experimentally demonstrated at a 10-Gb/s per channel over 20-km fiber span that verifies the metro-network range system performance. The achieved power penalty is less than 1 dB when compared to the back-to-back transmission link. An example of practical application where the proposed module is used as an add/drop multiplexer and a remote node in the bidirectional wavelength division multiplexing passive optical network system is described.

  5. Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational Fluid Dynamics Based Design optimization

    Directory of Open Access Journals (Sweden)

    Abdellah Ait moussa

    2014-08-01

    Full Text Available The design and optimization of turbo machine impellers such as those in pumps and turbines is a highly complicated task due to the complex three-dimensional shape of the impeller blades and surrounding devices. Small differences in geometry can lead to significant changes in the performance of these machines. We report here an efficient numerical technique that automatically optimizes the geometry of these blades for maximum performance. The technique combines, mathematical modeling of the impeller blades using non-uniform rational B-spline (NURBS, Computational fluid dynamics (CFD with Geometry Parameterizations in turbulent flow simulation and the Globalized and bounded Nelder-Mead (GBNM algorithm in geometry optimization.

  6. Observer based Model Identification of Heat Pumps in a Smart Grid

    OpenAIRE

    Andersen, Palle; Pedersen, Tom S.; Nielsen, Kirsten M.

    2012-01-01

    The extensive growth of installed wind energy plants in Denmark leads to increasing balancing problems in the power grid due to the nature of wind fields and variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction. A part of a solution can be to take advantage of floor heat capacity in single-family houses using heat pumps.This large heat capacity makes it possible to move consumption without compromising the ...

  7. A Neural Network Based MPPT Technique Controller for Photovoltaic Pumping System

    OpenAIRE

    Mohammed Yaichi; Mohammed-Karim Fellah; Abdelkrim Mammeri

    2014-01-01

    The article proposes a novel method using the artificial neural network (ANN) for the improvement of the performances of a photovoltaic system composed of a photovoltaic (PV) array, an inverter, a motor asynchronous and a centrifugal pump. For this type of system, different optimization strategies have been proposed to improve the over of the PV system efficiency, i.e. the PV generator is forced to operate at its maximum power point “MPPT”, generally, by the insertion of DC/DC boost converter...

  8. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress.

    Science.gov (United States)

    López, M Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-21

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. PMID:27349445

  9. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    International Nuclear Information System (INIS)

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1→2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  10. Prediction of rotating stall within an impeller of a centrifugal pump based on spectral analysis of pressure and velocity data

    International Nuclear Information System (INIS)

    Experimental data, which was acquired in two centrifugal pumps and provided by Grundfos A/S, were analysed to determine if rotating stall could be detected from the velocity and pressure time series. The pressure data, which were uniformly acquired in time at high sample rates(10 kHz), were measured simultaneously in four adjacent di.user channels just downstream of the impeller outlet. The velocity data, which were non-uniformly sampled in time at fairly low rates(100 Hz to 3.5 kHz), were acquired either in or downstream of the impeller. Two di.erent methodologies were employed for detection of stall. The first method, which involved direct analysis of raw data, yielded qualitatively useful flow reversal information from the time series for the radial velocity. The second approach, which was based on power spectrum analysis of velocity and pressure data, could detect the onset and identify the frequency of rotating stall to a satisfactory extent in one of the two pumps. Nearly identical stall frequencies were observed in both velocity and pressure power spectra and this rotating stall phenomenon, which occurred at a very low frequency relative to the impeller speed, did not reveal any noticeable degree of sensitivity to the flow rate. In the other pump, where the available data was limited to velocity time series, the power spectrum analysis was successful in detecting stationary stall for a 6 bladed impeller but did not provide conclusive results for the existence of stall in the case of the 7 bladed impeller. Recommendations on the type of experimental data required for accurate detection of stall are provided based upon the present study

  11. Inquiry-Based Learning in Teacher Education: A Primary Humanities Example

    Science.gov (United States)

    Preston, Lou; Harvie, Kate; Wallace, Heather

    2015-01-01

    Inquiry-based learning features strongly in the new Australian Humanities and Social Sciences curriculum and increasingly in primary school practice. Yet, there is little research into, and few exemplars of, inquiry approaches in the primary humanities context. In this article, we outline and explain the implementation of a place-based simulation…

  12. 基于CFD的轴流泵空化特性预测%Prediction of cavitation performance of axial-flow pump based on CFD

    Institute of Scientific and Technical Information of China (English)

    杨正军; 王福军; 刘竹青; 张志民

    2011-01-01

    基于空泡动力学和汽液两相流理论,应用计算流体动力学(CFD)技术模拟了轴流泵在不同进口压力条件下(包含轴流泵中未发生空化和发生剧烈空化的多种情况)的流场,研究了随着空化发生、发展速度场及压力场变化过程,并对轴流泵能量特性、空化性能进行了预测.结果表明,在非空化条件下,CFD计算可较准确地预测水泵扬程等能量特性,预测值与试验值相差在2%以内;在空化条件下,CFD计算成功地捕获到了空化发生、发展过程;流场中空化发生直接影'响叶轮叶片上的压力分布,进而影响水泵的扬程、轴功率等外特性;在发生空化条件下,导叶背面进水边靠近轮缘位置也会出现空化现象;在叶轮各个通道内空化区域分布相似,轴对称性明显,而导叶体内各个通道的空化区域分布差异大,呈明显的非轴对称分布,该非轴对称性的空化区域也是空化造成轴流泵不稳定运行的一个因素.%The flow field in an axial-flow pump at different inlet pressure conditions including cavitating and non-cavitating conditions was simulated by using the computational fluid dynamics (CFD) approach based on theory of bubble dynamics and steam-liquid two-phase flow. The velocity field and pressure distribution were analysed during cavitation progress and the pump characteristics were predicted. The results show that under the non-cavitating condition, the pump head-flow relationship is well predicted with an inaccuracy within 2%. While under the cavitating condition, the cavitation occurring and developing processes are captured successfully by CFD simulation. The cavitation directly affects the pressure distribution on impeller blade surfaces, and also results in change of the pump head and power characteristics. Under the cavitation condition, the cavitation area can be found at the leading edge of the guide vane suction sides. Similarity of the cavitation distribution are

  13. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid...

  14. Analysis of a 10 megawatt space-based solar-pumped neodymium laser system

    Science.gov (United States)

    Kurweg, U. H.

    1984-01-01

    A ten megawatt solar-pumped continuous liquid laser system for space applications is examined. It is found that a single inflatable mirror of 434 m diameter used in conjunction with a conical secondary concentrator is sufficient to side pump a liquid neodymium lasant in an annular tube of 6 m length and 1 m outer and 0.8 m inner diameter. About one fourth of intercepted radiation converging on the laser tube is absorbed and one fifth of this radiation is effective in populating the upper levels. The liquid lasant is flowed through the annular laser cavity at 1.9 m/s and is cooled via a heat exchanger and a large radiator surface comparable in size to the concentrating mirror. The power density of incident light within the lasant of approximately 68 watt/cu cm required for cw operation is exceeded in the present annular configuration. Total system weight corresponds to 20,500 kg and is thus capable of being transported to near Earth orbit by a single shuttle flight.

  15. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress

    Science.gov (United States)

    López, M. Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-01

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells.Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02638a

  16. Numerical simulation on pressure fluctuation of reactor coolant pump with complex impeller based on CFD technique

    International Nuclear Information System (INIS)

    In order to decrease pressure fluctuation of the reactor coolant pump under different conditions, three different inlet diameters of short blade of the reactor coolant pump were compared using numerical simulation, and the results show that the change of flow or inlet diameter of short blade does not change the dominant frequency of impeller. The high frequency of the suction side of blade gradually decreases and the high frequency of the pressure face gradually increases with the increase of inlet diameter of short blade. The pressure fluctuation amplitude of different inlet diameters of short blade with small flow is large. The wave energy of each monitoring point in the low frequency region and the high frequency region on the suction side of blade is significantly larger than that of the pressure face in the design condition. The band width of the low frequency region and wave energy of the high frequency region of monitoring points near the suction side of blade significantly increase at large flow fluctuation. The fluctuation amplitude of monitoring points near the pressure face of the blade has a large increase. The pulsation amplitude of each monitoring point near the suction side of the short blade is significantly higher than that of the long blade. The comprehensive analysis shows that when the inlet diameter of the short blade is 0.72D2, the pressure fluctuation in a variety of conditions reaches minimum. (authors)

  17. Mid-infrared optical parametric oscillator based on ZnGeP2 pumped by 2-μm laser

    Institute of Scientific and Technical Information of China (English)

    Yuefeng Peng; Xingbin Wei; Weimin Wang

    2011-01-01

    @@ We present a 3-5 μm optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μm laser.The tuning curves of ZGP OPO are calculated.The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antirefiection coated at 2.1 and 3.7-4.6 μm, is cut as θ=53.5°, φ=0°.When the pump power of 2.1-μm polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type Ⅰ phase match.Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μm, respectively.Pulse duration is about 27 ns.Beam quality factor M2 is better than 1.8.The tunability of 3-5 μm can be achieved by changing the angle of the ZGP crystal.%We present a 3-5 μm optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μm laser. The tuning curves of ZGP OPO are calculated. The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antireflection coated at 2.1 and 3.7-4.6 μm, is cut as θ=53.5°, φ=0°. When the pump power of 2.1-μm polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type Ⅰ phase match. Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μm, respectively.Pulse duration is about 27 ns. Beam quality factor M2 is better than 1.8. The tunability of 3-5 μm can be achieved by changing the angle of the ZGP crystal.

  18. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    Science.gov (United States)

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied. PMID:26696156

  19. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    Science.gov (United States)

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  20. High-power picosecond regenerative amplifier based on CW diode side-pumped Nd:YAG with high beam quality

    Institute of Scientific and Technical Information of China (English)

    Hua Lin; Jinfeng Li; Jinping He; Xiaoyan Liang

    2011-01-01

    @@ A compact high-power picosecond regenerative amplifier based on continuous wave(CW) diode sidepumped Nd:YAG is demonstrated.Average power of 8.8 W is achieved at,a repetition rate of 5 kHz at a wavelength of 1064 nm with a pulse duration of 28 ps,corresponding to a pulse energy of 1.76 mJ and a peak power of 62.9 MW.%A compact high-power picosecond regenerative amplifier based on continuous wave (CW) diode side-pumped Nd:YAG is demonstrated. Average power of 8.8 W is achieved at.a repetition rate of 5 kHz at a wavelength of 1064 nm with a pulse duration of 28 ps, corresponding to a pulse energy of 1.76 mJ and a peak power of 62.9 MW. The beam quality is close to the diffraction limit with M2x - 1.24, M2y = 1.03. To the best of our knowledge, this is the highest pulse energy obtained from a CW diode pumped Nd:YAG picosecond regenerative amplifier.

  1. Ultrafast pump-probe dynamics of iron oxide based earth pigments for applications to ancient pottery manufacture

    Science.gov (United States)

    Villafana, Tana E.; Brown, William; Warren, Warren S.; Fischer, Martin

    2015-06-01

    We demonstrate that ultrafast pump-probe microscopy provides unique dynamics for natural iron oxide and iron hydroxide earth pigments, despite their chemical similarity. First, we conducted a pump-probe spectroscopy study on heat-treated hematite (the pure red iron oxide mineral) and found the pump-probe dynamics to be temperature dependent. Second, we investigated pottery fired under known conditions and observed firing dependent pump-probe dynamics. Finally, we imaged a New World potshard from the North Carolina Museum of Art. Our results indicate that pump-probe microscopy could be a useful tool in elucidating pottery manufacture.

  2. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  3. Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition.

    Science.gov (United States)

    Zeringue, Clint; Vergien, Christopher; Dajani, Iyad

    2011-03-01

    We present high power results of a Yb-doped fiber amplifier seeded with a combination of broad and single-frequency laser signals. This two-tone concept was used in conjunction with externally applied or intrinsically formed thermal gradients to demonstrate combined stimulated Brillouin scattering suppression in a copumped monolithic, polarization-maintaining (PM) fiber. Depending on the input parameters and the thermal gradient, the output power of the single-frequency signal ranged from 80 to 203 W with slope efficiencies from 70% to 80%. The 203 W amplifier was pump limited and is, to the best of our knowledge, the highest reported in the literature for monolithic, PM single-frequency fiber amplifiers. PMID:21368926

  4. Variable stiffness actuator based on fluidic flexible matrix composites and piezoelectric-hydraulic pump

    Science.gov (United States)

    Kim, Gi-Woo; Li, Suyi; Wang, K. W.

    2010-04-01

    Recently, a new biological-inspired fluidic flexible matrix composite (in short, F2MC) concept has been developed for linear/torsional actuation and structural stiffness tailoring. Although the actuation and the variable stiffness features of the F2MC have been successfully demonstrated individually, their combined functions and full potentials were not yet manifested. In addition, the current hydraulic pressurization systems are bulky and heavy, limiting the potential of the F2MC actuator. To address these issues, we synthesize a new variable stiffness actuator concept that can provide both effective actuation and tunable stiffness (dual-mode), incorporating the F2MC with a compact piezoelectric-hydraulic pump (in short, PHP). This dual-mode mechanism will significantly enhance the potential of the F2MC adaptive structures.

  5. Hydraulic performance improvement of the bidirectional pit pump installation based on CFD

    Science.gov (United States)

    Chen, H. X.; Zhou, D. Q.

    2013-12-01

    At present, the efficiency of bidirectional pit pump installation with lift under 2m is still low because of lack of research on it in the past. In the paper, the CFD numerical method and experimental test were applied to study flow characteristic of bidirectional pit pump installation under positive and reverse condition. Through changing airfoil type and position of blade and stay vane, the comprehensive performance of improved model were obtained by calculating many different models. The results showed that when improved model is obtained with type A runner with 4 blades that is 0.7D away from pit exit and unsymmetrical guide vane 0.25dh which away from the impeller outlet, and the flow pattern of the improved solution is steady with high efficiency. Compared with the original scheme, the efficiency of positive and reverse design condition reach to 67.23% and 58.32% respectively, which is increased 6% more than original model on the design condition and 5% on the optimum operating condition, and it achieved the purpose of improvement. According to the runner blade angle of the optimization solution, model synthetic characteristic curve was drawn and internal flow field characteristics was analyzed under optimal positive and reverse conditions. The numerical calculation shows that owing to the lack of stay vane to recycle the energy in outlet runner chamber, the water flow regime is not steady enough in the outlet passage, and that is the main reason for lower efficiency at reverse condition than that at positive condition.

  6. Primary vertex reconstruction based on the Kalman filter technique at BESIII

    International Nuclear Information System (INIS)

    Primary vertex reconstruction is crucial to estimate the beam profile in collision experiments. We study the principle of an iterative process, called the Kalman filter method, and apply it to primary vertex reconstruction at BESIII. A Newton procedure to find the zero point of the distance function's gradient is used for primary vertex finding in 3-dimensional space. Results are obtained based on raw data at BESIII. (authors)

  7. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  8. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  9. Charge pump-based MOSFET-only 1.5-bit pipelined ADC stage in digital CMOS technology

    Science.gov (United States)

    Singh, Anil; Agarwal, Alpana

    2016-10-01

    A simple low-power and low-area metal-oxide-semiconductor field-effect transistor-only fully differential 1.5-bit pipelined analog-to-digital converter stage is proposed and designed in Taiwan Semiconductor Manufacturing Company 0.18 μm-technology using BSIM3v3 parameters with supply voltage of 1.8 V in inexpensive digital complementary metal-oxide semiconductor (CMOS) technology. It is based on charge pump technique to achieve the desired voltage gain of 2, independent of capacitor mismatch and avoiding the need of power hungry operational amplifier-based architecture to reduce the power, Si area and cost. Various capacitances are implemented by metal-oxide semiconductor capacitors, offering compatibility with cheaper digital CMOS process in order to reduce the much required manufacturing cost.

  10. Experimental Realization of a Quantum Spin Pump

    DEFF Research Database (Denmark)

    Watson, Susan; Potok, R.; M. Marcus, C.;

    2003-01-01

    We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin-dependent by the...... application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector....

  11. Fiber optical parametric oscillator based on photonic crystal fiber pumped with all-normal-dispersion mode-locked Yb:fiber laser

    International Nuclear Information System (INIS)

    We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 nm, eight samples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimentally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Children Literature Based Program for Developing EFL Primary Pupils' Life Skills and Language Learning Strategies

    Science.gov (United States)

    Abdelhalim, Safaa M.

    2015-01-01

    This study examines the effectiveness of a proposed English language program based on integrating two forms of children literature, mainly short stories and songs, in developing the needed life skills and language learning strategies of primary school students. Besides, it emphasized the importance of providing EFL fifth year primary students with…

  13. Effectiveness of School-Based Bullying Intervention Programs in Primary School

    Science.gov (United States)

    Dogini, Eric U.

    2012-01-01

    Bullying behavior has reached pandemic proportions and is a growing concern in primary school. Most intervention programs in primary school are focused on bullying prevention or principally on the behavior of the bully. The purpose of this study was to explore whether a school-based bullying intervention program is an effective method for reducing…

  14. Primary mucinous carcinoma of the skin: a population-based study

    DEFF Research Database (Denmark)

    Breiting, Line; Christensen, Lise Hanne; Dahlstrøm, Karin;

    2008-01-01

    Primary mucinous carcinoma of the skin (PMCS) is a rare malignant tumor deriving from the sweat glands. It is typically located on the head and is often mistaken for a metastasis from a more common primary tumor of the breast or gastrointestinal tract. We present the first population-based study...

  15. Will They Know Enough?: Pre-Service Primary Teachers' Knowledge Base for Teaching Integrated Social Sciences

    Science.gov (United States)

    Tambyah, Mallihai

    2008-01-01

    A significant issue in primary teacher education is developing a knowledge base which prepares teachers to teach in a range of subject areas. In Australia, the problem in primary social science education is compounded by the integrated nature of the key learning area of Studies of Society and Environment (SOSE). Recent debates on teaching…

  16. Decentralized pump system Geniax with mini-pumps. From supply-based heating to a demand-based heating system; Dezentrales Pumpensystem Geniax mit Miniaturpumpen. Von der Angebotsheizung zur Bedarfsheizung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-03-15

    The 'decentral pump system' by Wilo provides heating on demand instead of conventional heating with a central pump and throttle control. Each heating panel is provided with the necessary volume of heating water by a miniature pump. For the fitter, this means that time-consuming manual hydraulic control is no longer necessary. The contribution explains details of the innovative technology, its saving potential, and aspects that must be considered during projecting and assembly. (orig./GL)

  17. Secondary access based on sensing and primary ARQ feedback in spectrum sharing systems

    KAUST Repository

    Hamza, Doha R.

    2012-04-01

    In the context of primary/secondary spectrum sharing, we propose a randomized secondary access strategy with access probabilities that are a function of both the primary automatic repeat request (ARQ) feedback and the spectrum sensing outcome. The primary terminal operates in a time slotted fashion and is active only when it has a packet to send. The primary receiver can send a positive acknowledgment (ACK) when the received packet is decoded correctly. Lack of ARQ feedback is interpreted as erroneous reception or inactivity. We call this the explicit ACK scheme. The primary receiver may also send a negative acknowledgment (NACK) when the packet is received in error. Lack of ARQ feedback is interpreted as an ACK or no-transmission. This is called the explicit NACK scheme. Under both schemes, when the primary feedback is interpreted as a NACK, the secondary user assumes that there will be retransmission in the next slot and accesses the channel with a certain probability. When the primary feedback is interpreted as an ACK, the secondary user accesses the channel with either one of two probabilities based on the sensing outcome. Under these settings, we find the three optimal access probabilities via maximizing the secondary throughput given a constraint on the primary throughput. We compare the performance of the explicit ACK and explicit NACK schemes and contrast them with schemes based on either sensing or primary ARQ feedback only. © 2012 IEEE.

  18. Mindfulness-Based Stress Reduction (MBSR) for Primary School Teachers

    Science.gov (United States)

    Gold, Eluned; Smith, Alistair; Hopper, Ieuan; Herne, David; Tansey, Glenis; Hulland, Christine

    2010-01-01

    Stress within the teaching profession has a negative impact on the health and well-being of individual teachers and on retention and recruitment for the profession as a whole. There is increasing literature to suggest that Mindfulness is a useful intervention to address a variety of psychological problems, and that Mindfulness-Based Stress…

  19. Primary Syphilis

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Primary Syphilis Information for adults A A A This image ... ulcer with a red base, typical of primary syphilis. Overview Primary syphilis is a disease caused by ...

  20. Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain

    Directory of Open Access Journals (Sweden)

    Iglesias M.

    2012-10-01

    Full Text Available In November 2009 was signed an agreement between Galicia’s Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW. These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP’s, EER’s, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands, etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production.

  1. Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain)

    Science.gov (United States)

    Iglesias, M.; Rodriguez, J.; Franco, D.

    2012-10-01

    In November 2009 was signed an agreement between Galicia's Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP) technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps) by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW). These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP's, EER's, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands), etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production. Note to the reader: The article number has been corrected on web pages on November 22, 2013.

  2. Spin pumping through quantum dots

    OpenAIRE

    Rojek, Stephan; Governale, Michele; König, Jürgen

    2013-01-01

    We propose schemes for generating spin currents into a semiconductor by adiabatic or non-adiabatic pumping of electrons through interacting quantum dots. The appeal of such schemes lies in the possibility to tune the pumping characteristics via gate voltages that control the properties of the quantum dot. The calculations are based on a systematic perturbation expansion in the tunnel-coupling strength and the pumping frequency, expressed within a diagrammatic real-time technique. Special focu...

  3. Research on synchronous gear pump

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhen-hui

    2010-01-01

    Based on a comprehensive analysis of the structure and existing problems of the gear pump, provided a structure principle of a synchronous gear pump. The discussions focused on the working principle, construction features and finite element analysis of the hydraulic gear. The research indicates that the new pump has such advantages as lower noise, better distributed flow and a high work pressure, and it can be widely used in hydraulic systems.

  4. Performance Prediction of Mechanical Pump in STELLA-1

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ji-Woong; Cho, Chungho; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Under a mid- and long-term nuclear R-D program, STELLA (Sodium Integral Effect Test Loop for Safety Simulation and Assessment) project is in progress in KAERI (Korea Atomic Energy Research Institute). In STELLA-1, the experiments for the evaluation of heat exchangers such as DHX (Decay heat exchanger) and AHX (Air heat exchanger) are being performed, and those for PHTS (Primary heat transport system) mechanical pump are being prepared. The detailed design of each component is based on that of a 600MWe demonstration reactor. The model pump installed in STELLA-1 was scaled down based on the scaling law. Since the reference reactor of STELLA-1 is a 600MWe pool type demonstration reactor, some design modifications were inevitable between pool type prototype pump and loop type model pump, such as outer case and inlet pipe. In this study performance evaluation on the model pump has been done by CFD methods. The Design modeler in ANSYS Workbench was utilized in modeling process. The computations were performed using the commercial code ANSYS CFX. The overall hydraulic behaviors in the model pump have been predicted at a steady state condition.

  5. Course and outcome of eating disorders in a primary care-based cohort.

    OpenAIRE

    Son, G.E. van; Hoeken, D. van; Furth, E.F. van; Donker, G A; Hoek, H.W.

    2010-01-01

    OBJECTIVE: To study the course and outcome of patients with eating disorder detected in primary care. METHOD: General practitioners (GP's) provided information on the course and outcome of eating disorders in patients (n = 147) diagnosed with anorexia nervosa (AN) or bulimia nervosa (BN) identified during a Dutch nationwide primary care-based incidence study. The research team determined the outcome based on the data provided by the GP's. The mean duration of the follow-up was 4.8 years. RESU...

  6. Investigation of practical data on primary energy consumption and climate-relevant gaseous emissions of modern heat pump systems; Untersuchung von Praxisdaten zum Primaerenergiebedarf und den Treibhausgasemissionen von modernen Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Heidelck, R.; Laue, H.J.

    1999-04-01

    Primary energy consumption and CO{sub 2} emissions of heat pump systems were investigated on the basis of measurements and simulations. A gas heating system with high-efficiency boiler was used as reference system as it is the most advanced fossil-fuel heating technology in terms of fuel consumption and CO{sub 2} emissions. [German] Ziel der Studie ist es, moderne Heizungssysteme im Hinblick auf den Primaerenergiebedarf und die Treibhausgasemissionen zu untersuchen. Im Mittelpunkt der Untersuchungen stehen dabei Waermepumpen-Heizungsanlagen. Es wurden dazu Messdaten der energetischen Eigenschaften von Waermepumpenanlagen gesammelt und ausgewertet. Zusaetzlich werden Ergebnisse von Simulationsrechnungen aus der Literatur hinzugezogen. Als Vergleichssystem zu Waermepumpenheizungsanlagen eignet sich am besten eine Gasbrennwert-Heizungsanlage, da sie aus Sicht niedriger CO{sub 2}-Emissionen und Brennstoffverbrauch den hoechsten Stand der Entwicklung der konventionellen, auf fossilen Energietraegern basierender Heiztechnik darstellt. (orig.)

  7. Using video-based observation research methods in primary care health encounters to evaluate complex interactions

    Directory of Open Access Journals (Sweden)

    Onur Asan

    2014-08-01

    Full Text Available Objective The purpose of this paper is to describe the use of video-based observation research methods in primary care environment and highlight important methodological considerations and provide practical guidance for primary care and human factors researchers conducting video studies to understand patient–clinician interaction in primary care settings.Methods We reviewed studies in the literature which used video methods in health care research, and we also used our own experience based on the video studies we conducted in primary care settings.Results This paper highlighted the benefits of using video techniques, such as multi-channel recording and video coding, and compared “unmanned” video recording with the traditional observation method in primary care research. We proposed a list that can be followed step by step to conduct an effective video study in a primary care setting for a given problem. This paper also described obstacles, researchers should anticipate when using video recording methods in future studies.Conclusion With the new technological improvements, video-based observation research is becoming a promising method in primary care and HFE research. Video recording has been under-utilised as a data collection tool because of confidentiality and privacy issues. However, it has many benefits as opposed to traditional observations, and recent studies using video recording methods have introduced new research areas and approaches.

  8. Ultra-broadband Superradiant Pulses from Femtosecond Laser Pumped InP based Quantum Well Laser Diode

    Science.gov (United States)

    Liu, Jingjing

    Laser techniques, such as gain / Q switching, mode-locking, have successfully overcome the energy restriction of gain clamping in the stead-state operated lasers, and allowed the generation of giant pulses with short pulse durations. However, gain saturation further limits the amount of stored energy in a gain medium, and therefore limits the possible maximum pulse energy obtained by laser techniques. Here we circumvent both gain clamping and the capacity limitation of energy storage by operating the double-quantum-well laser diode chips on ultrafast gain-switching model using femtosecond (fs) laser pulses as the optical pump. The advantage of our pumping approach is that the fs pulse can instantly produce a very large number of carriers, and therefore enable the formation of non-equilibrium coherent e-h BCS-like condensate state in a large energy region from the lowest QW subband edges to the highest subband and then obtain the ultra-broadband superradiant pulses. Superradiance (SR) or the coherent spontaneous emission is not a new quantum optics phenomenon, which has been proposed in 1954 by R. Dicke, even earlier than the invention of laser. It is famous as by its ultrashort duration, high peak power, high coherence and high timing jitter. Recently, femtosecond SR pulses have been generated from semiconductors. This investigation has revived both theoretical and experimental studies of SR emission. In this thesis, we have demonstrated the generation of intense, delayed SR pulses from the InP based double quantum well laser diode at room temperature. The 1040 nm femtosecond laser was applied as the optical pumping source, and when the pump power is high enough, the cooperative recombination of e-h pairs from higher order quantum energy levels can occur to generate SR bursts earlier than the cooperative emission from the lower quantum energy levels. Then, ultra-broadband TM polarized SR pulses have been firstly generated at room temperature. Our experiments also

  9. Fault Diagnosis of Plunger Pump in Truck Crane Based on Relevance Vector Machine with Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2013-01-01

    Full Text Available Promptly and accurately dealing with the equipment breakdown is very important in terms of enhancing reliability and decreasing downtime. A novel fault diagnosis method PSO-RVM based on relevance vector machines (RVM with particle swarm optimization (PSO algorithm for plunger pump in truck crane is proposed. The particle swarm optimization algorithm is utilized to determine the kernel width parameter of the kernel function in RVM, and the five two-class RVMs with binary tree architecture are trained to recognize the condition of mechanism. The proposed method is employed in the diagnosis of plunger pump in truck crane. The six states, including normal state, bearing inner race fault, bearing roller fault, plunger wear fault, thrust plate wear fault, and swash plate wear fault, are used to test the classification performance of the proposed PSO-RVM model, which compared with the classical models, such as back-propagation artificial neural network (BP-ANN, ant colony optimization artificial neural network (ANT-ANN, RVM, and support vectors, machines with particle swarm optimization (PSO-SVM, respectively. The experimental results show that the PSO-RVM is superior to the first three classical models, and has a comparative performance to the PSO-SVM, the corresponding diagnostic accuracy achieving as high as 99.17% and 99.58%, respectively. But the number of relevance vectors is far fewer than that of support vector, and the former is about 1/12–1/3 of the latter, which indicates that the proposed PSO-RVM model is more suitable for applications that require low complexity and real-time monitoring.

  10. A primary care-based health needs assessment in inner city Dublin.

    LENUS (Irish Health Repository)

    O'Kelly, C M

    2012-02-01

    BACKGROUND: In 2001, a primary care-based health needs assessment (HNA) in South Inner City of Dublin identified high levels of morbidity and widespread and frequent use of primary care and specialist hospital services as particular concerns. AIMS: This study aims to determine the primary care health needs of a local community, from the perspective of service users and service providers. METHODS: A similar methodology to our 2001 HNA was adopted, involving semi-structured interviews with a convenience sample of patients attending two general practices and key informants regarding local health issues and health service utilisation. RESULTS: High levels of morbidity and chronic illness were found. A correlation between the local environment and ill-health was identified, as well as high utilisation of primary care services in the area. CONCLUSION: The establishment of a Primary Care Team would begin to address the health needs of the community.

  11. The role of mental health in primary prevention of sexual and gender-based violence

    Directory of Open Access Journals (Sweden)

    Aník Gevers

    2014-09-01

    Full Text Available In this short communication, we assert that mental health has a crucial role in the primary prevention of sexual and gender-based violence (SGBV. However, we found that most research and practice to date has focused on the role of mental health post-violence, and SGBV primary prevention is relying on public health models that do not explicitly include mental health. Yet, key concepts, processes, and competencies in the mental health field appear essential to successful SGBV primary prevention. For example, empathy, self-esteem, compassion, emotional regulation and resilience, stress management, relationship building, and challenging problematic social norms are crucial. Furthermore, competencies such as rapport building, group processing, emotional nurturing, modelling, and the prevention of vicarious trauma among staff are important for the successful implementation of SGBV primary prevention programmes. SGBV primary prevention work would benefit from increased collaboration with mental health professionals and integration of key mental health concepts, processes, and skills in SGBV research.

  12. The role of mental health in primary prevention of sexual and gender-based violence.

    Science.gov (United States)

    Gevers, Aník; Dartnall, Elizabeth

    2014-01-01

    In this short communication, we assert that mental health has a crucial role in the primary prevention of sexual and gender-based violence (SGBV). However, we found that most research and practice to date has focused on the role of mental health post-violence, and SGBV primary prevention is relying on public health models that do not explicitly include mental health. Yet, key concepts, processes, and competencies in the mental health field appear essential to successful SGBV primary prevention. For example, empathy, self-esteem, compassion, emotional regulation and resilience, stress management, relationship building, and challenging problematic social norms are crucial. Furthermore, competencies such as rapport building, group processing, emotional nurturing, modelling, and the prevention of vicarious trauma among staff are important for the successful implementation of SGBV primary prevention programmes. SGBV primary prevention work would benefit from increased collaboration with mental health professionals and integration of key mental health concepts, processes, and skills in SGBV research.

  13. Scavenged body heat powered infusion pump

    International Nuclear Information System (INIS)

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min−1 range for the integrated pump and reservoir, and approximately 70 µL min−1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  14. Design and testing of micro fluidic chemical analysis chip integrated with micro valveless pump

    Institute of Scientific and Technical Information of China (English)

    FU; Xin; XIE; Haibo; YANG; Huayong; JIA; Zhijian; FANG; Qun

    2005-01-01

    A new structure and working principle of the chip integrated with micro valveless pump for capillary electrophoresis was proposed in this paper. The micro valveless pump with plane structure has advantages of simple structure, and the process technology is compatible with existing micro chips for capillary electrophoresis. Based upon the mathematical model, simulation study of micro pump was carried out to investigate the influence of structural parameters on flow characteristics, and the performance of the integrated micro pump was also tested with different control parameters. The simulation results agree with the experimental results. Three samples, which are amino acid, fluorescein and buffer solution, have been examined with this chip. The results of the primary experiments showed that the micro valveless pump was promising in the integration and automatization of miniature integrated fluidic systems.

  15. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser.

    Science.gov (United States)

    Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M; Buczyński, Ryszard

    2016-01-01

    Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra. PMID:26759188

  16. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser

    Science.gov (United States)

    Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M.; Buczyński, Ryszard

    2016-01-01

    Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra.

  17. [Improved Response to 5-FU Using Dose Adjustment and Elastomeric Pump Selection Based on Monitoring of the 5-FU Level--A Case Report].

    Science.gov (United States)

    Muneoka, Katsuki; Shirai, Yoshio; Kanda, Junkichi; Sasaki, Masataka; Wakai, Toshifumi; Wakabayashi, Hiroyuki

    2015-10-01

    A 6 1-year-old man with unresectable multiple hepatic metastases after resection of sigmoid colon carcinoma was treated with irinotecan and infused 5-fluorouracil (5-FU) plus Leucovorin (FOLFIRI). Since the levels of tumor markers increased, the 5-FU dose was increased from 2,700 to 3,000 mg/m2 using a Jackson-type pump and an extended infusion time of 53 hours. The blood level of 5-FU was 507 ng/mL 16 hours after starting the infusion. The pump was then changed to a bottle-type pump with the same dose of 3,000 mg/m2. At 16 hours, the 5-FU level was 964.5 ng/mL. The areas under the concentration vs. time curve (AUC mg・h/L)were 21 and 44 mg・h/L for the Jackson- and bottle-type pumps, respectively. Owing to the development of Grade 3 stomatitis and hand-foot syndrome, 5-FU was reduced to 2,700 mg/m2 with a bottle-type pump. The AUC decreased to 27 mg・h/L, but the liver metastases were reduced and the adverse effects subsided to Grade 1. This case shows that individual dose adjustment of 5-FU to the appropriate AUC based on pharmacokinetic monitoring of the blood 5-FU level can improve the response, reduce adverse effects, and have a clinical benefit. PMID:26489552

  18. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  19. Whole blood pumping with a microthrottle pump

    OpenAIRE

    Davies, M J; Johnston, I. D.; Tan, C. K. L.; Tracey, M. C.

    2010-01-01

    We have previously reported that microthrottle pumps (MTPs) display the capacity to pump solid phase suspensions such as polystyrene beads which prove challenging to most microfluidic pumps. In this paper we report employing a linear microthrottle pump (LMTP) to pump whole, undiluted, anticoagulated, human venous blood at 200 μl min−1 with minimal erythrocyte lysis and no observed pump blockage. LMTPs are particularly well suited to particle suspension transport by virtue of their relatively ...

  20. Quasilinear theory of terahertz free-electron lasers based on Compton scattering of incoherent pump wave by intense relativistic electron beam

    Science.gov (United States)

    Ginzburg, N. S.; Kocharovskaya, E. R.

    2016-08-01

    The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.

  1. One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua;

    2011-01-01

    We present WDM multicasting based on dual-pump four-wave mixing in a 3-mm long dispersion engineered silicon waveguide. One-to-six phase-preserving WDM multicasting of 10-Gb/s differential phase-shiftkeying (DPSK) data is experimentally demonstrated with bit-error rate measurements. All the six...

  2. 基于代理模型方法的串列泵优化设计%Optimization design of tandem pump based on surrogate method

    Institute of Scientific and Technical Information of China (English)

    赵宇; 王国玉; 黄彪; 王复峰

    2016-01-01

    针对叶轮机械传统优化设计周期长、优化效率低等不足,提出了一种基于代理模型的优化设计方法,并应用于串列泵的优化设计,分析了关键设计参数对串列泵性能的影响。选择首、次级叶轮叶片安放角和相位角作为优化参数,选择效率和最小轴向截面平均压力系数作为优化设计目标函数,用来表示串列泵的外特性和空化特性。采用不同的方法建立代理模型,并采用敏感度分析方法和Pareto front方法进行参数影响分析和最优点的选取。采用数值计算的方法对优化后的串列泵外特性和空化特性进行验证,得到结论如下:提出的方法可以较好地应用于串列泵的优化设计,优化结果表明串列泵设计流量附近的效率和空化性能均得到提升。首、次级叶轮相位角对串列泵性能影响较小;首、次级叶轮叶片安放角对串列泵效率的敏感度之比和设计的载荷之比相同,首级叶轮叶片安放角是串列泵的空化特性的主要影响因素。%In this paper, we propose a global design optimization method based on a surrogate model for an axial-flow tandem pump, in order to overcome the disadvantages of conventional optimization methods, including their long design period and lower efficiency. We discuss the influences of the primary design parameters on pump per⁃formances, and used fixed blade angles in both the front and rear impellers, as well as the phase angle, as design variables. We selected efficiency and the minimum average pressure coefficient on the axial sectional surface as the objective functions, which represent the energy and cavitation performances, respectively. Surrogate models were constructed based on various methods. In addition, we used global sensitivity analysis and Pareto front methods to further analyze the design parameters and optimum point. The results show that the optimization results can enhance tradeoff

  3. Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-12-15

    The goal of this work is to predict the daily performance (COP) of a ground-source heat pump (GSHP) system with the minimum data set based on an adaptive neuro-fuzzy inference system (ANFIS) with a fuzzy weighted pre-processing (FWP) method. To evaluate the effectiveness of our proposal (FWP-ANFIS), a computer simulation is developed on MATLAB environment. The comparison of the proposed hybridized system's results with the standard ANFIS results is carried out and the results are given in the tables. The efficiency of the proposed method was demonstrated by using the 3-fold cross-validation test. The statistical methods, such as the root-mean squared (RMS), the coefficient of multiple determinations (R{sup 2}) and the coefficient of variation (cov), are given to compare the predicted and actual values for model validation. The average R{sup 2} values is 0.9998, the average RMS value is 0.0272 and the average cov value is 0.7733, which can be considered as very promising. The data set for the COP of GSHP system available included 38 data patterns. The simulation results show that the FWP-based ANFIS can be used in an alternative way in these systems. The prediction results of the proposed structure were much better than the standard ANFIS results. Therefore, instead of limited experimental data found in the literature, faster and simpler solutions are obtained using hybridized structures such as FWP-based ANFIS. (author)

  4. Flow Analysis of the Cleveland Clinic Centrifugal Pump

    Science.gov (United States)

    Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander

    1997-01-01

    An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.

  5. Using a Breast Pump

    Science.gov (United States)

    ... you can relax and not be disturbed while pumping. If you have an electric pump, find an ... otherwise irritating your nipple or breast tissue. Begin Pumping If your pump is electric or battery-powered, ...

  6. Erectile dysfunction among diabetic patients in Saudi Arabia: A hospital-based primary care study

    Directory of Open Access Journals (Sweden)

    Yousef A Al-Turki

    2007-01-01

    Conclusions: Complete (severe and partial erectile dysfunction was quite common among adult diabetic patients in a hospital-based primary care setting in Saudi Arabia. It is important for primary care physicians to diagnose erectile dysfunction in diabetic patients, and to counsel them early, as most patients are hesitant to discuss their concern during a consultation. Further studies are recommended to evaluate the effect of other risk factors on erectile dysfunction in diabetic patients.

  7. Peristaltic pumps work in nano scales

    OpenAIRE

    Farahpour, Farnoush; Ejtehadi, Mohammad Reza

    2013-01-01

    A design for a pump is suggested which is based on well-known peristaltic pumps. In order to simply describe the operation of the proposed pump, an innovative interpretation of low Reynolds number swimmers is presented and thereafter a similar theoretical model would be suggested to quantify the behavior of the pumps. A coarse-grained molecular dynamic simulation is used to examine the theoretical predictions and measure the efficiency of the pump in nano scales. It is shown that this pump wi...

  8. School-Based Primary School Sexuality Education for Migrant Children in Beijing, China

    Science.gov (United States)

    Liu, Wenli; Su, Yufen

    2014-01-01

    In May 2007, Beijing Normal University launched a programme of school-based sexuality education for migrant children in Xingzhi Primary School in Beijing. Over the past seven years, the project team has developed a school-based sexuality education curriculum using the "International Technical Guidance on Sexuality Education" published by…

  9. What Do Primary Students Say about School-Based Social Work Programmes?

    Science.gov (United States)

    Testa, Doris

    2014-01-01

    This article focuses on primary school children's experiences of school-based social work programmes. These students, aged between 6 and 11, and drawn from a student population comprising 28 different cultural backgrounds and from low socio-economic backgrounds, participated in a case study that researched a school-based social work…

  10. Reactor coolant pump flywheel

    Science.gov (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  11. Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations

    Science.gov (United States)

    Peng, G. J.; Luo, Y. Y.; Wang, Z. W.

    2015-01-01

    The impeller and casing of dredge pump are worn by sediment in the flow. However, there are few studies about abrasion of the impeller and casing for normal pump operating conditions. This paper investigated the relationship between the wear rates on the surfaces of the impeller as well as casing and the sediment concentration, with the distribution of the wear rates for normal pump operating condition analyzed. An Eulerian-Lagrangian Computational Fluid Dynamics (CFD) procedure was used to simulate steady liquid-solid two-phase flow for various operating conditions. The Finnie model was then used to predict the abrasion. The results show that, the wear rate relative value of impeller and casing surface increase as the sediment concentration increases. The wear rate relative value of impeller and casing surface is larger when the pump is in low flow rate condition, and the value of casing surface is larger than that of the impeller. The wear rate relative value of pump is low when pump is in high efficiency condition. This paper shows the abrasion characteristics on the impeller and casing with sediment flow and provides reference data for predicting the abrasion conditions in the flow passage components for a dredge pump.

  12. The Design of a Low Power Floating Gate Based Phase Frequency Detector and Charge Pump Implementation

    OpenAIRE

    Md. Monirul Islam; Ankit Shivhare

    2013-01-01

    A simple new architecture of phase frequency detector with low power and low phase noise is presented in this paper. The proposed phase frequency detector is based on floating gate, consist of 4 transistors including one floating gate pMOS and one floating gate nMOS constructed with two GDI (gate diffusion input) cells and maintain main characteristics of conventional phase frequency detector in 180 nm technology. Floating gate based methodology reduced the power of phase frequenc...

  13. Microfluidic "blinking" bubble pump

    NARCIS (Netherlands)

    Yin, Zhizhong; Prosperetti, Andrea

    2005-01-01

    The paper reports data obtained on a simple micropump, suitable for electrolytes, based on the periodic growth and collapse of a single vapor bubble in a microchannel. With a channel diameter of the order of 100 µm, pumping rates of several tens of µl/min and pressure differences of several kPa are

  14. Absorption heat pumps

    Science.gov (United States)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  15. 基于溶血性能的离心式旋转血泵设计%Design of Centrifugal Blood Pump Based on Hemolysis Estimation

    Institute of Scientific and Technical Information of China (English)

    阮晓东; 陈松松; 钱伟; 邹俊; 付新

    2011-01-01

    Hemolytic performance is an important index of blood pump. Based on average shear stress model,we optimized the parameters of the impeller to reduce the time of red blood cells flowing through the impeller and the average shear stress they suffered in the process. Computational fluid dynamic simulations of the flow in the centrifugal blood pump were used in the present study. The traces and flow parameters of red cells in the blood pump were acquired. With the help of empirical formulas of hemolysis, hemolytic performances of pump in different flow rates were acquired. The predicted blood damage index was between 0. 006 and 0. 015, which showed that hemolysis performance of the blood pump is satisfactory. In conclusion the design method for blood pump is applicable.%溶血性能是衡量血泵性能的一个重要指标.基于平均剪切应力模型,通过减少红细胞流经叶轮的时间和降低它在此过程中所受平均剪切应力的方法,对离心血泵进行设计,进而改善溶血性能.采用商用流体仿真软件Fluent,对血泵内的三维不可压湍流流场进行数值模拟,得到红细胞在血泵内的流动迹线和流动参数;应用溶血估算公式,分析不同流量下血泵的溶血性能,计算得到溶血估算值在0.006-0.015之间,有较好的溶血性能,满足血泵对溶血性能的要求.

  16. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data.

    Science.gov (United States)

    Kim, Hyun-Chul; Yoo, Seung-Schik; Lee, Jong-Hwan

    2015-01-01

    Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM.

  17. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care

    Directory of Open Access Journals (Sweden)

    Pim P. Valentijn

    2013-03-01

    Full Text Available Introduction: Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care.Methods:  The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework.Results: The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration, meso (professional and organisational integration and macro (system integration level. Functional and normative integration ensure connectivity between the levels.Discussion:  The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective.

  18. Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems

    Science.gov (United States)

    vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis

    2008-01-01

    With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the

  19. Pump cavitation and inducer design

    International Nuclear Information System (INIS)

    Details of past work on sodium pump development and cavitation studies executed mainly for SNR 300 were reported earlier. Among the requirements for large sodium pumps are long life (200000 hours up to 300000 hours) and small size of impeller and pump, fully meeting the process and design criteria. These criteria are the required 'Q, H, r characteristics' in combination with a low NPSH value and the avoidance of cavitation damage to the pump. The pump designer has to develop a sound hydraulic combination consisting of suction arrangement, impeller design and diffuser. On the other hand the designer is free to choose an optimal pump speed. The pump speed in its turn influences the rotor dynamic pump design and the pump drive. The introduction of the inducer as an integral part of the pump design is based on following advantages: no tip cavitation; (possible) cavitation bubbles move to the open centre due to centrifugal forces on the fluid; the head of the inducer improves the inlet conditions of the impeller. The aim of an inducer is the increase in the suction specific speed (SA value) of a pump whereby the inducer functions as a pressure source improving the impeller inlet conditions. With inducer-impeller combinations values up to SA=15000 are realistic. With the use of an inducer the overall pump sizes can be reduced with Ca. 30%. Pumps commonly available have SA values up to a maximum of ca. 10000. A development programme was executed for SNR 300 in order to reach an increase of the suction specific speed of the impeller from SA 8200 to SA 11000. Further studies to optimize pumps design for the follow up line introduced the 'inducer acting as a pre-impeller' development. This programme was executed in the period 1979-1981. At the FDO premises a scale 1 2.8 inducer impeller combination with a suction specific speed SA=15000 was developed, constructed and tested at the water test rig. This water test rig is equipped with a perspex pipe allowing also visualisation

  20. Conception, Design and Materialisation of a pumping-based extrusion system for food 3D-printing

    OpenAIRE

    Belohlav, Vojtech

    2015-01-01

    The aim of this master thesis is to provide the design of the system for the food printing that would eliminate the disadvantages of previous end effectors variants. Within the conceptual design and study of alternatives, an overview of existing methods of pumping has been elaborated. The main objective of this section is to provide an overview of the techniques and equipment used for pumping materials in the food industry, where it is important to observe health and safety regulations and su...

  1. Non-adiabatic topological spin pumping

    OpenAIRE

    Deng, W. Y.; Luo, W.; Geng, H; Chen, M. N.; Sheng, L.; Xing, D. Y.

    2016-01-01

    Based on the Floquet scattering theory, we analytically investigate the topological spin pumping for an exactly solvable model. Floquet spin Chern numbers are introduced to characterize the periodically time-dependent system. The topological spin pumping remains robust both in the presence and in the absence of the time-reversal symmetry, as long as the pumping frequency is smaller than the band gap, where the electron transport involves only the Floquet evanescent modes in the pump. For the ...

  2. Plant proton pumps as markers of biostimulant action

    OpenAIRE

    Daniel Basílio Zandonadi; Mirella Pupo Santos; Lisanne Santos Caixeta; Eduardo Barros Marinho; Lázaro Eustáquio Pereira Peres; Arnoldo Rocha Façanha

    2016-01-01

    ABSTRACT A standard protocol to evaluate the effects of biostimulants on plant physiology is still lacking. The proton pumps present in the vacuolar and plasma membranes are the primary agents responsible for the regulation of the electrochemical gradient that energizes the nutrient uptake system and acid growth mechanism of plant cells. In this study, two of these enzymes were characterized as biochemical markers of biostimulant activity. A simple and fast protocol based on the degree of roo...

  3. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  4. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings. PMID:27212003

  5. An open oscillatory heat pipe water pump

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, R.T. [University of Stellenbosch, Matieland (South Africa). Department of Mechanical Engineering

    2005-03-01

    The use of an open oscillatory heat pipe (or open pulsating heat pipe) for pumping water is considered, as the need to pump water in rural areas remains a primary requirement in developing rural areas. A possible design for the pump is given and has been constructed and tested and the pumping results are reported. A mathematical model whereby the pump may be theoretically simulated and its performance calculated is also given. The theoretical model is shown to reflect the complex non-linear behaviour of such a pump and a sensitivity analysis is conducted. Experimental flow rates of typically 0.2 mg/s at a pumping height of 100 mm were obtained. The simulation model calculated mechanical and theoretical efficiencies of 3% and 0.03% respectively. An experimentally determined thermal efficiency in the order of 0.00003% was obtained. It is concluded that unless the low pumping flow rates and pumping height limitations can be overcome that it is unlikely that an open oscillatory heat pipe water pump will be suitable for pumping the relatively large quantities of water required for agricultural purposes. (author)

  6. Medical Assistant-based care management for high risk patients in small primary care practices

    DEFF Research Database (Denmark)

    Freund, Tobias; Peters-Klimm, Frank; Boyd, Cynthia M.;

    2016-01-01

    Background: Patients with multiple chronic conditions are at high risk of potentially avoidable hospital admissions, which may be reduced by care coordination and self-management support. Medical assistants are an increasingly available resource for patient care in primary care practices. Objective......: To determine whether protocol-based care management delivered by medical assistants improves patient care in patients at high risk of future hospitalization in primary care. Design: Two-year cluster randomized clinical trial. Setting: 115 primary care practices in Germany. Patients: 2,076 patients with type 2...... diabetes, chronic obstructive pulmonary disease, or chronic heart failure and a likelihood of hospitalization in the upper quartile of the population, as predicted by insurance data analysis. Intervention: We compared protocol-based care management including structured assessment, action planning...

  7. The first field-based descriptions of pumping-induced saltwater intrusion and upconing

    Science.gov (United States)

    Houben, Georg; Post, Vincent E. A.

    2016-09-01

    Development of the ideas about the equilibrium between freshwater and saline water has received considerable attention in the literature, but little has been written so far about the earliest scientific works about well salinization. Based on a review of the literature from the second half of the 19th century and the early 20th century, this historical note explores how insights into groundwater abstraction and saltwater intrusion developed, and examples of the earliest field studies are provided. Fundamental research was driven by the need for increasing water supply, but the progress of science did not lead to sustainable management practices everywhere. Research outcomes were shared between scientists of different countries, marking the beginning of coastal hydrogeology as a scientific specialization in the first decade of the 20th century.

  8. Output speed and flow of double-acting double-stator multi-pumps and multi-motors

    Institute of Scientific and Technical Information of China (English)

    De-sheng WEN; Zhi-li WANG; Jun GAO; Yong ZHANG; Shi-jun LV; Tetsuhiro TSUKIJI

    2011-01-01

    The primary focus of this study was to investigate a series of novel motors and pumps, based on a new type of structure called double-stator. The double-stator structure can be used as pump or motor just based on the application requirements. A certain amount of pumps or motors can be formed in one shell, and these sub-pumps or sub-motors can work alone or be combined without influence on each other. So this kind of double-stator pump (motor) is called a multi-pump (multi-motor). Through the analysis of multifarious connection modes of the double-acting double-stator multi-pumps and multi-motors, the mathematical expressions of the output flow rate and the rotational speed are acquired. The results indicate that a quantity of different flow rates can be provided by one fixed-displacement multi-pump under the condition of unalterable driven speed by electromotor. Likewise,when supplied by settled input flow, without complex variable mechanism, the functions of double-speed, multiple-speed, and even differential connection can be obtained by employing the use of a double-stator multi-motor. The novel hydraulic transmission is made of such a double-stator multi-pump and multi-motor, and has broad application prospects.

  9. Evaluation of satellite based indices for primary production estimates in a sparse savanna in the Sudan

    Directory of Open Access Journals (Sweden)

    M. Sjöström

    2008-07-01

    Full Text Available One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE approach. Satellite indices such as the Enhanced Vegetation Index (EVI and the Shortwave Infrared Water Stress Index (SIWSI have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modelling within a water limited environment. Results show a strong correlation between EVI against gross primary production (GPP, demonstrating the significance of EVI for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modelling in similar semi-arid ecosystems is limited.

  10. Scaleable multi-format QCW pump stacks based on 200W laser diode bars and mini bars at 808nm and 940nm

    Science.gov (United States)

    Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan

    2011-03-01

    Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.

  11. 基于复合热源的热泵型空调器%Heat pump air conditioner based on multiple heat sources

    Institute of Scientific and Technical Information of China (English)

    吴国珊; 凌勋

    2012-01-01

    It is proposed that the air-water multiple heat sources could be the heat source of heat pump air conditioner. Based on the current study condition, the heat pump air conditioner which has a air/family waste water multiple heat source is preliminary designed. The working cycle and characteristics of the air conditioner are analyzed by using the thermodynamic principle. The results show that the refrigeration performance of the heat pump air conditioner is better than that of air source heat pump air conditioner, the heating performance and the situation which the outdoor heat exchanger frosts are improved.%提出将空气-水作为热泵型空调器的复合热源.根据当前的研究状况,初步设计空气-水复合热源热泵型空调器,利用热力学原理分析该空调器的工作循环和特点,结果表明该空调器的制冷性能高于空气源热泵空调器,制热和室外换热器结霜状况得到一定改善.

  12. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    Science.gov (United States)

    Zhang, Y. X.; Su, M.; Hou, H. C.; Song, P. F.

    2013-12-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model.

  13. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  14. High Performance Space Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PDT is proposing a High Performance Space Pump based upon an innovative design using several technologies. The design will use a two-stage impeller, high...

  15. Condition-based maintenance. With application on a heat exchanger and a pump; Tillstaandsbaserat underhaall. Med applikation paa en vaermevaexlare och en pump

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin; Slaetteke, Ola

    2012-02-15

    Regular maintenance is required to extend the life of a plant's components and maintain optimum operation. Unnecessary outages from maintenance may inflict large monetary losses. Therefore, a cost-effective maintenance system should be condition-based rather than time-based. The optimal maintenance scheme requires a process model and a forecast of the operation conditions of this model. At least one of the model parameters should be affected by the maintenance. To determine the actual status of the plant, the model parameters should be estimated. This requires an analysis of available data to detect degradation of the critical components performance. Base load plants usually operate at maximum production or as close to maximum as possible at stabile conditions during long periods. Since the operating time is long and usually at high load in base load plants, advanced control systems and maintenance planning is most profitable in such plants. Advanced control and process optimization requires dynamic process models. Due to the long operating time of a base load plant, it is natural that its process characteristics change, such as wear and fouling. This means that models must be adapted continuously in order to generate a good approximation and thus a good basis for control and optimization. The problem is that the stable operation condition of a base load plant prevents a good estimate of model parameters through the lack of excitation of the process

  16. Inquiry-based science education : towards a pedagogical framework for primary school teachers

    NARCIS (Netherlands)

    van Uum, Martina S J; Verhoeff, Roald P.; Peeters, Marieke

    2016-01-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their

  17. Evaluation of the structure and provision of primary care in Slovakia: a survey-based project.

    NARCIS (Netherlands)

    Boerma, W.G.W.; Wiegers, T.A.; Baltag, V.

    2012-01-01

    Health reforms are part of the profound and comprehensive changes in essential societal functions and values occurring in many eastern European countries in economic and political transition. Primary care reform is not always evidence based and may be driven by political arguments or the interests o

  18. Inquiry-Based Science Education: Towards a Pedagogical Framework for Primary School Teachers

    Science.gov (United States)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-01-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open…

  19. The Nature of Institutional Heteronormativity in Primary Schools and Practice-Based Responses

    Science.gov (United States)

    DePalma, Renee; Atkinson, Elizabeth

    2010-01-01

    Concern for school-based homophobia is increasing, yet there is a tendency to focus on individual incidents of homophobic bullying rather than the cultural and institutional factors supporting them. We analyse ways in which institutional heteronormativity operates in primary schools and report results from our research in UK schools that…

  20. Indigenous Studies and Intercultural Education: The Impact of a Place-Based Primary-School Program

    Science.gov (United States)

    Ngai, Phyllis Bo-yuen; Koehn, Peter H.

    2010-01-01

    The article presents a student-impact assessment of a model two-year place-based intercultural approach to indigenous education. Students at Lewis & Clark Primary School in Missoula, Montana, connected face-to-face with tribal educators and members residing in the nearby American Indian reservation. The program's learning outcomes included…

  1. Evaluation of structure and provision of primary care in Romania: a survey-based project.

    NARCIS (Netherlands)

    Boerma, W.G.W.; Wiegers, T.A.; Baltag, V.; Teunissen, E.; Farcasanu, D.

    2012-01-01

    In many countries in transition, health reforms are part of profound and comprehensive changes in essential societal functions and values. Reforms of (primary) care are not always based on evidence, and progress may be driven by political arguments or the interests of specific professional groups, r

  2. Developing Memory Clinics in Primary Care: An Evidence-Based Interprofessional Program of Continuing Professional Development

    Science.gov (United States)

    Lee, Linda; Weston, W. Wayne; Hillier, Loretta M.

    2013-01-01

    Introduction: Primary care is challenged to meet the needs of patients with dementia. A training program was developed to increase capacity for dementia care through the development of Family Health Team (FHT)-based interprofessional memory clinics. The interprofessional training program consisted of a 2-day workshop, 1-day observership, and 2-day…

  3. Primary School Students' Anxiety and Attitudes toward Computer-Based Learning.

    Science.gov (United States)

    Seng, SeokHoon; Choo, Mooi Lee

    The introduction and implementation of computer-based learning (CBL) in primary schools in Singapore has created both benefits and problems. This study examined the attitudes and level of anxiety of 77 students toward CBL through two scales, the Computer Programming Anxiety Scale and the Liking for Computer-Related Activities Scale. Results showed…

  4. Antibiotic prescribing patterns in out-of-hours primary care: A population-based descriptive study

    NARCIS (Netherlands)

    Huibers, L.; Moth, G.; Christensen, M.B.; Vedsted, P.

    2014-01-01

    Abstract Objective. To describe the frequency and characteristics of antibiotic prescribing for different types of contacts with the Danish out-of-hours (OOH) primary care service. Design. Population-based observational registry study using routine registry data from the OOH registration system on p

  5. Mortality and cancer risk related to primary sclerosing cholangitis in a Swedish population-based cohort

    NARCIS (Netherlands)

    de Valle, Maria Benito; Bjornsson, Einar; Lindkvist, Bjorn

    2012-01-01

    Background: Population-based studies on the epidemiology of primary sclerosing cholangitis (PSC) are sparse. Aims: To investigate mortality and risk of cancer, and to identify risk factors for hepatobiliary cancer and the combined end-point liver related death or liver transplantation (OLT) in a pop

  6. Human Aorta Is a Passive Pump

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  7. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  8. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process

    Science.gov (United States)

    Dubovikova, N.; Kolesnikov, Y.; Karcher, Ch

    2015-11-01

    This paper presents a detailed experimental study on an electromagnetic flow measurement technique to measure the flow rate of liquid metals. The experimental setup consists of a contactless electromagnetic pump with a torque sensor mounted on the pump shaft. The electromagnetic pump is composed of two rotating steel discs having embedded permanent magnets with alternating poles. The rotation of the discs creates a travelling sinusoidal magnetic field and eddy currents within the liquid metal. The metal is contained inside the duct located between the discs of the pump. The interaction of the magnetic field and the induced eddy currents generates an electromagnetic Lorentz force providing the pumping effect. The flow rate is proportional to this force. The torque sensor measures the moment of the discs due to the Lorentz force, which is converted to a flow rate value. We name the method Lorentz torque velocimetry (LTV). The full calibration procedure and experimental investigation of the LTV are described. The method can be used as a non-contact flow rate control technique for liquid metals.

  9. Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN

    International Nuclear Information System (INIS)

    In order to improve the prototype's performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller's performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by ∼10% and the efficiency has increased by ∼3%, which is in keeping with our optimal result and confirms our method is feasible.

  10. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    Science.gov (United States)

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  11. Rotor-dynamic design aspects for a variable frequency drive based high speed cryogenic centrifugal pump in fusion devices

    International Nuclear Information System (INIS)

    Superconducting magnets of large size are inevitable for fusion devices due to high magnetic field requirements. Forced flow cooling of the superconducting magnets with high mass flowrate of the order ∼3 kg/s is required to keep superconducting magnets within its safe operational boundaries during various plasma scenarios. This important requirement can be efficiently fulfilled by employing high capacity and high efficiency cryogenic centrifugal pumps. The efficiency > 70% will ensure overall lower heat load to the cryoplant. Thermo-hydraulic design of cryogenic centrifugal pump revealed that to achieve the operational regime with high efficiency, the speed should be ∼ 10,000 revolutions per minute. In this regard, the rotor-dynamic design aspect is quite critical from the operational stability point of view. The rotor shaft design of the cryogenic pump is primarily an outcome of optimization between thermal heat-in leak at cryogenic temperature level from ambient, cryogenic fluid impedance and designed rotation speed of the impeller wheel. The paper describes the basic design related to critical speed of the rotor shaft, rotor whirl and system instability prediction to explore the ideal operational range of the pump from the system stability point of view. In the rotor-dynamic analysis, the paper also describes the Campbell plots to ensure that the pump is not disturbed by any of the critical speeds, especially while operating near the nominal and enhanced operating modes. (author)

  12. Primary Health Care Software-A Computer Based Data Management System

    Directory of Open Access Journals (Sweden)

    Tuli K

    1990-01-01

    Full Text Available Realising the duplication and time consumption in the usual manual system of data collection necessitated experimentation with computer based management system for primary health care in the primary health centers. The details of the population as available in the existing manual system were used for computerizing the data. Software was designed for data entry and analysis. It was written in Dbase III plus language. It was so designed that a person with no knowledge about computer could use it, A cost analysis was done and the computer system was found more cost effective than the usual manual system.

  13. Developing the Botswana Primary Care Guideline: an integrated, symptom-based primary care guideline for the adult patient in a resource-limited setting

    OpenAIRE

    Tsima,; Setlhare, Vincent; Nkomazana, Oathokwa

    2016-01-01

    Billy M Tsima,1 Vincent Setlhare,1 Oathokwa Nkomazana2 1Department of Family Medicine and Public Health, 2Department of Surgery, Faculty of Medicine, University of Botswana, Gaborone, Botswana Background: Botswana’s health care system is based on a primary care model. Various national guidelines exist for specific diseases. However, most of the guidelines address management at a tertiary level and often appear nonapplicable for the limited resources in primary care facilities. An in...

  14. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity.

    Science.gov (United States)

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  15. Developing the Botswana Primary Care Guideline: an integrated, symptom-based primary care guideline for the adult patient in a resource-limited setting

    Directory of Open Access Journals (Sweden)

    Tsima BM

    2016-08-01

    Full Text Available Billy M Tsima,1 Vincent Setlhare,1 Oathokwa Nkomazana2 1Department of Family Medicine and Public Health, 2Department of Surgery, Faculty of Medicine, University of Botswana, Gaborone, Botswana Background: Botswana’s health care system is based on a primary care model. Various national guidelines exist for specific diseases. However, most of the guidelines address management at a tertiary level and often appear nonapplicable for the limited resources in primary care facilities. An integrated symptom-based guideline was developed so as to translate the Botswana national guidelines to those applicable in primary care. The Botswana Primary Care Guideline (BPCG integrates the care of communicable diseases, including HIV/AIDS and noncommunicable diseases, by frontline primary health care workers.Methods: The Department of Family Medicine, Faculty of Medicine, University of Botswana, together with guideline developers from the Knowledge Translation Unit (University of Cape Town collaborated with the Ministry of Health to develop the guideline. Stakeholder groups were set up to review specific content of the guideline to ensure compliance with Botswana government policy and the essential drug list.Results: Participants included clinicians, academics, patient advocacy groups, and policymakers from different disciplines, both private and public. Drug-related issues were identified as necessary for implementing recommendations of the guideline. There was consensus by working groups for updating the essential drug list for primary care and expansion of prescribing rights of trained nurse prescribers in primary care within their scope of practice. An integrated guideline incorporating common symptoms of diseases seen in the Botswana primary care setting was developed.Conclusion: The development of the BPCG took a broad consultative approach with buy in from relevant stakeholders. It is anticipated that implementation of the BPCG will translate into better

  16. Mid-infrared supercontinuum generation based on cascaded Raman scattering in a few-mode As2S3 fiber pumped by a thulium-doped fiber laser.

    Science.gov (United States)

    Yao, Jinmei; Zhang, Bin; Yin, Ke; Yang, Linyong; Hou, Jing; Lu, Qisheng

    2016-06-27

    By pumping a 1.7-m-long As2S3 fiber at 2050 nm directly, a fiber-based mid-infrared supercontinuum (SC) source with an output power of 366 mW is demonstrated. This is the first experimental demonstration to obtain such a mid-infrared SC in a piece of chalcogenide fiber pumped at 2 μm directly. The cut-off wavelength of the As2S3 fiber is 3.5 μm, indicating that it could support several modes at around 2 μm. It is found that nonlinear spectral broadening mechanisms in the few-mode chalcogenide fiber could be affected through adjusting the butt-coupling position. That is because different positions will excite different modes that correspondingly possess different nonlinearity and dispersion characteristics. When stimulated Raman scattering (SRS) corresponding to the excitation of the fundamental mode becomes dominant in this few-mode fiber, an efficient cascaded SRS-based SC is obtained with five Stokes peaks ranging from 2 μm to 3.4 μm. Results from numerical simulation are in accord with the experimental results, showing that it is feasible to obtain an SRS based mid-infrared SC in a step-index As2S3 fiber by using a 2 μm high peak power picosecond laser to pump directly. PMID:27410625

  17. Efficient, reliable, long-lifetime, diode-pumped Nd:YAG laser for space-based vegetation topographical altimetry.

    Science.gov (United States)

    Coyle, Donald B; Kay, Richard B; Stysley, Paul R; Poulios, Demetrios

    2004-09-20

    A highly efficient, diode-pumped, Nd:YAG laser is described. The oscillator utilizes an unstable resonator design with a Gaussian reflectivity output coupler and a side-pumped zigzag slab gain medium. The laser produces 18-mJ, 10-ns pulses at a repetition rate of 242 Hz in a near-TEM00 mode with an optical efficiency of up to 14%. An extended performance test was recently concluded in which the transmitter operated at reduced output for more than 4.8 x 10(9) shots with no optical damage. Design criteria, beam quality, and lifetime data are presented. PMID:15473245

  18. General practice based teaching exchanges in Europe. Experiences from the EU Socrates programme 'primary health care'.

    Science.gov (United States)

    van Weel, Chris; Mattsson, Bengt; Freeman, George K; de Meyere, Marc; von Fragstein, Martin

    2005-01-01

    This paper reviews the experience of international exchange of medical students for general practice. The experience is based on the EU Socrates programme 'Primary Health Care' that offers, since 1992, clinical attachments and research electives in primary care. This programme involves 11 university departments of general practice/primary care in eight countries: Austria - Vienna; Belgium - Gent; Germany Düsseldorf; Italy - Monza, Udine; Netherlands Nijmegen; Slovenia - Ljubljana; Sweden - Göteborg; and the UK - Edinburgh, Imperial College London and Nottingham. More than 150 students have taken part in the programme, most in the last four years. For clinical attachment communication to patients is essential, and students should be able to speak the language of the host university. A research elective in primary care is less demanding and requires students' ability to communicate in English. Despite marked differences in health care structure in the countries involved, it is quite possible to provide a valuable teaching environment in general practice, and the experience gained by students in the exchanges more than equals that what they would gain at home. The added value is in experiencing the influence of another health care system and of working in another academic primary care centre. A substantial number of research electives have been published in international peer reviewed scientific journals with the student as first (occasionally second) author and staff members of the student's host and home university as co-authors. A further benefit of the exchange programme lies in the transfer teaching innovations between universities.

  19. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  20. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  1. Solar pumped solid state lasers

    International Nuclear Information System (INIS)

    Results are presented for direct solar pumping of a Nd:YAG rod laser. Stable CW output of more than 60 watts was obtained with slope efficiencies exceeding 2%. Results are consistent with predictions based on a simple solar laser model the authors have developed. Using this model, performance projections and design concepts for higher power and higher efficiency solar-pumped solid state lasers are presented. It is shown that existing laser materials with broadband absorption characteristics (e.g., alexandrite and Nd:Cr:GSGG) can have better than 10% overall conversion efficiencies when solar pumped. The utility of solar lasers for various laser applications in space is briefly discussed

  2. Chemically driven electron tunnelling pumps

    CERN Document Server

    Goychuk, I

    2006-01-01

    The simplest mechanism for molecular electron pumps is discussed which is based on nonadiabatic electron tunnelling and nonequilibrium conformational fluctuations. Such fluctuations can be induced, e.g. by random binding of negatively charged ATP molecules to the electron-transferring molecular complex, their subsequent hydrolysis and the products dissociation. The pumping rate can be controlled by the ATP concentration in solution. Depending on the model parameters there may exist a critical ATP concentration for the pump to function. Alternatively, nonequilibrium fluctuations can be induced by externally applied stochastic electric fields. For realistically chosen parameters, the mechanism is shown to be robust and highly efficient.

  3. A radiation dose study based on analysis of primary color chrominance

    Institute of Scientific and Technical Information of China (English)

    HUANG Jianyue; LI Jianghong; LI Jianwei; JIN Jian

    2015-01-01

    PURPOSE: The purpose of this study was to assess the possibility of measuring radiation dose based on primary color chrominance in chemical solutions. METHODS: We used an aqueous solution with different concentrations of Alphaurine A and Tracid Brilliant Red B. This was irradiated by 1.5-13.5kGy 60Co γ radiation. Data were collected by an instrument that can detect information on the three primary colors. Data were analyzed and manipulated for each experiment. RESULTS AND CONCLUSIONS: The result shows that three primary colors chrominance in the aqueous solutions change with different doses of 60Co γ-rays and different concentrations of Alphaurine A and Tracid Brilliant Red B. For Alphaurine A, the red chrominance is gradually reduced as a function of radiation dose. The blue chrominance gradually increases concurrently. The red and green chrominance changes obviously and inversely, but the green chrominance changes little. In Tracid Brilliant Red B solution, the red chrominance and green chrominance gradually decreases as the radiation dose increases. And the changes are obvious and inverted. The blue chrominance changed little. Our experiments demonstrate that radiation dose can be studied based on three primary colors chrominance. This may be a new tool to measure radiation dose.

  4. Surface micromachined electrostatically actuated micro peristaltic pump

    OpenAIRE

    Xie, Jun; Shih, Jason; Lin, Qiao; Yang, Bozhi; Tai, Yu-Chong

    2004-01-01

    An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min^–1 and a...

  5. Cavitation Effects in Centrifugal Pumps- A Review

    Directory of Open Access Journals (Sweden)

    Maxime Binama

    2016-05-01

    Full Text Available Cavitation is one of the most challenging fluid flow abnormalities leading to detrimental effects on both the centrifugal pump flow behaviors and physical characteristics. Centrifugal pumps’ most low pressure zones are the first cavitation victims, where cavitation manifests itself in form of pitting on the pump internal solid walls, accompanied by noise and vibration, all leading to the pump hydraulic performance degradation. In the present article, a general description of centrifugal pump performance and related parameters is presented. Based on the literature survey, some light were shed on fundamental cavitation features; where different aspects relating to cavitation in centrifugal pumps were briefly discussed

  6. Optimal design and experiment of long axis centrifugal pump based on differ head%基于不等扬程的离心式长轴泵的优化设计与试验

    Institute of Scientific and Technical Information of China (English)

    朱荣生; 贺博; 付强; 王秀礼; 张亮亮

    2015-01-01

    wrap angle, blade outlet angle,impeller outlet width, impeller outlet with a mean diameter and impeller outlet tilt angle were done by using the orthogonal design method. With the result of an orthogonal test method studied by range analysis, we obtained the primary and secondary order of the impeller geometric parameters which affect the head and efficiency of a long axis centrifugal pump. The primary and secondary order of the factors affecting the efficiency of the design point is blade number > blade outlet angle>impeller outlet width> impeller outlet tilt angle> blade wrap angle>impeller outlet with a mean diameter>impeller inlet diameter, The primary and secondary order of the factors affecting the head of the design point is > blade outlet angle > impeller outlet tilt angle > impeller outlet with a mean diameter > blade wrap angle > impeller outlet width > impeller inlet diameter,According to the orthogonal results, what is needed to get the final optimal combination are as follows: impeller inlet diameter is 345mm, blade number is 6, blade wrap angle is105°,blade outlet angle is 25°,impeller outlet width is 75mm, impeller outlet with a mean diameter is 550mm, impeller outlet tilt angle is 25°. Based on results of the orthogonal design, considering the affections of primary and secondary order of the factors on the efficiency and head, using the control variable method, greater impact parameters on pump performance must be chosen to optimize. Ignoring the effect of the blade number, 6 blades were selected. Then, we changed the unlimited blade number theoretical head of impeller shroud and unlimited blade number theoretical head of impeller hub on the basis of a head difference theory, controlled the secondary parameters unchanged, and then changed blade outlet angle to make all streamlines have the same limited blade number theoretical head. Five different impellers were designed according to the above method, 3D models of different impellers were made by

  7. LMFBR with booster pump in pumping loop

    Science.gov (United States)

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  8. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  9. Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone

    CERN Document Server

    Barker, Adrian J; Proctor, Michael R E; Weiss, Nigel O

    2012-01-01

    We perform idealised numerical simulations of magnetic buoyancy instabilities in a model of the solar tachocline. We introduce a simplified model of magnetic flux pumping in an upper layer (the convection zone), and study the effects of its inclusion on the evolution of buoyancy instabilities in a lower layer (the radiative interior). We study its effects on the instability of both a preconceived magnetic slab and of a shear-generated magnetic layer. In the former, we find that in the regime in which the downward pumping velocity is comparable with the Alfven speed of the magnetic layer, flux pumping is able to hold back the bulk of the magnetic field, with only small pockets of strong field able to rise into the upper layer. In simulations in which the magnetic layer is generated by shear, we find that the shear velocity is not necessarily required to exceed that of the pumping (therefore the kinetic energy of the shear is not required to exceed that of the overlying convection), for strong localised pockets...

  10. Use of proton pump inhibitors and risk of hip/femur fracture: a population-based case-control study

    NARCIS (Netherlands)

    S. Pouwels (Sander); A. Lalmohamed (Arief); P. Souverein (Patrick); C. Cooper (Charles); B.J. Veldt (Bart); H.G.M. Leufkens (Hubert); A. de Boer (Anthonius); T.P. van Staa (Tjeerd); F. de Vries (Frank)

    2010-01-01

    textabstractSummary: Previous studies evaluated the association between proton pump inhibitor (PPI) use and subsequent fracture risk, but they showed ambiguous results. Therefore, the objective was to evaluate this association in a different study population. Our findings show that there is probably

  11. Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition

    International Nuclear Information System (INIS)

    Highlights: • New heat pump control method was developed. • Experimental investigation on performance of heat pump with various control method. • New control method appeared to improve the stability of indoor air temperature. • New control method appeared to have a potential to reduce power consumption. - Abstract: The control systems of conventional heat pumps have an input of refrigerant temperature at the evaporator outlet to maintain superheat at proper level. In order to develop a control method that can be used to achieve better indoor thermal comfort and energy efficiency at a low cooling load condition than the current control method, a new method of the evaporation pressure control based on the evaporator outlet pressure reading (EPCP) was developed. The changes in the stability of indoor air temperature and power consumption were measured while changing the compressor frequency in accordance with the new control method. Compared with the evaporation pressure control based on the evaporator outlet temperature reading, the EPCP control method appeared to improve the stability of room air temperature or occupant thermal comfort significantly

  12. 基于QFD和TRIZ的抽油机概念设计方法%The Conceptual Design Method for a Pumping Unit Based on QFD and TRIZ

    Institute of Scientific and Technical Information of China (English)

    张鹏; 盖峰; 管虹翔; 李萍

    2005-01-01

    Quality function deployment (QFD) is a quality system,that can help to design novel products that meet customers' needs. Theory of inventive problem solving (TRIZ) is a very powerful tool in helping to solve difficult technical problems encountered in the design process. Introducing QFD and TRIZ into the conceptual design of the pumping unit combines advantages of these two theories, therefore meeting different demands of different users. It can tell us "What should we do it" with QFD and "How should we do it" with TRIZ. The conceptual design method, which is based on QFD and TRIZ, is introduced and used to analyze and evaluate the conceptual design project of a pumping unit.

  13. Prediction of performance of centrifugal pumps during starts under pressure

    Science.gov (United States)

    Rostafinski, W.

    1969-01-01

    Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.

  14. 基于Visual Basic编程对离心泵性能曲线的拟合%Fitting Centrifugal Pump Performance Curve Based on Visual Basic

    Institute of Scientific and Technical Information of China (English)

    刘红明; 孙铁; 刘嵩; 王亮; 魏佳广

    2014-01-01

    在分析拟合离心泵性能曲线必要性的基础上,以拟合离心泵流量和扬程性能曲线为例,介绍了利用最小二乘法使用visual Basic语言进行直接编程拟合曲线的方法;经实际使用本程序具有简单、易用、求解效率高、适用范围广等特点,有效解决了石化行业中离心泵选型、试验中曲线拟合的数据处理问题,可以在离心泵及容积泵性能曲线拟合中推广应用。%Centrifugal pump performance curve is the basis of measuring the performance, type selection calculation and optimal operation of the centrifugal pump. After the test,in order to get more accurate data based on the sampling point, curve of experimental data needs to be fitted. In this paper, taking fitting flow and head curve of centrifugal pump as an example, the method to fit the curve by programming based visual basic with the least square method was introduced. The practical application has proved that the method has many advantages, and can effectively solve data processing problems in centrifugal pump type selection and curve fitting in petrochemical industry.

  15. Use of Activity Based Joyful Learning Approach in Teaching Environmental Science Subject At Primary Level

    OpenAIRE

    Jadal M.M.

    2012-01-01

    Achievement of interdisciplinary competencies through the teaching of one discipline isa recurring challenge of present-day teaching –learning process. At the primary stage ofour school Education, the subject environmental studies seems to be a suitablecurricular medium, through the teaching of which the competencies of many other areascan be developed. The main focus of present study is to examine the effectiveness ofactivity-based joyful learning approach(ABJL) over traditional method of te...

  16. Consultations with general practitioners on patient safety measures based on routinely collected data in primary care

    OpenAIRE

    Tsang, C; Majeed, A; Aylin, P

    2012-01-01

    OBJECTIVES To gauge the opinions of doctors working, or interested, in general practice on monitoring patient safety using administrative data. The findings will inform the development of routinely collected data-based patient safety indicators in general practice and elsewhere in primary care. DESIGN Non-systematic participant recruitment, using personal contacts and colleagues' recommendations. SETTING Face-to-face consultations at participants' places of work, between June 2010 a...

  17. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research

    OpenAIRE

    Liu, Yewei; YIN Ting; Feng, Yuanbo; Cona, Marlein Miranda; Huang, Gang; Liu, Jianjun; Song, Shaoli; Jiang, Yansheng; Xia, Qian; Swinnen, Johannes V; Bormans, Guy; Himmelreich, Uwe; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-spe...

  18. Effects of Laser Peripheral Iridotomy in Subgroups of Primary Angle Closure Based on Iris Insertion

    OpenAIRE

    Sung-Cheol Yun; Ji Wook Hong; Kyung Rim Sung; Jin Young Lee

    2015-01-01

    Purpose. To investigate the effect of laser peripheral iridotomy (LPI) in subgroups of primary angle closure based on iris insertion configuration. Methods. Anterior segment optical coherence tomography (AS-OCT) images were obtained before and two weeks after LPI. Qualitative classification of angle closure eyes according to iris insertion (basal insertion group (BG) and nonbasal insertion group (NBG)) was performed. Anterior chamber depth (ACD), lens vault (LV), iris curvature, iris area, ir...

  19. A new physically-based quantification of marine isoprene and primary organic aerosol emissions

    OpenAIRE

    B. Gantt; N. Meskhidze; D. Kamykowski

    2009-01-01

    The global marine sources of organic carbon (OC) are estimated here using a physically-based parameterization for the emission of marine isoprene and primary organic matter. The marine isoprene emission model incorporates new physical parameters such as light sensitivity of phytoplankton isoprene production and dynamic euphotic depth to simulate hourly marine isoprene emissions totaling 0.92 Tg C yr−1. Sensitivity studies using different schemes for the euphot...

  20. Multimedia Scenario Based Learning Programme for Enhancing the English Language Efficiency among Primary School Students

    OpenAIRE

    Navnath Tupe

    2015-01-01

    This research was undertaken with a view to assess the deficiencies in English language among Primary School Children and to develop Multimedia Scenario Based Learning Programme (MSBLP) for mastery of English language which required special attention and effective treatment. The experimental study with pretest, post-test control group design was employed to carry out the experiment of MSBLP in a sample school and to determine its efficacy for enhancing English Language skill...

  1. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    OpenAIRE

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Se...

  2. Primary four students’ development of reading ability through inquiry-based learning projects

    OpenAIRE

    Fung, HF; Chow, K; Ng, HWR; Loh, EKY; Chu, SKW; Tse, SK

    2008-01-01

    This paper is part of a bigger study that investigates a collaborative instructional approach involving three kinds of teachers (Information Technology, General Studies, and Chinese) and the school librarian in guiding primary 4 (P4) students through two phases of inquiry-based learning (IBL) projects, each lasting for 2-3 months in 2006-2007. This collaborative approach in guiding students through the IBL projects has proven to be effective. Not only did the participating students signifi...

  3. Advancing evidence-based practice in primary care physiotherapy : Guideline implementation, clinical practice, and patient preferences

    OpenAIRE

    Bernhardsson, Susanne

    2015-01-01

    Research on physiotherapy treatment interventions has increased dramatically in the past 25 years and it is a challenge to transfer research findings into clinical practice, so that patients benefit from effective treatment. Development of clinical practice guidelines is a potentially useful strategy to implement research evidence into practice. However, the impact of guideline implementation in Swedish primary care physiotherapy is unknown. To achieve evidence-based practice (EBP), research ...

  4. THE RELATIONSHIP BETWEEN ETHICAL LEADERSHIP AND ORGANIZATIONAL CYNICISM BASED ON PRIMARY TEACHERS` PERCEPTIONS

    OpenAIRE

    Akan, Durdağı; BEKTAŞ, Fatih; YILDIRIM, İsa

    2014-01-01

    This study aims to determine the relationship between the concepts of ethical leadership and organizational cynicism based on primary teachers` perceptions.In line with this objective, developed by Yilmaz (2005) the Ethical Leadership Scale and developed by Sagır and Oguz (2012) the Organizational Cynicism scale were applied on 221 teachers who were working in working his in the school. Pearson`s Moment Correlation Analysis and Multilinear Regression Analysis techniques were utilized in anal...

  5. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna;

    2014-01-01

    Demand response (DR) is considered as a potentially effective tool to compensate generation intermittency imposed by renewable sources. Further, DR can instigate to offer optimum asset utilization and to avoid or delay the need for new infrastructure investment. Being a sizable load together...... with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...

  6. Methodology to monitor and diagnostic vibrations of the motor-pumps used in the primary cooling system of IEAR-1 nuclear research reactor; Metodologia para monitoracao e diagnostico de vibracao das bombas moto-operadas do circuito primario de refrigeracao do Reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Benevenuti, Erion de Lima

    2004-07-01

    The objectives of this study are to establish a strategy to monitor and diagnose vibrations of the motor pumps used in the primary reactor cooling system of the IEA-R1 nuclear research reactor, to verify the possibility of using the existing installed monitoring vibration system and to implement such strategy in a continuous way. Four types of mechanical problems were considered: unbalancing, misalignment, gaps and faults in bearings. An adequate set of analysis tools, well established by the industry, was selected. These are: global measurements of vibration, velocity spectrum and acceleration envelope spectrum. Three sources of data and information were used; the data measured from the primary pumps, experimental results obtained with a Spectra Quest machine used to simulate mechanical defects and data from the literature. The results show that, for the specific case of the motor-pumps of IEA-R1 nuclear research reactor, although the technique using the envelope of acceleration, which is not available in the current system used to monitor the vibration of the motor pumps, is the one with best performance, the other techniques available in the system are sufficient to monitor the four types of mechanical problems mentioned. The proposed strategy is shown and detailed in this work. (author)

  7. Stirling Engine Heat Pump

    Science.gov (United States)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  8. Water Pump Development for the EVA PLSS

    Science.gov (United States)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  9. Robust primary modulation-based scatter estimation for cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig, E-mail: ludwig.ritschl@ziehm-eu.com [Ziehm Imaging, Nürnberg 90451 (Germany); Fahrig, Rebecca [Radiological Science Laboratory, Stanford University, 1201 Welch Road Palo Alto, Stanford, California 94304 (United States); Knaup, Michael; Maier, Joscha; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany)

    2015-01-15

    Purpose: Scattered radiation is one of the major problems facing image quality in flat detector cone-beam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. Methods: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation. Results: All reconstructions show strong improvements of image quality. To quantify the results, all images are compared to reference images (ideal simulations and collimated scans). Conclusions: The proposed modulator-based scatter reduction algorithm may open the field of flat detector-based imaging to become a quantitative modality. This may have significant impact on C-arm imaging and on image-guided radiation therapy.

  10. 基于AMESim的尾气处理泵的仿真与优化设计%AMESim Based Simulation and Optimized Design of Exhaust Handing Pump

    Institute of Scientific and Technical Information of China (English)

    麦云飞; 王锐

    2015-01-01

    AMESim软件为机械、流体、电磁等工程系统提供了一个高性能的仿真平台。在对汽车尾气处理泵的工作原理与数学模型进行分析的基础上,通过AM ESim建立该泵的仿真模型,并在不同参数下进行动态仿真分析。仿真结果表明:采用膜片单向阀替换普通球阀以及适当增大弹簧的刚度可以提高泵的输出特性。%AMESim software provides a high performance simulation platform for the mechanical , fluid and electromagnetic engineering system .Based on the analysis on the working principle and mathematical model of an exhaust handing pump for automobile ,the dynamic simulation model of the pump is set up by AMESim ,and the dynamic simulation is conducted .The results show that using a diaphragm valve to replace the ordinary ball valve and properly increasing the spring stiffness can improve the output characteristics of the pump .

  11. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7  μm based on CdSiP2.

    Science.gov (United States)

    Chaitanya Kumar, S; Esteban-Martin, A; Santana, A; Zawilski, K T; Schunemann, P G; Ebrahim-Zadeh, M

    2016-07-15

    We report on a high-power femtosecond optical parametric oscillator (OPO) at 80 MHz repetition rate, tunable across 6318-7061 nm in the deep-infrared (deep-IR) using pump wavelength tuning. The OPO, based on CdSiP2 (CSP), is synchronously pumped by a commercial Ti:sapphire-pumped femtosecond OPO in the near-IR, enabling rapid static tuning of the CSP OPO with minimal adjustments to its cavity length. The deep-IR CSP OPO provides as much as 32 mW of average idler power at 6808 nm with spectral bandwidth >1000  nm (at -10  dB level) across the tuning range. By implementing intracavity dispersion control, near-transform-limited signal pulses of ∼100  fs duration with smooth single-peak spectrum are achieved at 1264 nm, corresponding to an idler wavelength at 6440 nm. To the best of our knowledge, this is the first time such practical idler powers in the deep-IR have been generated from a dispersion-compensated CSP femtosecond OPO at sub-100 MHz repetition rate.

  12. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  13. A green laser at 517 nm based on intracavity frequency doubling of the diode-pumped Yb:LO laser

    Science.gov (United States)

    Li, Yong-liang; Li, Xiu-fei; Hu, Hong-wei; Hai, Xiao-quan; Liu, Yang; Wang, Jin-nan

    2014-09-01

    We report for the first time, to our knowledge, the diode-pumped continuous-wave (CW) thin-disk Yb3+-doped Lu2O3 (Yb:LO) laser at 1 034 nm and the second-harmonic generation at 517 nm. With a 6.3% output coupler, the maximum output power is 1.17 W under a pump power of 18.5 W. Moreover, the intracavity second-harmonic generation (SHG) is also achieved with power of 193 mW at 517 nm by using an LiB3O5 (LBO) nonlinear crystal. The beam quality factor M 2 is about 1.28. The fluctuation of the output power is about 3% in 1 h.

  14. A methodology to predict the uniformity of double-shell waste slurries based on mixer pump operation

    International Nuclear Information System (INIS)

    Dimensional analysis is used to determine the similarity parameters that describe the uniformity of radioactive slurry wastes to be suspended by mixer pumps. The results of this analysis are applied to the design of scaled experiments that will determine the operating parameters that will ensure an adequately uniform feed stream during waste retrieval from Hanford double-shell tanks. Ten dimensionless parameters describing the slurry mixing process were identified. Of these, three describe purely geometric features, three describe slurry properties only, one is a dimensionless time scale, and three describe important dynamic factors. The three parameters describing the dynamic features are the Reynolds number, which describes the degree of turbulence in the tank; the Froude number, which describes the effects of stratification on the circulation patterns; and the gravitational settling number, which describes the balance between the work done by gravity to cause settling and the work done by the pump to resuspend particles

  15. Multiple pump housing

    Science.gov (United States)

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  16. Types of Breast Pumps

    Science.gov (United States)

    ... breast-shield. Some experts discourage the use of bicycle horn pumps because they may be difficult to clean and dry. Battery-Powered and Electric Pumps A powered breast pump uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that ...

  17. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.

    Science.gov (United States)

    Deborde, Catherine; Jacob, Daniel

    2014-01-01

    Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a

  18. Method for controlling powertrain pumps

    Science.gov (United States)

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  19. Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone

    OpenAIRE

    Barker, A.J.; Silvers, L. J.; Proctor, M. R. E.; Weiss, N.O.

    2012-01-01

    We perform idealized numerical simulations of magnetic buoyancy instabilities in three dimensions, solving the equations of compressible magnetohydrodynamics in a model of the solar tachocline. In particular, we study the effects of including a highly simplified model of magnetic flux pumping in an upper layer (‘the convection zone’) on magnetic buoyancy instabilities in a lower layer (‘the upper parts of the radiative interior – including the tachocline’), to study these competing flux trans...

  20. Primary Teachers' Reflections on Inquiry- and Context-Based Science Education

    Science.gov (United States)

    Walan, Susanne; Mc Ewen, Birgitta

    2016-03-01

    Inquiry- and context-based teaching strategies have been proven to stimulate and motivate students' interests in learning science. In this study, 12 teachers reflected on these strategies after using them in primary schools. The teachers participated in a continuous professional development (CPD) programme. During the programme, they were also introduced to a teaching model from a European project, where inquiry- and context-based education (IC-BaSE) strategies were fused. The research question related to teachers' reflections on these teaching strategies, and whether they found the model to be useful in primary schools after testing it with their students. Data collection was performed during the CPD programme and consisted of audio-recorded group discussions, individual portfolios and field notes collected by researchers. Results showed that compared with using only one instructional strategy, teachers found the new teaching model to be a useful complement. However, their discussions also showed that they did not reflect on choices of strategies or purposes and aims relating to students' understanding, or the content to be taught. Before the CPD programme, teachers discussed the use of inquiry mainly from the aspect that students enjoy practical work. After the programme, they identified additional reasons for using inquiry and discussed the importance of knowing why inquiry is performed. However, to develop teachers' knowledge of instructional strategies as well as purposes for using certain strategies, there is need for further investigations among primary school teachers.

  1. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    Science.gov (United States)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  2. Study of transient flow in fuel element of tubular plates. Accident: Shaft locking of primary cooling pump without opening the emergency gate; Estudio del regimen transitorio en el elemento combustible de placas tubulares. Accidente: Agarrotamiento de la bomba. No se abre la compuerta

    Energy Technology Data Exchange (ETDEWEB)

    Aguilas, F.; Moneva, M. A.; Garcia Ramirez, L.; Lopez Jimenez, J.; Diaz Diaz, J.

    1971-07-01

    It is analysed the thermal distribution of a fuel element of tubular plates irradiated in the JEN-1 reactor in the case of shaft locking of the primary cooling pump without opening the emergency gate. The fuel element hottest channel is studied in the position of maximum neutronic flux for three reactor power levels: 3 Hw (maximum reactor power), 2 Mw and 1 Hw. (Author) 8 refs.

  3. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger;

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  4. Thin-disk laser pump schemes for large number of passes and moderate pump source quality

    CERN Document Server

    Schuhmann, K; Kirch, K; Knecht, A; Kottmann, F; Nez, F; Pohl, R; Taqqu, D; Antognini, A

    2015-01-01

    Novel thin-disk laser pump layouts are proposed yielding an increased number of passes for a given pump module size and pump source quality. These novel layouts result from a general scheme which bases on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard commercially available pump optics simply by intro ducing an additional mirror-pair. More pump passes yield better efficiency, opening the way for usage of active materials with low absorption. In a standard multi-pass pump design, scaling of the number of beam passes brings ab out an increase of the overall size of the optical arrangement or an increase of the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applications

  5. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  6. A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile)

    Science.gov (United States)

    Akashi, Hiroyuki; Tanaka, Ko-ichi; Sekai, Koji

    The performance of a Li polymer primary cell with fire-retardant poly(acrylonitrile) (PAN)-based gel electrolytes is reported. By optimizing electrodes, electrolytes, the packaging material, and the structural design of the polymer cell, we succeeded in developing a "film-like" Li polymer primary cell with sufficient performance for practical use. The cell is flexible and less than 0.5 mm thick, which makes it suitable for a power source for some smart devices, such as an IC card. Fast cation conduction in the gel electrolyte minimizes the drop of the discharge capacity even at -20 °C. The high chemical stability of the gel electrolytes and the new packaging material allow the self-discharge rate to be limited to under 4.3%, which is equivalent to that of conventional coin-shaped or cylindrical Li-MnO 2 cells.

  7. The SML pump of carbon cycles in oceans

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Different from the solution/physical pump, biological pump and continental shelf pump of carbon cycle in oceans, a new pump named "surface microlayer (SML) pump" is developed based on data obtained from marine investigations and lab study. The SML pump has: (1) left-right dissymmetry of "pH-depth" curve; (2) the non-linearity of "concentration-depth" curve; and (3) difference of affecting confine of the SML pump. The issue of "source" or "sink" of atmospheric CO2 in the Yellow Sea and South China Sea is discussed.

  8. Evidence-based medicine in primary care: qualitative study of family physicians

    Directory of Open Access Journals (Sweden)

    Dantas Guilherme

    2003-05-01

    Full Text Available Abstract Background The objectives of this study were: a to examine physician attitudes to and experience of the practice of evidence-based medicine (EBM in primary care; b to investigate the influence of patient preferences on clinical decision-making; and c to explore the role of intuition in family practice. Method Qualitative analysis of semi-structured interviews of 15 family physicians purposively selected from respondents to a national survey on EBM mailed to a random sample of Canadian family physicians. Results Participants mainly welcomed the promotion of EBM in the primary care setting. A significant number of barriers and limitations to the implementation of EBM were identified. EBM is perceived by some physicians as a devaluation of the 'art of medicine' and a threat to their professional/clinical autonomy. Issues regarding the trustworthiness and credibility of evidence were of great concern, especially with respect to the influence of the pharmaceutical industry. Attempts to become more evidence-based often result in the experience of conflicts. Patient factors exert a powerful influence on clinical decision-making and can serve as trumps to research evidence. A widespread belief that intuition plays a vital role in primary care reinforced views that research evidence must be considered alongside other factors such as patient preferences and the clinical judgement and experience of the physician. Discussion Primary care physicians are increasingly keen to consider research evidence in clinical decision-making, but there are significant concerns about the current model of EBM. Our findings support the proposed revisions to EBM wherein greater emphasis is placed on clinical expertise and patient preferences, both of which remain powerful influences on physician behaviour.

  9. The terrestrial silica pump.

    Directory of Open Access Journals (Sweden)

    Joanna C Carey

    Full Text Available Silicon (Si cycling controls atmospheric CO(2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1, accounting for 43% of the total oceanic net primary production (NPP. However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1 is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  10. The terrestrial silica pump.

    Science.gov (United States)

    Carey, Joanna C; Fulweiler, Robinson W

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO(2) concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1), accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1)) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2) levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump. PMID:23300825

  11. Shaking table tests under simulated earthquakes for seismic performance evaluation of primary water accident pump used in nuclear reactor%某核级一次水事故泵抗震性能评估的振动台试验研究

    Institute of Scientific and Technical Information of China (English)

    高永武; 戴君武; 金波; 聂桂波

    2015-01-01

    由于一次水事故泵运行条件下的振动台试验可评估抗震性能,用钢丝橡胶波纹管连接进出口水管、沙堆支撑橡胶管提供柔性约束。合理模拟水泵在试验过程中所受接管荷载,保证试验过程中水泵与循环水箱变形协调。对正常运行的事故泵进行5次 OBE、1次 SSE 人造地震动输入振动台试验,并据动应变曲线判断仍处于弹性状态。试验表明,经5次 OBE、1次 SSE 人造地震动输入后的一次水事故泵仍能保证压力边界完整性及功能可运行性。较试验前各项功能指标无明显变化,抗震性能良好。%Primary water accident pump is an important part of reactor for its waste heat export,whose seismic performance will directly affect the safe shutdown of reactor and the exuding of waste heat after the occurrence of major earthquakes.The prototype shaking table tests under simulated earthquakes are the most intuitive method to evaluate the seismic performance of primary water accident pump in running condition.The steel wire rubber corrugated pipe connection was selected as the import and export connections of water pipe,and the sand pile support rubber bellows were used as the flexible constraints.The connecting load on the water pump in the processes of tests was reasonably simulated and the deformation coordination was ensured between the primary water accident pump and circulating water tank in the test processes.Suitable wire rubber bellows were selected and sand was used to guarantee the rationality of boundary conditions in the experiments.Five OBE and one SSE earthquake simulation shaking table tests on the primary water accident pump were performed by using artificial seismic waves as the seismic inputs in normal running.According to time history curves of strain,the maximum strain responses under the input of different artificial seismic waves were obtained, and the structure was found still in elastic state.The results show that

  12. Flow control of intra aorta pump based on heart rate%基于心率的主动脉血泵流量控制

    Institute of Scientific and Technical Information of China (English)

    谷凯云; 高斌; 常宇

    2011-01-01

    BACKGROUND: With the development of the research and application of artificial heart, people hope that it can accord with physiological mechanism of natural heart and meet demand of human body in device performance.OBJECTIVE: For the control of intra-aorta pump, this paper proposed the flow control algorithm based on heart rate.METHODS: Utilizing the PID control algorithm to maintain the output flow satisfy the physical needs of patients. Simulation results show the accuracy of the algorithm to achieve fast and stable flow blood pump output.RESULTS AND CONCLUSION: When the heart rate was of 75 times per minute, blood pump flow rate could reach 5.01 L/min;blood pump flow gradually increased with the heart rate when the heart rate was in the range from 50 to 120 times per minute;blood pump kept constant flow state when the heart rate less than 50 times per minute or more than 120 times per minute.Through PID control, the actual flow rate tracks the reference one within 0.1 s. The blood pump flow model based on heart rate can reflect the needs of human blood flow. The control algorithm can achieve stable flow blood pump output, to keep pace human needs of patients.%背景:随着人工心脏研究和应用的不断发展,在装置的性能上,人们希望它能符合自然心脏的生理机制,满足受者的生理需求.目的:针对主动脉血泵的控制,提出了基于心率的血泵流量控制算法.方法:通过分析心率与流量之间的关系,建立了心率与流量的关系模型,并根据人体心率流量关系验证血泵流量模型的准确性.运用PID控制算法对血泵流量进行控制.结果与结论:仿真结果表明血泵可以实现快速稳定的输出.当心率为75次/min时,流量能达到5.01 L/min;在50~120次/min心率范围内,流量会随着心率的提高而增大;当心率大小于50次/min或于120次/min时,血泵工作在恒流量状态下.通过PID控制,可使流量在0.1 s内跟踪上参考流量.基于心率的血泵

  13. Performance Analysis of Mean Value-Based Power Allocation with Primary User Interference in Spectrum Sharing Systems

    OpenAIRE

    Duan, Ruifeng; Jäntti, Riku; Elmusrati, Mohammed S.

    2014-01-01

    In this paper, we provide an exact expression for the ergodic capacity of the secondary user, and a unified closed-form expression for its bounds with taking the consideration of the primary interference at the secondary receiver. In addition, a simple but accurate approximation of the the ergodic capacity of the primary user is presented. Moreover, a primary user capacity loss based power allocation scheme for the secondary user is also proposed. Finally, we compare the performance of the tw...

  14. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    International Nuclear Information System (INIS)

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as Ri0) while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  15. Lab on a chip-based hepatic sinusoidal system simulator for optimal primary hepatocyte culture.

    Science.gov (United States)

    Choi, Yoon Young; Kim, Jaehyung; Lee, Sang-Hoon; Kim, Dong-Sik

    2016-08-01

    Primary hepatocyte cultures have been used in studies on liver disease, physiology, and pharmacology. While they are an important tool for in vitro liver studies, maintaining liver-specific characteristics of hepatocytes in vitro is difficult, as these cells rapidly lose their unique characteristics and functions. Portal flow is an important condition to preserve primary hepatocyte functions and liver regeneration in vivo. We have developed a microfluidic chip that does not require bulky peripheral devices or an external power source to investigate the relationship between hepatocyte functional maintenance and flow rates. In our culture system, two types of microfluidic devices were used as scaffolds: a monolayer- and a concave chamber-based device. Under flow conditions, our chips improved albumin and urea secretion rates after 13 days compared to that of the static chips. Reverse transcription polymerase chain reaction demonstrated that hepatocyte-specific gene expression was significantly higher at 13 days under flow conditions than when using static chips. For both two-dimensional and three-dimensional culture on the chips, flow resulted in the best performance of the hepatocyte culture in vitro. We demonstrated that flow improves the viability and efficiency of long-term culture of primary hepatocytes and plays a key role in hepatocyte function. These results suggest that this flow system has the potential for long-term hepatocyte cultures as well as a technique for three-dimensional culture. PMID:27334878

  16. An innovative sludge management system based on separation of primary and secondary sludge treatment.

    Science.gov (United States)

    Mininni, G; Braguglia, C M; Ramadori, R; Tomei, M C

    2004-01-01

    An innovative sludge management system based on separation of treatment and disposal of primary and secondary sludge is discussed with reference to a sewage treatment plant of 500,000 equivalent person capacity. Secondary sludge, if treated separately from primary sludge, can be recovered in agriculture considering its relatively high content of nitrogen and phosphorus and negligible presence of pathogens and micropollutants. One typical outlet for primary sludge is still incineration which can be optimised by rendering the process auto thermal and significantly reducing the size of the incineration plant units (dryer, fluidised bed furnace, boiler and units for exhaust gas treatment) in comparison with those required for mixed sludge incineration. Biogas produced in anaerobic digestion is totally available for energy conversion when sludge treatment separation is performed, while in the other case a large proportion may be used as fuel in incineration, thus reducing the net electric energy conversion from 0.85-0.9 to 0.35-0.4 MW for the plant considered. PMID:15581006

  17. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  18. High power, diffraction limited picosecond oscillator based on Nd:GdVO4 bulk crystal with σ polarized in-band pumping.

    Science.gov (United States)

    Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan

    2016-06-27

    We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO4 crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO4 oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M2 < 1.05 at different output coupling with pulse duration between 11.2 ps to 19.3 ps.

  19. High power, diffraction limited picosecond oscillator based on Nd:GdVO4 bulk crystal with σ polarized in-band pumping.

    Science.gov (United States)

    Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan

    2016-06-27

    We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO4 crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO4 oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M2 pulse duration between 11.2 ps to 19.3 ps. PMID:27410558

  20. Disseminated primary diffuse leptomeningeal gliomatosis: a case report with liquid based and conventional smear cytology

    Directory of Open Access Journals (Sweden)

    Bilic Masha

    2005-09-01

    Full Text Available Abstract Background Primary diffuse leptomeningeal gliomatosis is a rare neoplasm confined to the meninges without evidence of primary tumor in the brain or spinal cord parenchyma. Cerebrospinal fluid diversion via ventriculoperitoneal shunt may be used as a therapeutic modality. Herein, we describe the first report of cytologic findings of a case of this neoplasm with shunt-related peritoneal metastasis. Case presentation A 19-year-old male presented with a 6-month history of severe headaches. He had bilateral papilledema on physical exam. Cerebrospinal fluid examination was negative. Four months later a ventriculoperitoneal shunt was placed. Shortly thereafter, he was diagnosed with primary diffuse leptomeningeal gliomatosis based on the biopsy of an intradural extramedullary lesion adjacent to the lumbar spinal cord at a referral cancer center. The histology featured an infiltrating growth pattern of pleomorphic astrocytes with diffuse positivity for glial fibrillary acidic protein. A couple of months later he presented at our institution with ascites and an anterior peritoneal mass. Repeat cerebrospinal fluid cytology and fine needle aspiration of the mass confirmed disseminated gliomatosis. Cytologic characteristics included clusters of anaplastic cells of variable size, high nuclear to cytoplasm ratio and scant to moderate cytoplasm. Occasional single bizarre multinucleated cells were seen with eccentric "partial wreath-like" nuclei, clumped chromatin and prominent nucleoli. Patient expired 13 months after initial presentation. Conclusion Disseminated primary diffuse leptomeningeal gliomatosis should be considered in the differential diagnosis of chronic aseptic meningitis and in the presence of a peritoneal tumor in patients with ventriculoperitoneal shunts. Immunocytochemistry may be of diagnostic value.

  1. Clinical analysis of multiple primary malignancies in the digestive system: A hospital-based study

    Institute of Scientific and Technical Information of China (English)

    Hui-Yun Cheng; Cheng-Hsin Chu; Wen-Hsiung Chang; Tzu-Chi Hsu; Shee-Chan Lin; Chuan-Chuan Liu; An-Ming Yang; Shou-Chuan Shih

    2005-01-01

    AIM: To analyze the characteristics of multiple primary malignancies (MPMs) of digestive system; including incidence, types of tumor combinations, time intervals between development of multiple tumors, clinical course,and prognostic factors affecting survival and mortality.METHODS: Data from a total of 129 patients treated from January 1991 to December 2000 for pathologically proved MPMs, including at least one originating from the digestive system, were reviewed retrospectively.RESULTS: Among 129 patients, 120 (93.02%) had two primary cancers and 9 (6.98%) had three primary cancers. The major sites of MPMs of the digestive system were large intestine, stomach, and liver. Associated nondigestive cancers included 40 cases of gynecological cancers, of which 31 were carcinoma of cervix and 10cases of genitourinary cancers, of which 5 were bladder cancers. Other cancers originated from the lung, breast,nasopharynx, larynx, thyroid, brain, muscle, and skin.Reproductive tract cancers, especially cervical, ovarian,bladder, and prostate cancers were the most commonly associated non-GI cancers, followed by cancer of the lung and breasts. Forty-three cases were synchronous, while the rest (86 cases) were metachronous cancers. Staging of MPMs and treatment regimes correlated with the prognosis between survival and non-survival groups.CONCLUSION: As advances in cancer therapy bring about a progressively larger percentage of long-term survivors, the proportion of patients with subsequent primary lesions will increase. Early diagnosis of these lesions, based on an awareness of the possibility of second and third cancers, and multidiscipiinary treatment strategies will substantially increase the survival of these patients.

  2. Switch Based Opportunistic Spectrum Access for General Primary User Traffic Model

    KAUST Repository

    Gaaloul, Fakhreddine

    2012-06-18

    This letter studies cognitive radio transceiver that can opportunistically use the available channels of primary user (PU). Specifically, we investigate and compare two different opportunistic channel access schemes. The first scheme applies when the secondary user (SU) has access to only one channel. The second scheme, based on channel switching mechanism, applies when the SU has access to multiple channels but can at a given time monitor and access only one channel. For these access schemes, we derive the exact analytical results for the novel performance metrics of average access time and average waiting time under general PU traffic models.

  3. Coordinated Power Control Strategy based on Primary-Frequency-Signaling for Islanded Microgrids

    DEFF Research Database (Denmark)

    Wu, Dan; Guerrero, Josep M.; Vasquez, Juan Carlos;

    2013-01-01

    In a flexible microgrid, the power regulation of each electronic-converter-based unit should be not only determined by the load demand, but also controlled according to the power and energy available in each unit. This paper proposes a coordinated control strategy in which each unit can operate in...... different operation modes taking into account the resource limitation. Firstly, a Primary-Frequency-Signaling (PFS) is introduced to realize coordinated control between units in a distributed way. Then the whole control structure of system is descripted in detail, which includes innerloop control with...

  4. Case Report: Liquid-based cytology aids in primary fallopian tube cancer diagnosis

    Institute of Scientific and Technical Information of China (English)

    Zhuo REN; Yun-ping ZHANG; Hui-xia YANG; Li-rong ZHU

    2009-01-01

    Primary fallopian tube carcinoma (PFTC) is a rare malignant carcinoma among all genital tract malignancies. It occurs most commonly in postmenopausal women and is similar to ovarian malignancy historically and clinically. Because of its insidious onset and silent course, the diagnosis is made usually postoperatively. Liquid-based cytology (LBC) is a type of method for cervical cancer screening, but sometimes it may aid in making PFTC diagnosis. We report a 47-year-old woman with PFTC, whose diagnosis was made with the aid of LBC.

  5. Outcome of eating disorders in a primary care-based study.

    OpenAIRE

    Son, G. van; Hoeken, D. van; Furth, E. van; Donker, G.; Hoek, H.

    2009-01-01

    Purpose: Most outcome studies of eating disorders are based on samples of patients that had entered specialized mental health care. This might be a group that does not represent all patients with an eating disorder and possibly shows a different course and outcome. Little is known about the outcome of newly diagnosed patients with an eating disorder in primary care. Method: We studied the course and outcome of eating disorders in a nationwide 3–7 year follow-up study of patients detected in p...

  6. Femtosecond wavelength-tunable OPCPA system based on picosecond fiber laser seed and picosecond DPSS laser pump.

    Science.gov (United States)

    Danilevičius, R; Zaukevičius, A; Budriūnas, R; Michailovas, A; Rusteika, N

    2016-07-25

    We present a compact and stable femtosecond wavelength-tunable optical parametric chirped pulse amplification (OPCPA) system. A novel OPCPA front-end was constructed using a multi-channel picosecond all-in-fiber source for seeding DPSS pump laser and white light supercontinuum generation. Broadband chirped pulses were parametrically amplified up to 1 mJ energy and compressed to less than 40 fs duration. Pulse wavelength tunability in the range from 680 nm to 930 nm was experimentally demonstrated. PMID:27464199

  7. Electrically Pumped Room-Temperature Pulsed InGaAsP-Si Hybrid Lasers Based on Metal Bonding

    Institute of Scientific and Technical Information of China (English)

    CHEN Ting; RAN Guang-Zhao; WANG Wei; QIN Guo-Gang; HONG Tao; PAN Jiao-Qing; CHEN Wei-Xi; CHENG Yuan-Bing; WANG Yang; MA Xiao-Bo; LIU Wei-Li; ZHAO Ling-Juan

    2009-01-01

    A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding.A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure.When electrically pumped at room temperature,the laser operates with a threshold current density of 2.9 kA/cm2 and a slope efficiency of 0.02 W/A.The 1542nm laser output exits mainly from the Si waveguide.

  8. Controlling mode competition by tailoring the spatial pump distribution in a laser: A resonance-based approach

    CERN Document Server

    Cerjan, Alexander; Ge, Li; Liew, Seng Fatt; Cao, Hui; Stone, A Douglas

    2016-01-01

    We introduce a simplified version of the steady-state ab initio laser theory for calculating the effects of mode competition in continuous wave lasers using the passive cavity resonances. This new theory harnesses widely available numerical methods that can efficiently calculate the passive cavity resonances, with negligible additional computational overhead. Using this theory, we demonstrate that the pump profile of the laser cavity can be optimized both for highly multi-mode and single-mode emission. An open source implementation of this method has been made available.

  9. Second generation high data-rate inter-orbit link based on diode-pumped Nd:YAG laser technology

    Science.gov (United States)

    Sontag, H.; Johann, U.; Pribil, K.

    1991-05-01

    The SILEX experimental program is concerned with demonstrating the technologies of an optical communications link between two satellites; in order to expand system capabilities to the high data rates required for future LEO-GEO interorbit links, a detailed design study has been conducted for a system predicated on diode-pumped Nd:YAG laser technology. Even with telescopes whose apertures are less than 10 cm on the LEO satellite, and transmitter powers of less than 1 W, system transmission performance is greater than 1 Gbit/sec.

  10. Physiologically Based Pharmacokinetic Modeling for Substitutability Analysis of Venlafaxine Hydrochloride Extended-Release Formulations Using Different Release Mechanisms: Osmotic Pump Versus Openable Matrix.

    Science.gov (United States)

    Lin, Ho-Pi; Sun, Dajun; Zhang, Xinyuan; Wen, Hong

    2016-10-01

    A Food and Drug Administration-approved generic oral product of venlafaxine hydrochloride (HCl) extended-release (ER) tablets has used a release mechanism based on an openable matrix, which is different from the push-pull osmotic pump system of its reference-listed drug. In an extreme case, a delay in the bursting of the openable matrix may be considered a product failure mode that alters the intended profile of systemic exposure. A physiologically based pharmacokinetic absorption model was established and verified to simulate the pharmacokinetic profiles after a single-dose oral administration of ER venlafaxine HCl tablets based on an osmotic pump or openable matrix design. This model adequately predicted the observed human mean pharmacokinetic metrics with drug-release profiles under most dissolution conditions. The results indicated that a bioinequivalence risk is minimal for a delayed onset of drug release from the approved generic venlafaxine HCl ER tablets with an openable matrix design, supporting its substitutability to the reference product. PMID:27449228

  11. Pre-Service Teachers' Perceptions on Game Based Learning Scenarios in Primary Reading and Writing Instruction Courses

    Science.gov (United States)

    Karadag, Ruhan

    2015-01-01

    The aim of this study was to explore pre-service teachers' perceptions on the use of game-based learning in a Primary Reading and Writing Instruction Course. A mixed method research was used in the study. Participants were composed of a total of 189 pre-service teachers taking the Primary Reading and Writing Instruction course during the fall term…

  12. Web-based screening for diabetic retinopathy in a primary care population: The EyeCheck Project

    NARCIS (Netherlands)

    Abramoff, M.D.; Suttorp-Schulten, M.S.A.

    2005-01-01

    The objective of this study was to evaluate the feasibility of ATA category 2 Web-based screening for diabetic retinopathy in a primary care population in the Netherlands. A total of 1,676 patients in a primary care setting, with diabetes, without known diabetic retinopathy, and without previous scr

  13. Adapting evidence-based, cognitive-behavioral interventions for anxiety for use with adults in integrated primary care settings.

    Science.gov (United States)

    Shepardson, Robyn L; Funderburk, Jennifer S; Weisberg, Risa B

    2016-06-01

    Evidence-based treatments for adult patients with anxiety are greatly needed within primary care settings. Psychotherapy protocols, including those for cognitive-behavioral therapy (CBT), are often disorder-specific and were developed for specialty mental health settings, rendering them infeasible in primary care. Behavioral health consultants (BHCs) integrated into primary care settings are uniquely positioned to provide anxiety treatment. However, due to the dearth of empirically supported brief treatments for anxiety, BHCs are tasked with adapting existing treatments for use in primary care, which is quite challenging due to the abbreviated format and population-based approach to care. CBT protocols are highly effective in the treatment of anxiety and fit well with the self-management emphasis of integrated primary care. We review the rationale and procedure for 6 evidence-based CBT intervention techniques (psycho-education, mindfulness and acceptance-based behavioral techniques, relaxation training, exposure, cognitive restructuring, and behavioral activation) that can be adapted for use in the brief format typical of integrated primary care. We offer tips based on our clinical experience, highlight resources (e.g., handouts, websites, apps), and discuss 2 case examples to aid BHCs in their everyday practice. Our goal is to provide BHCs with practical knowledge that will facilitate the use of evidence-based interventions to improve the treatment of anxiety in primary care settings. (PsycINFO Database Record PMID:27064434

  14. An Internet-Based Intervention for Depression in Primary Care in Spain: A Randomized Controlled Trial

    Science.gov (United States)

    Montero-Marín, Jesús; Araya, Ricardo; Mayoral, Fermín; Gili, Margalida; Botella, Cristina; Baños, Rosa; Castro, Adoración; Romero-Sanchiz, Pablo; López-Del-Hoyo, Yolanda; Nogueira-Arjona, Raquel; Vives, Margarita; Riera, Antoni; García-Campayo, Javier

    2016-01-01

    Background Depression is the most prevalent cause of illness-induced disability worldwide. Face-to-face psychotherapeutic interventions for depression can be challenging, so there is a need for other alternatives that allow these interventions to be offered. One feasible alternative is Internet-based psychological interventions. This is the first randomized controlled trial (RCT) on the effectiveness of an Internet-based intervention on depression in primary health care in Spain. Objective Our aim was to compare the effectiveness of a low-intensity therapist-guided (LITG) Internet-based program and a completely self-guided (CSG) Internet-based program with improved treatment as usual (iTAU) care for depression. Methods Multicenter, three-arm, parallel, RCT design, carried out between November 2012 and January 2014, with a follow-up of 15 months. In total, 296 adults from primary care settings in four Spanish regions, with mild or moderate major depression, were randomized to LITG (n=96), CSG (n=98), or iTAU (n=102). Research completers at follow-up were 63.5%. The intervention was Smiling is Fun, an Internet program based on cognitive behavioral therapy. All patients received iTAU by their general practitioners. Moreover, LITG received Smiling is Fun and the possibility of psychotherapeutic support on request by email, whereas CSG received only Smiling is Fun. The main outcome was the Beck Depression Inventory-II at 3 months from baseline. Mixed-effects multilevel analysis for repeated measures were undertaken. Results There was no benefit for either CSG [(B coefficient=-1.15; P=.444)] or LITG [(B=-0.71; P=.634)] compared to iTAU, at 3 months. There were differences at 6 months [iTAU vs CSG (B=-4.22; P=.007); iTAU vs LITG (B=-4.34; P=.005)] and 15 months [iTAU vs CSG (B=-5.10; P=.001); iTAU vs LITG (B=-4.62; P=.002)]. There were no differences between CSG and LITG at any time. Adjusted and intention-to-treat models confirmed these findings. Conclusions An Internet-based

  15. Novel limiter pump topologies

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure.

  16. Flow Characteristics of the PHTS Mechanical Pump in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung; Lee, Tae-Hoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hwi-Seob [CD-adapco, Seoul (Korea, Republic of)

    2014-10-15

    The PHTS (Primary Heat Transfer System) mechanical pump is one of the most important parts in the PGSFR. The objective of the PHTS pump is to circulate a sodium coolant to transfer the heat generated in the core to the IHTS (Intermediate Heat Transfer System). Therefore, it is important to verify the performance of the PHTS pump under various flow conditions. The flow inside the pump is a very complex multi-dimensional phenomenon that depends on the rotation speed of the pump, and the geometry of the impeller and diffuser. In particular, the pump performance and flow characteristics can be evaluated using a homologous curve represented by normalized variables of the head and torque. Using a homologous curve obtained by a real pump or model pump reduced by the same specific speed is reasonable, but the detailed design procedure about the prototype PHTS pump has not been completed at this point. In this study, the flow characteristics and homologous curve of the PHTS pump are evaluated by CFD. The flow characteristic of the PHTS pump is evaluated by the CFD. The head and torque are calculated at several flow rates and rotation speeds, and these values are substituted with normalized pump parameters. Also, the homologous head and torque curve is plotted using normalized pump parameters. This curve is used as the input of the safety analysis.

  17. Turbulent flow and pressure fluctuation prediction of the impeller in an axial-flow pump based on LES

    International Nuclear Information System (INIS)

    The Large Eddy Simulation method with sliding mesh technique has been used for analyzing the unsteady flow in an axial-flow pump at five different flow rates. The tip leakage flow in the tip-gap region and the pressure pulsations on the blade surface were examined. The results indicate that the agreement between predicted pump performance and experimental data was reasonably good. The dominate tip-leakage vortex(TLV) extended to the pressure side of the neighboring blade for all five investigated flow rates. As the flow rate increases from 0.7Qd to 1.2Qd, the angle between the dominate TLV and the blade reduced from 20 deg to 14 deg. The results also showed that the amplitude of pressure fluctuation on the near-tip zone of the blade surface increases as the flow rate farer from the design flow rate, especially on the pressure side of the blade. At the 0.7Qd operation condition, the pressure fluctuation amplitude of the monitoring point PP3 (at the near-tip zone on the pressure side of the blade close to the blade leading edge) was 8.5 times of the one at design flow rate, and the high-frequency(18fr) pulsation occurred due to tip leakage vortex. When the flow rate was more than 1.0Qd, the pressure fluctuations of PP3 was dominated by the rotation frequency(fr)

  18. Turbulent flow and pressure fluctuation prediction of the impeller in an axial-flow pump based on LES

    Science.gov (United States)

    Shen, J. F.; Li, Y. J.; Liu, Z. Q.; Tang, X. L.

    2013-12-01

    The Large Eddy Simulation method with sliding mesh technique has been used for analyzing the unsteady flow in an axial-flow pump at five different flow rates. The tip leakage flow in the tip-gap region and the pressure pulsations on the blade surface were examined. The results indicate that the agreement between predicted pump performance and experimental data was reasonably good. The dominate tip-leakage vortex(TLV) extended to the pressure side of the neighboring blade for all five investigated flow rates. As the flow rate increases from 0.7Qd to 1.2Qd, the angle between the dominate TLV and the blade reduced from 20 deg to 14 deg. The results also showed that the amplitude of pressure fluctuation on the near-tip zone of the blade surface increases as the flow rate farer from the design flow rate, especially on the pressure side of the blade. At the 0.7Qd operation condition, the pressure fluctuation amplitude of the monitoring point PP3 (at the near-tip zone on the pressure side of the blade close to the blade leading edge) was 8.5 times of the one at design flow rate, and the high-frequency(18fr) pulsation occurred due to tip leakage vortex. When the flow rate was more than 1.0Qd, the pressure fluctuations of PP3 was dominated by the rotation frequency(fr).

  19. Influence of problem-based teaching and learning of grammar on pupils’ attainment in primary school

    Directory of Open Access Journals (Sweden)

    Jocić Zorica

    2010-01-01

    Full Text Available With the purpose of getting an insight into the effects of problem-based teaching and learning, an experiment was carried out by using the method of parallel groups on the sample of 204 pupils in the third and sixth grade of primary school. The results of final knowledge assessment showed that problem-based teaching and learning of grammar had positive influence on pupils' attainment comparing to the usual way of learning grammar. A significant improvement has been achieved in the field of reproductive and productive grammar knowledge on the whole sample of pupils as well as on the subsamples of pupils in the third and sixth grade. Because of the limited time left for this experimental programme, the reproductive knowledge of pupils was bigger than the productive knowledge. It has been noticed that regarding the successfulness of solving the grammatical problems, there was no difference between the pupils of younger and older primary school age, in the situation when these problems were decided on according to their age and intellectual abilities. All pupils had made an improvement, but they remained within the range of their marks in Serbian language. In addition to this, better progress was made by the pupils with better marks in Serbian language. Girls were more successful than boys, but the difference between boys and girls was smaller regarding the reproductive knowledge than the productive knowledge.

  20. Analyzing the Interprofessional Working of a Home-Based Primary Care Team.

    Science.gov (United States)

    Smith-Carrier, Tracy; Neysmith, Sheila

    2014-09-01

    Increasingly, interprofessional teams are responsible for providing integrated health care services. Effective teams, however, are not the result of chance but require careful planning and ongoing attention to team processes. Based on a case study involving interviews, participant observation, and a survey, we identified key attributes for effective interprofessional working (IPW) within a home-based primary care (HBPC) setting. Recognizing the importance of a theoretical model that reflects the multidimensional nature of team effectiveness research, we employed the integrated team effectiveness model to analyze our findings. The results indicated that a shared vision, common goals, respect, and trust among team members – as well as processes for ongoing communication, effective leadership, and mechanisms for conflict resolution – are vital in the development of a high-functioning IPW team. The ambiguity and uncertainty surrounding the context of service provision (clients' homes), as well the negotiation of external relationships in the HBPC field, require further investigation. PMID:26261888

  1. Primary User Localization Algorithm Based on Compressive Sensing in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Fang Ye

    2016-04-01

    Full Text Available In order to locate source signal more accurately in authorized frequency bands, a novel primary user localization algorithm based on compressive sensing (PU-CSL in cognitive radio networks (CRNs is proposed in this paper. In comparison to existing centroid locating algorithms, PU-CSL shows higher locating accuracy for integrally exploring correlation between source signal and secondary users (SUs. Energy detection is first adopted for collecting the energy fingerprint of source signal at each SU, then degree of correlation between source signal and SUs is reconstructed based on compressive sensing (CS, which determines weights of centroid coordinates. A weighted centroid scheme is finally utilized to estimate source position. Simulation results show that PU-CSL has smaller maximum error of positioning and root-mean-square error. Moreover, the proposed PU-CSL algorithm possess excellent location accuracy and strong anti-noise performance.

  2. Reliable classifier to differentiate primary and secondary acute dengue infection based on IgG ELISA.

    Directory of Open Access Journals (Sweden)

    Marli Tenório Cordeiro

    Full Text Available BACKGROUND: Dengue virus infection causes a wide spectrum of illness, ranging from sub-clinical to severe disease. Severe dengue is associated with sequential viral infections. A strict definition of primary versus secondary dengue infections requires a combination of several tests performed at different stages of the disease, which is not practical. METHODS AND FINDINGS: We developed a simple method to classify dengue infections as primary or secondary based on the levels of dengue-specific IgG. A group of 109 dengue infection patients were classified as having primary or secondary dengue infection on the basis of a strict combination of results from assays of antigen-specific IgM and IgG, isolation of virus and detection of the viral genome by PCR tests performed on multiple samples, collected from each patient over a period of 30 days. The dengue-specific IgG levels of all samples from 59 of the patients were analyzed by linear discriminant analysis (LDA, and one- and two-dimensional classifiers were designed. The one-dimensional classifier was estimated by bolstered resubstitution error estimation to have 75.1% sensitivity and 92.5% specificity. The two-dimensional classifier was designed by taking also into consideration the number of days after the onset of symptoms, with an estimated sensitivity and specificity of 91.64% and 92.46%. The performance of the two-dimensional classifier was validated using an independent test set of standard samples from the remaining 50 patients. The classifications of the independent set of samples determined by the two-dimensional classifiers were further validated by comparing with two other dengue classification methods: hemagglutination inhibition (HI assay and an in-house anti-dengue IgG-capture ELISA method. The decisions made with the two-dimensional classifier were in 100% accordance with the HI assay and 96% with the in-house ELISA. CONCLUSIONS: Once acute dengue infection has been determined, a 2-D

  3. Primary care physicians’ perspectives on computer-based health risk assessment tools for chronic diseases: a mixed methods study

    OpenAIRE

    Teja Voruganti; Mary Ann O'Brien; Straus, Sharon E; McLaughlin, John R.; Eva Grunfeld

    2015-01-01

    Background Health risk assessment tools compute an individual’s risk of developing a disease. Routine use of such tools by primary care physicians (PCPs) is potentially useful in chronic disease prevention. We sought physicians’ awareness and perceptions of the usefulness, usability and feasibility of performing assessments with computer-based risk assessment tools in primary care settings.Methods Focus groups and usability testing with a computer-based risk assessment tool were conducted wit...

  4. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  5. Clinico-bacteriological profile of primary pyodermas in Kashmir: a hospital-based study.

    Science.gov (United States)

    Bhat, Y J; Hassan, I; Bashir, S; Farhana, A; Maroof, P

    2016-03-01

    Pyodermas are a common group of infectious dermatological conditions on which few studies have been conducted. This study aimed to characterise the clinical and bacteriological profile of pyodermas, and to determine the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection in primary pyodermas in a dermatology outpatient department in Kashmir. Methods We conducted a hospital based cross-sectional study in the outpatient Department of Dermatology, Sexually Transmitted Diseases and Leprosy of Shri Maharaja Hari Singh Hospital, Srinagar, Jammu and Kashmir, India. Patients presenting with primary pyodermas were included in the study. A detailed history and complete physical and cutaneous examination was carried out along with microbiological testing to find aetiological microorganisms and their respectiveantimicrobial susceptibility patterns. Antimicrobial susceptibility testing, including that for methicillin resistance, was carried out by standard methods as outlined in the current Clinical and Laboratory Standards Institute guidelines. Results In total, 110 patients were included; the age of the study population ranged from 3 to 65 years (mean age 28 years); 62% were male. Poor personal hygiene was noted in 76 (69%). Furunculosis (56; 51%) was the most common clinical presentation. Staphylococcus aureus was isolated in 89 (81%) of cases, and MRSA formed 54/89 (61%) of Staphylococcus aureus isolates. All MRSA strains were sensitive to vancomycin. Conclusion The prevalence of MRSA was high in this sample of communityacquired primary pyodermas. It is therefore important to monitor the changing trends in bacterial infection and their antimicrobial susceptibility patterns and to formulate a definite antibiotic policy which may be helpful in decreasing the incidence of MRSA infection.

  6. Snoring in primary school children and domestic environment: A Perth school based study

    Directory of Open Access Journals (Sweden)

    Lee Andy H

    2004-11-01

    Full Text Available Abstract Background The home is the predominant environment for exposure to many environmental irritants such as air pollutants and allergens. Exposure to common indoor irritants including volatile organic compounds, formaldehyde and nitrogen dioxide, may increase the risk of snoring for children. The aim of this study was to investigate domestic environmental factors associated with snoring in children. Methods A school-based respiratory survey was administered during March and April of 2002. Nine hundred and ninety six children from four primary schools within the Perth metropolitan area were recruited for the study. A sub-group of 88 children aged 4–6 years were further selected from this sample for domestic air pollutant assessment. Results The prevalences of infrequent snoring and habitual snoring in primary school children were 24.9% and 15.2% respectively. Passive smoking was found to be a significant risk factor for habitual snoring (odds ratio (OR = 1.77; 95% confidence interval (CI: 1.20–2.61, while having pets at home appeared to be protective against habitual snoring (OR = 0.58; 95% CI: 0.37–0.92. Domestic pollutant assessments showed that the prevalence of snoring was significantly associated with exposure to nitrogen dioxide during winter. Relative to the low exposure category (3, the adjusted ORs of snoring by children with medium (30 – 60 μg/m3 and high exposures (> 60 μg/m3 to NO2 were 2.5 (95% CI: 0.7–8.7 and 4.5 (95% CI: 1.4–14.3 respectively. The corresponding linear dose-response trend was also significant (P = 0.011. Conclusion Snoring is common in primary school children. Domestic environments may play a significant role in the increased prevalence of snoring. Exposure to nitrogen dioxide in domestic environment is associated with snoring in children.

  7. Photovoltaic pump systems

    Science.gov (United States)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  8. 2012 International Conference on Medical Physics and Biomedical Engineering Thermal Economic Analysis on LiBr Refrigeration -Heat Pump System Applied in CCHP System

    Science.gov (United States)

    Zhang, CuiZhen; Yang, Mo; Lu, Mei; Zhu, Jiaxian; Xu, Wendong

    LiBr refrigeration cooling water contains a lot of low-temperature heat source, can use this part of the heat source heat boiler feed water. This paper introduced LiBr refrigeration - heat pump system which recovery heat of the LiBr refrigeration cooling water by heat pump system to heat the feed water of boiler. Hot economic analysis on the system has been performed based on the experimental data. Results show that LiBr refrigeration-heat pump system brings 26.6 percent decrease in primary energy rate consumption comparing with the combined heat and power production system(CHP) and separate generation of cold;

  9. Overview of a FPGA-based nuclear instrumentation dedicated to primary activity measurements.

    Science.gov (United States)

    Bobin, C; Bouchard, J; Pierre, S; Thiam, C

    2012-09-01

    In National Metrology Institutes like LNE-LNHB, renewal and improvement of the instrumentation is an important task. Nowadays, the current trend is to adopt digital boards, which present numerous advantages over the standard electronics. The feasibility of an on-line fulfillment of nuclear-instrumentation functionalities using a commercial FPGA-based (Field-Programmable Gate Array) board has been validated in the case of TDCR primary measurements (Triple to Double Coincidence Ratio method based on liquid scintillation). The new applications presented in this paper have been included to allow either an on-line processing of the information or a raw-data acquisition for an off-line treatment. Developed as a complementary tool for TDCR counting, a time-to-digital converter specifically designed for this technique has been added. In addition, the description is given of a spectrometry channel based on the connection between conventional shaping amplifiers and the analog-to-digital converter (ADC) input available on the same digital board. First results are presented in the case of α- and γ-counting related to, respectively, the defined solid angle and well-type NaI(Tl) primary activity techniques. The combination of two different channels (liquid scintillation and γ-spectrometry) implementing the live-time anticoincidence processing is also described for the application of the 4πβ-γ coincidence method. The need for an optimized coupling between the analog chain and the ADC stage is emphasized. The straight processing of the signals delivered by the preamplifier connected to a HPGe detector is also presented along with the first development of digital filtering.

  10. Towards a universal trait-based model of terrestrial primary production

    Science.gov (United States)

    Wang, H.; Prentice, I. C.; Cornwell, W.; Keenan, T. F.; Davis, T.; Wright, I. J.; Evans, B. J.; Peng, C.

    2015-12-01

    Systematic variations of plant traits along environmental gradients have been observed for decades. For example, the tendencies of leaf nitrogen per unit area to increase, and of the leaf-internal to ambient CO2 concentration ratio (ci:ca) to decrease, with aridity are well established. But ecosystem models typically represent trait variation based purely on empirical relationships, or on untested conjectures, or not at all. Neglect of quantitative trait variation and its adapative significance probably contributes to the persistent large uncertainties among models in predicting the response of the carbon cycle to environmental change. However, advances in ecological theory and the accumulation of extensive data sets during recent decades suggest that theoretically based and testable predictions of trait variation could be achieved. Based on well-established ecophysiological principles and consideration of the adaptive significance of traits, we propose universal relationships between photosynthetic traits (ci:ca, carbon fixation capacity, and the ratio of electron transport capacity to carbon fixation capacity) and primary environmental variables, which capture observed trait variations both within and between plant functional types. Moreover, incorporating these traits into the standard model of C3photosynthesis allows gross primary production (GPP) of natural vegetation to be predicted by a single equation with just two free parameters, which can be estimated from independent observations. The resulting model performs as well as much more complex models. Our results provide a fresh perspective with potentially high reward: the possibility of a deeper understanding of the relationships between plant traits and environment, simpler and more robust and reliable representation of land processes in Earth system models, and thus improved predictability for biosphere-atmosphere interactions and climate feedbacks.

  11. The material analysis for PWR primary equipment

    International Nuclear Information System (INIS)

    The primary equipment in pressurized water reactor includes reactor pressure vessel, reactor coolant piping, steam generator, pressurizer, and reactor coolant pump casing, etc., which form the pressure boundary of the primary loop. These primary equipment are all pressure vessels of QA Class 1, Safety-related Class 1, and Aseismatic Category 1. Under high temperature, high pressure and neutron irradiation, the requirements for the base material and welding properties of these pressure vessels are very high, so as to ensure the long-term stable operation of nuclear power plant. The base material and welding properties of these pressure vessels are analyzed and discussed according to ASME B and P Code, which can be as a reference for base material selection of PWR pressure vessels. (authors)

  12. Cavitation performance prediction of engine cooling water pump based on CFD%基于CFD的发动机冷却水泵汽蚀性能预测

    Institute of Scientific and Technical Information of China (English)

    李伟; 施卫东; 张华; 裴冰; 陆伟刚

    2012-01-01

    The three-dimensional turbulent flow in an engine cooling water pump with the impeller, which has ever been severely damaged in operation, was simulated employing the time-averaged N-Se-quations, the standard k - e turbulence model and multiphase flow model by CFX software. The characteristics and cavitation performance were predicted and the reasons for the impeller damage were clarified by observing the flow variable distributions in the impeller of the pump. The numerical simulation results indicat that the critical NPSH of the pump is about 10.7 m at 85 °C, and a serious cavitation occurs under zero gauge pressure, it is suggested that cavitation causes the impeller damage. The experimental head of the pump is 6.1 m at the design flow rate of 285 L/min, it is well below the numerical simulation head under room temperature, thus a serious cavitation has occurred in the real operating conditions ; such a conclusion based on the predicted results is basically consistent with the experimental observations. The numerical results provide a theoretical basis for improving the cavitation performance or preventing from or mitigating cavitation in an engine cooling water pump. It offers a fast and precise computational method for simulating and identifying cavitation damage in engine cooling water pumps as well.%以雷诺时均N-S方程为基本控制方程,采用标准k-ε双方程湍流模型及多相流模型,利用计算流体动力学软件CFX模拟了发动机冷却水泵内部的三维湍流流场,对某一叶轮严重损坏的发动机冷却水泵外特性性能和汽蚀性能进行预测,并分析叶轮损坏原因,观察冷却水泵叶轮内部汽蚀情况.模拟结果表明:在85℃下模型泵的临界汽蚀余量约为10.7 m,在表压为0时已发生了较为严重的汽蚀现象,叶轮破坏主要是由汽蚀引起.通过与试验数据进行对比验证,水泵在285 L/min设计流量下扬程为6.1m,远远低于常温下的数值模拟结果,说明该泵

  13. Testing system of automobile fuel pump performance based on PLC%基于PLC的汽车电子燃油泵性能检测系统

    Institute of Scientific and Technical Information of China (English)

    山海峰; 刘涵; 郭吉丰

    2013-01-01

    针对目前无刷电机式汽车电子燃油泵性能检测系统的缺失以及生产过程中燃油泵驱动控制器的质量检验问题,分析了燃油泵运行环境及目前测试方法的不足,以西门子S7-200系列PLC、触摸屏、各种传感器及测试治具为核心部件,运用VB6.0进行了上位机测试软件以及梯形图PLC软件的编写,构建了基于PLC的燃油泵性能在线自动检测系统;在现有已知参数燃油泵的基础上对测试系统进行了验证,得出了系统测试精度以及测试过程中发现的一些常见燃油泵质量问题.研究结果表明,设计的基于PLC的燃油泵自动检测测试系统具有成本较低、测试可靠、使用寿命长、操作方便等特点,对无刷式燃油泵的设计有一定的指导作用.%In order to solve the problems of the weakness of current designed brushless fuel pump detection system and the detection of quality in production process, the test system was investigated. After the analysis of the working principle and test method of fuel pump, the sys tem was established, which was based on Siemens PLC , touch win, pressure sensor, flow sensor and so on, and the VB6.0 was used to de sign the computer software, ladder diagram to PLC program. The known parameters fuel pump was evaluated on the test system, the precision and test error of system were determined. The experimental results show that the designed test system has the advantages of high precision, long life, easy to operate, conduce to the design of brushless fuel pump.

  14. 电液泵电磁场有限元分析与研究%Electromagnetic Field Analysis and Research of Electrohydraulic Pump Based on Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    陈焕明; 刘卫国; 宋受俊; 习仁国

    2013-01-01

    In this paper, according to the structural features and operating principles of PM brushless DC motor and axial plunger-type hydraulic pump, a new hydraulic energy system, named electrohydraulic pump, is proposed based on traditional canned motor pump .The integrating principle and structure are analyzed , and then, the elec-tromagnetic field numerical calculation and analysis of the electrohydraulic pump are conducted with MagNet under both no-load and load conditions.The simulation results verify the feasibility of proposed integrated design .The magnetic field in the system has no distortion and local saturation , and the dynamic performances satisfy the techni -cal requirements.The simulation results, we believe, provide some theoretical basis and serve as some guidance for the integrated design and performance optimization of the hydraulic energy system .%  在屏蔽式电机泵的基础之上,根据永磁无刷直流电机和轴向柱塞液压泵的结构特点和运行原理,提出了一种将两者高度集成的新型液压能源系统---电液泵。通过对电液泵集成原理和结构的分析,利用有限元分析软件 MagNet 对电液泵进行了空载和负载状态下的电磁场数值计算与分析。仿真结果证明了所提出集成设计方案的可行性,系统内部没有出现磁场畸变与局部饱和现象,其动态性能满足技术要求。研究结果在液压能源系统的集成设计以及性能优化等方面具有理论意义和参考价值。

  15. Integrating care coordination home telehealth and home based primary care in rural Oklahoma: a pilot study.

    Science.gov (United States)

    Sorocco, Kristen H; Bratkovich, Kristi L; Wingo, Rita; Qureshi, Saleem M; Mason, Patrick J

    2013-08-01

    The purpose of this program was to evaluate the benefits of integrating VA Care Coordination Home Telehealth and Telemental health within HBPC. A case study design was used to determine quality assurance and quality improvement of incorporating additional home telehealth equipment within Home Based Primary Care (HBPC). Veterans with complex medical conditions and their caregivers living in rural Oklahoma were enrolled. Veterans received the same care other HBPC patients received with the addition of home telehealth equipment. Members from the interdisciplinary treatment team were certified to use the telehealth equipment. Veterans and their caregivers were trained on use of the equipment in their homes. Standard HBPC program measures were used to assess the program success. Assessments from all disciplines on the HBPC team were at baseline, 3, and 6 months, and participants provided satisfaction and interview data to assess the benefits of integrating technology into standard care delivery within an HBPC program. Six veterans were enrolled (mean age = 72 yrs) with a range of physical health conditions including: chronic obstructive pulmonary disease, cerebrovascular accident, spinal cord injury, diabetes, hypertension, and syncope. Primary mental health conditions included depression, dementia, anxiety, and PTSD. Scores on the Mini-Mental State Examination ranged from 18 to 30. Over a 6-month period, case studies indicated improvements in strength, social functioning, decreased caregiver burden, and compliance with treatment plan. This integration of CCHT and HBPC served previously underserved rural veterans having complex medical conditions and appears both feasible and clinically beneficial to veterans and their caregivers.

  16. Clinical results of stereotactic body frame based fractionated radiation therapy for primary or metastatic thoracic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Min [Univ. of Ulsan, Seoul (Korea, Republic of). Dept. of Radiation Oncology] (and others)

    2006-12-15

    The aim of this study was to evaluate the treatment outcomes of stereotactic body radiation therapy for treating primary or metastatic thoracic tumors using a stereotactic body frame. Between January 1998 and February 2004, 101 lesions from 91 patients with thoracic tumors were prospectively reviewed. A dose of 10-12 Gy per fraction was given three to four times over consecutive days to a total dose of 30-48 Gy (median 40 Gy). The overall response rate was 82%, with 20 (22%) complete responses and 55 (60%) partial responses. The one- and two-year local progression free survival rates were 90% and 81%, respectively. The patients who received 48 Gy showed a better local tumor control than those who received less than 48 Gy (Fisher exact test; p=0.004). No pulmonary complications greater than a RTOG toxicity criteria grade 2 were observed. The experience of stereotactic body frame based radiation therapy appears to be a safe and promising treatment modality for the local management of primary or metastatic lung tumors. The optimal total dose, fractionation schedule and treatment volume need to be determined after a further follow-up of these results.

  17. Culture-based identification of pigmented Porphyromonas and Prevotella species in primary endodontic infections.

    Science.gov (United States)

    Rajaram, Anuradha; Kotrashetti, Vijayalakshmi S; Somannavar, Pradeep D; Ingalagi, Preeti; Bhat, Kishore

    2016-01-01

    Background. The most common species isolated from primary endodontic infections are black-pigmented bacteria. These species are implicated in apical abscess formation due to their proteolytic activity and are fastidious in nature. Therefore, the present study was carried out to evaluate the presence and identification of various pigmented Porphyromonas and Prevotella species in the infected root canal through culture-based techniques. Methods. Thirty-one patients with primary endodontic infections were selected. Using sterile paper points, samples were collected from the root canals after access opening and prior to obturation, which were cultured using blood and kanamycin blood agar. Subsequently, biochemical test was used to identify the species and the results were analyzed using percentage comparison analysis, McNemar and chi-squared tests, Wilcoxon match pair test and paired t-test. Results. Out of 31 samples 26 were positive for black-pigmented organisms; the predominantly isolated species were Prevotella followed by Porphyromonas. In Porphyromonas only P. gingivalis was isolated. One of the interesting features was isolation of P. gingivalis through culture, which is otherwise very difficult to isolate through culture. Conclusion . The presence of Prevotella and Porphyromonas species suggests that a significant role is played by these organisms in the pathogenesis of endodontic infections. PMID:27651878

  18. Economic evaluation in primary health care: the case of Western Kenya community based health care project.

    Science.gov (United States)

    Wang'ombe, J K

    1984-01-01

    This paper describes the methodology and presents preliminary results of an economic appraisal of a community based health care project in Kenya. Community health workers, trained for 12 weeks and deployed in two locations in Kenya's Western Province, act as first contact providers of basic health care and promoters of selected health, sanitation and nutrition practices. A Cost Benefit Analysis has been undertaken using the Willingness to Pay approach to compare the costs of the project and its benefits. The benefits are in the form of more easily accessible basic health care and are measured as consumer surplus accruing to the community. Gain in consumer surplus is consequent on the fall of average user costs and rise in utilisation of the project established points of first contact with primary health care. The argument for the economic viability of the project is validated by the large Net Present Value and Benefit Cost Ratio obtained for the whole of the project area and for the two locations separately. Although the evaluation technique used faces the problem of valuation of community time, aggregation of health care services at all points of first contact and the partial nature of cost benefit analysis evaluations, the results are strongly in favour of decentralisation of primary health care on similar lines in the rest of the country. PMID:6427933

  19. Multimedia Scenario Based Learning Programme for Enhancing the English Language Efficiency among Primary School Students

    Directory of Open Access Journals (Sweden)

    Navnath Tupe

    2015-07-01

    Full Text Available This research was undertaken with a view to assess the deficiencies in English language among Primary School Children and to develop Multimedia Scenario Based Learning Programme (MSBLP for mastery of English language which required special attention and effective treatment. The experimental study with pretest, post-test control group design was employed to carry out the experiment of MSBLP in a sample school and to determine its efficacy for enhancing English Language skills among Primary School Students. In India, the Central and State Government has made great efforts to Education for All (EFA and initiated several programs to provide universal access to education, to reduce the drop-out rates and ensure achievement of minimum levels of learning. To our surprise the scenario had not much changed inside the classroom even implementing several programmes. However, it was still unclear how effective was the delivery of the course content in the classroom. An intensive training for teachers on a regular basis on a state-wide scale may not be feasible again and again. Hence, multimedia offers pragmatic solutions So that this research paper devoted to explore the issues of learning English and describes the creation of MSBLP as a solution in scientific manner.

  20. Feasibility study of a wind powered water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-12-01

    Full Text Available Water is the primary source of life for mankind and one of the most basic necessities for rural development. Most of the rural areas of Ethiopia do not have access to potable water. Is some regions of the country access potable water is available through use of manual pumping and Diesel engine. In this research, wind water pump is designed to supply drinking water for three selected rural locations in Ethiopia. The design results show that a 5.7 m diameter windmill is required for pumping water from borehole through a total head of 75, 66 and 44 m for Siyadberand Wayu, Adami Tulu and East Enderta to meet the daily water demand of 10, 12 and 15 m3, respectively. The simulation for performance of the selected wind pump is conducted using MATLAB software and the result showed that monthly water discharge is proportional to the monthly average wind speed at the peak monthly discharge of 685 m3 in June, 888 m3 in May and 1203 m3 in March for Siyadberand Wayu, Adami Tulu and East Enderta sites, respectively. An economic comparison is conducted, using life cycle cost analysis, for wind mill and Diesel water pumping systems and the results show that windmill water pumping systems are more feasible than Diesel based systems.

  1. Design of Annular Linear Induction Pump for High Temperature Liquid Lead Transportation

    International Nuclear Information System (INIS)

    EM(Electro Magnetic) Pump is divided into two parts, which consisted of the primary one with electromagnetic core and exciting coils, and secondary one with liquid lead flow. The main geometrical variables of the pump included core length, inner diameter and flow gap while the electromagnetic ones covered pole pitch, turns of coil, number of pole pairs, input current and input frequency. The characteristics of design variables are analyzed by electrical equivalent circuit method taking into account hydraulic head loss in the narrow annular channel of the ALIP. The design program, which was composed by using MATLAB language, was developed to draw pump design variables according to input requirements of the flow rate, developing pressure and operation temperature from the analyses. The analysis on the design of ALIP for high temperature liquid lead transportation was carried for the produce of ALIP designing program based on MATLAB. By the using of ALIP designing program, we don't have to bother about geometrical relationship between each component during detail designing process because code calculate automatically. And prediction of outputs about designing pump can be done easily before manufacturing. By running the code, we also observe and analysis change of outputs caused by changing of pump factors. It will be helpful for the research about optimization of pump outputs

  2. Breast milk - pumping and storing

    Science.gov (United States)

    ... a comfortable chair, sink, and electric pump. If pumping at work is going to be hard, build ... up your milk supply. Wash your hands before pumping. Collect breast milk when pumping. You can use: ...

  3. Design and Implementation of SCADA System Based Power Distribution for Primary Substation (Control System

    Directory of Open Access Journals (Sweden)

    Khin Thu Zar Win

    2014-10-01

    Full Text Available SCADA stands for Supervisory Control and Data Acquisition. SCADA system is more porpular than other control system in the modern industrial processes. This research describes the automated switch control for SCADA based electrical distribution system of primary substation by using PLC. The objective of this research is to transform the manual control system to automated switch control system in Myanmar. There are four main portions in SCADA based electrical distribution system. They are automated control system, interfacing units, monitoring system and networking system. The automated control system is emphasised in this research. This system can be accomplished by using PLC ladder diagram. This automated distribution system is analyzed to develop a secure, reliabe and convenient management tool which can use remote terminal units (RTUs. The simulations based approach automated system are demonstrated in this research. According to the simulation results, the proposed automated control system using PLC are met with the desired control environment with high performance stage. This system is efficient and reliable for conventional electrical distribution system in Myanmar by using SCADA based technology.

  4. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    International Nuclear Information System (INIS)

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author)

  5. Design of Water Pump Frequency Conversion Control for Heat Pump based on PLC%基于PLC的CO 2热泵水泵变频控制系统设计

    Institute of Scientific and Technical Information of China (English)

    杨军红

    2014-01-01

    The paper combine air source heat pump in reality application, tell about how to carry out the CO2 heat pump frequency conversion control use Programmable Logic Control(PLC), Variable-frequency Drive and Touch Screen, in order to adjust the water temperature of heat pump.%结合空气源CO2热泵的实际应用,阐述如何利用可编程控制器(PLC)、变频器以及触摸屏,设计出空气源CO 2热泵水泵变频控制系统,以达到快速调节、稳定热泵热水出水温度的目的。

  6. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  7. A framework to support team-based models of primary care within the Australian health care system.

    Science.gov (United States)

    Naccarella, Lucio; Greenstock, Louise N; Brooks, Peter M

    2013-09-01

    Health systems with strong primary care orientations are known to be associated with improved equity, better access for patients to appropriate services at lower costs, and improved population health. Team-based models of primary care have emerged in response to health system challenges due to complex patient profiles, patient expectations and health system demands. Successful team-based models of primary care require a combination of interprofessional education and learning; organisational and management policies and systems; and practice support systems. To ensure evidence is put into practice, we propose a framework comprising five domains (theory, implementation, infrastructure, sustainability and evaluation) to assist policymakers, educators, researchers, managers and health professionals in supporting team-based models of primary care within the Australian health care system. PMID:25370088

  8. A framework to support team-based models of primary care within the Australian health care system.

    Science.gov (United States)

    Naccarella, Lucio; Greenstock, Louise N; Brooks, Peter M

    2013-09-01

    Health systems with strong primary care orientations are known to be associated with improved equity, better access for patients to appropriate services at lower costs, and improved population health. Team-based models of primary care have emerged in response to health system challenges due to complex patient profiles, patient expectations and health system demands. Successful team-based models of primary care require a combination of interprofessional education and learning; organisational and management policies and systems; and practice support systems. To ensure evidence is put into practice, we propose a framework comprising five domains (theory, implementation, infrastructure, sustainability and evaluation) to assist policymakers, educators, researchers, managers and health professionals in supporting team-based models of primary care within the Australian health care system.

  9. Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump

    International Nuclear Information System (INIS)

    A completely energy-independent microgrid (green microgrid) was examined in this work with the aims of abating greenhouse gas emissions by spreading the use of green energy, providing energy backup systems for disaster, and increasing the energy utilization efficiency with the use of exhaust heat. This paper analyzed the energy supply to six houses in a cold region. The green microgrid consisted of photovoltaics, water electrolyzers, proton-exchange membrane fuel cells (PEFCs), and heat pumps. To investigate the operation method and the capacity of each piece of equipment in the arrangement, a distributed system with two or more sets of equipment and a central system with one set of equipment were analyzed by a genetic algorithm. By introducing the prior energy need pattern of a cold region into the proposed system, the operation method and equipment capacity based on the power and heat balance were clarified. By introducing the partial load performance of a water electrolyzer and a PEFC into the analysis program, the operation method of each system was investigated. It was found that the area of a solar cell of a distributed system could be reduced by 12% as compared to a central system. -- Highlights: → A completely energy-independent microgrid (green microgrid) was planned. → The green microgrid consisted of photovoltaics, water electrolyzers, PEM-FCs, and heat pumps. → Operation of a concentrated system and a distributed system. → Investigate of the operation method and the capacity of each piece of equipment.

  10. Evidence-based primary care treatment guidelines for skin infections in Europe: a comparative analysis.

    NARCIS (Netherlands)

    Bijnen, E.M.E. van; Paget, J.; Heijer, C.D.J. den; Stobberingh, E.E.; Bruggeman, C.A.; Schellevis, F.G.

    2014-01-01

    Background: In Europe, most antibiotics for human use are prescribed in primary care. Incorporating resistance data into treatment guidelines could improve appropriate prescribing, increase treatment effectiveness and control the development of resistance. Objectives: This study reviews primary care

  11. Evidence-based primary care treatment guidelines for skin infections in Europe: a comparative analysis

    NARCIS (Netherlands)

    Bijnen, E.M. van; Paget, J.; Heijer, C.D. den; Stobberingh, E.E.; Bruggeman, C.A.; Schellevis, F.G.

    2014-01-01

    BACKGROUND: In Europe, most antibiotics for human use are prescribed in primary care. Incorporating resistance data into treatment guidelines could improve appropriate prescribing, increase treatment effectiveness and control the development of resistance. OBJECTIVES: This study reviews primary care

  12. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Nezha Ahmad Agha

    Full Text Available Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  13. The benefits of measurement-based care for primary care patients with depression.

    Science.gov (United States)

    Jackson, W Clay

    2016-03-01

    Follow the case of Mrs C, a primary care patient with depression who fails to respond to initial antidepressant treatment, and see how measurement-based care helps her clinician confirm her diagnosis, track symptom response, and assess her sense of well-being. Using rating scales such as the 9-item Patient Health Questionnaire (PHQ-9), Generalized Anxiety Disorder 7-item scale (GAD-7), and Mood Disorder Questionnaire (MDQ) can help clinicians recognize suboptimal response and make treatment adjustments such as optimizing the medication dose, switching to another medication, or augmenting with medications, psychotherapy, or exercise. For Mrs C and other patients with depression, the goal of treatment must go beyond symptom remission to improve quality of life. PMID:27046318

  14. Virtual Environment: assistance in nursing care for the deaf based on the protocol of Primary Care

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Martini Rodrigues

    2014-08-01

    Full Text Available Objective: Presenting a Virtual Environment (VE based on the Protocol of Treatment of Hypertension and Diabetes Mellitus type 2, used in Primary Care for evaluation of dietary habits in nursing consultations. Method: An experimental study applied by two nurses and a nurse manager, in a sample of 30 deaf patients aged between 30 and 60 years. The environment was built in Visual Basic NET and offered eight screens about feeding containing food pictures, videos in Libras (Brazilian sign language and audio. The analysis of the VE was done through questionnaires applied to patients and professionals by the Poisson statistical test. Results: The VE shows the possible diagnostics in red, yellow, green and blue colors, depending on the degree of patients’ need. Conclusion: The environment obtained excellent acceptance by patients and nurses, allowing great interaction between them, even without an interpreter. The time in consultation was reduced to 15 minutes, with the preservation of patient privacy.

  15. Environmental Sound Perception: Metadescription and Modeling Based on Independent Primary Studies

    Directory of Open Access Journals (Sweden)

    Stephen McAdams

    2010-01-01

    Full Text Available The aim of the study is to transpose and extend to a set of environmental sounds the notion of sound descriptors usually used for musical sounds. Four separate primary studies dealing with interior car sounds, air-conditioning units, car horns, and closing car doors are considered collectively. The corpus formed by these initial stimuli is submitted to new experimental studies and analyses, both for revealing metacategories and for defining more precisely the limits of each of the resulting categories. In a second step, the new structure is modeled: common and specific dimensions within each category are derived from the initial results and new investigations of audio features are performed. Furthermore, an automatic classifier based on two audio descriptors and a multinomial logistic regression procedure is implemented and validated with the corpus.

  16. Game-based programming towards developing algorithmic thinking skills in primary education

    Directory of Open Access Journals (Sweden)

    Hariklia Tsalapatas

    2012-06-01

    Full Text Available This paper presents cMinds, a learning intervention that deploys game-based visual programming towards building analytical, computational, and critical thinking skills in primary education. The proposed learning method exploits the structured nature of programming, which is inherently logical and transcends cultural barriers, towards inclusive learning that exposes learners to algorithmic thinking. A visual programming environment, entitled ‘cMinds Learning Suite’, has been developed aimed for classroom use. Feedback from the deployment of the learning methods and tools in classrooms in several European countries demonstrates elevated learner motivation for engaging in logical learning activities, fostering of creativity and an entrepreneurial spirit, and promotion of problem-solving capacity

  17. Village-based primary health care in the Central Highlands of Vietnam.

    Science.gov (United States)

    Barrett, B; Ladinsky, J; Volk, N

    2001-02-01

    This paper describes the first year of an ongoing village health care and economic development project in the Krong Buk district of Dak Lak province in Vietnam's Central Highlands. The project serves 21 villages with a total population of just over 15,000. Most belong to ethnic minority groups. Physicians from the province capital of Boun Me Thuot were trained by a multi-disciplinary team of American health care workers to be trainers and supervisors of 21 village health care workers (VHWs). Two months later, a VHW from each village was trained in primary and preventive health care by the physician-supervisors. Since this initial training, each VHW has been provided with materials, medicines and monthly supervision by the physician-supervisors. The health care component has been complemented by an economic development project based on a system of small loans. Data from the first year of monthly reports and from a baseline survey are presented in this paper.

  18. Effect of a primary health-care-based controlled trial for cardiorespiratory fitness in refugee women

    Directory of Open Access Journals (Sweden)

    Johansson Sven-Erik

    2010-08-01

    Full Text Available Abstract Background Refugee women have a high risk of coronary heart disease with low physical activity as one possible mediator. Furthermore, cultural and environmental barriers to increasing physical activity have been demonstrated. The aim of the study was to evaluate the combined effect of an approximate 6-month primary health care- and community-based exercise intervention versus an individual written prescription for exercise on objectively assessed cardiorespiratory fitness in low-active refugee women. Methods A controlled clinical trial, named "Support for Increased Physical Activity", was executed among 243 refugee women recruited between November 2006 and April 2008 from two deprived geographic areas in southern Stockholm, Sweden. One geographic area provided the intervention group and the other area the control group. The control group was on a higher activity level at both baseline and follow-up, which was taken into consideration in the analysis by applying statistical models that accounted for this. Relative aerobic capacity and fitness level were assessed as the two main outcome measures. Results The intervention group increased their relative aerobic capacity and the percentage with an acceptable fitness level (relative aerobic capacity > 23 O2ml·kg·min-1 to a greater extent than the control group between baseline and the 6-month follow-up, after adjusting for possible confounders (P = 0.020. Conclusions A combined primary health-care and community-based exercise programme (involving non-profit organizations can be an effective strategy to increase cardiorespiratory fitness among low-active refugee women. Trial Registration ClinicalTrials.gov ID: NCT00747942

  19. Neural computation of visual imaging based on Kronecker product in the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Guozheng Yao

    2010-03-01

    Full Text Available Abstract Background What kind of neural computation is actually performed by the primary visual cortex and how is this represented mathematically at the system level? It is an important problem in the visual information processing, but has not been well answered. In this paper, according to our understanding of retinal organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we divide an image into orthogonal and orderly array of image primitives (or patches, in which each patch will evoke activities of simple cells in V1. From viewpoint of information processing, this activated process, essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the principle of minimum mean squares error, it is natural to use the inner product expression in neural computation, which then is transformed into matrix form. Results The inner product is carried out by using Kronecker product between patches and function architecture (or functional column in localized and oriented neural computing. Compared with Fourier Transform, the mathematical description of Kronecker product is simple and intuitive, so is the algorithm more suitable for neural computation of visual cortex V1. Results of computer simulation based on two-dimensional Gabor pyramid wavelets show that the theoretical analysis and the proposed model are reasonable. Conclusions Our results are: 1. The neural computation of the retinal image in cortex V1 can be expressed to Kronecker product operation and its matrix form, this algorithm is implemented by the inner operation between retinal image primitives and primary visual cortex's column. It has simple, efficient and robust features, which is, therefore, such a neural algorithm, which can be completed by biological vision. 2. It is more suitable

  20. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.