WorldWideScience

Sample records for based pharmacokinetic modeling

  1. MEGen: A Physiologically Based Pharmacokinetic Model Generator

    Directory of Open Access Journals (Sweden)

    George D Loizou

    2011-11-01

    Full Text Available Physiologically based pharmacokinetic models are being used in an increasing number of different areas. These not only include the human safety assessment of pharmaceuticals, pesticides, biocides and environmental chemicals but also for food animal, wild mammal and avian risk assessment. The value of PBPK models is that they are tools for estimating tissue dosimetry by integrating in vitro and in vivo mechanistic, pharmacokinetic and toxicological information through their explicit mathematical description of important anatomical, physiological and biochemical determinants of chemical uptake, disposition and elimination. However, PBPK models are perceived as complex, data hungry, resource intensive and time consuming. In addition, model validation and verification are hindered by the relative complexity of the equations. To begin to address these issues a freely available web application for the rapid construction and documentation of bespoke PBPK models is under development. Here we present an overview of the current capabilities of MEGen, a model equation generator and parameter database and discuss future developments.

  2. Human physiologically based pharmacokinetic model for propofol

    Directory of Open Access Journals (Sweden)

    Schnider Thomas W

    2005-04-01

    Full Text Available Abstract Background Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK model for propofol. Methods PKQuest, a freely distributed software routine http://www.pkquest.com, was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1 the value of the propofol oil/water partition coefficient; 2 the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. Results The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters. The average weighted residual error (WRE of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. Conclusion A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a

  3. Modeling Pharmacokinetics.

    Science.gov (United States)

    Bois, Frederic Y; Brochot, Céline

    2016-01-01

    Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software. PMID:27311461

  4. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    Science.gov (United States)

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-v...

  5. Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites.

    OpenAIRE

    Fisher, J W

    2000-01-01

    Trichloroethylene (TCE) pharmacokinetics have been studied in experimental animals and humans for over 30 years. Compartmental and physiologically based pharmacokinetic (PBPK) models have been developed for the uptake, distribution, and metabolism of TCE and the production, distribution, metabolism, and elimination of P450-mediated metabolites of TCE. TCE is readily taken up into systemic circulation by oral and inhalation routes of exposure and is rapidly metabolized by the hepatic P450 syst...

  6. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine.

    Science.gov (United States)

    Hartmanshenn, Clara; Scherholz, Megerle; Androulakis, Ioannis P

    2016-10-01

    Personalized medicine strives to deliver the 'right drug at the right dose' by considering inter-person variability, one of the causes for therapeutic failure in specialized populations of patients. Physiologically-based pharmacokinetic (PBPK) modeling is a key tool in the advancement of personalized medicine to evaluate complex clinical scenarios, making use of physiological information as well as physicochemical data to simulate various physiological states to predict the distribution of pharmacokinetic responses. The increased dependency on PBPK models to address regulatory questions is aligned with the ability of PBPK models to minimize ethical and technical difficulties associated with pharmacokinetic and toxicology experiments for special patient populations. Subpopulation modeling can be achieved through an iterative and integrative approach using an adopt, adapt, develop, assess, amend, and deliver methodology. PBPK modeling has two valuable applications in personalized medicine: (1) determining the importance of certain subpopulations within a distribution of pharmacokinetic responses for a given drug formulation and (2) establishing the formulation design space needed to attain a targeted drug plasma concentration profile. This review article focuses on model development for physiological differences associated with sex (male vs. female), age (pediatric vs. young adults vs. elderly), disease state (healthy vs. unhealthy), and temporal variation (influence of biological rhythms), connecting them to drug product formulation development within the quality by design framework. Although PBPK modeling has come a long way, there is still a lengthy road before it can be fully accepted by pharmacologists, clinicians, and the broader industry. PMID:27647273

  7. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.

    Science.gov (United States)

    Glassman, Patrick M; Balthasar, Joseph P

    2016-08-01

    Accurate prediction of the clinical pharmacokinetics of new therapeutic entities facilitates decision making during drug discovery, and increases the probability of success for early clinical trials. Standard strategies employed for predicting the pharmacokinetics of small-molecule drugs (e.g., allometric scaling) are often not useful for predicting the disposition monoclonal antibodies (mAbs), as mAbs frequently demonstrate species-specific non-linear pharmacokinetics that is related to mAb-target binding (i.e., target-mediated drug disposition, TMDD). The saturable kinetics of TMDD are known to be influenced by a variety of factors, including the sites of target expression (which determines the accessibility of target to mAb), the extent of target expression, the rate of target turnover, and the fate of mAb-target complexes. In most cases, quantitative information on the determinants of TMDD is not available during early phases of drug discovery, and this has complicated attempts to employ mechanistic mathematical models to predict the clinical pharmacokinetics of mAbs. In this report, we introduce a simple strategy, employing physiologically-based modeling, to predict mAb disposition in humans. The approach employs estimates of inter-antibody variability in rate processes of extravasation in tissues and fluid-phase endocytosis, estimates for target concentrations in tissues derived through use of categorical immunohistochemical scores, and in vitro measures of the turnover of target and target-mAb complexes. Monte Carlo simulations were performed for four mAbs (cetuximab, figitumumab, dalotuzumab, trastuzumab) directed against three targets (epidermal growth factor receptor, insulin-like growth factor receptor 1, human epidermal growth factor receptor 2). The proposed modeling strategy was able to predict well the pharmacokinetics of cetuximab, dalotuzumab, and trastuzumab at a range of doses, but trended towards underprediction of figitumumab concentrations

  8. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction - poster

    Science.gov (United States)

    Building new physiologically based pharmacokinetic (PBPK) models requires a lot data, such as the chemical-specific parameters and in vivo pharmacokinetic data. Previously-developed, well-parameterized, and thoroughly-vetted models can be great resource for supporting the constr...

  9. Application of Physiologically Based Pharmacokinetic Models in Chemical Risk Assessment

    Directory of Open Access Journals (Sweden)

    Moiz Mumtaz

    2012-01-01

    Full Text Available Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting “in silico” tools such as physiologically based pharmacokinetic (PBPK models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application—health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The “human PBPK model toolkit” is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures.

  10. A physiologically-based pharmacokinetic model for the antibiotic ertapenem.

    Science.gov (United States)

    Joyner, Michele L; Manning, Cammey C; Forbes, Whitney; Maiden, Michelle; Nikas, Ariel N

    2016-02-01

    Ertapenem is an antibiotic commonly used to treat a broad spectrum of infections, which is part of a broader class of antibiotics called carbapenem. Unlike other carbapenems, ertapenem has a longer half-life and thus only has to be administered once a day. A physiologically-based pharmacokinetic (PBPK) model was developed to investigate the uptake, distribution, and elimination of ertapenem following a single one gram dose. PBPK modeling incorporates known physiological parameters such as body weight, organ volumes, and blood flow rates in particular tissues. Furthermore, ertapenem is highly bound in human blood plasma; therefore, nonlinear binding is incorporated in the model since only the free portion of the drug can saturate tissues and, hence, is the only portion of the drug considered to be medicinally effective. Parameters in the model were estimated using a least squares inverse problem formulation with published data for blood concentrations of ertapenem for normal height, normal weight males. Finally, an uncertainty analysis of the parameter estimation and model predictions is presented. PMID:26776257

  11. Physiologically Based Pharmacokinetic Modeling in Pediatric Oncology Drug Development.

    Science.gov (United States)

    Rioux, Nathalie; Waters, Nigel J

    2016-07-01

    Childhood cancer represents more than 100 rare and ultra-rare diseases, with an estimated 12,400 new cases diagnosed each year in the United States. As such, this much smaller patient population has led to pediatric oncology drug development lagging behind that for adult cancers. Developing drugs for pediatric malignancies also brings with it a number of unique trial design considerations, including flexible enrollment approaches, age-appropriate formulation, acceptable sampling schedules, and balancing the need for age-stratified dosing regimens, given the smaller patient populations. The regulatory landscape for pediatric pharmacotherapy has evolved with U.S. Food and Drug Administration (FDA) legislation such as the 2012 FDA Safety and Innovation Act. In parallel, regulatory authorities have recommended the application of physiologically based pharmacokinetic (PBPK) modeling, for example, in the recently issued FDA Strategic Plan for Accelerating the Development of Therapies for Pediatric Rare Diseases. PBPK modeling provides a quantitative and systems-based framework that allows the effects of intrinsic and extrinsic factors on drug exposure to be modeled in a mechanistic fashion. The application of PBPK modeling in drug development for pediatric cancers is relatively nascent, with several retrospective analyses of cytotoxic therapies, and latterly for targeted agents such as obatoclax and imatinib. More recently, we have employed PBPK modeling in a prospective manner to inform the first pediatric trials of pinometostat and tazemetostat in genetically defined populations (mixed lineage leukemia-rearranged and integrase interactor-1-deficient sarcomas, respectively). In this review, we evaluate the application of PBPK modeling in pediatric cancer drug development and discuss the important challenges that lie ahead in this field. PMID:26936973

  12. Physiologically based pharmacokinetic modeling of cyclohexane as a tool for integrating animal and human test data

    NARCIS (Netherlands)

    Hissink, A.M.; Kulig, B.M.; Kruse, J.; Freidig, A.P.; Verwei, M.; Muijser, H.; Lammers, J.H.C.M.; Mckee, R.H.; Owen, D.E.; Sweeney, L.M.; Salmon, F.

    2009-01-01

    This report describes a physiologically based pharmacokinetic model for cyclohexane and its use in comparing internal doses in rats and volunteers following inhalation exposures. Parameters describing saturable metabolism of cyclohexane are measured in rats and used along with experimentally determi

  13. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction.

    Directory of Open Access Journals (Sweden)

    Jingtao Lu

    2016-02-01

    Full Text Available Developing physiologically-based pharmacokinetic (PBPK models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals.

  14. Physiologically based pharmacokinetic modeling of POPs in Greenlanders.

    Science.gov (United States)

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F; Dietz, Rune; Krüger, Tanja; Bonefeld-Jørgensen, Eva C

    2014-03-01

    Human exposure to persistent organic pollutants (POPs) and the potential health impact in the Arctic far from the emission sources have been highlighted in numerous studies. As a supplement to human POP biomonitoring studies, a physiologically based pharmacokinetic (PBPK) model was set up to estimate the fate of POPs in Greenlandic Inuit's liver, blood, muscle and adipose tissue following long-term exposure to traditional Greenlandic diet. The PBPK model described metabolism, excretion and POP accumulation on the basis of their physicochemical properties and metabolic rates in the organisms. Basic correlations between chemically analyzed blood POP concentrations and calculated daily POP intake from food questionnaire of 118 middle age (18-35years) Greenlandic Inuits from four cities in West Greenland (Qaanaaq: n=40; Qeqertarsuaq: n=36; Nuuk: n=20; Narsaq: n=22) taken during 2003 to 2006 were analyzed. The dietary items included were polar bear, caribou, musk oxen, several marine species such as whales, seals, bird and fish as well as imported food. The contaminant concentrations of the dietary items as well as their chemical properties, uptake, biotransformation and excretion allowed us to estimate the POP concentration in liver, blood, muscle and adipose tissue following long-term exposure to the traditional Greenlandic diet using the PBPK model. Significant correlations were found between chemically analyzed POP blood concentrations and calculated daily intake of POPs for Qeqertarsuaq, Nuuk and Narsaq Inuit but not for the northernmost settlement Qaanaaq, probably because the highest blood POP level was found in this district which might mask the interview-based POP calculations. Despite the large variation in circulating blood POP concentrations, the PBPK model predicted blood concentrations of a factor 2-3 within the actual measured values. Moreover, the PBPK model showed that estimated blood POP concentration increased significantly after consumption of meals

  15. A comprehensive physiologically based pharmacokinetic knowledgebase and web-based interface for rapid model ranking and querying

    Science.gov (United States)

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific pa...

  16. Human plasma concentrations of cytochrome P450 probes extrapolated from pharmacokinetics in cynomolgus monkeys using physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Shida, Satomi; Utoh, Masahiro; Murayama, Norie; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-01-01

    1. Cynomolgus monkeys are widely used in preclinical studies as non-human primate species. Pharmacokinetics of human cytochrome P450 probes determined in cynomolgus monkeys after single oral or intravenous administrations were extrapolated to give human plasma concentrations. 2. Plasma concentrations of slowly eliminated caffeine and R-/S-warfarin and rapidly eliminated omeprazole and midazolam previously observed in cynomolgus monkeys were scaled to human oral biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Results of the simplified human PBPK models were consistent with reported experimental PK data in humans or with values simulated by a fully constructed population-based simulator (Simcyp). 3. Oral administrations of metoprolol and dextromethorphan (human P450 2D probes) in monkeys reportedly yielded plasma concentrations similar to their quantitative detection limits. Consequently, ratios of in vitro hepatic intrinsic clearances of metoprolol and dextromethorphan determined in monkeys and humans were used with simplified PBPK models to extrapolate intravenous PK in monkeys to oral PK in humans. 4. These results suggest that cynomolgus monkeys, despite their rapid clearance of some human P450 substrates, could be a suitable model for humans, especially when used in conjunction with simple PBPK models.

  17. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    International Nuclear Information System (INIS)

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on the development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated time courses after three-time repeated oral administrations of BPA by the constructed model fitted well with the experimental data, and the simulation for the 10 times lower dose was also consistent with the experiment. This suggested that the PBPK model for BPA in pregnant mice was successfully verified and is highly promising for extrapolation to humans who are expected to be exposed more chronically to lower doses

  18. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    Science.gov (United States)

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  19. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Shida, Satomi; Yamazaki, Hiroshi

    2016-09-01

    The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models. PMID:26652678

  20. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Shida, Satomi; Yamazaki, Hiroshi

    2016-09-01

    The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models.

  1. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification.

    Science.gov (United States)

    Sager, Jennifer E; Yu, Jingjing; Ragueneau-Majlessi, Isabelle; Isoherranen, Nina

    2015-11-01

    Modeling and simulation of drug disposition has emerged as an important tool in drug development, clinical study design and regulatory review, and the number of physiologically based pharmacokinetic (PBPK) modeling related publications and regulatory submissions have risen dramatically in recent years. However, the extent of use of PBPK modeling by researchers, and the public availability of models has not been systematically evaluated. This review evaluates PBPK-related publications to 1) identify the common applications of PBPK modeling; 2) determine ways in which models are developed; 3) establish how model quality is assessed; and 4) provide a list of publically available PBPK models for sensitive P450 and transporter substrates as well as selective inhibitors and inducers. PubMed searches were conducted using the terms "PBPK" and "physiologically based pharmacokinetic model" to collect published models. Only papers on PBPK modeling of pharmaceutical agents in humans published in English between 2008 and May 2015 were reviewed. A total of 366 PBPK-related articles met the search criteria, with the number of articles published per year rising steadily. Published models were most commonly used for drug-drug interaction predictions (28%), followed by interindividual variability and general clinical pharmacokinetic predictions (23%), formulation or absorption modeling (12%), and predicting age-related changes in pharmacokinetics and disposition (10%). In total, 106 models of sensitive substrates, inhibitors, and inducers were identified. An in-depth analysis of the model development and verification revealed a lack of consistency in model development and quality assessment practices, demonstrating a need for development of best-practice guidelines.

  2. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling

    Science.gov (United States)

    Størset, Elisabet; Holford, Nick; Hennig, Stefanie; Bergmann, Troels K; Bergan, Stein; Bremer, Sara; Åsberg, Anders; Midtvedt, Karsten; Staatz, Christine E

    2014-01-01

    Aims The aim was to develop a theory-based population pharmacokinetic model of tacrolimus in adult kidney transplant recipients and to externally evaluate this model and two previous empirical models. Methods Data were obtained from 242 patients with 3100 tacrolimus whole blood concentrations. External evaluation was performed by examining model predictive performance using Bayesian forecasting. Results Pharmacokinetic disposition parameters were estimated based on tacrolimus plasma concentrations, predicted from whole blood concentrations, haematocrit and literature values for tacrolimus binding to red blood cells. Disposition parameters were allometrically scaled to fat free mass. Tacrolimus whole blood clearance/bioavailability standardized to haematocrit of 45% and fat free mass of 60 kg was estimated to be 16.1 l h−1 [95% CI 12.6, 18.0 l h−1]. Tacrolimus clearance was 30% higher (95% CI 13, 46%) and bioavailability 18% lower (95% CI 2, 29%) in CYP3A5 expressers compared with non-expressers. An Emax model described decreasing tacrolimus bioavailability with increasing prednisolone dose. The theory-based model was superior to the empirical models during external evaluation displaying a median prediction error of −1.2% (95% CI −3.0, 0.1%). Based on simulation, Bayesian forecasting led to 65% (95% CI 62, 68%) of patients achieving a tacrolimus average steady-state concentration within a suggested acceptable range. Conclusion A theory-based population pharmacokinetic model was superior to two empirical models for prediction of tacrolimus concentrations and seemed suitable for Bayesian prediction of tacrolimus doses early after kidney transplantation. PMID:25279405

  3. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  4. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling

    Institute of Scientific and Technical Information of China (English)

    Guo-fu LI; Kun WANG; Rui CHEN; Hao-ru ZHAO; Jin YANG; Qing-shan ZHENG

    2012-01-01

    Aim:To develop and evaluate a whole-body physiologically based pharmacokinetic (WB-PBPK) model of bisoprolol and to simulate its exposure and disposition in healthy adults and patients with renal function impairment.Methods:Bisoprolol dispositions in 14 tissue compartments were described by perfusion-limited compartments.Based the tissue composition equations and drug-specific properties such as log P,permeability,and plasma protein binding published in literatures,the absorption and whole-body distribution of bisoprolol was predicted using the ‘Advanced Compartmental Absorption Transit’ (ACAT)model and the whole-body disposition model,respectively.Renal and hepatic clearances were simulated using empirical scaling methods followed by incorporation into the WB-PBPK model.Model refinements were conducted after a comparison of the simulated concentration-time profiles and pharmacokinetic parameters with the observed data in healthy adults following intravenous and oral administration.Finally,the WB-PBPK model coupled with a Monte Carlo simulation was employed to predict the mean and variability of bisoprolol pharmacokinetics in virtual healthy subjects and patients.Results:The simulated and observed data after both intravenous and oral dosing showed good agreement for all of the dose levels in the reported normal adult population groups.The predicted pharmacokinetic parameters (AUC,Cmax,and Tmax) were reasonably consistent (<1.3-fold error) with the observed values after single oral administration of doses ranging from of 5 to 20 mg using the refined WB-PBPK model.The simulated plasma profiles after multiple oral administration of bisoprolol in healthy adults and patient with renal impairment matched well with the observed profiles.Conclusion:The WB-PBPK model successfully predicts the intravenous and oral pharmacokinetics of bisoprolol across multiple dose levels in diverse normal adult human populations and patients with renal insufficiency.

  5. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content

    Directory of Open Access Journals (Sweden)

    Avgoustakis K

    2012-03-01

    Full Text Available Mingguang Li1, Zoi Panagi2, Konstantinos Avgoustakis2, Joshua Reineke11Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; 2Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, Patras, GreeceAbstract: Biodistribution of nanoparticles is dependent on their physicochemical properties (such as size, surface charge, and surface hydrophilicity. Clear and systematic understanding of nanoparticle properties' effects on their in vivo performance is of fundamental significance in nanoparticle design, development and optimization for medical applications, and toxicity evaluation. In the present study, a physiologically based pharmacokinetic model was utilized to interpret the effects of nanoparticle properties on previously published biodistribution data. Biodistribution data for five poly(lactic-co-glycolic acid (PLGA nanoparticle formulations prepared with varied content of monomethoxypoly (ethyleneglycol (mPEG (PLGA, PLGA-mPEG256, PLGA-mPEG153, PLGA-mPEG51, PLGA-mPEG34 were collected in mice after intravenous injection. A physiologically based pharmacokinetic model was developed and evaluated to simulate the mass-time profiles of nanoparticle distribution in tissues. In anticipation that the biodistribution of new nanoparticle formulations could be predicted from the physiologically based pharmacokinetic model, multivariate regression analysis was performed to build the relationship between nanoparticle properties (size, zeta potential, and number of PEG molecules per unit surface area and biodistribution parameters. Based on these relationships, characterized physicochemical properties of PLGA-mPEG495 nanoparticles (a sixth formulation were used to calculate (predict biodistribution profiles. For all five initial formulations, the developed model adequately simulates the experimental data indicating that the model is suitable for

  6. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs.

    Science.gov (United States)

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Nijsen, Marjoleen J; Mackie, Claire E; Gilissen, Ron A H J

    2007-10-01

    The aim of this study was to evaluate different physiologically based modeling strategies for the prediction of human pharmacokinetics. Plasma profiles after intravenous and oral dosing were simulated for 26 clinically tested drugs. Two mechanism-based predictions of human tissue-to-plasma partitioning (P(tp)) from physicochemical input (method Vd1) were evaluated for their ability to describe human volume of distribution at steady state (V(ss)). This method was compared with a strategy that combined predicted and experimentally determined in vivo rat P(tp) data (method Vd2). Best V(ss) predictions were obtained using method Vd2, providing that rat P(tp) input was corrected for interspecies differences in plasma protein binding (84% within 2-fold). V(ss) predictions from physicochemical input alone were poor (32% within 2-fold). Total body clearance (CL) was predicted as the sum of scaled rat renal clearance and hepatic clearance projected from in vitro metabolism data. Best CL predictions were obtained by disregarding both blood and microsomal or hepatocyte binding (method CL2, 74% within 2-fold), whereas strong bias was seen using both blood and microsomal or hepatocyte binding (method CL1, 53% within 2-fold). The physiologically based pharmacokinetics (PBPK) model, which combined methods Vd2 and CL2 yielded the most accurate predictions of in vivo terminal half-life (69% within 2-fold). The Gastroplus advanced compartmental absorption and transit model was used to construct an absorption-disposition model and provided accurate predictions of area under the plasma concentration-time profile, oral apparent volume of distribution, and maximum plasma concentration after oral dosing, with 74%, 70%, and 65% within 2-fold, respectively. This evaluation demonstrates that PBPK models can lead to reasonable predictions of human pharmacokinetics. PMID:17620347

  7. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs.

    Science.gov (United States)

    Yang, X; Zhou, Y-F; Yu, Y; Zhao, D-H; Shi, W; Fang, B-H; Liu, Y-H

    2015-02-01

    A multi-compartment physiologically based pharmacokinetic (PBPK) model to describe the disposition of cyadox (CYX) and its metabolite quinoxaline-2-carboxylic acid (QCA) after a single oral administration was developed in rats (200 mg/kg b.w. of CYX). Considering interspecies differences in physiology and physiochemistry, the model efficiency was validated by pharmacokinetic data set in swine. The model included six compartments that were blood, muscle, liver, kidney, adipose, and a combined compartment for the rest of tissues. The model was parameterized using rat plasma and tissue concentration data that were generated from this study. Model simulations were achieved using a commercially available software program (ACSLXL ibero version 3.0.2.1). Results supported the validity of the model with simulated tissue concentrations within the range of the observations. The correlation coefficients of the predicted and experimentally determined values for plasma, liver, kidney, adipose, and muscles in rats were 0.98, 0.98, 0.98, 0.99, and 0.95, respectively. The rat model parameters were then extrapolated to pigs to estimate QCA disposition in tissues and validated by tissue concentration of QCA in swine. The correlation coefficients between the predicted and observed values were over 0.90. This model could provide a foundation for developing more reliable pig models once more data are available.

  8. A computer-aided framework for development, identification andmanagement of physiologically-based pharmacokinetic models

    DEFF Research Database (Denmark)

    Heitzig, Martina; Linninger, Andreas; Sin, Gürkan;

    2014-01-01

    The objective of this work is the development of a generic computer-aided modelling framework to support the development of physiologically-based pharmacokinetic models thereby increasing the efficiency and quality of the modelling process. In particular, the framework systematizes the modelling...... process by identifying the workflow involved and providing the required methods and tools for model documentation, construction, analysis, identification and discrimination. The application and benefits of the developed framework are demonstrated by a case study related to the whole-body physiologically...... physiologically-based scaling laws and identifying model parameters that can be re-fitted by the limited experimental data accessible for humans using sensitivity and identifiability analysis techniques....

  9. Development of a Human Physiologically Based Pharmacokinetics (PBPK) Model For Dermal Permeability for Lindane

    Science.gov (United States)

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficient...

  10. Physiologically-based pharmacokinetic modeling of target-mediated drug disposition of bortezomib in mice.

    Science.gov (United States)

    Zhang, Li; Mager, Donald E

    2015-10-01

    Bortezomib is a reversible proteasome inhibitor with potent antineoplastic activity that exhibits dose- and time-dependent pharmacokinetics (PK). Proteasome-mediated bortezomib disposition is proposed as the primary source of its nonlinear and apparent nonstationary PK behavior. Single intravenous (IV) doses of bortezomib (0.25 and 1 mg/kg) were administrated to BALB/c mice, with blood and tissue samples obtained over 144 h, which were analyzed by LC/MS/MS. A physiologically based pharmacokinetic (PBPK) model incorporating tissue drug-target binding was developed to test the hypothesis of proteasome-mediated bortezomib disposition. The final model reasonably captured bortezomib plasma and tissue PK profiles, and parameters were estimated with good precision. The rank-order of model estimated tissue target density correlated well with experimentally measured proteasome concentrations reported in the literature, supporting the hypothesis that binding to proteasome influences bortezomib disposition. The PBPK model was further scaled-up to humans to assess the similarity of bortezomib disposition among species. Human plasma bortezomib PK profiles following multiple IV dosing (1.3 mg/m(2)) on days 1, 4, 8, and 11 were simulated by appropriately scaling estimated mouse parameters. Simulated and observed bortezomib concentrations after multiple dosing were in good agreement, suggesting target-mediated bortezomib disposition is likely for both mice and humans. Furthermore, the model predicts that renal impairment should exert minimal influence on bortezomib exposure in humans, confirming that bortezomib dose adjustment is not necessary for patients with renal impairment. PMID:26391023

  11. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    Science.gov (United States)

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  12. Physiologically-based pharmacokinetic model for Fentanyl in support of the development of Provisional Advisory Levels

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish, E-mail: harish.shankaran@pnnl.gov [Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Adeshina, Femi [National Homeland Security Research Center, United States Environmental Protection Agency, Washington, DC 20460 (United States); Teeguarden, Justin G. [Systems Toxicology Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-12-15

    Provisional Advisory Levels (PALs) are tiered exposure limits for toxic chemicals in air and drinking water that are developed to assist in emergency responses. Physiologically-based pharmacokinetic (PBPK) modeling can support this process by enabling extrapolations across doses, and exposure routes, thereby addressing gaps in the available toxicity data. Here, we describe the development of a PBPK model for Fentanyl – a synthetic opioid used clinically for pain management – to support the establishment of PALs. Starting from an existing model for intravenous Fentanyl, we first optimized distribution and clearance parameters using several additional IV datasets. We then calibrated the model using pharmacokinetic data for various formulations, and determined the absorbed fraction, F, and time taken for the absorbed amount to reach 90% of its final value, t90. For aerosolized pulmonary Fentanyl, F = 1 and t90 < 1 min indicating complete and rapid absorption. The F value ranged from 0.35 to 0.74 for oral and various transmucosal routes. Oral Fentanyl was absorbed the slowest (t90 ∼ 300 min); the absorption of intranasal Fentanyl was relatively rapid (t90 ∼ 20–40 min); and the various oral transmucosal routes had intermediate absorption rates (t90 ∼ 160–300 min). Based on these results, for inhalation exposures, we assumed that all of the Fentanyl inhaled from the air during each breath directly, and instantaneously enters the arterial circulation. We present model predictions of Fentanyl blood concentrations in oral and inhalation scenarios relevant for PAL development, and provide an analytical expression that can be used to extrapolate between oral and inhalation routes for the derivation of PALs. - Highlights: • We develop a Fentanyl PBPK model for relating external dose to internal levels. • We calibrate the model to oral and inhalation exposures using > 50 human datasets. • Model predictions are in good agreement with the available

  13. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  14. Estimating marbofloxacin withdrawal time in broiler chickens using a population physiologically based pharmacokinetics model.

    Science.gov (United States)

    Yang, F; Yang, Y R; Wang, L; Huang, X H; Qiao, G; Zeng, Z L

    2014-12-01

    Residue depletion of marbofloxacin in broiler chicken after oral administration at 5 mg/kg/day for three consecutive days was studied in this study. The areas under the concentration-time curve from 0 h to ∞ (AUC0-∞ s) of marbofloxacin in tissues and plasma were used to calculate tissue/plasma partition coefficients (PX s). Based on PX s and the other parameters derived from published studies, a flow-limited physiologically based pharmacokinetics (PBPK) model was developed to predict marbofloxacin concentrations, which were then compared with those derived from the residue depletion study so as to validate this model. Considering individual difference in drug disposition, a Monte Carlo simulation included 1000 iterations was further incorporated into the validated model to generate a population PBPK model and to estimate the marbofloxacin residue withdrawal times in edible tissues. The withdrawal periods were compared to those derived from linear regression analysis. The PBPK model presented here successfully predicted the measured concentrations in all tissues. The withdrawal times in all edible tissues derived from the population PBPK model were longer than those from linear regression analysis, and based on the residues in kidney, a withdrawal time of 4 days was estimated for marbofloxacin after oral administration at 5 mg/kg/day for three consecutive days. It was shown that population PBPK model could be used to accurately predict marbofloxacin residue withdrawal time in edible tissues in broiler chickens.

  15. Physiologically Based Pharmacokinetic (PBPK model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours

    Directory of Open Access Journals (Sweden)

    Viktor Popov

    2016-07-01

    Full Text Available Objective(s: The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK models in patients with different neuroendocrine tumours (NET who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs obtained by whole body scintigraphy (WBS of the patients.Methods: The blood flow restricted (perfusion rate limited type of the PBPK model for biodistribution of radiolabeled peptides (RLPs in individual human organs is based on the multi-compartment approach, which takes into account the main physiological processes in the organism: absorption, distribution, metabolism and excretion (ADME. The approachcalibrates the PBPK model for each patient in order to increase the accuracy of the dose estimation. Datasets obtained using WBS in four patients have been used to obtain the unknown model parameters. The scintigraphic data were acquired using a double head gamma camera in patients with different neuroendocrine tumours who were treated with Lu-177 DOTATATE. The activity administered to each patient was 7400MBq.Results: Satisfactory agreement of the model predictions with the data obtained from the WBS for each patient has been achieved. Conclusion: The study indicates that the PBPK model can be used for more accurate calculation of biodistribution and absorbed doses in patients. This approach is the first attempt of utilizing scintigraphic data in PBPK models, which was obtained during Lu-177 peptide therapy of patients with NET.

  16. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    Science.gov (United States)

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling. PMID:20021074

  17. A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes for soman in multiple species

    NARCIS (Netherlands)

    Sweeney, R.E.; Langenberg, J.P.; Maxwell, D.M.

    2006-01-01

    A physiologically based pharmacokinetic (PB/PK) model has been developed in advanced computer simulation language (ACSL) to describe blood and tissue concentration-time profiles of the C(±)P(-) stereoisomers of soman after inhalation, subcutaneous and intravenous exposures at low (0.8-1.0 × LD50), m

  18. Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based pharmacokinetic modeling

    NARCIS (Netherlands)

    Bogaards, J.J.P.; Hissink, E.M.; Briggs, M.; Weaver, R.; Jochemsen, R.; Jackson, P.; Bertrand, M.; Bladeren, P. van

    2000-01-01

    A strategy is presented to predict interindividual variation in drug plasma levels in vivo by the use of physiologically based pharmacokinetic modeling and human in vitro metabolic parameters, obtained through the combined use of microsomes containing single cytochrome P450 enzymes and a human liver

  19. Mechanism-Based Pharmacokinetic-Pharmacodynamic Modeling of the Dopamine D-2 Receptor Occupancy of Olanzapine in Rats

    NARCIS (Netherlands)

    Johnson, Martin; Kozielska, Magdalena; Reddy, Venkatesh Pilla; Vermeulen, An; Li, Cheryl; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M. M.; Danhof, Meindert; Proost, Johannes H.

    2011-01-01

    A mechanism-based PK-PD model was developed to predict the time course of dopamine D-2 receptor occupancy (D2RO) in rat striatum following administration of olanzapine, an atypical antipsychotic drug. A population approach was utilized to quantify both the pharmacokinetics and pharmacodynamics of ol

  20. PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC (PBPK/PD) MODEL FOR PREDICTING THE DERMAL DOSE AND DISPOSITION OF ORGANOPHOSPHORUS INSECTICIDES

    Science.gov (United States)

    Physiologically-based pharmacokinetic/ pharmacodynamic (PBPK/PD) models are particularly suited for interpretation of cumulative risk via the dermal route for which aggregate exposure must be assessed for chemicals having a common mechanism of toxicity. To this end, a quantita...

  1. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling.

    Science.gov (United States)

    Abaci, Hasan Erbil; Shuler, Michael L

    2015-04-01

    Advances in maintaining multiple human tissues on microfluidic platforms has led to a growing interest in the development of microphysiological systems for drug development studies. Determination of the proper design principles and scaling rules for body-on-a-chip systems is critical for their strategic incorporation into physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) model-aided drug development. While the need for a functional design considering organ-organ interactions has been considered, robust design criteria and steps to build such systems have not yet been defined mathematically. In this paper, we first discuss strategies for incorporating body-on-a-chip technology into the current PBPK modeling-based drug discovery to provide a conceptual model. We propose two types of platforms that can be involved in the different stages of PBPK modeling and drug development; these are μOrgans-on-a-chip and μHuman-on-a-chip. Then we establish the design principles for both types of systems and develop parametric design equations that can be used to determine dimensions and operating conditions. In addition, we discuss the availability of the critical parameters required to satisfy the design criteria, consider possible limitations for estimating such parameter values and propose strategies to address such limitations. This paper is intended to be a useful guide to the researchers focused on the design of microphysiological platforms for PBPK/PD based drug discovery. PMID:25739725

  2. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Upreti, Vijay V; Wahlstrom, Jan L

    2016-03-01

    The accurate prediction of pharmacokinetics (PK) is fundamental to underwriting safety and efficacy in pediatric clinical trials; age-dependent PK may be observed with pediatrics because of the growth and maturation processes that occur during development. Understanding the ontogeny of drug-metabolizing enzymes is a critical enabler for pediatric PK prediction, as enzyme expression or activity may change with age. Although ontogeny functions for the cytochrome P450s (CYPs) have been developed, disconnects between ontogeny functions for the same CYP may exist, depending on whether the functions were derived from in vitro or in vivo data. This report describes the development of ontogeny functions for all the major hepatic CYPs based on in vitro or in vivo data; these ontogeny functions were subsequently incorporated into a physiologically based pharmacokinetic model and evaluated. Pediatric PK predictions based on in vivo-derived ontogeny functions performed markedly better than those developed from in vitro data for intravenous (100% versus 51% within 2-fold, respectively) and oral (98% versus 67%, respectively) dosing. The verified models were then applied to complex pediatric scenarios involving active metabolites, CYP polymorphisms and physiological changes because of critical illness; the models reasonably explained the observed age-dependent changes in pediatric PK. PMID:26139104

  3. Reconstructing Organophosphorus Pesticide Doses Using the Reversed Dosimetry Approach in a Simple Physiologically-Based Pharmacokinetic Model

    Directory of Open Access Journals (Sweden)

    Chensheng Lu

    2012-01-01

    Full Text Available We illustrated the development of a simple pharmacokinetic (SPK model aiming to estimate the absorbed chlorpyrifos doses using urinary biomarker data, 3,5,6-trichlorpyridinol as the model input. The effectiveness of the SPK model in the pesticide risk assessment was evaluated by comparing dose estimates using different urinary composite data. The dose estimates resulting from the first morning voids appeared to be lower than but not significantly different to those using before bedtime, lunch or dinner voids. We found similar trend for dose estimates using three different urinary composite data. However, the dose estimates using the SPK model for individual children were significantly higher than those from the conventional physiologically based pharmacokinetic (PBPK modeling using aggregate environmental measurements of chlorpyrifos as the model inputs. The use of urinary data in the SPK model intuitively provided a plausible alternative to the conventional PBPK model in reconstructing the absorbed chlorpyrifos dose.

  4. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Bachler G

    2013-09-01

    Full Text Available Gerald Bachler, Natalie von Goetz, Konrad Hungerbühler ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland Abstract: Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nanosilver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15–150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol. Furthermore, the results of our model indicate that: (1 within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2 in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag+; and (3 compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five

  5. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    OpenAIRE

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina; Unadkat, Jashvant D.

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in materna...

  6. Physiologically Based Pharmacokinetic Modeling: Methodology, Applications, and Limitations with a Focus on Its Role in Pediatric Drug Development

    Directory of Open Access Journals (Sweden)

    Feras Khalil

    2011-01-01

    Full Text Available The concept of physiologically based pharmacokinetic (PBPK modeling was introduced years ago, but it has not been practiced significantly. However, interest in and implementation of this modeling technique have grown, as evidenced by the increased number of publications in this field. This paper demonstrates briefly the methodology, applications, and limitations of PBPK modeling with special attention given to discuss the use of PBPK models in pediatric drug development and some examples described in detail. Although PBPK models do have some limitations, the potential benefit from PBPK modeling technique is huge. PBPK models can be applied to investigate drug pharmacokinetics under different physiological and pathological conditions or in different age groups, to support decision-making during drug discovery, to provide, perhaps most important, data that can save time and resources, especially in early drug development phases and in pediatric clinical trials, and potentially to help clinical trials become more “confirmatory” rather than “exploratory”.

  7. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    Science.gov (United States)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24

  8. Pharmacokinetic modeling of dynamic MR images using a simulated annealing-based optimization

    Science.gov (United States)

    Sawant, Amit R.; Reece, John H.; Reddick, Wilburn E.

    2000-04-01

    The aim of this work was to use dynamic contrast enhanced MR image (DEMRI) data to generate 'parameter images' which provide functional information about contrast agent access, in bone sarcoma. A simulated annealing based technique was applied to optimize the parameters of a pharmacokinetic model used to describe the kinetics of the tissue response during and after intravenous infusion of a paramagnetic contrast medium, Gd-DTPA. Optimization was performed on a pixel by pixel basis so as to minimize the sum of square deviations of the calculated values from the values obtained experimentally during dynamic contrast enhanced MR imaging. A cost function based on a priori information was introduced during the annealing procedure to ensure that the values obtained were within the expected ranges. The optimized parameters were used in the model to generate parameter images, which reveal functional information that is normally not visible in conventional Gd-DTPA enhanced MR images. This functional information, during and upon completion of pre-operative chemotherapy, is useful in predicting the probability of disease free survival.

  9. Physiologically based pharmacokinetic modeling of inhaled radon to calculate absorbed doses in mice, rats, and humans

    International Nuclear Information System (INIS)

    This is the first report to provide radiation doses, arising from inhalation of radon itself, in mice and rats. To quantify absorbed doses to organs and tissues in mice, rats, and humans, we computed the behavior of inhaled radon in their bodies on the basis of a physiologically based pharmacokinetic (PBPK) model. It was assumed that radon dissolved in blood entering the gas exchange compartment is transported to any tissue by the blood circulation to be instantaneously distributed according to a tissue/blood partition coefficient. The calculated concentrations of radon in the adipose tissue and red bone marrow following its inhalation were much higher than those in the others, because of the higher partition coefficients. Compared with a previous experimental data for rats and model calculation for humans, the present calculation was proved to be valid. Absorbed dose rates to organs and tissues were estimated to be within the range of 0.04-1.4 nGy (Bqm-3)-1 day-1 for all the species. Although the dose rates are not so high, it may be better to pay attention to the dose to the red bone marrow from the perspective of radiation protection. For more accurate dose assessment, it is necessary to update tissue/blood partition coefficients of radon that strongly govern the result of the PBPK modeling. (author)

  10. Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part II: Physiologically Based Pharmacokinetic Modeling and Manganese Risk Assessment

    Directory of Open Access Journals (Sweden)

    Michael D. Taylor

    2012-01-01

    Full Text Available Recently, a variety of physiologically based pharmacokinetic (PBPK models have been developed for the essential element manganese. This paper reviews the development of PBPK models (e.g., adult, pregnant, lactating, and neonatal rats, nonhuman primates, and adult, pregnant, lactating, and neonatal humans and relevant risk assessment applications. Each PBPK model incorporates critical features including dose-dependent saturable tissue capacities and asymmetrical diffusional flux of manganese into brain and other tissues. Varied influx and efflux diffusion rate and binding constants for different brain regions account for the differential increases in regional brain manganese concentrations observed experimentally. We also present novel PBPK simulations to predict manganese tissue concentrations in fetal, neonatal, pregnant, or aged individuals, as well as individuals with liver disease or chronic manganese inhalation. The results of these simulations could help guide risk assessors in the application of uncertainty factors as they establish exposure guidelines for the general public or workers.

  11. Physiologically Based Pharmacokinetic Modeling Framework for Quantitative Prediction of an Herb–Drug Interaction

    Science.gov (United States)

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb–drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb–drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb–drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions. PMID:24670388

  12. Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling

    Science.gov (United States)

    Campbell, Jerry; Franzen, Allison; Van Landingham, Cynthia; Lumpkin, Michael; Crowell, Susan; Meredith, Clive; Loccisano, Anne; Gentry, Robinan; Clewell, Harvey

    2016-01-01

    Abstract Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities. PMID:27569524

  13. Pharmacokinetic Interactions for Drugs with a Long Half-Life-Evidence for the Need of Model-Based Analysis

    OpenAIRE

    Svensson, Elin M.; Acharya, Chayan; Clauson, Björn; Dooley, Kelly E; Karlsson, Mats O

    2016-01-01

    Pharmacokinetic drug-drug interactions (DDIs) can lead to undesired drug exposure, resulting in insufficient efficacy or aggravated toxicity. Accurate quantification of DDIs is therefore crucial but may be difficult when full concentration-time profiles are problematic to obtain. We have compared non-compartmental analysis (NCA) and model-based predictions of DDIs for long half-life drugs by conducting simulation studies and reviewing published trials, using antituberculosis drug bedaquiline ...

  14. Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice

    Directory of Open Access Journals (Sweden)

    Chen WY

    2015-10-01

    Full Text Available Wei-Yu Chen,1 Yi-Hsien Cheng,2 Nan-Hung Hsieh,3 Bo-Chun Wu,2 Wei-Chun Chou,4 Chia-Chi Ho,4 Jen-Kun Chen,5 Chung-Min Liao,2,* Pinpin Lin4,* 1Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 2Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 3Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, 4National Institute of Environmental Health Sciences, 5Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan *These authors contributed equally to this work Abstract: Zinc oxide nanoparticles (ZnO NPs have been widely used in consumer products, therapeutic agents, and drug delivery systems. However, the fate and behavior of ZnO NPs in living organisms are not well described. The purpose of this study was to develop a physiologically based pharmacokinetic model to describe the dynamic interactions of 65ZnO NPs in mice. We estimated key physicochemical parameters of partition coefficients and excretion or elimination rates, based on our previously published data quantifying the biodistributions of 10 nm and 71 nm 65ZnO NPs and zinc nitrate (65Zn(NO32 in various mice tissues. The time-dependent partition coefficients and excretion or elimination rates were used to construct our physiologically based pharmacokinetic model. In general, tissue partition coefficients of 65ZnO NPs were greater than those of 65Zn(NO32, particularly the lung partition coefficient of 10 nm 65ZnO NPs. Sensitivity analysis revealed that 71 nm 65ZnO NPs and 65Zn(NO32 were sensitive to excretion and elimination rates in the liver and gastrointestinal tract. Although the partition coefficient of the brain was relative low, it increased time-dependently for 65ZnO NPs and 65Zn(NO32. The simulation of 65Zn(NO32 was well fitted with the experimental data. However, replacing partition coefficients of 65ZnO NPs with

  15. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    International Nuclear Information System (INIS)

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose of 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U-14C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up 14C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than Km (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments

  16. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    Energy Technology Data Exchange (ETDEWEB)

    Takaku, Tomoyuki, E-mail: takakut@sc.sumitomo-chem.co.jp; Nagahori, Hirohisa; Sogame, Yoshihisa

    2014-06-15

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose of 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U-{sup 14}C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up {sup 14}C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K{sub m} (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments.

  17. Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data.

    Science.gov (United States)

    Wendling, Thierry; Tsamandouras, Nikolaos; Dumitras, Swati; Pigeolet, Etienne; Ogungbenro, Kayode; Aarons, Leon

    2016-01-01

    Whole-body physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development for their ability to predict drug concentrations in clinically relevant tissues and to extrapolate across species, experimental conditions and sub-populations. A whole-body PBPK model can be fitted to clinical data using a Bayesian population approach. However, the analysis might be time consuming and numerically unstable if prior information on the model parameters is too vague given the complexity of the system. We suggest an approach where (i) a whole-body PBPK model is formally reduced using a Bayesian proper lumping method to retain the mechanistic interpretation of the system and account for parameter uncertainty, (ii) the simplified model is fitted to clinical data using Markov Chain Monte Carlo techniques and (iii) the optimised reduced PBPK model is used for extrapolation. A previously developed 16-compartment whole-body PBPK model for mavoglurant was reduced to 7 compartments while preserving plasma concentration-time profiles (median and variance) and giving emphasis to the brain (target site) and the liver (elimination site). The reduced model was numerically more stable than the whole-body model for the Bayesian analysis of mavoglurant pharmacokinetic data in healthy adult volunteers. Finally, the reduced yet mechanistic model could easily be scaled from adults to children and predict mavoglurant pharmacokinetics in children aged from 3 to 11 years with similar performance compared with the whole-body model. This study is a first example of the practicality of formal reduction of complex mechanistic models for Bayesian inference in drug development.

  18. Human plasma concentrations of herbicidal carbamate molinate extrapolated from the pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Yamashita, Masanao; Suemizu, Hiroshi; Murayama, Norie; Nishiyama, Sayako; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-10-01

    To predict concentrations in humans of the herbicidal carbamate molinate, used exclusively in rice cultivation, a forward dosimetry approach was carried out using data from lowest-observed-adverse-effect-level doses orally administered to rats, wild type mice, and chimeric mice with humanized liver and from in vitro human and rodent experiments. Human liver microsomes preferentially mediated hydroxylation of molinate, but rat livers additionally produced molinate sulfoxide and an unidentified metabolite. Adjusted animal biomonitoring equivalents for molinate and its primary sulfoxide from animal studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and human metabolic data with a simple physiologically based pharmacokinetic (PBPK) model. The slower disposition of molinate and accumulation of molinate sulfoxide in humans were estimated by modeling after single and multiple doses compared with elimination in rodents. The results from simplified PBPK modeling in combination with chimeric mice with humanized liver suggest that ratios of estimated parameters of molinate sulfoxide exposure in humans to those in rats were three times as many as general safety factor of 10 for species difference in toxicokinetics. Thus, careful regulatory decision is needed when evaluating the human risk resulting from exposure to low doses of molinate and related carbamates based on data obtained from rats.

  19. Model-Based Estimates of the Effects of Efavirenz on Bedaquiline Pharmacokinetics and Suggested Dose Adjustments for Patients Coinfected with HIV and Tuberculosis

    OpenAIRE

    Svensson, Elin M.; Aweeka, Francesca; Park, Jeong-Gun; Marzan, Florence; Dooley, Kelly E; Karlsson, Mats O

    2013-01-01

    Safe, effective concomitant treatment regimens for tuberculosis (TB) and HIV infection are urgently needed. Bedaquiline (BDQ) is a promising new anti-TB drug, and efavirenz (EFV) is a commonly used antiretroviral. Due to EFV's induction of cytochrome P450 3A4, the metabolic enzyme responsible for BDQ biotransformation, the drugs are expected to interact. Based on data from a phase I, single-dose pharmacokinetic study, a nonlinear mixed-effects model characterizing BDQ pharmacokinetics and int...

  20. Development of a physiologically based pharmacokinetic model for a domain antibody in mice using the two-pore theory.

    Science.gov (United States)

    Sepp, Armin; Berges, Alienor; Sanderson, Andrew; Meno-Tetang, Guy

    2015-04-01

    Domain antibodies (dAbs) are the smallest antigen-binding fragments of immunoglobulins. To date, there is limited insight into the pharmacokinetics of dAbs, especially their distribution into tissues and elimination. The objective of this work was to develop a physiologically-based pharmacokinetic model to investigate the biodisposition of a non-specific dAb construct in mice. Following a single IV administration of 10 mg/kg dummy dAb protein to twenty four female mice, frequent blood samples were collected and whole body lateral sections were analyzed by quantitative whole-body autoradiography. The model is based on the two-pore hypothesis of extravasation where organ-specific isogravimetric flow rates (Jorg,ISO) and permeability-surface area products (PSorg) are expressed as linear functions of the lymph flow rate (Jorg) and the kidney compartment is modified to account for glomerular filtration of dAb. As a result, only Jorg, glomerular filtration coefficient and the combined volume of Bowman's capsule, proximal and distal renal tubules and loop of Henle were optimized by fitting simultaneously all blood and organ data to the model. Our model captures the pharmacokinetic profiles of dAb in blood and all organs and shows that extravasation into interstitial space is a predominantly diffusion-driven process. The parameter values were estimated with good precision (%RMSE ≈ 30) and low cross-correlation (R(2) < 0.2). We developed a flexible model with a limited parameter number that may be applied to other biotherapeutics after adapting for size-related effects on extravasation and renal elimination processes. PMID:25577033

  1. Assessing drug distribution in tissues expressing P-glycoprotein through physiologically based pharmacokinetic modeling: model structure and parameters determination

    Directory of Open Access Journals (Sweden)

    Li Jun

    2009-01-01

    Full Text Available Abstract Background The expression and activity of P-glycoproteins due to genetic or environmental factors may have a significant impact on drug disposition, drug effectiveness or drug toxicity. Hence, characterization of drug disposition over a wide range of conditions of these membrane transporters activities is required to better characterize drug pharmacokinetics and pharmacodynamics. This work aims to improve our understanding of the impact of P-gp activity modulation on tissue distribution of P-gp substrate. Methods A PBPK model was developed in order to examine activity and expression of P-gp transporters in mouse brain and heart. Drug distribution in these tissues was first represented by a well-stirred (WS model and then refined by a mechanistic transport-based (MTB model that includes P-gp mediated transport of the drug. To estimate transport-related parameters, we developed an original three-step procedure that allowed extrapolation of in vitro measurements of drug permeability to the in vivo situation. The model simulations were compared to a limited set of data in order to assess the model ability to reproduce the important information of drug distributions in the considered tissues. Results This PBPK model brings insights into the mechanism of drug distribution in non eliminating tissues expressing P-gp. The MTB model accounts for the main transport mechanisms involved in drug distribution in heart and brain. It points out to the protective role of P-gp at the blood-brain barrier and represents thus a noticeable improvement over the WS model. Conclusion Being built prior to in vivo data, this approach brings an interesting alternative to fitting procedures, and could be adapted to different drugs and transporters. The physiological based model is novel and unique and brought effective information on drug transporters.

  2. A PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC (PBPK/PD) MODEL FOR ESTIMATION OF CUMULATIVE RISK FROM EXPOSURE TO THREE N-METHYL CARBAMATES: CARBARYL, ALDICARB, AND CARBOFURAN

    Science.gov (United States)

    A physiologically-based pharmacokinetic (PBPK) model for a mixture of N-methyl carbamate pesticides was developed based on single chemical models. The model was used to compare urinary metabolite concentrations to levels from National Health and Nutrition Examination Survey (NHA...

  3. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    Science.gov (United States)

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species.

  4. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    Science.gov (United States)

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species. PMID:25900395

  5. Prediction of the pharmacokinetics and tissue distribution of levofloxacin in humans based on an extrapolated PBPK model.

    Science.gov (United States)

    Zhu, Liqin; Zhang, Yuan; Yang, Jianwei; Wang, Yongming; Zhang, Jianlei; Zhao, Yuanyuan; Dong, Weilin

    2016-08-01

    This study developed a physiologically based pharmacokinetic (PBPK) model in intraabdominally infected rats and extrapolated it to humans to predict the levofloxacin pharmacokinetics and penetration into tissues. Twelve male rats with intraabdominal infections induced by Escherichia coli received a single dose of 50 mg/kg body weight of levofloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480 and 1440 min after injection, respectively. A PBPK model was developed in rats and extrapolated to humans using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration-versus-time profile of levofloxacin in rats, C max was 23.570 μg/ml at 5 min after intravenous injection, and t1/2 was 2.38 h. The plasma concentration and kinetics in humans were predicted and validated by the observed data. Levofloxacin penetrated and accumulated with high concentrations in the heart, liver, kidney, spleen, muscle and skin tissues in humans. The predicted tissue-to-plasma concentration ratios in abdominal viscera were between 1.9 and 2.3. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict the drug pharmacokinetics and penetration in humans. Levofloxacin had good penetration into the liver, kidney and spleen as well as other tissues in humans. This pathological model extrapolation may provide a reference for the study of antiinfective PK/PD. In our study, levofloxacin penetrated well into abdominal organs. Also ADR monitoring should be implemented when using levofloxacin. PMID:25753830

  6. Mechanism-based pharmacokinetic-pharmacodynamic modeling of concentration-dependent hysteresis and biphasic electroencephalogram effects of alphaxalone in rats.

    Science.gov (United States)

    Visser, S A G; Smulders, C J G M; Reijers, B P R; Van der Graaf, P H; Peletier, L A; Danhof, M

    2002-09-01

    The neuroactive steroid alphaxalone reveals a complex biphasic concentration-effect relationship using the 11.5 to 30 Hz frequency band of the electroencephalogram (EEG) as biomarker. The purpose of the present investigation was to develop a mechanism-based pharmacokinetic-pharmacodynamic model to describe this observation. The proposed model is based on receptor theory and aims to separate the drug-receptor interaction from the transduction of the initial stimulus into the observed biphasic response. Individual concentration-time courses of alphaxalone were obtained in combination with continuous recording of the EEG parameter. Alphaxalone was administered intravenously in various dosages. The pharmacokinetics were described by a two-compartment model, and parameter estimates for clearance, intercompartmental clearance, volume of distribution 1 and 2 were 158 +/- 29 ml. min(-1). kg(-1), 143 +/- 31 ml. min(-1). kg(-1), 122 +/- 20 ml. kg(-1) and 606 +/- 48 ml. kg(-1), respectively. Concentration-effect relationships exhibited a biphasic pattern and delay in onset of effect. The hysteresis was described on the basis of an effect-compartment model with C(max) as covariate. The pharmacodynamic model consisted of a receptor model, featuring a monophasic saturable receptor activation model in combination with a biphasic stimulus-response model. The in vivo affinity (K(PD)) was estimated at 432 +/- 26 ng. ml(-1). Unique parameter estimates were obtained that were independent of the dose and the duration of the infusion. In conclusion, we have shown that this mechanism-based approach, which separates drug- and system-related properties in vivo, was successfully applied for the characterization of the biphasic effect versus time patterns of alphaxalone. The model should be of use in the characterization of other biphasic responses.

  7. Moxifloxacin Population Pharmacokinetics and Model-Based Comparison of Efficacy between Moxifloxacin and Ofloxacin in African Patients

    OpenAIRE

    Zvada, Simbarashe P.; Denti, Paolo; Sirgel, Frederick A.; Chigutsa, Emmanuel; Hatherill, Mark; Charalambous, Salome; Mungofa, Stanley; Wiesner, Lubbe; Simonsson, Ulrika S. H.; Jindani, Amina; Harrison, Thomas; McIlleron, Helen M.

    2014-01-01

    Pharmacokinetic exposure and the MIC of fluoroquinolones are important determinants of their efficacy against Mycobacterium tuberculosis. Population modeling was used to describe the steady-state plasma pharmacokinetics of moxifloxacin in 241 tuberculosis (TB) patients in southern Africa. Monte Carlo simulations were applied to obtain the area under the unbound concentration-time curve from 0 to 24 h (fAUC0–24) after daily doses of 400 mg or 800 mg moxifloxacin and 800 mg ofloxacin. The MIC d...

  8. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    International Nuclear Information System (INIS)

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  9. Pharmacokinetic Interactions for Drugs with a Long Half-Life—Evidence for the Need of Model-Based Analysis.

    Science.gov (United States)

    Svensson, Elin M; Acharya, Chayan; Clauson, Björn; Dooley, Kelly E; Karlsson, Mats O

    2016-01-01

    Pharmacokinetic drug-drug interactions (DDIs) can lead to undesired drug exposure, resulting in insufficient efficacy or aggravated toxicity. Accurate quantification of DDIs is therefore crucial but may be difficult when full concentration-time profiles are problematic to obtain. We have compared non-compartmental analysis (NCA) and model-based predictions of DDIs for long half-life drugs by conducting simulation studies and reviewing published trials, using antituberculosis drug bedaquiline (BDQ) as a model compound. Furthermore, different DDI study designs were evaluated. A sequential design mimicking conducted trials and a population pharmacokinetic (PK) model of BDQ and the M2 metabolite were utilized in the simulations where five interaction scenarios from strong inhibition (clearance fivefold decreased) to strong induction (clearance fivefold increased) were evaluated. In trial simulations, NCA systematically under-predicted the DDIs’ impact. The bias in average exposure was 29–96% for BDQ and 20–677% for M2. The model-based analysis generated unbiased predictions, and simultaneous fitting of metabolite data increased precision in DDI predictions. The discrepancy between the methods was also apparent for conducted trials, e.g., lopinavir/ritonavir was predicted to increased BDQ exposure 22% by NCA and 188% by model-based methods. In the design evaluation, studies with parallel designs were considered and shown to generally be inferior to sequential/cross-over designs. However, in the case of low inter-individual variability and no informative metabolite data, a prolonged parallel design could be favored. Model-based analysis for DDI assessments is preferable over NCA for victim drugs with a long half-life and should always be used when incomplete concentration-time profiles are part of the analysis. PMID:26463060

  10. Prediction of drug-drug interactions between various antidepressants and ritonavir using a physiologically based pharmacokinetic model

    Directory of Open Access Journals (Sweden)

    M Siccardi

    2012-11-01

    Full Text Available Depression can impact on the treatment of HIV infection, and effective treatment of depressive conditions can have a beneficial effect improving adherence. However antidepressant treatment requires long-term maintenance, and is prone to pharmacokinetic drug-drug interactions (DDI with antiretrovirals. The aim of this study was to predict the magnitude of DDI between ritonavir (RTV and the most commonly prescribed antidepressants using a physiologically based pharmacokinetic (PBPK model simulating virtual clinical trials. In vitro data describing the physiochemical properties, absorption, metabolism, induction and inhibitory potential of RTV and five antidepressants were obtained from published literature. Interactions between RTV and antidepressants were evaluated using the full PBPK model implemented in the Simcyp Population-based Simulator (Version 11.1, Simcyp Limited, UK and virtual clinical studies were simulated on 50 Caucasian subjects receiving 100mg bid of RTV for 21 days plus sertraline (100mg qd, citalopram (40mg qd, fluoxetine (20mg qd, venlafaxine (25mg qd and then from day 14–21. Simulated pharmacokinetic parameters were compared with observed values available in the literature. The simulated PK parameters of RTV, sertraline, citalopram, fluoxetine, mirtazepine and venlafaxine given alone at standard dosage were similar to reference values obtain from published clinical studies. The effect of simulated RTV co-administration on sertaline, fluoxetine and venlaflaxine was an AUC decrease of 40%, 26% and 6%, respectively and on mirtazepine and citalopram, an AUC increase of 60% and 20% respectively. The magnitude of the simulated DDI between RTV and the antidepressants was overall weak to moderate according to the classification of the FDA. The modest magnitude of these drug-drug interactions could be explained by the fact that antidepressants are substrates of multiple isoforms thus metabolism can still occur through CYPs that are

  11. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    Directory of Open Access Journals (Sweden)

    Min JS

    2016-09-01

    Full Text Available Jee Sun Min,1 Doyun Kim,1 Jung Bae Park,1 Hyunjin Heo,1 Soo Hyeon Bae,2 Jae Hong Seo,1 Euichaul Oh,1 Soo Kyung Bae1 1Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 2Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea Background: Evaluating the potential risk of metabolic drug–drug interactions (DDIs is clinically important. Objective: To develop a physiologically based pharmacokinetic (PBPK model for sarpogrelate hydrochloride and its active metabolite, (R,S-1-{2-[2-(3-methoxyphenylethyl]-phenoxy}-3-(dimethylamino-2-propanol (M-1, in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods: The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results: The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol

  12. Bayesian inference for generalized linear mixed model based on the multivariate t distribution in population pharmacokinetic study.

    Directory of Open Access Journals (Sweden)

    Fang-Rong Yan

    Full Text Available This article provides a fully bayesian approach for modeling of single-dose and complete pharmacokinetic data in a population pharmacokinetic (PK model. To overcome the impact of outliers and the difficulty of computation, a generalized linear model is chosen with the hypothesis that the errors follow a multivariate Student t distribution which is a heavy-tailed distribution. The aim of this study is to investigate and implement the performance of the multivariate t distribution to analyze population pharmacokinetic data. Bayesian predictive inferences and the Metropolis-Hastings algorithm schemes are used to process the intractable posterior integration. The precision and accuracy of the proposed model are illustrated by the simulating data and a real example of theophylline data.

  13. An Age-Dependent Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Insecticide Chlorpyrifos in the Preweanling Rat

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.

    2007-08-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometrically scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.

  14. Parameter optimization of pharmacokinetics based on artificial immune network

    Institute of Scientific and Technical Information of China (English)

    LIU Li; ZHOU Shao-dan; LU Hong-wen; XIE Fen; XU Wen-bo

    2008-01-01

    A new method for parameter optimization of pharmacokinetics based on an artificial immune network named PKAIN is proposed.To improve local searching ability of the artificial immune network,a partition-based concurrent simplex mutation is developed.By means of evolution of network cells in the PKAIN artificial immune network,an optimal set of parameters of a given pharmacokinetic model is obtained.The Laplace transform is applied to the pharmacokinetic difierential equations of remifentanil and its major metabolite,remifentanil acid.The PKAIN method is used to optimize parameters of the derived compartment models.Experimental results show that the twocompartment model is sufficient for the pharmacokinetic study of remifentanil acid for patients with mild degree of renal impairment.

  15. Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.

    Science.gov (United States)

    Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.Evans, M.V., Sawyer, M.E., Isaacs, K.K, and Wambaugh, J.With the development of efficient high-throughput (HT) in ...

  16. Use of novel inhalation kinetic studies to refine physiologically-based-pharmacokinetic models for ethanol in non-pregnant and pregnant rats

    Science.gov (United States)

    Ethanol (EtOH) exposure induces a variety of concentration-dependent neurological and developmental effects in the rat. Physiologically-based pharmacokinetic (PBPK) models have been used to predict the inhalation exposure concentrations necessary to produce blood EtOH concentrat...

  17. Providing a theoretical basis for nanotoxicity risk analysis departing from traditional physiologically-based pharmacokinetic (PBPK) modeling

    Science.gov (United States)

    Yamamoto, Dirk P.

    The same novel properties of engineered nanoparticles that make them attractive may also present unique exposure risks. But, the traditional physiologically-based pharmacokinetic (PBPK) modeling assumption of instantaneous equilibration likely does not apply to nanoparticles. This simulation-based research begins with development of a model that includes diffusion, active transport, and carrier mediated transport. An eigenvalue analysis methodology was developed to examine model behavior to focus future research. Simulations using the physico-chemical properties of size, shape, surface coating, and surface charge were performed and an equation was determined which estimates area under the curve for arterial blood concentration, which is a surrogate of nanoparticle dose. Results show that the cellular transport processes modeled in this research greatly affect the biokinetics of nanoparticles. Evidence suggests that the equation used to estimate area under the curve for arterial blood concentration can be written in terms of nanoparticle size only. The new paradigm established by this research leverages traditional in vitro, in vivo, and PBPK modeling, but includes area under the curve to bridge animal testing results to humans. This new paradigm allows toxicologists and policymakers to then assess risk to a given exposure and assist in setting appropriate exposure limits for nanoparticles. This research provides critical understanding of nanoparticle biokinetics and allows estimation of total exposure at any toxicological endpoint in the body. This effort is a significant contribution as it highlights future research needs and demonstrates how modeling can be used as a tool to advance nanoparticle risk assessment.

  18. Pharmacokinetic modelling of microencapsulated metronidazole

    Institute of Scientific and Technical Information of China (English)

    Mahmood AHMAD; Khalid PERVAIZ; Ghulam MURTAZA; Munaza RAMZAN

    2009-01-01

    The aim of present study is to develop a pharmacokinetic model for microencapsulated metronidazole to predict drug absorption pattern in healthy human and validate this model internally. Metronidazole was microencapsulated into ethylcellulose shells followed by the conversion of these microcapsules into tablets.tablets (T1: fast release, T2: moderate release, T3: slow release and reference) were administered to twenty four healthy human volunteers and serial blood samples were collected for 12 hours followed by their analysis using RP-HPLC. Drug release data were analyzed by various model dependent and independent approaches. Drug absorbed (%) was determined by Wagner-Nelson method from plasma concentration profile. Internal predictability was checked from Cmax and AUC. Optimum dissolution profile was observed in double distilled water and 50coefficient, R2 = 0.900 9, 0.942 6, 0.901 5 and 0.932 for T1, T2, T3 and reference, respectively). Internal predictability was found less than 10%. Good correlation coefficients and low prediction errors elaborate the validity of this mathematical in-vitro in-vivo correlation model as a predictive tool for the determination of pharmaenkinetics from dissolution data.

  19. Prediction of clinical response based on pharmacokinetic/pharmacodynamic models of 5-hydroxytryptamine reuptake inhibitors in mice

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Smith, D. G.; Brennum, L. T.;

    2008-01-01

    Bridging the gap between preclinical research and clinical trials is vital for drug development. Predicting clinically relevant steady-state drug concentrations (Css) in serum from preclinical animal models may facilitate this transition. Here we used a pharmacokinetic/pharmacodynamic (PK/PD) mod...

  20. Mathematical modeling and simulation in animal health - Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment.

    Science.gov (United States)

    Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E

    2016-10-01

    This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology.

  1. Recent Advances in Development and Application of Physiologically-Based Pharmacokinetic (PBPK) Models: a Transition from Academic Curiosity to Regulatory Acceptance

    OpenAIRE

    Jamei, Masoud

    2016-01-01

    There is a renewed surge of interest in applications of physiologically-based pharmacokinetic (PBPK) models by the pharmaceutical industry and regulatory agencies. Developing PBPK models within a systems pharmacology context allows separation of the parameters pertaining to the animal or human body (the system) from that of the drug and the study design which is essential to develop generic drug-independent models used to extrapolate PK/PD properties in various healthy and patient populations...

  2. Physiologically-based pharmacokinetic modelling of distribution, bioaccumulation and excretion of POPs in Greenland sledge dogs (Canis familiaris).

    Science.gov (United States)

    Sonne, Christian; Gustavson, Kim; Letcher, Robert J; Dietz, Rune

    2015-10-01

    We used PBPK (physiologically-based pharmacokinetic) modelling to investigate distribution, bioaccumulation and excretion of the seven POPs (persistent organic pollutants) CB-99, CB-153, HCB, oxychlordane, p,p'-DDE, BDE-47 and BDE-99 in 4 adult captive Greenland sledge dog (Canis familiaris) bitches fed minke whale (Balaenoptera acuterostrata) blubber for 500-635 days. The PBPK modelled POP concentrations in adipose tissue, liver, kidney and plasma were mostly within a factor 2 of actual measured tissue levels even for those at the lower concentration end. The excretion route for oxychlordane and CB-153 was modelled to be via faeces while lung alveolar excretion dominated for BDE-47, BDE-99, HCB, p,p'-DDE and CB-99. Furthermore the model suggested the retained mass of POPs after 500 and 635 days of exposure, respectively, to be relatively low despite these POPs being highly recalcitrant. The retention increased in the following order (% of total intake); p,p'-DDE (1%)tool in risk assessment of POPs in arctic mammals. PMID:26210746

  3. Human biofluid concentrations of mono(2-ethylhexyl)phthalate extrapolated from pharmacokinetics in chimeric mice with humanized liver administered with di(2-ethylhexyl)phthalate and physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Adachi, Koichiro; Suemizu, Hiroshi; Murayama, Norie; Shimizu, Makiko; Yamazaki, Hiroshi

    2015-05-01

    Di(2-ethylhexyl)phthalate (DEHP) is a reproductive toxicant in male rodents. The aim of the current study was to extrapolate the pharmacokinetics and toxicokinetics of mono(2-ethylhexyl)phthalate (MEHP, a primary metabolite of DEHP) in humans by using data from oral administration of DEHP to chimeric mice transplanted with human hepatocytes. MEHP and its glucuronide were detected in plasma from control mice and chimeric mice after single oral doses of 250mg DEHP/kg body weight. Biphasic plasma concentration-time curves of MEHP and its glucuronide were seen only in control mice. MEHP and its glucuronide were extensively excreted in urine within 24h in mice with humanized liver. In contrast, fecal excretion levels of MEHP glucuronide were high in control mice compared with those with humanized liver. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated urine MEHP concentrations in humans were consistent with reported concentrations. This research illustrates how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of pharmacokinetics or toxicokinetics of the primary or secondary metabolites of DEHP.

  4. A mechanism-based pharmacokinetic/pharmacodynamic model for CYP3A1/2 induction by dexamethasone in rats

    Institute of Scientific and Technical Information of China (English)

    Liang LI; Zai-quan LI; Chen-hui DENG; Miao-ran NING; Han-qing LI; Shan-shan BI; Tian-yan ZHOU; Wei LU

    2012-01-01

    To develop a pharmacokinetic/pharmacodynamic (PK/PD) model describing the receptor/gene-mediated induction of CYP3A1/2 by dexamethasone (DEX) in rats.Methods:A group of male Sprague-Dawley rats receiving DEX (100 mg/kg,ip) were sacrificed at various time points up to 60 h post- treatment.Their blood sample and liver were collected.The plasma concentration of DEX was determined with a reverse phase HPLC method.CYP3A1/2 mRNA,protein levels and enzyme activity were measured using RT-PCR,ELISA and the testosterone substrate assay,respectively.Data analyses were performed using a first-order conditional estimate (FOCE) with INTERACTION method in NONMEM version 7.1.2.Results:A two-compartment model with zero-order absorption was applied to describe the pharmacokinetic characteristics of DEX.Systemic clearance,the apparent volume of distribution and the duration of zero-order absorption were calculated to be 172.7 mL·kg-1.h-1,657.4 mL/kg and 10.47 h,respectively.An indirect response model with a series of transit compartments was developed to describe the induction of CYP3A1/2 via PXR transactivation by DEX.The maximum induction of CYP3A1 and CYP3A2 mRNA levels was achieved,showing nearly 21.29- and 8.67-fold increases relative to the basal levels,respectively.The CYP3A1 and CYP3A2 protein levels were increased by 8.02-fold and 2.49-fold,respectively.The total enzyme activities of CYP3A1/2 were shown to increase by up to 2.79-fold,with a lag time of 40 h from the Tmax of the DEX plasma concentration.The final PK/PD model was able to recapitulate the delayed induction of CYP3A1/2 mRNA,protein and enzyme activity by DEX.Conclusion:A mechanism-based PK/PD model was developed to characterize the complex concentration-induction response relationship between DEX and CYP3A1/2 and to resolve the drug- and system-specific PK/PD parameters for the course of induction.

  5. Comparative activity of pradofloxacin and marbofloxacin against coagulase-positive staphylococci in a pharmacokinetic-pharmacodynamic model based on canine pharmacokinetics.

    Science.gov (United States)

    Körber-Irrgang, B; Wetzstein, H-G; Bagel-Trah, S; Hafner, D; Kresken, M

    2012-12-01

    Pradofloxacin (PRA), a novel veterinary 8-cyano-fluoroquinolone (FQ), is active against Staphylococcus pseudintermedius, the primary cause of canine pyoderma. An in vitro pharmacokinetic-pharmacodynamic model was used to compare the activities of PRA and marbofloxacin (MAR) against three clinical isolates of S. pseudintermedius and reference strain Staphylococcus aureus ATCC 6538. Experiments were performed involving populations of 10(10) CFU corresponding to an inoculum density of approximately 5 × 10(7) CFU/mL. The time course of free drug concentrations in canine serum was modelled, resulting from once daily standard oral dosing of 3 mg of PRA/kg and 2 mg of MAR/kg. In addition, experimentally high doses of 6 mg of PRA/kg and 16 mg of MAR/kg were tested against the least susceptible strain. Viable counts were monitored over 24 h. At concentrations associated with standard doses, PRA caused a faster and more sustained killing than MAR of all strains. The ratios of free drug under the concentration-time curve for 24 h over MIC and the maximum concentration of free drug over MIC were at least 90 and 26, and 8.5 and 2.1 for PRA and MAR, respectively. At experimentally high doses, PRA was superior to MAR in terms of immediate killing. Subpopulations with reduced susceptibility to either FQ did not emerge. We conclude that PRA is likely to be an efficacious therapy of canine staphylococcal infections.

  6. Proposed mechanistic description of dose-dependent BDE-47 urinary elimination in mice using a physiologically based pharmacokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Claude, E-mail: claude.emond@umontreal.ca [BioSimulation Consulting Inc., Newark, DE (United States); Departments of Environmental and Occupational Health, Medicine Faculty, University of Montreal, Montreal, Quebec (Canada); Sanders, J. Michael, E-mail: sander10@mail.nih.gov [National Cancer Institute, Research Triangle Park, NC (United States); Wikoff, Daniele, E-mail: dwikoff@toxstrategies.com [ToxStrategies, Austin, TX (United States); Birnbaum, Linda S., E-mail: birnbaumls@niehs.nih.gov [National Cancer Institute, Research Triangle Park, NC (United States)

    2013-12-01

    Polybrominated diphenyl ethers (PBDEs) have been used in a wide variety of consumer applications as additive flame retardants. In North America, scientists have noted continuing increases in the levels of PBDE congeners measured in human serum. Some recent studies have found that PBDEs are associated with adverse health effects in humans, in experimental animals, and wildlife. This laboratory previously demonstrated that urinary elimination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) is saturable at high doses in mice; however, this dose-dependent urinary elimination has not been observed in adult rats or immature mice. Thus, the primary objective of this study was to examine the mechanism of urinary elimination of BDE-47 in adult mice using a physiologically based pharmacokinetic (PBPK) model. To support this objective, additional laboratory data were collected to evaluate the predictions of the PBPK model using novel information from adult multi-drug resistance 1a/b knockout mice. Using the PBPK model, the roles of mouse major urinary protein (a blood protein carrier) and P-glycoprotein (an apical membrane transporter in proximal tubule cells in the kidneys, brain, intestines, and liver) were investigated in BDE-47 elimination. The resulting model and new data supported the major role of m-MUP in excretion of BDE-47 in the urine of adult mice, and a lesser role of P-gp as a transporter of BDE-47 in mice. This work expands the knowledge of BDE-47 kinetics between species and provides information for determining the relevancy of these data for human risk assessment purposes. - Highlights: • We report the first study on PBPK model on flame retardant in mice for BDE-47. • We examine mechanism of urinary elimination of BDE-47 in mice using a PBPK model. • We investigated roles of m-MUP and P-gp as transporters in urinary elimination.

  7. Development of a mechanism-based pharmacokinetic/pharmacodynamic model to characterize the thermoregulatory effects of serotonergic drugs in mice

    Directory of Open Access Journals (Sweden)

    Xi-Ling Jiang

    2016-09-01

    Full Text Available We have shown recently that concurrent harmaline, a monoamine oxidase-A inhibitor (MAOI, potentiates serotonin (5-HT receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT-induced hyperthermia. The objective of this study was to develop an integrated pharmacokinetic/pharmacodynamic (PK/PD model to characterize and predict the thermoregulatory effects of such serotonergic drugs in mice. Physiological thermoregulation was described by a mechanism-based indirect-response model with adaptive feedback control. Harmaline-induced hypothermia and 5-MeO-DMT–elicited hyperthermia were attributable to the loss of heat through the activation of 5-HT1A receptor and thermogenesis via the stimulation of 5-HT2A receptor, respectively. Thus serotonergic 5-MeO-DMT–induced hyperthermia was readily distinguished from handling/injection stress-provoked hyperthermic effects. This PK/PD model was able to simultaneously describe all experimental data including the impact of drug-metabolizing enzyme status on 5-MeO-DMT and harmaline PK properties, and drug- and stress-induced simple hypo/hyperthermic and complex biphasic effects. Furthermore, the modeling results revealed a 4-fold decrease of apparent SC50 value (1.88–0.496 µmol/L for 5-MeO-DMT when harmaline was co-administered, providing a quantitative assessment for the impact of concurrent MAOI harmaline on 5-MeO-DMT–induced hyperthermia. In addition, the hyperpyrexia caused by toxic dose combinations of harmaline and 5-MeO-DMT were linked to the increased systemic exposure to harmaline rather than 5-MeO-DMT, although the body temperature profiles were mispredicted by the model. The results indicate that current PK/PD model may be used as a new conceptual framework to define the impact of serotonergic agents and stress factors on thermoregulation.

  8. A model-based meta-analysis of monoclonal antibody pharmacokinetics to guide optimal first-in-human study design.

    Science.gov (United States)

    Davda, Jasmine P; Dodds, Michael G; Gibbs, Megan A; Wisdom, Wendy; Gibbs, John

    2014-01-01

    The objectives of this retrospective analysis were (1) to characterize the population pharmacokinetics (popPK) of four different monoclonal antibodies (mAbs) in a combined analysis of individual data collected during first-in-human (FIH) studies and (2) to provide a scientific rationale for prospective design of FIH studies with mAbs. The data set was composed of 171 subjects contributing a total of 2716 mAb serum concentrations, following intravenous (IV) and subcutaneous (SC) doses. mAb PK was described by an open 2-compartment model with first-order elimination from the central compartment and a depot compartment with first-order absorption. Parameter values obtained from the popPK model were further used to generate optimal sampling times for a single dose study. A robust fit to the combined data from four mAbs was obtained using the 2-compartment model. Population parameter estimates for systemic clearance and central volume of distribution were 0.20 L/day and 3.6 L with intersubject variability of 31% and 34%, respectively. The random residual error was 14%. Differences (> 2-fold) in PK parameters were not apparent across mAbs. Rich designs (22 samples/subject), minimal designs for popPK (5 samples/subject), and optimal designs for non-compartmental analysis (NCA) and popPK (10 samples/subject) were examined by stochastic simulation and estimation. Single-dose PK studies for linear mAbs executed using the optimal designs are expected to yield high-quality model estimates, and accurate capture of NCA estimations. This model-based meta-analysis has determined typical popPK values for four mAbs with linear elimination and enabled prospective optimization of FIH study designs, potentially improving the efficiency of FIH studies for this class of therapeutics.

  9. Tissue distribution model and pharmacokinetics of nuciferine based on UPLC-MS/MS and BP-ANN.

    Science.gov (United States)

    Xu, Yanyan; Bao, Shihui; Tian, Weiqiang; Wen, Congcong; Hu, Lufeng; Lin, Chongliang

    2015-01-01

    Nuciferine has shown remarkable biological activities and been considered as a promising drug. In this study, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determination of nuciferine in tissue and plasma. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 296.0→265.1 for nuciferine, and m/z 322.0→307.0 for berberrubine internal standard (IS). Based on the UPLC-MS/MS method, the tissue distribution profile of nuciferine in mice and plasma pharmacokinetics in rat were studied. The results showed nuciferine was absorbed through intestinal tract and distributed into tissues rapidly. The bioavailability of nuciferine was identified at 17.9%. It can across through blood brain barrier, the concentrations in liver and kidney are highest, then followed by spleen, lung heart and brain. Nuciferine is eliminated quickly in the tissues and plasma, the t1/2 within 5 hour. The concentrations in these tissues are correlated to each other, and can be predicted by a back-propagation artificial neural network model. PMID:26770351

  10. Concomitant use of tamoxifen and endoxifen in postmenopausal early breast cancer: prediction of plasma levels by physiologically-based pharmacokinetic modeling

    OpenAIRE

    Dickschen, Kristin; Eissing, Thomas; Mürdter, Thomas; Schwab, Matthias; Willmann, Stefan; Hempel, Georg

    2014-01-01

    Purpose To overcome cytochrome P450 2D6 (CYP2D6) mediated tamoxifen resistance in postmenopausal early breast cancer, CYP2D6 phenotype-adjusted tamoxifen dosing in patients with impaired CYP2D6 metabolism and/or the application of endoxifen, the most potent tamoxifen metabolite, are alternative treatment options. To elucidate both strategies comprehensively we used a physiologically-based pharmacokinetic (PBPK) modeling approach. Methods Firstly simulation of increasing tamoxifen dosages was ...

  11. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR INTRAVENOUS AND INHALATION-ROUTE PHARMACOKINETICS OF BUTYL ACETATE AND METABOLITES N-BUTANOL AND N-BUTYRIC ACID

    Science.gov (United States)

    Risk assessment for n-butyl acetate and metabolites n-butanol and n-butyric acid (the butyl series) can be accomplished with limited toxicity data and pharmacokinetic data for each compound through application of the "family approach" (Barton et al., 2000). The necessary quantita...

  12. Physiologically Based Pharmacokinetic Modeling for Substitutability Analysis of Venlafaxine Hydrochloride Extended-Release Formulations Using Different Release Mechanisms: Osmotic Pump Versus Openable Matrix.

    Science.gov (United States)

    Lin, Ho-Pi; Sun, Dajun; Zhang, Xinyuan; Wen, Hong

    2016-10-01

    A Food and Drug Administration-approved generic oral product of venlafaxine hydrochloride (HCl) extended-release (ER) tablets has used a release mechanism based on an openable matrix, which is different from the push-pull osmotic pump system of its reference-listed drug. In an extreme case, a delay in the bursting of the openable matrix may be considered a product failure mode that alters the intended profile of systemic exposure. A physiologically based pharmacokinetic absorption model was established and verified to simulate the pharmacokinetic profiles after a single-dose oral administration of ER venlafaxine HCl tablets based on an osmotic pump or openable matrix design. This model adequately predicted the observed human mean pharmacokinetic metrics with drug-release profiles under most dissolution conditions. The results indicated that a bioinequivalence risk is minimal for a delayed onset of drug release from the approved generic venlafaxine HCl ER tablets with an openable matrix design, supporting its substitutability to the reference product. PMID:27449228

  13. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: Xiaoxia.Yang@fda.hhs.gov; Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-07-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.

  14. First principles pharmacokinetic modeling: A quantitative study on Cyclosporin

    DEFF Research Database (Denmark)

    Mošat', Andrej; Lueshen, Eric; Heitzig, Martina;

    2013-01-01

    , require an effective methodology for solving parameter estimation challenges. This article solves the problem of rigorously estimating unknown biochemical reaction and transport parameters from in vivo datasets and identifying whole-body physiologically based pharmacokinetic (PBPK) models.A rat blood...... circulation model was combined with biotransport, biochemical reactions and metabolism of the immunosuppressant Cyclosporin. We demonstrate the proposed methodology on a case study in Sprague-Dawley rats by bolus iv injections of 1.2, 6 and 30. mg/kg. Key pharmacokinetic parameters were determined, including...

  15. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhoumeng [Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Wang, Ran [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Ross, Matthew K. [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Filipov, Nikolay M., E-mail: filipov@uga.edu [Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602 (United States)

    2013-11-15

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) at levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data

  16. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    International Nuclear Information System (INIS)

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) at levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data.

  17. Bioelectrical impedance modelling of gentamicin pharmacokinetic parameters.

    Science.gov (United States)

    Zarowitz, B J; Pilla, A M; Peterson, E L

    1989-10-01

    1. Bioelectrical impedance analysis was used to develop descriptive models of gentamicin pharmacokinetic parameters in 30 adult in-patients receiving therapy with gentamicin. 2. Serial blood samples obtained from each subject at steady state were analyzed and used to derive gentamicin pharmacokinetic parameters. 3. Multiple regression equations were developed for clearance, elimination rate constant and volume of distribution at steady state and were all statistically significant at P less than 0.05. 4. Clinical validation of this innovative technique is warranted before clinical use is recommended.

  18. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Model Applications to Screen Environmental Hazards.

    Science.gov (United States)

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. A...

  19. Automated optimal glycaemic control using a physiology based pharmacokinetic, pharmacodynamic model

    OpenAIRE

    Schaller, Stephan

    2015-01-01

    After decades of research, Automated Glucose Control (AGC) is still out of reach for everyday control of blood glucose. The inter- and intra-individual variability of glucose dynamics largely arising from variability in insulin absorption, distribution, and action, and related physiological lag-times remain a core problem in the development of suitable control algorithms. Over the years, model predictive control (MPC) has established itself as the gold standard in AGC systems in research. Mod...

  20. Virtual pharmacokinetic model of human eye.

    Science.gov (United States)

    Kotha, Sreevani; Murtomäki, Lasse

    2014-07-01

    A virtual pharmacokinetic 3D model of the human eye is built using Comsol Multiphysics® software, which is based on the Finite Element Method (FEM). The model considers drug release from a polymer patch placed on sclera. The model concentrates on the posterior part of the eye, retina being the target tissue, and comprises the choroidal blood flow, partitioning of the drug between different tissues and active transport at the retina pigment epithelium (RPE)-choroid boundary. Although most straightforward, in order to check the mass balance, no protein binding or metabolism is yet included. It appeared that the most important issue in obtaining reliable simulation results is the finite element mesh, while time stepping has hardly any significance. Simulations were extended to 100,000 s. The concentration of a drug is shown as a function of time at various points of retina, as well as its average value, varying several parameters in the model. This work demonstrates how anybody with basic knowledge of calculus is able to build physically meaningful models of quite complex biological systems. PMID:24721554

  1. Human Blood Concentrations of Cotinine, a Biomonitoring Marker for Tobacco Smoke, Extrapolated from Nicotine Metabolism in Rats and Humans and Physiologically Based Pharmacokinetic Modeling

    Directory of Open Access Journals (Sweden)

    Masato Kitajima

    2010-09-01

    Full Text Available The present study defined a simplified physiologically based pharmacokinetic (PBPK model for nicotine and its primary metabolite cotinine in humans, based on metabolic parameters determined in vitro using relevant liver microsomes, coefficients derived in silico, physiological parameters derived from the literature, and an established rat PBPK model. The model consists of an absorption compartment, a metabolizing compartment, and a central compartment for nicotine and three equivalent compartments for cotinine. Evaluation of a rat model was performed by making comparisons with predicted concentrations in blood and in vivo experimental pharmacokinetic values obtained from rats after oral treatment with nicotine (1.0 mg/kg, a no-observed-adverse-effect level for 14 days. Elimination rates of nicotine in vitro were established from data from rat liver microsomes and from human pooled liver microsomes. Human biomonitoring data (17 ng nicotine and 150 ng cotinine per mL plasma 1 h after smoking from pooled five male Japanese smokers (daily intake of 43 mg nicotine by smoking revealed that these blood concentrations could be calculated using a human PBPK model. These results indicate that a simplified PBPK model for nicotine/cotinine is useful for a forward dosimetry approach in humans and for estimating blood concentrations of other related compounds resulting from exposure to low chemical doses.

  2. A physiologically based pharmacokinetic/pharmacodynamic model for carbofuran in Sprague-Dawley rats using the exposure-related dose estimating model.

    Science.gov (United States)

    Zhang, Xiaofei; Tsang, Andy M; Okino, Miles S; Power, Frederick W; Knaak, James B; Harrison, Lynda S; Dary, Curtis C

    2007-12-01

    Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methylcarbamate), a broad spectrum N-methyl carbamate insecticide, and its metabolite, 3-hydroxycarbofuran, exert their toxicity by reversibly inhibiting acetylcholinesterase (AChE). To characterize AChE inhibition from carbofuran exposure, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was developed in the Exposure-Related Dose Estimating Model (ERDEM) platform for the Sprague-Dawley (SD) rat. Experimental estimates of physiological, biochemical, and physicochemical model parameters were obtained or based on data from the open literature. The PBPK/PD model structure included carbofuran metabolism in the liver to 16 known metabolites, enterohepatic circulation of glucuronic acid conjugates, and excretion in urine and feces. Bolus doses by ingestion of 50 microg/kg and 0.5 mg/kg carbofuran were simulated for the blood and brain AChE activity. The carbofuran ERDEM simulated a half-life of 5.2 h for urinary clearance, and the experimental AChE activity data were reproduced for the blood and brain. Thirty model parameters were found influential to the model outputs and were chosen for perturbation in Monte Carlo simulations to evaluate the impact of their variability on the model predictions. Results of the simulation runs indicated that the minimum AChE activity in the blood ranged from 29.3 to 79.0% (as 5th and 95th percentiles) of the control level with a mean of 55.9% (standard deviation = 15.1%) compared to an experimental value of 63%. The constructed PBPK/PD model for carbofuran in the SD rat provides a foundation for extrapolating to a human model that can be used for future risk assessment.

  3. Reproductive performance in East Greenland polar bears (Ursus maritimus) may be affected by organohalogen contaminants as shown by physiologically-based pharmacokinetic (PBPK) modelling

    DEFF Research Database (Denmark)

    Sonne, Christian; Gustavson, Kim; Rigét, Frank F.;

    2009-01-01

    quotient (RQ) evaluation to more quantitatively evaluate the effect risk on reproduction (embryotoxicity and teratogenicity) based on the critical body residue (CBR) concept and using a physiologically-based pharmacokinetic (PBPK) model. We applied modelling approaches to PCBs, p,p′-DDE, dieldrin......RQs above 1 suggested risk for OHC additive effects. Thus, previous suggestions of possible adverse health effects in polar bears correlated to OHC exposure are supported by the present study. This study also indicates that PBPK models may be a supportive tool in the evaluation of possible OHC-mediated...... effects, including reproductive, were conducted during 1990–2006. However, it has been difficult to determine the nature of the effects induced by OHC exposures on wild caught polar bears using body burden data and associated changes in reproductive organs and systems. We therefore conducted a risk...

  4. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women.

    Science.gov (United States)

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina; Unadkat, Jashvant D

    2013-04-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age-dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2-metabolized drug theophylline (THEO) and CYP2D6-metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  5. EVALUATION OF ORAL AND INTRAVENOUS ROUTE PHARMACOKINETICS, PLASMA PROTEIN BINDING AND UTERINE TISSUE DOSE METRICS OF BPA: A PHYSIOLOGICALLY BASED PHARMACOKINETIC APPROACH

    Science.gov (United States)

    Bisphenol A (BPA) is a weakly estrogenic monomer used in the production of polycarbonate plastics and epoxy resins, both of which are used in food contact applications. A physiologically based pharmacokinetic (PBPK) model of BPA pharmacokinetics in rats and humans was developed t...

  6. Reconstructing Exposures from Biomarkers using Exposure-Pharmacokinetic Modeling - A Case Study with Carbaryl

    Science.gov (United States)

    Sources of uncertainty involved in exposure reconstruction for a short half-life chemical, carbaryl, were characterized using the Cumulative and Aggregate Risk Evaluation System (CARES), an exposure model, and a human physiologically based pharmacokinetic (PBPK) model. CARES was...

  7. Assessment of DCE-MRI parameters for brain tumors through implementation of physiologically-based pharmacokinetic model approaches for Gd-DOTA.

    Science.gov (United States)

    Spanakis, Marios; Kontopodis, Eleftherios; Van Cauter, Sophie; Sakkalis, Vangelis; Marias, Kostas

    2016-10-01

    Dynamic-contrast enhanced magnetic resonance imaging (DCE-MRI) is used for detailed characterization of pathology of lesions sites, such as brain tumors, by quantitative analysis of tracer's data through the use of pharmacokinetic (PK) models. A key component for PK models in DCE-MRI is the estimation of the concentration-time profile of the tracer in a nearby vessel, referred as Arterial Input Function (AIF). The aim of this work was to assess through full body physiologically-based pharmacokinetic (PBPK) model approaches the PK profile of gadoteric acid (Gd-DOTA) and explore potential application for parameter estimation in DCE-MRI based on PBPK-derived AIFs. The PBPK simulations were generated through Simcyp(®) platform and the predicted PK parameters for Gd-DOTA were compared with available clinical data regarding healthy volunteers and renal impairment patients. The assessment of DCE-MRI parameters was implemented by utilizing similar virtual profiles based on gender, age and weight to clinical profiles of patients diagnosed with glioblastoma multiforme. The PBPK-derived AIFs were then used to compute DCE-MRI parameters through the Extended Tofts Model and compared with the corresponding ones derived from image-based AIF computation. The comparison involved: (i) image measured AIF of patients vs AIF of in silico profile, and, (ii) population average AIF vs in silico mean AIFs. The results indicate that PBPK-derived AIFs allowed the estimation of comparable imaging biomarkers with those calculated from typical DCE-MRI image analysis. The incorporation of PBPK models and potential utilization of in silico profiles to real patient data, can provide new perspectives in DCE-MRI parameter estimation and data analysis. PMID:27647272

  8. Pharmacokinetic/Pharmacodynamic (PK/PD) Indices of Antibiotics Predicted by a Semimechanistic PKPD Model: a Step toward Model-Based Dose Optimization▿

    OpenAIRE

    Nielsen, Elisabet I.; Cars, Otto; Friberg, Lena E.

    2011-01-01

    A pharmacokinetic-pharmacodynamic (PKPD) model that characterizes the full time course of in vitro time-kill curve experiments of antibacterial drugs was here evaluated in its capacity to predict the previously determined PK/PD indices. Six drugs (benzylpenicillin, cefuroxime, erythromycin, gentamicin, moxifloxacin, and vancomycin), representing a broad selection of mechanisms of action and PK and PD characteristics, were investigated. For each drug, a dose fractionation study was simulated, ...

  9. A model to resolve organochlorine pharmacokinetics in migrating humpback whales.

    Science.gov (United States)

    Cropp, Roger; Nash, Susan Bengtson; Hawker, Darryl

    2014-07-01

    Humpback whales are iconic mammals at the top of the Antarctic food chain. Their large reserves of lipid-rich tissues such as blubber predispose them to accumulation of lipophilic contaminants throughout their lifetime. Changes in the volume and distribution of lipids in humpback whales, particularly during migration, could play an important role in the pharmacokinetics of lipophilic contaminants such as the organochlorine pesticide hexachlorobenzene (HCB). Previous models have examined constant feeding and nonmigratory scenarios. In the present study, the authors develop a novel heuristic model to investigate HCB dynamics in a humpback whale and its environment by coupling an ecosystem nutrient-phytoplankton-zooplankton-detritus (NPZD) model, a dynamic energy budget (DEB) model, and a physiologically based pharmacokinetic (PBPK) model. The model takes into account the seasonal feeding pattern of whales, their energy requirements, and fluctuating contaminant burdens in the supporting plankton food chain. It is applied to a male whale from weaning to maturity, spanning 20 migration and feeding cycles. The model is initialized with environmental HCB burdens similar to those measured in the Southern Ocean and predicts blubber HCB concentrations consistent with empirical concentrations observed in a southern hemisphere population of male, migrating humpback whales. Results show for the first time some important details of the relationship between energy budgets and organochlorine pharmacokinetics. PMID:24733631

  10. A model to resolve organochlorine pharmacokinetics in migrating humpback whales.

    Science.gov (United States)

    Cropp, Roger; Nash, Susan Bengtson; Hawker, Darryl

    2014-07-01

    Humpback whales are iconic mammals at the top of the Antarctic food chain. Their large reserves of lipid-rich tissues such as blubber predispose them to accumulation of lipophilic contaminants throughout their lifetime. Changes in the volume and distribution of lipids in humpback whales, particularly during migration, could play an important role in the pharmacokinetics of lipophilic contaminants such as the organochlorine pesticide hexachlorobenzene (HCB). Previous models have examined constant feeding and nonmigratory scenarios. In the present study, the authors develop a novel heuristic model to investigate HCB dynamics in a humpback whale and its environment by coupling an ecosystem nutrient-phytoplankton-zooplankton-detritus (NPZD) model, a dynamic energy budget (DEB) model, and a physiologically based pharmacokinetic (PBPK) model. The model takes into account the seasonal feeding pattern of whales, their energy requirements, and fluctuating contaminant burdens in the supporting plankton food chain. It is applied to a male whale from weaning to maturity, spanning 20 migration and feeding cycles. The model is initialized with environmental HCB burdens similar to those measured in the Southern Ocean and predicts blubber HCB concentrations consistent with empirical concentrations observed in a southern hemisphere population of male, migrating humpback whales. Results show for the first time some important details of the relationship between energy budgets and organochlorine pharmacokinetics.

  11. Neural network modelling of antifungal activity of a series of oxazole derivatives based on in silico pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Kovačević Strahinja Z.

    2013-01-01

    Full Text Available In the present paper, the antifungal activity of a series of benzoxazole and oxazolo[ 4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantitative structure-activity relationships chemometric methodology with artificial neural network (ANN regression approach. In vitro antifungal activity of the tested compounds was presented by minimum inhibitory concentration expressed as log(1/cMIC. In silico pharmacokinetic parameters related to absorption, distribution, metabolism and excretion (ADME were calculated for all studied compounds by using PreADMET software. A feedforward back-propagation ANN with gradient descent learning algorithm was applied for modelling of the relationship between ADME descriptors (blood-brain barrier penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell permeability and experimental log(1/cMIC values. A 4-6-1 ANN was developed with the optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent correlation between experimental antifungal activity and values predicted by the ANN was obtained with a correlation coefficient of 0.9536. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  12. Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.; Wang, Shu-Li; Hsieh, Dennis P. H.; Yang, Raymond S. H.

    2008-03-01

    We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and compare predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.

  13. Pharmacokinetics local model and Its application in nuclear medicine

    Institute of Scientific and Technical Information of China (English)

    曹国宪; 李卫一; 等

    1996-01-01

    The Pharmacokinetics local model for studying kinetic action of pharmaceuticals in the specific part of the body is established on the basis of the compartment model.A series of formulae is deduced,and with them the pharmacokinetic equation and several important parameters can be obtained.The local model successfully expanded the area of pharmacokinetics from the compartment model ,which is mainly dealing with kinetic action of pharmaceuticals in blood,to the local model,which can study kinetic action of pharmaceuticals in any organ,tissue or fluid.

  14. The calculation of human toxicity thresholds of 2,3,7,8-TCDD; A Physiologically Based Pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Zeilmaker MJ; van Eijkeren JCH; LBO

    1998-01-01

    Dit rapport beschrijft de toepassing van een 'Physiologically Based PharmacoKinetic' model (PBPK model) bij het berekenen van de verwachte 'No Adverse Effect Level' van 2,3,7,8-TetraChloroDibenzo-p-Dioxine (TCDD) bij de mens. Het model houdt rekening met variabiliteit en onzeker

  15. Grey-box modelling of pharmacokinetic/pharmacodynamic systems

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Jacobsen, Judith L; Pedersen, Oluf;

    2004-01-01

    Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling is presented as a promising way of modelling PK/PD systems. The concept behind grey-box modelling is based on combining physiological knowledge along with information from data in the estimation of model parameters. Grey-box modelling...... consists of using stochastic differential equations (SDEs) where the stochastic term in the differential equations represents unknown or incorrectly modelled dynamics of the system. The methodology behind the grey-box PK/PD modelling framework for systematic model improvement is illustrated using simulated...... data and furthermore applied to Bergman's minimal model of glucose kinetics using clinical data from an intravenous glucose tolerance test (IVGTT). The grey-box estimates of the stochastic system noise parameters indicate that the glucose minimal model is too simple and should preferably be revised...

  16. A Mechanistic Pharmacokinetic Model for Liver Transporter Substrates Under Liver Cirrhosis Conditions.

    Science.gov (United States)

    Li, R; Barton, H A; Maurer, T S

    2015-06-01

    Liver cirrhosis is a disease characterized by the loss of functional liver mass. Physiologically based pharmacokinetic (PBPK) modeling was applied to interpret and predict how the interplay among physiological changes in cirrhosis affects pharmacokinetics. However, previous PBPK models under cirrhotic conditions were developed for permeable cytochrome P450 substrates and do not directly apply to substrates of liver transporters. This study characterizes a PBPK model for liver transporter substrates in relation to the severity of liver cirrhosis. A published PBPK model structure for liver transporter substrates under healthy conditions and the physiological changes for cirrhosis are combined to simulate pharmacokinetics of liver transporter substrates in patients with mild and moderate cirrhosis. The simulated pharmacokinetics under liver cirrhosis reasonably approximate observations. This analysis includes meta-analysis to obtain system-dependent parameters in cirrhosis patients and a top-down approach to improve understanding of the effect of cirrhosis on transporter-mediated drug disposition under cirrhotic conditions. PMID:26225262

  17. Application of pharmacokinetics local model to evaluate renal function

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The pharmacokinetics local model was used to evaluate renal function.Some typical kinds of renal function cases, normal or disorder, were selected to be imaged with SPECT and those data measured were treated by the pharmacokinetics local model computer program (PLM).The results indicated that parameters, including peak value, peak time, inflexion time, half-excretion time, and kinetic equation played and importantrole in judging renal function.The fact confirms that local model isvery useful in evaluating renal function.

  18. Incorporation of Therapeutic Interventions in Physiologically Based Pharmacokinetic Modeling of Human Clinical Case Reports of Accidental or Intentional Overdosing with Ethylene Glycol

    Energy Technology Data Exchange (ETDEWEB)

    Corley, Rick A.; McMartin, K. E.

    2005-05-16

    Ethylene glycol is a high production volume chemical used in the manufacture of resins and fibers, antifreeze, deicing fluids, heat transfer and hydraulic fluids. Although occupational uses of ethylene glycol have not been associated with adverse effects, there are case reports where humans have either intentionally or accidentally ingested large quantities of ethylene glycol, primarily from antifreeze. The acute toxicity of ethylene glycol in humans and animals and can proceed through three stages, each associated with a different metabolite: central nervous system depression (ethylene glycol), cardiopulmonary effects associated with metabolic acidosis (glycolic acid) and ultimately renal toxicity (oxalic acid), depending upon the total amounts consumed and effectiveness of therapeutic interventions. A physiologically based pharmacokinetic (PBPK) model developed in a companion paper (Corley et al., 2004) was refined in this study to include clinically relevant treatment regimens for ethylene glycol poisoning such as hemodialysis or metabolic inhibition with either ethanol or fomepizole. Such modifications enabled the model to describe several human case reports which included analysis of ethylene glycol and/or glycolic acid. Such data and model simulations provide important confirmation that the PBPK model developed previously can adequately describe the pharmacokinetics of ethylene glycol in humans following low, occupational or environmentally relevant inhalation exposures, as well as massive oral doses even under conditions where treatments have been employed that markedly affect the disposition of ethylene glycol and glycolic acid. By integrating the case report data sets with controlled studies in this PBPK model, it was demonstrated that fomepizole, if administered early enough in a clinical situation, can be more effective than ethanol or hemodialysis in preventing the metabolism of ethylene glycol to more toxic metabolites. Hemodialysis remains an

  19. Physiologically Based Pharmacokinetics of Matrine in the Rat after Oral Administration of Pure Chemical and ACAPHA

    OpenAIRE

    Gao, Guanghua; Law, Francis C. P.

    2009-01-01

    ACAPHA, a botanical drug for the treatment of human esophageal cancer in China, is under investigation as a lung cancer chemoprevention agent at the BC Cancer Agency (Vancouver, BC, Canada). Little or no information is available on the pharmacokinetics of ACAPHA in animals. The objectives of this study were as follows: to examine the disposition kinetics of matrine, a bioactive marker of ACAPHA in the rat; to develop a physiologically based pharmacokinetic (PBPK) model...

  20. Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz

    OpenAIRE

    Siccardi, Marco; Olagunju, Adeniyi; Seden, Kay; Ebrahimjee, Farid; Rannard, Steve; Back, David; Owen, Andrew

    2013-01-01

    Purpose To treat malaria, HIV-infected patients normally receive artemether (80 mg twice daily) concurrently with antiretroviral therapy and drug-drug interactions can potentially occur. Artemether is a substrate of CYP3A4 and CYP2B6, antiretrovirals such as efavirenz induce these enzymes and have the potential to reduce artemether pharmacokinetic exposure. The aim of this study was to develop an in vitro in vivo extrapolation (IVIVE) approach to model the interaction between efavirenz and ar...

  1. Feasibility of Using Limited-Population-Based Arterial Input Function for Pharmacokinetic Modeling of Osteosarcoma Dynamic Contrast-Enhanced MRI Data

    OpenAIRE

    Wang, YA; Huang, Wei; Panicek, David M.; Schwartz, Lawrence H.; Koutcher, Jason A

    2008-01-01

    For clinical dynamic contrast-enhanced (DCE) MRI studies, it is often not possible to obtain reliable arterial input function (AIF) in each measurement. Thus, it is important to find a representative AIF for pharmacokinetic modeling of DCE-MRI data when individual AIF (Ind-AIF) measurements are not available. A total of 16 patients with osteosarcomas in the lower extremity (knee region) underwent multislice DCE-MRI. Reliable Ind-AIFs were obtained in five patients with a contrast injection ra...

  2. An on-chip small intestine-liver model for pharmacokinetic studies.

    Science.gov (United States)

    Kimura, Hiroshi; Ikeda, Takashi; Nakayama, Hidenari; Sakai, Yasuyuki; Fujii, Teruo

    2015-06-01

    Testing of drug effects and cytotoxicity by using cultured cells has been widely performed as an alternative to animal testing. However, the estimation of pharmacokinetics by conventional cell-based assay methods is difficult because of the inability to evaluate multiorgan effects. An important challenge in the field is to mimic the organ-to-organ network in the human body by using a microfluidic network connecting small-scale tissues based on recently emerging MicroTAS (Micro Total Analysis Systems) technology for prediction of pharmacokinetics. Here, we describe an on-chip small intestine-liver coupled model for pharmacokinetic studies. To construct an in vitro pharmacokinetic model that appropriately models in vivo conditions, physiological parameters such as the structure of internal circulation, volume ratios of each organ, and blood flow ratio of the portal vein to the hepatic artery were mimicked using microfluidic networks. To demonstrate interactions between organs in vitro in pharmacokinetic studies, Caco-2, HepG2, and A549 cell cultures were used as organ models of the small intestine, liver, and lung, respectively, and connected to each other through a microporous membrane and microchannels to prepare a simple model of a physiological organ-to-organ network. The on-chip organ model assay using three types of substrate-epirubicine (EPI), irinotecan (CPT-11), and cyclophosphamide (CPA)-were conducted to model the effects of orally administered or biologically active anticancer drugs. The result suggested that the device can replicate physiological phenomena such as activity of the anticancer drugs on the target cells. This microfluidic device can thus be used as an in vitro organ model to predict the pharmacokinetics of drugs in the human body and may thus provide not only an alternative to animal testing but also a method of obtaining parameters for in silico models of physiologically based pharmacokinetics. PMID:25385717

  3. Using Physiologically-Based Pharmacokinetic Models to Incorporate Chemical and Non-Chemical Stressors into Cumulative Risk Assessment: A Case Study of Pesticide Exposures

    Directory of Open Access Journals (Sweden)

    Jonathan I. Levy

    2012-05-01

    Full Text Available Cumulative risk assessment has been proposed as an approach to evaluate the health risks associated with simultaneous exposure to multiple chemical and non-chemical stressors. Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD models can allow for the inclusion and evaluation of multiple stressors, including non-chemical stressors, but studies have not leveraged PBPK/PD models to jointly consider these disparate exposures in a cumulative risk context. In this study, we focused on exposures to organophosphate (OP pesticides for children in urban low-income environments, where these children would be simultaneously exposed to other pesticides (including pyrethroids and non-chemical stressors that may modify the effects of these exposures (including diet. We developed a methodological framework to evaluate chemical and non-chemical stressor impacts on OPs, utilizing an existing PBPK/PD model for chlorpyrifos. We evaluated population-specific stressors that would influence OP doses or acetylcholinesterase (AChE inhibition, the relevant PD outcome. We incorporated the impact of simultaneous exposure to pyrethroids and dietary factors on OP dose through the compartments of metabolism and PD outcome within the PBPK model, and simulated combinations of stressors across multiple exposure ranges and potential body weights. Our analyses demonstrated that both chemical and non-chemical stressors can influence the health implications of OP exposures, with up to 5-fold variability in AChE inhibition across combinations of stressor values for a given OP dose. We demonstrate an approach for modeling OP risks in the presence of other population-specific environmental stressors, providing insight about co-exposures and variability factors that most impact OP health risks and contribute to children’s cumulative health risk from pesticides. More generally, this framework can be used to inform cumulative risk assessment for any compound impacted by

  4. Modeling in biopharmaceutics, pharmacokinetics and pharmacodynamics homogeneous and heterogeneous approaches

    CERN Document Server

    Macheras, Panos

    2016-01-01

    The state of the art in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics Modeling is presented in this new second edition book. It shows how advanced physical and mathematical methods can expand classical models in order to cover heterogeneous drug-biological processes and therapeutic effects in the body. The book is divided into four parts; the first deals with the fundamental principles of fractals, diffusion and nonlinear dynamics; the second with drug dissolution, release, and absorption; the third with epirical, compartmental, and stochastic pharmacokinetic models, with two new chapters, one on fractional pharmacokinetics and one on bioequivalence; and the fourth mainly with classical and nonclassical aspects of pharmacodynamics. The classical models that have relevance and application to these sciences are also considered throughout. This second edition has new information on reaction limited models of dissolution, non binary biopharmaceutic classification system, time varying models, and interf...

  5. Physiologically-based pharmacokinetic modeling of tamoxifen and its metabolites in women of different CYP2D6 phenotypes provides new insight into the tamoxifen mass balance

    Directory of Open Access Journals (Sweden)

    Kristin eDickschen

    2012-05-01

    Full Text Available Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+ mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6. It is widely accepted that CYP2D6 poor metabolizers (PM exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers (EM. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved.In this context, physiologically-based pharmacokinetic (PBPK-modeling provides a useful tool to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy.It has long been thought that only a minor percentage of endoxifen is formed via 4-hydroxytamoxifen. However, the current investigation supports very recently published data that postulates a contribution of 4-hydroxytamoxifen above 20 % to total endoxifen formation. The developed PBPK-model describes tamoxifen PK in rats and humans. Moreover, tamoxifen metabolism in dependence of CYP2D6 phenotype in populations of European female individuals is well described, thus providing a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity or co-treatment with CYP2D6 inhibitors.

  6. Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics.

    Science.gov (United States)

    Marsh, Rebeccah E; Riauka, Terence A; McQuarrie, Steve A

    2007-01-01

    Increasingly, fractals are being incorporated into pharmacokinetic models to describe transport and chemical kinetic processes occurring in confined and heterogeneous spaces. However, fractal compartmental models lead to differential equations with power-law time-dependent kinetic rate coefficients that currently are not accommodated by common commercial software programs. This paper describes a parameter optimization method for fitting individual pharmacokinetic curves based on a simulated annealing (SA) algorithm, which always converged towards the global minimum and was independent of the initial parameter values and parameter bounds. In a comparison using a classical compartmental model, similar fits by the Gauss-Newton and Nelder-Mead simplex algorithms required stringent initial estimates and ranges for the model parameters. The SA algorithm is ideal for fitting a wide variety of pharmacokinetic models to clinical data, especially those for which there is weak prior knowledge of the parameter values, such as the fractal models. PMID:17706176

  7. A Systematic Analysis of the Sensitivity of Plasma Pharmacokinetics to Detect Differences in the Pulmonary Performance of Inhaled Fluticasone Propionate Products Using a Model-Based Simulation Approach.

    Science.gov (United States)

    Weber, Benjamin; Hochhaus, Guenther

    2015-07-01

    The role of plasma pharmacokinetics (PK) for assessing bioequivalence at the target site, the lung, for orally inhaled drugs remains unclear. A validated semi-mechanistic model, considering the presence of mucociliary clearance in central lung regions, was expanded for quantifying the sensitivity of PK studies in detecting differences in the pulmonary performance (total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics) between test (T) and reference (R) inhaled fluticasone propionate (FP) products. PK bioequivalence trials for inhaled FP were simulated based on this PK model for a varying number of subjects and T products. The statistical power to conclude bioequivalence when T and R products are identical was demonstrated to be 90% for approximately 50 subjects. Furthermore, the simulations demonstrated that PK metrics (area under the concentration time curve (AUC) and C max) are capable of detecting differences between T and R formulations of inhaled FP products when the products differ by more than 20%, 30%, and 25% for total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics, respectively. These results were derived using a rather conservative risk assessment approach with an error rate of <10%. The simulations thus indicated that PK studies might be a viable alternative to clinical studies comparing pulmonary efficacy biomarkers for slowly dissolving inhaled drugs. PK trials for pulmonary efficacy equivalence testing should be complemented by in vitro studies to avoid false positive bioequivalence assessments that are theoretically possible for some specific scenarios. Moreover, a user-friendly web application for simulating such PK equivalence trials with inhaled FP is provided.

  8. The In Vivo Quantitation of Diazinon, chlorpyrifos, and Their Major Metabolites in Rat Blood for the Refinement of a Physiologically-Based Pharmacokinetic/Pharmacodynamic Models

    Energy Technology Data Exchange (ETDEWEB)

    Busby, A.; Kousba, A.; Timchalk, C.

    2004-01-01

    Chlorpyrifos (CPF)(O,O-diethyl-O-[3,5,6-trichloro-2-pyridyl]-phosphorothioate, CAS 2921-88-2), and diazinon (DZN)(O,O-diethyl-O-2-isopropyl-4-methyl-6-pyrimidyl thiophosphate, CAS 333-41-5) are commonly encountered organophosphorus insecticides whose oxon metabolites (CPF-oxon and DZN-oxon) have the ability to strongly inhibit acetylcholinesterase, an enzyme responsible for the breakdown of acetylcholine at nerve synapses. Chlorpyrifos-oxon and DZN-oxon are highly unstable compounds that degrade via hepatic, peripheral blood, and intestinal metabolism to the more stable metabolites, TCP (3,5,6-trichloro-2-pyridinol, CAS not assigned) and IMHP (2-isopropyl-6-methyl-4-pyrimidinol, CAS 2814-20-2), respectively. Studies have been performed to understand and model the chronic and acute toxic effects of CPF and DZN individually but little is known about their combined effects. The purpose of this study was to improve physiologically based pharmacokinetic/ pharmacodynamic (PBPK/PD) computational models by quantifying concentrations of CPF and DZN and their metabolites TCP and IMHP in whole rat blood, following exposure to the chemicals individually or as a mixture. Male Sprague-Dawley rats were orally dosed with 60 mg/kg of CPF, DZN, or a mixture of these two pesticides. When administered individually DZN and CPF were seen to reach their maximum concentration at ~3 hours post-dosing. When given as a mixture, both DZN and CPF peak blood concentrations were not achieved until ~6 hours post-dosing and the calculated blood area under the curve (AUC) for both chemicals exceeded those calculated following the single dose. Blood concentrations of IMHP and TCP correlated with these findings. It is proposed that the higher AUC obtained for both CPF and DZN as a mixture resulted from competition for the same metabolic enzyme systems.

  9. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  10. The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis.

    Directory of Open Access Journals (Sweden)

    Ahmed El-Tahtawy

    Full Text Available BACKGROUND: A recent drug interaction study reported that when azithromycin was administered with the combination of ivermectin and albendazole, there were modest increases in ivermectin pharmacokinetic parameters. Data from this study were reanalyzed to further explore this observation. A compartmental model was developed and 1,000 interaction studies were simulated to explore extreme high ivermectin values that might occur. METHODS AND FINDINGS: A two-compartment pharmacokinetic model with first-order elimination and absorption was developed. The chosen final model had 7 fixed-effect parameters and 8 random-effect parameters. Because some of the modeling parameters and their variances were not distributed normally, a second mixture model was developed to further explore these data. The mixture model had two additional fixed parameters and identified two populations, A (55% of subjects, where there was no change in bioavailability, and B (45% of subjects, where ivermectin bioavailability was increased 37%. Simulations of the data using both models were similar, and showed that the highest ivermectin concentrations fell in the range of 115-201 ng/mL. CONCLUSIONS: This is the first pharmacokinetic model of ivermectin. It demonstrates the utility of two modeling approaches to explore drug interactions, especially where there may be population heterogeneity. The mechanism for the interaction was identified (an increase in bioavailability in one subpopulation. Simulations show that the maximum ivermectin exposures that might be observed during co-administration with azithromycin are below those previously shown to be safe and well tolerated. These analyses support further study of co-administration of azithromycin with the widely used agents ivermectin and albendazole, under field conditions in disease control programs.

  11. Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs

    OpenAIRE

    Roopenian, Derry C.; Low, Benjamin E.; Christianson, Gregory J.; Proetzel, Gabriele; Sproule, Thomas J.; Wiles, Michael V.

    2015-01-01

    Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of app...

  12. PKreport: report generation for checking population pharmacokinetic model assumptions

    Directory of Open Access Journals (Sweden)

    Li Jun

    2011-05-01

    Full Text Available Abstract Background Graphics play an important and unique role in population pharmacokinetic (PopPK model building by exploring hidden structure among data before modeling, evaluating model fit, and validating results after modeling. Results The work described in this paper is about a new R package called PKreport, which is able to generate a collection of plots and statistics for testing model assumptions, visualizing data and diagnosing models. The metric system is utilized as the currency for communicating between data sets and the package to generate special-purpose plots. It provides ways to match output from diverse software such as NONMEM, Monolix, R nlme package, etc. The package is implemented with S4 class hierarchy, and offers an efficient way to access the output from NONMEM 7. The final reports take advantage of the web browser as user interface to manage and visualize plots. Conclusions PKreport provides 1 a flexible and efficient R class to store and retrieve NONMEM 7 output, 2 automate plots for users to visualize data and models, 3 automatically generated R scripts that are used to create the plots; 4 an archive-oriented management tool for users to store, retrieve and modify figures, 5 high-quality graphs based on the R packages, lattice and ggplot2. The general architecture, running environment and statistical methods can be readily extended with R class hierarchy. PKreport is free to download at http://cran.r-project.org/web/packages/PKreport/index.html.

  13. PKgraph: an R package for graphically diagnosing population pharmacokinetic models.

    Science.gov (United States)

    Sun, Xiaoyong; Wu, Kai; Cook, Dianne

    2011-12-01

    Population pharmacokinetic (PopPK) modeling has become increasing important in drug development because it handles unbalanced design, sparse data and the study of individual variation. However, the increased complexity of the model makes it more of a challenge to diagnose the fit. Graphics can play an important and unique role in PopPK model diagnostics. The software described in this paper, PKgraph, provides a graphical user interface for PopPK model diagnosis. It also provides an integrated and comprehensive platform for the analysis of pharmacokinetic data including exploratory data analysis, goodness of model fit, model validation and model comparison. Results from a variety of modeling fitting software, including NONMEM, Monolix, SAS and R, can be used. PKgraph is programmed in R, and uses the R packages lattice, ggplot2 for static graphics, and rggobi for interactive graphics.

  14. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    Science.gov (United States)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2015-01-01

    An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.

  15. Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics homogeneous and heterogeneous approaches

    CERN Document Server

    Macheras, Panos

    2006-01-01

    The state of the art in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics Modeling is presented in this book. It shows how advanced physical and mathematical methods can expand classical models in order to cover heterogeneous drug-biological processes and therapeutic effects in the body. The book is divided into four parts; the first deals with the fundamental principles of fractals, diffusion and nonlinear dynamics; the second with drug dissolution, release, and absorption; the third with empirical, compartmental, and stochastic pharmacokinetic models, and the fourth mainly with nonclassical aspects of pharmacodynamics. The classical models that have relevance and application to these sciences are also considered throughout. Many examples are used to illustrate the intrinsic complexity of drug administration related phenomena in the human, justifying the use of advanced modeling methods. This timely and useful book will appeal to graduate students and researchers in pharmacology, pharmaceutical scienc...

  16. Semimechanistic cell-cycle type-based pharmacokinetic/pharmacodynamic model of chemotherapy-induced neutropenic effects of diflomotecan under different dosing schedules.

    Science.gov (United States)

    Mangas-Sanjuan, Víctor; Buil-Bruna, Núria; Garrido, María J; Soto, Elena; Trocóniz, Iñaki F

    2015-07-01

    The current work integrates cell-cycle dynamics occurring in the bone marrow compartment as a key element in the structure of a semimechanistic pharmacokinetic/pharmacodynamic model for neutropenic effects, aiming to describe, with the same set of system- and drug-related parameters, longitudinal data of neutropenia gathered after the administration of the anticancer drug diflomotecan (9,10-difluoro-homocamptothecin) under different dosing schedules to patients (n = 111) with advanced solid tumors. To achieve such an objective, the general framework of the neutropenia models was expanded, including one additional physiologic process resembling cell cycle dynamics. The main assumptions of the proposed model are as follows: within the stem cell compartment, proliferative and quiescent cells coexist, and only cells in the proliferative condition are sensitive to drug effects and capable of following the maturation chain. Cell cycle dynamics were characterized by two new parameters, FProl (the fraction of proliferative [Prol] cells that enters into the maturation chain) and kcycle (first-order rate constant governing cell cycle dynamics within the stem cell compartment). Both model parameters were identifiable as indicated by the results from a bootstrap analysis, and their estimates were supported by date from the literature. The estimates of FProl and kcycle were 0.58 and 1.94 day(-1), respectively. The new model could properly describe the neutropenic effects of diflomotecan after very different dosing scenarios, and can be used to explore the potential impact of dosing schedule dependencies on neutropenia prediction. PMID:25948593

  17. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics

    Science.gov (United States)

    Lew, Kim H.; Ludwig, Elizabeth A.; Milad, Mark A.; Donovan, Kathleen; Middleton, Elliott; Ferry, James J.; Jusko, William J.

    2014-01-01

    The pharmacokinetics and selected pharmacodynamic responses to methylprednisolone were investigated in six men and six premenopausal women after a dose of 0.6 mg/kg ideal body weight. Women (luteal phase) exhibited a greater methylprednisolone clearance (0.45 versus 0.29 L/hr/kg) and shorter elimination half-life (1.7 versus 2.6 hours) than men. The volume of distribution of methylprednisolone was similar when normalized for ideal body weight. Pharmacodynamic models were used to examine the methylprednisolone suppressive effects on cortisol secretion and basophil and helper T lymphocyte trafficking. A significantly smaller 50% inhibitory concentration (IC50) value (0.1 versus 1.7 ng/ml) was seen in the women for suppression of cortisol secretion, indicating increased sensitivity. However, the area under the concentration-time curve of effect was similar for both groups. The IC50 values for effects of methylprednisolone on basophil trafficking related to estradiol concentrations in a log-linear fashion in women, with increased sensitivity found at higher estradiol concentrations. Men displayed a greater 24-hour net suppression in blood basophil numbers, but no difference was observed in net cortisol and helper T lymphocyte suppression between the sexes. These findings suggest that methylprednisolone dosages should be based on ideal body weight. Although women are more sensitive to methylprednisolone as measured by cortisol suppression, they eliminate the drug more quickly, generally producing a similar net response. PMID:8222483

  18. Dose Assessment of Cefquinome by Pharmacokinetic/Pharmacodynamic Modeling in Mouse Model of Staphylococcus aureus Mastitis

    Science.gov (United States)

    Yu, Yang; Zhou, Yu-Feng; Li, Xiao; Chen, Mei-Ren; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    This work aimed to characterize the mammary gland pharmacokinetics of cefquinome after an intramammary administration and integrate pharmacokinetic/pharmacodynamic model. The pharmacokinetic profiles of cefquinome in gland tissue were measured using high performance liquid chromatograph. Therapeutic regimens covered various dosages ranging from 25 to 800 μg/gland and multiple dosing intervals of 8, 12, and 24 h. The in vivo bacterial killing activity elevated when dosage increased or when dosing intervals were shortened. The best antibacterial effect was demonstrated by a mean 1.5 log10CFU/gland visible count reduction. On the other hand, the results showed that the percentage of time duration of drug concentration exceeding the MIC during a dose interval (%T > MIC) was generally 100% because of the influence of drug distribution caused by the blood-milk barrier. Therefore, pharmacokinetic/pharmacodynamic parameter of the ratio of area under the concentration-time curve over 24 h to the MIC (AUC0-24/MIC) was used to describe the efficacy of cefquinome instead of %T > MIC. When the magnitude of AUC0-24/MIC exceeding 16571.55 h⋅mL/g, considerable activity of about 1.5 log10CFU/g gland bacterial count reduction was observed in vivo. Based on the Monte Carlo simulation, the clinical recommended regimen of three infusions of 75 mg per quarter every 12 h can achieve a 76.67% cure rate in clinical treatment of bovine mastitis caused by Staphylococcus aureus infection. PMID:27774090

  19. Pharmacokinetics and pharmacokinetic-dynamic modelling of rocuronium in infants and children

    NARCIS (Netherlands)

    Wierda, J.MKH; Meretoja, O.A; Taivainen, T; Proost, Hans

    1997-01-01

    We have determined the pharmacokinetics and pharmacokinetic-pharmacodynamic relationship of rocuronium in infants and children. We studied infants (n = 5, 0.1-0.8 yr) and children (n = 5, 2.3-8 yr), ASA II, in the ICU while undergoing artificial ventilation under i.v. anaesthesia with an arterial ca

  20. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    Science.gov (United States)

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  1. Review of pharmacokinetic models for target controlled infusions in anesthesia

    Directory of Open Access Journals (Sweden)

    Subash Kennedy Sivasubramaniam

    2014-06-01

    Full Text Available Intravenous injection of anesthetic drugs dates back to the 17th Century when opium and chloral hydrate have been injected intravenously. It was not until the 1930s intravenous anesthesia became popular with the invention of barbiturates.Early intravenous anesthetic agents such as barbiturates were ideal for induction of anesthesia, but not suitable for maintenance of anesthesia. Most of these drugs accumulated significantly with increasing durations of infusion and also resulted in cardiorespiratory depression. The invention of propofol and shorter acting opioid analgesics such as remifentanil and alfentanil have revolutionized intravenous anesthesia. The rapid onset and offset of these drugs lends itself to being suitable agents for maintenance of anesthesia over prolonged periods of time. Detailed understanding of the pharmacokinetics of propofol and remifentanil, combined with technological advances in intravenous pumps capable of accurate delivery of drugs have resulted in great development of the field of total intravenous anesthesia and target controlled infusions. I would like to discuss, in this article, the pharmacokinetics and pharmacokinetic models behind these intravenous infusion pumps. [Int J Basic Clin Pharmacol 2014; 3(3.000: 417-423

  2. Selection between Michaelis–Menten and target-mediated drug disposition pharmacokinetic models

    OpenAIRE

    Yan, Xiaoyu; Mager, Donald E.; Krzyzanski, Wojciech

    2009-01-01

    Target-mediated drug disposition (TMDD) models have been applied to describe the pharmacokinetics of drugs whose distribution and/or clearance are affected by its target due to high binding affinity and limited capacity. The Michaelis–Menten (M–M) model has also been frequently used to describe the pharmacokinetics of such drugs. The purpose of this study is to investigate conditions for equivalence between M–M and TMDD pharmacokinetic models and provide guidelines for selection between these...

  3. A Population Pharmacokinetic/Pharmacodynamic Model Predicts Favorable HDL Cholesterol Changes Over the First 5 Years in Children Treated With Current Efavirenz-Based Regimens.

    Science.gov (United States)

    Homkham, Nontiya; Cressey, Tim R; Ingsrisawang, Lily; Bouazza, Naïm; Ngampiyaskul, Chaiwat; Hongsiriwon, Suchat; Srirojana, Sakulrat; Kanjanavanit, Suparat; Bhakeecheep, Sorakij; Coeur, Sophie Le; Salvadori, Nicolas; Treluyer, Jean Marc; Jourdain, Gonzague; Urien, Saik

    2016-09-01

    Efavirenz use is associated with changes in cholesterol concentrations, but it is unclear whether this effect is related to drug concentrations. Using efavirenz and cholesterol plasma concentrations measured in 87 antiretroviral-naive children in Thailand, we assessed indirect response models to describe the evolution of high- and low-density lipoprotein (HDL, LDL) cholesterol concentrations in relation to efavirenz plasma concentrations over time where efavirenz was assumed to either stimulate cholesterol production or inhibit its elimination. Simulations of cholesterol evolution for children with different average efavirenz concentrations (Cav ) according to their assumed status of "fast" or "slow" metabolizers of efavirenz were performed. At treatment initiation, children's median (interquartile range, IQR) age was 8 years (5 to 10), body mass index z-score 0.01 (-1.05 to 1.44), HDL 31 mg/dL (24 to 44), and LDL 83 mg/dL (69 to 100). Median (IQR) efavirenz Cav was 1.7 mg/L (1.3 to 2.1) during the period of observation. The best model describing the evolution of HDL and LDL cholesterol concentrations over time assumed that efavirenz inhibited their elimination. HDL concentrations increase over 5 years, whereas LDL concentrations increased only during the first 4 months and then returned to baseline levels afterward. Simulations predicted that, after 3 years, HDL would increase to 63 mg/dL in "fast" metabolizers and 97 mg/dL in "slow" metabolizers of efavirenz. The population pharmacokinetic-pharmacodynamic (PK-PD) model shows that favorable HDL cholesterol changes can be expected in children with current efavirenz dosing guidelines over 5 years of treatment. PMID:26749102

  4. Dose Reconstruction of Di(2-ethylhexyl) Phthalate Using a Simple Pharmacokinetic Model

    OpenAIRE

    Lorber, Matthew; Calafat, Antonia M.

    2012-01-01

    Background: Di(2-ethylhexyl) phthalate (DEHP), used primarily as a plasticizer for polyvinyl chloride, is found in a variety of products. Previous studies have quantified human exposure by back calculating intakes based on DEHP metabolite concentrations in urine and by determining concentrations of DEHP in exposure media (e.g., air, food, dust). Objectives: To better understand the timing and extent of DEHP exposure, we used a simple pharmacokinetic model to “reconstruct” the DEHP dose respon...

  5. Population Pharmacokinetics of Busulfan in Pediatric and Young Adult Patients Undergoing Hematopoietic Cell Transplant: A Model-Based Dosing Algorithm for Personalized Therapy and Implementation into Routine Clinical Use

    Science.gov (United States)

    Long-Boyle, Janel; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J.; Dvorak, Christopher C.

    2014-01-01

    Background Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared to conventional dosing. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration-at-steady-state, Css) and implement a simple, model-based tool for the initial dosing of busulfan in children undergoing HCT. Patients and Methods Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone HCT with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the non-linear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly, Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Results Modeling of busulfan time-concentration data indicates busulfan CL displays non-linearity in children, decreasing up to approximately 20% between the concentrations of 250–2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan CL were actual body weight and age. The percentage of individuals achieving a therapeutic Css was significantly higher in subjects receiving initial doses based on the population PK model (81%) versus historical controls dosed on conventional guidelines (52%) (p = 0.02). Conclusion When compared to the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. PMID:25162216

  6. Paediatric pharmacokinetics: key considerations

    Science.gov (United States)

    Batchelor, Hannah Katharine; Marriott, John Francis

    2015-01-01

    A number of anatomical and physiological factors determine the pharmacokinetic profile of a drug. Differences in physiology in paediatric populations compared with adults can influence the concentration of drug within the plasma or tissue. Healthcare professionals need to be aware of anatomical and physiological changes that affect pharmacokinetic profiles of drugs to understand consequences of dose adjustments in infants and children. Pharmacokinetic clinical trials in children are complicated owing to the limitations on blood sample volumes and perception of pain in children resulting from blood sampling. There are alternative sampling techniques that can minimize the invasive nature of such trials. Population based models can also limit the sampling required from each individual by increasing the overall sample size to generate robust pharmacokinetic data. This review details key considerations in the design and development of paediatric pharmacokinetic clinical trials. PMID:25855821

  7. Drug-drug interactions between moxifloxacin and rifampicin based on pharmacokinetics in vivo in rats.

    Science.gov (United States)

    Huang, Lifei; Liu, Jiajun; Yu, Xin; Shi, Lei; Liu, Jian; Xiao, Heping; Huang, Yi

    2016-10-01

    Moxifloxacin and rifampicin are all the first-line options for the treatment of active tuberculosis, which are often combined for the treatment of multidrug resistance pulmonary tuberculosis in clinic. However, the potential drug-drug interactions between moxifloxacin and rifampicin were unknown. The aim of this study was to investigate the drug-drug interactions between moxifloxacin and rifampicin based on their pharmacokinetics in vivo after oral administration of the single drug and both drugs, and reveal their mutual effects on their pharmacokinetics. Eighteen male Sprague-Dawley rats were randomly assigned to three groups: moxifloxacin group, rifampicin group and moxifloxacin + rifampicin group. Plasma concentrations of moxifloxacin and rifampicin were determined using LC-MS at the designated time points after drug administration, and the main pharmacokinetic parameters were calculated. In addition, effects of moxifloxacin and rifampicin on their metabolic rate and absorption were investigated using rat liver microsome incubation systems and Caco-2 cell transwell model. The main pharmacokinetic parameters of moxifloxacin including Tmax , Cmax , t1/2 and AUC(0-t) increased more in the moxifloxacin + rifampicin group than in the moxifloxacin group, but the difference was not significant (p > 0.05). However, the pharmacokinetic parameters of rifampicin, including peak concentration, area under the concentration-time curve, half-life and the area under the first moment plasma concentration-time curve, increased significantly (p 0.05). The rat liver microsome incubation experiment indicated that moxifloxacin could increase the metabolic rate of rifampicin from 23.7 to 38.7 min. However, the Caco-2 cell transwell experiment showed that moxifloxacin could not affect the absorption rate of rifampicin. These changes could enhance the drug efficacy, but they could also cause drug accumulation, which might induce adverse effect, so it was suggested that the drug dosage

  8. EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) A PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC ( PBPK/PD ) MODEL FOR ASSESSING HUMAN EXPOSURE AND RISK

    Science.gov (United States)

    The Exposure Related Dose Estimating Model (ERDEM) is a PBPK/PD modeling system that was developed by EPA's National Exposure Research Laboratory (NERL). The ERDEM framework provides the flexibility either to use existing models and to build new PBPK and PBPK/PD models to address...

  9. Nonparametric Bayes approach for a semi-mechanistic pharmacokinetic and pharmacodynamic model

    Science.gov (United States)

    Dong, Yan

    Both frequentist and Bayesian approaches have been used to characterize population pharmacokinetics and pharmacodynamics(PK/PD) models. These methods focus on estimating the population parameters and assessing the association between the characteristics of PK/PD and the subject covariates. In this work, we propose a Dirichlet process mixture model to classify the patients based on their individualized pharmacokinetic and pharmacodynamic profiles. Then we can predict the new patients' dose-response curves given their concentration-time profiles. Additionally, we implement a modern Markov Chain Monte Carlo algorithm for sampling inference of parameters. The detailed sampling procedures as well as the results are discussed in a simulation data and a real data example. We also evaluate an approximate solution of a system of nonlinear differential equations from Euler's method and compare the results with a general numerical solver, ode from R package, deSolve.

  10. An Evaluation of Using Population Pharmacokinetic Models to Estimate Pharmacodynamic Parameters for Propofol and Bispectral Index in Children

    NARCIS (Netherlands)

    Coppens, Marc J.; Eleveld, Douglas J.; Proost, Johannes H.; Marks, Luc A. M.; Van Bocxlaer, Jan F. P.; Vereecke, Hugo; Absalom, Anthony R.; Struys, Michel M. R. F.

    2011-01-01

    Background: To study propofol pharmacodynamics in a clinical setting a pharmacokinetic model must be used to predict drug plasma concentrations. Some investigators use a population pharmacokinetic model from existing literature and minimize the pharmacodynamic objective function. The purpose of the

  11. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    Science.gov (United States)

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry. PMID:23016542

  12. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    Science.gov (United States)

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

  13. Application of Bayesian population physiologically based pharmacokinetic (PBPK) modeling and Markov chain Monte Carlo simulations to pesticide kinetics studies in protected marine mammals: DDT, DDE, and DDD in harbor porpoises.

    Science.gov (United States)

    Weijs, Liesbeth; Yang, Raymond S H; Das, Krishna; Covaci, Adrian; Blust, Ronny

    2013-05-01

    Physiologically based pharmacokinetic (PBPK) modeling in marine mammals is a challenge because of the lack of parameter information and the ban on exposure experiments. To minimize uncertainty and variability, parameter estimation methods are required for the development of reliable PBPK models. The present study is the first to develop PBPK models for the lifetime bioaccumulation of p,p'-DDT, p,p'-DDE, and p,p'-DDD in harbor porpoises. In addition, this study is also the first to apply the Bayesian approach executed with Markov chain Monte Carlo simulations using two data sets of harbor porpoises from the Black and North Seas. Parameters from the literature were used as priors for the first "model update" using the Black Sea data set, the resulting posterior parameters were then used as priors for the second "model update" using the North Sea data set. As such, PBPK models with parameters specific for harbor porpoises could be strengthened with more robust probability distributions. As the science and biomonitoring effort progress in this area, more data sets will become available to further strengthen and update the parameters in the PBPK models for harbor porpoises as a species anywhere in the world. Further, such an approach could very well be extended to other protected marine mammals.

  14. PKQuest_Java: free, interactive physiologically based pharmacokinetic software package and tutorial

    Directory of Open Access Journals (Sweden)

    Levitt David G

    2009-08-01

    Full Text Available Abstract Background Physiologically based pharmacokinetics (PBPK uses a realistic organ model to describe drug kinetics. The blood-tissue exchange of each organ is characterized by its volume, perfusion, metabolism, capillary permeability and blood/tissue partition coefficient. PBPK applications require both sophisticated mathematical modeling software and a reliable complete set of physiological parameters. Currently there are no software packages available that combine ease of use with the versatility that is required of a general PBPK program. Findings The program is written in Java and is available for free download at http://www.pkquest.com/. Included in the download is a detailed tutorial that discusses the pharmacokinetics of 6 solutes (D2O, amoxicillin, desflurane, propofol, ethanol and thiopental illustrated using experimental human pharmacokinetic data. The complete PBPK description for each solute is stored in Excel spreadsheets that are included in the download. The main features of the program are: 1 Intuitive and versatile interactive interface; 2 Absolute and semi-logarithmic graphical output; 3 Pre-programmed optimized human parameter data set (but, arbitrary values can be input; 4 Time dependent changes in the PBPK parameters; 5 Non-linear parameter optimization; 6 Unique approach to determine the oral "first pass metabolism" of non-linear solutes (e.g. ethanol; 7 Pulmonary perfusion/ventilation heterogeneity for volatile solutes; 8 Input and output of Excel spreadsheet data; 9 Antecubital vein sampling. Conclusion PKQuest_Java is a free, easy to use, interactive PBPK software routine. The user can either directly use the pre-programmed optimized human or rat data set, or enter an arbitrary data set. It is designed so that drugs that are classified as "extracellular" or "highly fat soluble" do not require information about tissue/blood partition coefficients and can be modeled by a minimum of user input parameters. PKQuest

  15. Impact of Sample Size on the Performance of Multiple-Model Pharmacokinetic Simulations▿

    OpenAIRE

    Tam, Vincent H.; Kabbara, Samer; Yeh, Rosa F.; Leary, Robert H.

    2006-01-01

    Monte Carlo simulations are increasingly used to predict pharmacokinetic variability of antimicrobials in a population. We investigated the sample size necessary to provide robust pharmacokinetic predictions. To obtain reasonably robust predictions, a nonparametric model derived from a sample population size of ≥50 appears to be necessary as the input information.

  16. Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models.

    Science.gov (United States)

    Yan, Xiaoyu; Mager, Donald E; Krzyzanski, Wojciech

    2010-02-01

    Target-mediated drug disposition (TMDD) models have been applied to describe the pharmacokinetics of drugs whose distribution and/or clearance are affected by its target due to high binding affinity and limited capacity. The Michaelis-Menten (M-M) model has also been frequently used to describe the pharmacokinetics of such drugs. The purpose of this study is to investigate conditions for equivalence between M-M and TMDD pharmacokinetic models and provide guidelines for selection between these two approaches. Theoretical derivations were used to determine conditions under which M-M and TMDD pharmacokinetic models are equivalent. Computer simulations and model fitting were conducted to demonstrate these conditions. Typical M-M and TMDD profiles were simulated based on literature data for an anti-CD4 monoclonal antibody (TRX1) and phenytoin administered intravenously. Both models were fitted to data and goodness of fit criteria were evaluated for model selection. A case study of recombinant human erythropoietin was conducted to qualify results. A rapid binding TMDD model is equivalent to the M-M model if total target density R ( tot ) is constant, and R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 where K ( D ) represents the dissociation constant and C is the free drug concentration. Under these conditions, M-M parameters are defined as: V ( max ) = k ( int ) R ( tot ) V ( c ) and K ( m ) = K ( D ) where k ( int ) represents an internalization rate constant, and V ( c ) is the volume of the central compartment. R ( tot ) is constant if and only if k ( int ) = k ( deg,) where k ( deg ) is a degradation rate constant. If the TMDD model predictions are not sensitive to k ( int ) or k ( deg ) parameters, the condition of R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 alone can preserve the equivalence between rapid binding TMDD and M-M models. The model selection process for drugs that exhibit TMDD should involve a full mechanistic model as well as reduced models. The best model

  17. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics.

    Science.gov (United States)

    Riviere, J E; Gabrielsson, J; Fink, M; Mochel, J

    2016-06-01

    The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems.

  18. Model-Based Meta-Analysis of Population Pharmacokinetic Models for Paclitaxel in Humans, Rats and Mice%紫杉醇种属间药动学相关性的荟萃分析

    Institute of Scientific and Technical Information of China (English)

    张澍; 任宇鹏; 尚德为; 孙谊; 周田彦; 卢炜

    2013-01-01

    nonlinear mixed-effects model (NONMEM) was developed to describe the paclitaxel PK profiles for mice, rats and humans. A two-compartment pharmacokinetic model fitted the data well, and consistent with the reported results. The models were evaluated by NDPE, the final model was accurate and reliable. The allometric scaling of CL and Vtotal among three different species for paclitaxel was r2= 0. 997 4 and r2 = 0. 937 2, respectively. CONCLUSION Take paclitaxel for example, established the model-based meta-analysis, successfully, and evaluated the correlation on the PK parameters of paclitaxel among different species quantitatively.

  19. Population pharmacokinetic/pharmacodynamic modelling of the hypothalamic-pituitary-gonadal axis

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel

    2005-01-01

    The present thesis deals with different aspects of population pharmacokinetic/ pharmacodynamic (PK/PD) modelling of the male hypothalamic-pituitary-go-nadal (HPG) axis. The thesis consists of a summary report and five scientific research papers. An overview of the main topics covered in the thesis......). The main objective of the work underlying this thesis was to develop mechanism-based population PK/PD models of the HPG axis. The HPG axis is a multivariate closed-loop control system consisting of regulatory hormonal feedback mechanisms. The number and complexity of the physiological mechanisms involved...... in such models makes them difficult to develop and are often too complex to be conveniently described by empirical models. Hence, the use of SDEs in population PK/PD modelling was used as a tool to systematically develop a mechanism-based model of the HPG axis following treatment with gonadotropin...

  20. Analysis of the Pharmacokinetic Interaction between Cephalexin and Quinapril by a Nonlinear Mixed-Effect Model

    OpenAIRE

    Padoin, C; Tod, M; Perret, G; Petitjean, O

    1998-01-01

    Oligopeptidic drugs such as β-lactams and angiotensin-converting enzyme inhibitors share the same carriers in humans and animals, which results in possible pharmacokinetic interactions. To model such interactions, the effects of quinapril on cephalexin pharmacokinetics were investigated in rats. Blood cephalexin concentrations were measured by liquid chromatography, and the data were analyzed by a noncompartmental method and by fitting a bicompartmental model by a nonlinear mixed-effect model...

  1. A simple pharmacokinetics subroutine for modeling double peak phenomenon.

    Science.gov (United States)

    Mirfazaelian, Ahmad; Mahmoudian, Massoud

    2006-04-01

    Double peak absorption has been described with several orally administered drugs. Numerous reasons have been implicated in causing the double peak. DRUG-KNT--a pharmacokinetic software developed previously for fitting one and two compartment kinetics using the iterative curve stripping method--was modified and a revised subroutine was incorporated to solve double-peak models. This subroutine considers the double peak as two hypothetical doses administered with a time gap. The fitting capability of the presented model was verified using four sets of data showing double peak profiles extracted from the literature (piroxicam, ranitidine, phenazopyridine and talinolol). Visual inspection and statistical diagnostics showed that the present algorithm provided adequate curve fit disregarding the mechanism involved in the emergence of the secondary peaks. Statistical diagnostic parameters (RSS, AIC and R2) generally showed good fitness in the plasma profile prediction by this model. It was concluded that the algorithm presented herein provides adequate predicted curves in cases of the double peak phenomenon. PMID:16400712

  2. Pharmacokinetic-pharmacodynamic modeling of dopamine D2 receptor occupancy in humans using Bayesian modeling tools

    NARCIS (Netherlands)

    Johnson, Martin; Mafirakureva, Nyashadzaishe; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Liu, Jing; de Greef, Rik; Groothuis, Genoveva; Danhof, Meindert; Proost, Johannes

    2011-01-01

    Objectives: Blockade of dopamine-2 receptors is the key pharmacological component to the antipsychotic efficacy of both the typical and atypical antipsychotics (1). A pharmacokinetic-pharmacodynamic (PK-PD) modeling approach was used to describe the relationship between the plasma concentration of a

  3. Population pharmacokinetic modelling of morphine, gabapentin and their combination in the rat

    DEFF Research Database (Denmark)

    Papathanasiou, Theodoros; Juul, Rasmus Vestergaard; Gabel-Jensen, Charlotte;

    2016-01-01

    Purpose: The combination of morphine and gabapentin seems promising for the treatment of postoperative and neuropathic pain. Despite the well characterised pharmacodynamic interaction, little is known about possible pharmacokinetic interactions. The aim of this study was to evaluate whether co......-administration of the two drugs leads to modifications of their pharmacokinetic profiles. Methods: The pharmacokinetics of morphine, morphine-3-glucuronide and gabapentin were characterised in rats following subcutaneous injections of morphine, gabapentin or their combination. Non-linear mixed effects modelling was applied...... to describe the pharmacokinetics of the compounds and possible interactions. Results: The plasma-concentration-time profiles of morphine and gabapentin were best described using a three- and a one-compartment disposition model respectively. Dose dependencies were found for morphine absorption rate...

  4. Population pharmacokinetics modeling of levetiracetam in Chinese children with epilepsy

    Institute of Scientific and Technical Information of China (English)

    Ying-hui WANG; Li WANG; Wei LU; De-wei SHANG; Min-ji WEI; Ye WU

    2012-01-01

    Aim:To establish a population pharmacokinetics (PPK) model of levetiracetam in Chinese children with epilepsy.Methods:A total of 418 samples from 361 epileptic children in Peking University First Hospital were analyzed.These patients were divided into two groups:the PPK model group (n=311) and the PPK validation group (n=50).Levetiracetam concentrations were determined by HPLC.The PPK model of levetiracetam was established using NONMEM,according to a one-compartment model with firstorder absorption and elimination.To validate the model,the mean prediction error (MPE),mean squared prediction error (MSPE),root mean-squared prediction error (RMSPE),weight residues (WRES),and the 95% confidence intervals (95% CI) were calculated.Results:A regression equation of the basic model of levetiracetam was obtained,with clearance (CL/F)=0.988 L/h,volume of distribution (V/F)=12.3 L,and Ka=1.95 h -1.The final model was as follows:Ka=1.56 h-1,V/F=12.1 (L),CL/F=1.04×(WEIG/25)0.563 (L/h).For the basic model,the MPE,MSPE,RMSPE,WRES,and the 95%CI were 9.834 (-0.587-197.720),50.919 (0.012-1286.429),1.680(0.021-34.184),and 0.0621 (-1.100-1.980).For the final model,the MPE,MSPE,RMSPE,WRES,and the 95% CI were 0.199(-0.369-0.563),0.002082 (0.00001-0.01054),0.0293 (0.001-0.110),and 0.153 (-0.030-1.950).Conclusion:A one-compartment model with first-order absorption adequately described the levetiracetam concentrations.Body weight was identified as a significant covariate for levetiracetam clearance in this study.This model will be valuable to facilitate individualized dosage regimens.

  5. A population pharmacokinetic model for perioperative dosing of factor VIII in hemophilia A patients

    Science.gov (United States)

    Hazendonk, Hendrika; Fijnvandraat, Karin; Lock, Janske; Driessens, Mariëtte; van der Meer, Felix; Meijer, Karina; Kruip, Marieke; Gorkom, Britta Laros-van; Peters, Marjolein; de Wildt, Saskia; Leebeek, Frank; Cnossen, Marjon; Mathôt, Ron

    2016-01-01

    The role of pharmacokinetic-guided dosing of factor concentrates in hemophilia is currently a subject of debate and focuses on long-term prophylactic treatment. Few data are available on its impact in the perioperative period. In this study, a population pharmacokinetic model for currently registered factor VIII concentrates was developed for severe and moderate adult and pediatric hemophilia A patients (FVIII levels hemophilia A patients by Bayesian adaptive dosing. PMID:27390359

  6. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  7. THE ESTABLISHMENT OF THE PHYSIOLOGICAL BASED PHARMACOKINETIC MODEL FOR QUINOCETONE IN GRASS CARP (CTENOPHARYNGODON IDELLUS)%喹烯酮在草鱼体内生理药动模型的建立

    Institute of Scientific and Technical Information of China (English)

    胥宁; 刘永涛; 杨秋红; 艾晓辉

    2015-01-01

    为了预测喹烯酮在草鱼体内药物残留, 建立其在草鱼体内生理药动学模型.通过搜集大量文献获得鱼的生理解剖参数, 采用已有的喹烯酮试验数据拟合得到药物特异性参数.基于 acslXtreme 生理药动学软件,进行模型假设、血流图设计、质量平衡方程的建立和模型拟合.喹烯酮为小分子药物, 其分布服从血流限速型, 在肝脏代谢, 从肾脏消除.喹烯酮通过口服进入肠道, 然后经肝脏代谢进入血液循环, 因此设定 5 个房室, 即肝、肾、肌肉、肠和其他组织.经过一系列的计算和调试, 最终建立喹烯酮在草体内5室生理药动模型, 成功拟合连续饲喂药物 60d之后的药物残留消除曲线, 其中肝脏中的预测结果比肾脏和肌肉高, 与实测数据一致.因此, 喹烯酮在鱼体内生理药动模型具有一定的应用价值, 将是药物残留检测的新亮点.%An effective physiological-based pharmacokinetic (PB-PK) model can be used to analogize and extrapolate the in vivo drug concentrations in different administrations and environments, as well as in different species of animals, hence it has become more and more popular in the drug residual prediction in aquatic animals. In order to predict drug residues of quinocetone in grass carp (Ctenopharyngodon idellus), we established the PB-PK model of quinocetone in this study. We obtained the physiological and anatomical parameters of fish from literatures, and estimated the drug-specific parameters of quinocetone by fitting the existing data. We used the physiological pharmacokinetic soft-ware, asclXtreme, to make the model assumptions, to design the blood flow chart, to generate the mass balance equa-tions and to complete the model fitting. Quinocetone was a small molecule drug, and itsin vivo disposition was blood flow-limited. It was metabolized by the liver and excreted by the kidney. Quinocetone entered the intestine through oral administration and

  8. Elucidation of Arctigenin Pharmacokinetics After Intravenous and Oral Administrations in Rats: Integration of In Vitro and In Vivo Findings via Semi-mechanistic Pharmacokinetic Modeling

    OpenAIRE

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2014-01-01

    Although arctigenin (AR) has attracted substantial research interests due to its promising and diverse therapeutic effects, studies regarding its biotransformation were limited. The current study aims to provide information regarding the pharmacokinetic properties of AR via various in vitro and in vivo experiments as well as semi-mechanistic pharmacokinetic modeling. Our in vitro rat microsome incubation studies revealed that glucuronidation was the main intestinal and liver metabolic pathway...

  9. Utility of population pharmacokinetic modeling in the assessment of therapeutic protein-drug interactions.

    Science.gov (United States)

    Chow, Andrew T; Earp, Justin C; Gupta, Manish; Hanley, William; Hu, Chuanpu; Wang, Diane D; Zajic, Stefan; Zhu, Min

    2014-05-01

    Assessment of pharmacokinetic (PK) based drug-drug interactions (DDI) is essential for ensuring patient safety and drug efficacy. With the substantial increase in therapeutic proteins (TP) entering the market and drug development, evaluation of TP-drug interaction (TPDI) has become increasingly important. Unlike for small molecule (e.g., chemical-based) drugs, conducting TPDI studies often presents logistical challenges, while the population PK (PPK) modeling may be a viable approach dealing with the issues. A working group was formed with members from the pharmaceutical industry and the FDA to assess the utility of PPK-based TPDI assessment including study designs, data analysis methods, and implementation strategy. This paper summarizes key issues for consideration as well as a proposed strategy with focuses on (1) PPK approach for exploratory assessment; (2) PPK approach for confirmatory assessment; (3) importance of data quality; (4) implementation strategy; and (5) potential regulatory implications. Advantages and limitations of the approach are also discussed.

  10. Improving Pharmacokinetic-Pharmacodynamic Modeling to Investigate Anti-Infective Chemotherapy with Application to the Current Generation of Antimalarial Drugs

    OpenAIRE

    Katherine Kay; Hastings, Ian M.

    2013-01-01

    Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short ha...

  11. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  12. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik;

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  13. Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion

    NARCIS (Netherlands)

    J.W. Mouton (Johan); A.A. Vinks; N.C. Punt

    1997-01-01

    textabstractWe developed and applied pharmacokinetic-pharmacodynamic (PK-PD) models to characterize in vitro bacterial rate of killing as a function of ceftazidime concentrations over time. For PK-PD modeling, data obtained during continuous and intermittent infusion of

  14. Influence of Erroneous Patient Records on Population Pharmacokinetic Modeling and Individual Bayesian Estimation

    NARCIS (Netherlands)

    van der Meer, Aize Franciscus; Touw, Daniel J.; Marcus, Marco A. E.; Neef, Cornelis; Proost, Johannes H.

    2012-01-01

    Background: Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual maxim

  15. Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin.

    Science.gov (United States)

    Jolling, Koen; Perez Ruixo, Juan Jose; Hemeryck, Alex; Vermeulen, An; Greway, Tony

    2005-04-01

    The aim of this study was to develop a population pharmacokinetic model for interspecies allometric scaling of pegylated r-HuEPO (PEG-EPO) pharmacokinetics to man. A total of 927 serum concentrations from 193 rats, 6 rabbits, 34 monkeys, and 9 dogs obtained after a single dose of PEG-EPO, administered by the i.v. (dose range: 12.5-550 microg/kg) and s.c. (dose range: 12.5-500 microg/kg) routes, were pooled in this analysis. An open two-compartment model with first-order absorption and lag time (Tlag) and linear elimination from the central compartment was fitted to the data using the NONMEM V software. Body weight (WT) was used as a scaling factor and the effect of brain weight (BW), sex, and pregnancy status on the pharmacokinetic parameters was investigated. The final model was evaluated by means of a non-parametric bootstrap analysis and used to predict the PEG-EPO pharmacokinetic parameters in healthy male subjects. The systemic clearance (CL) in males was estimated to be 4.08WT1.030xBW-0.345 ml/h. In females, the CL was 90.7% of the CL in males. The volumes of the central (Vc) and the peripheral (Vp) compartment were characterized as 57.8WT0.959 ml, and 48.1WT1.150 ml, respectively. Intercompartmental flow was estimated at 2.32WT0.930 ml/h. Absorption rate constant (Ka) was estimated at 0.0538WT-0.149. The absolute s.c. bioavailability F was calculated at 52.5, 80.2, and 49.4% in rat, monkey, and dog, respectively. The interindividual variability in the population pharmacokinetic parameters was fairly low (parametric bootstrap confirmed the accuracy of the NONMEM estimates. The mean model predicted pharmacokinetic parameters in healthy male subjects of 70 kg were estimated at: CL: 26.2 ml/h; Vc: 3.6l; Q: 286 l/h; Vp: 6.9l, and Ka: 0.031 h-1. The population pharmacokinetic model developed was appropriate to describe the time course of PEG-EPO serum concentrations and their variability in different species. The model predicted pharmacokinetics of PEG-EPO in

  16. Convex-Optimization-Based Compartmental Pharmacokinetic Analysis for Prostate Tumor Characterization Using DCE-MRI.

    Science.gov (United States)

    Ambikapathi, ArulMurugan; Chan, Tsung-Han; Lin, Chia-Hsiang; Yang, Fei-Shih; Chi, Chong-Yung; Wang, Yue

    2016-04-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a powerful imaging modality to study the pharmacokinetics in a suspected cancer/tumor tissue. The pharmacokinetic (PK) analysis of prostate cancer includes the estimation of time activity curves (TACs), and thereby, the corresponding kinetic parameters (KPs), and plays a pivotal role in diagnosis and prognosis of prostate cancer. In this paper, we endeavor to develop a blind source separation algorithm, namely convex-optimization-based KPs estimation (COKE) algorithm for PK analysis based on compartmental modeling of DCE-MRI data, for effective prostate tumor detection and its quantification. The COKE algorithm first identifies the best three representative pixels in the DCE-MRI data, corresponding to the plasma, fast-flow, and slow-flow TACs, respectively. The estimation accuracy of the flux rate constants (FRCs) of the fast-flow and slow-flow TACs directly affects the estimation accuracy of the KPs that provide the cancer and normal tissue distribution maps in the prostate region. The COKE algorithm wisely exploits the matrix structure (Toeplitz, lower triangular, and exponential decay) of the original nonconvex FRCs estimation problem, and reformulates it into two convex optimization problems that can reliably estimate the FRCs. After estimation of the FRCs, the KPs can be effectively estimated by solving a pixel-wise constrained curve-fitting (convex) problem. Simulation results demonstrate the efficacy of the proposed COKE algorithm. The COKE algorithm is also evaluated with DCE-MRI data of four different patients with prostate cancer and the obtained results are consistent with clinical observations.

  17. [Study of pharmacokinetics of digoxin in ovariectomized rats model].

    Science.gov (United States)

    Jin, Yong-wen; Qin, Hong-yan; Rao, Zhi; Zhang, Guo-qiang; Ma, Yan Rong; Wei, Yu-Hui; Wu, Xin-an

    2015-12-01

    This study aims to investigate the change of plasma concentration of digoxin (DIG) in rats with ovariectomy. Twelve female SD rats were randomly assigned into ovariectomized group and sham group (n = 6). All rats plasma was collected after a single dose of 2 mg x kg(-1) DIG administrated orally, serum DIG concentration was determined by LC-MS/MS. The level of P-gp in the intestinal was analyzed by Western blotting. Pharmacokinetic calculations were performed on each individual using DAS 2.0 practical pharmacokinetic software. Compared with the sham group, C(max) of ovariectomized group decreased significantly (P < 0.01). There was no significant difference of AUC(0-t), and the level of P-gp was elevated in ovariectomized group. It was found that C(max) of DIG was significantly reduced after ovariectomy, and the change was associated with the decreased level of estrogen, which contributes to the increased level of P-gp. PMID:27169283

  18. Modeling In Vivo Pharmacokinetics and Pharmacodynamics of Moxifloxacin Therapy for Mycobacterium tuberculosis Infection by Using a Novel Cartridge System

    OpenAIRE

    Ginsburg, Amy Sarah; Lee, Jin; Woolwine, Samuel C.; Jacques H Grosset; Hamzeh, Fayez M.; Bishai, William R.

    2005-01-01

    To study the efficacy of moxifloxacin treatment for tuberculosis, we utilized a novel cartridge system to simulate in vivo pharmacokinetics. We found this system to be a robust method for modeling in vivo pharmacokinetics and present data supporting the utility of intermittent moxifloxacin treatment as a component of antituberculosis chemotherapy.

  19. Population Pharmacokinetic Modeling of a Subcutaneous Depot for GnRH Antagonist Degarelix

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Nielsen, Henrik Aalborg;

    2004-01-01

    Purpose. The objective of this study is to develop a population pharmacokinetic (PK) model that describes the subcutaneous (SC) depot formation of gonadotropin-releasing hormone ( GnRH) antagonist degarelix, which is being developed for treatment of prostate cancer, exhibiting dose-volume and dos...

  20. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Keizer, Ron; Munro, Gordon;

    2016-01-01

    PURPOSE: Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA...

  1. Interspecies Mixed-Effect Pharmacokinetic Modeling of Penicillin G in Cattle and Swine

    Science.gov (United States)

    Li, Mengjie; Gehring, Ronette; Tell, Lisa; Baynes, Ronald; Huang, Qingbiao

    2014-01-01

    Extralabel drug use of penicillin G in food-producing animals may cause an excess of residues in tissue which will have the potential to damage human health. Of all the antibiotics, penicillin G may have the greatest potential for producing allergic responses to the consumer of food animal products. There are, however, no population pharmacokinetic studies of penicillin G for food animals. The objective of this study was to develop a population pharmacokinetic model to describe the time-concentration data profile of penicillin G across two species. Data were collected from previously published pharmacokinetic studies in which several formulations of penicillin G were administered to diverse populations of cattle and swine. Liver, kidney, and muscle residue data were also used in this study. Compartmental models with first-order absorption and elimination were fit to plasma and tissue concentrations using a nonlinear mixed-effect modeling approach. A 3-compartment model with extra tissue compartments was selected to describe the pharmacokinetics of penicillin G. Typical population parameter estimates (interindividual variability) were central volumes of distribution of 3.45 liters (12%) and 3.05 liters (8.8%) and central clearance of 105 liters/h (32%) and 16.9 liters/h (14%) for cattle and swine, respectively, with peripheral clearance of 24.8 liters/h (13%) and 9.65 liters/h (23%) for cattle and 13.7 liters/h (85%) and 0.52 liters/h (40%) for swine. Body weight and age were the covariates in the final pharmacokinetic models. This study established a robust model of penicillin for a large and diverse population of food-producing animals which could be applied to other antibiotics and species in future analyses. PMID:24867969

  2. Mixed-Effects Modeling of the Influence of Midazolam on Propofol Pharmacokinetics

    NARCIS (Netherlands)

    Vuyk, Jaap; Lichtenbelt, Bart Jan; Olofsen, Erik; van Kleef, Jack W.; Dahan, Albert

    2009-01-01

    BACKGROUND: The combined administration of anesthetics has been associated with pharmacokinetic interactions that induce concentration changes of up to 30%. Midazolam is often used as a preoperative sedative in advance of a propofol-based anesthetic. In this study, we identified the influence of mid

  3. Computational Analysis of Pharmacokinetic Behavior of Ampicillin

    Directory of Open Access Journals (Sweden)

    Mária Ďurišová

    2016-07-01

    Full Text Available orrespondence: Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic. Phone + 42-1254775928; Fax +421254775928; E-mail: maria.durisova@savba.sk 84 RESEARCH ARTICLE The objective of this study was to perform a computational analysis of the pharmacokinetic behavior of ampicillin, using data from the literature. A method based on the theory of dynamic systems was used for modeling purposes. The method used has been introduced to pharmacokinetics with the aim to contribute to the knowledge base in pharmacokinetics by including the modeling method which enables researchers to develop mathematical models of various pharmacokinetic processes in an identical way, using identical model structures. A few examples of a successful use of the modeling method considered here in pharmacokinetics can be found in full texts articles available free of charge at the website of the author, and in the example given in the this study. The modeling method employed in this study can be used to develop a mathematical model of the pharmacokinetic behavior of any drug, under the condition that the pharmacokinetic behavior of the drug under study can be at least partially approximated using linear models.

  4. An overview of the pharmacokinetics of polymer-based nanoassemblies and nanoparticles.

    Science.gov (United States)

    Zhao, Qing-He; Qiu, Li-Yan

    2013-10-01

    Advancements in the design and synthesis of polymer-based nanoassemblies and nanoparticles, combined with achievements in nanotechnology and medicine, have resulted in remarkable applications of polymer nanosystems in the areas of nanomedicine and pharmaceutical sciences. However, a complete understanding of the absorption, distribution, metabolism, and elimination (ADME) processes of such polymer nanosystems in living systems has not been achieved. The influences of the pharmacokinetic parameters of polymer nanomaterials on the ADME processes are reviewed in this article, with discussions of the absorption and transportation of polymer nanoparticles across biological barriers, the factors affecting the bodily distribution of polymer nanocarriers, the transformation of polymer nanomaterials in vivo, the elimination pathway of polymer nanoparticles from biological systems, and perspectives of future pharmacokinetics and safety investigations of polymer-based nanoassemblies. A full and better understanding of the pharmacokinetic parameters of polymer-based nanomaterials is of vital importance in developing polymer nanosystems with optimal pharmacokinetics and biological safety for applications in nanomedicine and the pharmaceutical industry. PMID:24016113

  5. Busulfan in infants to adult hematopoietic cell transplant recipients: A population pharmacokinetic model for initial and Bayesian dose personalization

    Science.gov (United States)

    McCune, Jeannine S.; Bemer, Meagan J.; Barrett, Jeffrey S.; Baker, K. Scott; Gamis, Alan S.; Holford, Nicholas H.G.

    2014-01-01

    Purpose Personalizing intravenous (IV) busulfan doses to a target plasma concentration at steady state (Css) is an essential component of hematopoietic cell transplantation (HCT). We sought to develop a population pharmacokinetic model to predict IV busulfan doses over a wide age spectrum (0.1 – 66 years) that accounts for differences in age and body size. Experimental design A population pharmacokinetic model based on normal fat mass and maturation based on post-menstrual age was built from 12,380 busulfan concentration-time points obtained after IV busulfan administration in 1,610 HCT recipients. Subsequently, simulation results of the initial dose necessary to achieve a target Css with this model were compared with pediatric-only models. Results A two-compartment model with first-order elimination best fit the data. The population busulfan clearance was 12.4 L/h for an adult male with 62kg normal fat mass (equivalent to 70kg total body weight). Busulfan clearance, scaled to body size – specifically normal fat mass, is predicted to be 95% of the adult clearance at 2.5 years post-natal age. With a target Css of 770 ng/mL, a higher proportion of initial doses achieved the therapeutic window with this age- and size-dependent model (72%) compared to dosing recommended by the Food and Drug Administration (57%) or the European Medicines Agency (70%). Conclusion This is the first population pharmacokinetic model developed to predict initial IV busulfan doses and personalize to a target Css over a wide age spectrum, ranging from infants to adults. PMID:24218510

  6. Pharmacokinetic-pharmacodynamic modeling of diclofenac in normal and Freund's complete adjuvant-induced arthritic rats

    Institute of Scientific and Technical Information of China (English)

    Jing ZHANG; Pei LI; Hai-fang GUO; Li LIU; Xiao-dong LIU

    2012-01-01

    Aim:To characterize pharmacokinetic-pharmacodynamic modeling of diclofenac in Freund's complete adjuvant (FCA)-induced arthritic rats using prostaglandin E2 (PGE2) as a biomarker.Methods:The pharmacokinetics of diclofenac was investigated using 20-day-old arthritic rats.PGE2 level in the rats was measured using an enzyme immunoassay.A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to illustrate the relationship between the plasma concentration of diclofenac and the inhibition of PGE2 production.The inhibition of diclofenac on lipopolysaccharide (LPS)-induced PGE2 production in blood cells was investigated in vitro.Results:Similar pharmacokinetic behavior of diclofenac was found both in normal and FCA-induced arthritic rats.Diclofenac significantly decreased the plasma levels of PGE2 in both normal and arthritic rats.The inhibitory effect on PGE2 levels in the plasma was in proportion to the plasma concentration of diclofenac.No delay in the onset of inhibition was observed,suggesting that the effect compartment was located in the central compartment.An inhibitory effect sigmoid/max model was selected to characterize the relationship between the plasma concentration of diclofenac and the inhibition of PGE2 production in vivo.The /max model was also used to illustrate the inhibition of diclofenac on LPS-induced PGE2 production in blood cells in vitro.Conclusion:Arthritis induced by FCA does not alter the pharmacokinetic behaviors of diclofenac in rats,but the pharmacodynamics of diclofenac is slightly affected.A PK-PD model characterizing an inhibitory effect sigmoid /max can be used to fit the relationship between the plasma PGE2 and diclofenac levels in both normal rats and FCA-induced arthritic rats.

  7. Target-mediated pharmacokinetic/pharmacodynamic model based meta-analysis and dosing regimen optimization of a long-acting release formulation of exenatide in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Li, Hanqing; Xu, Jiayin; Fan, Xiaohong

    2015-02-01

    A hybrid pharmacokinetic/pharmacodynamic (PK/PD) model with extended-release (ER) process and target mediated drug disposition (TMDD) was developed for exenatide ER to account for its complex absorption process and glucagon-like peptide 1 receptor (GLP-1R)-mediated non-linear PK behaviors along with its influences to fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c). Using hybrid PK/PD model, simulations were done to explore the potential dosing regimens which could achieve likelihood of more pharmacodynamic exposure with respect to FPG and HbA1c over a much shorter period compared with the currently used treatment protocol. The mean PK/PD data about exenatide ER for type 2 diabetes mellitus (T2DM) were digitized from the publications, and the hybrid PK/PD model was performed using the Monolix 4.3 program. The plasma concentration-time and FPG/HbA1c-time profiles for exenatide ER subcutaneously administrated to patients with T2DM were well described by this hybrid model. Monte Carlo simulation was applied to mimic the PK profiles when higher loading dose 7.5 and 5.0 mg exenatide ER were subcutaneously administrated with different dosing intervals at the first 3 weeks of 30-week treatment. Two potentially optimizing schedules could improve the likelihood of achieving much more FPG and HbA1c exposures than currently used clinical treatment protocol.

  8. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.

    Science.gov (United States)

    Pitek, Andrzej S; Jameson, Slater A; Veliz, Frank A; Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Plant virus-based nanoparticles (VNPs) are a novel class of nanocarriers with unique potential for biomedical applications. VNPs have many advantageous properties such as ease of manufacture and high degree of quality control. Their biocompatibility and biodegradability make them an attractive alternative to synthetic nanoparticles (NPs). Nevertheless, as with synthetic NPs, to be successful in drug delivery or imaging, the carriers need to overcome several biological barriers including innate immune recognition. Plasma opsonization can tag (V)NPs for clearance by the mononuclear phagocyte system (MPS), resulting in shortened circulation half lives and non-specific sequestration in non-targeted organs. PEG coatings have been traditionally used to 'shield' nanocarriers from immune surveillance. However, due to broad use of PEG in cosmetics and other industries, the prevalence of anti-PEG antibodies has been reported, which may limit the utility of PEGylation in nanomedicine. Alternative strategies are needed to tailor the in vivo properties of (plant virus-based) nanocarriers. We demonstrate the use of serum albumin (SA) as a viable alternative. SA conjugation to tobacco mosaic virus (TMV)-based nanocarriers results in a 'camouflage' effect more effective than PEG coatings. SA-'camouflaged' TMV particles exhibit decreased antibody recognition, as well as enhanced pharmacokinetics in a Balb/C mouse model. Therefore, SA-coatings may provide an alternative and improved coating technique to yield (plant virus-based) NPs with improved in vivo properties enhancing drug delivery and molecular imaging. PMID:26950168

  9. Biodistribution and translational pharmacokinetic modeling of a human recombinant alkaline phosphatase.

    Science.gov (United States)

    Peters, Esther; Stevens, Jasper; Arend, Jacques; Guan, Zheng; Raaben, Willem; Laverman, Peter; van Elsas, Andrea; Masereeuw, Rosalinde; Pickkers, Peter

    2015-11-10

    Clinical trials showed renal protective effects of bovine intestinal alkaline phosphatase (AP) in patients with sepsis-associated acute kidney injury (AKI). Subsequently, a human recombinant chimeric AP (recAP) was developed as a pharmaceutically acceptable alternative. Here, we investigated the biodistribution and pharmacokinetics (PK) of recAP and developed a translational population PK model. Biodistribution was studied during LPS-induced AKI in rats. Iodine-125-labeled recAP was primarily taken up by liver, spleen, adrenals, heart, lungs and kidneys followed by the gastro-intestinal tract and thyroid. Tissue distribution was not critically affected by endotoxemia. PK parameters were determined in rats and minipigs during IV bolus injections of recAP, administered once, or once daily during seven consecutive days. Plasma concentrations of recAP increased with increasing dose and disappeared in a biphasic manner. Exposure to recAP, estimated by AUC and Cmax, was similar on days 1 and 7. Subsequently, population approach nonlinear mixed effects modeling was performed with recAP rat and minipig and biAP phase I PK data. Concentration versus time data was accurately described in all species by a two-compartmental model with allometric scaling based on body weight. This model provides a solid foundation for determining the optimal dose and duration of first-in-man recAP studies. PMID:26325308

  10. Modelling the Effect of Exercise on Insulin Pharmacokinetics in "Continuous Subcutaneous Insulin Infusion" Treated Type 1 Diabetes Patients

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Juhl, Rune; Schmidt, Signe;

    to the realization of the artificial pancreas is the effect of exercise on the insulin and plasma glucose dynamics. In this report, we take the first step towards a population model of exercise effects in type 1 diabetes. We focus on the effect on the insulin pharmacokinetics in continuous subcutaneous insulin...... the dynamics. In the first model, the insulin absorption rate parameter is replaced by a random walk. In the second model, the relationship between the absorption rate and exercise is modelled as a linear dependency, while in the third model this linear relationship depends on the intensity. A Lamperti...... transformation is used to ensure non-negative state values. A special focus is put on the structural identiflability of the base model, while the posterior identiflability is checked for all models from the conditional likelihood profiles. Results: The first model is disregarded due to the small number...

  11. Pharmacokinetic considerations of nanodelivery to the brain: Using modeling and simulations to predict the outcome of liposomal formulations.

    Science.gov (United States)

    Lindqvist, Annika; Fridén, Markus; Hammarlund-Udenaes, Margareta

    2016-09-20

    The use of nanocarriers is an intriguing solution to increase the brain delivery of novel therapeutics. The aim of this paper was to use pharmacokinetic analysis and simulations to identify key factors that determine the effective drug concentration-time profile at the target site in the brain. Model building and simulations were based on experimental data obtained from the administration of the opioid peptide DAMGO in glutathione tagged PEGylated liposomes to rats. Different pharmacokinetic models were investigated to explore the mechanisms of increased brain delivery. Concentration-time profiles for a set of formulations with varying compound and carrier characteristics were simulated. By controlling the release rate from the liposome, the time profile and the extent of brain delivery can be regulated. The modeling did not support a mechanism of the liposomes passing the brain endothelial cell membrane in an intact form through endocytosis or transcytosis. The most likely process was found to be fusion of the liposome with the endothelial luminal membrane. The simulations revealed that low permeable compounds, independent on efflux, will gain the most from a nanocarrier formulation. The present model based approach is useful to explore and predict possibilities and limitations of carrier-based systems to the brain. PMID:27393342

  12. A cell-based pharmacokinetics assay for evaluating tubulin-binding drugs.

    Science.gov (United States)

    Wang, Yuwei; Liu, Jihua; Zhang, Jun; Wang, Liping; Chan, Jonathon; Wang, Hai; Jin, Yi; Yu, Lei; Grainger, David W; Ying, Wenbin

    2014-01-01

    Increasing evidence reveals that traditional pharmacokinetics parameters based on plasma drug concentrations are insufficient to reliably demonstrate accurate pharmacological effects of drugs in target organs or cells in vivo. This underscores the increasing need to improve the types and qualities of cellular pharmacokinetic information for drug preclinical screening and clinical efficacy assessments. Here we report a whole cell-based method to assess drugs that disturb microtubule dynamics to better understand different formulation-mediated intracellular drug release profiles. As proof of concept for this approach, we compared the well-known taxane class of anti-microtubule drugs based on paclitaxel (PTX), including clinically familiar albumin nanoparticle-based Abraxane™, and a polymer nanoparticle-based degradable paclitaxel carrier, poly(L-glutamic acid)-paclitaxel conjugate (PGA-PTX, also known as CT-2103) versus control PTX. This in vitro cell-based evaluation of PTX efficacy includes determining the cellular kinetics of tubulin polymerization, relative populations of cells under G2 mitotic arrest, cell proliferation and total cell viability. For these taxane tubulin-binding compounds, the kinetics of cell microtubule stabilization directly correlate with G2 arrest and cell proliferation, reflecting the kinetics and amounts of intracellular PTX release. Each individual cell-based dose-response experiment correlates with published, key therapeutic parameters and taken together, provide a comprehensive understanding of drug intracellular pharmacokinetics at both cellular and molecular levels. This whole cell-based evaluating method is convenient, quantitative and cost-effective for evaluating new formulations designed to optimize cellular pharmacokinetics for drugs perturbing tubulin polymerization as well as assisting in explaining drug mechanisms of action at cellular levels.

  13. Bioenergetic and pharmacokinetic model for exposure of common loon (Gavia immer) chicks to methylmercury

    Science.gov (United States)

    Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Fournier, F.

    2007-01-01

    A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.4, and 1.2 ??g/g wet mass (delivered as CH3HgCl). Predicted food intake matched observed intake through 50 d of age but then exceeded observed intake by an amount that grew progressively larger with age, reaching a significant overestimate of 28% by the end of the trial. Respiration in older, nongrowing birds probably was overestimated by using rates measured in younger, growing birds. Close agreement was found between simulations and measured blood Hg, which varied significantly with dietary Hg and age. Although chicks may hatch with different blood Hg levels, their blood level is determined mainly by dietary Hg level beyond approximately two weeks of age. The model also may be useful for predicting Hg levels in adults and in the eggs that they lay, but its accuracy in both chicks and adults needs to be tested in free-living birds. ?? 2007 SETAC.

  14. Prediction of denosumab effects on bone remodeling: A combined pharmacokinetics and finite element modeling.

    Science.gov (United States)

    Hambli, Ridha; Boughattas, Mohamed Hafedh; Daniel, Jean-Luc; Kourta, Azeddine

    2016-07-01

    Denosumab is a fully human monoclonal antibody that inhibits receptor activator of nuclearfactor-kappa B ligand (RANKL). This key mediator of osteoclast activities has been shown to inhibit osteoclast differentiation and hence, to increase bone mineral density (BMD) in treated patients. In the current study, we develop a computer model to simulate the effects of denosumab treatments (dose and duration) on the proximal femur bone remodeling process quantified by the variation in proximal femur BMD. The simulation model is based on a coupled pharmacokinetics model of denosumab with a pharmacodynamics model consisting of a mechanobiological finite element remodeling model which describes the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed which controls the level of bone cell autocrine and paracrine factors. The cellular behavior is based on Komarova et al.׳s (2003) dynamic law which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cell dynamics rather than by adaptive elasticity approaches. The proposed finite element model was implemented in the finite element code Abaqus (UMAT routine). In order to perform a preliminary validation, in vivo human proximal femurs were selected and scanned at two different time intervals (at baseline and at a 36-month interval). Then, a 3D FE model was generated and the denosumab-remodeling algorithm was applied to the scans at t0 simulating daily walking activities for a duration of 36 months. The predicted results (density variation) were compared to existing published ones performed on a human cohort (FREEDOM

  15. Elucidation of arctigenin pharmacokinetics after intravenous and oral administrations in rats: integration of in vitro and in vivo findings via semi-mechanistic pharmacokinetic modeling.

    Science.gov (United States)

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2014-11-01

    Although arctigenin (AR) has attracted substantial research interests due to its promising and diverse therapeutic effects, studies regarding its biotransformation were limited. The current study aims to provide information regarding the pharmacokinetic properties of AR via various in vitro and in vivo experiments as well as semi-mechanistic pharmacokinetic modeling. Our in vitro rat microsome incubation studies revealed that glucuronidation was the main intestinal and liver metabolic pathway of AR, which occurred with V max, K m, and Clint of 47.5 ± 3.4 nmol/min/mg, 204 ± 22 μM, and 233 ± 9 μl/min/mg with intestinal microsomes and 2.92 ± 0.07 nmol/min/mg, 22.7 ± 1.2 μM, and 129 ± 4 μl/min/mg with liver microsomes, respectively. In addition, demethylation and hydrolysis of AR occurred with liver microsomes but not with intestinal microsomes. In vitro incubation of AR and its metabolites in intestinal content demonstrated that glucuronides of AR excreted in bile could be further hydrolyzed back to the parent compound, suggesting its potential enterohepatic circulation. Furthermore, rapid formation followed by fast elimination of arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was observed after both intravenous (IV) and oral administrations of AR in rats. Linear pharmacokinetics was observed at three different doses for AR, AA, and AG after IV administration of AR (0.48-2.4 mg/kg, r (2) > 0.99). Finally, an integrated semi-mechanistic pharmacokinetic model using in vitro enzyme kinetic and in vivo pharmacokinetic parameters was successfully developed to describe plasma concentrations of AR, AA, and AG after both IV and oral administration of AR at all tested doses. PMID:25274606

  16. ADMET evaluation in drug discovery. 11. PharmacoKinetics Knowledge Base (PKKB): a comprehensive database of pharmacokinetic and toxic properties for drugs.

    Science.gov (United States)

    Cao, Dongyue; Wang, Junmei; Zhou, Rui; Li, Youyong; Yu, Huidong; Hou, Tingjun

    2012-05-25

    Good and extensive experimental ADMET (absorption, distribution, metabolism, excretion, and toxicity) data is critical for developing reliable in silico ADMET models. Here we develop a PharmacoKinetics Knowledge Base (PKKB) to compile comprehensive information about ADMET properties into a single electronic repository. We incorporate more than 10 000 experimental ADMET measurements of 1685 drugs into the PKKB. The ADMET properties in the PKKB include octanol/water partition coefficient, solubility, dissociation constant, intestinal absorption, Caco-2 permeability, human bioavailability, plasma protein binding, blood-plasma partitioning ratio, volume of distribution, metabolism, half-life, excretion, urinary excretion, clearance, toxicity, half lethal dose in rat or mouse, etc. The PKKB provides the most extensive collection of freely available data for ADMET properties up to date. All these ADMET properties, as well as the pharmacological information and the calculated physiochemical properties are integrated into a web-based information system. Eleven separated data sets for octanol/water partition coefficient, solubility, blood-brain partitioning, intestinal absorption, Caco-2 permeability, human oral bioavailability, and P-glycoprotein inhibitors have been provided for free download and can be used directly for ADMET modeling. The PKKB is available online at http://cadd.suda.edu.cn/admet.

  17. Multicompartmental pharmacokinetic model of tenofovir delivery by a vaginal gel.

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    Full Text Available BACKGROUND: Trials of a vaginal Tenofovir gel for pre-exposure prophylaxis (PrEP for HIV have given conflicting results. Knowledge of concentrations of Tenofovir and its active form Tenofovir diphosphate, at putative sites of anti-HIV functioning, is central to understanding trial outcomes and design of products and dosage regimens. Topical Tenofovir delivery to the vaginal environment is complex, multivariate and non-linear; determinants relate to drug, vehicle, dosage regimen, and environment. Experimental PK methods cannot yield mechanistic understanding of this process, and have uncontrolled variability in drug sampling. Mechanistic modeling of the process could help delineate its determinants, and be a tool in design and interpretation of products and trials. METHODS AND FINDINGS: We created a four-compartment mass transport model for Tenofovir delivery by a gel: gel, epithelium, stroma, blood. Transport was diffusion-driven in vaginal compartments; blood concentration was time-varying but homogeneous. Parameters for the model derived from in vitro and in vivo PK data, to which model predictions gave good agreement. Steep concentration gradients occurred in stroma ≤ 8 hours after gel release. Increasing epithelial thickness delayed initial TFV delivery to stroma and its decline: tmax increased but AUC at 24 hours was not significantly altered. At 24 and 48 hours, stromal concentrations were 6.3% and 0.2% of C(max. Concentrations in simulated biopsies overestimated stromal concentrations, as much as ∼5X, depending upon time of sampling, biopsy thickness and epithelial thickness. CONCLUSIONS: There was reasonably good agreement of model predictions with clinical PK data. Conversion of TFV to TFV-DP was not included, but PK data suggest a linear relationship between them. Thus contrasts predicted by this model can inform design of gels and dosage regimens in clinical trials, and interpretation of PK data. This mass transport based approach

  18. Physiologically Based Pharmacokinetics Is Impacting Drug Development and Regulatory Decision Making.

    Science.gov (United States)

    Rowland, M; Lesko, L J; Rostami-Hodjegan, A

    2015-06-01

    It is no coincidence that the reports of two meetings, one organized by the US Food and Drug Administration (FDA), in March 2014, and the other by the UK Medicines and Healthcare Products Regulatory (MHRA), in collaboration with ABPI (the Association of British Pharmaceutical Industry), in June 2014, have been published in tandem in CPT-PSP.12 Both reports deal with the same topic, namely, the impact of physiologically based pharmacokinetics (PBPK) in clinical drug development and the best practices for such applications. This reflects the transition of PBPK from academic curiosity to industrial norm, manifested by the regulatory agencies encouraging its use and receiving an increasing number of submissions containing PBPK models. The goal of both meetings was to help determine the need and facilitate the development of regulatory guidances on this subject within the conceptual framework of model informed drug development and regulatory decision-making. A further reflection of this intent is the publication by the European Medicines Agency of a Concept Paper on PBPK.3 One is reminded of a similar train of events surrounding the introduction of population PK/PD and nonlinear mixed effects modeling in the early-late 1990s, again with encouragement and receptivity of regulatory agencies leading to FDA guidance on the topic.4 Indeed, the intention of PBPK modeling and simulation is to complement other approaches, such as compartmental modeling, or, in some cases, replace them with a more mechanistic approach. PBPK models represent an important class of models that characterize absorption, distribution, metabolism, excretion (ADME) processes and their underlying biological and physiological drivers. An increased understanding of these drivers and their unique interactions with drug substance and formulation factors provides critical insights into how drugs will behave in healthy volunteers and patients with disease. PMID:26225258

  19. A population pharmacokinetic model for R- and S-citalopram and desmethylcitalopram in Alzheimer’s disease patients with agitation

    OpenAIRE

    Akil, Ayman; Bies, Robert R.; Bruce G Pollock; Avramopoulos, Dimitrios; Devanand, D. P.; Mintzer, Jacobo E.; Porsteinsson, Anton P.; Schneider, Lon S; Weintraub, Daniel; Yesavage, Jerome; Shade, David M.; Lyketsos, Constantine G.

    2015-01-01

    The citalopram for Alzheimer’s disease trial evaluated citalopram for the management for agitation in Alzheimer’s disease patients. Sparse data was available from this elderly patient population. A nonlinear mixed effects population pharmacokinetic modeling approach was used to describe the pharmacokinetics of R- and S-citalopram and their primary metabolite (desmethylcitalopram). A structural model with 4 compartments (one compartment/compound) with linear oral absorption and elimination des...

  20. Pharmacokinetic modelling of methotrexate from routine clinical data in patients with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Pharmacokinetic modelling was performed in NONMEM (version 6.1) using a dataset including 273 patients (aged 2 to 23 years) who received high-dose MTX (5 g/m/sup 2/ per course) in long-term treatment. Total 2582 methotrexate plasma concentrations were performed by fluorescence polarisation immunoassay (FPIA). A three compartment open model with elimination from the central compartment described the pharmacokinetics of methotrexate. The most important covariates affecting the disposition of methotrexate were age (age, year), body weight (BW, kg), and creatinine clearance (CLR, lh/sup -1/). The final model with exponential disposition of MTX was clearance (CL, Ih/sup -1/) = (6.11 + WT*6.7310/sup -2/) + (1.0810/sup -4/* CLR )* EXP(1.9510/sup -1/), (V, l) = 10,8+(AGE* 9.310/sup -2/) *EXP(9.110/sup -1/), = Q(lh/sup -1/) = 2.0410/sup -3/*WT Pharmacokinetic parameters (percentage CV) in this study were CL, 8.72 lh/sup -1/ (44 %); V1, 17.49 I (95%); V2, 6.048 l (56%); V3, 0.015 I (52%). The model predictions in the qualification group were found to have no bias and satisfactory precision. (author)

  1. The pharmacokinetics of the interstitial space in humans

    OpenAIRE

    Levitt, David G.

    2003-01-01

    Background The pharmacokinetics of extracellular solutes is determined by the blood-tissue exchange kinetics and the volume of distribution in the interstitial space in the different organs. This information can be used to develop a general physiologically based pharmacokinetic (PBPK) model applicable to most extracellular solutes. Methods The human pharmacokinetic literature was surveyed to tabulate the steady state and equilibrium volume of distribution of the solutes mannitol, EDTA, morphi...

  2. Pharmacokinetic-Pharmacodynamic Analysis of Spiroindolone Analogs and KAE609 in a Murine Malaria Model

    OpenAIRE

    Lakshminarayana, Suresh B.; Freymond, Céline; Fischli, Christoph; Yu, Jing; Weber, Sebastian; Goh, Anne; Yeung, Bryan K. S.; Ho, Paul C.; Dartois, Véronique; Diagana, Thierry T.; Rottmann, Matthias; Blasco, Francesca

    2014-01-01

    Limited information is available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters driving the efficacy of antimalarial drugs. Our objective in this study was to determine dose-response relationships of a panel of related spiroindolone analogs and identify the PK-PD index that correlates best with the efficacy of KAE609, a selected class representative. The dose-response efficacy studies were conducted in the Plasmodium berghei murine malaria model, and the relationship between ...

  3. In Vivo Pharmacokinetics and Pharmacodynamics of a New Triazole, Voriconazole, in a Murine Candidiasis Model

    OpenAIRE

    Andes, D.; Marchillo, K.; Stamstad, T.; Conklin, R.

    2003-01-01

    In vivo studies have described the pharmacodynamic (PD) characteristics of several triazoles. These investigations have demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio is the critical pharmacokinetic (PK)-PD parameter associated with treatment efficacy. Further analyses from these in vivo studies have demonstrated that a triazole free drug 24-h AUC/MIC of 20 to 25 is predictive of treatment success. We used a neutropenic murine model of disseminated Candida ...

  4. Application of physiologically based pharmacokinetic models in the prediction of drug-drug interactions mediated by transporters%生理药代动力学模型在预测转运体介导药物相互作用中的应用

    Institute of Scientific and Technical Information of China (English)

    陈琳; 刘晓培; 夏春华; 胡锦芳; 熊玉卿

    2015-01-01

    Physiologically based pharmacokinetic ( PBPK ) models are built using a mathematic framework which is similar to these classic phar-macokinetic ( PK ) models, and are parameterized based on known physiology knowledge, and comprise many compartments corresponding to different organs and tissues in the body, which are connected by flow rates that parallel the circulating blood system.The values of PBPK models are gradually appreciated in the industry of drug development, especially in the field of drug -drug interaction due to their robust ability to predict drugs’ kinetic process in vivo.Then some basic concepts, advantages over classic models and their applications in drug-drug interaction fields asso-ciated with transporters of PBPK models are reviewed in the next context.%生理药代动力学模型通过与经典药代动力学模型类似的数学框架构建而成,并按已知的生理学知识设置参数,由大量分别对应于体内不同器官或组织的房室组成,并通过类似血液循环的系统而连接。因能较准确的预测药物在体内过程,故其在药物研发行业,尤其是药物相互作用领域,逐渐崭露头角。本文将从生理药代动力学模型的概念、与经典模型的优势比较及其在转运体介导的药物相互作用中的应用等方面进行综述。

  5. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling

    Directory of Open Access Journals (Sweden)

    Annika Bettina Foehrenbacher

    2013-12-01

    Full Text Available Hypoxia contributes to resistance of tumors to some cytotoxic drugs and to radiotherapy, but can in principle be exploited with hypoxia-activated prodrugs (HAP. HAP in clinical development fall into two broad groups. Class I HAP (like the benzotriazine N-oxides tirapazamine and SN30000, are activated under relatively mild hypoxia. In contrast, Class II HAP (such as the nitro compounds PR-104A or TH-302 are maximally activated only under extreme hypoxia, but their active metabolites (effectors diffuse to cells at intermediate O2 and thus also eliminate moderately hypoxic cells. Here, we use a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD model to compare these two strategies and to identify the features required in an optimal Class II HAP. The model uses a Green’s function approach to calculate spatial and longitudinal gradients of O2, prodrug and effector concentrations, and resulting killing in a digitized 3D tumor microregion to estimate activity as monotherapy and in combination with radiotherapy. An analogous model for a normal tissue with mild hypoxia and short intervesssel distances (based on a cremaster muscle microvessel network was used to estimate tumor selectivity of cell killing. This showed that Class II HAP offer advantages over Class I including higher tumor selectivity and greater freedom to vary prodrug diffusibility and rate of metabolic activation. The model suggests that the largest gains in class II HAP antitumor activity could be realized by optimizing effector stability and prodrug activation rates. We also use the model to show that diffusion of effector into blood vessels is unlikely to materially increase systemic exposure for realistic tumor burdens and effector clearances. However, we show that the tumor selectivity achievable by hypoxia-dependent prodrug activation alone is limited if dose-limiting normal tissues are even mildly hypoxic

  6. Pharmacokinetic and pharmacodynamic integration and modelling of marbofloxacin in calves for Mannheimia haemolytica and Pasteurella multocida.

    Science.gov (United States)

    Potter, T; Illambas, J; Pelligand, L; Rycroft, A; Lees, P

    2013-01-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of marbofloxacin were established in calves for six strains of each of the pneumonia pathogens Mannheimia haemolytica and Pasteurella multocida. The distribution of marbofloxacin into inflamed (exudate) and non-inflamed (transudate) tissue cage fluids allowed comparison with the serum concentration-time profile. To establish the PD profile, minimum inhibitory concentration (MIC) was determined in Mueller-Hinton broth (MHB) and calf serum. Moderately higher MICs were obtained for serum compared to MHB. An initial integration of PK-PD data established C(max)/MIC ratios of 45.0 and AUC(24h)/MIC values of 174.7 h, based on serum MICs, for both bacterial species. Using bacterial time-kill curves, generated ex vivo for serum marbofloxacin concentrations, PK-PD modelling established three levels of growth inhibition: AUC(24 h)/MIC ratios for no reduction, 3 log(10) and 4 log(10) reductions in bacterial count from the initial inoculum count were 41.9, 59.5 and 68.0 h for M. haemolytica and 48.6, 64.9 and 74.8 h for P. multocida, on average respectively. Inter-strain variability for 3 log(10) and 4 log(10) reductions in bacterial count was smaller for P. multocida than for M. haemolytica. In conjunction with literature data on MIC(90) values, the present results allowed prediction of dosages for efficacy for each organism for the three levels of growth inhibition.

  7. Population pharmacokinetic model of valproate and prediction of valproate serum concentrations in children with epilepsy

    Institute of Scientific and Technical Information of China (English)

    De-chun JIANG; Li WANG

    2004-01-01

    AIM: Using sparse data of valproate (VPA) serum concentrations to build a population pharmacokinetic (PPK)model of VPA in Chinese children with epilepsy and to predict serum concentrations for new patients using a Bayesian approach. METHODS: Two hundred epileptic children, whose VPA serum concentrations were collected,were divided randomly into two groups (A and B, n=100 each). The PPK parameter values of group A were calculated to establish a PPK Model by using the NPEM Program of USC*PACK software. Based on it, VPA serum concentrations of group B were predicted with the Bayesian Fitting Program of the USC*PACK software. To assess the accuracy and precision of prediction, a paired-comparisons t-test was run between predicted and observed concentrations, and then the mean prediction error (MPE), mean square prediction error (MSPE), root mean square prediction error (RMSPE), and coincidence rates for different percentages of prediction error were all calculated. RESULTS: Optimum PPK parameters were: Ka, 2.522+2.743 h-1; Vs, 0.329+0.496 L/kg; and Kel,0.0438±0.0384 h-1. For group B, there was no significant difference between predicted and observed concentrations.MPE was -0.43 mg/L, MSPE was 115.40 (mg/L)2, and RMSPE was 5.47 mg/L. The coincidence rates for percentages of prediction error, which were less than 5%, 10%, 15%, 20%, 25%, and 30%, were 62%, 74%, 82%,85%, 89%, and 93%, respectively. CONCLUSION: A PPK model of VPA in epileptic children was successfully established. Based on it, VPA serum concentrations can be predicted accurately with a Bayesian approach.

  8. The Effect of Azithromycin on Ivermectin Pharmacokinetics—A Population Pharmacokinetic Model Analysis

    Science.gov (United States)

    El-Tahtawy, Ahmed; Glue, Paul; Andrews, Emma N.; Mardekian, Jack; Amsden, Guy W.; Knirsch, Charles A.

    2008-01-01

    Background A recent drug interaction study reported that when azithromycin was administered with the combination of ivermectin and albendazole, there were modest increases in ivermectin pharmacokinetic parameters. Data from this study were reanalyzed to further explore this observation. A compartmental model was developed and 1,000 interaction studies were simulated to explore extreme high ivermectin values that might occur. Methods and Findings A two-compartment pharmacokinetic model with first-order elimination and absorption was developed. The chosen final model had 7 fixed-effect parameters and 8 random-effect parameters. Because some of the modeling parameters and their variances were not distributed normally, a second mixture model was developed to further explore these data. The mixture model had two additional fixed parameters and identified two populations, A (55% of subjects), where there was no change in bioavailability, and B (45% of subjects), where ivermectin bioavailability was increased 37%. Simulations of the data using both models were similar, and showed that the highest ivermectin concentrations fell in the range of 115–201 ng/mL. Conclusions This is the first pharmacokinetic model of ivermectin. It demonstrates the utility of two modeling approaches to explore drug interactions, especially where there may be population heterogeneity. The mechanism for the interaction was identified (an increase in bioavailability in one subpopulation). Simulations show that the maximum ivermectin exposures that might be observed during co-administration with azithromycin are below those previously shown to be safe and well tolerated. These analyses support further study of co-administration of azithromycin with the widely used agents ivermectin and albendazole, under field conditions in disease control programs. PMID:18478051

  9. Pharmacokinetic modeling: Prediction and evaluation of route dependent dosimetry of bisphenol A in monkeys with extrapolation to humans

    International Nuclear Information System (INIS)

    A physiologically based pharmacokinetic (PBPK) model was developed for bisphenol A (BPA) in adult rhesus monkeys using intravenous (iv) and oral bolus doses of 100 μg d6-BPA/kg (). This calibrated PBPK adult monkey model for BPA was then evaluated against published monkey kinetic studies with BPA. Using two versions of the adult monkey model based on monkey BPA kinetic data from and , the aglycone BPA pharmacokinetics were simulated for human oral ingestion of 5 mg d16-BPA per person (Völkel et al., 2002). Völkel et al. were unable to detect the aglycone BPA in plasma, but were able to detect BPA metabolites. These human model predictions of the aglycone BPA in plasma were then compared to previously published PBPK model predictions obtained by simulating the Völkel et al. kinetic study. Our BPA human model, using two parameter sets reflecting two adult monkey studies, both predicted lower aglycone levels in human serum than the previous human BPA PBPK model predictions. BPA was metabolized at all ages of monkey (PND 5 to adult) by the gut wall and liver. However, the hepatic metabolism of BPA and systemic clearance of its phase II metabolites appear to be slower in younger monkeys than adults. The use of the current non-human primate BPA model parameters provides more confidence in predicting the aglycone BPA in serum levels in humans after oral ingestion of BPA. -- Highlights: ► A bisphenol A (BPA) PBPK model for the infant and adult monkey was constructed. The hepatic metabolic rate of BPA increased with age of the monkey. ► The systemic clearance rate of metabolites increased with age of the monkey. ► Gut wall metabolism of orally administered BPA was substantial across all ages of monkeys. ► Aglycone BPA plasma concentrations were predicted in humans orally given oral doses of deuterated BPA.

  10. Validation of a Best-Fit Pharmacokinetic Model for Scopolamine Disposition after Intranasal Administration

    Science.gov (United States)

    Wu, L.; Chow, D. S-L.; Tam, V.; Putcha, L.

    2015-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Motion Sickness. Bioavailability and pharmacokinetics (PK) were determined per Investigative New Drug (IND) evaluation guidance by the Food and Drug Administration. Earlier, we reported the development of a PK model that can predict the relationship between plasma, saliva and urinary scopolamine (SCOP) concentrations using data collected from an IND clinical trial with INSCOP. This data analysis project is designed to validate the reported best fit PK model for SCOP by comparing observed and model predicted SCOP concentration-time profiles after administration of INSCOP.

  11. Novel endogenous glycan therapy for retinal diseases: safety, in vitro stability, ocular pharmacokinetic modeling, and biodistribution.

    Science.gov (United States)

    Swaminathan, Shankar; Li, Huiling; Palamoor, Mallika; de Obarrio, Walter T Luchsinger; Madhura, Dorababu; Meibohm, Bernd; Jablonski, Monica M

    2014-03-01

    Asialo, tri-antennary oligosaccharide (NA3 glycan) is an endogenous compound, which supports proper folding of outer segment membranes, promotes normal ultrastructure, and maintains protein expression patterns of photoreceptors and Müller cells in the absence of retinal pigment epithelium support. It is a potential new therapeutic for atrophic age-related macular degeneration (AMD) and other retinal degenerative disorders. Herein, we evaluate the safety, in vitro stability, ocular pharmacokinetics and biodistribution of NA3. NA3 was injected into the vitreous of New Zealand white rabbits at two concentrations viz. 1 nM (minimum effective concentration (MEC)) and 100 nM (100XMEC) at three time points. Safety was evaluated using routine clinical and laboratory tests. Ocular pharmacokinetics and biodistribution of [(3)H]NA3 were estimated using scintillation counting in various parts of the eye, multiple peripheral organs, and plasma. Pharmacokinetic parameters were estimated by non-compartmental modeling. A 2-aminobenzamide labeling and hydrophilic interaction liquid interaction chromatography were used to assess plasma and vitreous stability. NA3 was well tolerated by the eye. The concentration of NA3 in eye tissues was in the order: vitreous > retina > sclera/choroid > aqueous humor > cornea > lens. Area under the curve (0 to infinity) (AUC∞) was the highest in the vitreous thereby providing a positive concentration gradient for NA3 to reach the retina. Half-lives in critical eye tissues ranged between 40 and 60 h. NA3 concentrations were negligible in peripheral organs. Radioactivity from [(3)H]NA3 was excreted via urine and feces. NA3 was stable at 37°C in vitreous over a minimum of 6 days, while it degraded rapidly in plasma. Collectively, these results document that NA3 shows a good safety profile and favorable ocular pharmacokinetics.

  12. Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs.

    Science.gov (United States)

    Kuttler, Andreas; Dimke, Thomas; Kern, Steven; Helmlinger, Gabriel; Stanski, Donald; Finelli, Luca A

    2010-12-01

    We introduce how biophysical modeling in pharmaceutical research and development, combining physiological observations at the tissue, organ and system level with selected drug physiochemical properties, may contribute to a greater and non-intuitive understanding of drug pharmacokinetics and therapeutic design. Based on rich first-principle knowledge combined with experimental data at both conception and calibration stages, and leveraging our insights on disease processes and drug pharmacology, biophysical modeling may provide a novel and unique opportunity to interactively characterize detailed drug transport, distribution, and subsequent therapeutic effects. This innovative approach is exemplified through a three-dimensional (3D) computational fluid dynamics model of the spinal canal motivated by questions arising during pharmaceutical development of one molecular therapy for spinal cord injury. The model was based on actual geometry reconstructed from magnetic resonance imaging data subsequently transformed in a parametric 3D geometry and a corresponding finite-volume representation. With dynamics controlled by transient Navier-Stokes equations, the model was implemented in a commercial multi-physics software environment established in the automotive and aerospace industries. While predictions were performed in silico, the underlying biophysical models relied on multiple sources of experimental data and knowledge from scientific literature. The results have provided insights into the primary factors that can influence the intrathecal distribution of drug after lumbar administration. This example illustrates how the approach connects the causal chain underlying drug distribution, starting with the technical aspect of drug delivery systems, through physiology-driven drug transport, then eventually linking to tissue penetration, binding, residence, and ultimately clearance. Currently supporting our drug development projects with an improved understanding of systems

  13. Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy.

    Science.gov (United States)

    Yu, Yunli; Zhang, Quanying; Xu, Wenjun; Lv, Chengzhe; Hao, Gang

    2016-08-01

    The aim of the study was to develop a population pharmacokinetic (PPK) model of oxcarbazepine and optimize the treatment of oxcarbazepine in Chinese patients with epilepsy. A total of 108 oxcarbazepine therapeutic drug monitoring samples from 78 patients with epilepsy were collected in this study. The pharmacologically active metabolite 10,11-dihydro-10-hydrocarbamazepine (MHD) was used as the analytical target for monitoring therapy of oxcarbazepine. Patients' clinical data were retrospectively collected. The PPK model for MHD was developed using Phoenix NLME 1.2 with a non-linear mixed-effect model. MHD pharmacokinetics obeys a one-compartment model with first-order absorption and elimination. The effect of age, gender, red blood cell count, red blood cell specific volume, hemoglobin (HGB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatine were analyzed. Bootstrap and data splitting were used simultaneously to validate the final PPK models. The mean values of volume of distribution and clearance of MHD in the patients were 14.2 L and 2.38 L h(-1), respectively. BUN and HGB influenced the MHD volume of distribution according to the following equation: V = tvV × (BUN/4.76)(-0.007) × (HGB/140)(-0.001) × e (ηV) . The MHD clearance was dependent on ALT and gender as follows: CL = tvCL × (ALT/30)(0.181) × (gender) × 1.083 × e (ηCL). The final PPK model was demonstrated to be suitable and effective and it can be used to evaluate the pharmacokinetic parameters of MHD in Chinese patients with epilepsy and to choose an optimal dosage regimen of oxcarbazepine on the basis of these parameters. PMID:25700977

  14. A Population Pharmacokinetic Model for Disposition in Plasma, Saliva and Urine of Scopolamine after Intranasal Administration to Healthy Human Subjects

    Science.gov (United States)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.

  15. Signal-to-noise ratio, contrast-to-noise ratio and pharmacokinetic modeling considerations in dynamic contrast-enhanced magnetic resonance imaging.

    Science.gov (United States)

    Li, Xin; Huang, Wei; Rooney, William D

    2012-11-01

    With advances in magnetic resonance imaging (MRI) technology, dynamic contrast-enhanced (DCE)-MRI is approaching the capability to simultaneously deliver both high spatial and high temporal resolutions for clinical applications. However, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) considerations and their impacts regarding pharmacokinetic modeling of the time-course data continue to represent challenges in the design of DCE-MRI acquisitions. Given that many acquisition parameters can affect the nature of DCE-MRI data, minimizing tissue-specific data acquisition discrepancy (among sites and scanner models) is as important as synchronizing pharmacokinetic modeling approaches. For cancer-related DCE-MRI studies where rapid contrast reagent (CR) extravasation is expected, current DCE-MRI protocols often adopt a three-dimensional fast low-angle shot (FLASH) sequence to achieve spatial-temporal resolution requirements. Based on breast and prostate DCE-MRI data acquired with different FLASH sequence parameters, this paper elucidates a number of SNR and CNR considerations for acquisition optimization and pharmacokinetic modeling implications therein. Simulations based on region of interest data further indicate that the effects of intercompartmental water exchange often play an important role in DCE time-course data modeling, especially for protocols optimized for post-CR SNR.

  16. Pharmacokinetic and pharmacodynamic modelling of marbofloxacin administered alone and in combination with tolfenamic acid in goats.

    Science.gov (United States)

    Sidhu, P K; Landoni, M F; Aliabadi, F S; Lees, P

    2010-05-01

    In a four-period cross-over study, the fluoroquinolone antibacterial drug marbofloxacin (MB) was administered to goats intramuscularly (IM) at a dose rate of 2 mg/kg, both alone and in combination with the non-steroidal anti-inflammatory drug tolfenamic acid (TA), also administered IM at a dose rate of 2 mg/kg. Using a tissue cage model of inflammation, based on the irritant actions of carrageenan, the pharmacokinetics (PK) of MB and MB in combination with TA were determined. MB mean values of area under concentration-time curve (AUC) were similar for serum (5.60 microg h/mL), inflamed tissue cage fluid (exudate; 5.32 microg h/mL) and non-inflamed tissue cage fluid (transudate; 4.82 microg h/mL). Values of mean residence time (MRT) of MB in exudate (15.5 h) and transudate (15.8 h) differed significantly from serum MRT (4.23 h). Co-administration of TA did not affect the PK profile of MB. The pharmacodynamics of MB were investigated using a caprine strain of Mannheimia haemolytica. Integration of PK data with ex vivo bacterial time-kill curve data for serum, exudate and transudate provided AUC(24h)/minimum inhibitory concentration (MIC) ratios of 160, 133 and 121 h, respectively, for the strain of organism used. Modelling of the ex vivo time-kill data to the sigmoid E(max) equation provided AUC(24h)/MIC values required for bacteriostatic and bactericidal actions of MB and for virtual eradication of the organism of 27.6, 96.2 and 147.3 h, respectively. Corresponding values for MB+TA were 20.5, 66.5 and 103.0 h. These data were used to predict once daily dosage schedules of MB for subsequent clinical evaluation.

  17. An Engineering Approach to Biomedical Sciences: Advanced Testing Methods and Pharmacokinetic Modeling

    Science.gov (United States)

    Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2012-01-01

    In this paper, the philosophy of a research in pharmacology field, driven by an engineering approach, was described along with some case histories and examples. The improvement in the testing methods for pharmaceutical systems (in-vitro techniques), as well as the proposal and the testing of mathematical models to describe the pharmacokinetics (in-silico techniques) are reported with the aim of pointing out methodologies and tools able to reduce the need of expensive and ethical problematic in-vivo measurements. PMID:23905061

  18. Pharmacokinetics-Pharmacodynamics Analysis of Bicyclic 4-Nitroimidazole Analogs in a Murine Model of Tuberculosis

    OpenAIRE

    Lakshminarayana, Suresh B.; Helena I M Boshoff; Joseph Cherian; Sindhu Ravindran; Anne Goh; Jan Jiricek; Mahesh Nanjundappa; Amit Nayyar; Meera Gurumurthy; Ramandeep Singh; Thomas Dick; Francesca Blasco; Barry, Clifton E.; Ho, Paul C.; Manjunatha, Ujjini H

    2014-01-01

    PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 in vivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC ). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both in vivo PK and efficacy studies. In an established murine TB model, the eff...

  19. Exploring flubendazole formulations for use in sheep. Pharmacokinetic evaluation of a cyclodextrin-based solution

    Directory of Open Access Journals (Sweden)

    Ceballos Laura

    2012-05-01

    Full Text Available Abstract Background Flubendazole (FLBZ is a poor water solubility broad-spectrum BZD methylcarbamate anthelmintic compound. Cyclodextrins (CDs are usually used to increase aqueous solubility of poor hydrosoluble compounds. The comparative in vitro aqueous solubility of FLBZ and other BZD anthelmintics in the presence of hydroxypropyl-β-cyclodextrin (HPβCD was evaluated in the current work. Additionally, the comparative pharmacokinetic behaviour of FLBZ (and its metabolites administered by the intraruminal (i.r. or intraabomasal (i.a. routes to sheep as either an aqueous CDs-based solution or a conventional carboximethylcellulose (CMC suspension was assessed. Drug solubility studies involving albendazole, mebendazole, oxfendazole and FLBZ were performed in an aqueous solution (pH 1.2 or 7.4 with or without HPβCD (10%, w/v. The pharmacokinetic study involved two experiments. Experiment 1: In a crossover study, sheep received either a FLBZ-CDs solution (n = 3 or a FLBZ-CMC suspension (n = 3 by the i.r. route (3.8 mg/kg. The treatment Groups were reversed after a 21-days washout period. Experiment 2: sheep (n = 4 were treated by the i.a. route with the FLBZ-CDs solution (3.8 mg/kg. Plasma and abomasal fluid samples were collected between 0 and 72 h post-treatment. Samples were analysed by HPLC. Results Improvement of FLBZ aqueous solubility due to CDs resulted markedly higher than that observed for mebendazole and albendazole. However, oppositely to what was expected, the absorption-related pharmacokinetic parameters did not show any marked formulation-dependant effect. After the i.a. administration of FLBZ, the AUC and the Tmax of the parent compound were significantly (P Conclusion The administration of FLBZ as a CDs-based solution, does not seem to achieve great practical relevance for parasite control in sheep.

  20. Myotoxicity of gemfibrozil in Cynomolgus monkey model and its relationship to pharmacokinetic properties

    International Nuclear Information System (INIS)

    Fibrate drugs are PPARα agonists prescribed for the treatment of dyslipidemia. Severe myotoxicity has been reportedly associated with their use albeit at a low frequency, especially for gemfibrozil. Few studies have investigated the mechanism of fibrate-induced myotoxicity in vivo. Considering the apparent species-related differences in PPARα agonist-induced hepatotoxicity, we studied the myotoxicity of gemfibrozil in a Cynomolgus monkey model and explored the relationship between myotoxicity and pharmacokinetics. Six Cynomolgus monkeys were dosed with gemfibrozil twice daily at 600 mg/kg/day for the first two periods (P1 and P2, 8 days and 9 days respectively) and 300 mg/kg/day for the third period (P3, 14 days). Creatine kinase and myoglobin were measured, together with hepatotoxicity and nephrotoxicity markers. Behavioral responses were recorded for indication of toxicity. Pharmacokinetics was carried out following the 16th dosage of P1 and 17th dosage of P2 when myotoxicity was identified. Multivariable data analysis was employed to explore the relationship between pharmacokinetic parameters and myotoxicity markers. Consequently, myotoxicity occurred in monkey no. 2 (M2) and M6 in P1, M3 and M4 in P2, M3 and M6 in P3. Data analysis showed T80-150 (sustained time above the given concentration) contributed for myotoxicity discriminance and correlated with myotoxicity risk. This study revealed Cynomolgus monkey may be a good animal model for myotoxicity evaluation with sensitivity, reproducibility and similarities to humans. More interestingly, they exhibited a much higher incidence of myotoxicity than that of humans. Sustained high drug concentration plays an important role for the occurrence of myotoxicity. This may suggest an influence of drug transport and metabolism on myotoxicity

  1. Limitations of Single Slice Dynamic Contrast Enhanced MR in Pharmacokinetic Modeling of Bone Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Toms, Andoni P. (Dept. of Radiology, The Norfolk and Norwich Univ. Hospital, Norwich, Norfolk (United Kingdom)); White, Lawrence M.; Bleakney, Robert R. (Dept. of Medical Imaging, Mount Sinai Hospital, Toronto, ON (Canada)); Kandel, Rita (Dept. of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON (Canada)); Noseworthy, Michael (Health Sciences Centre, Faculty of Health Sciences, McMaster Univ., Hamilton, ON (Canada)); Lee, Shepstone (Institute of Health, Univ. of East Anglia, Norwich, Norfolk (United Kingdom)); Blackstein, Martin E. (Dept. of Oncology, Mount Sinai Hospital, Toronto, ON (Canada)); Wunder, Jay (Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON (Canada))

    2009-06-15

    Background: Single slice dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) appears to provide perfusion data about sarcomas in vivo that correlate with tumor necrosis on equivalent pathological sections. However, sarcomas are heterogeneous and therefore single slice DCE-MRI may not correlate with total tumor necrosis. Purpose: To determine whether changes in pharmacokinetic modeling of DCE-MRI, during chemotherapy for primary bone sarcomas correlated with histological measures of total tumor necrosis. Material and Methods: Twelve patients with appendicular primary bone sarcomas were included in the study. Each patient had DCE-MRI before, and after completion, of pre-operative chemotherapy. The mean arterial slope (A), endothelial permeability coefficient (Ktrans), and extravascular extracellular volume (Ve) were derived from each data set using a modified two compartment pharmacokinetic model. Total tumor necrosis rates were compared with changes in A, Ktrans, and Ve. Results: Six patients had total tumor necrosis of =90% and six had a measure of <90%. The median percentage changes in A, Ktrans, and Ve for the =90% necrosis group were -52.5% (-83 to 6), -66% (-82 to 26), and 23.5% (-26 to 40), respectively. For the <90% necrosis group, A = - 35% (-75 to 132), Ktrans= - 53 (-66 to 149) and Ve= - 14.5% (-42 to 40). One patient with >90% necrosis had increases in all three measures. Comparison of the two groups generated P-values of 0.699 for A, 0.18 for Ktrans, and 0.31 for Ve. Conclusion: There was no statistically significant correlation between changes in pharmacokinetic perfusion parameters and total tumor necrosis. When using single slice DCE-MRI heterogeneous histology of primary bone sarcomas and repair mediated angiogenesis might both be confounding factors

  2. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    Science.gov (United States)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  3. Pharmacokinetic modeling of multidrug resistance P-glycoprotein transport of gamma-emitting substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bae, K. T.; Piwnica-Worms, D. [St. Louis, Washington Univ. (United States). Mallinckrodt Institute of Radiology. Lab. of Molecular Radiopharmacology]|[St. Louis, Washington Univ. (United States). Dept. of Molecular Biology and Pharmacology

    1997-06-01

    P-glycoprotein, the human multidrug resistance (MDR1) gene product, is an integral membrane protein expressed on the plasma membrane of MDR tumor cells and is the best characterized of a family of efflux transporters that confer chemotherapeutic resistance. The use of gamma-emitting {sup 99m}Tc-agents to image P-glycoprotein function in human tumors in vivo has been proposed. Net tumor cell content of {sup 99m}Tc-Sestamibi, {sup 99m}Tc-Tetrofosmin and several {sup 99m}Tc-Q-complexes ({sup 99m}Tc-Q58 and {sup 99m}Tc-Q63) are function of passive potential-dependent influx and MDR1 P-glycoprotein-mediated active extrusion. To better understand the overall fidelity of these P-glycoprotein substrates to report MDR activity in vivo in relation to tissue perfusion, a compartmental model of tracer pharmacokinetics was developed. Modeling indicates that tissue perfusion will impact pharmacokinetics in vivo in a manner that will tend to diminish P-glycoprotein-mediated phenotypic differences between tissues when they are perfusion-limited. However, dynamic imaging to extract efflux rate constants is independent of perfusion and may represent the highest quality methodology for collecting the desired information regarding activity of the efflux transporter. Much work remains to translate these concepts and biological targeting properties into clinical practice.

  4. Assessing pharmacokinetics of different doses of fosfomycin in laboratory rats enables adequate exposure for pharmacodynamic models.

    Science.gov (United States)

    Poeppl, Wolfgang; Lingscheid, Tilman; Bernitzky, Dominik; Donath, Oliver; Reznicek, Gottfried; Zeitlinger, Markus; Burgmann, Heinz

    2014-01-01

    Fosfomycin has been the subject of numerous pharmacodynamic in vivo models in recent years. The present study set out to determine fosfomycin pharmacokinetics in laboratory rats to enable adequate dosing regimens in future rodent models. Fosfomycin was given intraperitoneally as single doses of 75, 200 and 500 mg/kg bodyweight to 4 Sprague-Dawley rats per dose group. Blood samples were collected over 8 h and fosfomycin concentrations were determined by HPLC-mass spectrometry. Fosfomycin showed a dose-proportional pharmacokinetic profile indicated by a correlation of 0.99 for maximum concentration and area under the concentration-time curve (AUC). The mean AUC0-8 after intraperitoneal administration of 75, 200 or 500 mg/kg bodyweight fosfomycin were 109.4, 387.0 and 829.1 µg·h/ml, respectively. In conclusion, a dosing regimen of 200-500 mg/kg 3 times daily is appropriate to obtain serum concentrations in laboratory rats, closely mimicking human serum concentrations over time.

  5. Rational design of CPP-based drug delivery systems: considerations from pharmacokinetics.

    Science.gov (United States)

    Mickan, Arite; Sarko, Dikran; Haberkorn, Uwe; Mier, Walter

    2014-01-01

    Therapeutics are restricted from cellular internalization due to the biological barrier formed by the cell membrane. Especially for therapeutics with high molecular weight, strategies are required to enable delivery to intracellular targets. Cell-penetrating peptides (CPPs) represent a powerful tool to mediate the entry of large cargos such as proteins, siRNA and nanoparticles. The high diversity of CPPs is the prerequisite to use this class of carriers for various applications. However, therapies based on CPPs are hampered by their unfavorable pharmacokinetics, mainly dominated by their rapid renal clearance and their lack of specificity. Rational design is required to overcome these disadvantages and thereby exploits the actual potential of CPPs. We summarize and highlight the current state of knowledge with special emphasis on pharmacokinetics. The unclear internalization pathways of CPPs remain one of the main obstacles and therefore have been in the focus of research. In this review, several promising strategies such as the combination with targeting sequences, activatable CPPs and adjustment of the molecular weight are described. In addition, new absorption pathways such as nasal, pulmonary or transdermal uptake expand the applicability of CPPs and may be a promising prospect for clinical application.

  6. Model-based meta-analysis for development of a population-pharmacokinetic (PPK) model for Vitamin D3 and its 25OHD3 metabolite using both individual and arm-level data.

    Science.gov (United States)

    Ocampo-Pelland, Alanna S; Gastonguay, Marc R; French, Jonathan F; Riggs, Matthew M

    2016-04-01

    Clinical studies investigating relationships between D3 and 25OHD3 vary in dosing regimen, assays, demographics, and control of exogenous D3. This leads to uncertain and conflicting exposure-related associations with D3 and 25OHD3. To elucidate this parent-metabolite system, a PPK model was developed to predict mean D3 and 25OHD3 exposure from varied doses and administration routes. Sources of exposure variability related to metabolite baseline, weight, and assay type were explored. Specific search criteria were used in PUBMED to identify public source PK data pertaining to D3 and 25OHD3 in healthy or osteoporotic populations. Overall 57 studies representing 5395 individuals were selected, including 25 individual-level profiles and treatment-arm data. IV, oral, single and multiple dose data were used, with D3 and 25OHD3 dosing. A nonlinear mixed effects model was developed to simultaneously model PK dispositions of D3 and 25OHD3 (NONMEM v7.2), which were described by 2-compartment models with nonlinear and linear clearances, respectively. Proportional and additive assay variances were included on the 25OHD3 prediction. Unit-level random effects were weighted by treatment-arm size. D3 model estimates, relative to bioavailability were: maximum rate of metabolism ([Formula: see text], 1.62 nmol/h), Michaelis-Menten constant ([Formula: see text], 6.39 nmol/L), central volume of distribution ([Formula: see text], 15.5 L), intercompartmental clearance ([Formula: see text], 0.185 L/h), peripheral volume of distribution ([Formula: see text], 2333 L/h), and baseline concentration ([Formula: see text], 3.75 nmol/L). For 25OHD3 ([Formula: see text] = metabolite): [Formula: see text] = 0.0153 L/h, [Formula: see text] = 4.35 L, [Formula: see text] = 6.87 L, [Formula: see text] = 0.0507 L/h. Simulations of 25OHD3 concentration indicated an inverse relationship between 25OHD3 baseline and response, as well as a less than proportional 25OHD3 response. Estimation of assay bias

  7. Model-based meta-analysis for development of a population-pharmacokinetic (PPK) model for Vitamin D3 and its 25OHD3 metabolite using both individual and arm-level data.

    Science.gov (United States)

    Ocampo-Pelland, Alanna S; Gastonguay, Marc R; French, Jonathan F; Riggs, Matthew M

    2016-04-01

    Clinical studies investigating relationships between D3 and 25OHD3 vary in dosing regimen, assays, demographics, and control of exogenous D3. This leads to uncertain and conflicting exposure-related associations with D3 and 25OHD3. To elucidate this parent-metabolite system, a PPK model was developed to predict mean D3 and 25OHD3 exposure from varied doses and administration routes. Sources of exposure variability related to metabolite baseline, weight, and assay type were explored. Specific search criteria were used in PUBMED to identify public source PK data pertaining to D3 and 25OHD3 in healthy or osteoporotic populations. Overall 57 studies representing 5395 individuals were selected, including 25 individual-level profiles and treatment-arm data. IV, oral, single and multiple dose data were used, with D3 and 25OHD3 dosing. A nonlinear mixed effects model was developed to simultaneously model PK dispositions of D3 and 25OHD3 (NONMEM v7.2), which were described by 2-compartment models with nonlinear and linear clearances, respectively. Proportional and additive assay variances were included on the 25OHD3 prediction. Unit-level random effects were weighted by treatment-arm size. D3 model estimates, relative to bioavailability were: maximum rate of metabolism ([Formula: see text], 1.62 nmol/h), Michaelis-Menten constant ([Formula: see text], 6.39 nmol/L), central volume of distribution ([Formula: see text], 15.5 L), intercompartmental clearance ([Formula: see text], 0.185 L/h), peripheral volume of distribution ([Formula: see text], 2333 L/h), and baseline concentration ([Formula: see text], 3.75 nmol/L). For 25OHD3 ([Formula: see text] = metabolite): [Formula: see text] = 0.0153 L/h, [Formula: see text] = 4.35 L, [Formula: see text] = 6.87 L, [Formula: see text] = 0.0507 L/h. Simulations of 25OHD3 concentration indicated an inverse relationship between 25OHD3 baseline and response, as well as a less than proportional 25OHD3 response. Estimation of assay bias

  8. Computational approaches and metrics required for formulating biologically realistic nanomaterial pharmacokinetic models

    International Nuclear Information System (INIS)

    The field of nanomaterial pharmacokinetics is in its infancy, with major advances largely restricted by a lack of biologically relevant metrics, fundamental differences between particles and small molecules of organic chemicals and drugs relative to biological processes involved in disposition, a scarcity of sufficiently rich and characterized in vivo data and a lack of computational approaches to integrating nanomaterial properties to biological endpoints. A central concept that links nanomaterial properties to biological disposition, in addition to their colloidal properties, is the tendency to form a biocorona which modulates biological interactions including cellular uptake and biodistribution. Pharmacokinetic models must take this crucial process into consideration to accurately predict in vivo disposition, especially when extrapolating from laboratory animals to humans since allometric principles may not be applicable. The dynamics of corona formation, which modulates biological interactions including cellular uptake and biodistribution, is thereby a crucial process involved in the rate and extent of biodisposition. The challenge will be to develop a quantitative metric that characterizes a nanoparticle's surface adsorption forces that are important for predicting biocorona dynamics. These types of integrative quantitative approaches discussed in this paper for the dynamics of corona formation must be developed before realistic engineered nanomaterial risk assessment can be accomplished. (paper)

  9. Computational approaches and metrics required for formulating biologically realistic nanomaterial pharmacokinetic models

    Science.gov (United States)

    Riviere, Jim E.; Scoglio, Caterina; Sahneh, Faryad D.; Monteiro-Riviere, Nancy A.

    2013-01-01

    The field of nanomaterial pharmacokinetics is in its infancy, with major advances largely restricted by a lack of biologically relevant metrics, fundamental differences between particles and small molecules of organic chemicals and drugs relative to biological processes involved in disposition, a scarcity of sufficiently rich and characterized in vivo data and a lack of computational approaches to integrating nanomaterial properties to biological endpoints. A central concept that links nanomaterial properties to biological disposition, in addition to their colloidal properties, is the tendency to form a biocorona which modulates biological interactions including cellular uptake and biodistribution. Pharmacokinetic models must take this crucial process into consideration to accurately predict in vivo disposition, especially when extrapolating from laboratory animals to humans since allometric principles may not be applicable. The dynamics of corona formation, which modulates biological interactions including cellular uptake and biodistribution, is thereby a crucial process involved in the rate and extent of biodisposition. The challenge will be to develop a quantitative metric that characterizes a nanoparticle's surface adsorption forces that are important for predicting biocorona dynamics. These types of integrative quantitative approaches discussed in this paper for the dynamics of corona formation must be developed before realistic engineered nanomaterial risk assessment can be accomplished.

  10. Population modeling and simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of isoniazid in lungs.

    Science.gov (United States)

    Lalande, L; Bourguignon, L; Bihari, S; Maire, P; Neely, M; Jelliffe, R; Goutelle, S

    2015-09-01

    Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 patients, including fast acetylators (FAs) and slow acetylators (SAs), were modeled by use of population pharmacokinetic modeling. Then the model was used to simulate the EBA of INH in lungs and to investigate the influences of INH dose, acetylator status, and M. tuberculosis MIC on this effect. A three-compartment model adequately described INH concentrations in plasma and lungs. With an MIC of 0.0625 mg/liter, simulations showed that the mean bactericidal effect of a standard 300-mg daily dose of INH was only 11% lower for FA subjects than for SA subjects and that dose increases had little influence on the effects in either FA or SA subjects. With an MIC value of 1 mg/liter, the mean bactericidal effect associated with a 300-mg daily dose of INH in SA subjects was 41% greater than that in FA subjects. With the same MIC, increasing the daily INH dose from 300 mg to 450 mg resulted in a 22% increase in FA subjects. These results suggest that patients infected with M. tuberculosis with low-level resistance, especially FA patients, may benefit from higher INH doses, while dose adjustment for acetylator status has no significant impact on the EBA in patients with low-MIC strains.

  11. Population modeling and simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of isoniazid in lungs.

    Science.gov (United States)

    Lalande, L; Bourguignon, L; Bihari, S; Maire, P; Neely, M; Jelliffe, R; Goutelle, S

    2015-09-01

    Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 patients, including fast acetylators (FAs) and slow acetylators (SAs), were modeled by use of population pharmacokinetic modeling. Then the model was used to simulate the EBA of INH in lungs and to investigate the influences of INH dose, acetylator status, and M. tuberculosis MIC on this effect. A three-compartment model adequately described INH concentrations in plasma and lungs. With an MIC of 0.0625 mg/liter, simulations showed that the mean bactericidal effect of a standard 300-mg daily dose of INH was only 11% lower for FA subjects than for SA subjects and that dose increases had little influence on the effects in either FA or SA subjects. With an MIC value of 1 mg/liter, the mean bactericidal effect associated with a 300-mg daily dose of INH in SA subjects was 41% greater than that in FA subjects. With the same MIC, increasing the daily INH dose from 300 mg to 450 mg resulted in a 22% increase in FA subjects. These results suggest that patients infected with M. tuberculosis with low-level resistance, especially FA patients, may benefit from higher INH doses, while dose adjustment for acetylator status has no significant impact on the EBA in patients with low-MIC strains. PMID:26077251

  12. Population Pharmacokinetics of Intranasal Scopolamine

    Science.gov (United States)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  13. Pharmacokinetic and pharmacodynamic modelling of marbofloxacin administered alone and in combination with tolfenamic acid in calves.

    Science.gov (United States)

    Sidhu, P K; Landoni, M F; Aliabadi, M H S; Toutain, P L; Lees, P

    2011-08-01

    In a four-period, cross-over study, the fluoroquinolone antibacterial drug marbofloxacin (MB) was administered to calves, alone and in combination with the nonsteroidal anti-inflammatory drug tolfenamic acid (TA). Both drugs were administered intramuscularly (IM) at doses of 2 mg/kg. A tissue cage model of inflammation, based on the actions of the mild irritant carrageenan, was used to evaluate the pharmacokinetics (PK) of MB and MB in combination with TA. MB mean values of area under concentration-time curve (AUC) were 15.1 μg·h/mL for serum, 12.1 μg·h/mL for inflamed tissue cage fluid (exudate) and 9.6 μg·h/mL for noninflamed tissue cage fluid (transudate). Values of C(max) were 1.84, 0.35 and 0.31 μg/mL, respectively, for serum, exudate and transudate. Mean residence time (MRT) of 23.6 h (exudate) and 22.6 h (transudate) also differed significantly from serum MRT (8.6 h). Co-administration of TA did not affect the PK profile of MB. The pharmacodynamics of MB was investigated using a bovine strain of Mannheimia haemolytica. Time-kill curves were established ex vivo on serum, exudate and transudate samples. Modelling the ex vivo serum time-kill data to the sigmoid E(max) equation provided AUC(24 h) /MIC values required for bacteriostatic (18.3 h) and bactericidal actions (92 h) of MB and for virtual eradication of the organism was 139 h. Corresponding values for MB + TA were 20.1, 69 and 106 h. These data were used to predict once daily dosage schedules for a bactericidal action, assuming a MIC(90) value of 0.24 μg/mL, a dose of 2.6 mg/kg for MB and 2.19 mg/kg for MB + TA were determined, which are similar to the currently recommended dose of 2.0 mg/kg.

  14. Multi-modal pharmacokinetic modelling for DCE-MRI: using diffusion weighted imaging to constrain the local arterial input function

    Science.gov (United States)

    Hamy, Valentin; Modat, Marc; Shipley, Rebecca; Dikaios, Nikos; Cleary, Jon; Punwani, Shonit; Ourselin, Sebastien; Atkinson, David; Melbourne, Andrew

    2014-03-01

    The routine acquisition of multi-modal magnetic resonance imaging data in oncology yields the possibility of combined model fitting of traditionally separate models of tissue structure and function. In this work we hypothesise that diffusion weighted imaging data may help constrain the fitting of pharmacokinetic models to dynamic contrast enhanced (DCE) MRI data. Parameters related to tissue perfusion in the intra-voxel incoherent motion (IVIM) modelling of diffusion weighted MRI provide local information on how tissue is likely to perfuse that can be utilised to guide DCE modelling via local modification of the arterial input function (AIF). In this study we investigate, based on multi-parametric head and neck MRI of 8 subjects (4 with head and neck tumours), the benefit of incorporating parameters derived from the IVIM model within the DCE modelling procedure. Although we find the benefit of this procedure to be marginal on the data used in this work, it is conceivable that a technique of this type will be of greater use in a different application.

  15. A pharmacokinetic/pharmacodynamic mathematical model accurately describes the activity of voriconazole against Candida spp. in vitro

    OpenAIRE

    Li, Yanjun; Nguyen, M. Hong; Cheng, Shaoji; Schmidt, Stephan; Zhong, Li; Derendorf, Hartmut; Clancy, Cornelius J.

    2008-01-01

    We developed a pharmacokinetic/pharmacodynamic (PK/PD) mathematical model that fits voriconazole time–kill data against Candida isolates in vitro and used the model to simulate the expected kill curves for typical intravenous and oral dosing regimens. A series of Emax mathematical models were used to fit time–kill data for two isolates each of Candida albicans, Candida glabrata and Candida parapsilosis. PK parameters extracted from human data sets were used in the model to simulate kill curve...

  16. Pharmacokinetics/pharmacodynamics of antofloxacin hydrochloride in a neutropenic murine thigh model of Staphylococcus aureus infection

    Institute of Scientific and Technical Information of China (English)

    Xiu-mei XIAO; Yong-hong XIAO

    2008-01-01

    Aim:Antofloxacin hydrochloride is a new fluoroquinolone antibiotic with broad-spectrum in vitro activity.Using the neutropenic murine thigh infection model,we defined the pharmacodynamic profile and property of antofloxacin hydroehloride against Staphylococcus aureus.Methods:Single-dose pharmacokinetic studies of antofloxacin hydrochloride were carried out in thigh infected mice.Therapy was initiated at 2 h postinoculation with 5-640 mg/kg per d fractionated for different dosing regimens.The thighs were removed for bacterial measurement after 24 h of therapy,the best pharmacokinetic/ pharmacodynamic (PK/PD) index correlated with the efficacy was determined by nonlinear regression analysis.A sigmoid Emax dose-response model was used to estimate the daily dose and AUC24 h/MIC (minimal inhibitory concentration) required to achieve a static effect.Results:The PK was linear with similar elimination half-life over the dose range studied.The AUC24 h/MIC ratio was the PK/PD parameter that best correlated with efficacy (R2=92.3%,90.8% for the two organisms,compared with Cmax/MIC and T>MIC [%],respectively).The 24 h static dose ranged from 34.3 to 153.7 mg/kg per d for all S aureus strains,the total AUC24h/MIC ratio to achieve bacteriostatic effect varied from 31.7 to 122.5 (mean,65.7±30.6).Conclusion:Antofloxacin hydrochloride showed powerful antibacterial activity against the S aureus isolates used in our neutropenic infected mice model.Our data suggested that the AUC/MIC ratio appeared to be most closely linked to the bacterial outcome (R290%),and a total AUC24/MIC ratio of 65.7 appears to be the target value to achieve a net bactericidal activity against S aureus,similar to the results of other fluoroquinolones.

  17. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy

    Science.gov (United States)

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with 177Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for 177Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in 177Lu PRRT.

  18. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer.

    Science.gov (United States)

    Aweda, Tolulope A; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S; Cannon, Carolyn L; Youngs, Wiley J; Wooley, Karen L; Lapi, Suzanne E

    2015-05-30

    Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo. PMID:25952472

  19. A framework for meta-analysis of veterinary drug pharmacokinetic data using mixed effect modeling.

    Science.gov (United States)

    Li, Mengjie; Gehring, Ronette; Lin, Zhoumeng; Riviere, Jim

    2015-04-01

    Combining data from available studies is a useful approach to interpret the overwhelming amount of data generated in medical research from multiple studies. Paradoxically, in veterinary medicine, lack of data requires integrating available data to make meaningful population inferences. Nonlinear mixed-effects modeling is a useful tool to apply meta-analysis to diverse pharmacokinetic (PK) studies of veterinary drugs. This review provides a summary of the characteristics of PK data of veterinary drugs and how integration of these data may differ from human PK studies. The limits of meta-analysis include the sophistication of data mining, and generation of misleading results caused by biased or poor quality data. The overriding strength of meta-analysis applied to this field is that robust statistical analysis of the diverse sparse data sets inherent to veterinary medicine applications can be accomplished, thereby allowing population inferences to be made. PMID:25641543

  20. Pharmacokinetics of Anti-VEGF Agent Aflibercept in Cancer Predicted by Data-Driven, Molecular-Detailed Model.

    Science.gov (United States)

    Finley, S D; Angelikopoulos, P; Koumoutsakos, P; Popel, A S

    2015-11-01

    Mathematical models can support the drug development process by predicting the pharmacokinetic (PK) properties of the drug and optimal dosing regimens. We have developed a pharmacokinetic model that includes a biochemical molecular interaction network linked to a whole-body compartment model. We applied the model to study the PK of the anti-vascular endothelial growth factor (VEGF) cancer therapeutic agent, aflibercept. Clinical data is used to infer model parameters using a Bayesian approach, enabling a quantitative estimation of the contributions of specific transport processes and molecular interactions of the drug that cannot be examined in other PK modeling, and insight into the mechanisms of aflibercept's antiangiogenic action. Additionally, we predict the plasma and tissue concentrations of unbound and VEGF-bound aflibercept. Thus, we present a computational framework that can serve as a valuable tool for drug development efforts. PMID:26783500

  1. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis.

    Science.gov (United States)

    Ramasamy, Thiruganesh; Poudel, Bijay Kumar; Ruttala, Himabindu; Choi, Ju Yeon; Hieu, Truong Duy; Umadevi, Kandasamy; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-01

    Nanofabrication of polymeric micelles through self-assembly of an ionic block copolymer and oppositely charged small molecules has recently emerged as a promising method of formulating delivery systems. The present study therefore aimed to investigate the interaction of cationic drugs doxorubicin (DOX) and mitoxantrone (MTX) with the anionic block polymer poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) and to study the influence of these interactions on the pharmacokinetic stability and antitumor potential of the formulated micelles in clinically relevant animal models. To this end, individual DOX and MTX-loaded polyelectrolyte complex micelles (PCM) were prepared, and their physicochemical properties and pH-responsive release profiles were studied. MTX-PCM and DOX-PCM exhibited a different release profile under all pH conditions tested. MTX-PCM exhibited a monophasic release profile with no initial burst, while DOX-PCM exhibited a biphasic release. DOX-PCM showed a higher cellular uptake than that shown by MTX-PCM in A-549 cancer cells. Furthermore, DOX-PCM induced higher apoptosis of cancer cells than that induced by MTX-PCM. Importantly, both MTX-PCM and DOX-PCM showed prolonged blood circulation. MTX-PCM improved the AUCall of MTX 4-fold compared to a 3-fold increase by DOX-PCM for DOX. While a definite difference in blood circulation was observed between MTX-PCM and DOX-PCM in the pharmacokinetic study, both MTX-PCM and DOX-PCM suppressed tumor growth to the same level as the respective free drugs, indicating the potential of PEGylated polymeric micelles as effective delivery systems. Taken together, our results show that the nature of interactions of cationic drugs with the polyionic copolymer can have a tremendous influence on the biological performance of a delivery system. PMID:27318960

  2. Development of ionic-complex-based nanostructured lipid carriers to improve the pharmacokinetic profiles of breviscapine

    Institute of Scientific and Technical Information of China (English)

    Mei LI; Yong ZHENG; Feng-ying SHAN; Jing ZHOU; Tao GONG; Zhi-rong ZHANG

    2013-01-01

    Aim:Breviscapine isolated from the Chinese herb Erigeron breviscapus (Vant) Hand-Mazz is widely used to treat cardiovascular and cerebrovascular diseases.The aim of this study was to improve the pharmacokinetic profiles of breviscapine using nanostructured lipid carrier based on an ionic complex formation.Methods:Breviscapine nanostructured lipid carrier (Bre-NLC) was prepared using the thin film homogenization method.The morphology of Bre-NLCs was determined using transmission electron microscopy.The mean particle size,polydispersity index,zeta-potential analysis and entrapment efficiency were analized.In vitro release was studied using the dialysis method.In vitro stability was studied in fresh plasma and liver slurry of rats.In vivo pharmacokinetics was analyzed in rats after intravenous injection of a dose equivalent to breviscapine (10 mg/kg).Results:The Bre-NLCs were spherical with a mean particle size of ~170 nm,a zeta potential of ~20 mV and a high entrapment efficiency of ~89%.Compared with a commercially available solution,a substantial decrease in the cumulative release of breviscapine was found for the Bre-NLCs.The NLC has a significantly protective effect against the liver enzyme degradation of breviscapine.After intravenous administration in rats,the Bre-NLCs exhibited a 32 times increase in the AUC0-t and a 12 times increase in T1/2 as compared to the commercially available breviscapine solution.Conclusion:The results demonstrate that the NLC has great potential to use as a novel sustained release system for breviscapine.

  3. uSIMPK. An Excel for Windows-based simulation program for instruction of basic pharmacokinetics principles to pharmacy students.

    Science.gov (United States)

    Brocks, Dion R

    2015-07-01

    Pharmacokinetics can be a challenging topic to teach due to the complex relationships inherent between physiological parameters, mathematical descriptors and equations, and their combined impact on shaping the blood fluid concentration vs. time curves of drugs. A computer program was developed within Microsoft Excel for Windows, designed to assist in the instruction of basic pharmacokinetics within an entry-to-practice pharmacy class environment. The program is composed of a series of spreadsheets (modules) linked by Visual Basic for Applications, intended to illustrate the relationships between pharmacokinetic and in some cases physiological parameters, doses and dose rates and the drug blood fluid concentration vs. time curves. Each module is accompanied by a simulation user's guide, prompting the user to change specific independent parameters and then observe the impact of the change(s) on the drug concentration vs. time curve and on other dependent parameters. "Slider" (or "scroll") bars can be selected to readily see the effects of repeated changes on the dependencies. Topics covered include one compartment single dose administration (iv bolus, oral, short infusion), intravenous infusion, repeated doses, renal and hepatic clearance, nonlinear elimination, two compartment model, plasma protein binding and the relationship between pharmacokinetics and drug effect. The program has been used in various forms in the classroom over a number of years, with positive ratings generally being received from students for its use in the classroom.

  4. PROSPECTS FOR DEVELOPMENT OF ANTIDIABETIC POLYPHENOL-BASED DRUGS: MECHANISMS OF HYPOGLYCEMIC ACTION AND PHARMACOKINETICS

    Directory of Open Access Journals (Sweden)

    Ruban E. A.

    2015-12-01

    , activation of insulin receptors and glucose uptake in the insulin-sensitive tissues. On the other hand, most polyphenols are characterized by low bioavailability mostly due to intensive metabolism. Thus absorption of such polyphenols as anthocyanins, phenolcarboxylic acids and some others appears low, but it is supposed that it could have been underestimated because not all metabolites might have been considered. Besides the absorption rate of these compounds is very rapid and may take place already in stomach. In contrary, rutin and other quercetin glycosides are absorbed only after release of the aglycones by the intestinal microflora. The elimination half-lives of most polyphenols tend to be short, especially in the case of anthocyanins. However, some polyphenolic compounds such as quercetin glycosides may have longer half-lives, and even accumulate in plasma with repeated ingestion. Conclusions. Polyphenols have unique therapeutic potential in the treatment of diabetes mellitus. Nevertheless, the possibility to use polyphenols as hypoglycemic agents in clinical practice is limited by their low bioavailability. Taking into account information reported in the literature on the hypoglycemic mechanisms and pharmacokinetics of polyphenols, promising method of increasing their bioavailability is the development of prolonged-release dosage forms based on polyphenol substances. This approach would extend residence time of polyphenols in the small intestine – the main site of hypoglycemic action in their intact, non-metabolized form, and will help maintain a constant concentration of active substances in the blood plasma, the target organs and tissues

  5. Use of pharmacokinetic modelling to individualize FFP dosing in factor V deficiency.

    Science.gov (United States)

    Shakhnovich, V; Daniel, J; Wicklund, B; Kearns, G; Neville, K

    2013-03-01

    Therapy with fresh frozen plasma (FFP) confers serious risks, such as contraction of blood-borne viruses, allergic reaction, volume overload and development of alloantibodies. The aim of this study was to apply principles of pharmacokinetic (PK) modelling to individual factor content of FFP to optimize individualized dosing, while minimizing potential risks of therapy. We used PK modelling to successfully target individual factor replacement in an 8-month-old patient receiving FFP for treatment of a severe congenital factor V (FV) deficiency. The model fit for the FV activity vs. time data was excellent (r = 0.98) and the model accurately predicted FV activity during the intraoperative and postoperative period. Accurate PK modelling of individual factor activity in FFP has the potential to provide better targeted therapy, enabling clinicians to more precisely dose patients requiring coagulation products, while avoiding wasteful and expensive product overtreatment, minimizing potentially life-threatening complications due to undertreatment and limiting harmful product-associated risks.

  6. Population Pharmacokinetic Modeling of the Enterohepatic Recirculation of Fimasartan in Rats, Dogs, and Humans.

    Science.gov (United States)

    Kim, Tae Hwan; Shin, Soyoung; Landersdorfer, Cornelia B; Chi, Yong Ha; Paik, Soo Heui; Myung, Jayhyuk; Yadav, Rajbharan; Horkovics-Kovats, Stefan; Bulitta, Jürgen B; Shin, Beom Soo

    2015-09-01

    Enterohepatic recirculation (EHC) can greatly enhance plasma drug exposures and therapeutic effects. This study aimed to develop a population pharmacokinetic model that can simultaneously characterize the extent and time-course of EHC in three species using fimasartan, a novel angiotensin II receptor blocker, as a model drug. All fimasartan plasma concentration profiles in 32 rats (intravenous doses, 0.3-3 mg/kg; oral doses, 1-10 mg/kg), 34 dogs (intravenous doses, 0.3-1 mg/kg; oral doses, 1-10 mg/kg), and 42 healthy volunteers (single or multiple oral doses, 20-480 mg) were determined via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and simultaneously modeled in S-ADAPT. The proposed model quantitatively characterized EHC in three species after oral and intravenous dosing. The median (range) fraction of drug undergoing recirculation was 76.3% (64.9-88.7%) in rats, 33.3% (24.0-45.9%) in dogs, and 65.6% (56.5-72.0%) in humans. In the presence compared with the absence of EHC, the area under the curve in plasma was predicted to be 4.22-fold (2.85-8.85) as high in rats, 1.50-fold (1.32-1.85) in dogs, and 2.91-fold (2.30-3.57) in humans. The modeled oral bioavailability in rats (median (range), 38.7% (20.0-59.8%)) and dogs (median, 7.13% to 15.4%, depending on the formulation) matched the non-compartmental estimates well. In humans, the predicted oral bioavailability was 25.1% (15.1-43.9%) under fasting and 18.2% (12.2-31.0%) under fed conditions. The allometrically scaled area under the curve predicted from rats was 420 ng·h/mL for 60 mg fimasartan compared with 424 ± 63 ng·h/mL observed in humans. The developed population pharmacokinetic model can be utilized to characterize the impact of EHC on plasma drug exposure in animals and humans.

  7. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach

    International Nuclear Information System (INIS)

    We have developed a comprehensive, Bayesian, PBPK model-based analysis of the population toxicokinetics of trichloroethylene (TCE) and its metabolites in mice, rats, and humans, considering a wider range of physiological, chemical, in vitro, and in vivo data than any previously published analysis of TCE. The toxicokinetics of the 'population average,' its population variability, and their uncertainties are characterized in an approach that strives to be maximally transparent and objective. Estimates of experimental variability and uncertainty were also included in this analysis. The experimental database was expanded to include virtually all available in vivo toxicokinetic data, which permitted, in rats and humans, the specification of separate datasets for model calibration and evaluation. The total combination of these approaches and PBPK analysis provides substantial support for the model predictions. In addition, we feel confident that the approach employed also yields an accurate characterization of the uncertainty in metabolic pathways for which available data were sparse or relatively indirect, such as GSH conjugation and respiratory tract metabolism. Key conclusions from the model predictions include the following: (1) as expected, TCE is substantially metabolized, primarily by oxidation at doses below saturation; (2) GSH conjugation and subsequent bioactivation in humans appear to be 10- to 100-fold greater than previously estimated; and (3) mice had the greatest rate of respiratory tract oxidative metabolism as compared to rats and humans. In a situation such as TCE in which there is large database of studies coupled with complex toxicokinetics, the Bayesian approach provides a systematic method of simultaneously estimating model parameters and characterizing their uncertainty and variability. However, care needs to be taken in its implementation to ensure biological consistency, transparency, and objectivity.

  8. Pharmacokinetic Model of the Transport of Fast-Acting Insulin From the Subcutaneous and Intradermal Spaces to Blood.

    Science.gov (United States)

    Lv, Dayu; Kulkarni, Sandip D; Chan, Alice; Keith, Stephen; Pettis, Ron; Kovatchev, Boris P; Farhi, Leon S; Breton, Marc D

    2015-07-01

    Pharmacokinetic (PK) models describing the transport of insulin from the injection site to blood assist clinical decision making and are part of in silico platforms for developing and testing of insulin delivery strategies for treatment of patients with diabetes. The ability of these models to accurately describe all facets of the in vivo insulin transport is therefore critical for their application. Here, we propose a new model of fast-acting insulin analogs transport from the subcutaneous and intradermal spaces to blood that can accommodate clinically observed biphasic appearance and delayed clearance of injected insulin, 2 phenomena that are not captured by existing PK models. To develop the model we compare 9 insulin transport PK models which describe hypothetical insulin delivery pathways potentially capable of approximating biphasic appearance of exogenous insulin. The models are tested with respect to their ability to describe clinical data from 10 healthy volunteers which received 1 subcutaneous and 2 intradermal insulin injections on 3 different occasions. The optimal model, selected based on information and posterior identifiability criteria, assumes that insulin is delivered at the administrative site and is then transported to the bloodstream via 2 independent routes (1) diffusion-like process to the blood and (2) combination of diffusion-like processes followed by an additional compartment before entering the blood. This optimal model accounts for biphasic appearance and delayed clearance of exogenous insulin. It agrees better with the clinical data as compared to commonly used models and is expected to improve the in silico development and testing of insulin treatment strategies, including artificial pancreas systems. PMID:25759184

  9. Revisiting Dosing Regimen Using Pharmacokinetic/Pharmacodynamic Mathematical Modeling: Densification and Intensification of Combination Cancer Therapy.

    Science.gov (United States)

    Meille, Christophe; Barbolosi, Dominique; Ciccolini, Joseph; Freyer, Gilles; Iliadis, Athanassios

    2016-08-01

    Controlling effects of drugs administered in combination is particularly challenging with a densified regimen because of life-threatening hematological toxicities. We have developed a mathematical model to optimize drug dosing regimens and to redesign the dose intensification-dose escalation process, using densified cycles of combined anticancer drugs. A generic mathematical model was developed to describe the main components of the real process, including pharmacokinetics, safety and efficacy pharmacodynamics, and non-hematological toxicity risk. This model allowed for computing the distribution of the total drug amount of each drug in combination, for each escalation dose level, in order to minimize the average tumor mass for each cycle. This was achieved while complying with absolute neutrophil count clinical constraints and without exceeding a fixed risk of non-hematological dose-limiting toxicity. The innovative part of this work was the development of densifying and intensifying designs in a unified procedure. This model enabled us to determine the appropriate regimen in a pilot phase I/II study in metastatic breast patients for a 2-week-cycle treatment of docetaxel plus epirubicin doublet, and to propose a new dose-ranging process. In addition to the present application, this method can be further used to achieve optimization of any combination therapy, thus improving the efficacy versus toxicity balance of such a regimen.

  10. Prediction of Aortic Contrast-enhancement Curves in Coronary CTA Using Physiologically Based Pharmacokinetic Model%冠脉CTA的主动脉处药物-时间曲线的生理药代动力学模型预测

    Institute of Scientific and Technical Information of China (English)

    原媛; 赵丽琴; 贺文

    2012-01-01

    Objective:Our study focus on evaluating the accuracy of physiologically based pharmacokinetic (PBPK) model in simulation of enhancement at coronary CT angiography (CTA) Examination. Method and materials:80 patients (44 male, 36 female from 32 to 89 years old) underwent coronary CT angiography scan. A simulation software program was developed based on a pharmacokinetic model. For each patient, model parameters were adjusted according to patient age, sex, height, weight, scanning protocol, and contrast media administration protocol such as medium concentration and injection rate. Results:The simulated and actual CTA enhancement curves closely agreed in maximum enhancement and the average error is about 9.447±9.530%. 2 cases were excluded as invalid data. The simulated maximum enhancements of 59 cases were greater than their actual maximum enhancement and the average error was 7.86%. Meanwhile, 19 cases of simulation data were less than their actual data with the average error of 1.58%. The skewness of the whole data was α =-0.131. Conclusion:Our preliminary study suggests that PBPK model may predict the enhancement at coronary CTA with acceptable accuracy. Computer based PBPK model may be used in optimizing the coronary CTA scan protocol.%目的:建立生理药代动力学模型,预测冠脉CTA扫描过程中主动脉处造影剂的脉药物浓度-时间曲线,并对其准确性进行评估。方法:80例患者(年龄32~89岁,其中男44例,女36例)的扫描数据,将每位患者的体征参数(包括年龄、性别、身高、体重、心输出量、脏器血容量等)引入到上述药代动力学模型框架中,得到每位患者的个体化药代动力学模型,将模拟运算得到的主动脉处碘造影剂的药物浓度-时间曲线与实际扫描结果进行对比。结果:实际扫描中,排除两例无效数据后主动脉碘造影剂浓度峰值的误差为9.447±9.530%,其中模拟运算结果大于实际扫描结果的59例,均值为7

  11. [Amikacin pharmacokinetics in adults: a variability that question the dose calculation based on weight].

    Science.gov (United States)

    Bourguignon, Laurent; Goutelle, Sylvain; Gérard, Cécile; Guillermet, Anne; Burdin de Saint Martin, Julie; Maire, Pascal; Ducher, Michel

    2009-01-01

    The use of amikacin is difficult because of its toxicity and its pharmacokinetic variability. This variability is almost ignored in adult standard dosage regimens since only the weight is used in the dose calculation. Our objective is to test if the pharmacokinetic of amikacin can be regarded as homogenous, and if the method for calculating the dose according to patients' weight is appropriate. From a cohort of 580 patients, five groups of patients were created by statistical data partitioning. A population pharmacokinetic analysis was performed in each group. The adult population is not homogeneous in term of pharmacokinetics. The doses required to achieve a maximum concentration of 60 mg/L are strongly different (585 to 1507 mg) between groups. The exclusive use of the weight to calculate the dose of amikacine appears inappropriate for 80% of the patients, showing the limits of the formulae for calculating doses of aminoglycosides.

  12. Population pharmacokinetic and pharmacodynamic modeling for assessing risk of bisphosphonate-related osteonecrosis of the jaw

    Science.gov (United States)

    Sedghizadeh, Parish P.; Jones, Allan C.; LaVallee, Chris; Jelliffe, Roger W.; Le, Anh D.; Lee, Peter; Kiss, Andrew; Neely, Michael

    2012-01-01

    Objective We hypothesized that patients with bisphosphonate (BP)-related osteonecrosis of the jaw (BRONJ) accumulate higher levels of BP in bone than those without BRONJ. Study Design Using the Pmetrics® package and published data, we designed a population pharmacokinetic model of pamidronate concentration in plasma and bone and derived a toxic bone BP threshold of 0.2 mM. With the model, and using patient individual BP duration and bone mineral content estimated from lean body weight, we calculated bone BP levels in 153 subjects. Results Mean bone BP in 69 BRONJ cases was higher than in 84 controls (0.20 vs. 0.10 mM, P<0.001) consistent with the toxic bone threshold of 0.2 mM. BRONJ was also associated with longer duration BP therapy (5.3 vs. 2.7 years, P<0.001), older age (76 vs. 70 years, P<0.001), and Asian race (49% vs. 14%, P<0.001). Conclusions Our model accurately discriminated BRONJ cases from controls, among patients on BP therapy. PMID:23246224

  13. Determination of phenazopyridine in human plasma via LC-MS and subsequent development of a pharmacokinetic model.

    Science.gov (United States)

    Shang, Erxin; Xiang, Bingren; Liu, Guangyu; Xie, Shaofei; Wei, Wenyan; Lu, Jun

    2005-05-01

    This paper describes a new LC-MS method for the determination of phenazopyridine and the subsequent development of a pharmacokinetic model for phenazopyridine in vivo. Phenazopyridine hydrochloride is a strong analgesic used in the treatment of urinary tract infections. Although it has been used as a clinical treatment for a very long time, pharmacokinetic data and suitable methods for its determination in plasma are currently lacking. The study described in this paper used high performance liquid chromatography-mass spectrometry, HPLC-MS, to determine the plasma concentrations of phenazopyridine in human subjects after oral administration. After liquid-liquid extraction, the phenazopyridine in the plasma was analyzed on a C18 column under SIM mode. A double-peak phenomenon was observed in most of the concentration-time profiles of the subjects. Although some drugs are known to cause this phenomenon, phenazopyridine has not been reported to do so. Several possible causes were analyzed in order to obtain an explanation. We proposed a two-site absorption compartment model to fit the concentration data in vivo, which has one more absorption site than the classical one-compartment model. The model describes the concentration profiles in different dose groups well and could provide an explanation for the double-peak phenomenon. The three dose groups exhibited similar model parameters and a linear pharmacokinetic process over the dose range used. PMID:15900475

  14. Synergy between vancomycin and nafcillin against Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model.

    Directory of Open Access Journals (Sweden)

    Steven N Leonard

    Full Text Available INTRODUCTION: Continued pressure from glycopeptide use has led to non-susceptible strains of Staphylococcus aureus including heterogeneously vancomycin-intermediate S. aureus (hVISA. Infections with hVISA are associated with poor patient outcomes, thus incentivizing novel treatments. Evidence suggests that vancomycin and anti-staphylococcal penicillin susceptibility are inversely related which indicates that the use of this combination may be particularly useful against methicillin-resistant S. aureus with reduced susceptibility to vancomycin, such as hVISA. The aim of this study was to evaluate the potential for synergy between vancomycin and nafcillin against hVISA. METHODS: Twenty-five hVISA strains were evaluated for vancomycin and nafcillin minimum inhibitory concentration (MIC by broth microdilution in duplicate. Potential for synergy was assessed by time-kill at 1/2x MIC in triplicate. Five strains were chosen, representing the range nafcillin MIC's available in the cohort -4, 16, 64, 128, and 256 µg/mL, and were run in an in vitro pharmacokinetic/pharmacodynamic (PK/PD model in duplicate over 72 hours to evaluate the potential of the combination with simulated human pharmacokinetics. In addition, 4 fully glycopeptide susceptible strains of S. aureus including 2 methicillin-susceptible (MSSA and 2 methicillin-resistant (MRSA were run in the PK/PD model for comparison. RESULTS: In the time-kill, 92% of strains (23 of 25 displayed synergy with the combination of vancomycin and nafcillin. In the PK/PD model, all five strains of hVISA showed an improvement in overall activity (P≤0.004 and organism burden at 72 hours (P≤0.001 with the combination compared to either drug alone. The combination was also successful against both MRSA and MSSA in overall activity (P≤0.009 and organism burden at 72 hours (P≤0.016, though the magnitude of the effect was diminished against MSSA. CONCLUSIONS: The combination of vancomycin and nafcillin

  15. Pharmacokinetics and Pharmacodynamics of a Novel Triazole, Isavuconazole: Mathematical Modeling, Importance of Tissue Concentrations, and Impact of Immune Status on Antifungal Effect▿

    OpenAIRE

    Warn, Peter A.; Sharp, Andrew; Parmar, Arvind; Majithiya, Jayesh; David W Denning; Hope, William W.

    2009-01-01

    Isavuconazole is a triazole with broad-spectrum activity against medically important fungal pathogens. We investigated the pharmacokinetics and pharmacodynamics of isavuconazole in a murine model of disseminated candidiasis. We determined the pharmacokinetics in both plasma and kidney. The relationship between tissue concentrations and the resultant antifungal effect was described using a mathematical model. The pharmacodynamic parameter that optimally links drug exposure with the antifungal ...

  16. Pediatric Clinical Pharmacology of Voriconazole: Role of Pharmacokinetic/Pharmacodynamic Modeling in Pharmacotherapy.

    Science.gov (United States)

    Kadam, Rajendra S; Van Den Anker, Johannes N

    2016-09-01

    Voriconazole is a potent antifungal agent used for the treatment of invasive fungal infections caused by Aspergillus and Candida species in adult and pediatric patients. Voriconazole has a narrow therapeutic index and a large intra- and inter-individual pharmacokinetics (PK) variability. Several factors including non-linear PK, age, body weight, cytochrome P450 2C19 genotype, concomitant drugs, liver function, and food are responsible for the large variability in voriconazole PK. A combination of a narrow therapeutic index with a large PK variability results in treatment failure in many patients at clinically recommended doses. There is an urgent need to establish an optimal dosing regimen for pediatric patients 60 %) treatment failure rates. Therapeutic drug monitoring is commonly used in clinical practice to optimize the voriconazole dosing regimens in pediatric patients, but it is associated with several practical limitations. Implementation of a PK model-guided individualized dose selection will help in reducing the PK variability and will improve therapeutic outcomes. In this review, we have summarized the covariates influencing the PK of voriconazole in adult and pediatric patients, emphasizing that the clearance of voriconazole is significantly different between adult and pediatric patients owing to developmental changes in the major clearance pathways. Moreover, we have provided the limitations of the current dosing regimens and have proposed a new dosing method using a PK model-guided dose individualization of voriconazole in pediatric patients.

  17. In Vivo Pharmacokinetics and Pharmacodynamics of the Lantibiotic NAI-107 in a Neutropenic Murine Thigh Infection Model

    OpenAIRE

    Lepak, Alexander J.; Marchillo, Karen; Craig, William A.; Andes, David R.

    2014-01-01

    NAI-107 is a novel lantibiotic compound with potent in vitro activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The purpose of this study was to examine the activity of NAI-107 against S. aureus strains, including MRSA, in the neutropenic murine thigh infection model. Serum pharmacokinetics were determined and time-kill studies were performed following administration of single subcutaneous doses of 5, 20, and 80 mg/kg body weight. The dose f...

  18. Pharmacokinetic-Pharmacodynamic Modeling of the In Vitro Activities of Oxazolidinone Antimicrobial Agents against Methicillin-Resistant Staphylococcus aureus▿

    OpenAIRE

    Schmidt, Stephan; Sabarinath, Sreedharan Nair; Barbour, April; Abbanat, Darren; Manitpisitkul, Prasarn; Sha, Sue; Derendorf, Hartmut

    2009-01-01

    Linezolid is the first FDA-approved oxazolidinone with activity against clinically important gram-positive pathogens, including methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). RWJ-416457 is a new oxazolidinone with an antimicrobial spectrum similar to that of linezolid. The goal of the present study was to develop a general pharmacokinetic (PK)-pharmacodynamic (PD) model that allows the characterization and comparison of the in vitro activities of oxazolidinones, determined i...

  19. Modeling of Pharmacokinetics of Cocaine in Human Reveals the Feasibility for Development of Enzyme Therapies for Drugs of Abuse

    OpenAIRE

    Fang Zheng; Chang-Guo Zhan

    2012-01-01

    A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on th...

  20. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug.

    Science.gov (United States)

    Jia, Lee; Tomaszewski, Joseph E; Hanrahan, Colleen; Coward, Lori; Noker, Patricia; Gorman, Gregory; Nikonenko, Boris; Protopopova, Marina

    2005-01-01

    SQ109 is a novel [1,2]-diamine-based ethambutol (EMB) analog developed from high-throughput combinatorial screening. The present study aimed at characterizing its pharmacodynamics and pharmacokinetics. The antimicrobial activity of SQ109 was confirmed in vitro (Mycobacterium tuberculosis-infected murine macrophages) and in vivo (M. tuberculosis-infected C57BL/6 mice) and compared to isoniazid (INH) and EMB. SQ109 showed potency and efficacy in inhibiting intracellular M. tuberculosis that was similar to INH, but superior to EMB. In vivo oral administration of SQ109 (0.1-25 mg kg(-1) day(-1)) to the mice for 28 days resulted in dose-dependent reductions of mycobacterial load in both spleen and lung comparable to that of EMB administered at 100 mg kg(-1) day(-1), but was less potent than INH at 25 mg kg(-1) day(-1). Monitoring of SQ109 levels in mouse tissues on days 1, 14 and 28 following 28-day oral administration (10 mg kg(-1) day(-1)) revealed that lungs and spleen contained the highest concentration of SQ109, at least 10 times above its MIC. Pharmacokinetic profiles of SQ109 in mice following a single administration showed its C(max) as 1038 (intravenous (i.v.)) and 135 ng ml(-1) (p.o.), with an oral T(max) of 0.31 h. The elimination t(1/2) of SQ109 was 3.5 (i.v.) and 5.2 h (p.o.). The oral bioavailability was 4%. However, SQ109 displayed a large volume of distribution into various tissues. The highest concentration of SQ109 was present in lung (>MIC), which was at least 120-fold (p.o.) and 180-fold (i.v.) higher than that in plasma. The next ranked tissues were spleen and kidney. SQ109 levels in most tissues after a single administration were significantly higher than that in blood. High tissue concentrations of SQ109 persisted for the observation period (10 h). This study demonstrated that SQ109 displays promising in vitro and in vivo antitubercular activity with favorable targeted tissue distribution properties.

  1. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models.

    OpenAIRE

    Webb, M S; Harasym, T. O.; Masin, D.; Bally, M. B.; Mayer, L. D.

    1995-01-01

    This study reports on the development of a liposomal formulation of vincristine with significantly enhanced stability and biological properties. The in vitro and in vivo pharmacokinetic, tumour delivery and efficacy properties of liposomal vincristine formulations based on sphingomyelin (SM) and cholesterol were compared with liposomes composed of distearoylphosphatidylcholine (DSPC) and cholesterol. SM/cholesterol liposomes had significantly greater in vitro stability than did similar DSPC/c...

  2. Fiber optic-based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics

    Science.gov (United States)

    Doiron, Daniel R.; Dunn, J. B.; Mitchell, W. L.; Dalton, Brian K.; Garbo, Greta M.; Warner, Jon A.

    1995-05-01

    The detection and quantification of the concentration of exogenous chromophores in-vivo by their fluorescence is complicated by many physical and geometrical parameters. Measurement of such signals is advantageous in determining the pharmacokinetics of photosensitizers such as those used in photodynamic therapy (PDT) or to assist in the diagnosis of tissue histological state. To overcome these difficulties a ratio based fiber optic contact fluorometer has been developed. This fluorescence detection system (FDS) uses the ratio of the fluorescence emission peak of the exogenous chromophore to that of endogenous chromophores, i.e. autofluorescence, to correct for a variety of parameters affecting the magnitude of the measured signals. By doing so it also minimizes the range of baseline measurements prior to exogenous drug injection, for various tissue types. Design of the FDS and results of its testing in animals and patients using the second generation photosensitizer Tin ethyletiopurpurin (SnET2) are presented. These results support the feasibility and usefulness of the Ratio FDS system.

  3. Glucosamine sulfate effect on the degenerated patellar cartilage: preliminary findings by pharmacokinetic magnetic resonance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Marti-Bonmati, Luis [Dr Peset University Hospital, Radiology Department, Valencia (Spain); Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Sanz-Requena, Roberto; Alberich-Bayarri, Angel [Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Rodrigo, Jose Luis [Dr Peset University Hospital, Traumatology and Orthopedics Surgery Department, Valencia (Spain); Carot, Jose Miguel [Universidad Politecnica de Valencia, EIO Department, Valencia (Spain)

    2009-06-15

    Normal and degenerated cartilages have different magnetic resonance (MR) capillary permeability (K{sup trans}) and interstitial interchangeable volume (v{sub e}). Our hypothesis was that glucosamine sulfate treatment modifies these neovascularity abnormalities in osteoarthritis. Sixteen patients with patella degeneration, randomly distributed into glucosamine or control groups, underwent two 1.5-Tesla dynamic contrast-enhanced MR imaging studies (treatment initiation and after 6 months). The pain visual analog scale (VAS) and American Knee Society (AKS) score were used. A two-compartment pharmacokinetic model was used. Percentages of variations (postreatment-pretreatment/pretreatment) were compared (t-test for independent data). In the glucosamine group, pain and functional outcomes statistically improved (VAS: 7.3 {+-} 1.1 to 3.6 {+-} 1.3, p < 0.001; AKS: 18.6 {+-} 6.9 to 42.9 {+-} 2.7, p < 0.01). Glucosamine significantly increased K{sup trans} at 6 months (-54.4 {+-} 21.2% vs 126.7 {+-} 56.9%, p < 0.001, control vs glucosamine). In conclusion, glucosamine sulfate decreases pain while improving functional outcome in patients with cartilage degeneration. Glucosamine sulfate increases K{sup trans}, allowing its proposal as a surrogate imaging biomarker after 6 months of treatment. (orig.)

  4. Pharmacokinetics/pharmacodynamic correlations of fluconazole in murine model of cryptococcosis.

    Science.gov (United States)

    Santos, Julliana Ribeiro Alves; César, Isabela Costa; Costa, Marliete Carvalho; Ribeiro, Noelly Queiroz; Holanda, Rodrigo Assunção; Ramos, Lais Hott; Freitas, Gustavo José Cota; Paixão, Tatiane Alves; Pianetti, Gerson Antônio; Santos, Daniel Assis

    2016-09-20

    The emergence of fluconazole-resistant Cryptococcus gattii is a global concern, since this azole is the main antifungal used worldwide to treat patients with cryptococcosis. Although pharmacokinetic (PK) and pharmacodynamic (PD) indices are useful predictive factors for therapeutic outcomes, there is a scarcity of data regarding PK/PD analysis of antifungals in cryptococcosis caused by resistant strains. In this study, PK/PD parameters were determined in a murine model of cryptococcosis caused by resistant C. gattii. We developed and validated a suitable liquid chromatography-electrospray ionization tandem mass spectrometry method for PK studies of fluconazole in the serum, lungs, and brain of uninfected mice. Mice were infected with susceptible or resistant C. gattii, and the effects of different doses of fluconazole on the pulmonary and central nervous system fungal burden were determined. The peak levels in the serum, lungs, and brain were achieved within 0.5h. The AUC/MIC index (area under the curve/minimum inhibitory concentration) was associated with the outcome of anti-cryptococcal therapy. Interestingly, the maximum concentration of fluconazole in the brain was lower than the MIC for both strains. In addition, the treatment of mice infected with the resistant strain was ineffective even when high doses of fluconazole were used or when amphotericin B was tested, confirming the cross-resistance between these drugs. Altogether, our novel data provide the correlation of PK/PD parameters with antifungal therapy during cryptococcosis caused by resistant C. gattii. PMID:27235581

  5. Pharmacokinetics-pharmacodynamics analysis of bicyclic 4-nitroimidazole analogs in a murine model of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Suresh B Lakshminarayana

    Full Text Available PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 in vivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC. In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both in vivo PK and efficacy studies. In an established murine TB model, the efficacy of diverse nitroimidazole analogs ranged between 0.5 and 2.3 log CFU reduction compared to untreated controls. Further, a retrospective analysis was performed for a set of seven nitroimidazole analogs to identify the PK parameters that correlate with in vivo efficacy. Our findings show that the in vivo efficacy of bicyclic 4-nitroimidazoles correlated better with lung PK than with plasma PK. Further, nitroimidazole analogs with moderate-to-high volume of distribution and Lung to plasma ratios of >2 showed good efficacy. Among all the PK-PD indices, total lung T>MIC correlated the best with in vivo efficacy (rs = 0.88 followed by lung Cmax/MIC and AUC/MIC. Thus, lung drug distribution studies could potentially be exploited to guide the selection of compounds for efficacy studies, thereby accelerating the drug discovery efforts in finding new nitroimidazole analogs.

  6. Glucosamine sulfate effect on the degenerated patellar cartilage: preliminary findings by pharmacokinetic magnetic resonance modeling.

    Science.gov (United States)

    Martí-Bonmatí, Luis; Sanz-Requena, Roberto; Rodrigo, José Luis; Alberich-Bayarri, Angel; Carot, José Miguel

    2009-06-01

    Normal and degenerated cartilages have different magnetic resonance (MR) capillary permeability (K(trans)) and interstitial interchangeable volume (v(e)). Our hypothesis was that glucosamine sulfate treatment modifies these neovascularity abnormalities in osteoarthritis. Sixteen patients with patella degeneration, randomly distributed into glucosamine or control groups, underwent two 1.5-Tesla dynamic contrast-enhanced MR imaging studies (treatment initiation and after 6 months). The pain visual analog scale (VAS) and American Knee Society (AKS) score were used. A two-compartment pharmacokinetic model was used. Percentages of variations (postreatment-pretreatment/pretreatment) were compared (t-test for independent data). In the glucosamine group, pain and functional outcomes statistically improved (VAS: 7.3 +/- 1.1 to 3.6 +/- 1.3, p < 0.001; AKS: 18.6 +/- 6.9 to 42.9 +/- 2.7, p < 0.01). Glucosamine significantly increased K(trans) at 6 months (-54.4 +/- 21.2% vs 126.7 +/- 56.9%, p < 0.001, control vs glucosamine). In conclusion, glucosamine sulfate decreases pain while improving functional outcome in patients with cartilage degeneration. Glucosamine sulfate increases K(trans), allowing its proposal as a surrogate imaging biomarker after 6 months of treatment. PMID:19214525

  7. Programming of a flexible computer simulation to visualize pharmacokinetic-pharmacodynamic models.

    Science.gov (United States)

    Lötsch, J; Kobal, G; Geisslinger, G

    2004-01-01

    Teaching pharmacokinetic-pharmacodynamic (PK/PD) models can be made more effective using computer simulations. We propose the programming of educational PK or PK/PD computer simulations as an alternative to the use of pre-built simulation software. This approach has the advantage of adaptability to non-standard or complicated PK or PK/PD models. Simplicity of the programming procedure was achieved by selecting the LabVIEW programming environment. An intuitive user interface to visualize the time courses of drug concentrations or effects can be obtained with pre-built elements. The environment uses a wiring analogy that resembles electrical circuit diagrams rather than abstract programming code. The goal of high interactivity of the simulation was attained by allowing the program to run in continuously repeating loops. This makes the program behave flexibly to the user input. The programming is described with the aid of a 2-compartment PK simulation. Examples of more sophisticated simulation programs are also given where the PK/PD simulation shows drug input, concentrations in plasma, and at effect site and the effects themselves as a function of time. A multi-compartmental model of morphine, including metabolite kinetics and effects is also included. The programs are available for download from the World Wide Web at http:// www. klinik.uni-frankfurt.de/zpharm/klin/ PKPDsimulation/content.html. For pharmacokineticists who only program occasionally, there is the possibility of building the computer simulation, together with the flexible interactive simulation algorithm for clinical pharmacological teaching in the field of PK/PD models.

  8. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion

    Science.gov (United States)

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. PMID:27218674

  9. Pharmacodynamics of the Antibacterial Effect of and Emergence of Resistance to Doripenem in Pseudomonas aeruginosa and Acinetobacter baumannii in an In Vitro Pharmacokinetic Model

    OpenAIRE

    Bowker, Karen E.; Noel, Alan R.; Tomaselli, Sharon G.; Elliott, Heather; MacGowan, Alasdair P.

    2012-01-01

    An in vitro dilutional pharmacokinetic model of infection was used to study the pharmacodynamics of doripenem in terms of the ability to kill Pseudomonas aeruginosa or Acinetobacter baumannii and also changes in their population profiles. In dose-ranging studies, the cumulative percentages of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (TMICs) required for doripenem to produce a 24-h bacteriostatic effect and a −2-log-unit reduction ...

  10. Physiologically Based Modelling of Dioxins. I. Validation of a rodent toxicokinetic model

    NARCIS (Netherlands)

    Zeilmaker MJ; Slob W

    1993-01-01

    In this report a rodent Physiologically Based PharmacoKinetic (PBPK) model for 2,3,7,8-tetrachlorodibenzodioxin is described. Validation studies, in which model simulations of TCDD disposition were compared with in vivo TCDD disposition in rodents exposed to TCDD, showed that the model adequately p

  11. The pharmacokinetic study of rutin in rat plasma based on an electrochemically reduced graphene oxide modified sensor$

    Institute of Scientific and Technical Information of China (English)

    Pei Zhang a; Yu-Qiang Gou b; Xia Gao a; Rui-Bin Bai a; Wen-Xia Chen a; Bo-Lu Sun a; Fang-Di Hu a; n; Wang-Hong Zhao c

    2016-01-01

    An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO) film coated on a glassy carbon electrode (GCE) was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α), electron transfer number (n) and electrode reaction standard rate constant (ks) were 0.53, 2 and 3.4 s?1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70 ? 10 ? 7 ? 1.25 ? 10 ? 5 M with the detection limit (s/n ¼ 3) of 1.84 ? 10 ? 8 M. The assay was success-fully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2), area under curve (AUC), and plasma clearance (CL) were calculated to be 3.345 7 0.647 min, 5750 7 656.0 mg min/mL, and 5.891 7 0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10μL and had no complicated sample pretreatment (without deproteinization), which was simple, eco-friendly, and time-and cost-efficient for rutin pharmacokinetic studies.

  12. The relationship between the pharmacokinetics and pharmacodynamics of spinal opioids. Minireview based on a doctoral thesis.

    Science.gov (United States)

    Sjöström, S

    1988-01-01

    Spinal opioids have been used clinically since the late seventies to treat acute, traumatic, obstetric and chronic pain. In this article the influence of the pharmacokinetics on the dynamics of intrathecal and epidural opioid administration are discussed with reference to current knowledge. PMID:2905092

  13. Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the treatment of MDR-TB

    NARCIS (Netherlands)

    Ghimire, Samiksha; Van't Boveneind-Vrubleuskaya, Natasha; Akkerman, Onno W; de Lange, Wiel C M; van Soolingen, Dick; Kosterink, Jos G W; van der Werf, Tjip S; Wilffert, Bob; Touw, Daniel J; Alffenaar, Jan-Willem C

    2016-01-01

    The emergence of MDR-TB and XDR-TB has complicated TB treatment success. Among many factors that contribute to the development of resistance, low drug exposure is not the least important. This review summarizes the available information on pharmacokinetic properties of levofloxacin in relation to mi

  14. Pharmacokinetic/Pharmacodynamic Profiles of Tiamulin in an Experimental Intratracheal Infection Model of Mycoplasma gallisepticum

    Science.gov (United States)

    Xiao, Xia; Sun, Jian; Yang, Tao; Fang, Xi; Cheng, Jie; Xiong, Yan Q.; Liu, Ya-Hong

    2016-01-01

    Mycoplasma gallisepticum is the most important pathogen in poultry among four pathogenic Mycoplasma species. Tiamulin is a pleuromutilin antibiotic that shows a great activity against M. gallisepticum and has been approved for use in veterinary medicine particularly for poultry. However, the pharmacokinetic/pharmacodynamics (PK/PD) profiles of tiamulin against M. gallisepticum are not well understood. Therefore, in the current studies, we investigated the in vivo PK/PD profiles of tiamulin using a well-established experimental intratracheal infection model of M. gallisepticum. The efficacy of tiamulin against M. gallisepticum was studied in 8-day-old chickens after intramuscular (i.m.) administration at 10 doses between 0–80 mg/kg. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to evaluate the PK parameters of tiamulin following i.m. administration at doses of 5, 40, and 80 mg/kg in Mycoplasma gallisepticum-infected neutropenic chickens. Real-time PCR (RT-PCR) was used for quantitative detection of M. gallisepticum. The MIC of tiamulin against M. gallisepticum strain S6 was 0.03 μg/mL. The PK/PD index, AUC24h/MIC, correlated well with the in vivo antibacterial efficacy. The in vivo data suggest that animal dosage regimens should supply AUC24h/MIC of tiamulin of 382.68 h for 2 log10 ccu equivalents M. gallisepticum reduction. To attain that goal, the administered dose is expected to be 45 mg/kg b.w. for treatment of M. gallisepticum infection with an MIC90 of 0.03 μg/mL. PMID:27656647

  15. Pharmacokinetics and pharmacodynamics of ASP2151, a helicase-primase inhibitor, in a murine model of herpes simplex virus infection.

    Science.gov (United States)

    Katsumata, Kiyomitsu; Chono, Koji; Kato, Kota; Ohtsu, Yoshiaki; Takakura, Shoji; Kontani, Toru; Suzuki, Hiroshi

    2013-03-01

    ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus 1 (HSV-1), HSV-2, and varicella zoster virus. Here, to determine and analyze the correlation between the pharmacodynamic (PD) and pharmacokinetic (PK) parameters of ASP2151, we examined the PD profile of ASP2151 using in vitro plaque reduction assay and a murine model of HSV-1 infection. ASP2151 inhibited the in vitro replication of HSV-1 with a mean 50% effective concentration (EC(50)) of 14 ng/ml. In the cutaneously HSV-1-infected mouse model, ASP2151 dose dependently suppressed intradermal HSV-1 growth, with the effect reaching a plateau at a dose of 30 mg/kg of body weight/day. The dose fractionation study showed that intradermal HSV-1 titers were below the detection limit in mice treated with ASP2151 at 100 mg/kg/day divided into two daily doses and at 30 or 100 mg/kg/day divided into three daily doses. The intradermal HSV-1 titer correlated with the maximum concentration of drug in serum (C(max)), the area under the concentration-time curve over 24 h (AUC(24h)), and the time during which the concentration of ASP2151 in plasma was above 100 ng/ml (T(>100)). The continuous infusion of ASP2151 effectively decreased intradermal HSV-1 titers below the limit of detection in mice in which the ASP2151 concentration in plasma reached 79 to 145 ng/ml. Our findings suggest that the antiviral efficacy of ASP2151 is most closely associated with the PK parameter T(>100) in HSV-1-infected mice. Based on these results, we propose that a plasma ASP2151 concentration exceeding 100 ng/ml for 21 to 24 h per day provides the maximum efficacy in HSV-1-infected mice.

  16. Doxorubicin-Loaded QuadraSphere Microspheres: Plasma Pharmacokinetics and Intratumoral Drug Concentration in an Animal Model of Liver Cancer

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.

  17. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    Katherine Kay

    Full Text Available Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii multiple drugs within a treatment combination; (iii differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very

  18. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology.

    Science.gov (United States)

    Rostami-Hodjegan, A

    2012-07-01

    Classic pharmacokinetics (PK) rarely takes into account the full knowledge of physiology and biology of the human body. However, physiologically based PK (PBPK) is built mainly from drug-independent "system" information. PBPK is not a new concept, but it has shown a very rapid rise in recent years. This has been attributed to a greater connectivity to in vitro-in vivo extrapolation (IVIVE) techniques for predicting drug absorption, distribution, metabolism, and excretion (ADME) and their variability in humans. The marriage between PBPK and IVIVE under the overarching umbrella of "systems biology" has removed many constraints related to cutoff approaches on prediction of ADME. PBPK-IVIVE linked models have repeatedly shown their value in guiding decisions when predicting the effects of intrinsic and extrinsic factors on PK of drugs. A review of the achievements and shortcomings of the models might suggest better strategies in extending the success of PBPK-IVIVE to pharmacodynamics (PD) and drug safety.

  19. Pharmacokinetics and Pharmacodynamics of ASP2151, a Helicase-Primase Inhibitor, in a Murine Model of Herpes Simplex Virus Infection

    OpenAIRE

    Katsumata, Kiyomitsu; Chono, Koji; Kato, Kota; Ohtsu, Yoshiaki; Takakura, Shoji; Kontani, Toru; Suzuki, Hiroshi

    2013-01-01

    ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus 1 (HSV-1), HSV-2, and varicella zoster virus. Here, to determine and analyze the correlation between the pharmacodynamic (PD) and pharmacokinetic (PK) parameters of ASP2151, we examined the PD profile of ASP2151 using in vitro plaque reduction assay and a murine model of HSV-1 infection. ASP2151 inhibited the in vitro replication of HSV-1 with a mean 50% effective concentration (EC50) of 14 ng/ml. In the cutaneo...

  20. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Carey K Anders

    Full Text Available INTRODUCTION: Breast cancer brain metastases (BCBM are a challenging consequence of advanced BC. Nanoparticle agents, including liposomes, have shown enhanced delivery to solid tumors and brain. We compared pharmacokinetics (PK and efficacy of PEGylated liposomal doxorubicin (PLD with non-liposomal doxorubicin (NonL-doxo in an intracranial model of BC. METHODS: Athymic mice were inoculated intracerebrally with MDA-MB-231-BR-luciferase-expressing cells. Tumor-bearing mice were administered PLD or NonL-doxo at 6 mg/kg IV × 1 and were euthanized prior to and 0.083, 1, 3, 6, 24, 72 and 96 h post-treatment. Samples were processed to measure sum total doxorubicin via HPLC. PLD and NonL-doxo were administered IV weekly as single agents (6 mg/kg or in combination (4.5 mg/kg with the PARP inhibitor, ABT-888, PO 25 mg/kg/day. Efficacy was assessed by survival and bioluminescence. RESULTS: Treatment with PLD resulted in approximately 1,500-fold higher plasma and 20-fold higher intracranial tumor sum total doxorubicin AUC compared with NonL-doxo. PLD was detected at 96 h; NonL-doxo was undetectable after 24 h in plasma and tumor. Median survival of PLD-treated animals was 32 days (d, [CI] 31-38, which was significantly longer than controls (26d [CI 25-28]; p = 0.0012 or NonL-doxo treatment (23.5d [CI 18-28], p = 0.0002. Combination treatment with PLD/ABT-888 yielded improved survival compared to NonL-doxo/ABT-888 (35d [CI 31-38] versus 29.5d [CI 25-34]; p = 0.006. CONCLUSIONS: PLD provides both PK and efficacy advantage over NonL-doxo in the treatment of an in vivo model of BCBM. The results provide preclinical rationale to translate findings into early phase trials of PLD, with or without ABT-888, for patients with BCBM.

  1. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model.

    Science.gov (United States)

    Andes, D; Marchillo, K; Stamstad, T; Conklin, R

    2003-10-01

    In vivo studies have described the pharmacodynamic (PD) characteristics of several triazoles. These investigations have demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio is the critical pharmacokinetic (PK)-PD parameter associated with treatment efficacy. Further analyses from these in vivo studies have demonstrated that a triazole free drug 24-h AUC/MIC of 20 to 25 is predictive of treatment success. We used a neutropenic murine model of disseminated Candida albicans infection to similarly characterize the PK-PD of the new triazole voriconazole. PK and PD parameters (percentage of time that the concentration remains above the MIC [T > MIC], AUC/MIC ratio, and peak level in serum/MIC ratio) were correlated with in vivo efficacy, as measured by the organism number in kidney cultures after 24 h of therapy. Voriconazole kinetics and protein binding were studied in infected neutropenic mice. Peak level/dose and AUC/dose values ranged from 0.1 to 0.2 and 0.1 to 0.7, respectively. The serum elimination half-life ranged from 0.7 to 2.9 h. The level of protein binding in mouse serum was 78%. Treatment efficacy with the four dosing intervals studied was similar, supporting the AUC/MIC ratio as the PK-PD parameter predictive of efficacy. Nonlinear regression analysis also suggested that the AUC/MIC ratio was strongly predictive of treatment outcomes (R(2) for AUC/MIC ratio = 82%, R(2) for peak level/MIC ratio = 63%, R(2) for T > MIC = 75%). Similar studies were conducted with nine additional C. albicans isolates with various voriconazole susceptibilities (MICs, 0.007 to 0.25 micro g/ml) to determine if a similar 24-h AUC/MIC ratio was associated with efficacy. The voriconazole free drug AUC/MIC ratios were similar for all of the organisms studied (range, 11 to 58; mean +/- standard deviation, 24 +/- 17 [P = 0.45]). These AUC/MIC ratios observed for free drug are similar to those observed for other triazoles in this model. PMID:14506026

  2. Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET.

    Science.gov (United States)

    Poulin, Eric; Lebel, Réjean; Croteau, Etienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2013-03-01

    Reaching the full potential of magnetic resonance imaging (MRI)-positron emission tomography (PET) dual modality systems requires new methodologies in quantitative image analyses. In this study, methods are proposed to convert an arterial input function (AIF) derived from gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) in MRI, into a (18)F-fluorodeoxyglucose ((18)F-FDG) AIF in PET, and vice versa. The AIFs from both modalities were obtained from manual blood sampling in a F98-Fisher glioblastoma rat model. They were well fitted by a convolution of a rectangular function with a biexponential clearance function. The parameters of the biexponential AIF model were found statistically different between MRI and PET. Pharmacokinetic MRI parameters such as the volume transfer constant (K(trans)), the extravascular-extracellular volume fraction (ν(e)), and the blood volume fraction (ν(p)) calculated with the Gd-DTPA AIF and the Gd-DTPA AIF converted from (18)F-FDG AIF normalized with or without blood sample were not statistically different. Similarly, the tumor metabolic rates of glucose (TMRGlc) calculated with (18) F-FDG AIF and with (18) F-FDG AIF obtained from Gd-DTPA AIF were also found not statistically different. In conclusion, only one accurate AIF would be needed for dual MRI-PET pharmacokinetic modeling in small animal models. PMID:22570280

  3. Pharmacokinetics & Neurophysiology

    Science.gov (United States)

    Davis, Andrew S.; Salpekar, Jay A.

    2009-01-01

    Medications administered in clinical practice obtain their therapeutic effect only to the extent that the drug is present in the appropriate concentration at the desired site. To achieve this goal, the prescribing clinician must be aware of how a drug may interact with the physiology of the patient. Pharmacokinetics is the study of this process…

  4. Fractal Pharmacokinetics

    OpenAIRE

    Pereira, Luis M.

    2010-01-01

    Pharmacokinetics (PK) has been traditionally dealt with under the homogeneity assumption. However, biological systems are nowadays comprehensively understood as being inherently fractal. Specifically, the microenvironments where drug molecules interact with membrane interfaces, metabolic enzymes or pharmacological receptors, are unanimously recognized as unstirred, space-restricted, heterogeneous and geometrically fractal. Therefore, classical Fickean diffusion and the notion of the compartme...

  5. Exploring flubendazole formulations for use in sheep. Pharmacokinetic evaluation of a cyclodextrin-based solution

    OpenAIRE

    Ceballos Laura; Moreno Laura; Torrado Juan J; Lanusse Carlos; Alvarez Luis

    2012-01-01

    Abstract Background Flubendazole (FLBZ) is a poor water solubility broad-spectrum BZD methylcarbamate anthelmintic compound. Cyclodextrins (CDs) are usually used to increase aqueous solubility of poor hydrosoluble compounds. The comparative in vitro aqueous solubility of FLBZ and other BZD anthelmintics in the presence of hydroxypropyl-β-cyclodextrin (HPβCD) was evaluated in the current work. Additionally, the comparative pharmacokinetic behaviour of FLBZ (and its metabolites) administered by...

  6. Evaluation of an Innovative Population Pharmacokinetic-Based Design for Behavioral Pharmacodynamic Endpoints

    OpenAIRE

    Viberg, Anders; Martino, Giovanni; Lessard, Etienne; Laird, Jennifer M. A.

    2012-01-01

    Pre-clinical behavioral pharmacology studies supporting indications like analgesia typically consist of at least three different studies; dose-finding, duration of effect, and tolerance-development studies. Pharmacokinetic (PK) plasma samples are generally taken from a parallel group of animals to avoid disruption of the behavioral pharmacodynamic (PD) endpoint. Our objective was to investigate if pre-clinical behavioral pharmacology studies in rats could be performed effectively by combining...

  7. Population Pharmacokinetics of Cyclophosphamide and Metabolites in Children with Neuroblastoma: a Report from the Children’s Oncology Group

    OpenAIRE

    McCune, Jeannine S.; Salinger, David H.; Vicini, Paolo; Oglesby, Celeste; Blough, David K.; Park, Julie R.

    2008-01-01

    Cyclophosphamide-based regimens are front-line treatment for numerous pediatric malignancies, however current dosing methods result in considerable interpatient variability in tumor response and toxicity. In this pediatric population, our objectives were to 1. quantify and explain the pharmacokinetic variability of cyclophosphamide, and two of its metabolites, hydroxycyclophosphamide (HCY) and carboxyethylphosphoramide mustard (CEPM); 2. apply a population pharmacokinetic model to describe th...

  8. Modelling and simulation approaches for waiving in vivo pharmacokinetic formulation studies

    OpenAIRE

    KortejÀrvi, Hanna

    2008-01-01

    The bioavailability and bioequivalency of oral drug depends on gastrointestinal tract physiology and drug-related physicochemical and pharmacokinetic factors. In general, bioavailability of a new drug substance or new formulation is studied in vivo with healthy volunteers. In vivo bioequivalency studies are needed for generic drug products or if a formulation is significantly altered during clinical trials. In certain cases, in vitro dissolution studies can be used as a surrogate for in vivo ...

  9. Simultaneous Pharmacokinetic Modeling of Alkylresorcinols and Their Main Metabolites Indicates Dual Absorption Mechanisms and Enterohepatic Elimination in Humans

    DEFF Research Database (Denmark)

    Marklund, Matti; Strömberg, Eric A,; Lærke, Helle Nygaard;

    2014-01-01

    was to develop a combined pharmacokinetic model for plasma concentrations of alkylresorcinols and their 2 major metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-propanoic acid (DHPPA).Methods: The model was established by using plasma samples collected from 3 women and 2 men after...... ileostomal effluent and pig bile after high and low alkylresorcinol doses were analyzed to evaluate biliary alkylresorcinol metabolite excretion.Results: The model contained 2 absorption compartments: 1 that transferred alkylresorcinols directly to the systematic circulation and 1 in which a proportion......), and DHBA (1.3 ± 0.22 h) did not differ. The model accurately predicted alkylresorcinol and DHBA concentrations after repeated alkylresorcinol intake but DHPPA concentration was overpredicted, possibly because of poorly modeled enterohepatic circulation. During the 8 h following administration,

  10. Development of LC-MS determination method and back-propagation ANN pharmacokinetic model of corynoxeine in rat.

    Science.gov (United States)

    Ma, Jianshe; Cai, Jinzhang; Lin, Guanyang; Chen, Huilin; Wang, Xianqin; Wang, Xianchuan; Hu, Lufeng

    2014-05-15

    Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats. PMID:24732215

  11. The pharmacokinetic study of rutin in rat plasma based on an electrochemically reduced graphene oxide modified sensor

    Directory of Open Access Journals (Sweden)

    Pei Zhang

    2016-04-01

    Full Text Available An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO film coated on a glassy carbon electrode (GCE was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α, electron transfer number (n and electrode reaction standard rate constant (ks were 0.53, 2 and 3.4 s−1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70×10−7−1.25×10−5 M with the detection limit (s/n=3 of 1.84×10−8 M. The assay was successfully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2, area under curve (AUC, and plasma clearance (CL were calculated to be 3.345±0.647 min, 5750±656.0 µg min/mL, and 5.891±0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10 μL and had no complicated sample pretreatment (without deproteinization, which was simple, eco-friendly, and time- and cost-efficient for rutin pharmacokinetic studies.

  12. Drug-metabolism mechanism: Knowledge-based population pharmacokinetic approach for characterizing clobazam drug-drug interactions.

    Science.gov (United States)

    Tolbert, Dwain; Bekersky, Ihor; Chu, Hui-May; Ette, Ene I

    2016-03-01

    A metabolic mechanism-based characterization of antiepileptic drug-drug interactions (DDIs) with clobazam in patients with Lennox-Gastaut syndrome (LGS) was performed using a population pharmacokinetic (PPK) approach. To characterize potential DDIs with clobazam, pharmacokinetic (PK) data from 153 patients with LGS in study OV-1012 (NCT00518713) and 18 healthy participants in bioavailability study OV-1017 were pooled. Antiepileptic drugs (AEDs) were grouped based on their effects on the cytochrome P450 (CYP) isozymes responsible for the metabolism of clobazam and its metabolite, N-desmethylclobazam (N-CLB): CYP3A inducers (phenobarbital, phenytoin, and carbamazepine), CYP2C19 inducers (valproic acid, phenobarbital, phenytoin, and carbamazepine), or CYP2C19 inhibitors (felbamate, oxcarbazepine). CYP3A4 inducers-which did not affect the oral clearance of clobazam-significantly increased the formation of N-CLB by 9.4%, while CYP2C19 inducers significantly increased the apparent elimination rate of N-CLB by 10.5%, resulting in a negligible net change in the PK of the active metabolite. CYP2C19 inhibitors did not affect N-CLB elimination. Because concomitant use of AEDs that are either CYP450 inhibitors or inducers with clobazam in the treatment of LGS patients had negligible to no effect on clobazam PK in this study, dosage adjustments may not be required for clobazam in the presence of the AEDs investigated here.

  13. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    Science.gov (United States)

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  14. Pharmacokinetic models of morphine and its metabolites in neonates:: Systematic comparisons of models from the literature, and development of a new meta-model.

    Science.gov (United States)

    Knøsgaard, Katrine Rørbæk; Foster, David John Richard; Kreilgaard, Mads; Sverrisdóttir, Eva; Upton, Richard Neil; van den Anker, Johannes N

    2016-09-20

    Morphine is commonly used for pain management in preterm neonates. The aims of this study were to compare published models of neonatal pharmacokinetics of morphine and its metabolites with a new dataset, and to combine the characteristics of the best predictive models to design a meta-model for morphine and its metabolites in preterm neonates. Moreover, the concentration-analgesia relationship for morphine in this clinical setting was also investigated. A population of 30 preterm neonates (gestational age: 23-32weeks) received a loading dose of morphine (50-100μg/kg), followed by a continuous infusion (5-10μg/kg/h) until analgesia was no longer required. Pain was assessed using the Premature Infant Pain Profile. Five published population models were compared using numerical and graphical tests of goodness-of-fit and predictive performance. Population modelling was conducted using NONMEM® and the $PRIOR subroutine to describe the time-course of plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide, and the concentration-analgesia relationship for morphine. No published model adequately described morphine concentrations in this new dataset. Previously published population pharmacokinetic models of morphine, morphine-3-glucuronide, and morphine-6-glucuronide were combined into a meta-model. The meta-model provided an adequate description of the time-course of morphine and the concentrations of its metabolites in preterm neonates. Allometric weight scaling was applied to all clearance and volume terms. Maturation of morphine clearance was described as a function of postmenstrual age, while maturation of metabolite elimination was described as a function of postnatal age. A clear relationship between morphine concentrations and pain score was not established. PMID:27373670

  15. Pharmacokinetic models of morphine and its metabolites in neonates:: Systematic comparisons of models from the literature, and development of a new meta-model.

    Science.gov (United States)

    Knøsgaard, Katrine Rørbæk; Foster, David John Richard; Kreilgaard, Mads; Sverrisdóttir, Eva; Upton, Richard Neil; van den Anker, Johannes N

    2016-09-20

    Morphine is commonly used for pain management in preterm neonates. The aims of this study were to compare published models of neonatal pharmacokinetics of morphine and its metabolites with a new dataset, and to combine the characteristics of the best predictive models to design a meta-model for morphine and its metabolites in preterm neonates. Moreover, the concentration-analgesia relationship for morphine in this clinical setting was also investigated. A population of 30 preterm neonates (gestational age: 23-32weeks) received a loading dose of morphine (50-100μg/kg), followed by a continuous infusion (5-10μg/kg/h) until analgesia was no longer required. Pain was assessed using the Premature Infant Pain Profile. Five published population models were compared using numerical and graphical tests of goodness-of-fit and predictive performance. Population modelling was conducted using NONMEM® and the $PRIOR subroutine to describe the time-course of plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide, and the concentration-analgesia relationship for morphine. No published model adequately described morphine concentrations in this new dataset. Previously published population pharmacokinetic models of morphine, morphine-3-glucuronide, and morphine-6-glucuronide were combined into a meta-model. The meta-model provided an adequate description of the time-course of morphine and the concentrations of its metabolites in preterm neonates. Allometric weight scaling was applied to all clearance and volume terms. Maturation of morphine clearance was described as a function of postmenstrual age, while maturation of metabolite elimination was described as a function of postnatal age. A clear relationship between morphine concentrations and pain score was not established.

  16. Challenges and Opportunities for Increasing the Knowledge Base Related to Drug Biotransformation and Pharmacokinetics during Growth and Development.

    Science.gov (United States)

    Leeder, J Steven; Meibohm, Bernd

    2016-07-01

    It is generally acknowledged that there is a need and role for informative pharmacokinetic models to improve predictions and simulation as well as individualization of drug therapy in pediatric populations of different ages and developmental stages. This special issue contains more than 20 papers responding to the challenge of providing new information on scaling factors, ontogeny functions for drug metabolizing enzymes and transporters, the mechanisms underlying the observed developmental trajectories for these gene products, age-dependent changes in physiologic processes affecting drug disposition in children, as well as in vitro and in vivo studies describing the relative contribution of ontogeny and genetic factors as sources of variability in drug disposition in children. Considered together, these contributions serve to illustrate some of the current limitations regarding sample availability, number, and quality, but also provide a framework that allows for the potential value of the results of a given study to be interpreted within the context of these limitations. Among the challenges for the future are improving our understanding of the mechanisms regulating age-dependent changes in factors influencing drug disposition and response, thereby facilitating generalization to systems lacking detailed data, better integrating age-dependent changes in pharmacokinetics with age-dependent changes in pharmacodynamics, and allowing better predictability and individualization of drug disposition and response across the pediatric age spectrum. PMID:27302933

  17. The hamster cheek pouch (HCP) as an experimental model of oral cancer for BNCT: biodistribution and pharmacokinetics of BPA

    Energy Technology Data Exchange (ETDEWEB)

    Kreimann, E.; Itoiz, M.E.; Dagrosa, A.; Garavaglia, R.; Farias, S.; Batistoni, D.; Schwint, A.E. [National Atomic Energy Commission (Argentina)

    2000-10-01

    We propose and validate the HCP model of oral cancer for BNCT studies. This model serves to explore new applications of the technique, study the biology of BNCT and assess Boron uptake in clinically relevant oral tissues. Tumors are induced by a process that mimics spontaneous malignant transformation instead of by the growth of implanted tumor cells. Syrian hamsters were submitted to tumor induction with a chemical carcinogenesis protocol and then used for biodistribution and pharmacokinetic studies of BPA. The data reveal selective uptake by tumor and, to a lesser degree, by precancerous tissue. Boron concentration in oral tissues and skin was higher than in blood, an issue of clinical relevance given that these tissues may be dose-limiting. Absolute and relative values of Boron concentration would be potentially therapeutic. Boron concentration exhibited a linear relationship with percentage of viable tissue in HCP tumors. The HCP model would provide a novel, contributory approach to BNCT research. (author)

  18. The hamster cheek pouch (HCP) as an experimental model of oral cancer for BNCT: biodistribution and pharmacokinetics of BPA

    International Nuclear Information System (INIS)

    We propose and validate the HCP model of oral cancer for BNCT studies. This model serves to explore new applications of the technique, study the biology of BNCT and assess Boron uptake in clinically relevant oral tissues. Tumors are induced by a process that mimics spontaneous malignant transformation instead of by the growth of implanted tumor cells. Syrian hamsters were submitted to tumor induction with a chemical carcinogenesis protocol and then used for biodistribution and pharmacokinetic studies of BPA. The data reveal selective uptake by tumor and, to a lesser degree, by precancerous tissue. Boron concentration in oral tissues and skin was higher than in blood, an issue of clinical relevance given that these tissues may be dose-limiting. Absolute and relative values of Boron concentration would be potentially therapeutic. Boron concentration exhibited a linear relationship with percentage of viable tissue in HCP tumors. The HCP model would provide a novel, contributory approach to BNCT research. (author)

  19. Pharmacokinetic and Pharmacodynamic Interaction of Boswellic Acids and Andrographolide with Glyburide in Diabetic Rats: Including Its PK/PD Modeling.

    Science.gov (United States)

    Samala, Sujatha; Veeresham, Ciddi

    2016-03-01

    The effect of boswellic acids (BA) and andrographolide (AD) on the pharmacokinetics and pharmacodynamics of glyburide in normal as well as in streptozotocin-induced diabetic rats was studied. In normal and diabetic rats, the combination of glyburide with BA or AD increased significantly (p < 0.01) all the pharmacokinetic parameters, such as Cmax, AUC0-n, AUCtotal, t1/2, and mean residence time, and decreased the clearance, Vd, markedly as compared with the control group. In rat liver, microsomes BA and AD have shown CYP3A4 inhibitory activity significantly (p < 0.01), compared with the vehicle group. The increase in hypoglycemic action by concomitant administration of glyburide with BA or AD was more in diabetic rats than when the drugs were used singly and with the control group, which suggests the enhancement of glucose reduction capacity of glyburide in diabetic rats along with BA or AD. In PK/PD modeling of BA and AD with glyburide, the predicted PK and PD parameters are in line with the observed PK and PD parameters. The results revealed that BA and AD led to the PK/PD changes because of glyburide-increased bioavailability and because of the inhibition of CYP3A4 enzyme. In conclusion, add-on preparations containing BA or AD may increase the bioavailability of glyburide, and hence the dose should be monitored. PMID:26762235

  20. Oil based nanocarrier system for transdermal delivery of ropinirole: a mechanistic, pharmacokinetic and biochemical investigation.

    Science.gov (United States)

    Azeem, Adnan; Talegaonkar, Sushama; Negi, Lalit M; Ahmad, Farhan J; Khar, Roop K; Iqbal, Zeenat

    2012-01-17

    Ropinirole, a recent introduction in the clinical treatment of Parkinson's disease, suffers with the problems of low oral bioavailability and frequent dosing. An effective transdermal nano-emulsion drug delivery system can however resolve these issues effectively with greater therapeutic benefits and clinical significance. Therefore, the present work focuses precisely on pharmacokinetic, biochemical and mechanistic assessment of transdermal nanoemulsion gel in rats induced with Parkinson lesioned brain by 6-OHDA. DSC and FT-IR studies showed that NEG affects the normal lipid packing of stratum corneum to enhance the drug permeation. Study of pharmacokinetic parameters (AUC, C(max), and T(max)) revealed a greater and more extended release of ropinirole from nanoemulsion gel compared to that from a conventional gel (RPG) and oral marketed tablet (Ropitor). The AUC(0→∞) for RPCNG and RPTNG was found to be 928.07 ± 206.5 and 1055.99 ± 251.7 ngh/mL, respectively in comparison to 137.25 ± 31.3 and 467.15 ± 106.1 ngh/mL for RPG and oral tablet, respectively. The relative bioavailability of ropinirole has been enhanced more than two fold by RPTNG. Furthermore, antiparkinson activity was evaluated in terms of estimating the level of thiobarbituric acid reactive substances, glutathione antioxidant enzymes and catalase in lesioned brain of rats. Formulations were also found to be non-toxic and non-irritant by histological investigations. PMID:22057087

  1. Pharmacokinetic/Pharmacodynamic Modelling of GnRH Antagonist Degarelix: A Comparison of the Non-linear Mixed-Effects Programs NONMEM and NLME

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Nielsen, Henrik Aalborg;

    2004-01-01

    proposed by Lindstrom and Bates. The two programs were tested using clinical PK/PD data of a new gonadotropin-releasing hormone (GnRH) antagonist degarelix currently being developed for prostate cancer treatment. The pharmacokinetics of intravenous administered degarelix was analysed using a three......In this paper, the two non-linear mixed-effects programs NONMEM and NLME were compared for their use in population pharmacokinetic/pharmacodynamic (PK/PD) modelling. We have described the first-order conditional estimation (FOCE) method as implemented in NONMEM and the alternating algorithm in NLME...

  2. Modelling hemoglobin and hemoglobin:haptoglobin complex clearance in a non-rodent species– pharmacokinetic and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Felicitas S Boretti

    2014-10-01

    Full Text Available Preclinical studies suggest that haptoglobin (Hp supplementation could be an effective therapeutic modality during acute or chronic hemolytic diseases. Hp prevents Hb extravasation and neutralizes Hb’s oxidative and NO scavenging activity in the vasculature. Small animal models such as mouse, rat and guinea pig appear to be valuable to provide proof-of-concept for Hb neutralization by Hp in diverse pre-clinical conditions. However, these species differ significantly from human in the clearance of Hb:Hp complexes, which leads to long persistence of circulating Hb:Hp complexes after administration of human plasma derived Hp. Alternative animal models must therefore be explored to guide pre-clinical development of these potential therapeutics. In contrast to rodents, dogs have high Hp plasma concentrations comparable to human. In this study we show that like human macrophages, dog peripheral blood monocyte derived macrophages express a glucocorticoid inducible endocytic clearance pathways with a high specificity for the Hb:Hp complex. Evaluating the Beagle dog as a non-rodent model species we provide the first pharmacokinetic parameter estimates of free Hb and Hb:Hp phenotype complexes. The data reflect a drastically reduced volume of distribution (Vc of the complex compared to free Hb, increased exposures (Cmax and AUC and significantly reduced total body clearance (CL with a terminal half-life (t1/2 of approximately 12 hours. Distribution and clearance was identical for dog and human Hb (± glucocorticoid stimulation and for dimeric and multimeric Hp preparations bound to Hb. Collectively, our study supports the dog as a non-rodent animal model to study pharmacological and pharmacokinetic aspects of Hb clearance systems and apply the model to studying Hp therapeutics.

  3. Pharmacokinetic-Pharmacodynamic Analysis on Inflammation Rat Model after Oral Administration of Huang Lian Jie Du Decoction

    Science.gov (United States)

    Wang, Yao-Nan; Wang, Hong-Jie; Yang, Jian; Xin, Shao-Kun; Han, Ling-Yu; Zhao, Hai-Yu; Han, Shu-Yan; Gao, Bo; Hu, Hao; Hu, Yuan-Jia; Bian, Bao-Lin; Si, Nan

    2016-01-01

    Huang-Lian-Jie-Du Decoction (HLJDD) is a classical Traditional Chinese Medicine (TCM) formula with heat-dissipating and detoxifying effects. It is used to treat inflammation-associated diseases. However, no systematic pharmacokinetic (PK) and pharmacodynamic (PD) data concerning the activity of HLJDD under inflammatory conditions is available to date. In the present study, the concentration-time profiles and the hepatic clearance rates (HCR) of 41 major components in rat plasma in response to the oral administration of a clinical dose of HLJDD were investigated by LC-QqQ-MS using a dynamic multiple reaction monitoring (DMRM) method. Additionally, the levels of 7 cytokines (CKs) in the plasma and the body temperature of rats were analyzed. Furthermore, a PK-PD model was established to describe the time course of the hemodynamic and anti-inflammatory effects of HLJDD. As one of the three major active constituents in HLJDD, iridoids were absorbed and eliminated more easily and quickly than alkaloids and flavonoids. Compared with the normal controls, the flavonoids, alkaloids and iridoids in inflamed rats exhibited consistently changing trends of PK behaviors, such as higher bioavailability, slower elimination, delays in reaching the maximum concentration (Tmax) and longer substantivity. The HCR of iridoids was different from that of alkaloids and flavonoids in inflamed rats. Furthermore, excellent pharmacodynamic effects of HLJDD were observed in inflamed rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, IL-10, and macrophage inflammatory protein-2 (MIP-2) and body temperature significantly decreased after the administration of HLJDD. Based on PK-PD modeling with the three-phase synchronous characterization of time-concentration-effect, flavonoids exhibited one mechanism of action in the anti-inflammatory process, while iridoids and alkaloids showed another mechanism of action. Taken together, the results demonstrated that HLJDD may

  4. Pharmacokinetics of fluconazole in cerebrospinal fluid and serum of rabbits: validation of an animal model used to measure drug concentrations in cerebrospinal fluid.

    Science.gov (United States)

    Madu, A; Cioffe, C; Mian, U; Burroughs, M; Tuomanen, E; Mayers, M; Schwartz, E; Miller, M

    1994-09-01

    Complete concentration-time data describing the pharmacokinetics of fluconazole in the cerebrospinal fluid (CSF) following a single dose are not available for humans or animals. We studied the pharmacokinetics of fluconazole with an indwelling intracisternal needle as described by R.G. Dacey and M.A. Sande (Antimicrob. Agents Chemother. 6:437-441, 1974). To determine whether the presence of an intracisternal needle alters pharmacokinetics in the CSF, we validated this model with uninfected rabbits by measuring pharmacokinetic constants following direct intracisternal and intravenous administration of fluconazole. Following direct injection, there was no alteration of elimination rates in the CSF with increasing sample number or time. Following intravenous administration, the penetration and kinetic constants were the same in individual animals from which multiple CSF samples were obtained as in a composite subject constructed by pooling virgin samples from different animals. The presence of the intracisternal needle did not alter CSF chemistry or leukocyte counts, and erythrocyte contamination was < 0.001%. While drug concentrations were measured by a microbiological assay, we also compared the sensitivity and reproducibility of a high-performance liquid chromatography (HPLC) assay with those of the microbiological assay. Following a single intravenous dose, the maximum concentration of the drug in serum, the time to maximum concentration of the drug in serum, the terminal elimination half-life in the CSF, and the percent penetration by fluconazole were 6.12 micrograms/ml, 1 h, 9.0 h, and 84.3%, respectively. We conclude that the sampling of CSF via an indwelling needle does not alter fluconazole pharmacokinetics, cause inflammation, or alter chemical parameters; that the microbiological assay is at least equivalent in sensitivity and reproducibility to the HPLC assay; and that robust parameters describing the pharmacokinetics of fluconazole are possible with this

  5. Biodistribution and pharmacokinetics of monoclonal antibody T1h and variant anti-CD6 murine 10D12 in healthy animals and in experimental arthritis model

    International Nuclear Information System (INIS)

    Biodistribution and pharmacokinetic of two radio labeled monoclonal antibodies was performed with the help of imaging techniques. Isotopic labeling was carried out by means of standardized methods. Pharmacokinetic evaluation was performed using the population approach and sparse data design. Introduction: Targeted therapy with monoclonal antibodies (MAb) is an efficient option for the treatment of rheumatoid arthritis. Th1 is a MAb anti human CD6 developed for the treatment of autoimmune disease and 10D12 is its counterpart anti murine CD6 developed as a pharmacological tool to get deep into the response mechanisms in animals models of rheumatoid arthritis.To investigate the behavior of both antibodies in the assay system, molecules were labeled with 125I to evaluate pharmacokinetic in healthy animals and with 99mTc to evaluate the antibody uptake in inflamed area of induced arthritis. Materials and methods: Antibodies were supplied by the Center of Molecular immunology. Iodination was performed by the iodogen method and technetium labeling was carried out directly by Schwarz method. Female C57BL6 from CENPALAB were used for experiments. Biodistribution and pharmacokinetic was performed by a sparse data design using the population approach. Uptake in region of inflammation was quantified by gammagraphy at the same time points of blood sampling. A compartmental model was build to quantify uptake kinetic. Pharmacokinetic profiles were analyzed using MONOLIX software version 4.2. Results: Minor pharmacokinetic differences were found between monoclonal antibodies labeled with 125I and 99mTc. As a humanized antibody, T1h shows a faster clearance than 10D12 and a biodistribution pattern reflecting preference for excretion mechanisms. The arthritis accumulation was not consistent with a targeted mediated uptake. On the other hand, radio labeled 10D12 shows an accumulation profile in arthritis with two peaks of maximum concentration representing an initial transit to

  6. Pharmacokinetic analysis of [11C]PBR28 in the rat model of herpes encephalitis: comparison with (R)-[11C]PK11195 for pre-clinical imaging

    NARCIS (Netherlands)

    Kopschina Feltes, Paula; Parente, Andrea; Vállez Garcia, David; Sijbesma, Jurgen; Moriguchi Jeckel, Cristina; Dierckx, Rudi; de Vries, Erik; Doorduin, Janine

    2015-01-01

    Aim: [11C]PBR28 is a second generation translocator protein (TSPO) ligand with supposedly better imaging characteristics than the most commonly used tracer [11C]PK11195. Surprisingly, only limited studies have evaluated the pharmacokinetic and binding profile of [11C]PBR28 in neuroinflammatory model

  7. Pharmacokinetic analysis of 11C-PBR28 in the rat model of herpes encephalitis (HSE): comparison with (R)-11C-PK11195

    NARCIS (Netherlands)

    Parente, Andrea; Kopschina Feltes, Paula; Vállez Garcia, David; Sijbesma, Jurgen; Moriguchi Jeckel, Cristina M; Dierckx, Rudi; de Vries, Erik F; Doorduin, Janine

    2016-01-01

    11C-PBR28 is a second generation TSPO tracer with supposedly superior characteristics than the most commonly used tracer for neuroinflammation, (R)-11C-PK11195. Despite its use in clinical research, no studies on the imaging properties and pharmacokinetic analysis of 11C-PBR28 in rodent models of ne

  8. Estimation of drug dosage regimens with a pharmacokinetic slide rule.

    Science.gov (United States)

    Straughn, A B; Cruze, C A; Meyer, M C

    1977-02-01

    A pharmacokinetic slide rule to facilitate the computations based on relatively simple pharmacokinetic principles involved in the development of individualized drug dosage regimens is described. The calculations are based on the assumption that the body can be conceived as a one-compartment open model with drug elimination proceeding by apparent first-order kinetics. Examples are presented (1) to illustrate the clinical application of a slide rule to compute the time-course of drug in the body, (2) to calculate steady-state maximum and minimum levels, and accumulation during multiple dosage and (3) to estimate appropriate maintenance doses and intravenous infusion rates. PMID:842548

  9. Pharmacokinetic and nephroprotective benefits of using Schisandra chinensis extracts in a cyclosporine A-based immune-suppressive regime

    Directory of Open Access Journals (Sweden)

    Lai Q

    2015-08-01

    the very same addition of SCE. SCE was also able to increase the systemic exposure of CsA in rats. The renoprotective effects of SCE were thought to be mediated by its antiapoptotic and antioxidant abilities, which caused the attenuation of CsA-induced autophagic cell death. All in all, these findings suggest the prospective use of SCE as an effective adjunct in a CsA-based immunosuppressive regimen.Keywords: Schisandra chinensis extracts, cyclosporine A, pharmacokinetics, nephroprotective, oxidative stress, apoptosis, autophagy

  10. Influence of scan duration on the estimation of pharmacokinetic parameters for breast lesions: a study based on CAIPIRINHA-Dixon-TWIST-VIBE technique

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Wen; Zhao, Bin; Wang, Guangbin; Wang, Cuiyan [Shandong University, Department of MR Imaging, Shandong Medical Imaging Research Institute, Jinan, Shandong (China); Liu, Hui [Siemens Healthcare, MR Collaborations NE Asia, Shanghai (China)

    2015-04-01

    To evaluate the influence of scan duration on pharmacokinetic parameters and their performance in differentiating benign from malignant breast lesions. Dynamic breast imaging was performed on a 3.0-T MR system using a prototype CAIPIRINHA-Dixon-TWISTVIBE (CDT-VIBE) sequence with a temporal resolution of 11.9 s. Enrolled in the study were 53 women with 55 lesions (26 benign and 29 malignant). Pharmacokinetic parameters (Ktrans, ve, kep and iAUC) were calculated for various scan durations from 1 to 7 min after injection of contrast medium using the Tofts model. Ktrans, kep and ve calculated from the 1-min dataset were significantly different from those calculated from the other datasets. In benign lesions, Ktrans, kep and ve were significantly different only between 1 min and 2 min (corrected P > 0.05), but in malignant lesions there were significant differences for any of the comparisons up to 6 min vs. 7 min (corrected P > 0.05). There were no significant differences in AUCs for any of the parameters (P > 0.05). In breast dynamic contrast-enhanced MRI the scan duration has a significant impact on pharmacokinetic parameters, but the diagnostic ability may not be significantly affected. A scan duration of 5 min after injection of contrast medium may be sufficient for calculation of Tofts model pharmacokinetic parameters. (orig.)

  11. PK-PD Modeling of Fluoroquinolones and ABC Transporters in Poultry

    NARCIS (Netherlands)

    Haritova, A.M.

    2006-01-01

    In the first part of this thesis advance pharmacokinetic models, based on an integration of pharmacokinetic and pharmacodynamic data for selected fluotoquinolones, are presented. The comparative investigations with danofloxacin mesylate and marbofloxacin indicated that with both fluoroquinolones a c

  12. Integrative pharmacokinetic-pharmacodynamic modeling and simulation of amenamevir (ASP2151) for treatment of recurrent genital herpes.

    Science.gov (United States)

    Takada, Akitsugu; Katashima, Masataka; Kaibara, Atsunori; Chono, Koji; Katsumata, Kiyomitsu; Sawamoto, Taiji; Suzuki, Hiroshi; Yano, Yoshitaka

    2016-08-01

    Amenamevir is a novel drug that targets the viral helicase-primase complex. While dose-dependent efficacy had been observed in non-clinical studies, no clear dose dependence has been observed in humans. We therefore developed a pharmacokinetic/pharmacodynamic (PK/PD) model to explain this inconsistency between species and to clarify the immune-related healing of amenamevir in humans. The model consisted of a non-linear kinetic model for a virtual number of virus plaques as a built-in biomarker. Lesion score was defined as an endpoint of antiviral efficacy, and logit model analysis was applied to the ordered-categorical lesion score. The modeling results suggested the time course profiles of lesion score could be explained with the efficacy terms in the logit model, using change in number of virus plaques as an indicator of the effects of amenamevir and time elapsed as an indicator of the healing of the immune response. In humans, the PD effect was almost dose-independent, and immune-related healing may have been the driving force behind the reduction in lesion scores. Drug efficacy is occasionally masked in diseases healed by the immune response, such as genital herpes. The PK/PD model proposed in the present study must be useful for explanation the PK/PD relationship of such drugs.

  13. Integrative pharmacokinetic-pharmacodynamic modeling and simulation of amenamevir (ASP2151) for treatment of recurrent genital herpes.

    Science.gov (United States)

    Takada, Akitsugu; Katashima, Masataka; Kaibara, Atsunori; Chono, Koji; Katsumata, Kiyomitsu; Sawamoto, Taiji; Suzuki, Hiroshi; Yano, Yoshitaka

    2016-08-01

    Amenamevir is a novel drug that targets the viral helicase-primase complex. While dose-dependent efficacy had been observed in non-clinical studies, no clear dose dependence has been observed in humans. We therefore developed a pharmacokinetic/pharmacodynamic (PK/PD) model to explain this inconsistency between species and to clarify the immune-related healing of amenamevir in humans. The model consisted of a non-linear kinetic model for a virtual number of virus plaques as a built-in biomarker. Lesion score was defined as an endpoint of antiviral efficacy, and logit model analysis was applied to the ordered-categorical lesion score. The modeling results suggested the time course profiles of lesion score could be explained with the efficacy terms in the logit model, using change in number of virus plaques as an indicator of the effects of amenamevir and time elapsed as an indicator of the healing of the immune response. In humans, the PD effect was almost dose-independent, and immune-related healing may have been the driving force behind the reduction in lesion scores. Drug efficacy is occasionally masked in diseases healed by the immune response, such as genital herpes. The PK/PD model proposed in the present study must be useful for explanation the PK/PD relationship of such drugs. PMID:27461507

  14. Pharmacokinetic/pharmacodynamic relationship of marbofloxacin against Pasteurella multocida in a tissue-cage model in yellow cattle.

    Science.gov (United States)

    Shan, Q; Wang, J; Yang, F; Ding, H; Liang, C; Lv, Z; Li, Z; Zeng, Z

    2014-06-01

    The fluoroquinolone antimicrobial drug marbofloxacin was administered to yellow cattle intravenously and intramuscularly at a dose of 2 mg/kg of body weight in a two-period crossover study. The pharmacokinetic properties of marbofloxacin in serum, inflamed tissue-cage fluid (exudate), and noninflamed tissue-cage fluid (transudate) were studied by using a tissue-cage model. The in vitro and ex vivo activities of marbofloxacin in serum, exudate, and transudate against a pathogenic strain of Pasteurella multocida (P. multocida) were determined. Integration of in vivo pharmacokinetic data with the in vitro MIC provided mean values for the area under the curve (AUC)/MIC for serum, exudate, and transudate of 155.75, 153.00, and 138.88, respectively, after intravenous dosing and 160.50, 151.00, and 137.63, respectively, after intramuscular dosing. After intramuscular dosing, the maximum concentration/MIC ratios for serum, exudate, and transudate were 21.13, 9.13, and 8.38, respectively. The ex vivo growth inhibition data after intramuscular dosing were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC required to produce bacteriostasis, bactericidal activity, and elimination of bacteria. The respective values for serum were 17.25, 31.29, and 109.62, and slightly lower values were obtained for transudate and exudate. It is proposed that these findings might be used with MIC50 or MIC90 data to provide a rational approach to the design of dosage schedules which optimize efficacy in respect of bacteriological as well as clinical cures.

  15. On setting the first dose in man: quantitating biotherapeutic drug-target binding through pharmacokinetic and pharmacodynamic models.

    Science.gov (United States)

    Lowe, Philip J; Tannenbaum, Stacey; Wu, Kai; Lloyd, Peter; Sims, Jennifer

    2010-03-01

    Although the three (perhaps four) phases of clinical drug development are well known, it is relatively unappreciated that there are similar phases in pre-clinical development. These consist of 'Phase I' the initial, normally Research Discovery driven pharmacology; 'Phase II' non-good laboratory practice (GLP) dose range finding, followed by pivotal 'Phase III' GLP toxicology. Together with an array of in vitro experiments comparing species, these stages should enable an integrated safety assessment prior to entry into man, documenting to investigators and authorities evidence that the new pharmaceutic is unlikely to cause harm. Following the lessons learned from TeGenero TGN1412 and subsequent updates to regulatory guidelines, there are aspects peculiar to biotherapeutics, especially those that target key body systems, where calculations could be made for doses for human studies using pharmacokinetic and pharmacodynamic models. Two of these are exemplified in this paper. In the first, target-mediated drug disposition, where the binding of the drug to a cellular target quantitatively affects the pharmacokinetics, enables occupancy to be estimated without recourse to independent assays. In the second, assaying captured soluble target, as drug-target complexes, allows estimation of the concentration of the free ligand ensuring that in initial clinical studies, soluble targets are not overly suppressed. To support this methodology, it has been demonstrated using omalizumab, free and total IgE data that such analyses do predict the suppression of the free unbound ligand with reasonable accuracy. Overall, the objective of the process is to deliver a justification, through consideration of drug-target binding, of a safe starting and therapeutically relevant escalation doses for human studies. PMID:20050847

  16. Modeling of pharmacokinetics of cocaine in human reveals the feasibility for development of enzyme therapies for drugs of abuse.

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    Full Text Available A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 µM, and the threshold area under the cocaine concentration versus time curve (AUC value in brain (denoted by AUC2(∞ required to produce physiological effects has been estimated to be 7.9±2.7 µM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2(∞. The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse.

  17. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model.

    Directory of Open Access Journals (Sweden)

    Pornswan Ngamprasertwong

    Full Text Available Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK using a chronically instrumented maternal-fetal sheep model.Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check.A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated.For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart

  18. Transform-both-sides nonlinear models for in vitro pharmacokinetic experiments.

    Science.gov (United States)

    Latif, A H M Mahbub; Gilmour, Steven G

    2015-06-01

    Transform-both-sides nonlinear models have proved useful in many experimental applications including those in pharmaceutical sciences and biochemistry. The maximum likelihood method is commonly used to fit transform-both-sides nonlinear models, where the regression and transformation parameters are estimated simultaneously. In this paper, an analysis of variance-based method is described in detail for estimating transform-both-sides nonlinear models from randomized experiments. It estimates the transformation parameter from the full treatment model and then the regression parameters are estimated conditionally on this estimate of the transformation parameter. The analysis of variance method is computationally simpler compared with the maximum likelihood method of estimation and allows a more natural separation of different sources of lack of fit. Simulation studies show that the analysis of variance method can provide unbiased estimators of complex transform-both-sides nonlinear models, such as transform-both-sides random coefficient nonlinear regression models and transform-both-sides fixed coefficient nonlinear regression models with random block effects. PMID:25038072

  19. Pharmacokinetic modelling of N-(4-[{sup 18}F]fluorobenzoyl)interleukin-2 binding to activated lymphocytes in an xenograft model of inflammation

    Energy Technology Data Exchange (ETDEWEB)

    di Gialleonardo, Valentina; Signore, Alberto [University, Nuclear Medicine Unit, Faculty of Medicine and Psychology, Rome (Italy); University, Medicina Nucleare, Ospedale S.Andrea, Rome (Italy); Willemsen, Antoon T.M.; Sijbesma, Jurgen W.A.; Dierckx, Rudi A.J.O.; Vries, Erik F.J. de [University, Nuclear Medicine Unit, Faculty of Medicine and Psychology, Rome (Italy)

    2012-10-15

    N-(4-[{sup 18}F]Fluorobenzoyl)interleukin-2 ([{sup 18}F]FB-IL2) specifically binds to interleukin-2 receptors (IL-2R) and thus may be used to detect inflammation processes using positron emission tomography (PET). We now validated whether [{sup 18}F]FB-IL2 can be used to quantify activated human peripheral blood mononuclear cells (hPBMC) in rats by pharmacokinetic modelling. Eleven Wistar rats were subcutaneously inoculated in the shoulder with different amounts of phytohaemagglutinin (PHA) activated hPBMC 15 min before i.v. injection of [{sup 18}F]FB-IL2. A 60-min dynamic PET scan was acquired and arterial blood sampling and metabolite analysis were performed. At the end of the scan, animals were terminated and the inflammatory lesion dissected. PET data were analysed using Logan and Patlak analysis as well as one-tissue and two-tissue compartment models. Model preferences according to the Akaike information criterion (AIC) and correlation between PET measurements and the number of CD25-positive cells were evaluated. A high correlation between ex vivo tracer uptake (standardized uptake value) in the xenograft and the number of inoculated CD25-positive cells was observed (R {sup 2} = 0.90). Plasma time-activity curves showed a rapid washout of the radiopharmaceutical from blood, while the time-activity curves of the inflammatory lesions showed slower washout. Time-activity curves could be fitted well by the Logan analysis method, indicating that the binding between [{sup 18}F]FB-IL2 and CD25 is reversible. AIC indicated that data could be modelled best by a two-tissue reversible compartment model. A high correlation was observed between the binding potential and the number of CD25-positive cells (R {sup 2} = 0.876, p < 0.0001). Based on binding potential measured by PET, the limit of detection was about 160,000 CD25-positive cells per 200 {mu}l lesion (95 % confidence). [{sup 18}F]FB-IL2 kinetics in this animal model of inflammation could be best described by a

  20. Tolerability and Pharmacokinetic Evaluation of Inhaled Dry Powder Tobramycin Free Base in Non-Cystic Fibrosis Bronchiectasis Patients.

    Directory of Open Access Journals (Sweden)

    Marcel Hoppentocht

    Full Text Available Bronchiectasis is a condition characterised by dilated and thick-walled bronchi. The presence of Pseudomonas aeruginosa in bronchiectasis is associated with a higher hospitalisation frequency and a reduced quality of life, requiring frequent and adequate treatment with antibiotics.To assess local tolerability and the pharmacokinetic parameters of inhaled excipient free dry powder tobramycin as free base administered with the Cyclops dry powder inhaler to participants with non-cystic fibrosis bronchiectasis. The free base and absence of excipients reduces the inhaled powder dose.Eight participants in the study were trained in handling the device and inhaling correctly. During drug administration the inspiratory flow curve was recorded. Local tolerability was assessed by spirometry and recording adverse events. Serum samples were collected before, and 15, 30, 45, 60, 75, 90, 105, 120 min; 4, 8 and 12 h after inhalation.Dry powder tobramycin base was well tolerated and mild tobramycin-related cough was reported only once. A good drug dose-serum concentration correlation was obtained. Relatively small inhaled volumes were computed from the recorded flow curves, resulting in presumably substantial deposition in the central airways-i.e., at the site of infection.In this first study of inhaled dry powder tobramycin free base in non-cystic fibrosis bronchiectasis patients, the free base of tobramycin and the administration with the Cyclops dry powder device were well tolerated. Our data support further clinical studies to evaluate safety and efficacy of this compound in this population.

  1. Exploration and Pharmacokinetic Profiling of Phenylalanine Based Carbamates as Novel Substance P 1–7 Analogues

    Science.gov (United States)

    2014-01-01

    The bioactive metabolite of Substance P, the heptapeptide SP1–7 (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), has been shown to attenuate signs of hyperalgesia in diabetic mice, which indicate a possible use of compounds targeting the SP1–7 binding site as analgesics for neuropathic pain. Aiming at the development of drug-like SP1–7 peptidomimetics we have previously reported on the discovery of H-Phe-Phe-NH2 as a high affinity lead compound. Unfortunately, the pharmacophore of this compound was accompanied by a poor pharmacokinetic (PK) profile. Herein, further lead optimization of H-Phe-Phe-NH2 by substituting the N-terminal phenylalanine for a benzylcarbamate group giving a new type of SP1–7 analogues with good binding affinities is reported. Extensive in vitro as well as in vivo PK characterization is presented for this compound. Evaluation of different C-terminal functional groups, i.e., hydroxamic acid, acyl sulfonamide, acyl cyanamide, acyl hydrazine, and oxadiazole, suggested hydroxamic acid as a bioisosteric replacement for the original primary amide. PMID:25516784

  2. Exploration and pharmacokinetic profiling of phenylalanine based carbamates as novel substance p 1-7 analogues.

    Science.gov (United States)

    Fransson, Rebecca; Nordvall, Gunnar; Bylund, Johan; Carlsson-Jonsson, Anna; Kratz, Jadel M; Svensson, Richard; Artursson, Per; Hallberg, Mathias; Sandström, Anja

    2014-12-11

    The bioactive metabolite of Substance P, the heptapeptide SP1-7 (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), has been shown to attenuate signs of hyperalgesia in diabetic mice, which indicate a possible use of compounds targeting the SP1-7 binding site as analgesics for neuropathic pain. Aiming at the development of drug-like SP1-7 peptidomimetics we have previously reported on the discovery of H-Phe-Phe-NH2 as a high affinity lead compound. Unfortunately, the pharmacophore of this compound was accompanied by a poor pharmacokinetic (PK) profile. Herein, further lead optimization of H-Phe-Phe-NH2 by substituting the N-terminal phenylalanine for a benzylcarbamate group giving a new type of SP1-7 analogues with good binding affinities is reported. Extensive in vitro as well as in vivo PK characterization is presented for this compound. Evaluation of different C-terminal functional groups, i.e., hydroxamic acid, acyl sulfonamide, acyl cyanamide, acyl hydrazine, and oxadiazole, suggested hydroxamic acid as a bioisosteric replacement for the original primary amide. PMID:25516784

  3. Effects of Ginkgo biloba extracts on pharmacokinetics and efficacy of atorvastatin based on plasma indices.

    Science.gov (United States)

    Guo, Cheng-Xian; Pei, Qi; Yin, Ji-Ye; Peng, Xiang-Dong; Zhou, Bo-Ting; Zhao, Ying-Chun; Wu, Lan-Xiang; Meng, Xiang-Guang; Wang, Guo; Li, Qing; Ouyang, Dong-Sheng; Liu, Zhao-Qian; Zhang, Wei; Zhou, Hong-Hao

    2012-08-01

    Ginkgo biloba extract (GBE) is one of the most widely used herbal medicines in the world. It is often administered in combination with statins to treat diseases, especially some nervous system disorders. We aimed to investigate the influences of GBE on pharmacokinetics and efficacy of atorvastatin, which are currently unclear. Sixteen volunteers received a single oral dose of 40 mg atorvastatin, followed by a wash-out period of at least 5 days. Then the volunteers took 360 mg GBE daily for 14 days, followed by a single dose of 40 mg atorvastatin. Serial blood samples obtained over a period of 48 h after atorvastatin ingestion were subjected to determination of atorvastatin plasma concentrations and markers of cholesterol synthesis (lathosterol) and cholesterol absorption (sitosterol). With GBE administration, AUC₀₋₄₈, AUC(₀-∞) and C(max) of atorvastatin were reduced by 14.27% (p = 0.005), 10.00% (p = 0.03) and 28.93% (p = 0.002), respectively; Vd/F and CL/F of atorvastatin were increased by 31.95% (p = 0.017) and 6.48% (p = 0.044). After 14 days of treatment, GBE has no significant effects on cholesterol-lowering efficacy of atorvastatin. This study suggests that GBE slightly decreases the plasma atorvastatin concentrations, but has no meaningful effect on the cholesterol-lowering efficacy of atorvastatin. PMID:22381135

  4. Marginal iodide deficiency and thyroid function: Dose-response analysis for quantitative pharmacokinetic modeling

    International Nuclear Information System (INIS)

    Severe iodine deficiency (ID) results in adverse health outcomes and remains a benchmark for understanding the effects of developmental hypothyroidism. The implications of marginal ID, however, remain less well known. The current study examined the relationship between graded levels of ID in rats and serum thyroid hormones, thyroid iodine content, and urinary iodide excretion. The goals of this study were to provide parametric and dose-response information for development of a quantitative model of the thyroid axis. Female Long Evans rats were fed casein-based diets containing varying iodine (I) concentrations for 8 weeks. Diets were created by adding 975, 200, 125, 25, or 0 μg/kg I to the base diet (∼25 μg I/kg chow) to produce 5 nominal I levels, ranging from excess (basal + added I, Treatment 1: 1000 μg I/kg chow) to deficient (Treatment 5: 25 μg I/kg chow). Food intake and body weight were monitored throughout and on 2 consecutive days each week over the 8-week exposure period, animals were placed in metabolism cages to capture urine. Food, water intake, and body weight gain did not differ among treatment groups. Serum T4 was dose-dependently reduced relative to Treatment 1 with significant declines (19 and 48%) at the two lowest I groups, and no significant changes in serum T3 or TSH were detected. Increases in thyroid weight and decreases in thyroidal and urinary iodide content were observed as a function of decreasing I in the diet. Data were compared with predictions from a recently published biologically based dose-response (BBDR) model for ID. Relative to model predictions, female Long Evans rats under the conditions of this study appeared more resilient to low I intake. These results challenge existing models and provide essential information for development of quantitative BBDR models for ID during pregnancy and lactation.

  5. Herb drug interaction: effect of Manix® on pharmacokinetic parameters of pefloxacin in rat model

    Science.gov (United States)

    Odunke, Nduka Sunday; Eleje, Okonta; Christiana, Abba Chika; Peter, Ihekwereme Chibueze; Uchenna, Ekwedigwe; Matthew, Okonta

    2014-01-01

    Objective To evaluate the effect of Manix®, the commonly used polyherbal formulation on pefloxacin pharmacokinetic parameters. Methods Microbiological assay was employed using clinical isolate of Escherichia coli samples from hospitalized patients. Results Manix® altered the bioavailability parameters of pefloxacin as thus, maximal concentration (Cmax) of pefloxacin (0.91±0.31) µg/mL occurred at time to reach maximal concentration (tmax) 4.0 h while in the group that received Manix® alongside pefloxacin Cmax was (0.22±0.08) µg/mL at tmax 1.0 h respectively. The area under curve of pefloxacin alone was (7.83±5.14) µg/h/mL while with Manix® was (2.60±0.08) µg/h/mL. There was a significant difference between Cmax, tmax and area under curve between pefloxacin alone and pefloxacin after Manix® pre-treatment (P<0.05). Conclusions The concurrent use of Manix® and pefloxacin has been found to compromise the therapeutic effectiveness of pefloxacin which could lead to poor clinical outcomes in patients. PMID:25183119

  6. Pharmacokinetic Properties of Cytokines in Their Targeted Delivery Based on Autologous Erythrocyte Pharmacocytes

    Directory of Open Access Journals (Sweden)

    Zhaxybay Zhumadilov

    2014-12-01

    Full Text Available Introduction. Using autologous erythrocytes as drug carriers for targeted delivery of cytokines to the sites of inflammation could potentially provide new opportunities for treatment of patients with purulent diseases. The targeted characteristic of erythrocytes is associated with the nature of purulent inflammation, where a large amount of erythrocytes is phagocytized and drugs encapsulated into the erythrocytes could be easily released. On the other hand, autologous erythrocytes meet all the criteria for the ideal drug carrier. They are nontoxic, not immunogenic, and able to bear a large number of drug molecules while preserving an original conformation of the drugs. Thus, in this study, we aimed to analyze pharmacokinetic profiles of IL-1β encapsulated into erythrocytes’ ghosts (pharmacocytes in comparison to intravenously injected free IL-1β.Material and methods. Albino rats were randomly divided into two groups, each group receiving a different kind of IV injection via the tail vein. Group A (control received 500 µg of free IL-1β, and group B received an injection of 1 ml of pharmacocytes loaded with 500 µg of test substance. At fixed time points after injection (15, 30, 60, 180, 540, 720, and 1,440 minutes serum samples were collected. Homogenates of liver, spleen, lung, heart, kidney, and adipose tissue were obtained 24 hours after injections. Concentration of the tested substance in the collected organs and blood plasma were measured by ELISA. Results. We have observed an increased half-life period (T1/2 for encapsulated IL-1β compared to the control. T1/2 for free IL-1β was one hour, while administration of loaded pharmacocytes allowed the half-life period to increase by more than 15 fold (1,043.40 ± 137.92 min preserving high level of IL-1β activity in the blood samples up to 24 hours. The increased time of IL-1β presence in the body when administered in the form of pharmacocytes could be explained by reduction of

  7. Pharmacokinetics and pharmacodynamics evaluation of a thermosensitive chitosan based hydrogel containing liposomal doxorubicin.

    Science.gov (United States)

    Ren, Shuangxia; Dai, Yu; Li, Cuiyun; Qiu, Zhixia; Wang, Xin; Tian, Fengjie; Zhou, Sufeng; Liu, Qi; Xing, Han; Lu, Yang; Chen, Xijing; Li, Ning

    2016-09-20

    In situ gelling thermosensitive hydrogel formulation has been reported to effectively sustain the release of macromolecules for a long time. However, the low-molecular-weight hydrophilic drugs, such as doxorubicin (DOX), are not suitable for intratumoral injection because the release will complete within one day. In this study, liposomal doxorubicin (LipDOX) was added into the hydrogel to form a novel thermosensitive formulation which prolonged the sustained release of DOX. DOX+C/GP (doxorubicin in chitosan/β-glycerophosphate) was prepared to compare with LipDOX+C/GP (liposomal doxorubicin in chitosan/β-glycerophosphate hydrogel). The particle size of DOX-loaded liposome was 94.2nm and the encapsulation efficiency of DOX was near 98%. In vitro release experiments, the release of DOX in both DOX+C/GP group and LipDOX+C/GP group increased along with the increasing pH of buffers. However, the LipDOX+C/GP group with lower initial burst release had a much longer releasing duration than DOX+C/GP group (21days vs. 24h). In vitro and in vivo antitumor experiments demonstrated that LipDOX+C/GP group had better antineoplastic effect and less toxicity than DOX+C/GP group. Pharmacokinetics study showed LipDOX+C/GP exhibited a higher AUC0-t and longer MRT than DOX+C/GP in blood and tumor, which indicated that LipDOX+C/GP obtained an enhanced antitumor activity compared with DOX+C/GP. In addition, the lower distribution index (the ratio of AUC of normal tissue/AUC of tumor tissue) of the LipDOX+C/GP implied it had lower toxicity to normal tissues than DOX+C/GP. Therefore, the novel thermosensitive hydrogel formulation was potential for clinical application in cancer treatment. PMID:27388491

  8. Methodology developed for the simultaneous measurement of bone formation and bone resorption in rats based on the pharmacokinetics of fluoride.

    Science.gov (United States)

    Lupo, Maela; Brance, Maria Lorena; Fina, Brenda Lorena; Brun, Lucas Ricardo; Rigalli, Alfredo

    2015-01-01

    This paper describes a novel methodology for the simultaneous estimation of bone formation (BF) and resorption (BR) in rats using fluoride as a nonradioactive bone-seeker ion. The pharmacokinetics of flouride have been extensively studied in rats; its constants have all been characterized. This knowledge was the cornerstone for the underlying mathematical model that we used to measure bone fluoride uptake and elimination rate after a dose of fluoride. Bone resorption and formation were estimated by bone fluoride uptake and elimination rate, respectively. ROC analysis showed that sensitivity, specificity and area under the ROC curve were not different from deoxypiridinoline and bone alkaline phosphatase, well-known bone markers. Sprague-Dawley rats with modified bone remodelling (ovariectomy, hyper, and hypocalcic diet, antiresorptive treatment) were used to validate the values obtained with this methodology. The results of BF and BR obtained with this technique were as expected for each biological model. Although the method should be performed under general anesthesia, it has several advantages: simultaneous measurement of BR and BF, low cost, and the use of compounds with no expiration date.

  9. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency.

    Science.gov (United States)

    Calvet, Claudia M; Vieira, Debora F; Choi, Jun Yong; Kellar, Danielle; Cameron, Michael D; Siqueira-Neto, Jair Lage; Gut, Jiri; Johnston, Jonathan B; Lin, Li; Khan, Susan; McKerrow, James H; Roush, William R; Podust, Larissa M

    2014-08-28

    CYP51 is a P450 enzyme involved in the biosynthesis of the sterol components of eukaryotic cell membranes. CYP51 inhibitors have been developed to treat infections caused by fungi, and more recently the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. To specifically optimize drug candidates for T. cruzi CYP51 (TcCYP51), we explored the structure-activity relationship (SAR) of a N-indolyl-oxopyridinyl-4-aminopropanyl-based scaffold originally identified in a target-based screen. This scaffold evolved via medicinal chemistry to yield orally bioavailable leads with potent anti-T. cruzi activity in vivo. Using an animal model of infection with a transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-arylpiperazine analogues by oral bioavailability and potency. The drug-target complexes for both scaffold variants were characterized by X-ray structure analysis. Optimization of both binding mode and pharmacokinetic properties of these compounds led to potent inhibitors against experimental T. cruzi infection. PMID:25101801

  10. Quantitative 2- and 3-dimensional analysis of pharmacokinetic model-derived variables for breast lesions in dynamic, contrast-enhanced MR mammography

    International Nuclear Information System (INIS)

    Purpose: 2- and 3-dimensional evaluation of quantitative pharmacokinetic parameters derived from the Tofts model modeling dynamic contrast enhancement of lesions in MR mammography. Materials and methods: In 95 patients, MR mammography revealed 127 suspicious lesions. The initial rate of enhancement was coded by color intensity, the post-initial enhancement change is coded by color hue. 2D and 3D analysis of distribution of color hue and intensity, vascular permeability and extracellular volume were performed. Results: In 2D, malignant lesions showed significant higher number of bright red, medium red, dark red, bright green, medium green, dark green and bright blue pixels than benign lesions. In 3D, statistical significant differences between malignant and benign lesions was found for all this parameters. Vascular permeability was significant higher in malignant lesions than in benign lesions. Regression model using the 3D data found that the best discriminator between malignant and benign lesions was combined number of voxels and medium green pixels, with a sensitivity of 79.4% and a specificity of 83.1%. Conclusions: Quantitative analysis of pharmacokinetic variables of contrast kinetics showed significant differences between malignant and benign lesions. 3D analysis showed superior diagnostic differentiation between malignant and benign lesions than 2D analysis. The parametric analysis using a pharmacokinetic model allows objective analysis of contrast enhancement in breast lesions

  11. A Bloch-McConnell simulator with pharmacokinetic modeling to explore accuracy and reproducibility in the measurement of hyperpolarized pyruvate

    Science.gov (United States)

    Walker, Christopher M.; Bankson, James A.

    2015-03-01

    Magnetic resonance imaging (MRI) of hyperpolarized (HP) agents has the potential to probe in-vivo metabolism with sensitivity and specificity that was not previously possible. Biological conversion of HP agents specifically for cancer has been shown to correlate to presence of disease, stage and response to therapy. For such metabolic biomarkers derived from MRI of hyperpolarized agents to be clinically impactful, they need to be validated and well characterized. However, imaging of HP substrates is distinct from conventional MRI, due to the non-renewable nature of transient HP magnetization. Moreover, due to current practical limitations in generation and evolution of hyperpolarized agents, it is not feasible to fully experimentally characterize measurement and processing strategies. In this work we use a custom Bloch-McConnell simulator with pharmacokinetic modeling to characterize the performance of specific magnetic resonance spectroscopy sequences over a range of biological conditions. We performed numerical simulations to evaluate the effect of sequence parameters over a range of chemical conversion rates. Each simulation was analyzed repeatedly with the addition of noise in order to determine the accuracy and reproducibility of measurements. Results indicate that under both closed and perfused conditions, acquisition parameters can affect measurements in a tissue dependent manner, suggesting that great care needs to be taken when designing studies involving hyperpolarized agents. More modeling studies will be needed to determine what effect sequence parameters have on more advanced acquisitions and processing methods.

  12. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models.

    Science.gov (United States)

    Dudhani, Rajesh V; Turnidge, John D; Coulthard, Kingsley; Milne, Robert W; Rayner, Craig R; Li, Jian; Nation, Roger L

    2010-03-01

    Colistin is increasingly used as last-line therapy against Gram-negative pathogens. The pharmacokinetic (PK)/pharmacodynamic (PD) index that best correlates with the efficacy of colistin remains undefined. The activity of colistin against three strains of Pseudomonas aeruginosa was studied in neutropenic mouse thigh and lung infection models. The PKs of unbound colistin were determined from single-dose PK studies together with extensive plasma protein binding analyses. Dose-fractionation studies were conducted over 24 h with a dose range of 5 to 160 mg/kg of body weight/day. The bacterial burden in the thigh or lung was measured at 24 h after the initiation of treatment. Relationships between antibacterial effect and measures of exposure to unbound (f) colistin (area under the concentration-time curve [fAUC/MIC], maximum concentration of drug in plasma [fC(max)]/MIC, and the time that the concentration in plasma is greater than the MIC [fT > MIC]) were examined by using an inhibitory sigmoid maximum-effect model. Nonlinearity in the PKs of colistin, including its plasma protein binding, was observed. The PK/PD index that correlated best with its efficacy was fAUC/MIC in both the thigh infection model (R(2) = 87%) and the lung infection model (R(2) = 89%). The fAUC/MIC targets required to achieve 1-log and 2-log kill against the three strains were 15.6 to 22.8 and 27.6 to 36.1, respectively, in the thigh infection model, while the corresponding values were 12.2 to 16.7 and 36.9 to 45.9 in the lung infection model. The findings of this in vivo study indicate the importance of achieving adequate time-averaged exposure to colistin. The results will facilitate efforts to define the more rational design of dosage regimens for humans. PMID:20028824

  13. Physiologically based pharmacokinetics in Drug Development and Regulatory Science: A workshop report (Georgetown University, Washington, DC, May 29–30, 2002)

    OpenAIRE

    Rowland, Malcolm; Balant, Luc; Peck, Carl

    2004-01-01

    A 2-day workshop on “Physiologically Based Pharmacokinetics (PBPK) in Drug Development and Regulatory Science” came to a successful conclusion on May 30, 2002, in Washington, DC. More than 120 international participants from the environmental and predominantly pharmaceutical industries, Food and Drug Administration (FDA), and universities attended this workshop, organized by the Center for Drug Development Science, Georgetown University, Washington, DC. The first of its kind specifically devo...

  14. Fully Bayesian Experimental Design for Pharmacokinetic Studies

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Ryan

    2015-03-01

    Full Text Available Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future dataset drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature, which rapidly obtains samples from the posterior, is importance sampling, using the prior as the importance distribution. However, importance sampling from the prior will tend to break down if there is a reasonable number of experimental observations. In this paper, we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study, which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times that produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.

  15. Pharmacokinetic and nephroprotective benefits of using Schisandra chinensis extracts in a cyclosporine A-based immune-suppressive regime.

    Science.gov (United States)

    Lai, Qiao; Wei, Jiabao; Mahmoodurrahman, Mohammed; Zhang, Chenxue; Quan, Shijian; Li, Tongming; Yu, Yang

    2015-01-01

    Cyclosporine A (CsA) is a powerful immunosuppressive drug. However, nephrotoxicity resulting from its long-term usage has hampered its prolonged therapeutic usage. Schisandra chinensis extracts (SCE) have previously been used in traditional Chinese medicine and more recently coadministered with Western medicine for the treatment of CsA-induced side effects in the People's Republic of China. This study aimed to investigate the possible effects of SCE on the pharmacokinetics of CsA in rats and elucidate the potential mechanisms by which it hinders the development of CsA-induced nephrotoxicity. A liquid chromatography/tandem mass spectrometry method was developed and validated for determining the effect of SCE on the pharmacokinetics of CsA. Male Sprague Dawley rats, which were administered with CsA (25 mg/kg/d) alone or in combination with SCE (54 mg/kg/d and 108 mg/kg/d) for 28 days, were used to evaluate the nephroprotective effects of SCE. Our study showed that SCE increased the mean blood concentration of CsA. Furthermore, we found that the concomitant administration of SCE alongside CsA prevented the disruption of catalase activity and reduction in creatinine, urea, renal malondialdehyde, and glutathione peroxidase levels that would have otherwise occurred in the absence of SCE administration. SCE treatment markedly suppressed the expression of 4-hydroxynonenal, Bcl-2-associated X protein, cleaved caspase 3, and autophagy-related protein LC3 A/B. On the other hand, the expression of heme oxygenase-1, nuclear factor erythroid 2-related factor 2 (Nrf2), and P-glycoprotein was enhanced by the very same addition of SCE. SCE was also able to increase the systemic exposure of CsA in rats. The renoprotective effects of SCE were thought to be mediated by its antiapoptotic and antioxidant abilities, which caused the attenuation of CsA-induced autophagic cell death. All in all, these findings suggest the prospective use of SCE as an effective adjunct in a CsA-based

  16. Pharmacokinetic-pharmacodynamic modeling of the antitumor effect of TM208 and EGFR-TKI resistance in human breast cancer xenograft mice

    Science.gov (United States)

    Ji, Xi-wei; Ji, Shuang-min; Li, Run-tao; Wu, Ke-hua; Zhu, Xiao; Lu, Wei; Zhou, Tian-yan

    2016-01-01

    Aim: The novel anticancer compound TM208 is an EGFR tyrosine kinase inhibitor (EGFR-TKI). Since the development of resistance to EGFR-TKIs is a major challenge in their clinical usage, we investigated the profiles of resistance following continuous treatment with TM208 in human breast cancer xenograft mice, and identified the relationship between the tumor pEGFR levels and tumor growth inhibition. Methods: Female BALB/c nude mice were implanted with human breast cancer MCF-7 cells, and the xenograft mice received TM208 (50 or 150 mg·kg−1·d−1, ig) or vehicle for 18 d. The pharmacokinetics (PK) and pharmacodynamics (PD) of TM208 were evaluated. Results: The PK properties of TM208 were described by a one-compartment model with first-order absorption kinetics. Our study showed the inhibitory effects of TM208 on tumor pEGFR levels gradually reached a maximum effect, after which it became weaker over time, which was characterized by a combined tolerance/indirect response PD model with an estimated EC50 (55.9 μg/L), as well as three parameters ('a' of 27.2%, 'b' of 2730%, 'c' of 0.58 h−1) denoting the maximum, extent and rate of resistance, respectively. The relationship between the tumor pEGFR levels and tumor growth inhibition was characterized by a combined logistic tumor growth/transit compartment model with estimated parameters associated with tumor growth characteristics kng (0.282 day−1), drug potency kTM208 (0.0499 cm3/day) and the kinetics of tumor cell death k1 (0.141 day−1), which provided insight into drug mechanisms and behaviors. Conclusion: The proposed PK/PD model provides a better understanding of the pharmacological properties of TM208 in the treatment of breast cancer. Furthermore, simulation based on a tolerance model allows prediction of the occurrence of resistance. PMID:27133303

  17. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts.

    Directory of Open Access Journals (Sweden)

    Barbara Szymanska

    Full Text Available Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL, or for re-induction post relapse, use a combination of vincristine (VCR, a glucocorticoid, and L-asparaginase (ASP with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX and ASP (VXL against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.

  18. Modeling hepatitis C virus kinetics under therapy using pharmacokinetic and pharmacodynamic information

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, Alan S [Los Alamos National Laboratory; Shudo, Emi [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Mathematical models have proven helpful in analyzing the virological response to antiviral therapy in hepatitis C virus (HCY) infected subjects. Objective: To summarize the uses and limitations of different models for analyzing HCY kinetic data under pegylated interferon therapy. Methods: We formulate mathematical models and fit them by nonlinear least square regression to patient data in order estimate model parameters. We compare the goodness of fit and parameter values estimated by different models statistically. Results/Conclusion: The best model for parameter estimation depends on the availability and the quality of data as well as the therapy used. We also discuss the mathematical models that will be needed to analyze HCV kinetic data from clinical trials with new antiviral drugs.

  19. A new goldfish model to evaluate pharmacokinetic and pharmacodynamic effects of drugs used for motion sickness in different gravity loads

    Science.gov (United States)

    Lathers, Claire M.; Mukai, Chiaki; Smith, Cedric M.; Schraeder, Paul L.

    2001-08-01

    This paper proposes a new goldfish model to predict pharmacodynamic/pharmacokinetic effects of drugs used to treat motion sickness administered in differing gravity loads. The assumption of these experiments is that the vestibular system is dominant in producing motion sickness and that the visual system is secondary or of small import in the production of motion sickness. Studies will evaluate the parameter of gravity and the contribution of vision to the role of the neurovestibular system in the initiation of motion sickness with and without pharmacologic agents. Promethazine will be studied first. A comparison of data obtained in different groups of goldfish will be done (normal vs. acutely and chronically bilaterally blinded vs. sham operated). Some fish will be bilaterally blinded 10 months prior to initiation of the experiment (designated the chronically bilaterally blinded group of goldfish) to evaluate the neuroplasticity of the nervous system and the associated return of neurovestibular function. Data will be obtained under differing gravity loads with and without a pharmacological agent for motion sickness. Experiments will differentiate pharmacological effects on vision vs. neurovestibular input to motion sickness. Comparison of data obtained in the normal fish and in acutely and chronically bilaterally blinded fish with those obtained in fish with intact and denervated otoliths will differentiate if the visual or neurovestibular system is dominant in response to altered gravity and/or drugs. Experiments will contribute to validation of the goldfish as a model for humans since plasticity of the central nervous system allows astronauts to adapt to the altered visual stimulus conditions of 0-g. Space motion sickness may occur until such an adaptation is achieved.

  20. First dose in children: physiological insights into pharmacokinetic scaling approaches and their implications in paediatric drug development

    OpenAIRE

    Strougo, Ashley; Eissing, Thomas; Yassen, Ashraf; Willmann, Stefan; Danhof, Meindert; Freijer, Jan

    2012-01-01

    Dose selection for “first in children” trials often relies on scaling of the pharmacokinetics from adults to children. Commonly used approaches are physiologically-based pharmacokinetic modeling (PBPK) and allometric scaling (AS) in combination with maturation of clearance for early life. In this investigation, a comparison of the two approaches was performed to provide insight into the physiological meaning of AS maturation functions and their interchangeability. The analysis focused on the ...

  1. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    Energy Technology Data Exchange (ETDEWEB)

    Trifilieff, Alexandre; Ethell, Brian T. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); Sykes, David A. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); School of Life Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham, NG7 2UH (United Kingdom); Watson, Kenny J.; Collingwood, Steve [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); Charlton, Steven J. [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom); School of Life Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham, NG7 2UH (United Kingdom); Kent, Toby C., E-mail: tobykent@me.com [Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB (United Kingdom)

    2015-08-15

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1 or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED{sub 50} values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M{sub 2} muscarinic receptor occupancy, which predicted significantly higher M{sub 2} receptor blockade at ED{sub 50} doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED{sub 50} doses for bronchoprotection we model systemic M{sub 2} receptor occupancy. • Glycopyrrolate demonstrates lower M

  2. Determination of robust ocular pharmacokinetic parameters in serum and vitreous humor of albino rabbits following systemic administration of ciprofloxacin from sparse data sets by using IT2S, a population pharmacokinetic modeling program.

    Science.gov (United States)

    Drusano, G L; Liu, W; Perkins, R; Madu, A; Madu, C; Mayers, M; Miller, M H

    1995-08-01

    Robust determination of the concentration-time profile of anti-infective agents in certain specialized compartments is often limited by the inability to obtain more than a single sample from such a site in any one subject. Vitreous humor and cerebrospinal fluid are obvious examples for which the determination of concentrations of anti-infective agents is limited. Advances in pharmacodynamics have pointed out the importance of understanding the profiles of drugs in the plasma and in specialized compartments in order to dose the drugs to obtain the best patient outcomes. Advances in population pharmacokinetic modeling hold the promise of allowing proper estimation of drug penetration into the vitreous (or other specialized compartment) with only a single vitreous sample, in conjunction with plasma sampling. We have developed a rabbit model which allows multiple samples of vitreous to be obtained without breaking down the blood-vitreous barrier. We have employed this model to test the hypothesis that robust estimates of vitreous penetration by the fluoroquinolone ciprofloxacin can be obtained from a traditional intensive plasma sampling set plus a single vitreous sample. We studied 33 rabbits which were receiving 40 mg of ciprofloxacin per kg of body weight intravenously as short infusions and from which multiple plasma and vitreous samples were obtained and assayed for ciprofloxacin content by high-performance liquid chromatography. Data were analyzed by the iterative two-stage population modeling technique (IT2S), employing the iterative two-stage program of Forrest et al. (Antimicrob. Agents Chemother. 37:1065-1072, 1993). Two data sets were analyzed: all plasma and vitreous samples versus all plasma samples and the initially obtained single vitreous sample. The pharmacokinetic parameter values identified were used to calculate the percent vitreous penetration as the ratio of the area under the concentration-time curve for the vitreous to that for the plasma. The

  3. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy

    Science.gov (United States)

    Zhao, Xin; Feng, Zhihua; Ling, Karen K. Y.; Mollin, Anna; Sheedy, Josephine; Yeh, Shirley; Petruska, Janet; Narasimhan, Jana; Dakka, Amal; Welch, Ellen M.; Karp, Gary; Chen, Karen S.; Metzger, Friedrich; Ratni, Hasane; Lotti, Francesco; Tisdale, Sarah; Naryshkin, Nikolai A.; Pellizzoni, Livio; Paushkin, Sergey; Ko, Chien-Ping; Weetall, Marla

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment. PMID:26931466

  4. Exposure reconstruction for reducing uncertainty in risk assessment: example using MTBE biomarkers and a simple pharmacokinetic model.

    Science.gov (United States)

    Pleil, J D; Kim, D; Prah, J D; Rappaport, S M

    2007-01-01

    Adverse health risks from environmental agents are generally related to average (long-term) exposures. Because a given individual's contact with a pollutant is highly variable and dependent on activity patterns, local sources and exposure pathways, simple 'snapshot' measurements of surrounding environmental media may not accurately assign the exposure level. Furthermore, susceptibility to adverse effects from contaminants is considered highly variable in the population so that even similar environmental exposure levels may result in differential health outcomes in different individuals. The use of biomarker measurements coupled to knowledge of rates of uptake, metabolism and elimination has been suggested as a remedy for reducing this type of uncertainty. To demonstrate the utility of such an approach, we invoke results from a series of controlled human exposure tests and classical first-order rate kinetic calculations to estimate how well spot measurements of methyl tertiary butyl ether and the primary metabolite, tertiary butyl alcohol, can be expected to predict different hypothetical scenarios of previous exposures. We found that blood and breath biomarker measurements give similar results and that the biological damping effect of the metabolite production gives more stable estimates of previous exposure. We also explore the value of a potential urinary biomarker, 2-hydroxyisobutyrate suggested in the literature. We find that individual biomarker measurements are a valuable tool in reconstruction of previous exposures and that a simple pharmacokinetic model can identify the time frames over which an exogenous chemical and the related chemical biomarker are useful. These techniques could be applied to broader ranges of environmental contaminants to assess cumulative exposure risks if ADME (Absorption, Distribution, Metabolization and Excretion) is understood and systemic biomarkers can be measured. PMID:17564841

  5. Pretargeted radioimmunotherapy of colorectal cancer metastases: models and pharmacokinetics predict influence of the physical and radiochemical properties of the radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Frampas, Eric; Maurel, Catherine; Remaud-Le Saec, Patricia; Mauxion, Thibault; Faivre-Chauvet, Alain; Davodeau, Francois; Bardies, Manuel; Barbet, Jacques [Universite de Nantes, Inserm, UMR 892, Centre de Recherche en Cancerologie Nantes-Angers (CRCNA), Nantes (France); Goldenberg, David M. [Immunomedics, Inc., Morris Plains, NJ (United States); Center for Molecular Medicine and Immunology, Garden State Cancer Center, Morris Plains, NJ (United States)

    2011-12-15

    We investigated influences of pretargeting variables, tumor location, and radionuclides in pretargeted radioimmunotherapy (PRIT) as well as estimated tumor absorbed doses. LS-174T human colonic carcinoma cells expressing carcinoembryonic antigen (CEA) were inoculated in nude mice. Biodistribution of a bispecific anti-CEA x anti-hapten antibody, TF2, and of a TF2-pretargeted peptide was assessed and a multi-compartment pharmacokinetic model was devised. Tissue absorbed doses were calculated for {sup 131}I, {sup 177}Lu, {sup 90}Y, {sup 211}At, and {sup 213}Bi using realistic specific activities. Under conditions optimized for tumor imaging (10:1 TF2 to peptide molar ratio, interval time 15-24 h), tumor uptake reached {proportional_to}9 ID/g in subcutaneous tumors at 2 h with very low accretion in normal tissues (tumor to blood ratio >20:1 after 2 h). For a low dose of peptide (0.04 nmol), {sup 211}At is predicted to deliver a high absorbed dose to tumors [41.5 Gy considering a relative biologic effect (RBE) of 5], kidneys being dose-limiting. {sup 90}Y and {sup 213}Bi would also deliver high absorbed doses to tumor (18.6 for {sup 90}Y and 26.5 Gy for {sup 213}Bi, taking RBE into account, for 0.1 nmol) and acceptable absorbed doses to kidneys. With hepatic metastases, a twofold higher tumor absorbed dose is expected. Owing to the low activities measured in blood, the bone marrow absorbed dose is expected to be without significant toxicity. Pretargeting achieves high tumor uptake and higher tumor to background ratios compared to direct RIT. Short-lived radionuclides are predicted to deliver high tumor absorbed doses especially {sup 211}At, with kidneys being the dose-limiting organ. {sup 177}Lu and {sup 131}I should be considered for repeated injections. (orig.)

  6. Development and Evaluation of a Gentamicin Pharmacokinetic Model That Facilitates Opportunistic Gentamicin Therapeutic Drug Monitoring in Neonates and Infants.

    Science.gov (United States)

    Germovsek, Eva; Kent, Alison; Metsvaht, Tuuli; Lutsar, Irja; Klein, Nigel; Turner, Mark A; Sharland, Mike; Nielsen, Elisabet I; Heath, Paul T; Standing, Joseph F

    2016-08-01

    Trough gentamicin therapeutic drug monitoring (TDM) is time-consuming, disruptive to neonatal clinical care, and a patient safety issue. Bayesian models could allow TDM to be performed opportunistically at the time of routine blood tests. This study aimed to develop and prospectively evaluate a new gentamicin model and a novel Bayesian computer tool (neoGent) for TDM use in neonatal intensive care. We also evaluated model performance for predicting peak concentrations and the area under the concentration-time curve from time 0 h to time t h (AUC0- t). A pharmacokinetic meta-analysis was performed on pooled data from three studies (1,325 concentrations from 205 patients). A 3-compartment model was used with the following covariates: allometric weight scaling, postmenstrual and postnatal age, and serum creatinine concentration. Final parameter estimates (standard errors) were as follows: clearance, 6.2 (0.3) liters/h/70 kg of body weight; central volume (V), 26.5 (0.6) liters/70 kg; intercompartmental disposition (Q), 2.2 (0.3) liters/h/70 kg; peripheral volume V2, 21.2 (1.5) liters/70 kg; intercompartmental disposition (Q2), 0.3 (0.05) liters/h/70 kg; peripheral volume V3, 148 (52.0) liters/70 kg. The model's ability to predict trough concentrations from an opportunistic sample was evaluated in a prospective observational cohort study that included data from 163 patients and 483 concentrations collected in five hospitals. Unbiased trough predictions were obtained; the median (95% confidence interval [CI]) prediction error was 0.0004 (-1.07, 0.84) mg/liter. Results also showed that peaks and AUC0- t values could be predicted (from one randomly selected sample) with little bias but relative imprecision, with median (95% CI) prediction errors being 0.16 (-4.76, 5.01) mg/liter and 10.8 (-24.9, 62.2) mg · h/liter, respectively. neoGent was implemented in R/NONMEM and in the freely available TDMx software. PMID:27270281

  7. Bioavailability, Pharmacokinetics and Tissue Distribution of P57AS3 (P57) from Hoodia gordonii Mouse Model

    Science.gov (United States)

    P57AS3, an oxypregnane steroidal glycoside (P57) is known to be responsible for the diet suppressing activity of Hoodia gordonii, a dietary supplement used for weight loss. In this study, bioavailability, pharmacokinetics and tissue distribution of P57 was determined in CD1 female mice after adminis...

  8. Pharmacokinetics of human recombinant tissue-type plasminogen activator, administered intra-abdominally, in a rat peritonitis model

    NARCIS (Netherlands)

    van Goor, Harry; Bom, VJJ; van der Meer, J; Sluiter, WJ; Geerards, S; de Graaf, JS; Bleichrodt, RP; van der Schaaf, W

    1996-01-01

    Human recombinant tissue-type plasminogen activator (rtPA), administered intraperitoneally, may promote intraabdominal fibrinolysis in peritonitis, thereby preventing adhesion and abscess formation. The pharmacokinetics of a single intraperitoneal dose of 0.5 or 2.0 mg/ml human rtPA were assessed in

  9. The Use of Spreadsheets for Pharmacokinetic Simulations

    Directory of Open Access Journals (Sweden)

    Joseph Chamberlain

    2003-01-01

    Full Text Available The use of simple spreadsheets is described to create simulations of complex pharmacokinetic phenomena. The basics of spreadsheets are first described and are developed to demonstrate classical pharmacokinetics without the use of differential or integral calculus. Using standard spreadsheet commands, the technique is shown to be applicable to the full range of advanced pharmacokinetic simulations. Demonstrations of the effect of a variety of physiological eventualities are included to show the versatility of the technique. The technique is very simple to use and is always in the complete control of the modeller.

  10. Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part I: Program Implementation and Lessons Learned

    Directory of Open Access Journals (Sweden)

    David C. Dorman

    2012-01-01

    Full Text Available Concerns have been raised regarding environmental manganese exposure since high exposures have been associated with neurological disorders. The USA Environmental Protection Agency most recent human health risk assessment of inhaled manganese conducted in 1993 identified specific areas of uncertainty regarding manganese pharmacokinetics. This led to the development of a test rule under the USA Clean Air Act that required the generation of pharmacokinetic information on the inorganic manganese combustion products of the organometallic fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT. The Alternative Tier 2 testing program for MMT, described in this paper, has yielded substantial pharmacokinetic data and has enabled the generation of physiologically based pharmacokinetic (PBPK models for manganese. These models are capable of predicting tissue manganese concentrations across a variety of dose routes, levels, and durations while accounting for factors such as age, gender, and reproductive status, enabling the consideration of tissue dosimetry in future risk assessments.

  11. Population pharmacokinetic modeling of a subcutaneous depot for GnRH antagonist degarelix

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Nielsen, Henrik Aalborg;

    -concentration dependent absorption. Methods. The PK analysis is made in NONMEM through joint analysis of data from two phase I clinical studies; an intravenous infusion study and a single SC dose escalation study. The SC absorption is modeled using an approximation to Ficks' second law of diffusion out of a spherical...

  12. Pharmacokinetics in patients with chronic liver disease and hepatic safety of incretin-based therapies for the management of type 2 diabetes mellitus.

    Science.gov (United States)

    Scheen, André J

    2014-09-01

    Patients with type 2 diabetes mellitus have an increased risk of chronic liver disease (CLD) such as non-alcoholic fatty liver disease and steatohepatitis, and about one-third of cirrhotic patients have diabetes. However, the use of several antidiabetic agents, such as metformin and sulphonylureas, may be a concern in case of hepatic impairment (HI). New glucose-lowering agents targeting the incretin system are increasingly used for the management of type 2 diabetes. Incretin-based therapies comprise oral inhibitors of dipeptidyl peptidase-4 (DPP-4) (gliptins) or injectable glucagon-like peptide-1 (GLP-1) receptor agonists. This narrative review summarises the available data regarding the use of both incretin-based therapies in patients with HI. In contrast to old glucose-lowering agents, they were evaluated in specifically designed acute pharmacokinetic studies in patients with various degrees of HI and their hepatic safety was carefully analysed in large clinical trials. Only mild changes in pharmacokinetic characteristics of DPP-4 inhibitors were observed in patients with different degrees of HI, presumably without major clinical relevance. GLP-1 receptor agonists have a renal excretion rather than liver metabolism. Specific pharmacokinetic data in patients with HI are only available for liraglutide. No significant changes in liver enzymes were reported with DPP-4 inhibitors or GLP-1 receptor agonists, alone or in combination with various other glucose-lowering agents, in clinical trials up to 2 years in length. On the contrary, preliminary data suggested that incretin-based therapies may be beneficial in patients with CLD, more particularly in the presence of non-alcoholic fatty liver disease. Nevertheless, caution should be recommended, especially in patients with advanced cirrhosis, because of a lack of clinical experience with incretin-based therapies in these vulnerable patients.

  13. Pharmacokinetics of ricobendazole in calves.

    Science.gov (United States)

    Formentini, E A; Mestorino, O N; Mariño, E L; Errecalde, J O

    2001-06-01

    The pharmacokinetics of ricobendazole (RBZ) and its major metabolite albendazole sulphone (ABZSO2) were studied in six calves, after administration of RBZ (7.5 mg/kg), using a 10% experimental solution by the intravenous (i.v.) route, a 10% commercial solution by the subcutaneous (s.c.) route, and a 10% experimental suspension by the intraruminal (i.r.) route. Blood samples were drawn during a 60-h period. Plasma drug and metabolite concentrations were determined by HPLC. The pharmacokinetic evaluation in each case was prepared by weighted least-squares nonlinear regression analysis. Ricobendazole i.v. data were best fitted by a two-compartment model. The best pharmacokinetic exponents and coefficients were estimated, and the pharmacokinetic variables for RBZ and ABZSO2 were calculated from them. Similar patterns of plasma disposition were found for RBZ after i.r. and s.c. administration, suggesting delayed release from the s.c. site resembling the slow release of the drug from the rumen. PMID:11442798

  14. Myotoxicity of Gemfibrozil in Cynomolgus Monkey Model and Its Relationship to Pharmacokinetic Properties

    OpenAIRE

    Liu, Aiming; Xie, Shuilin; Sun, He; Frank J. Gonzalez; Wei, Xiaoxiong; Dai, Renke

    2008-01-01

    Fibrate drugs are PPARα agonists prescribed for the treatment of dyslipidemia. Severe myotoxicity has been reported associated with their use albeit at a low frequency, especially for gemfibrozil. Few studies have investigated the mechanism of fibrate-induced myotoxicity in vivo. Considering the apparent species-related differences in PPARα agonist-induced hepatotoxicity, we studied the myotoxicity of gemfibrozil in a Cynomolgus monkey model and explored the relationship between myotoxicity a...

  15. Gadolinium MRI Contrast Agents Based on Triazine Dendrimers: Relaxivity and In Vivo Pharmacokinetics

    OpenAIRE

    Lim, Jongdoo; Turkbey, Baris; Bernardo, Marcelino; Bryant, L. Henry; Garzoni, Matteo; Pavan, Giovanni M.; Nakajima, Takahito; Choyke, Peter L; Simanek, Eric E; Kobayashi, Hisataka

    2012-01-01

    Four gadolinium (Gd)-based macromolecular contrast agents, G3-(Gd-DOTA)24, G5-(Gd-DOTA)96, G3-(Gd-DTPA)24, and G5-(Gd-DTPA)96, were prepared that varied in the size of dendrimer (generation three and five), the type of chelate group (DTPA or DOTA), and the theoretical number of metallated chelates (24 and 96). Synthesis relied on a dichlorotriazine derivatized with a DOTA or DTPA ligand that was incorporated into the dendrimer and ultimately metallated with Gd ions. Paramagnetic characteristi...

  16. Pharmacokinetics of paracetamol (Perfalgan®) following different infusion protocols in a porcine model

    OpenAIRE

    Sheikh, Sohail Ahmed

    2008-01-01

    Introduction: Perfalgan® is a newly developed; direct inject able form of paracetamol. The recommended infusion rate for Perfalgan® is 1g over 15 minutes. This recommendation is based on the rationale that paracetamol acts centrally and to achieve an efficacious cerebrospinal fluid (CSF) level of paracetamol a high gradient between plasma and liquor is essential. Aim of the trial: Aim of the present investigation was to evaluate, ...

  17. Compartmental analysis, imaging techniques and population pharmacokinetic. Experiences at CENTIS

    International Nuclear Information System (INIS)

    Introduction: In pharmacokinetic evaluation small rodents are used in a large extend. Traditional pharmacokinetic evaluations by the two steps approach can be replaced by the sparse data design which may also represent a complicated situation to evaluate satisfactorily from the statistical point of view. In this presentation different situations of sparse data sampling are analyzed based on practical consideration. Non linear mixed effect model was selected in order to estimate pharmacokinetic parameters in simulated data from real experimental results using blood sampling and imaging procedures. Materials and methods: Different scenarios representing several experimental designs of incomplete individual profiles were evaluated. Data sets were simulated based on real data from previous experiments. In all cases three to five blood samples were considered per time point. A combination of compartmental analysis with tumor uptake obtained by gammagraphy of radiolabeled drugs is also evaluated.All pharmacokinetic profiles were analyzed by means of MONOLIX software version 4.2.3. Results: All sampling schedules yield the same results when computed using the MONOLIX software and the SAEM algorithm. Population and individual pharmacokinetic parameters were accurately estimated with three or five determination per sampling point. According with the used methodology and software tool, it can be an expected result, but demonstrating the method performance in such situations, allow us to select a more flexible design using a very small number of animals in preclinical research. The combination with imaging procedures also allows us to construct a completely structured compartmental analysis. Results of real experiments are presented demonstrating the versatility of used methodology in different evaluations. The same sampling approach can be considered in phase I or II clinical trials. (author)

  18. Combined use of pharmacokinetic modeling and a steady-state delivery approach allows early assessment of IkappaB kinase-2 (IKK-2) target safety and efficacy.

    Science.gov (United States)

    Chiang, Po-Chang; Kishore, Nandini N; Thompson, David C

    2010-03-01

    NF-kappaB activation is clearly linked to the pathogenesis of multiple inflammatory diseases including arthritis. The prominent role of IkappaB kinase-2 (IKK-2) in regulating NF-kappaB signaling in response to proinflammatory stimuli has made IKK-2 a primary anti-inflammation therapeutic target. PHA-408, a potent and selective IKK-2 inhibitor, was identified internally and used for our studies to assess this target. In early in vivo studies, PHA-408 demonstrated efficacy at high doses; however, the correlation between PHA-408 exposure and efficacy could not be established using standard dosing paradigms for the rat disease models. Similar concerns arose from early in vivo safety studies where appropriate NOAEL margins were not achieved. Following a full investigation of the physicochemical properties of the molecule and pharmacokinetic modeling, an oral steady-state delivery strategy was designed to administer PHA-408 to the rat for both efficacy and safety studies. Using this steady-state delivery, a clear dose-response relationship was established between plasma concentrations of PHA-408 and efficacy in the rat arthritis model. The same steady-state delivery approach was used to demonstrate the target safety. In summary, a combination of pharmacokinetic modeling with a steady-state delivery approach allowed us to establish confidence in both the mechanism and safety of the target.

  19. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo;

    2015-01-01

    to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...

  20. Exploratory Pharmacokinetics of Geniposide in Rat Model of Cerebral Ischemia Orally Administered with or without Baicalin and/or Berberine

    OpenAIRE

    Linmei Pan; Wenzhe Wang; Feiyan Shi; Jing Zhou; Meng Zhang; Huaxu Zhu; Mingfei Zeng

    2013-01-01

    Huang-Lian-Jie-Du-Tang (HLJDT), a classical Chinese prescription, has been clinically employed to treat cerebral ischemia for thousands of years. Geniposide is the major active ingredient in HLJDT. The aim is to investigate the comparative evaluations on pharmacokinetics of geniposide in MCAO rats in pure geniposide, geniposide : berberine, and geniposide : berberine : baicalin. Obviously, the proportions of geniposide : berberine, geniposide : baicalin, and geniposide : berberine : baicalin ...

  1. Pharmacokinetics and modeling of immune cell trafficking: quantifying differential influences of target tissues versus lymphocytes in SJL and lipopolysaccharide-treated mice

    Directory of Open Access Journals (Sweden)

    Banks William A

    2012-10-01

    Full Text Available Abstract Background Immune cell trafficking into the CNS and other tissues plays important roles in health and disease. Rapid quantitative methods are not available that could be used to study many of the dynamic aspects of immune cell-tissue interactions. Methods We used pharmacokinetics and modeling to quantify and characterize the trafficking of radioactively labeled lymphocytes into brain and peripheral tissues. We used variance from two-way ANOVAs with 2 × 2 experimental designs to model the relative influences of lymphocytes and target tissues in trafficking. Results We found that in male CD-1 mice, about 1 in 5,000 intravenously injected lymphocytes entered each gram of brain. Uptake by brain was 2 to 3 times higher in naïve SJL females, but uptake by spleen and clearance from blood was lower, demonstrating a dichotomy in immune cell distribution. Treatment of CD-1 mice with lipopolysaccharide (LPS increased immune cell uptake into brain but decreased uptake by spleen and axillary nodes. Conclusions Differences in brain uptake and in uptake by spleen between SJL and CD-1 mice were primarily determined by lymphocytes, whereas differences in uptake with LPS were primarily determined by lymphocytes for the brain but by the tissues for the spleen and the axillary lymph node. These results show that immune cells normally enter the CNS and that tissues and immune cells interact in ways that can be quantified by pharmacokinetic models.

  2. Pharmacokinetics of fexofenadine

    DEFF Research Database (Denmark)

    Lappin, Graham; Shishikura, Yoko; Jochemsen, Roeline;

    2010-01-01

    A human pharmacokinetic study was performed to assess the ability of a microdose to predict the pharmacokinetics of a therapeutic dose of fexofenadine and to determine its absolute oral bioavailability. Fexofenadine was chosen to represent an unmetabolized transporter substrate (P-gP and OATP). F...

  3. Pharmacokinetics of Aminoglycosides

    Institute of Scientific and Technical Information of China (English)

    Lokangu Lombo(Congo); HE Hua

    2004-01-01

    The Pharmacokinetics informations of aminoglycosides, their monograph and clinical Pharmacokinetics parameters are reported in this review. The Aminoglycosides are highly polarity and in reserve for serious infections caused by aerobic gram-negative bacteria and some gram-positive bacteria but their toxicity are major limitations in clinical use.

  4. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy.

  5. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy. PMID:26886341

  6. Model-based geostatistics

    CERN Document Server

    Diggle, Peter J

    2007-01-01

    Model-based geostatistics refers to the application of general statistical principles of modeling and inference to geostatistical problems. This volume provides a treatment of model-based geostatistics and emphasizes on statistical methods and applications. It also features analyses of datasets from a range of scientific contexts.

  7. Pharmacokinetics and PBPK Models

    Energy Technology Data Exchange (ETDEWEB)

    Corley, Richard A.

    2010-07-01

    Since the landmark report Pesticides in the Diets of Infants and Children (NRC 1993), children at all stages of development, from fertilization through postnatal maturation, have explicitly been identified as an area of emphasis in human health risk assessments. Exposure to drugs or chemicals at any point in development has the potential for causing irreversible changes that can be unique to each stage of development (Grabowski and Daston 1983; Rodier 1978; Wilson 1973). While exposures of a developing embryo or fetus are mediated by the mother, postnatal exposures consist of maternal influences via breastfeeding as well as environmental factors (Figure 1). As a result, risk assessments for developmental toxicity must consider the sources as well as timing of potential exposures to adequately protect children when they may be the most exposed or the most sensitive to adverse consequences (NRC 1993).

  8. Pharmacokinetics and clinical use of incretin-based therapies in patients with chronic kidney disease and type 2 diabetes.

    Science.gov (United States)

    Scheen, André J

    2015-01-01

    The prevalence of chronic kidney disease (CKD) of stages 3-5 (glomerular filtration rate [GFR] <60 mL/min) is about 25-30 % in patients with type 2 diabetes mellitus (T2DM). While most oral antidiabetic agents have limitations in patients with CKD, incretin-based therapies are increasingly used for the management of T2DM. This review analyses (1) the influence of CKD on the pharmacokinetics of dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists; and (2) the efficacy/safety profile of these agents in clinical practice when prescribed in patients with both T2DM and CKD. Most DPP-4 inhibitors (sitagliptin, vildagliptin, saxagliptin, alogliptin) are predominantly excreted by the kidneys. Thereby, pharmacokinetic studies showed that total exposure to the drug is increased in proportion to the decline of GFR, leading to recommendations for appropriate dose reductions according to the severity of CKD. In these conditions, clinical studies reported a good efficacy and safety profile in patients with CKD. In contrast, linagliptin is eliminated by a predominantly hepatobiliary route. As a pharmacokinetic study showed only minimal influence of decreased GFR on total exposure, no dose adjustment of linagliptin is required in the case of CKD. The experience with GLP-1 receptor agonists in patients with CKD is more limited. Exenatide is eliminated by renal mechanisms and should not be given in patients with severe CKD. Liraglutide is not eliminated by the kidney, but it should be used with caution because of the limited experience in patients with CKD. Only limited pharmacokinetic data are also available for lixisenatide, exenatide long-acting release (LAR) and other once-weekly GLP-1 receptor agonists in current development. Several case reports of acute renal failure have been described with GLP-1 receptor agonists, probably triggered by dehydration resulting from gastrointestinal adverse events. However, increasing GLP-1 may

  9. Pharmacokinetics of Cannabinoids

    Directory of Open Access Journals (Sweden)

    Iain J McGilveray

    2005-01-01

    Full Text Available Delta-9-tetrahydrocannabinol (Δ-9-THC is the main psychoactive ingredient of cannabis (marijuana. The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC and nabilone. The variability of THC in plant material (0.3% to 30% leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level of 152±86.3 ng/mL occured approximately 10 min after inhalation. Oral THC, on the other hand, is only 4% to 12% bioavailable and absorption is highly variable. THC is eliminated from plasma in a multiphasic manner, with low amounts detectable for over one week after dosing. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20% and 100% of parent, respectively. THC is widely distributed, particularly to fatty tissues, but less than 1% of an administered dose reaches the brain, while the spleen and body fat are long-term storage sites. The elimination of THC and its many metabolites (from all routes occurs via the feces and urine. Metabolites persist in the urine and feces for severalweeks. Nabilone is well absorbed and the pharmacokinetics, although variable, appear to be linear from oral doses of 1 mg to 4 mg (these doses show a plasma elimination half-life of approximately 2 h. As with THC, there is a high first-pass effect, and the feces to urine ratio of excretion is similar to other cannabinoids. Pharmacokineticpharmacodynamic modelling with plasma THC versus cardiac and psychotropic effects show that after equilibrium is reached, the intensity of effect is proportional to the plasma THC profile. Clinical trials have found that nabilone produces less tachycardia and less euphoria than THC for a similar antiemetic response.

  10. Pharmacokinetics of mitragynine in man

    Directory of Open Access Journals (Sweden)

    Trakulsrichai S

    2015-04-01

    the study without adverse reactions. The median duration of abuse was 1.75 years. We analyzed one subject separately due to the abnormal behavior of blood concentration. From data of nine subjects, the pharmacokinetic parameters established were time to reach the maximum plasma concentration (0.83±0.35 hour, terminal half-life (23.24±16.07 hours, and the apparent volume of distribution (38.04±24.32 L/kg. The urine excretion of unchanged form was 0.14%. The pharmacokinetics were observed to be oral two-compartment model. Conclusion: This was the first pharmacokinetic study in humans, which demonstrated linearity and was consistent with the oral two-compartment model with a terminal half-life of about 1 day. The pharmacokinetic linearity and parameters reported are necessary pharmacological information of Kratom, and there is a possibility for it to be developed medically as a pain killer or better opioid substitute in the future. Keywords: kratom, human, pharmacokinetics

  11. Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model for aldicarb and its metabolites in rats and human using exposure-related dose Estimating Model (ERDEM)%应用ERDEM模型为涕灭威及其代谢物构建大鼠和人的PBPK/PD模型研究

    Institute of Scientific and Technical Information of China (English)

    巢迎妍; 张辉; 张晓菲

    2012-01-01

    Objective To construct the PBPK/PD models for aldicarb in rats and humans to help understandits disposition in both species in order to use the models for risk assessment purposes due to aldicarb exposure. MethodsThe PBPK/PD models were constructed using the ERDEM ( Exposure-related dose estimating model ) platform. Themodel structures for both species included a full gastrointestinal compartment, liver metabolism, urinary excretion, fecalelimination,and bimolecular acetylcholinesterase ( AChE ) inhibition by aldicarb and its two oxidized metabolites, aldi-carb sulfoxide and aldicarb sulfone. Experimentally reported values or estimation of physiological, biochemical, and physicochemical parameters were obtained from the open literature or optimized by fitting to the experimental data. Results The rat model simulation of oral exposure of 0. 4 mg/kg aldicarb indicated that aldicarb had an overall half-life of 1. 35 h,and 96. 6% of the dose was excreted in urine compared to the measured 91. 6% at 144 h after oral exposure. AChE activity in blood was inhibited to 31 % of the control level at 0. 35 h in the rat model compared to the measured 42. 5% at 0. 5 h after oral exposure of 0. 33 mg/kg aldicarb. In the human model,the simulation showed that the minimum blood AChE activity was 76. 9% at 1 h compared to the measured 75. 3% after a 0. 05 mg/kg dose of aldicarb. Conclusion The ERDEM model simulations for both species were consistent with the experimental data. Therefore, the models constructed in the ERDEM platform may be helpful in evaluating human health risk due to aldicarb exposure.%目的 为构建涕灭威在大鼠和人的生理药代动力学/药效学(PBPK/PD)模型,以进一步了解涕灭威在两物种体内的转化过程,从而用于其风险评估.方法 采用暴露相关的剂量估算模型(Exposure-related dose estimating model,ERDEM)的构建平台进行模型构建.两个物种的模型结构均包括完整的胃肠道、肝脏代谢、尿排泄

  12. Population pharmacokinetic/pharmacodynamic (PK/PD) modelling of the hypothalamic-pituitary-gonadal axis following treatment with GnRH analogues

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Senderovitz, Thomas;

    2007-01-01

    Aims To develop a population pharmacokinetic/pharmacodynamic (PK/PD) model of the hypothalamic-pituitary-gonadal (HPG) axis describing the changes in luteinizing hormone (LH) and testosterone concentrations following treatment with the gonadotropin-releasing hormone (GnRH) agonist triptorelin...... for the population PK/PD data analysis. A systematic population PK/PD model-building framework using stochastic differential equations was applied to the data to identify nonlinear dynamic dependencies and to deconvolve the functional feedback interactions of the HPG axis. Results In our final PK/PD model of the HPG...... axis, the half-life of LH was estimated to be 1.3 h and that of testosterone 7.69 h, which corresponds well with literature values. The estimated potency of LH with respect to testosterone secretion was 5.18 IU l-1, with a maximal stimulation of 77.5 times basal testosterone production. The estimated...

  13. Lisdexamfetamine: A pharmacokinetic review.

    Science.gov (United States)

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice.

  14. Population pharmacokinetics of propofol in Chinese patients

    Institute of Scientific and Technical Information of China (English)

    LIYu-Hong; RUIJian-Zhong; ZHOUYong-Gang; WANGLi-Qin; FUSu-E; YANGJian-Jun; LIuFu-Kun; HUShu-Ya; WENQuan; XUJian-Guo

    2003-01-01

    AIM:To analyze population pharmacokinetics of propofol in Chinese surgical patients using a nonlinear mixedeffect model (NONMEM) program and to quantitate the effects of covariance of gender, age, and body weight. METHODS: The population pharmacokinetics of propofol was investigated in 76 selective surgical patients (37 males and 39 females aged 19-77a, weighing 39-86kg). A total of 1439 blood samples were analyzed using NONMEM(NONMEM Projeft Group, University of California, San Francisco, CA). Interindividual variability was estimated fro clearances and distribution volumes. The effects of age, body weight, and gender were in vestigated. RESULTS: The pharmacokinetics of propofol in Chinese patients was best described by a three-compartment pharmacokinetic model. Body weight was found to be a significant factor for the elimination clearance, the two inter-compartmental clearances, and the volume of the central compartment. The volumes of the shallow peripheral compartment and deep peripheral compartment remain constant for all individuals. The estimates of these parameters for a 60-kg adult were 1.56L/min, 0.737L/min, 0.360L/min, 12.1L, 43L, and 213L, respectively. For old patients, the elimination clearance and volume of the central compartment decreased. CONCLUSION:The pharmacokinetics of propofol in Chinese patients can be well described by a standard three-compartment pharmacokinetic model. Inclusion of age and body weight as covariances significantly improved the model. Adjusting pharmacokinetics to the individual patients should improve the precision of target-controlled infusion system.

  15. Allometric scaling of marbofloxacin pharmacokinetics: a retrospective analysis.

    Science.gov (United States)

    Yohannes, S; Hossain, Md Akil; Kim, J Y; Lee, S J; Kwak, D M; Suh, J W; Park, S C

    2014-01-01

    The association between physiologically dependent pharmacokinetic parameters (CL(B), T1/2beta, Vd(ss)) of marbofloxacin and body weight was studied in eight animal species based on allometric equation Y = aWb, where 'Y' is the pharmacokinetic parameter, 'W' is body weight, 'a' is allometric coefficient (intercept) and 'b' is the exponent that describes relation between pharmacokinetic parameter and body weight. The body clearance of marbofloxacin has shown significant (P marbofloxacin in animal species that have not been studied yet. However further study considering large sample size and other parameters influencing pharmacokinetics of marbofloxacin is recommended.

  16. Development of a paediatric population pharmacokinetic model for valacyclovir from literature non-compartmental values originating from sparse studies and Bayesian priors: a simulation study.

    Science.gov (United States)

    Kechagia, Irene-Ariadne; Dokoumetzidis, Aristides

    2015-06-01

    A preliminary population pharmacokinetic (PopPK) model of valacyclovir in children was developed from non-compartmental analysis (NCA) parameter values from literature, including several age groups, combined with Bayesian priors from a PopPK model of acyclovir, the active metabolite of valacyclovir, from literature too. Also a simulation study was carried out to evaluate the performance of various modelling choices related to the estimation of model parameters from NCA parameters originating from sparse PK studies. Assuming a one-compartment model with first order absorption, a mixed effects, meta-analysis approach was utilized which allows accounting the random intergroup variability, the detection of covariates and the application of informative Bayesian priors on the parameters. The conclusions from the simulation study calculating bias and precision for various cases, were that a model which takes explicitly into account the sampling schedule, performs better than a model using the theoretical expressions of calculating the NCA parameters. Also by using the geometric rather than the arithmetic means of NCA parameters, less biased results are obtained. These findings guided the choices for the valacyclovir model, for which informative priors from a PopPK model of acyclovir were applied for some of the parameters, in order to include a richer covariate model for clearance, not supported by the NCA dataset and a value for bioavailability. This preliminary valacyclovir model can be used in simulations to provide dosage recommendations for children of various ages and to help design more efficiently prospective clinical trials. PMID:25821006

  17. An adaptive extended Kalman filter for fluorescence diffuse optical tomography of tumor pharmacokinetics

    Science.gov (United States)

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Limin; Gao, Feng; Zhao, Huijuan

    2014-03-01

    According to the morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic-rate images of fluorophore can provide diagnostic information for tumor differentiation, and especially have the potential for staging of tumors. In this paper, fluorescence diffuse optical tomography method is firstly used to acquire metabolism-related time-course images of the fluorophore concentration. Based on a two-compartment model comprised of plasma and extracelluar-extravascular space, we next propose an adaptive-EKF framework to estimate the pharmacokinetic-rate images. With the aid of a forgetting factor, the adaptive-EKF compensate the inaccuracy initial values and emphasize the effect of the current data in order to realize a better online estimation compared with the conventional EKF. We use simulate data to evaluate the performance of the proposed methodology. The results suggest that the adaptive-EKF can obtain preferable pharmacokinetic-rate images than the conventional EKF with higher quantitativeness and noise robustness.

  18. Pharmacokinetic modelling of N-(4-[18F]fluorobenzoyl)interleukin-2 binding to activated lymphocytes in an xenograft model of inflammation

    International Nuclear Information System (INIS)

    N-(4-[18F]Fluorobenzoyl)interleukin-2 ([18F]FB-IL2) specifically binds to interleukin-2 receptors (IL-2R) and thus may be used to detect inflammation processes using positron emission tomography (PET). We now validated whether [18F]FB-IL2 can be used to quantify activated human peripheral blood mononuclear cells (hPBMC) in rats by pharmacokinetic modelling. Eleven Wistar rats were subcutaneously inoculated in the shoulder with different amounts of phytohaemagglutinin (PHA) activated hPBMC 15 min before i.v. injection of [18F]FB-IL2. A 60-min dynamic PET scan was acquired and arterial blood sampling and metabolite analysis were performed. At the end of the scan, animals were terminated and the inflammatory lesion dissected. PET data were analysed using Logan and Patlak analysis as well as one-tissue and two-tissue compartment models. Model preferences according to the Akaike information criterion (AIC) and correlation between PET measurements and the number of CD25-positive cells were evaluated. A high correlation between ex vivo tracer uptake (standardized uptake value) in the xenograft and the number of inoculated CD25-positive cells was observed (R 2 = 0.90). Plasma time-activity curves showed a rapid washout of the radiopharmaceutical from blood, while the time-activity curves of the inflammatory lesions showed slower washout. Time-activity curves could be fitted well by the Logan analysis method, indicating that the binding between [18F]FB-IL2 and CD25 is reversible. AIC indicated that data could be modelled best by a two-tissue reversible compartment model. A high correlation was observed between the binding potential and the number of CD25-positive cells (R 2 = 0.876, p 18F]FB-IL2 kinetics in this animal model of inflammation could be best described by a reversible two-tissue compartment model. The [18F]FB-IL2 binding potential is a suitable measure for accurate quantification of lymphocytic infiltration in pathological conditions with PET. (orig.)

  19. Physiologically Based Models in Regulatory Submissions: Output From the ABPI/MHRA Forum on Physiologically Based Modeling and Simulation.

    Science.gov (United States)

    Shepard, T; Scott, G; Cole, S; Nordmark, A; Bouzom, F

    2015-04-01

    Under the remit of the Ministerial Industry Strategy Group (MISG), the Association of the British Pharmaceutical Industry (ABPI) and Medicines and Healthcare products Regulatory Agency (MHRA) hosted a meeting to explore physiologically based pharmacokinetic modeling and simulation, focusing on the clinical component of regulatory applications. The meeting took place on 30 June 2014 with international representatives from industry, academia, and regulatory agencies. Discussion topics were selected to be complementary to those discussed at an earlier US Food and Drug Administration (FDA) meeting. This report summarizes the meeting outcomes, focusing on the European regulatory perspective. PMID:26225245

  20. Pharmacokinetics of [{sup 18}F]flutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Snellman, Anniina; Lopez-Picon, Francisco R.; Haaparanta-Solin, Merja [University of Turku, MediCity/PET Preclinical Laboratory, Turku PET Centre, Turku (Finland); Rokka, Johanna; Eskola, Olli [University of Turku, Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, Turku (Finland); Wilson, Ian; Farrar, Gill [GE Healthcare Medical Diagnostics, Little Chalfont, Buckinghamshire (United Kingdom); Scheinin, Mika [University of Turku, Department of Pharmacology, Drug Development and Therapeutics, Turku (Finland); Turku University Hospital, Unit of Clinical Pharmacology, Turku (Finland); Solin, Olof [University of Turku, Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, Turku (Finland); Aabo Akademi University, Accelerator Laboratory, Turku PET Centre, Turku (Finland); Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland)

    2012-11-15

    The aim of this study was to investigate the potential of [{sup 18}F]flutemetamol as a preclinical PET tracer for imaging {beta}-amyloid (A{beta}) deposition by comparing its pharmacokinetics to those of [{sup 11}C]Pittsburgh compound B ([{sup 11}C]PIB) in wild-type Sprague Dawley rats and C57Bl/6N mice. In addition, binding of [{sup 18}F]flutemetamol to A{beta} deposits was studied in the Tg2576 transgenic mouse model of Alzheimer's disease. [{sup 18}F]Flutemetamol biodistribution was evaluated using ex vivo PET methods and in vivo PET imaging in wild-type rats and mice. Metabolism and binding of [{sup 11}C]PIB and [{sup 18}F]flutemetamol to plasma proteins were analysed using thin-layer chromatography and ultrafiltration methods, respectively. Radiation dose estimates were calculated from rat ex vivo biodistribution data. The binding of [{sup 18}F]flutemetamol to A{beta} deposits was also studied using ex vivo and in vitro autoradiography. The location of A{beta} deposits in the brain was determined with thioflavine S staining and immunohistochemistry. The pharmacokinetics of [{sup 18}F]flutemetamol resembled that of [{sup 11}C]PIB in rats and mice. In vivo studies showed that both tracers readily entered the brain, and were excreted via the hepatobiliary pathway in both rats and mice. The metabolism of [{sup 18}F]flutemetamol into radioactive metabolites was faster than that of [{sup 11}C]PIB. [{sup 18}F]Flutemetamol cleared more slowly from the brain than [{sup 11}C]PIB, particularly from white matter, in line with its higher lipophilicity. Effective dose estimates for [{sup 11}C]PIB and [{sup 18}F]flutemetamol were 2.28 and 6.65 {mu}Sv/MBq, respectively. Autoradiographs showed [{sup 18}F]flutemetamol binding to fibrillar A{beta} deposits in the brain of Tg2576 mice. Based on its pharmacokinetic profile, [{sup 18}F]flutemetamol showed potential as a PET tracer for preclinical imaging. It showed good brain uptake and was bound to A{beta} deposits in the

  1. Dynamics of Mutator and Antibiotic-Resistant Populations in a Pharmacokinetic/Pharmacodynamic Model of Pseudomonas aeruginosa Biofilm Treatment

    DEFF Research Database (Denmark)

    Macià, María D.; Pérez, José L.; Molin, Søren;

    2011-01-01

    Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescently...... monitored by confocal laser scanning microscopy (CLSM), and the numbers of viable cells and resistant mutants (4- and 16-fold MICs) were determined. Despite optimized pharmacokinetic/pharmacodynamic (PK/PD) parameters, CIP treatment did not suppress resistance development in P. aeruginosa biofilms. One.......01 proportion, took over the whole biofilm after only 2 days of CIP treatment outnumbering PAO1 by 3 log at t4. Our results show that mutational mechanisms play a major role in biofilm antibiotic resistance and that theoretically optimized PK/PD parameters fail to suppress resistance development, suggesting...

  2. Molecular Imaging of Tumor Hypoxia: Existing Problems and Their Potential Model-Based Solutions.

    Science.gov (United States)

    Shi, Kuangyu; Ziegler, Sibylle I; Vaupel, Peter

    2016-01-01

    Molecular imaging of tissue hypoxia generates contrast in hypoxic areas by applying hypoxia-specific tracers in organisms. In cancer tissue, the injected tracer needs to be transported over relatively long distances and accumulates slowly in hypoxic regions. Thus, the signal-to-background ratio of hypoxia imaging is very small and a non-specific accumulation may suppress the real hypoxia-specific signals. In addition, the heterogeneous tumor microenvironment makes the assessment of the tissue oxygenation status more challenging. In this study, the diffusion potential of oxygen and of a hypoxia tracer for 4 different hypoxia subtypes: ischemic acute hypoxia, hypoxemic acute hypoxia, diffusion-limited chronic hypoxia and anemic chronic hypoxia are theoretically assessed. In particular, a reaction-diffusion equation is introduced to quantitatively analyze the interstitial diffusion of the hypoxia tracer [(18)F]FMISO. Imaging analysis strategies are explored based on reaction-diffusion simulations. For hypoxia imaging of low signal-to-background ratio, pharmacokinetic modelling has advantages to extract underlying specific binding signals from non-specific background signals and to improve the assessment of tumor oxygenation. Different pharmacokinetic models are evaluated for the analysis of the hypoxia tracer [(18)F]FMISO and optimal analysis model were identified accordingly. The improvements by model-based methods for the estimation of tumor oxygenation are in agreement with experimental data. The computational modelling offers a tool to explore molecular imaging of hypoxia and pharmacokinetic modelling is encouraged to be employed in the corresponding data analysis. PMID:27526129

  3. Theophylline Population Pharmacokinetics and Dosing in Children Following Congenital Heart Surgery With Cardiopulmonary Bypass.

    Science.gov (United States)

    Frymoyer, Adam; Su, Felice; Grimm, Paul C; Sutherland, Scott M; Axelrod, David M

    2016-09-01

    Children undergoing cardiac surgery requiring cardiopulmonary bypass (CPB) frequently develop acute kidney injury due to renal ischemia. Theophylline, which improves renal perfusion via adenosine receptor inhibition, is a potential targeted therapy. However, children undergoing cardiac surgery and CPB commonly have alterations in drug pharmacokinetics. To help understand optimal aminophylline (salt formulation of theophylline) dosing strategies in this population, a population-based pharmacokinetic model was developed using nonlinear mixed-effects modeling (NONMEM) from 71 children (median age 5 months; 90% range 1 week to 10 years) who underwent cardiac surgery requiring CPB and received aminophylline as part of a previous randomized controlled trial. A 1-compartment model with linear elimination adequately described the pharmacokinetics of theophylline. Weight scaled via allometry was a significant predictor of clearance and volume. In addition, allometric scaled clearance increased with age implemented as a power maturation function. Compared to prior reports in noncardiac children, theophylline clearance was markedly reduced across age. In the final population pharmacokinetic model, optimized empiric dosing regimens were developed via Monte Carlo simulations. Doses 50% to 75% lower than those recommended in noncardiac children were needed to achieve target serum concentrations of 5 to 10 mg/L. PMID:26712558

  4. Nanodrugs: pharmacokinetics and safety

    Directory of Open Access Journals (Sweden)

    Onoue S

    2014-02-01

    Full Text Available Satomi Onoue,1 Shizuo Yamada,1 Hak-Kim Chan2 1Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; 2Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia Abstract: To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity, and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges. Keywords: nanoparticles, nanotechnology, nanotoxicity, solubilization, targeted delivery

  5. A systems approach for tumor pharmacokinetics.

    Directory of Open Access Journals (Sweden)

    Greg Michael Thurber

    Full Text Available Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.

  6. A systems approach for tumor pharmacokinetics.

    Science.gov (United States)

    Thurber, Greg Michael; Weissleder, Ralph

    2011-01-01

    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design. PMID:21935441

  7. Colorectal cancer targeted Irinotecan-Assam Bora rice starch based microspheres: a mechanistic, pharmacokinetic and biochemical investigation.

    Science.gov (United States)

    Ahmad, Mohammad Zaki; Akhter, Sohail; Anwar, Mohammed; Kumar, Atul; Rahman, Mahfoozur; Talasaz, Azita Hajhossein; Ahmad, Farhan Jalees

    2013-12-01

    The purpose of this investigation was to evaluate the colon-targeted Irinotecan Hydrochloride (ITC-HCl) loaded microspheres by pharmacokinetic and biochemical studies. The microspheres were prepared by double emulsion solvent evaporation method with natural polymer Assam Bora rice starch. The microspheres were characterized for their micromeritics properties, incorporation efficiency, in vitro and in vivo drug release studies. The release study confirmed the insignificant release of ITC-HCl in physiological condition of stomach and small intestine and major drug release in the caecal content. In vivo release study of the optimized microsphere was compared with immediate release (IR) ITC-HCl. ITC-HCl was distributed predominantly in the upper GI tract from the IR, whereas ITC-HCl was distributed primarily to the lower part of GI tract from the microspheres formulation. Enhanced levels of liver enzymes were found in animals given IR ITC-HCl as well as augmented levels of serum albumin, creatinine, leucocytopenia and thrombocytopenia was also observed. In summary, Assam Bora rice starch microspheres exhibit slow and extended release of ITC-HCl over longer periods of time with reduced systemic side-effects. PMID:23013140

  8. Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina

    Science.gov (United States)

    Geng, Shengyong; Yang, Bin; Wang, Guowu; Qin, Geng; Wada, Satoshi; Wang, Jin-Ye

    2014-07-01

    In this study, two cholesterol derivatives, (4-cholesterocarbonyl-4‧-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and 4-cholesterocarbonyl-4‧-(N,N-diethylamine butyloxyl) azobenzene (ACB), one of which is positively charged while the other is neutral, were synthesized and incorporated with phospholipids and cholesterol to form doxorubicin (DOX)-loaded liposomes. PEGylation was achieved by including 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy-(polyethylene glycol)-2000 (DSPE-PEG2000). Our results showed that PEGylated liposomes displayed significantly improved stability and the drug leakage was decreased compared to the non-PEGylated ones in vitro. The in vivo study with rats also revealed that the pharmacokinetics and circulation half-life of DOX were significantly improved when liposomes were PEGylated (p < 0.05). In particular, the neutral cholesterol derivative ACB played some role in improving liposomes’ stability in systemic circulation compared to the conventional PC liposome and the positively charged CAB liposome, with or without PEGylation. In addition, in the case of local drug delivery, the positively charged PEG-liposome not only delivered much more of the drug into the rats’ retinas (p < 0.001), but also maintained much longer drug retention time compared to the neutral PEGylated liposomes.

  9. Clinical pharmacokinetics of melatonin

    DEFF Research Database (Denmark)

    Harpsøe, Nathja Groth; Andersen, Lars Peter Holst; Gögenur, Ismail;

    2015-01-01

    PURPOSE: The aim of the review was to provide an overview of studies investigating the pharmacokinetics of exogenous melatonin in humans and if possible, to provide recommendations for clinical use. METHODS: The review was conducted in accordance to PRISMA guidelines. A systematic literature search...... was performed in PubMed and Embase databases. The pharmacokinetic variables included maximal plasma/serum concentration (Cmax), time to maximal plasma/serum concentration (Tmax), elimination half-life (T1/2), area-under-the-curve plasma/serum concentrations (AUC), clearance (Cl), volume of distribution (VD......) and 1602 L (4 mg, oral). Bioavailability of oral melatonin ranged from 9 to 33%. Pharmacokinetics was affected by age, caffeine, smoking, oral contraceptives, feeding status, and fluvoxamine. Critically ill patients displayed accelerated absorption and compromised elimination. CONCLUSIONS: Despite...

  10. Herb drug interaction:effect of Manix® on pharmacokinetic parameters of pefloxacin in rat model

    Institute of Scientific and Technical Information of China (English)

    Nduka Sunday Odunke; Okonta Eleje; Abba Chika Christiana; Ihekwereme Chibueze Peter; Ekwedigwe Uchenna; Okonta Matthew

    2014-01-01

    Objective: To evaluate the effect of Manix®, the commonly used polyherbal formulation on pefloxacin pharmacokinetic parameters.Methods:from hospitalized patients.Results:Microbiological assay was employed using clinical isolate of Escherichia coli samples Manix® altered the bioavailability parameters of pefloxacin as thus, maximal concentration (Cmax) of pefloxacin (0.91±0.31) µg/mL occurred at time to reach maximal concentration (tmax) 4.0 h while in the group that received Manix® alongside pefloxacin Cmax was (0.22±0.08) µg/mL at tmax 1.0 h respectively. The area under curve of pefloxacin alone was (7.83±5.14) µg/h/mL while with Manix® was (2.60±0.08) µg/h/mL. There was a significant difference between Cmax, tmax and area under curve between pefloxacin alone and pefloxacin after Manix® pre-treatment (P<0.05).Conclusions:The concurrent use of Manix® and pefloxacin has been found to compromise the therapeutic effectiveness of pefloxacin which could lead to poor clinical outcomes in patients.

  11. Human-on-a-chip design strategies and principles for physiologically based pharmocokinetics/pharmacodynamics modeling

    OpenAIRE

    Abaci, Hasan Erbil; Shuler, Michael L.

    2015-01-01

    Advances in maintaining multiple human tissues on microfluidic platforms has led to a growing interest in developing microphysiological systems for drug development studies. Determining the proper design principles and scaling rules for body-on-a-chip systems is critical for their strategic incorporation into physiologically based pharmacokinetic (PBPK)/pharmacodynamic model (PD) -aided drug development. While the need for a functional design considering organ-organ interactions has been cons...

  12. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles

    Science.gov (United States)

    Kang, Homan; Mintri, Shrutika; Menon, Archita Venugopal; Lee, Hea Yeon; Choi, Hak Soo; Kim, Jonghan

    2015-11-01

    Nanoparticles (NPs) are considered a promising tool in both diagnosis and therapeutics. Theranostic NPs possess the combined properties of targeted imaging and drug delivery within a single entity. While the categorization of theranostic NPs is based on their structure and composition, the pharmacokinetics of NPs are significantly influenced by the physicochemical properties of theranostic NPs as well as the routes of administration. Consequently, altered pharmacokinetics modify the pharmacodynamic efficacy and toxicity of NPs. Although theranostic NPs hold great promise in nanomedicine and biomedical applications, a lack of understanding persists on the mechanisms of the biodistribution and adverse effects of NPs. To better understand the diagnostic and therapeutic functions of NPs, this review discusses the factors that influence the pharmacokinetics, pharmacodynamics and toxicology of theranostic NPs, along with several strategies for developing novel diagnostic and therapeutic modalities.

  13. A Review of Morphine and Morphine-6-Glucuronide's Pharmacokinetic-Pharmacodynamic Relationships in Experimental and Clinical Pain

    DEFF Research Database (Denmark)

    Sverrisdóttir, Eva; Lund, Trine Meldgaard; Olesen, Anne Estrup;

    2015-01-01

    Morphine is a widely used opioid for treatment of moderate to severe pain, but large interindividual variability in patient response and no clear guidance on how to optimise morphine dosage regimen complicates treatment strategy for clinicians. Population pharmacokinetic-pharmacodynamic models can...... provides a detailed overview of the published human population pharmacokinetic-pharmacodynamic studies for morphine analgesia in addition to basic drug disposition and pharmacological properties of morphine and its analgesic active metabolite, morphine-6-glucuronide, that may help identify future...... covariates. Furthermore, based on simulations from key pharmacokinetic-pharmacodynamic models, the contribution of morphine-6-glucuronide to the analgesic response in patients with renal insufficiency was investigated. Simulations were also used to examine the impact of effect-site equilibration half-life on...

  14. Clinical population pharmacokinetics and toxicodynamics of linezolid.

    Science.gov (United States)

    Boak, Lauren M; Rayner, Craig R; Grayson, M Lindsay; Paterson, David L; Spelman, Denis; Khumra, Sharmila; Capitano, Blair; Forrest, Alan; Li, Jian; Nation, Roger L; Bulitta, Jurgen B

    2014-01-01

    Thrombocytopenia is a common side effect of linezolid, an oxazolidinone antibiotic often used to treat multidrug-resistant Gram-positive bacterial infections. Various risk factors have been suggested, including linezolid dose and duration of therapy, baseline platelet counts, and renal dysfunction; still, the mechanisms behind this potentially treatment-limiting toxicity are largely unknown. A clinical study was conducted to investigate the relationship between linezolid pharmacokinetics and toxicodynamics and inform strategies to prevent and manage linezolid-associated toxicity. Forty-one patients received 42 separate treatment courses of linezolid (600 mg every 12 h). A new mechanism-based, population pharmacokinetic/toxicodynamic model was developed to describe the time course of plasma linezolid concentrations and platelets. A linezolid concentration of 8.06 mg/liter (101% between-patient variability) inhibited the synthesis of platelet precursor cells by 50%. Simulations predicted treatment durations of 5 and 7 days to carry a substantially lower risk than 10- to 28-day therapy for platelet nadirs of <100 ×10(9)/liter. The risk for toxicity did not differ noticeably between 14 and 28 days of therapy and was significantly higher for patients with lower baseline platelet counts. Due to the increased risk of toxicity after longer durations of linezolid therapy and large between-patient variability, close monitoring of patients for development of toxicity is important. Dose individualization based on plasma linezolid concentration profiles and platelet counts should be considered to minimize linezolid-associated thrombocytopenia. Overall, oxazolidinone therapy over 5 to 7 days even at relatively high doses was predicted to be as safe as 10-day therapy of 600 mg linezolid every 12 h. PMID:24514086

  15. Limited-sampling strategy models for estimating the pharmacokinetic parameters of 4-methylaminoantipyrine, an active metabolite of dipyrone

    Directory of Open Access Journals (Sweden)

    Suarez-Kurtz G.

    2001-01-01

    Full Text Available Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS models for estimating the area under the plasma concentration versus time curve (AUC and the peak plasma concentration (Cmax of 4-methylaminoantipyrine (MAA, an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336, measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC0-¥ and the Cmax of MAA can be accurately predicted (R²>0.95, bias 0.85 of the AUC0-¥ or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h, but using different coefficients for AUC0-¥ and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R²>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4% as well as for plasma concentration data sets generated by simulation (R²>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%. Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC0-¥ and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.

  16. Population pharmacokinetics of remifentanil in patients undergoing orthotopic liver transplantation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-ping; YANG Lu; BI Shan-shan; LU Wei; ZHANG Xian-hua; ZHAI Suo-di; DUAN Li-ping

    2009-01-01

    Backgroud Little is known about the influence of liver transplantation on the pharmacokinetics of most anesthetic drugs. The goal of this study was to study the population pharmacokinetics of remifentanil in the different phases of orthotopic liver transplantation (OLT) and the influence of relevant factors.Methods Thirteen adult patients undergoing OLT were enrolled. A single bolus infusion of remifentanil 5 μg/kg was administered during the preanhepatic, anhepatic and neohepatic phases of OLT. Arterial blood samples of 1.5 ml were collected at 0 (baseline), 1, 2, 3, 5, 7, 10, 15, 20, 25, 30, 45, 60 and 90 minutes after drug administration. Remifentanil concentration was assayed by high-performance liquid chromatography/mass spectrometry/mass spectrometry (HPLC/MS/MS). Population pharmacokinetic modeling was performed using nonlinear mixed-effects modeling (NONMEM).Results The pharmacokinetics of remifentanil in patients undergoing OLT was best described by a two-compartment open model. The pharmacokinetic parameters were not influenced by age, gender, operative phase, blood temperature, rehydration volume, or blood loss volume during sampling. The volume of distribution in the central compartment (V1) and the volume of distribution in the peripheral compartment (V2) were influenced by body weight. Conclusions The population pharmacokinetics of remifentanil in patients undergoing OLT can be well described by a two-compartment open model. The functional status of the liver does not significantly affect the pharmacokinetics of remifentanil, but the body weight is an influential factor of V1 and V2.

  17. Lecithin and PLGA-based self-assembled nanocomposite, Lecithmer: preparation, characterization, and pharmacokinetic/pharmacodynamic evaluation.

    Science.gov (United States)

    Varghese, Seby Elsy; Fariya, Mayur K; Rajawat, Gopal Singh; Steiniger, Frank; Fahr, Alfred; Nagarsenker, Mangal S

    2016-08-01

    The present study investigates the drug delivery potential of polymer lipid hybrid nanocomposites (Lecithmer®) composed of poly(D,L-lactide-co-glycolide (PLGA) and soya lecithin. Core-shell structure of Lecithmer was evident from cryo-TEM images. Daunorubicin (DNR) and lornoxicam (LNX)-incorporated Lecithmer nanocomposites were evaluated for anticancer and anti-inflammatory activity. DNR- and LNX-loaded Lecithmer had mean particle size of ∼335 and ∼282.7 nm, respectively. Lecithmer formulated with different cationic lipids resulted in lower particle size (∼120 nm) and positive zeta potential. Entrapment efficiency of DNR and LNX was 93.16 and 88.59 %, respectively. In vitro release of DNR from Lecithmer was slower compared to PLGA nanoparticles. DNR release from Lecithmer was significantly higher at pH 5.5 (80.96 %) as compared to pH 7.4 (55.95 %), providing advantage for selective tumor therapy. Similarly, sustained release of LNX (30 % in 10 h) was observed at pH 7.4. DNR in Lecithmer showed superior cytotoxicity on human erythroleukemic K562 cells. Pharmacokinetic study in Wistar rats with i.v. administered DNR-loaded Lecithmer showed higher volume of distribution, lower elimination rate constant, and longer half-life (81.68 L, 0.3535 h(-1), 1.96 h) as compared to DNR solution (57.46 L, 0.4237 h(-1), 1.635 h). Pharmacodynamic evaluation of orally administered LNX-loaded Lecithmer showed superior anti-inflammatory activity with maximum inhibition of 81.2 % vis-à-vis 53.57 % in case of LNX suspension. In light of these results, Lecithmer can be envisaged as a promising nanosystem for parenteral as well as oral drug delivery. PMID:27371394

  18. Lecithin and PLGA-based self-assembled nanocomposite, Lecithmer: preparation, characterization, and pharmacokinetic/pharmacodynamic evaluation.

    Science.gov (United States)

    Varghese, Seby Elsy; Fariya, Mayur K; Rajawat, Gopal Singh; Steiniger, Frank; Fahr, Alfred; Nagarsenker, Mangal S

    2016-08-01

    The present study investigates the drug delivery potential of polymer lipid hybrid nanocomposites (Lecithmer®) composed of poly(D,L-lactide-co-glycolide (PLGA) and soya lecithin. Core-shell structure of Lecithmer was evident from cryo-TEM images. Daunorubicin (DNR) and lornoxicam (LNX)-incorporated Lecithmer nanocomposites were evaluated for anticancer and anti-inflammatory activity. DNR- and LNX-loaded Lecithmer had mean particle size of ∼335 and ∼282.7 nm, respectively. Lecithmer formulated with different cationic lipids resulted in lower particle size (∼120 nm) and positive zeta potential. Entrapment efficiency of DNR and LNX was 93.16 and 88.59 %, respectively. In vitro release of DNR from Lecithmer was slower compared to PLGA nanoparticles. DNR release from Lecithmer was significantly higher at pH 5.5 (80.96 %) as compared to pH 7.4 (55.95 %), providing advantage for selective tumor therapy. Similarly, sustained release of LNX (30 % in 10 h) was observed at pH 7.4. DNR in Lecithmer showed superior cytotoxicity on human erythroleukemic K562 cells. Pharmacokinetic study in Wistar rats with i.v. administered DNR-loaded Lecithmer showed higher volume of distribution, lower elimination rate constant, and longer half-life (81.68 L, 0.3535 h(-1), 1.96 h) as compared to DNR solution (57.46 L, 0.4237 h(-1), 1.635 h). Pharmacodynamic evaluation of orally administered LNX-loaded Lecithmer showed superior anti-inflammatory activity with maximum inhibition of 81.2 % vis-à-vis 53.57 % in case of LNX suspension. In light of these results, Lecithmer can be envisaged as a promising nanosystem for parenteral as well as oral drug delivery.

  19. Azithromycin maintenance therapy in patients with cystic fibrosis : A dose advice based on a review of pharmacokinetics, efficacy, and side effects

    NARCIS (Netherlands)

    Wilms, Erik B.; Touw, Daniel J.; Heijerman, Harry G.M.; Van Der Ent, Cornelis K.

    2012-01-01

    Azithromycin maintenance therapy results in improvement of respiratory function in patients with cystic fibrosis (CF). In azithromycin maintenance therapy, several dosing schemes are applied. In this review, we combine current knowledge about azithromycin pharmacokinetics with the dosing schedules u

  20. Pharmacokinetic profile of zafirlukast.

    NARCIS (Netherlands)

    Dekhuijzen, P.N.R.; Koopmans, P.P.

    2002-01-01

    Zafirlukast is a cysteinyl leukotriene type 1 receptor antagonist that causes bronchodilation and has anti-inflammatory properties. Clinical efficacy has been demonstrated when using oral doses of 20 to 40 mg twice daily. The pharmacokinetics of zafirlukast are best described by a two-compartment mo

  1. Nanodrugs: pharmacokinetics and safety.

    Science.gov (United States)

    Onoue, Satomi; Yamada, Shizuo; Chan, Hak-Kim

    2014-01-01

    To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges. PMID:24591825

  2. Pharmacokinetics of labelled compounds with technetium-99m and samarium-153

    International Nuclear Information System (INIS)

    The purpose of this investigation was to establish the different pharmacokinetics parameters of the main radiopharmaceuticals labeled with technetium-99m and samarium-153. These parameters could be subsequently used as reference to compare other products with the same use. Mathematical models and a computerized pharmacokinetic program were used to this purpose. A biodistribution study in quadruplicate and/or quintuplicate was conducted for each radiopharmaceutical, data was was obtained in injection dose percentages. The biodistribution study involved the injection of a predetermined dose of the radiopharmaceutical into animals (rats or mice), which were subsequently put away at different time intervals, removing the relevant organs. Activity in each organ was read by means of a well-type NaI scintillation counter, data obtained in activity counts was transformed into injection dose percentages. Based on these percentages, the mathematical model was constructed and the pharmacokinetic parameters were obtained using the computerized program Expo 2 v. 1, which is written in C language and works in windows. Analyzing the results obtained, we can conclude that the use of the Expo 2 v. 1 program for a bi compartmental analysis allowed us to obtain reliable pharmacokinetic parameters which describe what happens in the organism when the radiopharmaceutical passes from the central compartment to the peripheral one and vice versa

  3. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    Science.gov (United States)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  4. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2001-01-01

    To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data....

  5. Population pharmacokinetic study of methotrexate in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Zhang, C; Zhai, S; Yang, L; Wu, H; Zhang, J; Ke, X

    2010-01-01

    plasma concentration versus time curve AUC was 582.92 mg x h x l(-1) (CV = 55.9%). Our model combine Bayesian approach enabled a satisfactory estimation of MTX concentration in individual patients. The results of this study allowed clinicians to assess the MTX pharmacokinetic parameters based on the specific demographic characteristics of patients. PMID:20040335

  6. Does glimepiride alter the pharmacokinetics of sildenafil citrate in diabetic nephropathy animals: investigating mechanism of interaction by molecular modeling studies.

    Science.gov (United States)

    Tripathi, Alok Shiomurti; Timiri, Ajay Kumar; Mazumder, Papiya Mitra; Chandewar, Anil

    2015-10-01

    The present study evaluates possible drug interactions between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ)-induced diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction based on molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg kg(-1), i.p.) and was confirmed by assessing blood and urine biochemical parameters 28 days after induction. Selected DN animals were used to explore the drug interaction between GLIM (0.5 mg kg(-1), p.o.) and SIL (2.5 mg kg(-1), p.o.) on the 29th and 70th day of the protocol. Possible drug interaction was assessed by evaluating the plasma drug concentration using HPLC-UV and changes in biochemical parameters in blood and urine were also determined. The mechanism of the interaction was postulated from the results of a molecular modeling study using the Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in blood and urine biochemical parameters in STZ-treated groups. The concentration of SIL increased significantly (P < 0.001) in rat plasma when co-administered with GLIM on the 70th day of the protocol. Molecular modeling revealed important interactions with rat serum albumin and CYP2C9. GLIM has a strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL, whereas for CYP2C9, GLIM forms a stronger hydrogen bond than SIL with polar contacts and hydrophobic interactions. The present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals, and the mechanism is supported by molecular modeling studies. PMID:26428531

  7. The pharmacokinetics of 8-methoxypsoralen following i.v. administration in humans.

    Science.gov (United States)

    Billard, V; Gambus, P L; Barr, J; Minto, C F; Corash, L; Tessman, J W; Stickney, J L; Shafer, S L

    1995-10-01

    1. 8-methoxypsoralen (8-MOP) is a naturally occurring photoreactive substance which, in the presence of u.v. light, forms covalent adducts with pyrimidine bases in nucleic acids. For many years, 8-MOP has been used in PUVA therapy for treatment of psoriasis. Recently, the drug has been found to inactivate effectively bacteria spiked into platelet concentrates. The purpose of this study was to determine the pharmacokinetics and safety of 8-MOP administered intravenously in the bactericidal dosage range. 2. Eighteen volunteers were divided into three treatment groups to receive, respectively, 5, 10, and 15 mg 8-MOP infused over 60 min. Frequent arterial samples were gathered, and the blood and plasma were assayed for 8-MOP concentration. The pharmacokinetic parameters were determined by moment and compartmental population analysis, the latter performed with the program NONMEM. Haemodynamics, ventilatory pattern, and subjective effects were recorded throughout the study. 3. The intravenously administered 8-MOP was well tolerated in all individuals, and no acute toxicity was observed. 4. The pharmacokinetics of 8-MOP were best described by a three-compartment mammillary model in which the volumes and clearances were proportional to weight. The mean pharmacokinetic parameters for the plasma concentrations were: V1 = 0.045 1 kg-1, V2 = 0.57 1 kg-1, V3 = 0.15 1 kg-1, CL1 (systemic) = 0.010 1 kg-1 min-1, CL2 = 0.0067 1 kg-1 min-1, CL3 = 0.012 1 kg-1 min-1. The mean pharmacokinetic parameters for the blood concentrations were: V1 = 0.061 1 kg-1, V2 = 1.15 1 kg-1, V3 = 0.21 1 kg-1, CL1 (systemic) = 0.015 1 kg-1 min-1, CL2 = 0.011 1 kg-1 min-1 and CL3 = 0.015 1 kg-1 min-1. 5. The plasma pharmacokinetic model described the observations with a median absolute error of 17%, and the blood pharmacokinetic model described the observations with a median absolute error of 18%. Analysis of the relative concentration of 8-MOP between plasma and red blood cells suggested concentration

  8. Prediction and monitoring of the response to chemoradiotherapy in oral squamous cell carcinomas using a pharmacokinetic analysis based on the dynamic contrast-enhanced MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Chikui, Toru; Kawazu, Toshiyuki; Yoshiura, Kazunori [Kyushu University, Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Fukuoka (Japan); Kawano, Shintaro [Kyushu University, Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Fukuoka (Japan); Hatakenaka, Masamitsu [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Kyushu University, Radiology Center, Kyushu University Hospital, Fukuoka (Japan); Koga, Syouzou; Ohga, Masahiro [Kyushu University, Radiology Center, Kyushu University Hospital, Fukuoka (Japan); Matsuo, Yoshio; Sunami, Syunya [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Sugiura, Tsuyoshi [Kyushu University, Department of Maxillofacial Surgery, Kyushu University Hospital, Fukuoka (Japan); Shioyama, Yoshiyuki [Kyushu University, Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Fukuoka (Japan); Obara, Makoto [Philips Electronics Japan, Ltd 2-13-37, Konan Minato-ku, Tokyo (Japan)

    2011-08-15

    To evaluate whether a pharmacokinetic analysis is useful for both predicting and monitoring the response to chemoradiotherapy (CRT) in oral cancer. Patients with oral squamous cell carcinoma treated with preoperative CRT and surgery were enrolled. They underwent dynamic contrast-enhanced MRI before (n = 23), and after CRT (n = 20). We estimated four parameters: arrival time of contrast medium (TA), exchange rate constant from the extracellular extravascular space (EES) to plasma (k{sub ep}), elimination of contrast medium from the central compartment (k{sub el}) and an amplitude scaling constant (AH) using the Brix model. The histological evaluation of the effects of CRT was performed according to Ohboshi and Shimosato's classification. We analysed the correlation between the parameters and the histological evaluation. The pre-CRT AH between the responders and non-responders was significantly different (P = 0.046), however, the three parameters (TA, K{sub ep}, K{sub el}) were not significantly different among the groups (P = 0.76, P = 0.60, P = 0.09). As AH decreased, the tumour response improved. The change in the AH between the pre- and post-CRT of responders was significantly higher than that of non-responders (P = 0.043). The AH, which is affected by the ratio of the EES, was an important parameter for predicting and monitoring the tumour response to CRT. (orig.)

  9. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    Science.gov (United States)

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  10. Tools to evaluate pharmacokinetics data for establishing maximum residue limits for approved veterinary drugs: examples from JECFA's work.

    Science.gov (United States)

    Sanders, P; Henri, J; Laurentie, M

    2016-05-01

    Maximum residue limits (MRLs) for residues of veterinary drugs are the maximum concentrations of residues permitted in or on a food by national or regional legislation. In the process of MRLs recommendations by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), analysis of pharmacokinetic data describing the ADME process (absorption, distribution, metabolism and excretion) is a crucial step and requires the use of different pharmacokinetic tools. The results of animal metabolism studies are the prime determinants of the residue definition in food commodities. Substances labelled with radioactive isotopes are used so that the disposition of the residue can be followed as total residue and main metabolites concentrations. Residue depletion studies with radiolabelled parent drug will lead to the estimate of the time course of the total residue and to determine a marker residue. Depletion studies with an unlabelled drug provide more information on the time course of the marker residue in raw commodities after administration under approved practical conditions of use. By use of this information and after conversion with the total/residue marker ratio, MRLs are derived by comparison of the acceptable daily intake with the daily intakes calculated with different scenarios of dietary exposure. Progress in pharmacokinetic model such as physiologically based pharmacokinetics and population pharmacokinetics will drive the future research in this field to improved veterinary drug development. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27443212

  11. Inferring biochemical reaction pathways: the case of the gemcitabine pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Lecca Paola

    2012-05-01

    Full Text Available Abstract Background The representation of a biochemical system as a network is the precursor of any mathematical model of the processes driving the dynamics of that system. Pharmacokinetics uses mathematical models to describe the interactions between drug, and drug metabolites and targets and through the simulation of these models predicts drug levels and/or dynamic behaviors of drug entities in the body. Therefore, the development of computational techniques for inferring the interaction network of the drug entities and its kinetic parameters from observational data is raising great interest in the scientific community of pharmacologists. In fact, the network inference is a set of mathematical procedures deducing the structure of a model from the experimental data associated to the nodes of the network of interactions. In this paper, we deal with the inference of a pharmacokinetic network from the concentrations of the drug and its metabolites observed at discrete time points. Results The method of network inference presented in this paper is inspired by the theory of time-lagged correlation inference with regard to the deduction of the interaction network, and on a maximum likelihood approach with regard to the estimation of the kinetic parameters of the network. Both network inference and parameter estimation have been designed specifically to identify systems of biotransformations, at the biochemical level, from noisy time-resolved experimental data. We use our inference method to deduce the metabolic pathway of the gemcitabine. The inputs to our inference algorithm are the experimental time series of the concentration of gemcitabine and its metabolites. The output is the set of reactions of the metabolic network of the gemcitabine. Conclusions Time-lagged correlation based inference pairs up to a probabilistic model of parameter inference from metabolites time series allows the identification of the microscopic pharmacokinetics and

  12. Model Based Definition

    Science.gov (United States)

    Rowe, Sidney E.

    2010-01-01

    In September 2007, the Engineering Directorate at the Marshall Space Flight Center (MSFC) created the Design System Focus Team (DSFT). MSFC was responsible for the in-house design and development of the Ares 1 Upper Stage and the Engineering Directorate was preparing to deploy a new electronic Configuration Management and Data Management System with the Design Data Management System (DDMS) based upon a Commercial Off The Shelf (COTS) Product Data Management (PDM) System. The DSFT was to establish standardized CAD practices and a new data life cycle for design data. Of special interest here, the design teams were to implement Model Based Definition (MBD) in support of the Upper Stage manufacturing contract. It is noted that this MBD does use partially dimensioned drawings for auxiliary information to the model. The design data lifecycle implemented several new release states to be used prior to formal release that allowed the models to move through a flow of progressive maturity. The DSFT identified some 17 Lessons Learned as outcomes of the standards development, pathfinder deployments and initial application to the Upper Stage design completion. Some of the high value examples are reviewed.

  13. Evaluation of pharmacokinetic/pharmacodynamic relationships of PD-0162819, a biotin carboxylase inhibitor representing a new class of antibacterial compounds, using in vitro infection models.

    Science.gov (United States)

    Ogden, Adam; Kuhn, Michael; Dority, Michael; Buist, Susan; Mehrens, Shawn; Zhu, Tong; Xiao, Deqing; Miller, J Richard; Hanna, Debra

    2012-01-01

    The present study investigated the pharmacokinetic/pharmacodynamic (PK/PD) relationships of a prototype biotin carboxylase (BC) inhibitor, PD-0162819, against Haemophilus influenzae 3113 in static concentration time-kill (SCTK) and one-compartment chemostat in vitro infection models. H. influenzae 3113 was exposed to PD-0162819 concentrations of 0.5 to 16× the MIC (MIC = 0.125 μg/ml) and area-under-the-curve (AUC)/MIC ratios of 1 to 1,100 in SCTK and chemostat experiments, respectively. Serial samples were collected over 24 h. For efficacy driver analysis, a sigmoid maximum-effect (E(max)) model was fitted to the relationship between bacterial density changes over 24 h and corresponding PK/PD indices. A semimechanistic PK/PD model describing the time course of bacterial growth and death was developed. The AUC/MIC ratio best explained efficacy (r(2) = 0.95) compared to the peak drug concentration (C(max))/MIC ratio (r(2) = 0.76) and time above the MIC (T>MIC) (r(2) = 0.88). Static effects and 99.9% killing were achieved at AUC/MIC values of 500 and 600, respectively. For time course analysis, the net bacterial growth rate constant, maximum bacterial density, and maximum kill rate constant were similar in SCTK and chemostat studies, but PD-0162819 was more potent in SCTK than in the chemostat (50% effective concentration [EC(50)] = 0.046 versus 0.34 μg/ml). In conclusion, basic PK/PD relationships for PD-0162819 were established using in vitro dynamic systems. Although the bacterial growth parameters and maximum drug effects were similar in SCTK and the chemostat system, PD-0162819 appeared to be more potent in SCTK, illustrating the importance of understanding the differences in preclinical models. Additional studies are needed to determine the in vivo relevance of these results.

  14. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk from Trichloroethylene-Contaminated Ground Water at Beale Air Force Base in California:Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K T

    2001-05-24

    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability within a systematic probabilistic framework to integrate the joint effects on risk of distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such a framework was used to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub G}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA{sub c} based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and 10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and 10{sup -4}, respectively. It was estimated that no TCE-related harm is likely to occur due to any plausible residential exposure scenario involving the site. The systematic probabilistic framework illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  15. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk From Trichloroethylene-Contaminated Ground Water Beale Air Force Base in California: Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K.T.

    1999-09-29

    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability after applying a unified probabilistic approach to the distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such an approach was applied to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub g}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA, based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and <10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and >10{sup -4}, respectively. It was estimated that no TCE-related harm is likely occur due any plausible residential exposure scenario involving the site. The unified approach illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  16. Pharmacokinetic consequences of spaceflight

    Science.gov (United States)

    Putcha, L.; Cintron, N. M.

    1991-01-01

    Spaceflight induces a wide range of physiological and biochemical changes, including disruption of gastrointestinal (GI) function, fluid and electrolyte balance, circulatory dynamics, and organ blood flow, as well as hormonal and metabolic perturbations. Any of these changes can influence the pharmacokinetics and pharmacodynamics of in-flight medication. That spaceflight may alter bioavailability was proposed when drugs prescribed to alleviate space motion sickness (SMS) had little therapeutic effect. Characterization of the pharmacokinetic and/or pharmacodynamic behavior of operationally critical medications is crucial for their effective use in flight; as a first step, we sought to determine whether drugs administered in space actually reach the site of action at concentrations sufficient to elicit the therapeutic response.

  17. Pharmacokinetics and Bioequivalence Evaluation of Cyclobenzaprine Tablets

    Directory of Open Access Journals (Sweden)

    Tatiane Maria de Lima Souza Brioschi

    2013-01-01

    Full Text Available The purpose of this study was to investigate cyclobenzaprine pharmacokinetics and to evaluate bioequivalence between two different tablet formulations containing the drug. An open, randomized, crossover, single-dose, two-period, and two-sequence design was employed. Tablets were administered to 23 healthy subjects after an overnight fasting and blood samples were collected up to 240 hours after drug administration. Plasma cyclobenzaprine was quantified by means of an LC-MS/MS method. Pharmacokinetic parameters related to absorption, distribution, and elimination were calculated. Cyclobenzaprine plasma profiles for the reference and test products were similar, as well as absorption pharmacokinetic parameters AUC (reference: 199.4 ng∗h/mL; test: 201.6 ng∗h/mL, (reference: 7.0 ng/mL; test: 7.2 ng/mL, and (reference: 4.5 h; test: 4.6 h. Bioequivalence was evaluated by means of 90% confidence intervals for the ratio of AUC (93%–111% and (93%–112% values for test and reference products, which were within the 80%–125% interval proposed by FDA. Cyclobenzaprine pharmacokinetics can be described by a multicompartment open model with an average rapid elimination half-life ( of 3.1 hours and an average terminal elimination half-life ( of 31.9 hours.

  18. Pharmacokinetics and molecular detoxication.

    OpenAIRE

    Cashman, J R; Perotti, B Y; Berkman, C E; J. Lin

    1996-01-01

    This paper presents a comprehensive overview of the pharmacokinetic parameters used from in vivo and in vitro studies that are important in order to understand the major conceptual approaches of toxicokinetics and the disposition of environmental chemicals. In vitro biochemical information concerning the detoxication of environmental chemicals is also presented. The discussion leads to a more complete appreciation for the use of in vitro measurements for in vivo correlations. The concept of i...

  19. Pharmacokinetics of Cannabinoids

    OpenAIRE

    McGilveray, Iain J

    2005-01-01

    Delta-9-tetrahydrocannabinol (Δ-9-THC) is the main psychoactive ingredient of cannabis (marijuana). The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC) and nabilone. The variability of THC in plant material (0.3% to 30%) leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability ...

  20. Nanodrugs: pharmacokinetics and safety

    OpenAIRE

    Onoue S; Yamada S; Chan HK

    2014-01-01

    Satomi Onoue,1 Shizuo Yamada,1 Hak-Kim Chan2 1Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; 2Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia Abstract: To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nan...

  1. Pharmacokinetics of rilmenidine

    Energy Technology Data Exchange (ETDEWEB)

    Genissel, P.; Bromet, N. (Biopharmacie Servier, Orleans (France))

    1989-09-18

    Rilmenidine is a novel antihypertensive agent related to alpha 2-adrenoceptor agonist, used in the treatment of mild or moderate hypertension at the oral dose of 1 mg once a day or 1 mg twice a day. The pharmacokinetic parameters were investigated after single or repeated administration in healthy subjects, using labeled and unlabeled compounds. Rilmenidine was rapidly and extensively absorbed, with an absolute bioavailability close to one and a time to peak plasma concentration of two hours. Rilmenidine was not subjected to presystemic metabolism. Distribution was independent of the free fraction since rilmenidine was weakly bound to plasma proteins (less than 10 percent). The volume of distribution was approximately 5 liters/kg (315 liters). Elimination was rapid, with a total body plasma clearance of approximately 450 ml/minute and an elimination half-life of approximately eight hours. Renal excretion was the major elimination process (two thirds of the total clearance); the parent drug in urine accounted for about 65 percent of the dose administered. Metabolism was very poor; few metabolites were found in urine and no metabolites were detected in plasma. Linear pharmacokinetics was demonstrated for rilmenidine from 0.5 to 2 mg; at 3 mg, a slight deviation from linearity was observed. In repeated administration, the linearity with dose of the pharmacokinetics of rilmenidine was confirmed.

  2. Use of a Microsoft Excel based add-in program to calculate plasma sinistrin clearance by a two-compartment model analysis in dogs.

    Science.gov (United States)

    Steinbach, Sarah M L; Sturgess, Christopher P; Dunning, Mark D; Neiger, Reto

    2015-06-01

    Assessment of renal function by means of plasma clearance of a suitable marker has become standard procedure for estimation of glomerular filtration rate (GFR). Sinistrin, a polyfructan solely cleared by the kidney, is often used for this purpose. Pharmacokinetic modeling using adequate software is necessary to calculate disappearance rate and half-life of sinistrin. The purpose of this study was to describe the use of a Microsoft excel based add-in program to calculate plasma sinistrin clearance, as well as additional pharmacokinetic parameters such as transfer rates (k), half-life (t1/2) and volume of distribution (Vss) for sinistrin in dogs with varying degrees of renal function.

  3. Development of a physiologically based pharmacokinetic model for flunixin in cattle (Bos taurus)

    Science.gov (United States)

    Violative residues of flunixin in tissues from bob veal calves and cull dairy cows has been attributed to noncompliance with the FDA-approved route of administration and withdrawal time, however, the effect of administration route and physiological differences among animals on tissue residue depleti...

  4. Physiologically Based Pharmacokinetic (PBPK) Modeling of Interstrain Variability in Trichloroethylene Metabolism in the Mouse

    Science.gov (United States)

    Background: Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, inter-individual differences in the population are accounted for by default assumptions or, in rare cas...

  5. Physiologically Based Pharmacokinetic Models: Integration of In Silico Approaches with Micro Cell Culture Analogues

    OpenAIRE

    Chen, A.; Yarmush, M L; Maguire, T.

    2012-01-01

    There is a large emphasis within the pharmaceutical industry to provide tools that will allow early research and development groups to better predict dose ranges for and metabolic responses of candidate molecules in a high throughput manner, prior to entering clinical trials. These tools incorporate approaches ranging from PBPK, QSAR, and molecular dynamics simulations in the in silico realm, to micro cell culture analogue (CCAs)s in the in vitro realm. This paper will serve to review these a...

  6. Towards optimal design of anti-malarial pharmacokinetic studies.

    OpenAIRE

    White Nicholas J; Price Ric N; Jamsen Kris M; Simpson Julie A; Lindegardh Niklas; Tarning Joel; Duffull Stephen B

    2009-01-01

    Abstract Background Characterization of anti-malarial drug concentration profiles is necessary to optimize dosing, and thereby optimize cure rates and reduce both toxicity and the emergence of resistance. Population pharmacokinetic studies determine the drug concentration time profiles in the target patient populations, including children who have limited sampling options. Currently, population pharmacokinetic studies of anti-malarial drugs are designed based on logistical, financial and ethi...

  7. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics and metabolism of pyrazole-based small-molecule inhibitors of Mdm2/4-p53 interaction

    Science.gov (United States)

    Christner, Susan M.; Clausen, Dana M.; Beumer, Jan H.; Parise, Robert A.; Guo, Jianxia; Huang, Yijun; Dömling, Alexander S; Eiseman, Julie L.

    2016-01-01

    Purpose The interaction of p53, with its negative regulators Mdm2/4 has been widely studied [1]. In p53+/+ cells, expression of Mdm2/4 leads to p53 turnover, inhibition of downstream transcription, decreasing cell cycle arrest or apoptosis. We report in vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of YH264, YH263 and WW751, three proposed small molecule inhibitors of the Mdm2/4-p53 interaction. Methods MTT cytotoxicity assays were performed and alterations in proteins were examined using Western blots. Mice were dosed 150 mg/kg YH264 or YH263 iv or po QDx5. Mice were iv dosed 88 mg/kg, 57 mg/kg, or 39 mg/kg WW751 for three, five, or five days. YH264, YH263 and WW751 and metabolites were quantitated by LC-MS/MS. Results IC50 values for YH264, YH263 and WW751 against p53 wild type HCT 116 cells after 72 h of incubation were 18.3 ± 2.3 μM, 8.9 ± 0.6 μM, and 3.1 ± 0.2 μM respectively. Only YH264 appeared to affect p53 expression in vitro. None of the compounds affected the growth of HCT 116 xenografts in C.B-17 SCID mice. YH264 plasma half-life was 147 min; YH263 plasma half-life was 263 min; and WW751 plasma half-life was less than 120 min. Conclusions Despite dosing the mice at the maximum soluble doses, we could not achieve tumor concentrations equivalent to the intracellular concentrations required to inhibit cell growth in vitro. YH263 and WW751 do not appear to affect p53/Mdm2 and none of the three were active in a subcutaneous HCT116 p53+/+ xenograft model. PMID:26050209

  8. Relationship of quantitative structure and pharmacokinetics in fluoroquinolone antibacterials

    Institute of Scientific and Technical Information of China (English)

    Die Cheng; Wei-Ren Xu; Chang-Xiao Liu

    2007-01-01

    AIM: To study the relationship between quantitative structure and pharmacokinetics (QSPkR) of fluoroquinolone antibacterials.METHODS: The pharmacokinetic (PK) parameters of oral fluoroquinolones were collected from the literature. These pharmacokinetic data were averaged, 19 compounds were used as the training set, and 3 served as the test set. Genetic function approximation (GFA)module of Cerius2 software was used in QSPkR analysis.RESULTS: A small volume and large polarizability and surface area of substituents at C-7 contribute to a large area under the curve (AUC) for fluoroquinolones. Large polarizability and small volume of substituents at N-1 contribute to a long half life elimination.CONCLUSION: QSPkR models can contribute to some fluoroquinolones antibacterials with excellent pharmacokinetic properties.

  9. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study.

    Science.gov (United States)

    Chen, Ling-Chun; Chen, Ying-Chen; Su, Chia-Yu; Hong, Chung-Shu; Ho, Hsiu-O; Sheu, Ming-Thau

    2016-01-01

    Quercetin (Que) is known to have biological benefits including an anticancer effect, but low water solubility limits its clinical application. The aim of this study was to develop a lecithin-based mixed polymeric micelle (LMPM) delivery system to improve the solubility and bioavailability of Que. The optimal Que-LMPM, composed of Que, lecithin, Pluronic(®) P123, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy[poly(ethylene glycol)-2000] in a proportion of 3:1:17.5:2.5 (w/w), was prepared by a thin-film method. The average size, polydispersion index, encapsulating efficiency, and drug loading of Que-LMPM were 61.60 ± 5.02 nm, 0.589 ± 0.198, 96.87% ± 9.04%, and 12.18% ± 1.11%, respectively. The solubility of Que in the Que-LMPM system increased to 5.81 mg/mL, compared to that of free Que in water of 0.17-7.7 μg/mL. The Que-LMPM system presented a sustained-release property in vitro. The in vitro cytotoxicity assay showed that the 50% inhibitory concentration values toward MCF-7 breast cancer cells for free Que, blank LMPMs, and Que-LMPMs were >200, >200, and 110 μM, respectively, indicating the nontoxicity of the LMPM carrier, but the LMPM formulation enhanced the cytotoxicity of Que against MCF-7 cells. A cellular uptake assay also confirmed the intake of Que-LMPM by MCF-7 cells. An in vivo pharmacokinetic study demonstrated that Que-LMPMs had higher area under the concentration-time curve and a longer half-life, leading to better bioavailability compared to a free Que injection. Due to their nanosize, core-shell structure, and solubilization potential, LMPMs were successfully developed as a drug delivery system for Que to improve its solubility and bioavailability.

  10. Preclinical Study of Single-Dose Moxidectin, a New Oral Treatment for Scabies: Efficacy, Safety, and Pharmacokinetics Compared to Two-Dose Ivermectin in a Porcine Model

    Science.gov (United States)

    Bernigaud, Charlotte; Aho, Ludwig Serge; Dreau, Dominique; Kelly, Andrew; Sutra, Jean-François; Moreau, Francis; Lilin, Thomas; Botterel, Françoise; Guillot, Jacques; Chosidow, Olivier

    2016-01-01

    Background Scabies is one of the commonest dermatological conditions globally; however it is a largely underexplored and truly neglected infectious disease. Foremost, improvement in the management of this public health burden is imperative. Current treatments with topical agents and/or oral ivermectin (IVM) are insufficient and drug resistance is emerging. Moxidectin (MOX), with more advantageous pharmacological profiles may be a promising alternative. Methodology/Principal Findings Using a porcine scabies model, 12 pigs were randomly assigned to receive orally either MOX (0.3 mg/kg once), IVM (0.2 mg/kg twice) or no treatment. We evaluated treatment efficacies by assessing mite count, clinical lesions, pruritus and ELISA-determined anti-S. scabiei IgG antibodies reductions. Plasma and skin pharmacokinetic profiles were determined. At day 14 post-treatment, all four MOX-treated but only two IVM-treated pigs were mite-free. MOX efficacy was 100% and remained unchanged until study-end (D47), compared to 62% (range 26–100%) for IVM, with one IVM-treated pig remaining infected until D47. Clinical scabies lesions, pruritus and anti-S. scabiei IgG antibodies had completely disappeared in all MOX-treated but only 75% of IVM-treated pigs. MOX persisted ~9 times longer than IVM in plasma and skin, thereby covering the mite’s entire life cycle and enabling long-lasting efficacy. Conclusions/Significance Our data demonstrate that oral single-dose MOX was more effective than two consecutive IVM-doses, supporting MOX as potential therapeutic approach for scabies. PMID:27732588

  11. Morbid Obesity Alters Both Pharmacokinetics and Pharmacodynamics of Propofol: Dosing Recommendation for Anesthesia Induction.

    Science.gov (United States)

    Dong, Dong; Peng, Xuemei; Liu, Jie; Qian, Hao; Li, Jiayang; Wu, Baojian

    2016-10-01

    The prevalence of obesity has markedly increased worldwide. Obese patients pose significant challenges to anesthesiologists with regard to accurate dosing of anesthetics due to potentially altered pharmacokinetics (PK). Here we determined the PK and pharmacodynamics (PD) of propofol for anesthesia induction in morbidly obese (MO) subjects (body mass index >35 kg/m(2)) at two dosing regimens: dosing based on total body weight and lean body weight (LBW), respectively. The propofol pharmacokinetic profile was well fitted with a two-compartment model. Both elimination clearance (223%-243% of controls, who had a body mass index 0.05) between MO subjects and controls. Morbid obesity led to a significant decrease (37.9%-38.6%; P obesity significantly altered both PK and PD of propofol. LBW was a better weight-based dosing scalar for anesthesia induction with propofol in MO subjects. PMID:27481855

  12. Population pharmacokinetics of olprinone in healthy male volunteers

    Directory of Open Access Journals (Sweden)

    Kunisawa T

    2014-03-01

    Full Text Available Takayuki Kunisawa,1 Hidefumi Kasai,2 Makoto Suda,2 Manabu Yoshimura,3 Ami Sugawara,3 Yuki Izumi,3 Takafumi Iida,3 Atsushi Kurosawa,3 Hiroshi Iwasaki3 1Surgical Operation Department, Asahikawa Medical University Hospital, Hokkaido, Japan; 2Clinical Study Management Division, Bell Medical Solutions Inc, Tokyo, Japan; 3Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan Background: Olprinone decreases the cardiac preload and/or afterload because of its vasodilatory effect and increases myocardial contractility by inhibiting phosphodiesterase III. Purpose: The objective of this study was to characterize the population pharmacokinetics of olprinone after a single continuous infusion in healthy male volunteers. Methods: We used 500 plasma concentration data points collected from nine healthy male volunteers for the study. The population pharmacokinetic analysis was performed using the nonlinear mixed effect model (NONMEM® software. Results: The time course of plasma concentration of olprinone was best described using a two-compartment model. The final pharmacokinetic parameters were total clearance (7.37 mL/minute/kg, distribution volume of the central compartment (134 mL/kg, intercompartmental clearance (7.75 mL/minute/kg, and distribution volume of the peripheral compartment (275 mL/kg. The interindividual variability in the total clearance was 12.4%, and the residual error variability (exponential and additive were 22.2% and 0.129 (standard deviation. The final pharmacokinetic model was assessed using a bootstrap method and visual predictive check. Conclusion: We developed a population pharmacokinetic model of olprinone in healthy male adults. The bootstrap method and visual predictive check showed that this model was appropriate. Our results might be used to develop the population pharmacokinetic model in patients. Keywords: phosphodiesterase III inhibitor, men, pharmacokinetic model

  13. Pharmacokinetic evaluation of pemetrexed

    DEFF Research Database (Denmark)

    Sørensen, Jens Benn

    2011-01-01

    of the currently published pharmacokinetic data of pemetrexed reviewing a number of different scenarios and patient populations. All the articles reviewed in this manuscript are from peer-reviewed English-spoken literature without any limitations to the time of publication. EXPERT OPINION: Pemetrexed's clearance......INTRODUCTION: Pemetrexed is a multi-targeted antifolate cytotoxic agent that has demonstrated activity in a number of very common cancer types including NSCLC in both first- and second-line settings and in the treatment of malignant mesothelioma. AREAS COVERED: This article focuses on all...

  14. Influence of rifampin on fleroxacin pharmacokinetics.

    OpenAIRE

    Schrenzel, J.; Dayer, P; Leemann, T; Weidekamm, E; Portmann, R; Lew, D P

    1993-01-01

    Staphylococcus aureus infections have been successfully treated in animal models with the combination of fleroxacin and rifampin. We studied the influence of rifampin, a potent cytochrome P-450 inducer, on the pharmacokinetics and biotransformation of fleroxacin in 14 healthy young male volunteers. Subjects were given 400 mg of fleroxacin orally once a day for 3 days to reach steady state. After a wash-out period of 2 days, the same subjects received 600 mg of rifampin orally once daily for 7...

  15. Pharmacokinetics of dexamethasone in broiler chickens

    OpenAIRE

    Watteyn, Anneleen; Wyns, Heidi; Plessers, Elke; De Baere, Siegrid; De Backer, Patrick; Croubels, Siska

    2012-01-01

    Dexamethasone (DEX) is a synthetic derivate of cortisol and is one of the most potent glucocorticoids in man and animal. It is well known as an anti-inflammatory drug in many species. In poultry, however, data on the use of DEX are scarce. DEX would be a possible candidate-drug to influence mediators like cytokines and acute phase proteins in a lipopolysaccharide (LPS) inflammation model. First of all, it is important to determine the pharmacokinetics to investigate the immunomodulating p...

  16. Pharmacokinetic Analysis of 64Cu-ATSM Dynamic PET in Human Xenograft Tumors in Mice

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Madsen, Jacob;

    2015-01-01

    The aim of this study was to evaluate the feasibility to perform voxel-wise kinetic modeling on datasets obtained from tumor-bearing mice that underwent dynamic PET scans with 64Cu-ATSM and extract useful physiological parameters.METHODS: Tumor-bearing mice underwent 90-min dynamic PET scans...... with 64Cu-ATSM and CT scans with contrast. Irreversible and reversible two-tissue compartment models were fitted to time activity curves (TACs) obtained from whole tumor volumes and compared using the Akaike information criterion (AIC). Based on voxel-wise pharmacokinetic analysis, parametric maps...... of model rate constants k₁, k₃ and Ki were generated and compared to 64Cu-ATSM uptake.RESULTS: Based on the AIC, an irreversible two-tissue compartment model was selected for voxel-wise pharmacokinetic analysis. Of the extracted parameters, k₁ (~perfusion) showed a strong correlation with early tracer...

  17. Nevirapine Exposure with WHO Pediatric Weight Band Dosing: Enhanced Therapeutic Concentrations Predicted Based on Extensive International Pharmacokinetic Experience

    NARCIS (Netherlands)

    Nikanjam, M.; Kabamba, D.; Cressey, T.R.; Burger, D.M.; Aweeka, F.T.; Acosta, E.P.; Spector, S.A.; Capparelli, E.V.

    2012-01-01

    Nevirapine (NVP) is a nonnucleoside reverse transcriptase inhibitor (NNRTI) used worldwide as part of combination antiretroviral therapy in infants and children to treat HIV infection. Dosing based on either weight or body surface area has been approved by the U.S. Food and Drug Administration (FDA)

  18. Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations.

    Science.gov (United States)

    Mitra, Amitava; Zhu, Wei; Kesisoglou, Filippos

    2016-09-01

    Amorphous solid dispersion (ASD) formulations are routinely used to enable the delivery of poorly soluble compounds. This type of formulations can enhance bioavailability due to higher kinetic solubility of the drug substance and increased dissolution rate of the formulation, by the virtue of the fact that the drug molecule exists in the formulation in a high energy amorphous state. In this article we report the application of physiologically based absorption models to mechanistically understand the clinical pharmacokinetics of solid dispersion formulations. Three case studies are shown here to cover a wide range of ASD bioperformance in human and modeling to retrospectively understand their in vivo behavior. Case study 1 is an example of fairly linear PK observed with dose escalation and the use of amorphous solubility to predict bioperformance. Case study 2 demonstrates the development of a model that was able to accurately predict the decrease in fraction absorbed (%Fa) with dose escalation thus demonstrating that such model can be used to predict the clinical bioperformance in the scenario where saturation of absorption is observed. Finally, case study 3 shows the development of an absorption model with the intent to describe the observed incomplete and low absorption in clinic with dose escalation. These case studies highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of ASD performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients. PMID:27442959

  19. Pharmacokinetic-Pharmacodynamic Modelling of the Analgesic and Antihyperalgesic Effects of Morphine after Intravenous Infusion in Human Volunteers

    DEFF Research Database (Denmark)

    Ravn, Pernille; Foster, David J. R.; Kreilgaard, Mads;

    2014-01-01

    Using a modelling approach, this study aimed to (i) examine whether the pharmacodynamics of the analgesic and antihyperalgesic effects of morphine differ; (ii) investigate the influence of demographic, pain sensitivity and genetic (OPRM1) variables on between-subject variability of morphine pharm...

  20. The use of the Levenberg-Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data

    International Nuclear Information System (INIS)

    The use of curve-fitting and compartmental modelling for calculating physiological parameters from measured data has increased in popularity in recent years. Finding the 'best fit' of a model to data involves the minimization of a merit function. An example of a merit function is the sum of the squares of the differences between the data points and the model estimated points. This is facilitated by curve-fitting algorithms. Two curve-fitting methods, Levenberg-Marquardt and MINPACK-1, are investigated with respect to the search start points that they require and the accuracy of the returned fits. We have simulated one million dynamic contrast enhanced MRI curves using a range of parameters and investigated the use of single and multiple search starting points. We found that both algorithms, when used with a single starting point, return unreliable fits. When multiple start points are used, we found that both algorithms returned reliable parameters. However the MINPACK-1 method generally outperformed the Levenberg-Marquardt method. We conclude that the use of a single starting point when fitting compartmental modelling data such as this produces unsafe results and we recommend the use of multiple start points in order to find the global minima. (note)

  1. USE OF EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) TO CONSTRUCT A PBPK /MODEL FOR CARBOFURAN WITH THE REPORTED EXPERIMENTAL DATA IN THE RAT

    Science.gov (United States)

    To better understand the relationships among carbofuran exposure, dose, and effects, a physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed for the rat using the Exposure Related Dose Estimating Model (ERDEM) framework.

  2. Theranostic system for drug delivery and pharmacokinetic imaging based on nanosecond pulsed light-induced photomechanical and photoacoustic effects

    Science.gov (United States)

    Tsunoi, Yasuyuki; Sato, Shunichi; Kawauchi, Satoko; Akutsu, Yusuke; Miyagawa, Yoshihiro; Araki, Koji; Shiotani, Akihiro; Terakawa, Mitsuhiro

    2015-11-01

    For efficient and side effects-free pharmacological treatment, we here propose a theranostic system that enables transvascular drug delivery by photomechanical waves (PMWs) and photoacoustic (PA) imaging of the drug distribution; both functions are based on nanosecond laser pulses and can therefore be integrated in one system. Through optical fibers arranged around an ultrasound sensor, low-energy and high-energy nanosecond light pulses were transmitted respectively for PA imaging and PMW-based drug delivery by temporal switching. With the system, we delivered a test drug (Evans blue) to tumors in mice and visualized distributions of both the blood vessels and drug in the tissue in vivo, showing the validity of the system.

  3. Theranostic system for drug delivery and pharmacokinetic imaging based on nanosecond pulsed light-induced photomechanical and photoacoustic effects

    International Nuclear Information System (INIS)

    For efficient and side effects-free pharmacological treatment, we here propose a theranostic system that enables transvascular drug delivery by photomechanical waves (PMWs) and photoacoustic (PA) imaging of the drug distribution; both functions are based on nanosecond laser pulses and can therefore be integrated in one system. Through optical fibers arranged around an ultrasound sensor, low-energy and high-energy nanosecond light pulses were transmitted respectively for PA imaging and PMW-based drug delivery by temporal switching. With the system, we delivered a test drug (Evans blue) to tumors in mice and visualized distributions of both the blood vessels and drug in the tissue in vivo, showing the validity of the system. (author)

  4. Method for gesture based modeling

    DEFF Research Database (Denmark)

    2006-01-01

    A computer program based method is described for creating models using gestures. On an input device, such as an electronic whiteboard, a user draws a gesture which is recognized by a computer program and interpreted relative to a predetermined meta-model. Based on the interpretation, an algorithm...... is assigned to the gesture drawn by the user. The executed algorithm may, for example, consist in creating a new model element, modifying an existing model element, or deleting an existing model element....

  5. Estimation of internal radiation dose in human based on animal data. Application of methodology in drug metabolism and pharmacokinetics

    International Nuclear Information System (INIS)

    Before conducting human study on radiolabeled drug, internal radiation dose is evaluated based on the animal data. Generally, however, species difference in the elimination process of radioactivity, mostly in the hepatic metabolism, is ignored. The methodology of correction was described for drugs that are eliminated mostly by hepatic metabolism. We showed the validity of using the method where the hepatic clearance in animal and human are constructed by the hepatic blood flow, protein unbound fraction and metabolic rate in vitro, and the internal radiation exposure calculated is corrected by the animal/human ratio of the hepatic clearance. (author)

  6. Pharmacokinetics of norfloxacin in the elderly.

    Science.gov (United States)

    Lepage, J Y; Caillon, J; Malinowsky, J M; Lequerré, S; Cozian, A; Le Normand, Y; Potel, G; Drugeon, H; Baron, D

    1991-01-01

    9 elderly and 9 younger adult patients, with proven post-operative lower urinary tract infection were treated with 400 mg of norfloxacin twice daily for 5 days. Pharmacokinetics of norfloxacin were measured on days 1 and 5. Compared to the younger adult patients, the elderly showed a decreased creatinine clearance and, following the last dose on day 5, an increased maximum plasma concentration of norfloxacin, an increased area under the concentration-time curve and a decreased total body clearance of norfloxacin. These results confirm that in elderly, as in younger adult patients, the pharmacokinetics of norfloxacin can be described by a linear model and accumulation of the drug during repetitive multiple doses is predictable. The differences between the two groups cannot be considered as clinically significant so that no dose change would be required in elderly patients within the range of creatinine clearance studied.

  7. Pharmacokinetic, residue and irritation aspects of chloramphenicol sodium succinate and a chloramphenicol base formulation following intramuscular administration to ruminants.

    Science.gov (United States)

    Nouws, J F; Vree, T B; Holtkamp, J; Baakman, M; Driessens, F; Guelen, P J

    1986-07-01

    The disposition of chloramphenicol (CAP) and of its glucuronide metabolite in plasma and milk was studied following a single intramuscular injection of a chloramphenicol base formulation (Amicol Forte; product A) and of chloramphenicol sodium succinate (product B) to dairy cows. The dose applied of both formulations was equivalent to 50 mg CAP base/kg body weight. The HPLC determined CAP concentrations were microbiologically active. Product A revealed 30% higher plasma CAP peak concentrations (13.0 vs 9.0 micrograms/ml) and 36% larger areas under the plasma concentration-time curves than product B, whereas their absorption and elimination half-lives were of the same order of magnitude. In the onset phase (during 4 h p.i.) unhydrolysed CAP sodium succinate could be detected in plasma and the glucuronide fraction was 26% of the parent drug. After 25 h p.i. the glucuronide fraction equalled that of the parent drug. The maximum CAP concentration in milk was for product B equal to, and for product A 80% of, the CAP plasma concentration. In milk no chloramphenicol glucuronide metabolites could be detected. HPLC methods for detecting ultra-trace CAP concentrations in edible tissues were developed by the employment of extraction with or without a clean-up procedure. Seven days after i.m. administration of product A and B to calves, the CAP residue concentrations in the kidney, liver, and muscle were less than 2 nanogram/g tissue. Traces of CAP residues could be still found at the injection site and in the urine. Chloramphenicol sodium succinate (product B) caused extensive tissue irritation at the injection site, while in the case of product A the irritation was limited.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3750804

  8. Model Construct Based Enterprise Model Architecture and Its Modeling Approach

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of enterprise model architecture are discussed. Then, the concept of reusable model construct (MC) which belongs to the control view and can help to derive other views is proposed. The modeling approach based on model construct consists of three steps, reference model architecture synthesis, enterprise model customization, system design and implementation. According to MC based modeling approach a case study with the background of one-kind-product machinery manufacturing enterprises is illustrated. It is shown that proposal model construct based enterprise model architecture and modeling approach are practical and efficient.

  9. Model-based software design

    Science.gov (United States)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui; Yenne, Britt; Vansickle, Larry; Ballantyne, Michael

    1992-01-01

    Domain-specific knowledge is required to create specifications, generate code, and understand existing systems. Our approach to automating software design is based on instantiating an application domain model with industry-specific knowledge and then using that model to achieve the operational goals of specification elicitation and verification, reverse engineering, and code generation. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model.

  10. Model-Based Reasoning

    Science.gov (United States)

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  11. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.

    Science.gov (United States)

    Zhang, Yong; Huo, Meirong; Zhou, Jianping; Xie, Shaofei

    2010-09-01

    This study presents PKSolver, a freely available menu-driven add-in program for Microsoft Excel written in Visual Basic for Applications (VBA), for solving basic problems in pharmacokinetic (PK) and pharmacodynamic (PD) data analysis. The program provides a range of modules for PK and PD analysis including noncompartmental analysis (NCA), compartmental analysis (CA), and pharmacodynamic modeling. Two special built-in modules, multiple absorption sites (MAS) and enterohepatic circulation (EHC), were developed for fitting the double-peak concentration-time profile based on the classical one-compartment model. In addition, twenty frequently used pharmacokinetic functions were encoded as a macro and can be directly accessed in an Excel spreadsheet. To evaluate the program, a detailed comparison of modeling PK data using PKSolver and professional PK/PD software package WinNonlin and Scientist was performed. The results showed that the parameters estimated with PKSolver were satisfactory. In conclusion, the PKSolver simplified the PK and PD data analysis process and its output could be generated in Microsoft Word in the form of an integrated report. The program provides pharmacokinetic researchers with a fast and easy-to-use tool for routine and basic PK and PD data analysis with a more user-friendly interface. PMID:20176408

  12. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.

    Science.gov (United States)

    Zhang, Yong; Huo, Meirong; Zhou, Jianping; Xie, Shaofei

    2010-09-01

    This study presents PKSolver, a freely available menu-driven add-in program for Microsoft Excel written in Visual Basic for Applications (VBA), for solving basic problems in pharmacokinetic (PK) and pharmacodynamic (PD) data analysis. The program provides a range of modules for PK and PD analysis including noncompartmental analysis (NCA), compartmental analysis (CA), and pharmacodynamic modeling. Two special built-in modules, multiple absorption sites (MAS) and enterohepatic circulation (EHC), were developed for fitting the double-peak concentration-time profile based on the classical one-compartment model. In addition, twenty frequently used pharmacokinetic functions were encoded as a macro and can be directly accessed in an Excel spreadsheet. To evaluate the program, a detailed comparison of modeling PK data using PKSolver and professional PK/PD software package WinNonlin and Scientist was performed. The results showed that the parameters estimated with PKSolver were satisfactory. In conclusion, the PKSolver simplified the PK and PD data analysis process and its output could be generated in Microsoft Word in the form of an integrated report. The program provides pharmacokinetic researchers with a fast and easy-to-use tool for routine and basic PK and PD data analysis with a more user-friendly interface.

  13. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  14. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines.

    Science.gov (United States)

    Park, Jinho; Park, Joonyoung; Pei, Yihua; Xu, Jun; Yeo, Yoon

    2016-09-01

    Small interfering RNA (siRNA) is a promising drug candidate, expected to have broad therapeutic potentials toward various diseases including viral infections and cancer. With recent advances in bioconjugate chemistry and carrier technology, several siRNA-based drugs have advanced to clinical trials. However, most cases address local applications or diseases in the filtering organs, reflecting remaining challenges in systemic delivery of siRNA. The difficulty in siRNA delivery is in large part due to poor circulation stability and unfavorable pharmacokinetics and biodistribution profiles of siRNA. This review describes the pharmacokinetics and biodistribution of siRNA nanomedicines, focusing on those reported in the past 5years, and their pharmacological effects in selected disease models such as hepatocellular carcinoma, liver infections, and respiratory diseases. The examples discussed here will provide an insight into the current status of the art and unmet needs in siRNA delivery. PMID:26686832

  15. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  16. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    infrastructure for different symbolic positioning technologies, e.g., Bluetooth and RFID. More specifically, the paper proposes a model of indoor space that comprises a base graph and mappings that represent the topology of indoor space at different levels. The resulting model can be used for one or several...... indoor positioning technologies. Focusing on RFID-based positioning, an RFID specific reader deployment graph model is built from the base graph model. This model is then used in several algorithms for constructing and refining trajectories from raw RFID readings. Empirical studies with implementations...

  17. Pharmacokinetic modeling of penciclovir and BRL42359 in the plasma and tears of healthy cats to optimize dosage recommendations for oral administration of famciclovir.

    Science.gov (United States)

    Sebbag, Lionel; Thomasy, Sara M; Woodward, Andrew P; Knych, Heather K; Maggs, David J

    2016-08-01

    OBJECTIVES To determine, following oral administration of famciclovir, pharmacokinetic (PK) parameters for 2 of its metabolites (penciclovir and BRL42359) in plasma and tears of healthy cats so that famciclovir dosage recommendations for the treatment of herpetic disease can be optimized. ANIMALS 7 male domestic shorthair cats. PROCEDURES In a crossover study, each of 3 doses of famciclovir (30, 40, or 90 mg/kg) was administered every 8 or 12 hours for 3 days. Six cats were randomly assigned to each dosage regimen. Plasma and tear samples were obtained at predetermined times after famciclovir administration. Pharmacokinetic parameters were determined for BRL42359 and penciclovir by compartmental and noncompartmental methods. Pharmacokinetic-pharmacodynamic (PK-PD) indices were determined for penciclovir and compared among all dosage regimens. RESULTS Compared with penciclovir concentrations, BRL42359 concentrations were 5- to 11-fold greater in plasma and 4- to 7-fold greater in tears. Pharmacokinetic parameters and PK-PD indices for the 90 mg/kg regimens were superior to those for the 30 and 40 mg/kg regimens, regardless of dosing frequency. Penciclovir concentrations in tears ranged from 18% to 25% of those in plasma. Administration of 30 or 40 mg/kg every 8 hours achieved penciclovir concentrations likely to be therapeutic in plasma but not in tears. Penciclovir concentrations likely to be therapeutic in tears were achieved only with the two 90 mg/kg regimens. CONCLUSIONS AND CLINICAL RELEVANCE In cats, famciclovir absorption is variable and its metabolism saturable. Conversion of BRL42359 to penciclovir is rate limiting. The recommended dosage of famciclovir is 90 mg/kg every 12 hours for cats infected with feline herpesvirus. PMID:27463546

  18. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Chen LC

    2016-04-01

    Full Text Available Ling-Chun Chen,1,* Ying-Chen Chen,1,* Chia-Yu Su,1 Chung-Shu Hong,1 Hsiu-O Ho,1 Ming-Thau Sheu1,2 1School of Pharmacy, College of Pharmacy, 2Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Quercetin (Que is known to have biological benefits including an anticancer effect, but low water solubility limits its clinical application. The aim of this study was to develop a lecithin-based mixed polymeric micelle (LMPM delivery system to improve the solubility and bioavailability of Que. The optimal Que-LMPM, composed of Que, lecithin, Pluronic® P123, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy[poly(ethylene glycol-2000] in a proportion of 3:1:17.5:2.5 (w/w, was prepared by a thin-film method. The average size, polydispersion index, encapsulating efficiency, and drug loading of Que-LMPM were 61.60±5.02 nm, 0.589±0.198, 96.87%±9.04%, and 12.18%±1.11%, respectively. The solubility of Que in the Que-LMPM system increased to 5.81 mg/mL, compared to that of free Que in water of 0.17–7.7 µg/mL. The Que-LMPM system presented a sustained-release property in vitro. The in vitro cytotoxicity assay showed that the 50% inhibitory concentration values toward MCF-7 breast cancer cells for free Que, blank LMPMs, and Que-LMPMs were >200, >200, and 110 µM, respectively, indicating the nontoxicity of the LMPM carrier, but the LMPM formulation enhanced the cytotoxicity of Que against MCF-7 cells. A cellular uptake assay also confirmed the intake of Que-LMPM by MCF-7 cells. An in vivo pharmacokinetic study demonstrated that Que-LMPMs had higher area under the concentration–time curve and a longer half-life, leading to better bioavailability compared to a free Que injection. Due to their nanosize, core–shell structure, and solubilization potential, LMPMs were successfully developed as

  19. Insulin aspart pharmacokinetics

    DEFF Research Database (Denmark)

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin;

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  20. Clinical pharmacokinetics of anticonvulsants.

    Science.gov (United States)

    Hvidberg, E F; Dam, M

    1976-01-01

    Anticonvulsant therapy was among the first areas to benefit from clinical pharmacokinetic studies. The most important advantage is that the frequent interindividual variation in the plasma level/dose ratio for these drugs can be circumvented by plasma level monitoring. For several anticonvulsants the brain concentration is shown to parallel the plasma concentration. Phenytoin (diphenylhydantoin) is stil the most important anticonvulsant and the one for which kinetics have been thoroughly investigated in man. These investigations have revealed several reasons for the wellknown difficulties in using this drug clinically. The absorption rate and fraction are very much dependent on the pharmaceutical preparation, and changes of brand may alter the plasma level of phenytoin in spite of unaltered dose. The elimination capacity is saturable causing dose dependent kinetics, which again means disproportional changes in plasma level with changes in dose. Great individual variations exist in the rate of metabolism, and several pharmacokinetic drug interactions are known. As an optimum therapeutic plasma concentration range has been established monitoring plasma levels must be strongly advocated. Interpretation of plasma levels in uraemic patients must take into account decreased protein binding of the drug. Carbamazepine is probably as effective as phenytoin. The elimination is a first order process, but the rate of metabolism increases after a few weeks' treatment. An active metabolite (epoxide) may be the cause of some side-effects. Combined treatment with other anticonvulsant drugs decreases the half-life and more frequent dosing may be necessary. An optimum therapeutic concentration range has been suggested and plasma monitoring is advocated, along with that of the active metabolite, the epoxide. Phenobarbitone is still much used but its kinetics have been investigated to a lesser extent. The main problem is the variability in the rate of elimination. In children the half

  1. Pharmacokinetic interactions with thiazolidinediones.

    Science.gov (United States)

    Scheen, André J

    2007-01-01

    Type 2 diabetes mellitus is a complex disease combining defects in insulin secretion and insulin action. New compounds called thiazolidinediones or glitazones have been developed for reducing insulin resistance. After the withdrawal of troglitazone because of liver toxicity, two compounds are currently used in clinical practice, rosiglitazone and pioglitazone. These compounds are generally used in combination with other pharmacological agents. Because they are metabolised via cytochrome P450 (CYP), glitazones are exposed to numerous pharmacokinetic interactions. CYP2C8 and CYP3A4 are the main isoenzymes catalysing biotransformation of pioglitazone (as with troglitazone), whereas rosiglitazone is metabolised by CYP2C9 and CYP2C8. For both rosiglitazone and pioglitazone, the most relevant interactions have been described in healthy volunteers with rifampicin (rifampin), which results in a significant decrease of area under the plasma concentration-time curve [AUC] (54-65% for rosiglitazone, p<0.001; 54% for pioglitazone, p<0.001), and with gemfibrozil, which results in a significant increase of AUC (130% for rosiglitazone, p<0.001; 220-240% for pioglitazone, p<0.001). The relevance of such drug-drug interactions in patients with type 2 diabetes remains to be evaluated. However, in the absence of clinical data, it is prudent to reduce the dosage of each glitazone by half in patients treated with gemfibrozil. Conversely, rosiglitazone and pioglitazone do not seem to significantly affect the pharmacokinetics of other compounds. Although some food components have also been shown to potentially interfere with drugs metabolised with the CYP system, no published study deals specifically with these possible CYP-mediated food-drug interactions with glitazones.

  2. CLINICAL PHARMACOKINETIC STUDIES OF MIFEPRISTONE

    Institute of Scientific and Technical Information of China (English)

    XUNing; WUXi-Rui

    1989-01-01

    In ordcr to cxaminc thc pharmacokinetic charactcristics of mifcpristonc, manufactured by the Roussel-Uclaf Company, in Chincsee healthy volunteers and early pregnant womcn, the following two studies wcre carried out.

  3. Pharmacokinetics of clomipramine during pregnancy

    NARCIS (Netherlands)

    ter Horst, P. G. J.; Proost, J. H.; Smit, J. P.; Vries, M. T.; Jong-van den Berg, de L. T. W.; Wilffert, B.

    2015-01-01

    Clomipramine is one of the drugs for depression during pregnancy; however, pharmacokinetic data of clomipramine and its active metabolite desmethylclomipramine in this vulnerable period are lacking. In this study, we describe clomipramine and desmethylclomipramine concentrations including their rati

  4. Pharmacokinetics of clomipramine during pregnancy

    NARCIS (Netherlands)

    Ter Horst, P G J; Proost, J H; Smit, J P; Vries, M T; de Jong-van den Berg, Lolkje; Wilffert, B

    2015-01-01

    PURPOSE: Clomipramine is one of the drugs for depression during pregnancy; however, pharmacokinetic data of clomipramine and its active metabolite desmethylclomipramine in this vulnerable period are lacking. In this study, we describe clomipramine and desmethylclomipramine concentrations including t

  5. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel-tetrandrine interaction and its application to a pharmacokinetic study.

    Science.gov (United States)

    Li, Dan; Cao, Zhonglian; Liao, Xueling; Yang, Ping; Liu, Li

    2016-11-01

    Paclitaxel is a broad-spectrum anti-cancer drug by targeting microtubulin. However, multidrug resistant (MDR) makes its clinical application more difficult and results in failure of chemotherapy. Tetrandrine as a potential multidrug resistant modulator could be combined with other anti-cancer drugs. In this study, ultra-performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight mass spectrometry (QTOF) was applied to simultaneously qualitative and quantitative analysis of paclitaxel for the pharmacokinetic studies while combined with tetrandrine. This method was developed based on non-target screening mode IDA (Information Dependent Acquisition). As a result, the validated range was 0.25-64ng/ml (30µl plasma) for paclitaxel. Totally 33 metabolites of paclitaxel and tetrandine were identified in vivo and in vitro. The main metabolites of PTX were dose-dependent decreased with different amounts of tetrandine co-administration no matter in vivo and in vitro, the exposure of PTX increased in pharmacokinetic study. The verified method is sensitive accurate and effective for the simultaneous determination of paclitaxel and its metabolites in blood, urine and live microsome incubation samples and it was successfully applied to evaluate the pharmacokinetics and drug-drug interaction between paclitaxel and tetrandine. Furthermore, a biosensor technology, surface plasmon resonance (SPR) analysis was applied to preliminary evaluate the competitive protein binding of multiple components. The SPR analysis indicated that the affinity between 6-hydroxy-paclitaxel and micotubulin is similar to that between paclitaxel and micotubulin, and tetrandrine also does not form a competitive combination with paclitaxel. For human, 6-hydroxy-paclitaxel is the one of main metabolites of paclitaxel, so the results suggested that tetrandine has an influence on the metabolite of paclitaxel, but tetrandine and the main metabolites of PTX probably do not affect PTX

  6. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel-tetrandrine interaction and its application to a pharmacokinetic study.

    Science.gov (United States)

    Li, Dan; Cao, Zhonglian; Liao, Xueling; Yang, Ping; Liu, Li

    2016-11-01

    Paclitaxel is a broad-spectrum anti-cancer drug by targeting microtubulin. However, multidrug resistant (MDR) makes its clinical application more difficult and results in failure of chemotherapy. Tetrandrine as a potential multidrug resistant modulator could be combined with other anti-cancer drugs. In this study, ultra-performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight mass spectrometry (QTOF) was applied to simultaneously qualitative and quantitative analysis of paclitaxel for the pharmacokinetic studies while combined with tetrandrine. This method was developed based on non-target screening mode IDA (Information Dependent Acquisition). As a result, the validated range was 0.25-64ng/ml (30µl plasma) for paclitaxel. Totally 33 metabolites of paclitaxel and tetrandine were identified in vivo and in vitro. The main metabolites of PTX were dose-dependent decreased with different amounts of tetrandine co-administration no matter in vivo and in vitro, the exposure of PTX increased in pharmacokinetic study. The verified method is sensitive accurate and effective for the simultaneous determination of paclitaxel and its metabolites in blood, urine and live microsome incubation samples and it was successfully applied to evaluate the pharmacokinetics and drug-drug interaction between paclitaxel and tetrandine. Furthermore, a biosensor technology, surface plasmon resonance (SPR) analysis was applied to preliminary evaluate the competitive protein binding of multiple components. The SPR analysis indicated that the affinity between 6-hydroxy-paclitaxel and micotubulin is similar to that between paclitaxel and micotubulin, and tetrandrine also does not form a competitive combination with paclitaxel. For human, 6-hydroxy-paclitaxel is the one of main metabolites of paclitaxel, so the results suggested that tetrandine has an influence on the metabolite of paclitaxel, but tetrandine and the main metabolites of PTX probably do not affect PTX

  7. Clinical pharmacokinetics in infants and children.

    Science.gov (United States)

    Rane, A; Wilson, J T

    1976-01-01

    Wide variations in drug dose recommendations for children of the same or different ages reflect the inadequacy of data on pharmacokinetics and pharmacodynamics in children. Selected aspects of available literature on pharmacokinetics of drugs used in older infants and children has been reviewed with special attention to calculation of an age-appropriate dose. During the neonatal period and early infancy the elimination of many drugs that are excreted in the urine in unchanged form is restricted by the immaturity of glomerular filtration and renal tubular secretion. On the other hand, in late infancy and/or in childhood, a similar or greater rate of elimination from plasma than in adults has been observed for many drugs, notably digoxin, phenobarbitone, phenytoin, carbamazepine, ethosuximide, diazoxide, clindamycin and propoxyphene. Consistent with this, it has been shown that some drugs exhibit a lower plasma level/dose ratio in infancy and early childhood as compared with the adult. This is true for phenobarbitone, phenytoin and ethosuximide. Some age groups of children remain uninvestigated with regard to pharmacokinetics, even for the drugs reviewed. Therefore, pediatric therapy remains empirically based for many drugs. PMID:1017153

  8. Model-based consensus

    NARCIS (Netherlands)

    Boumans, Marcel

    2014-01-01

    The aim of the rational-consensus method is to produce “rational consensus”, that is, “mathematical aggregation”, by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  9. Model-based consensus

    NARCIS (Netherlands)

    M. Boumans

    2014-01-01

    The aim of the rational-consensus method is to produce "rational consensus", that is, "mathematical aggregation", by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  10. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    Directory of Open Access Journals (Sweden)

    Qiu JX

    2015-02-01

    2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π–π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood–brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a synergistic effect on platelet aggregation in humans. Moreover, ginger components showed a rapid half-life and no to low toxicity in humans. Taken together, this study shows that ginger components may regulate the activity and expression of various human CYPs, probably resulting in alterations in drug clearance and response. More studies are warranted to identify and confirm potential ginger–drug interactions and explore possible interactions of ginger with human CYPs and other functionally important proteins, to reduce and avoid side effects induced by unfavorable ginger–drug interactions.Keywords: CYP, drug metabolism, ginger, drug interaction, docking

  11. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...... datasets. Our model also outperforms A Decision Cluster Classification (ADCC) and the Decision Cluster Forest Classification (DCFC) models on the Reuters-21578 dataset....

  12. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...... of information structures. The general event concept can be used to guide systems analysis and design and to improve modeling approaches....

  13. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a guinea pig asthma model.

    LENUS (Irish Health Repository)

    Gibbons, Aileen

    2011-09-01

    Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo.

  14. Population Pharmacokinetics and Pharmacodynamic Modeling of Abacavir (1592U89) from a Dose-Ranging, Double-Blind, Randomized Monotherapy Trial with Human Immunodeficiency Virus-Infected Subjects

    OpenAIRE

    Weller, Stephen; Radomski, Kristine M.; Lou, Yu; Stein, Daniel S.

    2000-01-01

    Abacavir (formerly 1592U89) is a carbocyclic nucleoside analog with potent anti-human immunodeficiency virus (anti-HIV) activity when administered alone or in combination with other antiretroviral agents. The population pharmacokinetics and pharmacodynamics of abacavir were investigated in 41 HIV type 1 (HIV-1)-infected, antiretroviral naive adults with baseline CD4+ cell counts of ≥100/mm3 and plasma HIV-1 RNA levels of >30,000 copies/ml. Data for analysis were obtained from patients who rec...

  15. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  16. Improving the pharmacokinetic and CYP inhibition profiles of azaxanthene-based glucocorticoid receptor modulators-identification of (S)-5-(2-(9-fluoro-2-(4-(2-hydroxypropan-2-yl)phenyl)-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropanamido)-N-(tetrahydro-2H-pyran-4-yl)-1,3,4-thiadiazole-2-carboxamide (BMS-341).

    Science.gov (United States)

    Yang, Michael G; Dhar, T G Murali; Xiao, Zili; Xiao, Hai-Yun; Duan, James J-W; Jiang, Bin; Galella, Michael A; Cunningham, Mark; Wang, Jinhong; Habte, Sium; Shuster, David; McIntyre, Kim W; Carman, Julie; Holloway, Deborah A; Somerville, John E; Nadler, Steven G; Salter-Cid, Luisa; Barrish, Joel C; Weinstein, David S

    2015-05-28

    An empirical approach to improve the microsomal stability and CYP inhibition profile of lead compounds 1a and 1b led to the identification of 5 (BMS-341) as a dissociated glucocorticoid receptor modulator. Compound 5 showed significant improvements in pharmacokinetic properties and, unlike compounds 1a-b, displayed a linear, dose-dependent pharmacokinetic profile in rats. When tested in a chronic model of adjuvant-induced arthritis in rat, the ED50 of 5 (0.9 mg/kg) was superior to that of both 1a and 1b (8 and 17 mg/kg, respectively). PMID:25905990

  17. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of...

  18. Constraint Based Modeling Going Multicellular.

    Science.gov (United States)

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches.

  19. Intratumoral Pharmacokinetics: Challenges to Nanobiomaterials.

    Science.gov (United States)

    Al-Abd, Ahmed M; Al-Abbasi, Fahad A; Torchilin, Vladimir P

    2015-01-01

    Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. Solid tumor tissue is characterized by high density of vascular bed however; the vast majority of these blood vessels are not functioning. The vast majority of solid tumors can be described as poorly perfused with blood; and anticancer agents need to penetrate/distribute avascularly within solid tumor micro-milieu. Classic pharmacokinetic parameters correlate drug status within central compartment (blood) to all perfused body tissues according to their degree of perfusion. Yet, these classic pharmacokinetic parameters cannot fully elucidate the intratumoral drug penetration/distribution status of anticancer drugs due to the great discrepancies in perfusion between normal and solid tumor tissues. Herein, we will discuss the recently proposed pharmacokinetic parameters that might accurately portray the distribution of anticancer agents within solid tumor micro-milieu. In addition, we will present the new challenges attributed to these new pharmacokinetic parameters towards designing nanobiomaterial drug delivery system. PMID:26027565

  20. Single Doses up to 800 mg of E-52862 Do Not Prolong the QTc Interval--A Retrospective Validation by Pharmacokinetic-Pharmacodynamic Modelling of Electrocardiography Data Utilising the Effects of a Meal on QTc to Demonstrate ECG Assay Sensitivity.

    Directory of Open Access Journals (Sweden)

    Jörg Täubel

    Full Text Available E-52862 is a Sigma-1 receptor antagonist (S1RA currently under investigation as a potential analgesic medicine. We successfully applied a concentration-effect model retrospectively to a four-way crossover Phase I single ascending dose study and utilized the QTc shortening effects of a meal to demonstrate assay sensitivity by establishing the time course effects from baseline in all four periods, independently from any potential drug effects.Thirty two healthy male and female subjects were included in four treatment periods to receive single ascending doses of 500 mg, 600 mg or 800 mg of E-52862 or placebo. PK was linear over the dose range investigated and doses up to 600 mg were well tolerated. The baseline electrocardiography (ECG measurements on Day-1 were time-matched with ECG and pharmacokinetic (PK samples on Day 1 (dosing day.In this conventional mean change to time-matched placebo analysis, the largest time-matched difference to placebo QTcI was 1.44 ms (90% CI: -4.04, 6.93 ms for 500 mg; -0.39 ms (90% CI: -3.91, 3.13 ms for 600 mg and 1.32 ms (90% CI: -1.89, 4.53 ms for 800 mg of E-52862, thereby showing the absence of any QTc prolonging effect at the doses tested. In addition concentration-effect models, one based on the placebo corrected change from baseline and one for the change of QTcI from average baseline with time as fixed effect were fitted to the data confirming the results of the time course analysis.The sensitivity of this study to detect small changes in the QTc interval was confirmed by demonstrating a shortening of QTcF of -8.1 (90% CI: -10.4, -5.9 one hour and -7.2 (90% CI: -9.4, -5.0 three hours after a standardised meal.EU Clinical Trials Register EudraCT 2010 020343 13.

  1. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  2. FIRST REPORTS OF CLINICAL PHARMACOKINETICS IN NIGERIA

    OpenAIRE

    Michael, O.S.

    2015-01-01

    The German Friedrich Hartmut Dost (1910-1985) introduced the word Pharmacokinetics. Clinical pharmacokinetics is the direct application of knowledge regarding a drug's pharmacokinetics to a therapeutic situation in an individual or a population. It is the basis of therapeutic drug monitoring with the ultimate goal of keeping drugs safe. This branch of pharmacology has become the most relevant to the sub-specialty of clinical pharmacology. First reports of Clinical Pharmacokinetics in Nigeria ...

  3. Event-Based Activity Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2004-01-01

    We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related activit...

  4. Pharmacokinetics of BMEDA after Intravenous Administration in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Chih-Hsien Chang

    2014-01-01

    Full Text Available The pharmacokinetics of N,N-bis(2-mercapatoethly-N',N'-diethylenediamine (BMEDA, a molecule that can form a chelate with rhenium-188 (188Re to produce the 188Re-BMEDA-liposomes, was studied. In this work, beagles received a single injection of BMEDA, at doses of 1, 2, or 5 mg/kg; the concentration of BMEDA in the beagles’ plasma was then analyzed and determined by liquid chromatography-mass spectrometry/mass spectrometry. Based on the pharmacokinetic parameters of BMEDA, we found that male and female animals shared similar patterns indicating that the pharmacokinetics of BMEDA is independent of gender differences. In addition, the