WorldWideScience

Sample records for based onsequence composition

  1. Accurate phylogenetic classification of DNA fragments based onsequence composition

    Energy Technology Data Exchange (ETDEWEB)

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  2. REST based service composition

    DEFF Research Database (Denmark)

    Grönvall, Erik; Ingstrup, Mads; Pløger, Morten

    2011-01-01

    This paper presents an ongoing work developing and testing a Service Composition framework based upon the REST architecture named SECREST. A minimalistic approach have been favored instead of a creating a complete infrastructure. One focus has been on the system's interaction model. Indeed, an ai...

  3. Compositional based testing with ioco

    NARCIS (Netherlands)

    van der Bijl, H.M.; Rensink, Arend; Tretmans, G.J.; Petrenko, A.; Ulrich, A.

    2004-01-01

    Compositional testing concerns the testing of systems that consist of communicating components which can also be tested in isolation. Examples are component based testing and interoperability testing. We show that, with certain restrictions, the ioco-test theory for conformance testing is suitable

  4. Graphene-based composite materials.

    Science.gov (United States)

    Stankovich, Sasha; Dikin, Dmitriy A; Dommett, Geoffrey H B; Kohlhaas, Kevin M; Zimney, Eric J; Stach, Eric A; Piner, Richard D; Nguyen, SonBinh T; Ruoff, Rodney S

    2006-07-20

    Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

  5. Silicon-based nanoenergetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Asay, Blaine [Los Alamos National Laboratory; Son, Steven [PURDUE UNIV; Mason, Aaron [PURDUE UNIV; Yarrington, Cole [PURDUE UNIV; Cho, K Y [PURDUE UNIV; Gesner, J [PSU; Yetter, R A [PSU

    2009-01-01

    Fundamental combustion properties of silicon-based nano-energetic composites was studied by performing equilibrium calculations, 'flame tests', and instrumented burn-tube tests. That the nominal maximum flame temperature and for many Si-oxidizer systems is about 3000 K, with exceptions. Some of these exceptions are Si-metal oxides with temperatures ranging from 2282 to 2978 K. Theoretical maximum gas production of the Si composites ranged from 350-6500 cm{sup 3}/g of reactant with NH{sub 4}ClO{sub 4} - Si producing the most gas at 6500 cm{sup 3}/g and Fe{sub 2}O{sub 3} producing the least. Of the composites tested NH{sub 4}ClO{sub 4} - Si showed the fastest burning rates with the fastest at 2.1 km/s. The Si metal oxide burning rates where on the order of 0.03-75 mls the slowest of which was nFe{sub 2}O{sub 3} - Si.

  6. Rare earth base superconducting composition

    International Nuclear Information System (INIS)

    Raveau, B.J.; Bourgault, D.M.; Hervieu, M.; Martin, C.Y.; Michel, C.M.A.E.; Provost, J.R.J.

    1991-01-01

    A superconductin mixed valence copper oxide with a perowskite structure is claimed. It comprises a valence 4 rare earth (Ce or Pr), an alkaline earth metal (Sr or Ba) and thallium. Chemical composition is given and synthesis is described [fr

  7. Composite Based EHV AC Overhead Transmission Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard

    ) levels are still not seen as possibility, the future expansion of transmission grids are dependent on new solutions with lessened environment impact, especially with regard to the visual impact. In the present Thesis, composite materials and composite based overhead line components are presented...... and analysed with regard to the possibilities, limitations and risks widespread application of composite materials on EHV AC overhead transmission lines may present. To form the basis for evaluation of the useability of composite materials, dierent overhead line projects aimed at reducing the environmental...... impact are analysed with regard to their visual impact reducing design steps. These are used to form the basis for overhead line system design ideas, which are analysed with regard to application of composite materials and components. Composite materials and components, when applied in EHV systems...

  8. Conducting polyheterocycle composites based on porous hosts

    Science.gov (United States)

    Park, J. S.; Ruckenstein, E.

    1992-02-01

    Conducting composites based on porous substrates (cotton fiber, non-woven polypropylene mat and porous crosslinked polystyrene) have been prepared by a two step imbibition technique. First, the substrate was imbibed with a solution of monomer (pyrrole or bithiophene) in acetonitrile, followed by partial drying. Subsequently, the substrate was again imbibed, this time with an oxidant dissolved in a suitable solvent. The polymerization of the monomer inside the host in the presence of the oxidant and the doping of the polymer with the oxidant leads to the conducting composite. The highly hydrophobic and porous crosslinked polystyrene, prepared by the concentrated emulsion polymerization method, is the most efficient. The solvent employed for the oxidant plays a major role. A FeCl3-methanol system and porous crosslinked polystyrene lead to conductivities of polythiophene and polypyrrole based composites of 3.63 and 0.65 S/cm, respectively. Copper perchlorate and iron perchlorate are also suitable oxidants. The environmental and thermal stabilities of polypyrrole based composites are lower than those of polythiophene based composites. The thermal stability of polypyrrole based composites can be enhanced by including a small amount of an organic antioxidant, such as amides or substituted phenols, in the composite.

  9. Nanocellulose based polymer composite for acoustical materials

    Science.gov (United States)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  10. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  11. Development of Tungsten Based Composites

    Science.gov (United States)

    1992-02-01

    CONTENTS Section Title Page 1 INTRODUCTION & SUMMARY .............................. 1 2 MATERIAL SELECTION .................................. 3 3...Metallographic Examination .. 41 - iv - 1. INTRODUCTION & SUMMARY This is the. Final Report on a Phase I SBIR Program entitled "Development of Tungsten Based...m = - -𔃺 S (l- 1- =11 = (t) 011CU ’a . 4) woj .- :2 01w c L .0 u .-. 0C 0 goa - L 0d MCDM . 3 -X - z 1 m- L. S.1 MCDM -z3-2: S - m 1 o. 01 In 0,10Lnw

  12. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  13. Soy-based fillers for thermoset composites

    Science.gov (United States)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  14. Fermentation based carbon nanotube bionic functional composites

    OpenAIRE

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique mechanical and physical properties that are not produced by abiotic processes. Based on grape must and bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at r...

  15. Chemical microsensors based on polymer fiber composites

    Science.gov (United States)

    Kessick, Royal F.; Levit, Natalia; Tepper, Gary C.

    2005-05-01

    There is an urgent need for new chemical sensors for defense and security applications. In particular, sensors are required that can provide higher sensitivity and faster response in the field than existing baseline technologies. We have been developing a new solid-state chemical sensor technology based on microscale polymer composite fiber arrays. The fibers consist of an insulating polymer doped with conducting particles and are electrospun directly onto the surface of an interdigitated microelectrode. The concentration of the conducting particles within the fiber is controlled and is near the percolation threshold. Thus, the electrical resistance of the polymer fiber composite is very sensitive to volumetric changes produced in the polymer by vapor absorption. Preliminary results are presented on the fabrication and testing of the new microsensor. The objective is to take advantage of the very high surface to volume ratio, low thermal mass and linear geometry of the composite fibers to produce sensors exhibiting an extremely high vapor sensitivity and rapid response. The simplicity and low cost of a resistance-based chemical microsensor makes this sensing approach an attractive alternative to devices requiring RF electronics or time-of-flight analysis. Potential applications of this technology include battlespace awareness, homeland security, environmental surveillance, medical diagnostics and food process monitoring.

  16. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  17. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  18. Has resin-based composite replaced amalgam?

    Science.gov (United States)

    Christensen, Gordon J; Child, Paul L

    2010-02-01

    The major health organizations in the world continue to accept amalgam use, but the "amalgam war" of the 1800s is still going on. The end is not in sight. There is little disagreement that amalgam serves well and, although controversial, it appears to have minimal to no health hazards. There is a wide variation in the relative amount of amalgam placed in developed countries, and many dentists in North America do not use it. However, amalgam is still being used at least some of the time by the majority of practitioners in North America, and most of those practitioners also place resin-based composite in Class II locations. The evolution from amalgam to tooth-colored restorations has been a slow and tumultuous journey. The acceptability of resin-based composite in Class II locations continues to be a question for some dentists, while others have concluded that amalgam is "dead." It would be highly desirable if some of dentists using the alleged poisonous properties of amalgam as a "practice building" ploy would find more legitimate methods to increase their practice activity.

  19. Spectrally based mapping of riverbed composition

    Science.gov (United States)

    Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.

    2016-01-01

    Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader

  20. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  1. Epoxy based photoresist/carbon nanoparticle composites

    DEFF Research Database (Denmark)

    Lillemose, Michael; Gammelgaard, Lauge; Richter, Jacob

    2008-01-01

    We have fabricated composites of SU-8 polymer and three different types of carbon nanoparticles (NPs) using ultrasonic mixing. Structures of composite thin films have been patterned on a characterization chip with standard UV photolithography. Using a four-point bending probe, a well defined stress...... is applied to the composite thin film and we have demonstrated that the composites are piezoresistive. Stable gauge factors of 5-9 have been measured, but we have also observed piezoresistive responses with gauge factors as high as 50. As SU-8 is much softer than silicon and the gauge factor of the composite...

  2. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites

    Directory of Open Access Journals (Sweden)

    Hamid Kermanshah

    2016-01-01

    Conclusion: Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite. In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations .

  3. Elastic Compositions Based on Polyurethane/ Aliphatic Polyesters

    International Nuclear Information System (INIS)

    Motawie, A.M.; Mazroua, A.M.; Sadek, E.M.; Emam, A.S.; Ramadan, A.M.

    2004-01-01

    Aliphatic polyesters were prepared by melt condensation reaction of a dicarboxylic acid such as adipic and sebacic with different types of diol compounds in 1: 1.1 molar ratio. Ethylene glycol, di-, trio, tetra ethylene glycol and poly( ethylene glycol) with different molecular weights 1000, 4000, 6000 as well as the prepared hydroxy natural rubber were used as diol compounds. Polyurethane, with NCO/OH ratio equal 4, was synthesized from the reaction of toluene diisocyanate with poly(ethylene glycol) 1 000. The prepared polyurethane was mixed with different weight percentages of the prepared aliphatic polyesters. The film samples were tested mechanically, electrically and chemically. The results show that the weight percentage 10% of the added polyadipate or poly sebacate glycols improves flexibility, electrical volume resistivity, dielectric constant and dielectric loss of unmodified rigid polyurethane film sample as well as reduces its swelling by aromatic solvents. All the above mentioned properties improve by increasing the hydrocarbon chain length of the glycol portion in the glycol used and the number of methylene in the aliphatic dicarboxylic acid. Compositions based on hydroxy natural rubber impart better properties than those based on ethylene glycols

  4. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  5. Textile composites based on natural fibers

    CSIR Research Space (South Africa)

    Li, Yan

    2009-04-01

    Full Text Available . studied the fracture toughness of natural fibers reinforced castor oil polyurethane composites by conducting compact tension test [40]. Short sisal fiber, coconut fiber and sisal fabrics were used to make the composites. Alkaline was selected to treat... very high extensibility. A strain value of 164% was observed for the neat Ecoflex. Upon ramie textile reinforcement in Ecoflex, high strength and high stiffness composite material could be resulted. Sorption behavior of water, naphthenic oil...

  6. Impact performance of two bamboo-based laminated composites

    Science.gov (United States)

    Huanrong Liu; Zehui Jiang; Zhengjun Sun; Yan Yan; Zhiyong Cai; Xiubiao Zhang

    2017-01-01

    The present work aims to determine the impact performance of two bamboo-based laminated composites [bamboo/poplar laminated composite (BPLC) and bamboo/ glass fiber laminated composite (BGFLC)] using lowvelocity impact tests by a drop tower. In addition, fracture characteristics were evaluated using computed tomography (CT). Results showed that BPLC presented better...

  7. Flexible hydrogel-based functional composite materials

    Science.gov (United States)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  8. Heat expanded starch-based compositions.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur K; Holtman, Kevin M; Shey, Justin; Chiou, Bor-Sen; Berrios, Jose; Wood, Delilah; Orts, William J; Imam, Syed H

    2007-05-16

    A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but did not expand when heated due to an open-cell structure. Nonporous beads, pellets, or particles were made by extrusion or by drying and milling cooked starch slurries. The samples expanded into a low-density foam by heating 190-210 degrees C for more than 20 s at ambient pressures. Formulations containing starch (50-85%), sorbitol (5-15%), glycerol (4-12%), ethylene vinyl alcohol (EVAL, 5-15%), and water (10-20%) were studied. The bulk density was negatively correlated to sorbitol, glycerol, and water content. Increasing the EVAL content increased the bulk density, especially at concentrations higher than 15%. Poly(vinyl alcohol) (PVAL) increased the bulk density more than EVAL. The bulk density was lowest in samples made of wheat and potato starch as compared to corn starch. The expansion temperature for the starch pellets decreased more than 20 degrees C as the moisture content was increased from 10 to 25%. The addition of EVAL in the formulations decreased the equilibrium moisture content of the foam and reduced the water absorption during a 1 h soaking period.

  9. CARBON-CONTAINING COMPOSITES BASED ON METALS

    Directory of Open Access Journals (Sweden)

    VAGANOV V. E.

    2015-10-01

    Full Text Available Problem statement Among the developed technologies metal-composites production,a special place takes powder metallurgy, having fundamental differences from conventionally used foundry technologies. The main advantages of this technology are: the possibility of sensitive control, the structure and phase composition of the starting components, and ultimately the possibility of obtaining of bulk material in nanostructured state with a minimum of processing steps. The potential reinforcers metals include micro and nano-sized oxides, carbides, nitrides, whiskers. The special position is occupied with carbon nanostructures (CNS: С60 fullerenes, single-layer and multi-layer nanotubes, onions (spherical "bulbs", nano-diamonds and graphite,their properties are being intensively studied in recent years. These objects have a high thermal and electrical conductivity values, superelasticity, and have a strength approximate to the theoretical value, which can provide an obtaining composite nanomaterial with a unique set of physical and mechanical properties. In creation of a metal matrix composite nanomaterials (CM, reinforced by various CNS, a special attention should be given to mechanical activation processes (MA already at the stage of preparation of the starting components affecting the structure, phase composition and properties of aluminum-matrix composites. Purpose. To investigate the influence of mechanical activation on the structure and phase composition of aluminum-matrix composites. Conclusion. The results of the study of the structure and phase composition of the initial and mechanically activated powders and bulk-modified metal-composites are shown, depending on the type and concentration of modifying varieties CNS, regimes of MA and parameters of compaction. The study is conducted of tribological properties of Al-CNS OF nanostructured materials.

  10. Component-based event composition modeling for CPS

    Science.gov (United States)

    Yin, Zhonghai; Chu, Yanan

    2017-06-01

    In order to combine event-drive model with component-based architecture design, this paper proposes a component-based event composition model to realize CPS’s event processing. Firstly, the formal representations of component and attribute-oriented event are defined. Every component is consisted of subcomponents and the corresponding event sets. The attribute “type” is added to attribute-oriented event definition so as to describe the responsiveness to the component. Secondly, component-based event composition model is constructed. Concept lattice-based event algebra system is built to describe the relations between events, and the rules for drawing Hasse diagram are discussed. Thirdly, as there are redundancies among composite events, two simplification methods are proposed. Finally, the communication-based train control system is simulated to verify the event composition model. Results show that the event composition model we have constructed can be applied to express composite events correctly and effectively.

  11. A channel-based coordination model for component composition

    NARCIS (Netherlands)

    F. Arbab (Farhad)

    2002-01-01

    textabstractIn this paper, we present $P epsilon omega$, a paradigm for composition of software components based on the notion of mobile channels. $P repsilon omega$ is a channel-based exogenous coordination model wherein complex coordinators, called {em connectors are compositionally built out of

  12. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    S. Devikala

    2011-01-01

    Full Text Available Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In the present work, a new composite has been prepared by using PMMA and ammonium dihydrogen phosphate (ADP. The PMMA/Ammonium dihydrogen phosphate (PMADP composites PMADP 1 and PMADP 2 were characterized by using Powder XRD. The thick films of the composite on glass plates were prepared by using a spin coating unit at 9000 rpm. The application of the thick film as gas sensor has been studied between 0 and 2000 seconds. The results reveal that the thick film of PMADP composite can function as a very good gas sensor.

  13. Metal-composite adhesion based on diazonium chemistry.

    Science.gov (United States)

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Un Cours de composition francaise par ordinateur (A Computer-Based Course in French Composition).

    Science.gov (United States)

    Landes, Anne; Kaplan, Alice

    1988-01-01

    The origins, organization, and methods of a Columbia University course offering computer-based instruction in French composition are outlined, and the progress of four individual students is described. (MSE)

  15. Nutrient Composition Of Cereal Based Oral Rehydration Solutions ...

    African Journals Online (AJOL)

    This study evaluated the nutrient composition of two cereal, millet and sorghum, based oral rehydration solutions. The test solutions were made from 50g of millet and sorghum each. The nutrient composition of the solution was determined using proximate analysis. The result showed that the mothers were aware of the salt ...

  16. Mechanical properties of wood-based composite materials

    Science.gov (United States)

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  17. Hybrid welding of carbon-fiber reinforced epoxy based composites

    NARCIS (Netherlands)

    Lionetto, Francesca; De Nicolas Morillas, M.; Pappadà, Silvio; Buccoliero, Giuseppe; Fernandez Villegas, I.; Maffezzoli, Alfonso

    2018-01-01

    The approach for joining thermosetting matrix composites (TSCs) proposed in this study is based on the use of a low melting co-cured thermoplastic film, added as a last ply in the stacking sequence of the composite laminate. During curing, the thermoplastic film partially penetrates in the first

  18. Enhancing durability of wood-based composites with nanotechnology

    Science.gov (United States)

    Carol Clausen

    2012-01-01

    Wood protection systems are needed for engineered composite products that are susceptible to moisture and biodeterioration. Protection systems using nano-materials are being developed to enhance the durability of wood-based composites through improved resistance to biodeterioration, reduced environmental impact from chemical leaching, and improved resistance to...

  19. Structure and properties of compositions based on petroleum sulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tutorskii, I.A.; Sultanova, A.S.; Belkina, E.V.; Fomin, A.G. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation)

    1995-03-01

    Colloidal characteristics of compositions based on petroleum sulfonic acids were studied. Neutralized heavy oil residue exhibits surface-active properties and contains an ultradisperse filler. Analysis of the compositions by size-exclusion-chromatography shows deep structural changes in the heavy acid residue upon neutralization with calcium carbonate.

  20. Preparation and characterization of polymer composites based on ...

    Indian Academy of Sciences (India)

    Polymer composites based on charge-transfer complex of phenothiazine and iodine with polystyrene have been prepared in different weight ratios and characterized by FTIR, XRD, mechanical, microstructure and electrical properties (d.c. as well as a.c.). These composites show semiconducting behaviour as the ...

  1. Preparation and characterization of polymer composites based on ...

    Indian Academy of Sciences (India)

    Unknown

    2003-11-29

    Nov 29, 2003 ... Abstract. Polymer composites based on charge-transfer complex of phenothiazine and iodine with polystyrene have been prepared in different weight ratios and characterized by FTIR, XRD, mechanical, microstructure and electrical properties (d.c. as well as a.c.). These composites show semiconducting ...

  2. Subsurface degradation of resin-based composites.

    Science.gov (United States)

    Bagheri, Rafat; Tyas, Martin J; Burrow, Michael F

    2007-08-01

    To determine the depth of a degraded subsurface layer produced in dental composites as a result of exposure to lactic acid or NaOH, by observing the penetration of AgNO(3) solution. Specimens were prepared from four resin composites; Point 4 (Kerr), Premise (Kerr), Filtek Supreme (3M/ESPE), Ceram X (Dentsply), and two polyacid-modified resin composites; Dyract (Dentsply) and F2000 (3M/ESPE). The specimens were immersed in distilled water for 1 week, transferred to one of three aqueous media at 60 degrees C for 2 weeks; distilled water, 0.01mol/L lactic acid or 0.1N NaOH, washed and immersed in 50% (w/w) aqueous silver nitrate for 10 days at 60 degrees C and placed in a photodeveloper solution. After reduction of the silver, specimens were embedded in epoxy resin, sectioned and polished, coated with carbon, and examined by backscattered mode scanning electron microscopy. The depth of silver penetration into the degraded area was measured from the SEM micrographs. Energy dispersive analysis X-ray (EDAX) was used to confirm the presence of silver. NaOH produced the greatest depth of degradation and lactic acid the least. Premise showed the greatest depth of silver penetration when subjected to NaOH, and Filtek Supreme the second with peeling of the surface and cracking, whereas F2000 and Point 4 showed the least in NaOH and lactic acid. ANOVA and Tukey's test showed that the depth of silver penetration was material and solution dependent, and the differences were significant for most of the materials (P<0.05).

  3. Correlation-based nonlinear composite filters applied to image recognition

    Science.gov (United States)

    Martínez-Díaz, Saúl

    2010-08-01

    Correlation-based pattern recognition has been an area of extensive research in the past few decades. Recently, composite nonlinear correlation filters invariants to translation, rotation, and scale were proposed. The design of the filters is based on logical operations and nonlinear correlation. In this work nonlinear filters are designed and applied to non-homogeneously illuminated images acquired with an optical microscope. Images are embedded into cluttered background, non-homogeneously illuminated and corrupted by random noise, which makes difficult the recognition task. Performance of nonlinear composite filters is compared with performance of other composite correlation filters, in terms discrimination capability.

  4. Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-12-01

    Full Text Available A metal-based matrix is usually used for the fabrication of diamond bits in order to achieve favorable properties and easy processing. In the effort to reduce the cost and to attain the desired bit properties, researchers have brought more attention to diamond composites. In this paper, Fe-based impregnated diamond composites for drill bits were fabricated by using a pressureless infiltration sintering method at 970 °C for 5 min. In addition, boron was introduced into Fe-based diamond composites. The influence of boron on the density, hardness, bending strength, grinding ratio, and microstructure was investigated. An Fe-based diamond composite with 1 wt % B has an optimal overall performance, the grinding ratio especially improving by 80%. After comparing with tungsten carbide (WC-based diamond composites with and without 1 wt % B, results showed that the Fe-based diamond composite with 1 wt % B exhibits higher bending strength and wear resistance, being satisfactory to bit needs.

  5. Protein-based composites and biomaterials

    Science.gov (United States)

    World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are not biodegradable or compostable, and are permanently residing on land, in landfills, or in the oceans, as environmental pollution. Recently, total or partially degradable materials ha...

  6. Anhydrous proton conductor based on composites of PEO and ATMP

    Energy Technology Data Exchange (ETDEWEB)

    Sun Baoying [Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Qiu Xinping, E-mail: qiuxp@tsinghua.edu.c [Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Zhu Wentao [Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2011-04-15

    A new type anhydrous PEM material based on Poly (ethylene oxide) (PEO)/Amino Trimethylene Phosphonic Acid (ATMP) composite was prepared. In this study, PEO assumed to 'grab' protons via hydrogen bond between PEO and ATMP. Based on this point, the PEO/ATMP composites were prepared firstly as the preliminary study to verify this proton conducting system. Then, PVDF was added to enhance the membrane's stability. The PVDF/PEO/ATMP composite membranes were thermally stable up to 200 {sup o}C in the studied composition ranges. The membrane had relatively compact structure by SEM images. Proton conductivity of 59% PVDF/29% PEO/12% ATMP was up to 6.71 x 10 {sup -3} S cm{sup -1} at 86 {sup o}C after doping with 7.9 wt% phosphoric acid without extra humidification.

  7. Anhydrous proton conductor based on composites of PEO and ATMP

    International Nuclear Information System (INIS)

    Sun Baoying; Qiu Xinping; Zhu Wentao

    2011-01-01

    A new type anhydrous PEM material based on Poly (ethylene oxide) (PEO)/Amino Trimethylene Phosphonic Acid (ATMP) composite was prepared. In this study, PEO assumed to 'grab' protons via hydrogen bond between PEO and ATMP. Based on this point, the PEO/ATMP composites were prepared firstly as the preliminary study to verify this proton conducting system. Then, PVDF was added to enhance the membrane's stability. The PVDF/PEO/ATMP composite membranes were thermally stable up to 200 o C in the studied composition ranges. The membrane had relatively compact structure by SEM images. Proton conductivity of 59% PVDF/29% PEO/12% ATMP was up to 6.71 x 10 -3 S cm -1 at 86 o C after doping with 7.9 wt% phosphoric acid without extra humidification.

  8. An assembly sequence planning method based on composite algorithm

    Directory of Open Access Journals (Sweden)

    Enfu LIU

    2016-02-01

    Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.

  9. An assembly sequence planning method based on composite algorithm

    OpenAIRE

    Enfu LIU; Bo LIU; Xiaoyang LIU; Yi LI

    2016-01-01

    To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm...

  10. Properties of recycled polypropylene based composites incorporating treated hardwood sawdust

    Science.gov (United States)

    Shulga, Galia; Jaunslavietis, Jevgenijs; Ozolins, Jurijs; Neiberte, Brigita; Verovkins, Anrijs; Vitolina, Sanita; Shakels, Vadims

    2016-05-01

    The effect of different treatment of hardwood sawdust under mild conditions on contact angles, adhesion energy and water sorption was studied. A comparison of these indices for the hardwood treated sawdust and the composites filled with them was performed. The treatment promoted the compatibility between the recycled polypropylene and the hardwood filler. The inclusion of the lignin-based compatibiliser in the composite, containing the ammoxidised wood filler, essentially improved its mechanical properties.

  11. Crystalline Structure of Starch Based Nano Composites

    OpenAIRE

    Farid Amidi Fazli; Afshin Babazadeh; Farnaz Amidi Fazli

    2015-01-01

    In contrast with literal meaning of nano, researchers have been achieved mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster an...

  12. Developing a composite based elliptic spring for automotive applications

    International Nuclear Information System (INIS)

    Talib, Abdul Rahim Abu; Ali, Aidy; Goudah, G.; Lah, Nur Azida Che; Golestaneh, A.F.

    2010-01-01

    An automotive suspension system is designed to provide both safety and comfort for the vehicle occupants. In this study, finite element models were developed to optimize the material and geometry of the composite elliptical spring based on the spring rate, log life and shear stress parameters. The influence of the ellipticity ratio on the performance of woven roving-wrapped composite elliptical springs was investigated both experimentally and numerically. The study demonstrated that composite elliptical springs can be used for light and heavy trucks with substantial weight reduction. The results showed that the ellipticity ratio significantly influenced the design parameters. Composite elliptic springs with ellipticity ratios of a/b = 2 had the optimum spring parameters.

  13. Analysis of composition-based metagenomic classification.

    Science.gov (United States)

    Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro

    2012-01-01

    An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in

  14. Sustainable hemp-based composites for the building industry application

    Science.gov (United States)

    Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola

    2017-07-01

    Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.

  15. Study on the Electrospun CNTs/Polyacrylonitrile-Based Nanofiber Composites

    Directory of Open Access Journals (Sweden)

    Bo Qiao

    2011-01-01

    Full Text Available CNTs/PAN nanofibers were electrospun from PAN-based solution for the preparation of carbon nanofiber composites. The as-spun polyacrylonitrile-based nanofibers were hot-stretched by weighing metal in a temperature controlled oven. Scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to characterize the morphology of the nanofibers, which indicated that carbon nanotubes were dispersed well in the composites and were completely wrapped by PAN matrix. Because of the strong interfacial interaction between CNTs and PAN, the CNTs/PAN application performance will be enhanced correspondingly, such as the mechanical properties and the electrical conductivity. It was concluded that the hot-stretched CNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.

  16. Damping properties of epoxy-based composite embedded with sol ...

    Indian Academy of Sciences (India)

    tion energy is changed into electric energy due to the piezo- electric effect ... properties of epoxy-based composites with piezoelectric par- ticles or .... Struct. 7 1. Sun B and Huang D 2001 Compos. Struct. 53 437. Tanimoto T 2007 Compos. Sci. Technol. 67 213. Wang Z, Miao J and Tan C W 2009 Sens. Actuators A149 277.

  17. Synthesis of novel carbon/silica composites based strong acid ...

    Indian Academy of Sciences (India)

    hydrophobic acid-catalyzed reactions proceed in poor or with no catalytic activity (Nakajima et al 2009). The novel car- bon/silica composites based solid acid was synthesized for the purpose. However, the new method added the step of impregnating sucrose to the channels of SBA-15, which fur- ther added to the cost for ...

  18. Opportunity and development of bio-based composites

    Science.gov (United States)

    Zhiyong Cai; Jerrold E. Winandy

    2005-01-01

    Our forests are a naturally renewable resource that has been used as a principal source of bio-energy and building materials for centuries. The rapid growth of world population has now resulted in substantial increases in demand and in consumption of all raw materials. This now provides a unique opportunity of developing new bio-based composites. The 100-year history...

  19. Predicting Plywood Properties with Wood-based Composite Models

    Science.gov (United States)

    Christopher Adam Senalik; Robert J. Ross

    2015-01-01

    Previous research revealed that stress wave nondestructive testing techniques could be used to evaluate the tensile and flexural properties of wood-based composite materials. Regression models were developed that related stress wave transmission characteristics (velocity and attenuation) to modulus of elasticity and strength. The developed regression models accounted...

  20. Elaboration de composite cimentaire à base de diss ...

    African Journals Online (AJOL)

    AKA Boko

    [3] - A. Ledhem, R. M. Dheilly, M. L. Benmalek, Quéneudec M, “Properties of Wood- based composites formulated with aggregate industry waste”, Construction and. Builiding Materials14 (2000) 341-350. [4] - E. H. Aamr Daya, « Contribution à la valorisation de co-produits du lin, poussières obtenues par aspiration lors du ...

  1. Nutrient Composition And Organoleptic Attributes Of Gruel Based ...

    African Journals Online (AJOL)

    The nutrient composition and organoleptic attributes of gruel based on blends of 24-hour fermented wateryam (WY), cocoyam (CY), plantain (PT), african yam- bean (AYB), cowpea (CP), pigeon pea (PP) and corn (C) flour were examined. A batch of each food-grain was picked clean, sun-dried, hammermilled into ...

  2. The potential of wood-based composite poles

    Science.gov (United States)

    Todd F. Shupe; Cheng Piao; Chung Y. Hse

    2009-01-01

    Wood-based composite utility poles are receiving increasing attention in the North American pole market. This interest is being driven by many increasing factors such as increasing: (1) disposal costs of solid wood poles, (2) liability and environmental concerns with traditional means of disposal of solid wood poles, (3) cost and concerns of long-term...

  3. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Sci., Vol. 36, No. 4, August 2013, pp. 563–573. c Indian Academy of Sciences. Sulfonated carbon black-based composite membranes for fuel cell applications .... All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR ...

  4. Viable Rayon composite replacement: Micro-cracking in polyacrylonitrile-based carbon-phenolic composites

    Science.gov (United States)

    Mills, Vernon Pete

    Rayon/SC-1008 fiber-based composite materials have been used successfully to line the inner surface of ablative nozzles. But Rayon is no longer produced locally in the United States, primarily due to environmental considerations. The material is available from suppliers located overseas but, for military purposes, there is a pressing need to eliminate foreign dependence. The primary objective of this dissertation is to find a suitable replacement for the Rayon composites currently used in ablative nozzle applications. Other researchers tried to do this by using a composite system consisting of PAN fiber cured with a phenolic resin (91LD). But micro-cracking occurred in the cured resin due to moisture loss over time. The progressive moisture loss, and subsequent shrinkage of the material, induced residual stresses that ultimately resulted in delamination as the material desiccated. PAN fiber was selected to reinforce the composite system in this dissertation because it mimics the structural behavior of Rayon fiber and is readily available from manufacturers located in the United States. The main challenge was to find a matrix material that could cure the PAN fibers into a composite system that would perform equal to, or better than, its Rayon counterpart. Three different resins (SC-1008, PETI-5 and CelazoleRTM) were selected for the matrix based on recommendations found in the literature. Although the majority of applications associated with Rayon rely on the use of pre-impregnated materials, comparisons were made herein using wet hand lay-ups, simply because the PAN composites targeted for study were not readily available in a pre-impregnated form. A Rayon composite panel was fabricated to serve as a baseline. The performance of other material candidates was compared to that of the baseline using: a micro-crack study conducted with photomicrography, thermal gravimetric analysis (TGA), residual volatile (RV) loss measurements, and a thermal mechanical analysis (TMA

  5. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites

    Science.gov (United States)

    Kermanshah, Hamid; Yasini, Esmail; Hoseinifar, Razieh

    2016-01-01

    Background: There are many concerns regarding the marginal seal of composite restorations, especially when composite restorations are subjected to cyclic loading. The aim of this study was to evaluate the effect of cyclic loading on the microleakage of silorane based composite compared with low shrinkage methacrylate-based composites in class V cavities. Materials and Methods: In this in vitro study, class V cavities were prepared on the facial and lingual surfaces of 48 human premolars (96 cavities). The teeth were randomly divided into four groups of 12 teeth (24 cavities) each and restored as follows: Group 1 (Siloran System Adhesive + Filtek P90), Group 2 (All Bond SE + Aelite LS Posterior), Group 3 (Futurabond NR + Grandio), and Group 4 (G-Bond + Kalore-GC). All the specimens were thermocycled for 2000 cycles (5-55°C) and then half of the specimens from each group, were Load cycled. All teeth were immersed in 0.5% basic fuchsine dye, sectioned, and observed under a stereomicroscope. Data were analyzed using Wilcoxon test, Kruskal–Wallis, and Mann–Whitney U-tests. P < 0.05 was considered as significant. Results: In both unloaded and loaded groups, no statistically significant differences were observed among four composites at the occlusal margin, but a significant difference in gingival microleakage was found between Aelite and silorane. Occlusal and gingival microleakage was not affected by cyclic loading in none of the four restorative materials. Conclusion: Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite). In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations. PMID:27274348

  6. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites.

    Science.gov (United States)

    Kermanshah, Hamid; Yasini, Esmail; Hoseinifar, Razieh

    2016-01-01

    There are many concerns regarding the marginal seal of composite restorations, especially when composite restorations are subjected to cyclic loading. The aim of this study was to evaluate the effect of cyclic loading on the microleakage of silorane based composite compared with low shrinkage methacrylate-based composites in class V cavities. In this in vitro study, class V cavities were prepared on the facial and lingual surfaces of 48 human premolars (96 cavities). The teeth were randomly divided into four groups of 12 teeth (24 cavities) each and restored as follows: Group 1 (Siloran System Adhesive + Filtek P90), Group 2 (All Bond SE + Aelite LS Posterior), Group 3 (Futurabond NR + Grandio), and Group 4 (G-Bond + Kalore-GC). All the specimens were thermocycled for 2000 cycles (5-55°C) and then half of the specimens from each group, were Load cycled. All teeth were immersed in 0.5% basic fuchsine dye, sectioned, and observed under a stereomicroscope. Data were analyzed using Wilcoxon test, Kruskal-Wallis, and Mann-Whitney U-tests. P < 0.05 was considered as significant. In both unloaded and loaded groups, no statistically significant differences were observed among four composites at the occlusal margin, but a significant difference in gingival microleakage was found between Aelite and silorane. Occlusal and gingival microleakage was not affected by cyclic loading in none of the four restorative materials. Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite). In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations.

  7. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Directory of Open Access Journals (Sweden)

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  8. An Emotion-Based Method to Perform Algorithmic Composition

    OpenAIRE

    Huang, Chih-Fang; Lin, En-Ju

    2013-01-01

    The generative music using algorithmic composition techniques has been developed in many years. However it usually lacks of emotion-based mechanism to generate music with specific affective features. In this article the automated music algorithm will be performed based on Prof. Phil Winosr’s “MusicSculptor” software with proper emotion parameter mapping to drive the music content with specific context using various music pa-rameters distribution with different probability control, in order to...

  9. Reinforcement Learning Based Web Service Compositions for Mobile Business

    Science.gov (United States)

    Zhou, Juan; Chen, Shouming

    In this paper, we propose a new solution to Reactive Web Service Composition, via molding with Reinforcement Learning, and introducing modified (alterable) QoS variables into the model as elements in the Markov Decision Process tuple. Moreover, we give an example of Reactive-WSC-based mobile banking, to demonstrate the intrinsic capability of the solution in question of obtaining the optimized service composition, characterized by (alterable) target QoS variable sets with optimized values. Consequently, we come to the conclusion that the solution has decent potentials in boosting customer experiences and qualities of services in Web Services, and those in applications in the whole electronic commerce and business sector.

  10. Synthesis of MWNT-based composite materials with inorganic coating

    Energy Technology Data Exchange (ETDEWEB)

    Hernadi, K.; Ljubovic, E.; Seo, J.W.; Forro, L

    2003-03-14

    Multiwalled carbon nanotube (MWNT) based metal oxide composites were prepared by an impregnation method using organometallic compounds as precursor. Aluminium isopropoxide (AlIP), tetraethyl orthosilicate (TEOS), and tetraethyl orthotitanate (TEOTi) were used as inorganic sources and decomposed by hydrolysis on the surface of carbon nanotubes. The composites were subsequently investigated by transmission electron microscopy and their coverage was compared. A direct, solvent-free impregnation technique turned out to be the most successful for all organometallic compounds and provided homogeneous inorganic cover layer on the surface of purified MWNTs.

  11. Fabrication of polypeptide-based piezoelectric composite polymer film

    International Nuclear Information System (INIS)

    Farrar, Dawnielle; West, James E.; Busch-Vishniac, Ilene J.; Yu, Seungju M.

    2008-01-01

    A new class of molecular composite piezoelectric material was produced by simultaneous poling and curing of a homogeneous solution comprising poly(γ-benzyl α,L-glutamate) and methylmethacrylate via corona discharge methods. This film exhibited high piezoelectricity (d 33 = 23 pC N -1 ), and its mechanical characteristics (modulus = 450 MPa) were similar to those of low molecular weight poly(methylmethacrylate). As it is produced via solution-based fabrication processes, the composite film is conducive to miniaturization for small sensors with integrated electronics, and could also potentially be used in piezoelectric coating applications

  12. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, V. A. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Orekhov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Chernyakov, D. D. [St. Petersburg State Chemical Pharmaceutical Academy (Russian Federation); Baklagina, Yu. G. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Romanov, D. P. [Russian Academy of Sciences, Grebenshchikov Institute of Silicate Chemistry (Russian Federation); Kononova, S. V. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Volod’ko, A. V.; Ermak, I. M. [Russian Academy of Sciences, Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch (Russian Federation); Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Skorik, Yu. A., E-mail: yury-skorik@mail.ru [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2016-11-15

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  13. Investigation of cement based composites made with recycled rubber aggregate

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica Lj.

    2012-01-01

    Full Text Available The results of experimental investigations performed on cement based composites made with addition of recycled rubber as a partial replacement of natural river aggregate are presented in this paper. Different properties of cement based mortar were analyzed, both in fresh and in hardened state. Tested properties in the fresh state included: density, consistency and volume of entrained air. In the hardened state, the following properties were tested: density, mechanical properties (compressive and flexural strength, modulus of elasticity, adhesion to concrete substrate, water absorption, freeze-thaw resistance and ultrasonic pulse velocity. The obtained results indicate that recycled rubber can be successfully applied as a partial replacement of natural river aggregate in cement based composites, in accordance with the sustainable development concept. The investigation showed that physical-mechanical properties of cementituous composites depend to a great extent on the percentage of replacement of natural river aggregate with recycled rubber, especially when the density, strength, adhesion and freeze-thaw resistance are concerned. The best results were obtained in the freeze-thaw resistance of such composites.

  14. Prosthetic limb sockets from plant-based composite materials.

    Science.gov (United States)

    Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin

    2012-06-01

    There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.

  15. Characteristics of Friction Stir Processed UHMW Polyethylene Based Composite

    Science.gov (United States)

    Hussain, G.; Khan, I.

    2018-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) based composites are widely used in biomedical and food industries because of their biocompatibility and enhanced properties. The aim of this study was to fabricate UHMWPE / nHA composite through heat assisted Friction Stir Processing. The rotational speed (ω), feed rate (f), volume fraction of nHA (v) and shoulder temperature (T) were selected as the process parameters. Macroscopic and microscopic analysis revealed that these parameters have significant effects on the distribution of reinforcing material, defects formation and material mixing. Defects were observed especially at low levels of (ω, T) and high levels of (f, v). Low level of v with medium levels of other parameters resulted in better mixing and minimum defects. A 10% increase in strength with only 1% reduction in Percent Elongation was observed at the above set of conditions. Moreover, the resulted hardness of the composite was higher than that of the parent material.

  16. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    Science.gov (United States)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  17. COMPOSITES BASED ON SYNTHETIC POLYMERS AND WOOD WASTE

    Directory of Open Access Journals (Sweden)

    Lucia DUMITRESCU

    2015-12-01

    Full Text Available The paper presents the results of the research dedicated to synthesis and characterization of some new, ecological composite materials based on an acrylic copolymer, lignin derivative iron and chromium lignosulfonate and Salix wood sawdust. The FT-IR analysis put into evidence the complex interactions, by esterification and etherification reactions, between the organic functional hydroxyl groups of lignosulfonate and Salix sawdust (the fillers with the organic functional groups (carboxyl, ester from the structure of acrylic copolymer (the matrix and explain the improved properties of the new composites. The proposed new composites are in agreement with the research in the field of recycling lignocellulosic waste to obtain new ecological, environmental friendly materials.

  18. High performance wood composites based on benzoxazine-epoxy alloys.

    Science.gov (United States)

    Jubsilp, Chanchira; Takeichi, Tsutomu; Hiziroglu, Salim; Rimdusit, Sarawut

    2008-12-01

    Wood-substituted composites from matrices based on ternary mixtures of benzoxazine, epoxy, and phenolic novolac resins (BEP resins) using woodflour (Hevea brasiliensis) as filler are developed. The results reveal that the addition of epoxy resin into benzoxazine resin can lower the liquefying temperature of the ternary systems whereas rheological characterization of the gel points indicates an evident delay of the vitrification time as epoxy content increased. The gelation of the ternary mixtures shows an Arrhenius-typed behavior and the gel time can be well predicted by an Arrhenius equation with activation energy of 35-40kJ/mol. For wood-substituted composites from highly filled BEP alloys i.e. at 70% by weight of woodflour, the reinforcing effect of the woodflour shows a substantial enhancement in the composite stiffness i.e. 8.3GPa of the filled BEP811 vs 5.9GPa of the unfilled BEP811. The relatively high flexural strength of the BEP wood composites up to 70MPa can also be obtained. The outstanding compatibility between the woodflour and the ternary matrices attributed to the modulus and thermal stability enhancement of the wood composites particularly with an increase of the polybenzoxazine fraction in the BEP alloys.

  19. A method for estimating fetal weight based on body composition.

    Science.gov (United States)

    Bo, Chen; Jie, Yu; Xiu-E, Gao; Gui-Chuan, Fan; Wen-Long, Zhang

    2018-04-02

    Fetal weight is an important factor to determine the delivery mode of pregnant women. The change of fetal weight is significant, according to regular health monitoring of pregnant women. Conventional methods of fetal weight estimation, namely those based on B-ultrasound, are very complicated and the costs are high. In this paper, we propose a new method based on body composition. An abdominal four-segment impedance model is first established upon pregnant women, as well as the method of calculation. A body composition based method is then given to estimate the fetal weight, with the solution given explicitly. Analyses of clinical data reveal the smallness of the error between the estimated value and the actual value. The error between B-ultrasound and the present method is less than 15%.

  20. The effects of processing techniques on magnesium-based composite

    Science.gov (United States)

    Rodzi, Siti Nur Hazwani Mohamad; Zuhailawati, Hussain

    2016-12-01

    The aim of this study is to investigate the effect of processing techniques on the densification, hardness and compressive strength of Mg alloy and Mg-based composite for biomaterial application. The control sample (pure Mg) and Mg-based composite (Mg-Zn/HAp) were fabricated through mechanical alloying process using high energy planetary mill, whilst another Mg-Zn/HAp composite was fabricated through double step processing (the matrix Mg-Zn alloy was fabricated by planetary mill, subsequently HAp was dispersed by roll mill). As-milled powder was then consolidated by cold press into 10 mm diameter pellet under 400 MPa compaction pressure before being sintered at 300 °C for 1 hour under the flow of argon. The densification of the sintered pellets were then determined by Archimedes principle. Mechanical properties of the sintered pellets were characterized by microhardness and compression test. The results show that the density of the pellets was significantly increased by addition of HAp, but the most optimum density was observed when the sample was fabricated through double step processing (1.8046 g/cm3). Slight increment in hardness and ultimate compressive strength were observed for Mg-Zn/HAp composite that was fabricated through double step processing (58.09 HV, 132.19 MPa), as compared to Mg-Zn/HAp produced through single step processing (47.18 HV, 122.49 MPa).

  1. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood.

    Science.gov (United States)

    Nyström, Gustav; Mihranyan, Albert; Razaq, Aamir; Lindström, Tom; Nyholm, Leif; Strømme, Maria

    2010-04-01

    It is demonstrated that it is possible to coat the individual fibers of wood-based nanocellulose with polypyrrole using in situ chemical polymerization to obtain an electrically conducting continuous high-surface-area composite. The experimental results indicate that the high surface area of the water dispersed material, to a large extent, is maintained upon normal drying without the use of any solvent exchange. Thus, the employed chemical polymerization of polypyrrole on the microfibrillated cellulose (MFC) nanofibers in the hydrogel gives rise to a composite, the structure of which-unlike that of uncoated MFC paper-does not collapse upon drying. The dry composite has a surface area of approximately 90 m(2)/g and a conductivity of approximately 1.5 S/cm, is electrochemically active, and exhibits an ion-exchange capacity for chloride ions of 289 C/g corresponding to a specific capacity of 80 mAh/g. The straightforwardness of the fabrication of the present nanocellulose composites should significantly facilitate industrial manufacturing of highly porous, electroactive conductive paper materials for applications including ion-exchange and paper-based energy storage devices.

  2. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  3. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  4. Multifunctional Flexible Composites Based on Continuous Carbon Nanotube Fiber

    Science.gov (United States)

    2014-07-28

    different amounts of CNTs [23]. We wrap the graphene fiber with highly aligned CNT film (Fig. 14a). After the hybrid fibers were densified with ethanol ...multifunctional composites fibers [28] and accessing of large polymer chains to enhance fiber mechanical properties [29]. 2.14 Electromechanical...emitters, solid-phase microextraction and catalysis . Different from graphene- based aerogels (GBAs) and membranes (GBMs), GBFs have demonstrated

  5. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  6. ROMP-based polymer composites and biorenewable rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wonje [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  7. Investigations on cementitious composites based on rubber particle waste additions

    Directory of Open Access Journals (Sweden)

    Glaucio Laun Nacif

    2013-04-01

    Full Text Available The amount of waste rubber has gradually increased over recent years because of over-growing use of rubber products. The disposal of waste rubber has caused serious environmental problems. The incorporation of recycled materials into cementitious composites is a feasible alternative that has gained ground in civil construction. The performance of such materials is much affected not only by the rubber addition, but also the particle size which has been controversially reported in the literature. In order to investigate the single effect of rubber particles into cement based materials, rubber cementitious composites were prepared with no silica particle additions. A full factorial design has been conducted to assess the influence of the rubber particle size (0.84/0.58 mm and 0.28/0.18 mm; mass fraction used (5, 15 and 30%; and water/cement ratio (0.35 and 0.50 on the physic-mechanical properties of the composites. The materials were characterized through apparent density, porosity, compressive strength, flexural strength, modulus of elasticity and microstructural analysis. The interactions of rubber particle size, rubber fraction and water/cement ratio affected significantly the density and compressive strength of the composites. The apparent porosity was influenced mainly by the rubber particle size. The flexural strength was affected by the main factors and the modulus of elasticity was affected by the interaction factors rubber particle size and fraction, and rubber fraction and w/c ratio.

  8. The effect of chemical composition and granulation of Fe - based fillers on properties of metal resinous composite

    International Nuclear Information System (INIS)

    Janecki, J.; Dasiewicz, J.; Pawelec, Z.

    2000-01-01

    In this paper the authors present metal-resinous composites with Fe based fillers of various element constitution and granulation. The analysis of influence of filler type on coefficient of linear thermal expansion of composite materials was performed. Friction and wear tests (composite-bronze and composite-steel pairs) were carried out. It was stated that the thinner granulation of main filler has a positive effect on coefficient of linear thermal expansion and friction/wear characteristics. The presence of copper, nickel and molybdenum in the filler is beneficial for some properties of the composite. (author)

  9. Feasibility and Scaling of Composite Based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Nuttall, David [ORNL; Chen, Xun [ORNL; Kunc, Vlastimil [ORNL; Love, Lonnie J [ORNL

    2016-04-27

    Engineers and Researchers at Oak Ridge National Lab s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Impossible Objects (IO) in the characterization of PEEK infused carbon fiber mat manufactured by means of CBAM composite-based additive manufacturing, a first generation assembly methodology developed by Robert Swartz, Chairman, Founder, and CTO of Impossible Objects.[1] The first phase of this project focused on demonstration of CBAM for composite tooling. The outlined steps focused on selecting an appropriate shape that fit the current machine s build envelope, characterized the resulting form, and presented next steps for transitioning to a Phase II CRADA agreement. Phase I of collaborative research and development agreement NFE-15-05698 was initiated in April of 2015 with an introduction to Impossible Objects, and concluded in March of 2016 with a visitation to Impossible Objects headquarters in Chicago, IL. Phase II as discussed herein is under consideration by Impossible Objects as of this writing.

  10. Dispersion and alignment of carbon nanotubes in polymer based composites

    Science.gov (United States)

    Camponeschi, Erin Lynn

    This research is intended to create usable carbon nanotube polymer based composites for structural applications by effectively aligning and dispersing the carbon nanotubes in a polymer matrix. The motivation for this research is to create very lightweight, high strength materials that will surpass their predecessors: carbon fibers. The final product then can be used in applications across the industries. This research determined the effect of three different surface-active agents and two different aligning methods on the structural features and mechanical properties of the polymer-based composite. The three types of surface-active agents used in this research are a surfactant and two different block copolymers. From this research, it will be determined how different surface-active agents adequately disperse the carbon nanotube, and the effects the dispersing agent have on a final dispersed product. In addition, the dispersing agent effects on the alignment of the carbon nanotubes and the final product can be compared. The two alignment techniques used in this research were alignment via shear flow and tethering iron oxide particles to the carbon nanotubes to induce alignment in a magnetic field. The method of shear aligning carbon nanotubes is very simplistic in theory, but actual application becomes much more challenging. This research illustrates the effects on shear alignment in a viscous polymer flow and then applies those theories to polymers. This work then compares the different alignment techniques to determine the overall increase of properties and the effective carbon nanotube alignment. This research provides a framework for the creation of dispersed and aligned composites that can be expanded upon and improved to further develop the carbon nanotubes as possible replacement fillers for composite materials.

  11. Skewed base compositions, asymmetric transition matrices, and phylogenetic invariants.

    Science.gov (United States)

    Ferretti, V; Lang, B F; Sankoff, D

    1994-01-01

    Evolutionary inference methods that assume equal DNA base compositions and symmetric nucleotide substitution matrices, where these assumptions do not hold, are likely to group species on the basis of similar base compositions rather than true phylogenetic relationships. We propose an invariants-based method for dealing with this problem. An invariant QT of a tree T under a k-state Markov model, where a generalized time parameter is identified with the E edges of T, allows us to recognize whether data on N observed species can be associated with the N terminal vertices of T in the sense of having been generated on T rather than on any other tree with N terminals. The form of the generalized time parameter is a positive determinant matrix in some semigroup S of stochastic matrices. The invariance is with respect to the choice of the set of E matrices in S, one associated with each of the E edges of T. We apply a general "empirical" method of finding invariants of a parametrized functional form. It involves calculating the probability f of all KN data possibilities for each of m sets of E matrices in S to associate with the edges of T, then solving for the parameters using the m equations of form Q(f) = 0. We discuss the problems of finding asymmetric models satisfying the property of semigroup closure, of finding asymmetric models that admit invariants at all, and of the computational complexity of the method. We propose a class of semigroups Sc containing matrices of form [formula: see text] to account for A+T versus G+C asymmetries in DNA base composition. Quadratic invariants are obtained for rooted trees with three and with four terminals. In the latter case the smallest set of algebraically independent invariants is sought. These invariants are applied to data pertaining the fungal evolution and to the origin of mitochondria as bacterial endosymbionts.

  12. Fe-based composite materials with improved mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzyna [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2008-07-01

    Following a previous study by the authors two new compositions (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 91}C{sub 9} and (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} have been developed with the aim of improving the ductility of Fe{sub 65.5}Cr{sub 4}Mo{sub 4}Ga{sub 4}P{sub 12}C{sub 5}B{sub 5.5} bulk metallic glass (BMG). In contrast to the alloys in that study, the recently prepared Fe-based materials are Ga-free. It was expected that the variations in the composition will lead to the changes in the phase formation and, hence, in the mechanical response of the investigated alloys. It was recognized that in-situ formed Fe-based composites show superior plasticity ({epsilon}{sub pl}{approx}37%) for the alloy with lower C content and ({epsilon}{sub pl}{approx}4%) for the alloy with higher C content compared to monolithic glass ({epsilon}{sub pl}{approx}0.2%). Furthermore, on the basis of present as well as previous investigations it has been shown that the Ga addition is beneficial for the plasticity of these Fe-based alloys. It was observed that the (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} alloy exhibits a significantly smaller fracture strain ({epsilon}{sub f}{approx}5%) compared to its Ga-containing counterpart ({epsilon}{sub f}{approx}16%). Therefore, it can be concluded that appropriate alloying additions are crucial in enhancing the mechanical properties of the complex Fe-based materials developed here.

  13. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Semirov, A.V., E-mail: semirov@mail.ru [Irkutsk State University, Irkutsk (Russian Federation); Derevyanko, M.S.; Bukreev, D.A.; Moiseev, A.A.; Kudryavtsev, V.O. [Irkutsk State University, Irkutsk (Russian Federation); Safronov, A.P. [Ural Federal University, Yekaterinburg (Russian Federation)

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons. Both as-cast amorphous ribbons and Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16}/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current. - Highlights: • Impedance and its components of amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons were studied. • MI sensitivity to the magnetic field depends on a temperature and a deforming force. • Polymer covering can affect the functional properties of the composite.

  14. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  15. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement.

    Science.gov (United States)

    Tehrani, Mehran; Yari Boroujeni, Ayoub; Luhrs, Claudia; Phillips, Jonathan; Al-Haik, Marwan S

    2014-05-28

    Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD), in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures-from ethylene mixtures at 550 °C-on commercial polyacrylonitrile (PAN)-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD) technique was also utilized to grow multiwall CNTs (MWCNTs) on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  16. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Science.gov (United States)

    Tehrani, Mehran; Yari Boroujeni, Ayoub; Luhrs, Claudia; Phillips, Jonathan; Al-Haik, Marwan S.

    2014-01-01

    Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD), in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN)-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD) technique was also utilized to grow multiwall CNTs (MWCNTs) on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique. PMID:28788671

  17. Are the MDS-UPDRS-based composite scores clinically applicable?

    Science.gov (United States)

    Makkos, Attila; Kovács, Márton; Aschermann, Zsuzsanna; Harmat, Márk; Janszky, József; Karádi, Kázmér; Kovács, Norbert

    2018-02-28

    The International Parkinson and Movement Disorder Society-sponsored UPDRS (MDS-UPDRS) is a powerful clinical outcome measure. To evaluate the feasibility of various MDS-UPDRS-based composite scores and determine their minimal clinically important difference threshold values. Overall, 1,113 paired investigations of 452 patients were reviewed implementing three different techniques simultaneously. Based on the ordinal regression modeling, the MDS-UPDRS II+III, MDS-UPDRS I+II+III, and the total score of MDS-UPDRS are clinically applicable outcome measures. Any improvement greater than 4.9 points or any worsening more than 4.2 points on MDS-UPDRS II+III represent a minimal, yet clinically meaningful, change. In reference to MDS-UPDRS I+II+III, the smallest changes considered clinically relevant were 6.7 and 5.2 points for improvement and deterioration, respectively. The thresholds for the total score of MDS-UPDRS were 7.1 points for improvement and 6.3 points for worsening. Our findings support the application of various MDS-UPDRS-based composite scores. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  18. Toughening of wood plastic composite based on X-PP

    Science.gov (United States)

    Meekum, U.; Khongrit, A.

    2016-03-01

    Wood plastic composite(WPC) based on crosslinked polypropylene(X-PP)/wood flour was explored. The peroxide/silane was used as crosslinking system. The sauna incubation under moisture saturated oven was applied to accelerate the competition of the siloxy/moisture networking reaction. There were three parts of the research work; design of experiment, toughening of WPC and the effect of peroxide, silane and PP copolymer on properties of the WPC, respectively. In this published work, the toughness improvement of the composite was focused. Ultra-high molecular weight polyethylene (UHMWPE) and Ethylene propylene diene terpolymer(EPDM) were employed to improve impact strength via blending with x-PP matrix. Composites were compounded into pellets by co-rotational twin screw extruder and test specimens were prepared by injection molding. Sauna incubation at 105°C for 12 hrs in oven chamber was performed to accelerate the final silane condensation crosslink reaction. MFI, impact strength, flexural properties and heat deflection temperature measurement were conducted. Impact strength, HDT and flexural modulus were improved with increasing UHMWPE content, and the optimal values around 5-10 phr of UHMWPE were achieved. Addition of EPDM elastomer to the matrix blends, reduced flexural strength and modulus but increased impact strength. While incorporation of EPDM into the PP/UHMWPE blends was exhibited much higher impact strength than that of the PP/UHMWPE binary blends. Silane crosslinked through sauna treatment improved the impact strength. HDT were also much risen for the crosslinked composite comparing with the non-crosslinked one.

  19. Comparative genetic mutation frequencies based on amino acid composition differences.

    Science.gov (United States)

    Vieira, Amandio

    2006-08-30

    Genetic variation inferred from large-scale amino acid composition comparisons among genomes and chromosomes of several species, Saccharomyces cerevisiae, Drosophila melanogaster, Ceanorhabditis elegans, H. sapiens, is shown to be correlated (highest, r(2)=0.9855, p<0.01) with reported mutation rates for various genes in these species. This study, based largely on pseudogene data, helps to establish reference mutation frequencies that are likely to be representative of overall genome mutation rates in each of the species examined, and provides further insight into heterogeneity of mutation rates among genomes.

  20. Ultrasonic plate waves in wood-based composite panels

    Science.gov (United States)

    Tucker, Brian James

    Two key shortcomings of current ultrasonic nondestructive evaluation (NDE) techniques for plywood, medium density fiberboard (MDF), and oriented strandboard are the reliance on empirical correlations and the neglect of valuable waveform information. The research reported herein examined the feasibility of using fundamental physical relationships along with advanced signal analysis to evaluate material properties and locate defects in wood-based composite panels. Dispersion curves were constructed exhibiting the variation of ultrasonic flexural plate wave phase velocity with frequency. Based on shear deformation plate wave theory, flexural and transverse shear rigidity values for a variety of wood-based composite panels were obtained from the dispersion curves. Axial rigidity values were obtained directly from extensional plate wave phase velocity. Excellent agreement (within 5%) of flexural rigidity values was obtained between NDE and mechanical testing for thin panels (less than or equal to 6.4 mm). Transverse shear rigidity values were obtained from NDE, but no reliable mechanical results were obtained for comparison. Tensile and compressive axial rigidity values obtained from NDE were from 12% to 31% and from 22% to 41% higher than mechanical tension and compression test results, respectively. These differences between NDE and axial mechanical testing results are likely due to load-rate effects. Nondestructive rigidity results for thicker panels using the setup described herein were either unreliable or not interpretable due to highly attenuated signals and/or violation of plate wave assumptions. Shear deformation laminated plate theory was used to predict flexural and axial laminate rigidity values of wood-based laminates from NDE measurements to within 3% and 25%, respectively. Plate wave NDE was also used to successfully locate a 60-mm square delaminated area within a 6.4-mm thick MDF laminate. This fundamental research advances the state-of-the-art of wood-based

  1. Fracture resistance of premolar teeth restored with silorane-based or dimethacrylate-based composite resins.

    Science.gov (United States)

    Akbarian, Golsa; Ameri, Hamideh; Chasteen, Joseph E; Ghavamnasiri, Marjaneh

    2014-01-01

    To restore posterior teeth using low-shrinkage composite to minimize microleakage. To compare the fracture resistance of mesio-occlusal-distal (MOD) cavity preparations restored with either low-shrinkage composite or with dimethacrylate-based composite in conjunction with cavity liners and without them. The null hypothesis of the study is that there are no differences in either fracture resistance or fracture mode between the silorane group and dimethacrylate groups with and without the use of cavity liners. Sixty maxillary premolars were divided into six groups of 10. MOD cavities were prepared in four groups: F: posterior composite (Filtek P60); GF: 0.5-mm Glass Ionomer (Fuji LC) + posterior composite; FF: 0.5-mm flowable composite (Filtek Supreme XT) + posterior composite; and S: low-shrinkage composite (Filtek P90). Negative (N) and positive (P) control groups consisted of unrestored and sound teeth, respectively. The specimens were thermocycled and loaded. Data were analyzed using analysis of variance, Tukey, and chi-square tests (α = 0.05). Groups FF (1643.09 ± 187/80 N) and GF (1596.80 ± 163/93 N) (p = 0.06 > 0.05) were statistically identical, although less than group P (1742/33 ± 110/08 N), but still demonstrated greater fracture resistance than the other groups. The fracture resistance of group S (1434/69 ± 107/62 N) was identical to GF and FF (p = 0.06 > 0.05). The fracture resistance of F (1353/19 ± 233/90 N) was less than GF and FF, and statistically identical to S (p = 0.87 > 0.05). Silorane-based composite showed a resistance to fracture similar to methacrylate-based composite restorations regardless of whether cavity liners were used. The findings of this study support the selection of silorane-based composite for the restoration of maxillary premolars with standardized Class II cavity preparations in order to strengthen the resistance to fracture to the same extent as do dimethacrylate

  2. Composites

    OpenAIRE

    Zhao, Hanqing; Guo, Yuanzheng

    2014-01-01

    This thesis was a literature study concerning composites. With composites becoming increasingly popular in various areas such as aerospace industry and construction, the research about composites has a significant meaning accordingly. This thesis was aim at introducing some basic information of polymer matrix composites including raw mate-rial, processing, testing, applications and recycling to make a rough understanding of this kind of material for readers. Polymeric matrices, fillers,...

  3. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  4. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  5. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  6. Multi-shock experiments on a TATB-based composition

    Science.gov (United States)

    Sorin, Remy

    2017-06-01

    Temperature based models for condensed explosive need an unreacted equation of state (EOS) that allows a realistic estimation of the temperature for a shock compression driven at detonation velocity. To feed the detonation models, we aim at exploring the high pressure shock Hugoniot of unreacted TATB composition up to 30 GPa with both hydrodynamic and temperature measurements. We performed on the gas gun facility ARES, multi-shock experiments where the first shock is designed to desensitize the explosive and inhibit the reactivity of the composition. The hydrodynamic behavior was measured via the velocity of a TATB/LiF interface with PDV probes. We attempted to measure the temperature of the shocked material via surface emissivity with a pyrometer calibrated to the expected low temperature range. Based on single shock experiments and on ab-initio calculation, we built a complete EOS for the unreacted phase of the TATB explosive. The hydrodynamic data are in good agreement with our unreacted EOS. Despite the record of multi-stage emissivity signals, the temperature measurements were difficult to interpret dur to high-luminisity phenomena pertubation. In collaboration with: Nicolas Desbiens, Vincent Dubois and Fabrice Gillot, CEA DAM DIF.

  7. PEDOT-based composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Zhao, Zhiheng; Richardson, Georgia F; Meng, Qingshi; Ma, Jun; Zhu, Shenmin; Kuan, Hsu-Chiang

    2016-01-01

    Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge–discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications. (topical review)

  8. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jenel Marian Patrascu

    2015-01-01

    Full Text Available This paper presents the synthesis, characterisation, and in vitro testing of homogenous and heterogeneous materials containing silver nanoparticles (nanoAg. Three types of antiseptic materials based on collagen (COLL, hydroxyapatite (HA, and collagen/hydroxyapatite (COLL/HA composite materials were obtained. The synthesis of silver nanoparticles was realized by chemical reaction as well as plasma sputtering deposition. The use of chemical reduction allows the synthesis of homogenous materials while the plasma sputtering deposition can be easily used for the synthesis of homogeneous and heterogeneous support. Based on the in vitro assays clear antiseptic activity against Escherichia coli was relieved even at low content of nanoAg (10 ppm.

  9. Ternary gypsum-based materials: Composition, properties and utilization

    Science.gov (United States)

    Doleželová, M.; Svora, P.; Vimmrová, A.

    2017-10-01

    In spite of the fact that gypsum is one of the most environmentally friendly binders, utilization of gypsum products is relatively narrow. The main problem of gypsum materials is their low resistance to the wet environment and radical decrease of mechanical properties with increasing moisture. The solution of the problem could be in use of composed gypsum-based binders, usually ternary, comprising gypsum, pozzolan and alkali activator of pozzolan reaction. These materials have a better moisture resistance and often also better mechanical properties. Paper provides literature survey of the possible compositions, properties and ways of utilization of the composed gypsum-based binders with latent hydraulic and pozzolan materials together with some results of present research performed by authors.

  10. Novel PLA-Based Conductive Polymer Composites for Biomedical Applications

    Science.gov (United States)

    Shah, Aziurah Mohd; Kadir, Mohammed Rafiq Abdul; Razak, Saiful Izwan Abd

    2017-12-01

    In this study, the electrical conductivity of polylactic acid (PLA)-based composites has been improved using polyaniline (PANI) with two different solvents: dodecylbenzene sulfonic acid and citric acid. The effects of various factors including PLA quantity, solvent concentration, type of solvent and thickness on the resistivity were investigated using the design of experiments. The experimental plan was based on irregular fraction design to develop the regression models. The results revealed that the proposed mathematical models were sufficient and could describe the performance of resistivity of PLA within the limits of a factor. The findings also indicated that thickness had the most significant effect on the resistivity of PLA, while the effect of the type of solvent was of least significance. Moreover, it was illustrated that, by incorporating two different solvents into PANI, the resistivity could be changed for further applications.

  11. Compositional Model Based Fisher Vector Coding for Image Classification.

    Science.gov (United States)

    Liu, Lingqiao; Wang, Peng; Shen, Chunhua; Wang, Lei; Hengel, Anton van den; Wang, Chao; Shen, Heng Tao

    2017-12-01

    Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) as the generative model for local features. However, the representative power of a GMM can be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes, and the number of prototypes is usually small in FVC. To alleviate this limitation, in this work, we break the convention which assumes that a local feature is drawn from one of a few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as a linear combination of multiple key components, and the combination weight is a latent random variable. In doing so we greatly enhance the representative power of the generative model underlying FVC. To implement our idea, we design two particular generative models following this compositional approach. In our first model, the mean vector is sampled from the subspace spanned by a set of bases and the combination weight is drawn from a Laplace distribution. In our second model, we further assume that a local feature is composed of a discriminative part and a residual part. As a result, a local feature is generated by the linear combination of discriminative part bases and residual part bases. The decomposition of the discriminative and residual parts is achieved via the guidance of a pre-trained supervised coding method. By calculating the gradient vector of the proposed models, we derive two new Fisher vector coding strategies. The first is termed Sparse Coding-based Fisher Vector Coding (SCFVC) and can be used as the substitute of traditional GMM based FVC. The second is termed Hybrid Sparse Coding-based Fisher vector coding (HSCFVC) since it

  12. Environmentally degradable bio-based polymeric blends and composites.

    Science.gov (United States)

    Chiellini, Emo; Cinelli, Patrizia; Chiellini, Federica; Imam, Syed H

    2004-03-15

    Blends and composites based on environmentally degradable-ecocompatible synthetic and natural polymeric materials and fillers of natural origin have been prepared and processed under different conditions. Poly(vinyl alcohol) (PVA) was used as the synthetic polymer of choice by virtue of its capability to be processed from water solution or suspension as well as from the melt by blow extrusion and injection molding. Starch and gelatin were taken as the polymeric materials from renewable resources. The fillers were all of natural origin, as waste from food and agro-industry consisted of sugar cane bagasse (SCB), wheat flour (WF), orange peels (OR), apple peels (AP), corn fibres (CF), saw dust (SD) and wheat straw (WS). All the natural or hybrid formulations were intended to be utilized for the production of: a) Environmentally degradable mulching films (hydro-biomulching) displaying, in some cases, self-fertilizing characteristics by in situ spraying of water solutions or suspensions; b) Laminates and containers to be used in agriculture and food packaging by compression and injection molding followed by baking. Some typical prototype items have been prepared and characterized in relation to their morphological and mechanical properties and tested with different methodology for their propensity to environmental degradation and biodegradation as ultimate stage of their service life. A relationship between chemical composition and mechanical properties and propensity to biodegradation has been discussed in a few representative cases.

  13. Carbonized asphaltene-based carbon-carbon fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  14. Mechanical properties of green composites based on thermoplastic starch

    Science.gov (United States)

    Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.

    2010-06-01

    The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.

  15. Carbon composite based on fullerenes and exfoliated graphite

    Science.gov (United States)

    Berezkin, V. I.; Popov, V. V.; Tomkovich, M. V.

    2017-03-01

    A carbon composite material based on fullerenes and exfoliated graphite with different ratios (from 16: 1 to 1: 16 by weight) is synthesized and investigated. Samples are obtained by the introduction of C60 in a conductive matrix by means of heat treatment of initial disperse mixtures in a vacuum diffusion-adsorption process followed by cold pressing and annealing. It is shown that covalent bonds are formed between the fullerenes and the environment. The conductivity of the samples is quite high and ranges from a few to hundreds (Ω cm)-1. The concentration of charge carriers (mainly holes) is 1019 to 1020 cm-3. It is concluded that the material obtained using these ratios of the components can be attributed to metal systems with structural disorder.

  16. Active vibration control based on piezoelectric smart composite

    Science.gov (United States)

    Gao, Le; Lu, Qingqing; Fei, Fan; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2013-12-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology.

  17. Scalable fabrication of immunosensors based on carbon nanotube polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Ernest; Gonzalez-Guerrero, Ana B [Institut Catala de Nanotecnologia, Campus Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Orozco, Jahir; Jimenez-Jorquera, Cecilia; Fernandez-Sanchez, Cesar [Instituto de Microelectronica de Barcelona, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Calle, Ana; Lechuga, Laura M [Instituto de Microelectronica de Madrid, CNM-IMM (CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)], E-mail: Ernest.Mendoza.icn@uab.es

    2008-02-20

    In this work we present the fabrication and characterization of immunosensors based on polystyrene (PS)-multiwalled carbon nanotube (MWCNT) composites. The electrochemical properties of the sensors have been investigated and show that the surface area is increased upon addition of the MWCNT-PS layer. Furthermore, a plasma activation process is used to partially remove the PS and expose the MWCNTs. This results in a huge increase in the electrochemical area and opens up the possibility of binding biomolecules to the MWCNT wall. The MWCNTs have been functionalized covalently with a model antibody (rabbit IgG). The biosensors have been tested using amperometric techniques and show detection limits comparable to standard techniques such as ELISA.

  18. Manganese oxides-based composite electrodes for supercapacitors

    Science.gov (United States)

    Su, Dongyun; Ma, Jun; Huang, Mingyu; Liu, Feng; Chen, Taizhou; Liu, Chao; Ni, Hongjun

    2017-06-01

    In recent, nanostructured transition metal oxides as a new class of energy storage materials have widely attracted attention due to its excellent electrochemical performance for supercapacitors. The MnO2 based transition metal oxides and their composite electrode materials were focused in the review for supercapacitor applications. The researches on different nanostructures of manganese oxides such as Nano rods, Nano sheets, nanowires, nanotubes and so on have been discovered in recent years, together with brief explanations of their properties. Research on enhancing materials’ properties by designing combination of different materials on the micron or Nano scale is too limited, and therefore we discuss the effects of different components’ sizes and their synergy on the performance. Moreover, the low-cost and large-scale fabrication of flexible supercapacitors with high performance (high energy density and cycle stability) have been pointed out and studied.

  19. Active vibration control based on piezoelectric smart composite

    International Nuclear Information System (INIS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2013-01-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology. (paper)

  20. Nickel Based Electrospun Materials with Tuned Morphology and Composition

    Directory of Open Access Journals (Sweden)

    Giorgio Ercolano

    2016-12-01

    Full Text Available Nickel is set to play a crucial role to substitute the less-abundant platinum in clean electrochemical energy conversion and storage devices and catalysis. The controlled design of Ni nanomaterials is essential to fine-tune their properties to match these applications. A systematic study of electrospinning and thermal post-treatment parameters has been performed to synthesize Ni materials and tune their morphology (fibers, ribbons, and sponge-like structures and composition (metallic Ni, NiO, Ni/C, Ni3N and their combinations. The obtained Ni-based spun materials have been characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The possibility of upscaling and the versatility of electrospinning open the way to large-scale production of Ni nanostructures, as well as bi- and multi-metal systems for widened applications.

  1. Multiscale mechanics of graphene oxide and graphene based composite films

    Science.gov (United States)

    Cao, Changhong

    The mechanical behavior of graphene oxide is length scale dependent: orders of magnitude different between the bulk forms and monolayer counterparts. Understanding the underlying mechanisms plays a significant role in their versatile application. A systematic multiscale mechanical study from monolayer to multilayer, including the interactions between layers of GO, can provide fundamental support for material engineering. In this thesis, an experimental coupled with simulation approach was used to study the multiscale mechanics of graphene oxide (GO) and the methods developed for GO study are proved to be applicable also to mechanical study of graphene based composites. GO is a layered nanomaterial comprised of hierarchical units whose characteristic dimension lies between monolayer GO (0.7 nm - 1.2 nm) and bulk GO papers (≥ 1 mum). Mechanical behaviors of monolayer GO and GO nanosheets (10 nm- 100 nm) were comprehensively studied this work. Monolayer GO was measured to have an average strength of 24.7 GPa,, orders of magnitude higher than previously reported values for GO paper and approximately 50% of the 2D intrinsic strength of pristine graphene. The huge discrepancy between the strength of monolayer GO and that of bulk GO paper motivated the study of GO at the intermediate length scale (GO nanosheets). Experimental results showed that GO nanosheets possess high strength in the gigapascal range. Molecular Dynamic simulations showed that the transition in the failure behavior from interplanar fracture to intraplanar fracture was responsible for the huge strength discrepancy between nanometer scale GO and bulk GO papers. Additionally, the interfacial shear strength between GO layers was found to be a key contributing factor to the distinct mechanical behavior among hierarchical units of GO. The understanding of the multiscale mechanics of GO is transferrable in heterogeneous layered nanomaterials, such as graphene-metal oxide based anode materials in Li

  2. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  3. Bio-Based Adhesives and Evaluation for Wood Composites Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Ferdosian

    2017-02-01

    Full Text Available There has been a rapid growth in research and innovation of bio-based adhesives in the engineered wood product industry. This article reviews the recent research published over the last few decades on the synthesis of bio-adhesives derived from such renewable resources as lignin, starch, and plant proteins. The chemical structure of these biopolymers is described and discussed to highlight the active functional groups that are used in the synthesis of bio-adhesives. The potentials and drawbacks of each biomass are then discussed in detail; some methods have been suggested to modify their chemical structures and to improve their properties including water resistance and bonding strength for their ultimate application as wood adhesives. Moreover, this article includes discussion of techniques commonly used for evaluating the petroleum-based wood adhesives in terms of mechanical properties and penetration behavior, which are expected to be more widely applied to bio-based wood adhesives to better evaluate their prospect for wood composites application.

  4. Manufacturing Technology of Composite Materials—Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene

    Directory of Open Access Journals (Sweden)

    Anton Panda

    2017-03-01

    Full Text Available The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer–solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  5. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    exchange was characterized with solid state 13C NMR spectroscopy, FTIR spectroscopy, TGA, elemental analysis, and titration. The results indicate the extent of ion exchange was ~ 70-80%. Due to the mass of QAA, the remaining QAA reduced the IEC of the nanoparticles to < 2.2 meq/g. In fabricating the composite membranes, the nanoparticles and polystyrene were solution cast in a continuous process with and without electric field. The electric field had no effect on the water uptake. Based on the morphology and the proton conductivity, it appears orientation of the nanoparticles did not occur. We hypothesize the lack of orientation was caused by swelling of the particles with the solvent. The solvent inside the particle minimized polarizability, and thus prevented orientation. The composite membranes were limited to low proton conductivity of ~ 10-5 S/cm due to low IEC of the nanoparticles, but good dispersion of the nanoparticles was achieved. Future work should look into eliminating the QAA during synthesis and developing a rigid core for the nanoparticles.

  6. Characterisation of Flax Fibres and Flax Fibre Composites. Being cellulose based sources of materials

    DEFF Research Database (Denmark)

    Aslan, Mustafa

    a transition value, as predicted by the volumetric composition model. This leads furthermore to a scatter in the experimental data of stiffness at high fibre weight fractions. The qualitative analysis of the composite cross sections by microscopy also shows that the low and high pressure composites have......Cellulosic fibres, like wood and plant fibres, have the potential for use as load-bearing constituents in composite materials due to their attractive properties such as high stiffness-to-weight ratio that makes cellulosic fibre composites ideal for many structural applications. There is thus...... a growing interest among composite manufacturers for such low-cost and low-weight cellulosic fibre composites. In addition, wood and plant fibre based composites with thermoplastic polymeric matrices are recyclable, and they are cost attractive alternatives to oil based fibre reinforced polymer composites...

  7. Investigations on a methacrylate-based flowable composite based on the SDR™ technology.

    Science.gov (United States)

    Ilie, Nicoleta; Hickel, Reinhard

    2011-04-01

    Monomer development for a reduced shrinkage of composite materials still challenges the modern research. The purpose of this study was to analyse the shrinkage behavior of an innovative composite material for dental restorations based on a resin system that is claimed to control polymerization kinetics having incorporated a photoactive group within the resin. Shrinkage stress development within the first 300s after photoinitiation, gel point as well as micro-mechanical properties (Vickers hardness HV, modulus of elasticity E, creep Cr and elastic-plastic indentation work W(e)/W(tot)) were evaluated (n = 10). The experimental flowable resin-based composite (RBC) was measured in comparison to regular methacrylate-based micro- (Esthet X Flow) and nano-hybrid flowable RBCs (Filtek Supreme Plus Flow). Additionally, the high viscosity counterparts of the two regular flowable methacryate-based composites (Esthet X Plus and Filtek Supreme Plus) as well as a low shrinkage silorane-based micro-hybrid composite (Filtek Silorane) were considered. The curing time was 20s (LED unit Freelight2, 3M-ESPE, 1226 mW/cm(2)). The experimental material achieved the significantly lowest contraction stress (1.1 ± .01 MPa) followed by the silorane-based composite (3.6 ± .03 MPa), whereas the highest stress values were induced in the regular methacrylate-based flowable composites EsthetX Flow (5.3 ± .3 MPa) and Filtek Supreme Flow (6.5 ± .3 MPa). In view of gel point, the best values were obtained for the experimental flowable composite (3.1 ± .1s) and Filtek Silorane (3.2 ± .3s), which did not differ significant from each others, whereas EsthetX Plus and Filtek Supreme Plus did also not differ significantly, inducing the shortest gel point. The experimental flowable material achieved also the lowest shrinkage-rate (maximum at 0.1 MPa/s). For all analysed materials, no significant difference in the micro-mechanical properties between top and bottom were found when measured on 2mm thick

  8. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

    Science.gov (United States)

    Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo

    2016-01-01

    Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...

  9. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  10. Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements

    Energy Technology Data Exchange (ETDEWEB)

    Sopcak, T., E-mail: tsopcak@imr.saske.sk [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia); Medvecky, L.; Giretova, M.; Stulajterova, R.; Durisin, J. [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia); Girman, V. [Institute of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 04001 Kosice (Slovakia); Faberova, M. [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia)

    2016-07-15

    The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~ 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.

  11. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  12. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  13. Conifer fibers as reinforcing materials for polypropylene-based composites

    DEFF Research Database (Denmark)

    Plackett, David; Chengzhi, Chuai; Almdal, Kristoffer

    2001-01-01

    in improved processing, as well as improvements in the thermal and mechanical properties of the resultant composites compared with the composites filled with untreated conifer fibers. Moreover, MAPP grafting and MAPP treating displayed more obvious benefits than EPDM treating in terms of thermal properties....... In addition, the effect of the concentration of the conifer fibers on the properties of the composites and the difference between MAPP grafting and MAPP treating were evaluated....

  14. Mechanical properties of silorane-based and methacrylate-based composite resins after artificial aging.

    Science.gov (United States)

    de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido

    2016-01-01

    The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P composite resin Fill Magic presented the best performance before (P composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).

  15. Pyrolysis behaviour of silicone-based ceramifying composites

    International Nuclear Information System (INIS)

    Mansouri, J.; Burford, R.P.; Cheng, Y.B.

    2006-01-01

    In this work the effect of firing temperature on microstructure and chemical composition of silicone-mica composites was studied. Field emission electron microscopy (FESEM) and electron probe microanalysis (EPMA) were used to explore the changes in microstructure and local microchemical composition when samples were heated at 600 and 1000 deg. C. EPMA showed the presence of skin formation and preferential migration of silica to the surface. These effects were more pronounced at higher temperatures. XRD analysis of mica and composites at different temperatures also showed the formation of new phases as a result of reaction between the decomposition products of mica and silica

  16. Self-healing polymers and composites based on thermal activation

    Science.gov (United States)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  17. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Libao Chen

    2013-01-01

    Full Text Available Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  18. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.

    2003-01-01

    in the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  19. Sulfonated carbon black-based composite membranes for fuel cell

    Indian Academy of Sciences (India)

    Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton ...

  20. Bio-Based Nanocomposites: An Alternative to Traditional Composites

    Science.gov (United States)

    Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri

    2009-01-01

    Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…

  1. 3D Printed Photoresponsive Devices Based on Shape Memory Composites.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Wang, Ting; Wang, Juan; Yu, Jiancan; He, Ke; Qi, Dianpeng; Wan, Changjin; Chen, Xiaodong

    2017-09-01

    Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Base Composition Characteristics of Mammalian miRNAs

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that repress protein synthesis by either inhibiting the translation of messenger RNA (mRNA or increasing mRNA degradation. Endogenous miRNAs have been found in various organisms, including animals, plants, and viruses. Mammalian miRNAs are evolutionarily conserved, are scattered throughout chromosomes, and play an important role in the immune response and the onset of cancer. For this study, the author explored the base composition characteristics of miRNA genes from the six mammalian species that contain the largest number of known miRNAs. It was found that mammalian miRNAs are evolutionarily conserved and GU-rich. Interestingly, in the miRNA sequences investigated, A residues are clearly the most frequent occupants of positions 2 and 3 of the 5′ end of miRNAs. Unlike G and U residues that may pair with C/U and A/G, respectively, A residues can only pair with U residues of target mRNAs, which may augment the recognition specificity of the 5′ seed region.

  3. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  4. Micromechanics Based Inelastic and Damage Modeling of Composites

    Directory of Open Access Journals (Sweden)

    P. P. Procházka

    2004-01-01

    Full Text Available Micromechanics based models are considered for application to viscoelasticity and damage in metal matrix composites. The method proposes a continuation and development of Dvooák’s transformation field analysis, considering the piecewise uniform eigenstrains in each material phase. Standard applications of the method to a two-phase are considered in this study model, i.e., only one sub-volume per phase is considered. A continuous model is used, employing transformation field analysis with softening in order to prevent the tensile stress overstepping the tensile strength. At the same time shear cracking occurs in the tangential direction of the possible crack. This is considered in the principal shear stresses and they make disconnections in displacements. In this case, discontinuous models are more promising. Because discrete models, that can describe the situation more realistically have not been worked out in detail, we retain a continuous model and substitute the slip caused by overstepping the damage law by introducing eigenparameters from TFA. The various aspects of the proposed methods are systematically checked by comparing with finite element unit cell analyses, made through periodic homogenization assumptions, for SiC/Ti unidirectional lay-ups. 

  5. Surface roughness comparison of methacrylate and silorane-based composite resins after 40% hydrogen peroxide application

    Directory of Open Access Journals (Sweden)

    Rori Sasmita

    2018-01-01

    Full Text Available The change of the tooth colour could be restored with bleaching. The tooth bleaching will affects the surface roughness of the composite resins. Recently, the material basis for composite resins has developed, among others are methacrylate-based and silorane based composite resins. The objective of this study was to distinguish the surface roughness value of methacrylate-based composite resin and silorane based composite resins. This research was quasi-experimental. The sample used in this study were methacrylate and silorane based composite resins in discs form, with the size of 6 mm and the thickness of 3 mm, manufactured into 20 specimens and divided into 2 groups. The control group was immersed in the artificial saliva, and the treatment group was applied with 40% hydrogen peroxide. The result of the experiment analyzed using unpaired sample t-test showed significant differences in the average value of the surface roughness after the application of 40% hydrogen peroxide. The average value of methacrylate and silorane based composite resins were 2.744 μm and 3.417 μm, respectively. There was a difference in the surface roughness of methacrylate and silorane based composite resin compounds after the application of 40% hydrogen peroxide. The surface roughness value of the silorane-based composite resin was higher than the methacrylate-based.

  6. New biodegradable air-entraining admixture based on LAS for cement-based composites

    International Nuclear Information System (INIS)

    Mendes, J.C.; Moro, T.K.; Dias, L.S.; Campos, P.A.M.; Silva, G.J.B.; Peixoto, R.A.F.; Cury, A.A.

    2016-01-01

    The active principle of Air Entraining Admixtures (AEA) are surfactants, analogously to washing up liquids. Washing up (or dishwashing) liquids are widely available products, relatively inexpensive, non-toxic and biodegradable, thus presenting smaller environmental impact. Therefore, the present work proposes the use of a biodegradable surfactant comprised in washing up liquids, Linear Alkylbenzene Sulfonate (LAS), as sustainable air entraining agent for cement-based composites. In this sense, a performance evaluation of the proposed AEA is carried out, by comparing the properties of mortars with proposed AEA, commercial AEA and ones without any admixture. Through the physical, mechanical and microstructural analysis, it was possible to determine the efficiency of the proposed AEA, as well as its optimum range of dosage. As a result, we seek to contribute to the technical development of cement-based composites in Brazil and in the world. (author)

  7. Microstructure-electrical properties relation of zirconia based ceramic composites

    International Nuclear Information System (INIS)

    Fonseca, Fabio Coral

    2001-01-01

    The electrical properties of zirconia based ceramic composites were studied by impedance spectroscopy. Three materials were prepared with different relative compositions of the conducting and insulating phases: (ZrO 2 :8 mol% Y 2 ) 3 ) + MgO, (ZrO 2 :8 mol% Y 2 O 3 ) + Y 2 O 3 and ZrO 2 + 8 mol% Y 2 O 3 . All specimens were analyzed by X-ray diffraction and scanning electron microscopy for microstructural characterization and for correlation of microstructural aspects with electrical properties. For (ZrO 2 :8 mol% Y 2 O 3 ) + MgO the main results show that the dependence of the different (microstructural constituents) contributions to the electrical resistivity on the magnesia content follows two stages: one below and another above the solubility limit of magnesia in Yttria-stabilized zirconia. The same dependence is found for the lattice parameter determined by X-ray diffraction measurements. The impedance diagrams of the composites have been resolved allowing the identification of contributions due to the presence of each microstructural constituent in both stages. Magnesia as a second phase is found to inhibit grain growth in Yttria-stabilized zirconia and the solubility limit for magnesia in the zirconia matrix is around 10 mol%. For (ZrO 2 :8 mol% Y 2 O 3 ) + Y 2 O 3 the main results show that: Yttria is present as a second phase for 1350 deg C /0.1 h sintering; the addition of 2 mol% of Yttria does not modify significantly the electrical properties; the solubility limit for Yttria is around 2 mol% according to electrical measurements. Similarly to magnesia, Yttria inhibits grain growth on Yttria-stabilized zirconia. The general effective medium theory was used to analyze the percolation of the insulating phase; the percolation threshold is different if one considers separately the total, bulk and grain boundary contributions to the electrical conductivity: 32.0, 38.5 and 27.8 vol% for total, intra and intergranular contributions, respectively. The increase of

  8. Bio-based structural composite materials for aerospace applications

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2008-09-01

    Full Text Available . Figure 2: Composite Panel 4.3 Cone calorimeter testing Flammability behaviour of the composite panel was tested using a Fire Testing Technology dual cone calorimeter. A constant incident heat flux of 35 kW/m² was used and an electronic ignition... of combustion5,6. The results are given in Table 1. Plots of HRR and smoke production rate (SPR) are given in Figures 3 and 4 and Figure 5 shows the composite panel after cone calorimeter testing. 3 2nd SAIAS Symposium, 14-16 September 2008...

  9. [Aging of silorane- and methacrylate-based composite resins: effects on color and translucency].

    Science.gov (United States)

    Liu, Chang; Pan, Jie; Lin, Hong; Shen, Song

    2015-10-01

    To evaluate the color stability and translucency of silorane-based low shrinkage composite after in vitro aging procedures of thermal cycling and water storage respectively, and to compare with those of conventional methacrylate-based posterior composite. Three light-cured composite resins, dimethacrylate-based composite A (Filtek™ Z350), B (Filtek™ P60) and silorane-based composite C (Filtek™ P90), were tested in this study. Ten specimens (10 mm in diameter, 1 mm in height) of each composite were prepared. The ten specimens in each group were then divided into two subgroups (n = 5). One subgroup underwent thermal cycling [(5.0 ± 0.5)~(55.0 ± 1.0) °C, 10 000 cycles] and the other was stored in 37 C° distilled water for 180 days. With a spectrophotometer, the CIE L * a * b * parameters of the specimens were tested before and after artificial aging against white, medium grey and black backgrounds, respectively. △E, TP and △TP were calculated and data were analyzed using independent-samples t test and partial analysis (P composite showed color alteration above the clinically acceptable levels (△E > 3.3), and also showed higher △E with a statistically significant difference in comparison with the other composites (B and C) (P composite C showed more alteration compared with composite B (P composite underwent greater alteration with regard to color stability and translucency.

  10. Composition.

    Science.gov (United States)

    Communication: Journalism Education Today, 2002

    2002-01-01

    Considers how photography is more than just pointing a camera in the right direction. Explains that good pictures use elements of composition such as the Rule of Thirds, leading lines, framing and repetition of shapes. Presents 16 photographs from college and secondary school publications, and describes the techniques that makes them effective.…

  11. Image Reconstruction Based Modeling of 3D Textile Composite (Postprint)

    National Research Council Canada - National Science Library

    Zhou, Eric; Mollenhauer, David; Iarve, Endel

    2007-01-01

    ... joints, near-net shape processing, etc. To fully understand the mechanical behavior of 3-D textile composites, it is essential to perform analyses to predict effective material properties and damage initiation and growth...

  12. Pultruded composites using soy-based polyurethane resin.

    Science.gov (United States)

    2008-07-01

    Fiber Reinforced Polymer (FRP) composites offer inherent advantages over traditional materials with regard to high strength-to-weight ratio, design flexibility, corrosion resistance, low maintenance, and extended service life. FRP materials can be us...

  13. Composite separators and redox flow batteries based on porous separators

    Science.gov (United States)

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  14. Magnetic Nano-particle Based Composite Materials/Magnets

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop and evaluate novel advanced composite materials which contain magnetic nano-particles. The primary goal is to develop a new class of...

  15. Novel, Nanotechnology Based CMC composites for Hot Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Very extensive R&D efforts over the past several decades resulted in several classes of high temperature composites offering potential for future hypersonic...

  16. EMI shielding based on MWCNTs/polyester composites

    Science.gov (United States)

    Seng, Lee Yeng; Wee, F. H.; Rahim, H. A.; Malek, F.; You, K. Y.; Liyana, Z.; Jamlos, M. A.; Ezanuddin, A. A. M.

    2018-02-01

    This paper presents the dielectric properties and shielding effectiveness (SE) of multi-walled carbon nanotubes and polyester (MWCNTs/PE) composite. A rectangular waveguide transmission line technique was used to measure dielectric properties, ɛ r, SE of MWCNTs (1-20 weight percentage, wt%) and PE composite in microwave frequency region from 8.2 to 18 GHz. It was observed that the increase of MWCNTs resulted in the increase of dielectric properties, loss tangent, and conductivity. MWCNTs/PE composite samples with high conductivity had led to greater SE. The results show SE of the composites increased as the amount of the MWCNTs increased. The average values of electromagnetic interference SE of the MWCNTs/PE samples with 1 wt% MWCNTs and 20 wt.% MWCNTs were 3 and 35.2 dB, respectively. Simulated and measured results of shielding effectiveness had been compared with various of MWCNTs/PE composite over the entire frequency range with a 3 mm thickness. From the results, observed that the MWCNTs/PE composite has potential use as EMI shielding materials.

  17. Curing profile of bulk-fill resin-based composites.

    Science.gov (United States)

    Li, Xin; Pongprueksa, Pong; Van Meerbeek, Bart; De Munck, Jan

    2015-06-01

    To evaluate the curing profile of bulk-fill resin-based composites (RBC) using micro-Raman spectroscopy (μRaman). Four bulk-fill RBCs were compared to a conventional RBC. RBC blocks were light-cured using a polywave LED light-curing unit. The 24-h degree of conversion (DC) was mapped along a longitudinal cross-section using μRaman. Curing profiles were constructed and 'effective' (>90% of maximum DC) curing parameters were calculated. A statistical linear mixed effects model was constructed to analyze the relative effect of the different curing parameters. Curing efficiency differed widely with the flowable bulk-fill RBCs presenting a significantly larger 'effective' curing area than the fibre-reinforced RBC, which on its turn revealed a significantly larger 'effective' curing area than the full-depth bulk-fill and conventional (control) RBC. A decrease in 'effective' curing depth within the light beam was found in the same order. Only the flowable bulk-fill RBCs were able to cure 'effectively' at a 4-mm depth for the whole specimen width (up to 4mm outside the light beam). All curing parameters were found to statistically influence the statistical model and thus the curing profile, except for the beam inhomogeneity (regarding the position of the 410-nm versus that of 470-nm LEDs) that did not significantly affect the model for all RBCs tested. Most of the bulk-fill RBCs could be cured up to at least a 4-mm depth, thereby validating the respective manufacturer's recommendations. According to the curing profiles, the orientation and position of the light guide is less critical for the bulk-fill RBCs than for the conventional RBC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A fault and seismicity based composite simulation in northern California

    Directory of Open Access Journals (Sweden)

    M. B. Yıkılmaz

    2011-12-01

    Full Text Available We generate synthetic catalogs of seismicity in northern California using a composite simulation. The basis of the simulation is the fault based "Virtual California" (VC earthquake simulator. Back-slip velocities and mean recurrence intervals are specified on model strike-slip faults. A catalog of characteristic earthquakes is generated for a period of 100 000 yr. These earthquakes are predominantly in the range M = 6 to M = 8, but do not follow Gutenberg-Richter (GR scaling at lower magnitudes. In order to model seismicity on unmapped faults we introduce background seismicity which occurs randomly in time with GR scaling and is spatially associated with the VC model faults. These earthquakes fill in the GR scaling down to M = 4 (the smallest earthquakes modeled. The rate of background seismicity is constrained by the observed rate of occurrence of M > 4 earthquakes in northern California. These earthquakes are then used to drive the BASS (branching aftershock sequence model of aftershock occurrence. The BASS model is the self-similar limit of the ETAS (epidemic type aftershock sequence model. Families of aftershocks are generated following each Virtual California and background main shock. In the simulations the rate of occurrence of aftershocks is essentially equal to the rate of occurrence of main shocks in the magnitude range 4 < M < 7. We generate frequency-magnitude and recurrence interval statistics both regionally and fault specific. We compare our modeled rates of seismicity and spatial variability with observations.

  19. Selecting the Best Materials Compositions of Resin Based Bioasphalt

    Science.gov (United States)

    Setyawan, Ary; Widiharjo, Budi; Djumari

    2017-07-01

    Damar asphalt is one type of bioaspal which is a mixture with the main ingredient is a resin as a binder and cooking oil as a solvent. One major drawback of this damar asphalt is the low ductility. To improve the ductility values, then use the added material Filler. Filler serves as a divider between the impurities with damar asphalt, increases ductility and increase the ability of cohesion or bonding between the particles of material damar asphalt. The purpose of this study was to determine damar asphalt modifications to the properties in accordance with the properties of damar asphalt test specifications based on the value of penetration. This method uses some variant on material such as powder bricks and fly ash as a binder. Solvent in constituent used oil and used cooking oil. It also added the polymer latex up to 10% at intervals of 2%. The best composition of damar asphalt materials were obtained with gum rosin, Fly Ash, Oil and Latex. Damar asphalt modification damar asphalt optimum mix of resin (100g pure resin or resin chunk + 350g powder), Fly Ash powder (150g), cooking oil (205g), and latex 4%, ductility increased from 63.5 cm to 119.5 cm, the value of the flash point was originally at temperature of 240 °C to 260 °C, damar asphalt penetration of 68.2 dmm to 43 dmm, and the value of density decreases from 1.01 g / cm3 to 0.99 g / cm3. Damar asphalt at these modifications meet the specifications in terms of solubility in trichlore ethylene is equal to 99.5%, and also meet the affinity of damar asphalt at 99%. With the optimum value, damar asphalt could be categorized as bitumen 40/60 penetration.

  20. Quality management of dispersion-strengthened beryllium-based composite alloy

    Directory of Open Access Journals (Sweden)

    Дмитро Миколайович Макаренко

    2016-05-01

    Full Text Available The article is devoted to investigation of the composition and properties of dispersion-strengthened beryllium-based composite alloy, used in various industries, including the aircraft manufacture aircraft. Analyzed the properties of these materials are analyzed to ensure their quality management. The mathematical relationship of dispersion strengthened beryllium-based composite alloy parameters from content of beryllium oxide and temperature are built

  1. The Aluminum Based Composite Produced by Self Propagating High Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Agus PRAMONO

    2016-05-01

    Full Text Available Self-propagating high-temperature synthesis method can be used for producing aluminum and boron carbide based composites. The experimental composites were fabricated using cobalt and carbon as catalysts. The microstructure of the material was studied using Scanning Electron Microscopy and the mechanical properties were determined using micro-hardness testing. Al/B4C based composites with improved properties were obtained and the role of Co/C catalysts was studied.

  2. ComTrustO: Composite Trust-Based Ontology Framework for Information and Decision Fusion

    Science.gov (United States)

    2015-07-06

    ComTrustO: Composite Trust-based Ontology Framework for Information and Decision Fusion Alessandro Oltramari Carnegie Mellon University Pittsburgh... ontology -based framework for information fusion, as a support system for human decision makers. In particular, we build upon the concept of composite...multidimensional trust, we construct a composite trust ontology framework, called ComTrustO, that embraces four trust ontologies , one for each trust type. We

  3. Wood-based Tri-Axial Sandwich Composite Materials: Design, Fabrication, Testing, Modeling and Application

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    As the demand for sustainable materials increases, there are unique challenges and opportunities to develop light-weight green composites materials for a wide range of applications. Thus wood-based composite materials from renewable forests may provide options for some niche applications while helping to protect our environment. In this paper, the wood-based tri-axial...

  4. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  5. Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators

    International Nuclear Information System (INIS)

    Liang Yinzheng; Lin Zhan; Qiu Yiping; Zhang Xiangwu

    2011-01-01

    Lithium aluminum titanium phosphate (LATP)/polyacrylonitrile (PAN) composite fiber-based membranes were prepared by electrospinning dispersions of LATP particles in PAN solutions. The electrolyte uptakes of the electrospun LATP/PAN composite fiber-based membranes were measured and the results showed that the electrolyte uptake increased as the LATP content increased. The lithium ion conductivity, the electrochemical oxidation limit and the interface resistance of liquid electrolyte-soaked electrospun LATP/PAN composite fiber-based membranes were also measured and it was found that as the LATP content increased, the electrospun LATP/PAN composite fiber-based membranes had higher lithium ion conductivity, better electrochemical stability, and lower interfacial resistance with lithium electrode. Additionally, lithium//1 M LiPF 6 /EC/EMC//lithium iron phosphate cells using LATP/PAN composite fiber-based membranes as the separator demonstrated high charge/discharge capacity and good cycle performance.

  6. Epoxy Resin Composite Based on Functional Hybrid Fillers.

    Science.gov (United States)

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-08-22

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM.

  7. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Mariusz Oleksy

    2014-08-01

    Full Text Available A study was carried out involving the filling of epoxy resin (EP with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS. The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS curves, and an exfoliated structure observed by TEM.

  8. Distributed Workflow Service Composition Based on CTR Technology

    Science.gov (United States)

    Feng, Zhilin; Ye, Yanming

    Recently, WS-BPEL has gradually become the basis of a standard for web service description and composition. However, WS-BPEL cannot efficiently describe distributed workflow services for lacking of special expressive power and formal semantics. This paper presents a novel method for modeling distributed workflow service composition with Concurrent TRansaction logic (CTR). The syntactic structure of WS-BPEL and CTR are analyzed, and new rules of mapping WS-BPEL into CTR are given. A case study is put forward to show that the proposed method is appropriate for modeling workflow business services under distributed environments.

  9. Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity

    Science.gov (United States)

    Bellucci, Stefano; Bergamaschi, A.; Bottini, M.; Magrini, A.; Mustelin, T.

    2007-03-01

    Carbon nanotubes possess unique chemical, physical, optical, and magnetic properties, which make them suitable for many uses in industrial products and in the field of nanotechnology, including nanomedicine. We describe fluorescent nanocomposites for use in biosensors or nanoelectronics. Then we describe recent results on the issue of cytotoxicity of carbon nanotubes obtained in our labs. Silica nanoparticles have been widely used for biosensing and catalytic applications due to their large surface area-to-volume ratio, straightforward manufacture, and the compatibility of silica chemistry with covalent coupling of biomolecules. Carbon nanotubes-composite materials, such as those based on Carbon nanotubes bound to nanoparticles, are suitable, in order to tailor Carbon nanotubes properties for specific applications. We present a tunable synthesis of Multi Wall Carbon nanotubes-Silica nanoparticles. The control of the nanotube morphology and the bead size, coupled with the versatility of silica chemistry, makes these structures an excellent platform for the development of biosensors (optical, magnetic and catalytic applications). We describe the construction and characterization of supramolecular nanostructures consisting of ruthenium-complex luminophores, directly grafted onto short oxidized single-walled carbon nanotubes or physically entrapped in silica nanobeads, which had been covalently linked to short oxidized single-walled carbon nanotubes or hydrophobically adsorbed onto full-length multi-walled carbon nanotubes. These structures have been evaluated as potential electron-acceptor complexes for use in the fabrication of photovoltaic devices, and for their properties as fluorescent nanocomposites for use in biosensors or nanoelectronics. Finally, we compare the toxicity of pristine and oxidized Multi Walled Carbon nanotubes on human T cells - which would be among the first exposed cell types upon intravenous administration of Carbon nanotubes in therapeutic

  10. Marginal adaptation of a low-shrinkage silorane-based composite: A SEM-analysis

    DEFF Research Database (Denmark)

    Schmidt, Malene; Bindslev, Preben Hørsted; Poulsen, Sven

    2012-01-01

    Introduction. Shrinkage during polymerization of resin-based composite materials may lead to gap formation and hamper the marginal adaptaion of the restorations. To reduce the problem of polymerization shrinkage, a new composite material (Filtek™ Silorane, 3M-ESPE, Germany), with a reduced...... restorations in molars were included in the study. The restorations originated from a randomized clinical trial, conducted in 2007-2009 which compared the clinical performance of a low-shrinkage composite material (Filtek™ Silorane) with that of a methacrylate-based composite material (Ceram•X™mono). Epon...

  11. Photosensitive in wide spectral region composites based on polyphenylenevinylene

    Czech Academy of Sciences Publication Activity Database

    Syromyatnikov, V.; Pomaz, I.; Verbitsky, A.; Vertsimakha, Ya.; Nešpůrek, Stanislav; Pochekaylov, Sergey

    2009-01-01

    Roč. 12, č. 1 (2009), s. 1-7 ISSN 1605-6582 EU Projects: European Commission(XE) 35859 - BIMORE Institutional research plan: CEZ:AV0Z40500505 Keywords : composite * photovoltage * polymer * organic dye * film Subject RIV: CD - Macromolecular Chemistry

  12. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of ...

  13. Polymer-based composites for RFI/EMI/ applications

    Science.gov (United States)

    Williams, Neil; Varadan, Vijay K.; Varadan, Vasundara V.

    1990-10-01

    A conductive polymer composite of 2.4 mm thickness has been measured at a frequency range of 100 MHz to 18 GHz. This sample was measured for its EMI and EMC characteristics for use in electromagnetic shielding applications. It was shown that this thin sample achieved high transmission loss over a broad frequency range.

  14. Thermoplastic polybutadiene-based polyurethane/carbon nanofiber composites

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Duszová, A.; Poreba, Rafal; Kredatusová, Jana; Bureš, R.; Fáberová, M.; Šlouf, Miroslav

    2014-01-01

    Roč. 67, December (2014), s. 434-440 ISSN 1359-8368 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : carbon fibre * polymer–matrix composites (PMCs) * mechanical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.983, year: 2014

  15. Cages Based on the Carbon-Carbon Composites

    Czech Academy of Sciences Publication Activity Database

    Sochor, M.; Balík, Karel; Tichý, P.; Vtípil, J.; Suchý, Tomáš; Sedláček, R.; Kolář, František; Černý, Martin; Beneš, J.; Hulejová, H.; Pešáková, V.

    12(132) (2003), s. 49-57 ISSN 1212-1576 R&D Projects: GA ČR GA106/00/1407 Institutional research plan: CEZ:AV0Z3046908 Keywords : carbon-carbon composites * cage * spine treatment Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  16. Characterization of composite materials based on Fe powder (core ...

    Indian Academy of Sciences (India)

    SEM serves in evidence of a defectless microstructure if the coating contains at least 2% of silica particles. The morphology of Fe particles implies uniform coating without any visible exfoliation. A presence of fine SiO2 particles was verified by TEM. The best magnetic properties were found in Fe–PFRT composite with 2% of ...

  17. Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites

    OpenAIRE

    Vural, Mert; Behrens, Adam M.; Ayyub, Omar B.; Ayoub, Joseph J.; Kofinas, Peter

    2014-01-01

    Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized nanoparticle nucleation. The stretchable fiber mats were able to display electrical conductivity val...

  18. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  19. Effect of water storage on the translucency of silorane-based and dimethacrylate-based composite resins with fibres.

    Science.gov (United States)

    Ozakar Ilday, Nurcan; Celik, Neslihan; Bayindir, Yusuf Ziya; Seven, Nilgün

    2014-06-01

    The purposes of this study were (1) to determine the translucency of silorane and dimethacrylate-based composite resins and (2) to evaluate the effect of water storage and reinforcement with fibre on the translucency of composite resins. Two light-cured composite resins (A2 shade), Filtek Silorane (silorane-based composite) and Valux Plus (dimethacrylate-based composite), were used in this study. The first group was used as the control with no reinforcements, the second was reinforced with polyethylene (Ribbond THM) and the third was reinforced with a glass fibre (Everstick Net) for each composite resin. Colour measurements were measured against white and black backgrounds with a Shadepilot (Degu Dent Gmbh, Hanau, Germany) spectrophotometer and recorded under a D65 light source, which reflects daylight. CIELAB parameters of each specimen were recorded at baseline and at 24 h, 168 h and 504 h. Translucency of materials was calculated using the translucency parameter (TP) formula. Data were analyzed using repeated measures ANOVA and LSD post hoc tests (α=0.05). The highest baseline TP value was in the Valux Plus/non-fibre reinforced group (14.06±1) and the lowest in the Filtek Silorane/Ribond THM group (8.98±1.11). Repeated measures ANOVA revealed significant effects from the factors storage time, composite resin, composite resin×storage time and fibre×time (p=0.047; p=0.001; p=0.013; p=0.022, respectively). Within the limitations of the study, we concluded that inclusion of polyethylene and glass fibres did not alter the translucency of the different-based composite resins. The longest storage time resulted in the greatest change in translucency values of Filtek Silorane composite resins. Considering the translucencies of composites with different formulations in the selection of composite resins for aesthetic restorations is important in terms of obtaining optimal aesthetic outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    Science.gov (United States)

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (Pcomposite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (Pcomposite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  1. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  2. NEST: A Compositional Approach to Rule-Based and Case-Based Reasoning

    Directory of Open Access Journals (Sweden)

    Petr Berka

    2011-01-01

    Full Text Available Rule-based reasoning (RBR and case-based reasoning (CBR are two complementary alternatives for building knowledge-based “intelligent” decision-support systems. RBR and CBR can be combined in three main ways: RBR first, CBR first, or some interleaving of the two. The NEST system, described in this paper, allows us to invoke both components separately and in arbitrary order. In addition to the traditional network of propositions and compositional rules, NEST also supports binary, nominal, and numeric attributes used for derivation of proposition weights, logical (no uncertainty and default (no antecedent rules, context expressions, integrity constraints, and cases. The inference mechanism allows use of both rule-based and case-based reasoning. Uncertainty processing (based on Hájek's algebraic theory allows interval weights to be interpreted as a union of hypothetical cases, and a novel set of combination functions inspired by neural networks has been added. The system is implemented in two versions: stand-alone and web-based client server. A user-friendly editor covering all mentioned features is included.

  3. Photoelectric Properties of Film Composites Based on Poly(Vinyl Butyral) and Heterometallic Complexes

    Science.gov (United States)

    Davidenko, N. A.; Kokozay, V. N.; Studzinsky, S. L.; Petrusenko, S. R.; Plyuta, N. I.; Davidenko, I. I.

    2018-01-01

    Photosensitive polymeric film composites based on nonphotoconducting poly(vinyl butyral) doped with heterometallic Cu/M complexes (M = Ca, Sr) were synthesized and investigated. These composites possessed photoconducting and photovoltaic properties and electron-type photoconductivity. The greater photocurrent for composites with complexes having shorter distances between the nearest Cu metal centers was attributed to the greater probability of electron transfer between these centers.

  4. Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites

    OpenAIRE

    Petit, C; Mendoza, B; Bandosz, TJ

    2010-01-01

    New composites based on HKUST-1 and graphene layers are tested for ammonia adsorption at room temperature in both dry and moist conditions. The materials are characterized by X-ray diffraction, FT-IR spectroscopy, adsorption of nitrogen, and thermal analyses. Unlike other MOF/GO composites reported in previous studies, these materials are water-stable. Ammonia adsorption capacities on the composites are higher than the ones calculated for the physical mixture of components, suggesting the pre...

  5. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite; TOPICAL

    International Nuclear Information System (INIS)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-01-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications

  6. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite

    Energy Technology Data Exchange (ETDEWEB)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-11-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications.

  7. Biochar-based nano-composites for the decontamination of wastewater: A review.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review

    Directory of Open Access Journals (Sweden)

    Stefano Stassi

    2014-03-01

    Full Text Available The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications.

  9. Zigzag-shaped piezoelectric based high performance magnetoelectric laminate composite

    Science.gov (United States)

    Cho, Kyung-Hoon; Yan, Yongke; Folgar, Christian; Priya, Shashank

    2014-06-01

    We demonstrate a 33-mode piezoelectric structure with zigzag shape for high sensitivity magnetoelectric laminates. In contrast to the 33-mode macro fiber composite (MFC), this zigzag shape piezoelectric layer excludes epoxy bonding layer between the electrode and piezoelectric materials, thereby, significantly improving the polarization degree, electromechanical coupling, and the stability of loss characteristics. The polarization degree was monitored from the change in phase angle near resonance, and the loss stability was determined from the changes in dielectric loss and rate of capacitance variation defined by (C - Cf)/Cf, where C is capacitance at a given frequency and Cf is capacitance at 100 Hz. Magnetoelectric composite with zigzag patterned piezoelectric layer was found to exhibit giant magnetoelectric response both in low frequency off-resonance region (6.75 V cm-1 Oe-1 at 1 kHz) and at anti-resonance frequency (357 V cm-1 Oe-1).

  10. A Component-based Programming Model for Composite, Distributed Applications

    Science.gov (United States)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  11. Carbon nanotubes based nafion composite membranes for fuel cell applications

    CSIR Research Space (South Africa)

    Cele, NP

    2009-01-01

    Full Text Available composite membranes. Keywords: Carbon Nanotubes, Conductivity, Fuel Cell, Nafion, Nanocomposite Membranes, Thermal Properties, Water Uptake FUEL CELLS 00, 0000, No. 0, 1–8 ? 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 ORIGINA L RESEAR CH PAPE... used strategies to overcome these drawbacks is the modification of Nafion by using polymer nanocomposite (PNC) technology. PNCs have recently shown a worldwide growth effort especially in the fabrication of high temperature PEM for fuel cells [18...

  12. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    Science.gov (United States)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  13. Microstructure and wear behaviour of FeAl-based composites ...

    Indian Academy of Sciences (India)

    The carbides such as Fe3AlC0.5, TiC and ZrC are embedded in the matrix after sliding wear ... to formation of TiC/ZrC, thus forming a composite with the. FeAl matrix. ... s. −1 at room temperature. The dry sliding wear tests were carried out using a ball- on-disc apparatus. Specimens with size of 12 × 12 × 5 mm3 were used.

  14. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    various geometries and materials. This can help drive future research on composite material applications and enhance design methods for future Navy...both the plate and the water is 0.15 inch. The plate elements are eight-node, linear , brick stress/displacement continuum elements (C3D8R) while the...water elements are eight-node, linear , brick acoustic continuum elements (AC3D8). The analyses of the flat plate model were completed using Abaqus

  15. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  16. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  17. Rolling contact fatigue testing of peek based composites

    Directory of Open Access Journals (Sweden)

    Petrogalli C.

    2010-06-01

    Full Text Available Rolling contact fatigue phenomenon was investigated on unfilled PEEK and on three different PEEK composites: 10% carbon micro-fiber, graphite and PTFE filled matrix, 30% carbon micro-fiber filled matrix, 30% glass micro-fiber filled matrix. For this aim, roller-shaped specimens were machined from extruded bars of these materials and subjected to rolling contact tests at different contact pressure levels by means of a four roller machine. Contact pressure-life diagrams and wear rates were so obtained and compared, highlighting a relationship with monotonic and hardness materials properties. Microscopic observations of contact surfaces and transversal section of the specimens also allowed observing the damage mechanisms occurred in the materials tested and the effects of the filler. In particular way, deep radial cracks appeared on unfilled PEEK, while spalling and delamination phenomena where found on composites. Diffuse microcracks were found at the filler-matrix interface of the composites specimens, confirming that the fatigue life of these materials is essentially determined by the crack propagation phase, also under rolling contact loading.

  18. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    Science.gov (United States)

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  19. School-Based BMI and Body Composition Screening and Parent Notification in California: Methods and Messages

    Science.gov (United States)

    Madsen, Kristine A.; Linchey, Jennifer

    2012-01-01

    Background: School-based body mass index (BMI) or body composition screening is increasing, but little is known about the process of parent notification. Since 2001, California has required annual screening of body composition via the FITNESSGRAM, with optional notification. This study sought to identify the prevalence of parental notification…

  20. Development of temperature stable charge based piezoelectric composite quasi-static pressure sensors

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2010-01-01

    In this work piezoelectric composite charge based sensors are developed, aimed at quasi-static pressure sensor or switch type applications. The use of piezoelectric composite materials allows for manufacturing robust devices which can easily be integrated with conventional polymer processing.

  1. Carbon-based Composite Electrodes : Preparation, Characterization and Application in Electroanalysis

    NARCIS (Netherlands)

    Corb, I.; Manea, F.; Radovan, C.; Pop, A.; Burtica, G.; Malchev, P.G.; Picken, S.J.; Schoonman, J.

    2007-01-01

    Electrodes based on carbon, i.e., expanded graphite (20%, wt.)-epoxy composite (20EG-Epoxy) and expanded graphite (20%, wt.)-polystyrene composite (20EG-PS) have been prepared, characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV), and tested as anodic sensors. The

  2. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  3. X-ray based micromechanical finite element modeling of composite materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Emerson, Monica Jane; Jespersen, Kristine Munk

    2016-01-01

    This is a study of a uni-directional non-crimp fabric reinforced epoxy composite material typically used as the load carrying laminate in wind turbine blades. Based on a 3D xray tomography scan, the bundle and fibre/matrix structure of the composite is segmented. This segmentation is used...

  4. Vibration based structural health monitoring of a composite plate with stiffeners

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; de Boer, Andries; Akkerman, Remko; Sas, P

    2010-01-01

    A vibration based damage identification algorithm is implemented to assess the damage of a thin-walled composite structure. The structure analysed is a skin with stiffeners, as frequently applied in aircraft components. Both experimental and numerical studies on a single composite skin--stiffener

  5. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    Science.gov (United States)

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  6. HTSC-based composites as materials with high magnetic resistance in weak magnetic fields

    CERN Document Server

    Balaev, D A; Popkov, S I; Shajkhutdinov, K A; Petrov, M I

    2001-01-01

    The magnetoresistance of the composites on the HTSC-basis with the structure of 1-2-3- + dielectric and HTSC + normal metal are studied. The composite materials are characterized by high magnetoresistance effect in weak magnetic fields within the wide temperature range. Such a behavior is explained on the basis of the notions on the nonreversibility line in the HTSC and thermal fluctuations and in the net of the Josephson-type weak bonds realized in the HTSC-composites. The HTSC-based composites are characterized by high sensitivity to weak magnetic fields (up to 300 Oe) at the liquid nitrogen temperature

  7. Thermodynamics of disaggregated polymer composites based on nanosized powders of Ni and NiO

    Directory of Open Access Journals (Sweden)

    N. S. Volodina

    2015-03-01

    Full Text Available Technique to obtain disaggregated composites with uniform distribution of the Ni nanoparticles in a polymer matrix was developed on the example of epoxy resin. Disaggregated and aggregated composites based on butyl methacrylate copolymer with 5 wt% methacrylic acid and Ni and NiO nanoparticles were obtained. Enthalpies of mixing the components compositions in a wide range of compositions were defined using isothermal calorimetry. Parameters adhesive interaction at the interface and glassy polymer structure changes were calculated. The influence of the chemical nature of nanosized filler on interfacial energy was found.

  8. Chitosan-based films composites for wound healing purposes

    International Nuclear Information System (INIS)

    Alves, Natali de O.; Silva, Gabriela T. da; Schulz, Gracelie A.S.; Fajardo, Andre R.

    2015-01-01

    Chitosan has been extensively applied in the developing of biomaterials due to its desirable good physico-chemical and biological properties. According to this, here films composite of chitosan, poly(vinyl alcohol) and bovine bone powder were prepared by casting willing to be applied in wound healing purposes. Moreover, the first step was the developing of a suitable method to obtain bovine bone powder, which was utilized here as filler. All the materials and films were fully characterized by FTIR, DRX and thermal analysis. Water uptake capacity was measured by swelling assays. (author)

  9. Uranium-containing plastisol compositions and polymers based on them

    International Nuclear Information System (INIS)

    Katkova, M.A.; Leonov, M.R.; Severina, T.V.; Selivestrov, V.N.; Kozina, I.Z.

    1992-01-01

    Uranium-containing polyvinylchloride plastisol compositions are prepared, from which flexible polymer dielectric films with uranium trioxide content up to 80 % are produced. It is shown that uranium trioxide is an active filler of PVC plastisols, the influence of which on the properties of the polymers produced is diverse and complex. Thus, extreme dependence of strength characteristics of uranium-containing polymers on filling degree is ascertained. Introduction of uranium oxide increases considerably the rate of thermal decomposition and changes sharply absorption characteristics of X radiation

  10. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  11. Nanomodified compositions based on finely dispersed binders for soil reinforcement

    Directory of Open Access Journals (Sweden)

    Alimov Lev

    2017-01-01

    Full Text Available Theoretical prerequisites on the possibility of improvement of physical and mechanical properties of soils at underground space development, their stability at different aggressive actions by means of their structure impregnation with nanomodified suspensions on the basis of especially finely dispersed mineral binders are developed. The features of influence of plasticizers on penetration ability and sedimentation stability of suspensions are revealed. Soil body reinforcement after its impregnation may achieve considerable values, which is related to the features of interaction of components of impregnating composition with extended surface of soil pore space.

  12. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    Science.gov (United States)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  13. Advanced composite materials based on polyhydroxybutyrate and polylactic acid

    Science.gov (United States)

    Tubaeva, P. M.; Olkhov, A. A.; Podzorova, M. V.; Popov, A. A.

    2017-12-01

    In this paper, we consider the main characteristics of polyhydroxybutyrate (PHB) and polylactic acid (PLA) as well as the prospects and possibility of the medical use of PHB-PLA compositions as these polymers are most relevant to such application. The study establishes the main thermophysical parameters of PHB and PLA. It is found that PHB and PLA are hydrophobic enough. The study by the electron paramagnetic resonance method reveals a small amount of the radical infiltrated in PLA and PHB, which indicates the chain rigidity of both polymeric structures. Mechanical properties of PLA and PHB are characterized by high strength and low elasticity.

  14. Removal of Cu 2+ Ions from Aqueous Medium Using Clinoptilolite/Emeraldine Base Composite

    Directory of Open Access Journals (Sweden)

    Silviya I. Lavrova

    2016-12-01

    Full Text Available The aim of this study was to investigate the removal efficiency of in situ synthesized composites consisted of emeraldine base and clinoptilolite on copper ions removal from aqueous medium. Two composite materials (Composite I and Composite II with different quantity of clinoptilolite were synthesised. The influence of the composite dosage, the contact time and the initial copper ions concentration has been studied. The results show that the significant removal of the copper ions becomes at the first minute of the contact between the composite material and the aqueous medium and the longer contact time leads to increasing of the copper ions removal. The removal efficiency at the 1st minute was 57.5% and 77.3% using Composite Iand Composite II, respectively. Maximum removal efficiency of 87.3% and 96.8% was achieved at the same dosage of Composite I and Composite II, respectively, at contact time of 360 minutes and temperature of 24 °C.

  15. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    Science.gov (United States)

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fabrication of Biosensor Based on Polyaniline/Gold Nanorod Composite

    Directory of Open Access Journals (Sweden)

    Uğur Tamer

    2011-01-01

    Full Text Available This present paper describes a new approach to fabricate a new amperometric sensor for the determination of glucose. Polyaniline (PANI film doped with colloidal gold nanorod particles has been used to immobilize glucose oxidase by glutaraldehyde. The polyaniline/gold nanorod composite structure gave an excellent matrix for enzyme immobilization due to the large specific surface area and higher electroactivity. The composite has been characterized by cyclic voltammetry (CV, scanning electron microscopy (SEM, and surface-enhanced Raman spectroscopy (SERS. The SERS spectrum of the surface-immobilized glucose oxidase and the spectrum of the native enzyme indicate that the main feature of the native structure of glucose oxidase was conserved after being immobilized on the polymer matrix. The amperometric response was measured as a function of concentration of glucose at a potential of 0.6 V versus Ag/AgCl in 0.1 M phosphate buffer at pH 6.4. Linear range of the calibration curve was from 17.6 μM to 1 mM with a sensitivity of 13.8 μA⋅mM−1⋅cm−2 and a limit of detection (LOD of 5.8 μM. The apparent Michaelis-Menten constant KM was calculated as 1.0 mM and the response time was less than 3 seconds.

  17. Properties of cement based composites modified using diatomaceous earth

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  18. Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-12-01

    Full Text Available High fuel consumption by automobile and aerospace vehicles built from legacy alloys has been a great challenge to global design and material engineers. This has called for researches into material development for the production of lighter materials of the same or even superior mechanical properties to the existing materials in this area of applications. This forms a part of efforts to achieve the global vision 2025 i.e to reduce the fuel consumption by automobile and aerospace vehicles by at least 75 %. Many researchers have identified advanced composites as suitable materials in this regard. Among the common matrices used for the development of advanced composites, epoxy resin has attained a dominance among its counterparts because of its excellent properties including chemical, thermal and electrical resistance properties, mechanical properties and dimensional stability. This review is a reflection of the extensive study on the currently ongoing research aimed at development of epoxy resin hybrid nanocomposites for engineering applications. In this paper, brief explanation has been given to different terms related to the research work and also, some previous works (in accordance with materials within authors’ reach in the area of the ongoing research have been reported.

  19. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    Energy Technology Data Exchange (ETDEWEB)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    2018-02-20

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte, as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.

  20. Awaso bauxite red mud-cement based composites: Characterisation for pavement applications

    Directory of Open Access Journals (Sweden)

    David Dodoo-Arhin

    2017-12-01

    Full Text Available This paper presents the development of Bauxite residue (red mud based cement composite mortar blocks for applications in pavement construction. The experimental techniques considered include the structural, thermal, morphological and microscopy analysis of the raw bauxite and red mud samples calcined at 800 °C. Composite mortar blocks of different batch formulations were produced and their physicochemical properties were investigated. The results show that the compressive strength of the as-prepared composite mortar blocks increased by ∼40% compared to the type M mortar strength of ∼2500 N/mm2. The load bearing applications of the composites are discussed to influence the adoption of the calcined red mud as supplement in the production of low-cost Portland cement based composite mortar blocks for the construction industry.

  1. Appraisal and analysis on various web service composition approaches based on QoS factors

    Directory of Open Access Journals (Sweden)

    M. Rajeswari

    2014-01-01

    Full Text Available Web services are the internet enabled applications for performing business needs, considered as the platform-independent and loosely coupled. Web service compositions build new services by organizing a set of existing services by providing reusability and interoperability. The research problem in web service composition is to obtain best effective services with the composition of services based on maximum quality of services (QoS and satisfy the user’s requirements. This study reveals various challenges in the QoS parameter for Web service composition because it is difficult to recognize. We have illustrated the related technology by analyzing QoS parameters based on existing algorithms with composition patterns and compared the results.

  2. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    Science.gov (United States)

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  3. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs-Based Composite Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Lining Ma

    2017-03-01

    Full Text Available Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  4. Tribological characteristics of Si3N4-based composites in unlubricated sliding against steel ball

    International Nuclear Information System (INIS)

    Liu, C.-C.; Huang, J.-L.

    2004-01-01

    The dry-sliding wear mechanism of Si 3 N 4 -based composites against AISI-52100 steel ball was studied using a ball-on-disc mode in a reciprocation motion. The addition of TiN particles can increase the fracture toughness of Si 3 N 4 -based composites. The fracture toughness of Si 3 N 4 -based composites played an important role for wear behavior. The Si 3 N 4 -based composites exhibits a small friction and wear coefficient compared to monolithic Si 3 N 4 . Atomic force microscopy (AFM) studies displayed fine wear grooves along the sliding traces. The subsurface deformation shows that the microcrack propagation extends along the TiN/Si 3 N 4 grain interface. The wear mechanisms were determined with scanning electron microscopy, transmission electron microscopy, X-ray diffraction and atomic force microscopy

  5. Macro-Fiber Composite-based actuators for space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project creates a CubeSat-based on-orbit Validation System (CVS) that provides performance and durability data for Macro Fiber Composite (MFC)...

  6. Macro-Fiber Composite-based actuators for space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project creates a CubeSat-based on-orbit Validation System (CVS) that provides performance data for Macro Fiber Composite (MFC) piezocomposite actuators...

  7. Prevalence of cusp fractures in teeth restored with amalgam and with resin-based composite.

    Science.gov (United States)

    Wahl, Michael J; Schmitt, Margaret M; Overton, Donald A; Gordon, M Kathleen

    2004-08-01

    Complete cusp fracture in restored teeth is a common problem observed in general dental practice. Many dentists believe that teeth restored with amalgam are more likely to be associated with cusp fractures than are those restored with resin-based composite. METHODS. The authors noted the condition of 10,869 posterior teeth with amalgam or resin-based composite restorations with at least one cusp present, unrestored or missing in 1,902 consecutively seen adult patients in a private general dental practice. For each patient, the authors recorded age, type of restorations, number of surfaces of each restoration, and presence or absence of a complete cusp fracture and of caries. There was a lower percentage of cusp fractures in younger subjects than in older subjects and in teeth with a single restored surface than in those with more than one restored surface. There was no significant difference in the prevalence of cusp fracture rates in amalgam-restored teeth versus composite-restored teeth in subjects aged 18 through 54 years. In subjects aged 55 through 96 years, there was a marginally significantly greater cusp fracture rate in composite-restored teeth than in those restored with amalgam. Overall, there was no significant difference in the prevalence of cusp fracture in teeth restored with amalgam (1.88 percent) versus composite-restored teeth (2.29 percent). The prevalence of cusp fractures in amalgam-restored teeth and resin-based composite-restored teeth is not significantly different. Teeth with more than one surface restored with either resin-based composite or amalgam and teeth in older subjects were more likely to suffer a cusp fracture. Teeth restored with amalgam and with resin-based composite exhibited equally low cusp fracture prevalence. When choosing between amalgam and resin-based composite in consideration of the likelihood of a future cusp fracture, either restorative material is acceptable.

  8. Evaluation of Thermal and Thermomechanical Behaviour of Bio-Based Polyamide 11 Based Composites Reinforced with Lignocellulosic Fibres

    Directory of Open Access Journals (Sweden)

    Helena Oliver-Ortega

    2017-10-01

    Full Text Available In this work, polyamide 11 (PA11 and stone ground wood fibres (SGW were used, as an alternative to non-bio-based polymer matrices and reinforcements, to obtain short fibre reinforced composites. The impact of the reinforcement on the thermal degradation, thermal transitions and microstructure of PA11-based composites were studied. Natural fibres have lower degradation temperatures than PA11, thus, composites showed lower onset degradation temperatures than PA11, as well. The thermal transition and the semi-crystalline structure of the composites were similar to PA11. On the other hand, when SGW was submitted to an annealing treatment, the composites prepared with these fibres increased its crystallinity, with increasing fibre contents, compared to PA11. The differences between the glass transition temperatures of annealed and untreated composites decreased with the fibre contents. Thus, the fibres had a higher impact in the composites mechanical behaviour than on the mobility of the amorphous phase. The crystalline structure of PA11 and PA11-SGW composites, after annealing, was transformed to α’ more stable phase, without any negative impact on the properties of the fibres.

  9. Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors.

    Science.gov (United States)

    Yuan, C Z; Gao, B; Shen, L F; Yang, S D; Hao, L; Lu, X J; Zhang, F; Zhang, L J; Zhang, X G

    2011-02-01

    This feature article provides an overview of the recent research progress on the hierarchically structured carbon-based composites for electrochemical capacitors. The basic principles of electrochemical capacitors, and the design, construction and performance of hierarchically structured carbon-based composites electrode materials with good ions and electron transportation and large specific surface area are discussed. The trend of future development of high-power and large-energy electrochemical capacitors is proposed.

  10. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins

    OpenAIRE

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately sto...

  11. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  12. Formation of Porous Apatite Layer during In Vitro Study of Hydroxyapatite-AW Based Glass Composites

    Directory of Open Access Journals (Sweden)

    Pat Sooksaen

    2015-01-01

    Full Text Available This research discussed the fabrication, characterization, and in vitro study of composites based on the mixture of hydroxyapatite powder and apatite-wollastonite (AW based glass. AW based glass was prepared from the SiO2-CaO-MgO-P2O5-CaF2 glass system. This study focuses on the effect of composition and sintering temperature that influences the properties of these composites. Microstructural study revealed the formation of apatite layer on the composite surfaces when immersed in simulated body fluid (SBF solution at 37°C. Composites containing ≥50 wt% AW based glass showed good bioactivity after 7 days of immersion in the SBF. A porous calcium phosphate (potentially hydroxycarbonate apatite, HCA layer formed at the SBF-composite interface and the layer became denser at longer soaking period, for periods ranging from 7 to 28 days. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES analysis showed that early stage of soaking occurred with the release of Ca and Si ions from the composites and the decrease of P ions with slow exchange rate.

  13. Prediction of peptidase category based on functional domain composition.

    Science.gov (United States)

    Xu, Xiaochun; Yu, Dong; Fang, Wei; Cheng, Yushao; Qian, Ziliang; Lu, Wencong; Cai, Yudong; Feng, Kaiyan

    2008-10-01

    Peptidases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, aging, and death of all organisms. These regulatory roles include activation, synthesis and turnover of proteins. In the proteomics era, computational methods to identify peptidases and catalog the peptidases into six different major classes-aspartic peptidases, cysteine peptidases, glutamic peptidases, metallo peptidases, serine peptidases and threonine peptidases can give an instant glance at the biological functions of a newly identified protein. In this contribution, by combining the nearest neighbor algorithm and the functional domain composition, we introduce both an automatic peptidase identifier and an automatic peptidase classier. The successful identification and classification rates are 93.7% and 96.5% for our peptidase identifier and peptidase classifier, respectively. Free online peptidase identifier and peptidase classifier are provided on our Web page http://pcal.biosino.org/protease_classification.html.

  14. Sprayable elastic conductors based on block copolymer silver nanoparticle composites.

    Science.gov (United States)

    Vural, Mert; Behrens, Adam M; Ayyub, Omar B; Ayoub, Joseph J; Kofinas, Peter

    2015-01-27

    Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized nanoparticle nucleation. The stretchable fiber mats were able to display electrical conductivity values as high as 2000 ± 200 S/cm with only a 12% increase in resistance after 400 cycles of 150% strain. Stretchable elastic conductors with similar and higher bulk conductivity have not achieved comparable stability of electrical properties. These unique electromechanical characteristics are primarily the result of structural changes during mechanical deformation. The versatility of this approach was demonstrated by constructing a stretchable light emitting diode circuit and a strain sensor on planar and nonplanar substrates.

  15. A study of compositional verification based IMA integration method

    Science.gov (United States)

    Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

    2018-03-01

    The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

  16. Thermal modelling of extrusion based additive manufacturing of composite materials

    DEFF Research Database (Denmark)

    Jensen, Mathias Laustsen; Sonne, Mads Rostgaard; Hattel, Jesper Henri

    One of the hottest topics regarding manufacturing these years is additive manufacturing (AM). AM is a young branch of manufacturing techniques, which by nature is disruptive due to its completely different manufacturing approach, wherein material is added instead of removed. By adding material...... of composite parts not feasible by conventional manufacturing techniques. This sets up new requirements to the part verification and validation, while conventional destructive tests become too expensive. This initial study aims to investigate alternative options to this destructive testing by increasing......-butadiene-styrene (ABS) and thermosetting polyurethane (PU) material extrusion processes. During the experimental evaluation of the produced models it is found that some critical material properties needs to be further investigated to increase the precision of the model. It is however also found that even with only...

  17. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    Directory of Open Access Journals (Sweden)

    Chen Changxin

    2010-01-01

    Full Text Available Abstract An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σ ac of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz, showing a good agreement with the measured results.

  18. Synthesis and characterization of zirconium carbide-reinforced iron-based composite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Karabi; Bandyopadhyay, T.K

    2004-08-15

    The ZrC-reinforced iron-based composites (Fe-ZrC) were synthesized by a simple, cost-effective process involving aluminothermic reduction of blue dust (Fe{sub 2}O{sub 3}) and zircon sand (ZrSiO{sub 4}) in the presence of carbon. The aluminothermic reduction of blue dust and zircon sand, being highly exothermic in nature, essentially leads to a self-propagating high-temperature synthesis (SHS) of the Fe-ZrC composite. The composites were synthesized with varying percentages of aluminum and carbon in the charge mixture. Both aluminum and carbon play important role in the reduction of zirconia. The composites have been subsequently characterized by techniques of optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). It has been found that along with ZrC, other phases (Fe{sub 3}Al, FeZr{sub 4}) also formed depending upon the charge composition. The charge composition has been optimized to get reasonable recovery of Zr in the form of ZrC. The mechanical properties, such as hardness and wear resistance of the composite, corresponding to the optimum charge composition have also been evaluated. The composite has been found to possess promising abrasive wear resistance property along with good high-temperature stability.

  19. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  20. Development of in-situ ZrC reinforced iron based composites for wear resistance applications

    International Nuclear Information System (INIS)

    Bandyopadhyay, T.K.; Das, K.

    2002-01-01

    A common objective behind the processing of iron-based composites is to improve the wear resistance of steels by incorporating some reinforcing phases, e.g., carbides and oxides. In the present investigation, iron-based zirconium carbide reinforced composite is produced by the aluminothermic reduction of zircon sand (ZrSiO 4 ) and blue dust (Fe 2 O 3 ) in the presence of carbon. Aluminothermic reduction of blue dust and zircon sand, being highly exothermic in nature, essentially leads to a self-propagating high-temperature synthesis (SHS) of the Fe-ZrC composite. The as-cast composite is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the composite and the effect of heat treatment on the microstructure are evaluated. The composite possess sufficient hardness and promising abrasive wear resistance property. The abrasive wear resistance property of the Fe-ZrC composite is compared with that of a M2 grade tool material and it is found to be better than the tool material. The composite also possess good high temperature stability. (author)

  1. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Huang, Jun; Rodrigue, Denis

    2015-01-01

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  2. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    International Nuclear Information System (INIS)

    Visakh, P.M.; Nazarenko, O.B.; Sarath Chandran, C.; Melnikova, T.V.; Nazarenko, S.Yu.; Kim, J.-C.

    2017-01-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose. - Highlights: • The effects of electron beam irradiation on aluminum/epoxy composites were studied. • Changes in thermal and mechanical properties were analyzed. • Irradiation improved the thermal and mechanical properties of aluminum/epoxy composites up to dose of 100 kGy. • The aluminum/epoxy composites appeared more stable to irradiation than the neat epoxy polymer.

  3. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  4. On possibility of fabrication of monolith composite materials on niobium carbide base

    International Nuclear Information System (INIS)

    Ploshkin, V.V.; Ul'yanina, I.Yu.; Filonenko, V.P.

    1984-01-01

    An attempt was made to fabricate the composite material on niobium carbide base possessing the elevated heat resistance, erosion and chemical resistance in special media, as well as capable of withstanding sufficient thermal shocks. Powder of niobium carbide of 10 μm fraction was used as base material, the powder of pure copper of 10...12 μm fraction - as binder. It was shown that samples of composite mateiral on niobium carbide base fabricated by the method of hydrostatic pressing possessed the minimal porosity as compared to samples fabricated by usual methods of powder metallurgy. The basic phases of composite material-copper and niobium carbide - distribute uniformly over sample cross-section and don't interact with each other under any conditions. The fabricated composite material possesses sufficient thermal shock resistance and isn't subjected to brittle fracture

  5. Processing parameters optimisation of nonwoven kenaf reinforced acrylic based polyester composites

    Science.gov (United States)

    Salim, M. S.; Rasyid, M. F. Ahmad; Taib, R. Mat; Ishak, Z. A. Mohd

    2017-12-01

    The present work studies the dependence of mechanical properties of kenaf fibre (KF) reinforced acrylic based polyester composites on the processing parameters. Prior to moulding, non-woven kenaf fibre (NWKF) with areal density of 1200 g/m2 was impregnated by acrylic based polyester resin using an impregnation line followed by a post-drying step. The flexural properties of the composites were investigated with respect to changes in impregnation and moulding conditions based on Design of Experiment (DOE) of Response Surface Methodology (RSM). RSM through Central Composite Design (CCD) was applied to develop a model of flexural properties with respect to the combination of processing variables. The mathematical regression models of the flexural properties were derived from the analysis of variance (ANOVA) to determine the model significance. All processing variables in linear terms exhibit significant effect on the flexural strength of the composites. Optimisation of the independent variables to maximise the flexural properties was estimated and verified.

  6. Electromagnetic and Dynamic Mechanical Properties of Epoxy and Vinylester-Based Composites Filled with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Fabrizio Marra

    2016-07-01

    Full Text Available Development of epoxy or epoxy-based vinyl ester composites with improved mechanical and electromagnetic properties, filled with carbon-based nanomaterials, is of crucial interest for use in aerospace applications as radar absorbing materials at radio frequency. Numerous studies have highlighted the fact that the effective functional properties of this class of polymer composites are strongly dependent on the production process, which affects the dispersion of the nanofiller in the polymer matrix and the formation of micro-sized aggregations, degrading the final properties of the composite. The assessment of the presence of nanofiller aggregation in a composite through microscopy investigations is quite inefficient in the case of large scale applications, and in general provides local information about the aggregation state of the nanofiller rather than an effective representation of the degradation of the functional properties of the composite due to the presence of the aggregates. In this paper, we investigate the mechanical, electrical, and electromagnetic properties of thermosetting polymer composites filled with graphene nanoplatelets (GNPs. Moreover, we propose a novel approach based on measurements of the dielectric permittivity of the composite in the 8–12 GHz range in order to assess the presence of nanofiller aggregates and to estimate their average size and dimensions.

  7. A composition algorithm based on crossmodal taste-music correspondences

    Directory of Open Access Journals (Sweden)

    Bruno eMesz

    2012-04-01

    Full Text Available While there is broad consensus about the structural similarities between language and music, comparably less attention has been devoted to semantic correspondences between these two ubiquitous manifestations of human culture. We have investigated the relations between music and a narrow and bounded domain of semantics: the words and concepts referring to taste sensations. In a recent work, we found that taste words were consistently mapped to musical parameters. Bitter is associated with low-pitched and continuous music (legato, salty is characterized by silences between notes (staccato, sour is high pitched, dissonant and fast and sweet is consonant, slow and soft (Mesz2011. Here we extended these ideas, in a synergistic dialog between music and science, investigating whether music can be algorithmically generated from taste-words. We developed and implemented an algorithm that exploits a large corpus of classic and popular songs. New musical pieces were produced by choosing fragments from the corpus and modifying them to minimize their distance to the region in musical space that characterizes each taste. In order to test the capability of the produced music to elicit significant associations with the different tastes, musical pieces were produced and judged by a group of non musicians. Results showed that participants could decode well above chance the taste-word of the composition. We also discuss how our findings can be expressed in a performance bridging music and cognitive science.

  8. Active vertical tail buffeting suppression based on macro fiber composites

    Science.gov (United States)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  9. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    Science.gov (United States)

    Li, Jun; Meyyappan, Meyya; Dangelo, Carols

    2012-01-01

    State-of-the-art integrated circuits (ICs) for microprocessors routinely dissipate power densities on the order of 50 W/cm2. This large power is due to the localized heating of ICs operating at high frequencies and must be managed for future high-frequency microelectronic applications. As the size of components and devices for ICs and other appliances becomes smaller, it becomes more difficult to provide heat dissipation and transport for such components and devices. A thermal conductor for a macro-sized thermal conductor is generally inadequate for use with a microsized component or device, in part due to scaling problems. A method has been developed for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler-composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place, and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  10. A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose

    Directory of Open Access Journals (Sweden)

    Dawei Zhang

    2013-01-01

    Full Text Available The water-dispersed conductive polypyrrole (PPy was prepared via the in situ oxidative chemical polymerization by using ammonium persulfate (APS as oxidant and tunicate cellulose nanocrystals (T-CNs as a dopant and template for tuning the morphologies of PPy nanoparticles. Highly flexible paper-like materials of PPy/T-CNs nanocomposites with high electrical conductivity values and good mechanical properties were prepared. The structure of nanocomposites of PPy/T-CNs was investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy analyses of the composites revealed that PPy consisted of nanoparticles about 2.5 nm in mean size to form a continuous coating covered on the T-CNs. The diameters of the PPy nanoparticles increased from 10 to 100 nm with the increasing pyrrole amount. Moreover, electrical properties of the obtained PPy/T-CNs films were studied using standard four-probe technique and the electrical conductivity could be as high as 10−3 S/cm.

  11. Pullout behavior of steel fibers from cement-based composites

    DEFF Research Database (Denmark)

    Shannag, M. Jamal; Brincker, Rune; Hansen, Will

    1997-01-01

    A comprehensive experimental program on pullout tests of steel fibers from cement based matrices is described. A specially designed single fiber pullout apparatus was used to provide a quantitative determination of interfacial properties that are relevant to toughening brittle materials through...... fiber reinforcement. The parameters investigated included a specially designed high strength cement based matrix called Densified Small Particles system (DSP), a conventional mortar matrix, fiber embeddment length, and the fiber volume fraction. The mediums from which the fiber was pulled included...

  12. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    Science.gov (United States)

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  13. State of the art of durability-performance evaluation of hardened cement based on phase compositions

    International Nuclear Information System (INIS)

    Kurashige, Isao; Imoto, Harutake; Yamamoto, Takeshi; Hironaga, Michihiko

    2006-01-01

    Upgrading durability-performance evaluation technique for concrete is urgently demanded in connection to its application to radio-active waste repository which needs ultra long-term durability. Common concrete structures also require an advanced method for minimizing the life-cycle cost. The purpose of this research is to investigate current problems and future tasks on durability-performance evaluation of hardened cement from the view point of phase composition. Although the phase composition of hardened cement has not fully been reflected to durability-performance evaluation, it influences concrete durability as well as its pore structure. This report reviews state of the art of the factors affecting phase composition, analytical and experimental evaluation techniques for phase composition, and durability-performance evaluation methods of hardened cement based on phase composition. (author)

  14. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    Science.gov (United States)

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.

  15. Tritium permeation barrier based on self-healing composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng; Zhang Dan [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-12-15

    Pores and cracks in ceramic coatings is one of the most important problems to be solved for the thermally sprayed tritium permeation barriers (TPBs) in fusion reactor. In this work, we developed a self-healing composite coating to address this problem. The coating composed of TiC + mixture(TiC/Al{sub 2}O{sub 3}) + Al{sub 2}O{sub 3} was deposited on martensitic steels by means of atmospheric plasma spraying (APS). Before and after heat treatment, the morphology and phase of the coating were comparatively investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the experiment, NiAl + Al{sub 2}O{sub 3}, mixture(TiC/Al{sub 2}O{sub 3}) + Al{sub 2}O{sub 3} and NiAl + TiC + mixture(TiC/Al{sub 2}O{sub 3}) + Al{sub 2}O{sub 3} films were also fabricated and studied, respectively. The results showed that the TiC + mixture(TiC/Al{sub 2}O{sub 3}) + Al{sub 2}O{sub 3} coating exhibited the best self-healing ability and good thermal shock resistance among the four samples after heat treatment under normal atmosphere. The SEM images analyzed by Image Pro software indicated that the porosity of the TiC + mixture(TiC/Al{sub 2}O{sub 3}) + Al{sub 2}O{sub 3} coating decreased more than 90% in comparison with the sample before heat treatment. This self-healing coating made by thermal spraying might be a good candidate for tritium permeation barrier in fusion reactors.

  16. Comparison of Micro-Shear Bond Strength between Silorane-Based Composite and Conventional Methacrylate-Based Composite to the Dentin of Primary Teeth

    Directory of Open Access Journals (Sweden)

    Maryam Sharifi

    2017-12-01

    Full Text Available Introduction: Bond strength between the restorative material and tooth structure is one of the major factors in the selection of restorative materials, which plays a key role in durable restoration and reducing microleakage. Considering the recent attention of researchers to low-shrinkage composites, the present study aimed to compare the micro-shear bond strength of silorane-based composite (P90 with the conventional methacrylate-based composite (Z250 to the dentin of primary teeth. Materials and Methods: In this experimental study, 24 intact primary canines were selected. Two disks (thickness: 2 mm were prepared from each tooth, and the samples were randomly divided into four groups (n=12. Composite resin cylinders (r=0.7 were adapted on each dentin surface, as follows: g1: (silorane bond system + P90, g2: (etch + silorane bond system + P90, g3: (single bond + Z250, g4: (etch + single bond + Z250. Afterwards, the samples were subjected to a micro-shear bond strength test until failure. Data analysis was performed using Tamhane’s T2 (P

  17. Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent

    Science.gov (United States)

    Xie, Shuai; Wang, Jing; Wang, Wufeng; Hou, Guoyan; Li, Bin; Shui, Zhonghe; Ji, Zhijiang

    2018-02-01

    In order to develop a cement based composites with high electromagnetic (EM) wave absorbing performance, helical carbon fibers (HCFs) were added into the cement matrix as an absorbent. The reflection loss (RL) of the prepared HCFs/cement based composites was studied by arched testing method in the frequency ranges of 1–8 GHz and 8–18 GHz. The results show that the EM wave absorption properties of the cement based composites can be evidently enhanced by the addition of HCFs. The composites with 1.5% HCFs exhibits optimum EM wave absorption performance in the frequency range of 1–8 GHz. However, in 8–18 GHz frequency range, the EM wave absorption performance of the cement composites with 1% HCFs is much better than others. The RL values of the prepared HCFs/cement based composites are less than ‑5 dB in the whole testing frequency regions, which can be attributed to the strong dielectric loss ability and unique chiral structure of HCFs.

  18. Strengthening of Concrete Structures with cement based bonded composites

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, Thomas

    2008-01-01

    Due to demands on higher loads, degradation, re-construction etc. there is a constant need for repair or strengthening of existing concrete structures. Many varying methods exist to strengthen concrete structures, one such commonly used technique utilizes surface epoxy bonded FRPs (Fibre Reinforced...... with improved working environment and better compatibility to the base concrete structure. This study gives an overview of different cement based systems, all with very promising results for structural upgrading. Studied parameters are structural retrofit for bending, shear and confinement. It is concluded...

  19. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite.

    Science.gov (United States)

    Shokrollahi, Parvin; Mirzadeh, Hamid; Scherman, Oren A; Huck, Wilhelm T S

    2010-10-01

    Supramolecular polymers based on quadruple hydrogen-bonding ureido-pyrimidinone (UPy) moieties hold promise as dynamic/stimuli-responsive materials in applications such as tissue engineering. Here, a new class of materials is introduced: supramolecular polymer composites. We show that despite the highly ordered structure and tacticity-dependent nature of hydrogen-bonded supramolecular polymers, the bioactivity of these polymers can be tuned through composite preparation with bioceramics. These novel supramolecular composites combine the superior processability of supramolecular polymers with the excellent bioactivity and mechanical characteristics of bioceramics. In particular, the bioactive composites prepared from supramolecular polycaprolactone and UPy-grafted hydroxyapatite (HApUPy) are described that can be easily formed into microporous biomaterials. The compression moduli increased about 40 and 90% upon composite preparation with HAp and HApUPy, respectively, as an indication to improved mechanical properties. These new materials show excellent potential as microporous composite scaffolds for the adhesion and proliferation of rat mesenchymal stem cells (rMSCs) as a first step toward bone regeneration studies; rMSCs proliferate about 2 and 2.7 times faster on the conventional composite with HAp and the supramolecular composite with (HApUPy) than on the neat PCL1250(UPy)(2). Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  20. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials

    Science.gov (United States)

    Smyslov, R. Yu; Ezdakova, K. V.; Kopitsa, G. P.; Khripunov, A. K.; Bugrov, A. N.; Tkachenko, A. A.; Angelov, B.; Pipich, V.; Szekely, N. K.; Baranchikov, A. E.; Latysheva, E.; Chetverikov, Yu O.; Haramus, V.

    2017-05-01

    Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus) and the composites based on this bacterial cellulose. The composites included ZrO2 nanoparticles, Tb3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl-o-aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO2 nanoparticles in composites resulting in increased Tb3+ luminescence.

  1. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials

    International Nuclear Information System (INIS)

    Yu Smyslov, R; Khripunov, A K; Bugrov, A N; Ezdakova, K V; Kopitsa, G P; Chetverikov, Yu O; Tkachenko, A A; Angelov, B; Pipich, V; Szekely, N K; Baranchikov, A E; Latysheva, E; Haramus, V

    2017-01-01

    Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus ) and the composites based on this bacterial cellulose. The composites included ZrO 2 nanoparticles, Tb 3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl- o -aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb 3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO 2 nanoparticles in composites resulting in increased Tb 3+ luminescence. (paper)

  2. Design Intend Solving: Dynamic Composition Method for Innovative Design Based on Virtual Cloud Manufacturing Resource Generators

    Directory of Open Access Journals (Sweden)

    Yi-Cong Gao

    2013-01-01

    Full Text Available Recently, there has been growing interest in composition of cloud manufacturing resources (CMRs. Composition of CMRs is a feasible innovation to fulfill the user request while single cloud manufacturing resource cannot satisfy the functionality required by the user. In this paper, we propose a new case-based approach for the composition of CMRs. The basic idea of the present approach is to provide a computational framework for the composition of CMRs by imitating the common design method of reviewing past designs to obtain solution concepts for a new composite cloud manufacturing resource (CCMR. A notion of virtual cloud manufacturing resource generators (VCMRGs is introduced to conceptualize and represent underlying CCMRs contained in existing CCMRs. VCMRGs are derived from previous CCMRs and serve as new conceptual building blocks for the composition of CMRs. Feasible composite CMRs are generated by combining VCMRGs using some adaptation rules. The reuse of prior CCMRs is accomplished via VCMRGs within the framework of case-based reasoning. We demonstrate that the proposed approach yields lower execution time for fulfilling user request and shows good scalability.

  3. Mechanical Properties Of 3D-Structure Composites Based On Warp-Knitted Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Chen Si

    2015-06-01

    Full Text Available In this paper, the mechanical properties (compression and impact behaviours of three-dimension structure (3D-structure composites based on warp-knitted spacer fabrics have been thoroughly investigated. In order to discuss the effect of fabric structural parameters on the mechanical performance of composites, six different types of warp-knitted spacer fabrics having different structural parameters (such as outer layer structure, diameter of spacer yarn, spacer yarn inclination angle and thickness were involved for comparison study. The 3D-structure composites were fabricated based on a flexible polyurethane foam. The produced composites were characterised for compression and impact properties. The findings obtained indicate that the fabric structural parameters have strong influence on the compression and impact responses of 3D-structure composites. Additionally, the impact test carried out on the 3D-structure composites shows that the impact loads do not affect the integrity of composite structure. All the results reveal that the product exhibits promising mechanical performance and its service life can be sustained.

  4. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  5. Microstructure and wear behaviour of FeAl-based composites ...

    Indian Academy of Sciences (India)

    resistance of FeAl-based alloys is found to be significantly improved on addition of Ti/Zr. This is attributed to the ... exhibit superior wear resistance due to higher hardness of ..... This research has been supported by the Department of Sci- ence and Technology, New Delhi, and we are thankful for the financial support.

  6. Current state of the art of HNF based composite propellants

    NARCIS (Netherlands)

    Ciucci, A.; Frota, O.; Welland, W.H.M.; Heijden, A.E.D.M. van der; Leeming, B.; Bellerby, J.M.; Brotzu, A.

    2004-01-01

    The main activities currently performed for the development of HNF-based propellants are presented. The objectives and approach adopted are described. The results obtained on the HNF decomposition mechanism and on the re- and co-crystallisation of HNF with potential propellant ingredients are

  7. and O-based composite materials derived from differential ...

    Indian Academy of Sciences (India)

    available values. It was also observed that for each of these samples, Zeff was almost a constant at the three energies which unambiguously justified the conclusions drawn by other authors earlier [Manjunathaguru and ... with a personal computer-based multichannel analyzer. The counts under the peak were determined ...

  8. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  9. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  10. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    Science.gov (United States)

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2017-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  12. Long-Acting Composite Systems Based on Powdered Medicinal Plants and Nanosilica

    Directory of Open Access Journals (Sweden)

    Turov, V.V.

    2017-03-01

    Full Text Available The state of water in the powdered plant materials (calendula, hibiscus and their composite systems with A-300 nanosilicas having different bulk density has been studied by low-temperature 1H NMR spectroscopy method. The change in bulk density has been found to significantly affect the radius of inner cavities in fibrillar space of plant components. The composite systems based on wetting-drying compaction of nanosilica and plant powder have been showed to form a mix with high interaction energy of heterogeneous particles. This results in the effective retention of plant bioactive complex by composite, which enables the development of long-acting herbal drugs.

  13. Lactic acid/wood-based composite material. Part 2: Physical and mechanical performance.

    Science.gov (United States)

    Noël, Marion; Mougel, Eric; Fredon, Emmanuel; Masson, Daniel; Masson, Eric

    2009-10-01

    The synthesis of an innovative bio-composite material based on wood and lactic acid oligomers has been reported in Part 1. As a continuation of this previous work, this paper examines the bio-composite material's physical and mechanical performance. Properties were assessed in terms of dimensional stability, decay resistance, leaching, bending, shearing, compression and hardness testing. It has been shown that physical performance of the bio-composite was highly improved, in spite of high leaching mass loss. The mechanical structural properties were not strongly affected, except in decrease of shearing resistance due to the middle lamella degradation. An increase in hardness properties was also noticed.

  14. Structure and properties of magnetic composite sorbents based on hypercrosslinked polystyrenes

    Science.gov (United States)

    Pastukhov, A. V.; Davankov, V. A.; Lubentsova, K. I.; Kosandrovich, E. G.; Soldatov, V. S.

    2013-10-01

    Magnetic composite sorbents based on microporous and biporous hypercrosslinked polystyrenes (HCPs) with inclusions of iron oxide nanoparticles were studied by X-ray diffraction and differential thermal analysis. In microporous composites, the size of impregnated magnetite nanoparticles was less than ˜6 nm, the nanocomposites remaining optically transparent. Biporous HCPs (with micro- and macropores) had larger nanoparticles (˜16 nm). The sorption studies revealed that composite magnetic sorbents, as well as the starting hypercrosslinked polystyrenes, are effective adsorbents with high capacity for many compounds including toxic and physiologically active compounds.

  15. Beyond the Compositional Threshold of Nanoparticle-Based Materials.

    Science.gov (United States)

    Portehault, David; Delacroix, Simon; Gouget, Guillaume; Grosjean, Rémi; Chan-Chang, Tsou-Hsi-Camille

    2018-03-13

    The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion

  16. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    OpenAIRE

    maryam allahdadi; sahab Hedjazi; mahdi jonoobi; Ali abdolkhani; laya Jamalirad

    2017-01-01

    In this research, appearance quality and decay resistance of polylactic acid (PLA) based green composites made from monoethanolamine (MEA) bagasse pulp, alkaline sulfite-anthraquinone (AS) bagasse pulp, bleached soda (B S) bagasse pulp, unbleached soda (UN S) bagasse pulp (UN S) bagasse pulp and raw bagasse fibers (B) were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor) on the neat PLA and composites with natural fibers duri...

  17. Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition

    OpenAIRE

    Konstantinos Sotiriadis; Olesia Mikhailova

    2015-01-01

    In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste; (b) fly ash geopolymer mortar with 5% PES waste; (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand...

  18. Piezoelectric and bonding properties of a cement-based composite for dental application

    Science.gov (United States)

    Wang, Qi; Liu, Jinsong; Zhu, Jianguo; Ye, Yongmei; Li, Xiang; Chen, Zhiqing

    2008-11-01

    A cement-based piezoelectric composite was introduced as real-time health monitoring systems to dentin. Lithium sodium potassium niobate and zinc polycarboxylate cement were mixed and made piezoelectric under different poling conditions. X-ray diffraction and scanning electron microscope confirmed the component and microstructure of the cement. The bonding force of the composites was compared to that of pure cement by analysis of variance. The optimum poling method was determined and the influencing factors of piezoelectric coefficient were discussed.

  19. Piezoelectric and bonding properties of a cement-based composite for dental application

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qi [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, West China College of Stomatology, Sichuan University, Chengdu (China); Liu Jinsong [School and Hospital of Stomatology, Wenzhou Medical College, Wenzhou (China); Zhu Jianguo [College of Materials Science and Engineering, Sichuan University, Chengdu (China); Ye Yongmei [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, West China College of Stomatology, Sichuan University, Chengdu (China); Li Xiang [College of Materials Science and Engineering, Sichuan University, Chengdu (China); Chen Zhiqing [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, West China College of Stomatology, Sichuan University, Chengdu (China)], E-mail: liuy365@163.com

    2008-11-15

    A cement-based piezoelectric composite was introduced as real-time health monitoring systems to dentin. Lithium sodium potassium niobate and zinc polycarboxylate cement were mixed and made piezoelectric under different poling conditions. X-ray diffraction and scanning electron microscope confirmed the component and microstructure of the cement. The bonding force of the composites was compared to that of pure cement by analysis of variance. The optimum poling method was determined and the influencing factors of piezoelectric coefficient were discussed.

  20. Piezoelectric and bonding properties of a cement-based composite for dental application

    International Nuclear Information System (INIS)

    Wang Qi; Liu Jinsong; Zhu Jianguo; Ye Yongmei; Li Xiang; Chen Zhiqing

    2008-01-01

    A cement-based piezoelectric composite was introduced as real-time health monitoring systems to dentin. Lithium sodium potassium niobate and zinc polycarboxylate cement were mixed and made piezoelectric under different poling conditions. X-ray diffraction and scanning electron microscope confirmed the component and microstructure of the cement. The bonding force of the composites was compared to that of pure cement by analysis of variance. The optimum poling method was determined and the influencing factors of piezoelectric coefficient were discussed

  1. Environmental and Chemical Aging of Fatty-Acid-Based Vinyl Ester Composites

    Science.gov (United States)

    2011-04-01

    developed (4). Fatty- acid vinyl esters (FAVEs) use methacrylated fatty- acid monomers, such as methacrylated lauric acid , as reactive diluents to...methacrylated lauric acid with 25-weight-percent styrene). Table 1. Proposed applications for commercial vinyl ester and FAVE composites in the U.S...Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites by Steven E. Boyd and John J. La Scala ARL-TR-5523 April

  2. Mechanical and physical properties of wood fiber-reinforced, sulfur-based wood composites

    Science.gov (United States)

    Chung-Yun Hse; Ben S. Bryant

    1993-01-01

    Sulfur-based composite was made from sulfur impregnated, oven dried, wet-formed fiber mats. The fiber mats consisted of a 50/50 mixture of recycled newsprint pulp and mechanical hardwood pulp from several species made from chips in a laboratory refiner. The thickness of the composites was 0.125 inch and the specific gravity of the unimpregnated fiber mat was 0.2. The...

  3. Awaso bauxite red mud-cement based composites: Characterisation for pavement applications

    OpenAIRE

    David Dodoo-Arhin; Rania A. Nuamah; Benjamin Agyei-Tuffour; David O. Obada; Abu Yaya

    2017-01-01

    This paper presents the development of Bauxite residue (red mud) based cement composite mortar blocks for applications in pavement construction. The experimental techniques considered include the structural, thermal, morphological and microscopy analysis of the raw bauxite and red mud samples calcined at 800 °C. Composite mortar blocks of different batch formulations were produced and their physicochemical properties were investigated. The results show that the compressive strength of the as-...

  4. The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor

    Science.gov (United States)

    Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong

    2018-03-01

    It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.

  5. Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize

    OpenAIRE

    Halász, Katalin; Csóka, Levente

    2013-01-01

    The aim of this work was to study the characteristics of thermal processed poly(lactic acid) composites. Poly(ethylene glycol) (PEG400), microcrystalline cellulose (MCC), and ultrasound-treated microcrystalline cellulose (USMCC) were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorim...

  6. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Science.gov (United States)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-01

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  7. Microleakage of silorane- and methacrylate-based class V composite restorations.

    Science.gov (United States)

    Krifka, Stephanie; Federlin, Marianne; Hiller, Karl-Anton; Schmalz, Gottfried

    2012-08-01

    The marginal integrity of class V restorations in a silorane- and a group of methacrylate-based composite resins with varying viscosities was tested in the present study. Different adhesives (OptiBond FL, KerrHawe; AdheSE One, Vivadent; or Silorane System Adhesive, 3M ESPE) were applied to 168 standardized class V cavities. The cavities (n = 12) were filled with a wide range of different viscous composite resins: Filtek Silorane, 3M ESPE; els and els flow, Saremco; Tetric EvoCeram and Tetric EvoFlow, Vivadent; Grandio, Voco; and Ultraseal XT Plus, Ultradent. Microleakage of the restoration was assessed by dye penetration (silver staining) on multiple sections with and without thermocycling and mechanical loading (TCML: 5,000 × 5-55°C; 30 s/cycle; 500,000 × 72.5 N, 1.6 Hz). Data were statistically analyzed with the Mann-Whitney U test and the Error Rates Method (ERM). The silorane-based composite resin yielded the lowest dye penetration after TCML. Microleakage of methacrylate-based composite restorations, in general (ERM), was statistically significantly influenced by the adhesive system, Moreover, dye penetration at enamel margins was significantly lower than dye penetration at dentin margins. The chemical basis of composite resins and adjacent tooth substance seems to strongly influence marginal sealing of class V restorations for methacrylate-based materials. Moreover, the steps of dental adhesives used affected marginal integrity. The silorane-based composite resin evaluated in the present study exhibits the best marginal seal. The three-step adhesive yielded better marginal sealing than the one-step adhesive for methacrylate-based class V composite restorations.

  8. Microstructure and wear behaviour of FeAl-based composites ...

    Indian Academy of Sciences (India)

    The lower load-bearing capacity of graphite flakes in localized region was found to increase the wear rate of the alloy. The carbides such as Fe 3 AlC 0.5 , TiC and ZrC are embedded in the matrix after sliding wear without destruction or delamination. This significantly affects the wear resistance of FeAl-based alloys.

  9. Composite materials based on modified epoxy resin and carbon fiber

    OpenAIRE

    Gonçalez, Viviane; Barcia, Fabio L.; Soares, Bluma G.

    2006-01-01

    Epoxy resin networks have been modified with block copolymer of polybutadiene and bisphenol A diglycidyl ether (DGEBA)-based on epoxy resin. The epoxy resin modified with carboxyl-terminated polybutadiene presented improved impact resistance and outstanding mechanical performance in terms of flexural and tensile properties because of the presence of rubber particles homogeneously dispersed inside the epoxy matrix. This modified system also resulted in an improvement of mechanical properties o...

  10. An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm.

    Science.gov (United States)

    Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya

    2015-01-01

    Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the "quality of service" as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.

  11. Evaluation of sorption, solubility and staining of universal and silorane resin-based composites.

    Science.gov (United States)

    Anfe, T E de Almeida; Agra, C M; Vieira, G F

    2011-12-01

    Resin-based composite staining is a multifactoral phenomenon and can be caused by intrinsic and extrinsic factors. The purpose of this study was to compare staining, sorption and solubility of silorane resin-based and universal resin-based composites. Five different resin-based composites (4 Seasons, Charisma, Filtek Silorane, Filtek Supreme and Grandio) were tested. Twenty five specimens were prepared (10 mm diameter and 1.5 mm thick). To staining test, the specimens were divided into 3 groups (n = 5): distilled water (control), coffee and red wine. The specimens were immersed in one of the solutions at 37 degrees C for 7 days. Using the values of L*, a*, b*, color variation (CIEDE2000) was determined. For sorption and solubility test, the specimens were divided into 2 groups (n = 5): with previous desiccation (Group 1) and with no previous desiccation (Group 2). The methodology used for sorption and solubility test was based on ISO 4049:2000. The results presented no significant difference in staining between composites. In sorption and solubility test, Filtek Silorane presented the smallest values, followed by Grandio. Under tested experimental conditions, it is not possible to assert the dependence of staining in sorption that composites are undergone. There was no significant correlation between colour change and sorption values.

  12. Cross-sectional radiographic survey of amalgam and resin-based composite posterior restorations.

    Science.gov (United States)

    Levin, Liran; Coval, Marius; Geiger, Selly B

    2007-06-01

    To compare the failure rate of posterior interproximal amalgam restorations to resin-based composite restorations in a random young adult population. Bilateral bitewing radiographs of 459 young adults were screened. A total of 14,140 interproximal surfaces were examined, recorded, and statistically analyzed. Rate of failure was determined by the number of restorations with radiographic evidence of secondary caries and/or overhanging margins. Of the 650 restored interproximal surfaces (5% of all clearly demarcated interproximal surfaces), 86 (13%) demonstrated distinct interproximal secondary caries and 22 (3%) had overhanging margins. Of the 557 amalgam and 93 resin-based composite interproximal restorations, secondary caries were shown in 46 (8%) and 40 (43%), respectively, and overhanging margins in 21 (4%) and only 1 (1%), respectively. Generally, when secondary caries and overhanging margins were considered, the failure rate of amalgam and resin-based composite interproximal restorations was 12% and 44%, respectively. Higher failure rates were observed in resin-based composite restorations than in amalgam restorations. Secondary caries was the main reason for failure. Overhanging margins were not a primary factor in restoration failure. The vast use of posterior interproximal resin-based composite restorations should be reconsidered, and their limited long-term performance should be kept in mind.

  13. A usability evaluation of a SNOMED CT based compositional interface terminology for intensive care

    NARCIS (Netherlands)

    Bakhshi-Raiez, F.; de Keizer, N. F.; Cornet, R.; Dorrepaal, M.; Dongelmans, D.; Jaspers, M. W. M.

    2012-01-01

    Objective: To evaluate the usability of a large compositional interface terminology based on SNOMED CT and the terminology application for registration of the reasons for intensive care admission in a Patient Data Management System. Design: Observational study with user-based usability evaluations

  14. A 24-month evaluation of amalgam and resin-based composite restorations

    DEFF Research Database (Denmark)

    McCracken, Michael S; Gordan, Valeria V; Litaker, Mark S

    2013-01-01

    Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations....

  15. Evaluation of carbon nanotube based copper nanoparticle composite for the efficient detection of agroviruses

    Science.gov (United States)

    Nanomaterials based sensors offer sensitivity and selectivity for the detection of a specific analyte-of-the-interest. Described here is a novel assay for the detection of a DNA sequence based on nanostructured carbon nanotubes/copper nanoparticles composite. This assay was modeled on strong electro...

  16. Magnetoelectric polymer-based composites fundamentals and applications

    CERN Document Server

    Martins, Pedro

    2017-01-01

    The first book on this topic provides a comprehensive and well-structured overview of the fundamentals, synthesis and emerging applications of magnetoelectric polymer materials. Following an introduction to the basic aspects of polymer based magnetoelectric materials and recent developments, subsequent chapters discuss the various types as well as their synthesis and characterization. There then follows a review of the latest applications, such as memories, sensors and actuators. The book concludes with a look at future technological advances. An essential reference for entrants to the field as well as for experienced researchers.

  17. Intelligent Financial Portfolio Composition based on Evolutionary Computation Strategies

    CERN Document Server

    Gorgulho, Antonio; Horta, Nuno C G

    2013-01-01

    The management of financial portfolios or funds constitutes a widely known problematic in financial markets which normally requires a rigorous analysis in order to select the most profitable assets. This subject is becoming popular among computer scientists which try to adapt known Intelligent Computation techniques to the market’s domain. This book proposes a potential system based on Genetic Algorithms, which aims to manage a financial portfolio by using technical analysis indicators. The results are promising since the approach clearly outperforms the remaining approaches during the recent market crash.

  18. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  19. Repairability of CAD/CAM high-density PMMA- and composite-based polymers.

    Science.gov (United States)

    Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna

    2015-11-01

    The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate-based

  20. Tailoring Functional Chitosan-based Composites for Food Applications.

    Science.gov (United States)

    Nunes, Cláudia; Coimbra, Manuel A; Ferreira, Paula

    2018-03-08

    Chitosan-based functional materials are emerging for food applications. The covalent bonding of molecular entities demonstrates to enhance resistance to the typical acidity of food assigning mechanical and moisture/gas barrier properties. Moreover, the grafting to chitosan of some functional molecules, like phenolic compounds or essential oils, gives antioxidant, antimicrobial, among others properties to chitosan. The addition of nanofillers to chitosan and other biopolymers improves the already mentioned required properties for food applications and can attribute electrical conductivity and magnetic properties for active and intelligent packaging. Electrical conductivity is a required property for the processing of food at low temperature using electric fields or for sensors application. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Starch and polyethylene based bone-analogue composite biomaterials

    Science.gov (United States)

    Reis, Rui Luis Goncalves dos

    diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  2. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    Science.gov (United States)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  3. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    Science.gov (United States)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  4. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder

    Directory of Open Access Journals (Sweden)

    Yabo Xiong

    2017-11-01

    Full Text Available Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR composite films were not significantly influenced (p ≥ 0.05 by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  5. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  6. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  7. Composite Materials Based on Hemp and Flax for Low-Energy Buildings.

    Science.gov (United States)

    Brzyski, Przemysław; Barnat-Hunek, Danuta; Suchorab, Zbigniew; Łagód, Grzegorz

    2017-05-07

    The article presents the results obtained in the course of a study on prospective application of flax/hemp wastes as a filling material of lime-based composites in the construction of low-energy buildings. The utilized filler comprised the hydrated lime with clay and Portland cement used as additives. The analysis involved evaluation of such properties as porosity, density, thermal conductivity, absorptivity, permeability, as well as compressive and flexural strength. Depending on the quantity of the filler, the properties of the composite changed. This, in turn, enabled to evaluate whether the utilized composite met the thermal requirements established for low-energy buildings. Afterwards, the obtained data were cross-referenced with the results gathered in the case of a room built of autoclaved aerated concrete. In order to prevent reaching the critical surface humidity, the internal surface temperature had to be calculated. Moreover, the chances of interstitial condensation occurring in the wall made of the analyzed lime-flax-hemp composite were determined as well. The study showed that the composite exhibits low strength, low density, low thermal conductivity, and high absorptivity. The external walls made of the lime-flax-hemp composite receive a limited exposure to condensation, but not significant enough to constitute any threat. The requirements established for low-energy buildings can be met by using the analyzed composite.

  8. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    Science.gov (United States)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  9. Fatty acid esters-based composite phase change materials for thermal energy storage in buildings

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Karaipekli, Ali

    2012-01-01

    In this study, fatty acid esters-based composite phase change materials (PCMs) for thermal energy storage were prepared by blending erythritol tetrapalmitate (ETP) and erythritol tetrastearate (ETS) with diatomite and expanded perlite (EP). The maximum incorporation percentage for ETP and ETS into diatomite and EP was found to be 57 wt% and 62 wt%, respectively without melted PCM seepage from the composites. The morphologies and compatibilities of the composite PCMs were structurally characterized using scanning electron microscope (SEM) and Fourier transformation infrared (FT–IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by differential scanning calorimetry (DSC) analysis. The DSC analyses results indicated that the composite PCMs were good candidates for building applications in terms of their large latent heat values and suitable phase change temperatures. The thermal cycling test including 1000 melting and freezing cycling showed that composite PCMs had good thermal reliability and chemical stability. TG analysis revealed that the composite PCMs had good thermal durability above their working temperature ranges. Moreover, in order to improve the thermal conductivity of the composite PCMs, the expanded graphite (EG) was added to them at different mass fractions (2%, 5%, and 10%). The best results were obtained for the composite PCMs including 5wt% EG content in terms of the increase in thermal conductivity values and the decrease amount in latent heat capacity. The improvement in thermal conductivity values of ETP/Diatomite, ETS/Diatomite, ETP/EP and ETS/EP were found to be about 68%, 57%, 73% and 75%, respectively. Highlights: ► Fatty acid esters-based composite PCMs were prepared by blending ETP and ETS with diatomite and expanded perlite. ► The composite PCMs were characterized by using SEM, FT–IR, DSC and TG analysis methods. ► The DSC results indicated that the composites PCMs had good thermal

  10. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    Science.gov (United States)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  11. Dual light-activated microfluidic pumps based on an optopiezoelectric composite

    International Nuclear Information System (INIS)

    Wang, Hsin-Hu; Lee, Chih-Kung; Hsu, Yu-Hsiang; Wu, Ting-Jui; Cheng, I-Chun; Lin, Shih-Jue; Gu, Jen-Tau

    2017-01-01

    In this paper, a new type of microfluidic pump that can be activated and controlled by a masked light source is presented. The actuation of this micropump is based on an optopiezoelectric composite. This composite is constructed by having one of the electrodes of a piezoelectric PVDF (polyvinylidene fluoride) polymer replaced by a layer of TiOPc (titanyl phthalocyanine) photoconductive coating and an ITO (indium-tin-oxide) transparent electrode. This layer of photoconductive electrode provides the capability to activate multiple locations of this optopiezoelectric composite independently using a masked light source and a single voltage source. To verify the feasibility of this concept, dual light-activated microfluidic pumps based on this optopiezoelectric composite are implemented and studied. Experimental results verify that two microfluidic pumps can be created by one optopiezoelectric composite and that each pump can be optically turned on and off independently or be turned on simultaneously. These results suggest that integrating an optopiezoelectric composite into a lab-on-a-chip system can reduce the size and the number of driving units significantly, since every operation can be done optically and only one driving source is needed. The equivalent circuit, design, and implementation of dual light-activated optopiezoelectric micropumps are discussed in this paper. (paper)

  12. Dual light-activated microfluidic pumps based on an optopiezoelectric composite

    Science.gov (United States)

    Wang, Hsin-Hu; Wu, Ting-Jui; Lin, Shih-Jue; Gu, Jen-Tau; Lee, Chih-Kung; Cheng, I.-Chun; Hsu, Yu-Hsiang

    2017-12-01

    In this paper, a new type of microfluidic pump that can be activated and controlled by a masked light source is presented. The actuation of this micropump is based on an optopiezoelectric composite. This composite is constructed by having one of the electrodes of a piezoelectric PVDF (polyvinylidene fluoride) polymer replaced by a layer of TiOPc (titanyl phthalocyanine) photoconductive coating and an ITO (indium-tin-oxide) transparent electrode. This layer of photoconductive electrode provides the capability to activate multiple locations of this optopiezoelectric composite independently using a masked light source and a single voltage source. To verify the feasibility of this concept, dual light-activated microfluidic pumps based on this optopiezoelectric composite are implemented and studied. Experimental results verify that two microfluidic pumps can be created by one optopiezoelectric composite and that each pump can be optically turned on and off independently or be turned on simultaneously. These results suggest that integrating an optopiezoelectric composite into a lab-on-a-chip system can reduce the size and the number of driving units significantly, since every operation can be done optically and only one driving source is needed. The equivalent circuit, design, and implementation of dual light-activated optopiezoelectric micropumps are discussed in this paper.

  13. Phase Change Insulation for Energy Efficiency Based on Wax-Halloysite Composites

    International Nuclear Information System (INIS)

    Zhao, Yafei; Thapa, Suvhashis; Weiss, Leland; Lvov, Yuri

    2014-01-01

    Phase change materials (PCMs) have gained extensive attention in thermal energy storage. Wax can be used as a PCM in solar storage but it has low thermal conductivity. Introducing 10% halloysite admixed into wax yields a novel composite (wax-halloysite) which has a thermal conductivity of 0.5 W/mK. To increase the base conductivity, graphite and carbon nanotubes were added into the PCM composite improving its thermal energy storage. Thermal conductivity of wax-halloysite-graphite (45/45/10%) composite showed increased conductivity of 1.4 W/mK (3 times higher than the base wax-halloysite composite). Wax- halloysite-graphite-carbon nanotubes (45/45/5/5%) composite showed conductivity of 0.85 W/mK while maintaining the original shape perfectly until 91 °C (above the original wax melting point). Thermal conductivity can be further increased with higher doping of carbon nanotubes. This new composites are promising heat storage material due to good thermal stability, high thermal/electricity conductivity and ability to preserve its shape during phase transitions

  14. Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry

    International Nuclear Information System (INIS)

    Hatakeyema, Hyoe; Tanamachi, Noriko; Matsumura, Hiroshi; Hirose, Shigeo; Hatakeyama, Tatsuko

    2005-01-01

    Bio-based polyurethane (PU) composite foams filled with various inorganic fillers, such as barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and talc were prepared using polyols, such as diethylene glycol, triethylene glycol and polyethylene glycol (molecular weight ca. 200) containing molasses and lignin. Reactive hydroxyl groups in plant components and above polyols were used as reaction sites. Morphological observation of fracture surface of composites was carried out by scanning electron microscopy. Thermal properties of bio-based PU composites were examined by thermogravimetry. It was found that the above composites decompose in two stages reflecting decomposition of organic components. Decomposition temperature increased with increasing filler content, when plant components were homogenously mixed with inorganic fillers. Activation energy calculated by Ozawa-Wall-Flynn method was ca. 150 kJ mol -1 . The durability of composites was predicted using kinetic data. Calculated values indicate that composites with fillers are more durable than that of those without fillers at a moderate temperature region

  15. Study of solidification features of nickel-base superalloys in relation with composition

    Science.gov (United States)

    Lecomte-Beckers, J.

    1988-09-01

    The influence of the six major alloying elements: carbon, chromium, cobalt, molybdenum, titanium, and aluminum on the solidification sequence of nickel-base superalloys was investigated. The microstructure was found to depend greatly on aluminum and titanium contents. During solidification the liquid is enriched in titanium and molybdenum, whereas the dendrite cores are richer in cobalt. Aluminum and chromium segregate in the liquid or in the dendrite center, depending on alloy nominal composition. Chemical analysis of the carbides showed that their composition changes during solidification, thus affecting the composition of the residual liquid. The composition of carbides is strongly influenced by titanium and molybdenum nominal content in the alloy. Statistical analysis of the transformation temperatures obtained by DTA showed that titanium and aluminum influence the entire solidification sequence.

  16. Preparation and Electrochemical Properties of Mesoporous Manganese Dioxide-Based Composite Electrode for Supercapacitor.

    Science.gov (United States)

    Jiang, Yanhua; Cui, Xiuguo; Zu, Lei; Hu, Zhongkai; Gan, Jing; Lian, Huiquin; Liu, Yanag; Xing, Guangjian

    2017-01-01

    The mesoporous manganese dioxide with high specific surface area was obtained through a one-pot prepare procedure at ambient temperature under acidic conditions. And the graphene/mesoporous manganese dioxide composite was synthesized by a simple hydrothermal approach. As a comparison, silver nanowires also as a conductor was added to the mesoporous manganese dioxide. Both of the graphene and silver nanowires can increase the capacitance of the mesoporous manganese dioxide-based composite electrode materials. Compared with the graphene/mesoporous manganese dioxide composite, the silver nanowires/mesoporous manganese dioxide mixture has a better electrochemical performance, the specific capacitance and energy density is almost 2.2 times larger than that of the composites. The morphology and detail structure were investigated by the Scanning electron microscopy, X-ray diffraction, Raman spectra, Fourier transform infrared spectrometry and Nitrogen adsorption–desorption isotherms. The electrochemical performance was assessed by the cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy.

  17. Graphite nanoplatelets and carbon nanotubes based polyethylene composites: Electrical conductivity and morphology

    International Nuclear Information System (INIS)

    Haznedar, Galip; Cravanzola, Sara; Zanetti, Marco; Scarano, Domenica; Zecchina, Adriano; Cesano, Federico

    2013-01-01

    Graphite nanoplatelets (GNPs) and/or multiwalled-carbon nanotubes (MWCNTs)/low density polyethylene (LDPE) composites have been obtained either via melt-mixing or solvent assisted methods. Electrical properties of samples obtained through the above mentioned methods are compared and the conductance values as function of filler fraction are discussed. The corresponding percolation thresholds are evaluated. Conductivity maps images are acquired under low-potentials scanning electron microscopy (0.3 KV) and the relationship between the obtained conductivity images and electric properties is highlighted. The synergistic role of CNTs (1D) and GNPs (2D) in improving the conductive properties of the polymer composites has been shown. - Highlights: • Graphite nanoplatelets (GNPs) and GNPs/MWCNT LDPE composites. • Low potential SEM conductivity maps. • Conducting paths between 1D and 2D C-structures (synergistic effect) are obtained. • Composites based on hybrid 1D/2D combinations show lower percolation thresholds

  18. Flammability and thermal properties studies of nonwoven flax reinforced acrylic based polyester composites

    Science.gov (United States)

    Rasyid, M. F. Ahmad; Salim, M. S.; Akil, H. M.; Ishak, Z. A. Mohd.

    2017-12-01

    In the pursuit of green and more sustainable product, natural fibre reinforced composites originating from renewable resources has gained interest in recent years. These natural fibres exhibit good mechanical properties, low production costs, and good environmental properties. However, one of the disadvantages of natural fibre reinforced composites is their high flammability that limits their application in many fields. Within this research, the effect of sodium silicate on the flammability and thermal properties of flax reinforced acrylic based polyester composites has been investigated. Sodium silicate is applied as binder and flame retardant system in impregnation process of the natural flax fiber mats. The addition of sodium silicate significantly improved the flame retardant efficiency but reduced the degree of crosslinking of the composites.

  19. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  20. NOVEL SUPERABSORBENT HYDROGEL COMPOSITE BASED ON POLY(ACRYLAMIDE-CO-ACRYLATE/NONTRONITE: CHARACTERIZATION AND SWELLING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Renan C. F. Leitão

    2015-03-01

    Full Text Available A novel superabsorbent hydrogel (SH composite based on a poly(acrylamide-co-acrylate matrix filled with nontronite (NONT, a Fe(III-rich member of the smectite group of clay minerals, is described in this manuscript. A variety of techniques, including FTIR, XRD, TGA, and SEM/EDX, were utilized to characterize this original composite. Experimental data confirmed the SH composite formation and suggested NONT was completely dispersed in the polymeric matrix. Additionally, NONT improved the water uptake capacity of the final material, which exhibited fast absorption, low sensitivity to the presence of salt, high water retention and a pH sensitive properties. These preliminary data showed that the original SH composite prepared here possesses highly attractive properties for applications in areas such as the agriculture field, particularly as a soil conditioner.

  1. Thermomechanical Properties of Polypropylene-Based Lightweight Composites Modeled on the Mesoscale

    Science.gov (United States)

    Dostálová, Darina; Kafka, Vratislav; Vokoun, David; Heller, Luděk; Matějka, Libor; Kadeřávek, Lukáš; Pěnčík, Jan

    2017-11-01

    A waste-based particle polymer composite (WPPCs) made of foam glass and polypropylene was developed as a low-cost construction material. Thermomechanical properties of the composite, including creep properties of WPPC and polypropylene binder, were examined. By adding a relatively small amount of polypropylene to foam glass (about 2:8 in volume parts), the maximum bearing capacity at room temperature of the composite increased from 1.9 (pure foam glass) to 15 MPa. A significant creep strain accumulated during compressive loading of WPPC (5 MPa) in the first 2000 s at elevated temperatures (40, 60 °C). In the study, Kafka's mesomechanical model was used to simulate creep strain changes in time for various temperatures. The applicability of Kafka's mesomechanical model for simulating creep properties of the studied composite material was demonstrated.

  2. Preparation of composite materials based on hydroxyapatite and lactide and glycolide copolymer

    Science.gov (United States)

    Lytkina, Darya; Berezovskaya, Anna; Korotchenko, Natalya; Kurzina, Irina; Kozik, Vladimir

    2017-11-01

    Composite materials for the restoration of bone tissues based on hydroxyapatite and a copolymer of lactide and glycolide were obtained. The composition of materials at different stages of production is estimated by X-Ray diffraction method. It has been established that during the production of materials a new phase of chlorine-substituted hydroxyapatite (Ca9.7(P6O23.81)Cl2.35(OH)2.01) was formed, which promoted an increase of hydroxyapatite solubility in the composition of materials. The quantitative estimation of micro- and macroporosity of materials is given. It was found that the use of sodium chloride as the pore-forming agent delivers porosity of the composites required for use as bone substitutes.

  3. Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode

    Science.gov (United States)

    Sirisomboonchai, Suchada; Kongparakul, Suwadee; Nueangnoraj, Khanin; Zhang, Haibo; Wei, Lu; Reubroycharoen, Prasert; Guan, Guoqing; Samart, Chanatip

    2018-04-01

    Copper/carbon (Cu/C) composites were prepared through the simple and environmentally benign hydrothermal carbonization of xylose in the presence of Cu2+ ions. The morphology, specific surface area, phase structure and chemical composition were investigated. Using a three-electrode system in 0.1 M H2SO4 aqueous electrolyte, the Cu/C composite (10 wt% Cu) heat-treated at 600 °C gave the highest specific capacitance (316.2 and 350.1 F g-1 at 0.5 A g-1 and 20 mV s-1, respectively). The addition of Cu was the major factor in improving the electrochemical performance, enhancing the specific capacitance more than 30 times that of the C without Cu. Therefore, the Cu/C composite presented promising results in improving biomass-based C electrodes for supercapacitors.

  4. Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Abdul Khalil, H.P.S.; Abu Bakar, A.

    2011-01-01

    Highlights: → Woven hybrid composites show good tensile and flexural properties. → Hybridization with 20% woven jute gives rise to sufficient modulus to composites. → Layering pattern affect mechanical properties of hybrid composites. → Statistical analysis shows that there is significant difference between composites. - Abstract: In this research, tensile and flexural performance of tri layer oil palm empty fruit bunches (EFB)/woven jute (Jw) fibre reinforced epoxy hybrid composites subjected to layering pattern has been experimentally investigated. Sandwich composites were fabricated by hand lay-up technique in a mould and cured with 105 deg. C temperatures for 1 h by using hot press. Pure EFB and woven jute composites were also fabricate for comparison purpose. Results showed that tensile and flexural properties of pure EFB composite can be improved by hybridization with woven jute fibre as extreme woven jute fibre mat. It was found that tensile and flexural properties of hybrid composite is higher than that of EFB composite but less than woven jute composite. Statistical analysis of composites done by ANOVA-one way, it showed significant differences between the results obtained. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy.

  5. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  6. Composition and functionality of whole jamun based functional confection.

    Science.gov (United States)

    Sehwag, Sneha; Das, Madhusweta

    2016-06-01

    Whole jamun based functional confection (WJFC) was developed from an optimized blend (through response surface methodology) containing 26.585 % paste of jamun pulp with adhering skin, 2 % jamun seed powder, hydrocolloid mixture (2.289 % agar, 1.890 % pectin and 27.236 % polydextrose), antimicrobials (0.022 % benzoic acid and 0.085 % sorbic acid), and 40 % added water. The confection also contained 0.08 % sucralose, 0.06 % citric acid and 100 mg CaCl2.2H2O/g pectin. The confection was found to be rich in minerals like Ca, Mg, K, Na and P, with prebiotic activity and low glycemic index (48.1). Additionally, WJFC had reduced calorie (1.48 kcal/g) and high dietary fiber content (15.49 ± 0.058 g/100 g (db)). The antioxidant potential measured as DPPH radical scavenging activity and FRAP with different extraction solvents was found to range between 0.26 ± 0.01 and 0.98 ± 0.04 mg BHA/g and 2.57 ± 0.97 and 18.17 ± 1.30 μM Fe(2+)/g, respectively, with highest yield obtained for 50 % aq. ethanolic extract. Moreover, the antioxidant potential was observed to be dose dependent with IC50 values as 9.89 and 2.75 mg (db) against DPPH and superoxide anion radicals, respectively. WJFC was found to suppress α-amylase activity and retard glucose dialysis depicting the antidiabetic effect.

  7. TiB2 reinforced aluminum based in situ composites fabricated by stir casting

    International Nuclear Information System (INIS)

    Chen, Fei; Chen, Zongning; Mao, Feng; Wang, Tongmin; Cao, Zhiqiang

    2015-01-01

    In this study, a new technique involving mechanical stirring at the salts/aluminum interface was developed to fabricate TiB 2 particulate reinforced aluminum based in situ composites with improved particle distribution. Processing parameters in terms of stirring intensity, stirring duration and stirring start time were optimized according to the microstructure and mechanical properties evaluation. The results show that, the first and last 15 min of the entire 60 min holding are of prime importance to the particle distribution of the final composites. When applying 180 rpm (revolutions per minute) stirring at the salts/aluminum interface in these two intervals, a more uniform microstructure can be achieved and the Al-4 wt% TiB 2 composite thus produced exhibits superior mechanical performance. Synchrotron radiation X-ray computed tomography (SR-CT) was used to give a full-scale imaging of the particle distribution. From the SR-CT results, the in situ Al–xTiB 2 composites (x=1, 4 and 7, all in wt%) fabricated by the present technique are characterized by fine and clean TiB 2 particles distributed uniformly throughout the Al matrix. These composites not only have higher yield strength (σ 0.2 ) and ultimate tensile strength (UTS), but also exhibit superior ductility, with respect to the Al–TiB 2 composites fabricated by the conventional process. The σ 0.2 and UTS of the Al–7TiB 2 composite in the present work, are 260% and 180% higher than those of the matrix. A combined mechanism was also presented to interpret the improvements in yield strength of the composites as influenced by their microstructures and processing history. The predicted values are in good agreement with the experimental results, strongly supporting the strengthening mechanism we proposed. Fractography reveals that the composites thus fabricated, follow ductile fracture mechanism in spite of the presence of stiff reinforcements

  8. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  9. Durability-Based Design Properties of Reference Crossply Carbon-Fiber Composite

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2001-04-16

    This report provides recommended durability-based design properties and criteria for a crossply carbon-fiber composite for possible automotive structural applications. Although the composite utilized aerospace-grade carbon-fiber reinforcement, it was made by a rapid-molding process suitable for high-volume automotive use. The material is the first in a planned progression of candidate composites to be characterized as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. The composite addressed in this report is a ({+-}45{degree})3S crossply consisting of continuous Thornel T300 fibers in a Baydur 420 IMR urethane matrix. This composite is highly anisotropic with two dominant fiber orientations--0/90{degree} and {+-}45{degree}. Properties and models were developed for both orientations. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  10. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2017-06-01

    Full Text Available Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved.

  11. Mechanical behavior of composite based polypropylene: Recycling and strain rate effects

    Science.gov (United States)

    Bahlouli, N.; Pessey, D.; Ahzi, S.; Rémond, Y.

    2006-08-01

    Recycling effects on the dynamic response of composite based polypropylene is studied in this paper. Materials used here are filled and unfilled impact modified polypropylene. Nodules of EPDM represent the elastomeric phase for the filled composite based polypropylene. Fillers are particles of talc. For the unfilled polypropylene, the elastomeric phase is nodules of EPR. Different tensile tests, until rupture, were performed from quasi static to high strain rates. Virgin specimens were recycled in order to study the degradation due to the effect of recycling under dynamic loading. Thus microstructural effects due to dynamic loading and recycling were observed by SEM.

  12. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    Science.gov (United States)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  13. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    Science.gov (United States)

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-01-01

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014

  14. Restoration of posterior teeth in clinical practice: evidence base for choosing amalgam versus composite.

    Science.gov (United States)

    Kovarik, Robert E

    2009-01-01

    This article reviews the current use of amalgam versus resin composite in posterior restorations and the evidence-base for choosing between these two treatment options. While much research has been published on the issue of the clinical use of amalgam versus resin composite, there are several issues that limit the true evidence-base on the subject. Furthermore, while the majority of published studies on posterior composites would seem to indicate equivalent clinical performance of resin composite to amalgam restorations, the studies that should be weighted much more heavily (randomized controlled trials) do not support the slant of the rest of the literature. As part of an evidence-based approach to private practice, clinicians need to be aware of the levels of evidence in the literature and need to properly inform patients of the true clinical outcomes that are associated with the use of amalgam versus resin composite for posterior restorations, so that patients are themselves making informed decisions about their dental care.

  15. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  16. Composite reliability of workplace-based assessment for international medical graduates.

    Science.gov (United States)

    Nair, Balakrishnan Kichu R; Moonen-van Loon, Joyce Mw; Parvathy, Mulavana S; van der Vleuten, Cees Pm

    2016-09-05

    The fitness to practise of international medical graduates (IMGs) is usually evaluated with standardised assessment tests. Practising doctors should, however, be assessed on their performance rather than their competency, for which reason workplace-based assessment (WBA) has gained increasing attention. Our aim was to assess the composite reliability of WBA instruments for assessing the performance of IMGs. Between June 2010 and April 2015, 142 IMGs were assessed by 99 calibrated assessors; each cohort was assessed at their workplace over 6 months. The IMGs completed 970 case-based discussions (CBDs), 1741 Mini-Clinical Examination Exercises (mini-CEX) and 1020 multisource feedback (MSF) sessions. 103 male and 39 female candidates based in urban and rural hospitals of the Hunter New England Health region, from 28 countries (Africa, Asia, Europe, South America, South Pacific). The reliability of the three WBA tools; the composite reliability of the tools as a group. The composite reliability of our WBA toolbox program was good: the composite reliability coefficient for five CBDs and 12 mini-CEX was 0.895 (standard error of measurement, 0.138). When the six MSF results were included, the composite reliability coefficient was 0.899 (standard error of measurement, 0.125). WBA is a reliable method for assessing IMGs when multiple tools and assessors are used over a period of time. This form of assessment meets the criteria for "good assessment" (reliability ≥ 0.8) and can be applied in other settings.

  17. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles

    Directory of Open Access Journals (Sweden)

    Haibin Yang

    2017-04-01

    Full Text Available Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger (GHE in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.

  18. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-04-07

    Energy piles-A fairly new renewable energy concept-Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.

  19. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-01-01

    Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications. PMID:28772752

  20. Effect of 30% hydrogen peroxide on marginal integrity of silorane-based versus methacrylate-based composite restorations.

    Directory of Open Access Journals (Sweden)

    Sedighe Sadat Hashemikamangar

    2014-10-01

    Full Text Available The aim of this study was to assess the effect of 30% hydrogen peroxide on the microleakage of class V cavities restored with either a silorane-based composite or two methacrylate-based composites.A total of 96 standard class V cavities (1.5 × 2 × 3 mm were prepared on the buccal surface of sound extracted human premolars with both enamel and dentin margins and randomly assigned into three groups of Filtek P90 (group A with its respective bonding (P90 system adhesive, Filtek Z250 (group B and Filtek Z350XT (group C, both with Adper Prompt L-Pop bonding. The teeth were subjected to thermocycling (1000×, 5-55ºC and half of them randomly underwent bleaching (30% hydrogen peroxide, 15 min, three times, while the remaining half (control were not bleached. Dye penetration was measured following immersion in 2% basic fuchsin for 24 h. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests at 95% CI.No significant differences were found between the composites in the control groups in enamel (P=0.171 or dentin (P=0.094 margins. After bleaching, microleakage of Z250 (at the occlusal (P=0.696 or gingival (P=0.867 margins, Z350 (at the occlusal (P=0.323 margin and P90 (at the occlusal (P=0.316 or gingival (P=0.281 margins did not change significantly.No significant differences were noted between the bleached and control subgroups of Z250 and P90 in enamel or dentin margins. Microleakage of Z350 composite was reduced at the gingival margin compared to the control group, but no significant difference was observed at the occlusal margin. Microleakage of silorane-based composite in gingival margin was significantly more than two metacrylate-based composites.

  1. Dependence of mechanical characteristics from composition and structure and optimization of mechanical fracture energy of polymer composite material based on high-molecular rubbers

    Directory of Open Access Journals (Sweden)

    E. Nurullaev

    2017-07-01

    Full Text Available By means of numerical experiment the authors investigate dependence of conventional rupturing stress and mechanical fracture energy at uniaxial tension from fractional composition of dispersed filler, plasticizer volume fraction in polymer binder, effective density of transverse bonds, applied to development of covering for different purposes and with advanced service life in temperature range from 223 to 323 K. They compare mechanical characteristics of polymer composite materials (PCMs based on high- and low-molecular rubbers. It was shown that rupturing stress of high-molecular rubber-based PCM is of a higher magnitude than the stress of low-molecular rubber-based one at almost invariable rupturing deformation. Numerical simulation by variation of composition parameters and molecular structure enables evaluation of its maximum fracture energy which is 1000 times higher than mechanical fracture energy of similar composites based on low-molecular rubbers.

  2. Wettability and interface considerations in advanced heat-resistant Ni-base composites

    International Nuclear Information System (INIS)

    Asthana, R.; Mileiko, S.T.; Sobczak, N.

    2006-01-01

    Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990's due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al 2 O 3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-of the

  3. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Directory of Open Access Journals (Sweden)

    Xiaohua Bao

    2017-04-01

    Full Text Available Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs. Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  4. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  5. Color stability of siloranes versus methacrylate-based composites after immersion in staining solutions.

    Science.gov (United States)

    Arocha, Mariana A; Mayoral, Juan R; Lefever, Dorien; Mercade, Montserrat; Basilio, Juan; Roig, Miguel

    2013-07-01

    The purpose of this study was to determine, by using a spectrophotometer device, the color stability of silorane in comparison with four methacrylate-based composites after being immersed in different staining solutions such as coffee, black tea, red wine, orange juice, and coke, and distilled water as control group. Four restorative methacrylate-based composites (Filtek Z250, TetricEvoCeram, Venus Diamond, and Grandio) and one silorane (FiltekSilorane) of shade A2 were selected to measure their color stability (180 disk samples) after 4 weeks of immersion in six staining solutions: black tea, coffee, red wine, orange juice, coke, and distilled water. The specimen's color was measured each week by means of a spectrophotometer (CIE L*a*b* system). Statistical analysis was carried out performing an ANOVA and LSD Test in order to statistically analyze differences in L*a*b*and ∆E values. All materials showed significant discoloration (p < 0.05) when compared to the control group (immersed in distilled water). The Highest ∆E observed was with red wine, whereas coke led to the lowest one. Silorane showed the highest color stability compared with methacrylate-based composites. Methacrylate-based materials immersed in staining solutions showed lower color stability when compared with silorane. Great differences in ∆E were found among the methacrylate-based materials tested. Although color stability of methacrylate-based composites immersed in staining solutions has been widely investigated, this has not been done for long immersion periods with silorane-based composites.

  6. 3d Finite Element Modelling of Non-Crimp Fabric Based Fibre Composite Based on X-Ray Ct Data

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Asp, Leif; Mikkelsen, Lars Pilgaard

    2017-01-01

    initiation and progression in the material. In the current study, the real bundle structure inside a non-crimp fabric based fibre composite is extracted from 3D X-ray CT images and imported into ABAQUS for numerical modelling.The local stress concentrations when loaded in tension caused by the fibre bundle...

  7. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors

    Directory of Open Access Journals (Sweden)

    Ji-Sik Kim

    2017-01-01

    Full Text Available This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane dispersed with carbon nanotubes (CNTs, to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied.

  8. Topological and thermal properties of polypropylene composites based on oil palm biomass

    International Nuclear Information System (INIS)

    Bhat, A. H.; Dasan, Y. K.

    2014-01-01

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred

  9. Topological and thermal properties of polypropylene composites based on oil palm biomass

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, 31750 Perak (Malaysia)

    2014-10-24

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  10. Topological and thermal properties of polypropylene composites based on oil palm biomass

    Science.gov (United States)

    Bhat, A. H.; Dasan, Y. K.

    2014-10-01

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  11. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, J. A.; Ferrari, B.; Alvaredo, P.; Gordo, E.; Sanchez-Herencia, A. J.

    2013-07-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  12. Development of new biomass-based furan/glass composites manufactured by the double-vacuum-bag technique

    DEFF Research Database (Denmark)

    Dominguez, Juan Carlos; Madsen, Bo

    2015-01-01

    The present study addresses the development of new biomass-based furan resin/glass fibre composites manufactured by the double-vacuum-bag technique using a two-stage cure cycle to allow removal of water from the resin. The volumetric composition and mechanical properties of the composites...

  13. 24 CFR 5.657 - Section 8 project-based assistance programs: Reexamination of family income and composition.

    Science.gov (United States)

    2010-04-01

    ... programs: Reexamination of family income and composition. 5.657 Section 5.657 Housing and Urban Development...: Reexamination of family income and composition. (a) Applicability. This section states requirements for reexamination of family income and composition in the Section 8 project-based assistance programs, except for...

  14. A State of the Art Review- Methods to Evaluate Electrical Performance of Composite Cross-arms and Composite-based Pylons

    DEFF Research Database (Denmark)

    Wang, Qian; Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    performance need to be studied. This paper sums up experience and key advances on testing methods to evaluate electrical performance of composite cross-arms and composite-based pylons. Based on state of the art review, several feasible testing methods that can be used to verify the feasibility of the novel......A novel uni-body composite pylon has been proposed for 400 kV transmission lines with advantages of compacted size, friendly looking and cost competitiveness. As its configuration is quite different from the traditional lattice pylon, its electrical performance needs in-depth investigation...

  15. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells

    Science.gov (United States)

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-01

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution

  16. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries

    Science.gov (United States)

    Wang, Jie; Liu, Dai-Huo; Wang, Ying-Ying; Hou, Bao-Hua; Zhang, Jing-Ping; Wang, Rong-Shun; Wu, Xing-Long

    2016-03-01

    Dual-carbon enhanced Si-based composite (Si/C/G) has been prepared via employing the widely distributed, low-cost and environmentally friendly Diatomite mineral as silicon raw material. The preparation processes are very simple, non-toxic and easy to scale up. Electrochemical tests as anode material for lithium ion batteries (LIBs) demonstrate that this Si/C/G composite exhibits much improved Li-storage properties in terms of superior high-rate capabilities and excellent cycle stability compared to the pristine Si material as well as both single-carbon modified composites. Specifically for the Si/C/G composite, it can still deliver a high specific capacity of about 470 mAh g-1 at an ultrahigh current density of 5 A g-1, and exhibit a high capacity of 938 mAh g-1 at 0.1 A g-1 with excellent capacity retention in the following 300 cycles. The significantly enhanced Li-storage properties should be attributed to the co-existence of both highly conductive graphite and amorphous carbon in the Si/C/G composite. While the former can enhance the electrical conductivity of the obtained composite, the latter acts as the adhesives to connect the porous Si particulates and conductive graphite flakes to form robust and stable conductive network.

  17. The study of mechanical properties of pineapple leaf fibre reinforced tapioca based bioplastic resin composite

    Directory of Open Access Journals (Sweden)

    Mathivanan D.

    2016-01-01

    Full Text Available Natural fibre reinforced composite has brought the material engineering to a high new level of research. Natural fibres are compatible with matrices like polypropylene and can be used as reinforcement material to reduce the composition of plastic in a material. Natural fibres such as kenaf, pineapple leaf, and coir already found its importance in reducing the dependence of petroleum based products. However the biodegradability of the product at the end of the intended lifespan is still questionable. This has led many researches to look for a suitable replacement for synthetic fibres and achieve better adhesion between fibre and matrix. In this study, fiber and matrix which are hydrophilic in nature was used and the mixture was extruded and hot compressed to acquire better mechanical properties. The specimens were fabricated and tested according to ASTM D638. The 30% composition illustrates the best average modulus value among other composition and from this result it can be concluded that the increase of PALF fibre in TBR composite increases the modulus strength of the composite.

  18. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    Science.gov (United States)

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang

    2017-06-01

    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%. © 2017 Wiley Periodicals, Inc.

  19. Variations in survival time for amalgam and resin composite restorations: a population based cohort analysis.

    Science.gov (United States)

    Birch, S; Price, R; Andreou, P; Jones, G; Portolesi, A

    2016-09-01

    To estimate the association between the restorative material used and time to further treatment across population cohorts with universal coverage for dental treatment. Cohort study of variation in survival time for tooth restorations over time and by restoration material used based on an Accelerated Failure Time model. Primary dental care clinics. Members of Canada's First Nations and Inuit population covered by the Non-Insured Health Benefits program of Health Canada for the period April 1, 1999 to March 31, 2012. Tooth restorations using resin composite or amalgam material. Survival time of restoration to further treatment. Median survival time for resin composite was 51 days longer than amalgam, for restorations placed in 1999-2000. This difference was not statistically significant (p⟩0.05). Median survival times were lower for females, older subjects. Those visiting the dentist annually, and decreased monotonically over time from 11.2 and 11.3 years for resin composite and amalgam restorations respectively placed in 1999-2000 to 6.9 and 7.0 years for those placed in 2009-10. Resin composite restorations performed no better than amalgams over the study period, but cost considerably more. With the combination of the overall decrease in survival times for both resin composite and amalgam restorations and the increase in use of resin composite, the costs of serving Health Canada's Non-Insured Health Benefits population will rise considerably, even without any increase in the incidence of caries. Copyright© 2016 Dennis Barber Ltd

  20. R-curve behavior and micromechanisms of fracture in resin based dental restorative composites.

    Science.gov (United States)

    Shah, M B; Ferracane, J L; Kruzic, J J

    2009-10-01

    The fracture properties and micromechanisms of fracture for two commercial dental composites, one microhybrid (FiltekZ250) and one nanofill (FiltekSupreme Plus), were studied by measuring fracture resistance curves (R-curves) using pre-cracked compact-tension specimens and by conducting both unnotched and double notched four point beam bending experiments. Four point bending experiments showed about 20% higher mean flexural strength of the microhybrid composite compared to the nanofill. Rising fracture resistance was observed over approximately 1 mm of crack extension for both composites, and higher overall fracture resistance was observed for the microhybrid composite. Such fracture behavior was attributed to crack deflection and crack bridging toughening mechanisms that developed with crack extension, causing the toughness to increase. Despite the lower strength and toughness of the present nanofill composite, based on micromechanics observations, large nanoparticle clusters appear to be as effective at deflecting cracks and imparting toughening as solid particles. Thus, with further microstructural refinement, it should be possible to achieve a superior combination of aesthetic and mechanical performance using the nanocluster approach for dental composites.

  1. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system.

    Science.gov (United States)

    Ha, Sung Min; Kwon, O Hwan; Oh, Yu Gyeong; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Kim, Byoung Gak; Yoo, Youngjae

    2015-12-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K) -1 , which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

  2. Tribological properties of Al 7075 alloy based composites strengthened with Al2O3 fibres

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2011-04-01

    Full Text Available Wear resistance of 7075 aluminium alloy based composite materials reinforced with Al2O3 Saffil fibres was investigated. The measurementsof wear were performed applying the pin-on-disc method at dry friction conditions with the gray iron counterpart. The effects ofpressure of composite samples on the counterpart made of gray iron and the orientation of fibers in relation to the friction surface on wear rate were determined. The materials were produced by squeeze casting method where 80-90% porous ceramic preform were infiltrated.After T6 heat treatment hardness increased about 50-60% both for unreinforced alloy and composites containing strengthening Saffilfibres. Wear resistance of composite materials in relation to the unreinforced 7075 alloy was slightly worse at lower pressure of 0.8 MPa. Under higher pressure of 1.2 MPa wear resistance of unreinforced 7075 alloy was even better whereas no effect of orientation of fibers on wear in composite materials was observed. Additionally, significant wear of counterface in the presence of debris with fragmented Al2O3 fibres as abrasives was observed. Wear resistance improvement of composite materials was obtained when with alumina Saffil fibres Carbon C fibres in the preforms were applied.

  3. Functionalized carbon nanotube via distillation precipitation polymerization and its application in nafion-based composite membranes.

    Science.gov (United States)

    He, Guangwei; Zhao, Jing; Hu, Shen; Li, Lingqiao; Li, Zongyu; Li, Yifan; Li, Zhen; Wu, Hong; Yang, Xinlin; Jiang, Zhongyi

    2014-09-10

    The objective of this study is to develop a novel approach to in situ functionalizing multiwalled carbon nanotubes (MWCNTs) and exploring their application in Nafion-based composite membranes for efficient proton conduction. Covalent grafting of acrylate-modified MWCNTs with poly(methacrylic acid-co-ethylene glycol dimethacrylate), poly(vinylphosphonic acid-co-ethylene glycol dimethacrylate), and sulfonated poly(styrene-co-divinylbenzene) was achieved via surface-initiated distillation precipitation polymerization. The formation of core-shell structure was verified by TEM images, and polymer layers with thickness around 30 nm were uniformly covered on the MWCNTs. The graft yield reached up to 93.3 wt % after 80 min of polymerization. The functionalized CNTs (FCNTs) were incorporated into the Nafion matrix to prepare composite membranes. The influence of various functional groups (-COOH, -PO3H2, and -SO3H) in FCNTs on proton transport of the composite membranes was studied. The incorporation of FCNTs afforded the composite membranes significantly enhanced proton conductivities under reduced relative humidity. The composite membrane containing 5 wt % phosphorylated MWCNTs (PCNTs) showed the highest proton conductivity, which was attributed to the construction of lower-energy-barrier proton transport pathways by PCNTs, and excellent water-retention and proton-conduction properties of the cross-linked polymer in PCNTs. Moreover, the composite membranes exhibited an enhanced mechanical stability.

  4. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  5. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  6. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2014-09-01

    Full Text Available This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and

  7. Characterization of water sorption, solubility, and roughness of silorane- and methacrylate-based composite resins.

    Science.gov (United States)

    Giannini, M; Di Francescantonio, M; Pacheco, R R; Cidreira Boaro, L C; Braga, R R

    2014-01-01

    The objective of this study was to evaluate the surface roughness (SR), water sorption (WS), and solubility (SO) of four composite resins after finishing/polishing and after one year of water storage. Two low-shrinkage composites (Filtek Silorane [3M ESPE] and Aelite LS [Bisco Inc]) and two composites of conventional formulations (Heliomolar and Tetric N-Ceram [Ivoclar Vivadent]) were tested. Their respective finishing and polishing systems (Sof-Lex Discs, 3M ESPE; Finishing Discs Kit, Bisco Inc; and Astropol F, P, HP, Ivoclar Vivadent) were used according to the manufacturers' instructions. Ten disc-shaped specimens of each composite resin were made for each evaluation. Polished surfaces were analyzed using a profilometer after 24 hours and one year. For the WS and SO, the discs were stored in desiccators until constant mass was achieved. Specimens were then stored in water for seven days or one year, at which time the mass of each specimen was measured. The specimens were dried again and dried specimen mass determined. The WS and SO were calculated from these measurements. Data were analyzed by two-way analysis of variance and Tukey post hoc test (α=0.05). Filtek Silorane showed the lowest SR, WS, and SO means. Water storage for one year increased the WS means for all composite resins tested. The silorane-based composite resin results were better than those obtained for methacrylate-based resins. One-year water storage did not change the SR and SO properties in any of the composite resins.

  8. Effect of Energy Drinks on Discoloration of Silorane and Dimethacrylate-Based Composite Resins.

    Science.gov (United States)

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Ahangari, Zohreh; Khafri, Soraya; Rahmani, Aghil

    2016-08-01

    This study aimed to assess the effects of two energy drinks on color change (ΔE) of two methacrylate-based and a silorane-based composite resin after one week and one month. Thirty cubic samples were fabricated from Filtek P90, Filtek Z250 and Filtek Z350XT composite resins. All the specimens were stored in distilled water at 37°C for 24 hours. Baseline color values (L*a*b*) of each specimen were measured using a spectrophotometer according to the CIEL*a*b* color system. Ten randomly selected specimens from each composite were then immersed in the two energy drinks (Hype, Red Bull) and artificial saliva (control) for one week and one month. Color was re-assessed after each storage period and ΔE values were calculated. The data were analyzed using the Kruskal Wallis and Mann-Whitney U tests. Filtek Z250 composite showed the highest ΔE irrespective of the solutions at both time points. After seven days and one month, the lowest ΔE values were observed in Filtek Z350XT and Filtek P90 composites immersed in artificial saliva, respectively. The ΔE values of Filtek Z250 and Z350XT composites induced by Red Bull and Hype energy drinks were not significantly different. Discoloration of Filtek P90 was higher in Red Bull energy drink at both time points. Prolonged immersion time in all three solutions increased ΔE values of all composites. However, the ΔE values were within the clinically acceptable range (<3.3) at both time points.

  9. Composites based on PET and red mud residues as catalyst for organic removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Bento, Natálya I.; Santos, Patrícia S.C. [Science and Technology Institute, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999, BR 267, Km 533, CEP 37715-400 Poços de Caldas, MG (Brazil); Souza, Talita E. de; Oliveira, Luiz C.A. [Department of Chemistry, Federal University of Minas Gerais, UFMG, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG (Brazil); Castro, Cínthia S., E-mail: cinthia.soares.castro@gmail.com [Science and Technology Institute, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999, BR 267, Km 533, CEP 37715-400 Poços de Caldas, MG (Brazil)

    2016-08-15

    Highlights: • Composite based on carbon/iron oxide from PET and red mud wastes for organic contaminants oxidation. • Composites are mainly composed of hematite and a carbon matrix from PET decomposition. • RM/PET-15 presents the highest methylene blue (MB) removal from water, by combined adsorption and oxidation processes. • The dye oxidation was confirmed by ESI-MS studies. • The RM/PET catalysts can be reused for at least four batch runs. - Abstract: In this study, we obtained a composite based on carbon/iron oxide from red mud and PET (poly(ethylene terephthalate)) wastes by mechanical mixture (10, 15 and 20 wt.% of PET powder/red mud) followed by a controlled thermal treatment at 400 °C under air. XRD analyses revealed that the α-Fe{sub 2}O{sub 3} is the main phase formed from red mud. TPR analyses showed that the iron oxide present in the composites undergoes reduction at lower temperature to form Fe{sup 2+} species present in Fe{sub 3}O{sub 4}, indicating that the iron oxide in the composite can exhibit greater reactivity in the catalytic processes compared to the original red mud. In fact, catalytic tests showed that the composites presented higher capacity to remove methylene blue dye (MB), presenting about 90% of removal after 24 h of reaction. The MB removal was also monitored by mass spectrometer with ionization via electrospray (ESI-MS), which demonstrated the occurrence of the oxidation process, showing the formation of MB oxidation products. The stability of the composites was confirmed after four reuse cycles. The results seem to indicate that PET carbon deposited over the iron oxide from red mud promotes adsorption of the contaminant allowing its contact with the iron atoms and their consequent reaction.

  10. Marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS

    Directory of Open Access Journals (Sweden)

    Luciano Ribeiro CORREA NETTO

    2015-10-01

    Full Text Available Marginal integrity is one of the most crucial aspects involved in the clinical longevity of resin composite restorations.Objective To analyze the marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS.Material and Methods A base composite (B was produced with an organic matrix with UDMA/TEGDMA and 70 wt.% of barium borosilicate glass particles. To produce the model composite, 25 wt.% of UDMA were replaced by POSS (P25. The composites P90 and TPH3 (TP3 were used as positive and negative controls, respectively. Marginal integrity (%MI was analyzed in bonded class I cavities. The volumetric polymerization shrinkage (%VS and the polymerization shrinkage stress (Pss - MPa were also evaluated.Results The values for %MI were as follows: P90 (100% = TP3 (98.3% = B (96.9% > P25 (93.2%, (p<0.05. The %VS ranged from 1.4% (P90 to 4.9% (P25, while Pss ranged from 2.3 MPa (P90 to 3.9 MPa (B. For both properties, the composite P25 presented the worst results (4.9% and 3.6 MPa. Linear regression analysis showed a strong positive correlation between %VS and Pss (r=0.97, whereas the correlation between Pss and %MI was found to be moderate (r=0.76.Conclusions The addition of 25 wt.% of POSS in methacrylate organic matrix did not improve the marginal integrity of class I restorations. Filtek P90 showed lower polymerization shrinkage and shrinkage stress when compared to the experimental and commercial methacrylate composite.

  11. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  12. Comparing and improving reconstruction methods for proxies based on compositional data

    Science.gov (United States)

    Nolan, C.; Tipton, J.; Booth, R.; Jackson, S. T.; Hooten, M.

    2017-12-01

    Many types of studies in paleoclimatology and paleoecology involve compositional data. Often, these studies aim to use compositional data to reconstruct an environmental variable of interest; the reconstruction is usually done via the development of a transfer function. Transfer functions have been developed using many different methods. Existing methods tend to relate the compositional data and the reconstruction target in very simple ways. Additionally, the results from different methods are rarely compared. Here we seek to address these two issues. First, we introduce a new hierarchical Bayesian multivariate gaussian process model; this model allows for the relationship between each species in the compositional dataset and the environmental variable to be modeled in a way that captures the underlying complexities. Then, we compare this new method to machine learning techniques and commonly used existing methods. The comparisons are based on reconstructing the water table depth history of Caribou Bog (an ombrotrophic Sphagnum peat bog in Old Town, Maine, USA) from a new 7500 year long record of testate amoebae assemblages. The resulting reconstructions from different methods diverge in both their resulting means and uncertainties. In particular, uncertainty tends to be drastically underestimated by some common methods. These results will help to improve inference of water table depth from testate amoebae. Furthermore, this approach can be applied to test and improve inferences of past environmental conditions from a broad array of paleo-proxies based on compositional data

  13. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  14. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  15. Graph-Based Semantic Web Service Composition for Healthcare Data Integration.

    Science.gov (United States)

    Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.

  16. An Analytical Model of Thermal Conductivity for Carbon/Carbon Composites with Pitch-Based Matrix

    Directory of Open Access Journals (Sweden)

    Zhi-Hai Feng

    2015-01-01

    Full Text Available The carbon/carbon (C/C composites are composed of carbon fibers, carbon matrix, and pores and cracks, which have been successfully used in various aerospace applications. In this paper, nanoscale submodel is proposed to describe the thermal conductivity of the matrix based on its microscopic structure, and then the submodel is incorporated into a microscale model to analytically predict the equivalent thermal conductivities of the composites by equivalent circuit approach. The results predicted by the present model agree well with those from the experimental measurements. Based on the model, the effects of the composite porosity as well as the thickness and porosity of the interface phase on the thermal performance of five composites are studied. It is found that the thermal conductivities show decreasing trends in responding to an increase in each of the three parameters. The composite porosity has a significant effect on the thermal conductivities both parallel and transverse to the fiber axis, while the thickness and the porosity of the interface phase remarkably affect the thermal conductivity only transverse to the fiber axis.

  17. Highly Sensitive Strain Sensors Based on Fragmentized Carbon Nanotube/Polydimethylsiloxane Composites.

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Janping; Lu, Ting; Pan, Linkun; Xuan, Fu-Zhen

    2018-03-21

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors have been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF <1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing. © 2018 IOP Publishing Ltd.

  18. A Knowledge-Based Tutor for Music Composition. CITE Report No. 16.

    Science.gov (United States)

    Holland, Simon

    The work described here forms part of a project using models of musical ideas within an artificial intelligence and education framework whose goal is to encourage and facilitate music composition by novices. Formal knowledge of the domain (popular music) is too incomplete and fragmented to support a traditional expert-based tutor for precisely…

  19. Dye-sensitized solar cells based on composite TiO2 nanoparticle ...

    Indian Academy of Sciences (India)

    Current density–voltage diagrams were preparedby potentiostat and solar simulator devices at air mass (AM) 1.5. It is determined that DSSCs based on composite NP–NR photoelectrode had the best conversion efficiency of 5.07%. Also, the results of the electrochemical modelling of these DSSCs indicated that solar cells ...

  20. Biological degradation of gas-filled composite materials on the base of polyethylene

    Science.gov (United States)

    Grigoreva, E. A.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2017-12-01

    Gas-filled composite materials based on polyethylene were obtained. It was assumed that introduction of porosity in polyethylene will improve the biodegradability of synthetic materials. The morphological and structural changes were estimated, physical and mechanical properties, stability in water and soil of these materials were determined. It is stated that filling the polymer matrix with pores increases the ability to degrade in nature.

  1. Thermophysical properties of cement based composites and their changes after artificial ageing

    Science.gov (United States)

    Šín, Peter; Pavlendová, Gabriela; Lukovičová, Jozefa; Kopčok, Michal

    2017-07-01

    The usage of recycled plastic materials in concrete mix gained increased attention. The behaviour of such environmental friendly material is studied. In this paper an investigation of the thermophysical properties of cement based composites containing plastic waste particles with different percentage is presented. Measurements were carried out using pulse transient method before and after artificial ageing in climatic chamber BINDER MKF (E3).

  2. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity

  3. "Greener" hybrid adhesives composed of urea formaldehyde resin and cottonseed meal for wood based composites

    Science.gov (United States)

    Urea formaldehyde (UF) resins are one of the most widely used adhesives in wood based composites. The major concerns of the resin utilization are free formaldehyde release and poor water resistance. As a renewable raw materials, water washed conttonseed meal can be used in wood bonding. To produce “...

  4. Effects of different cavity disinfectants on shear bond strength of a silorane-based resin composite.

    Science.gov (United States)

    Arslan, Soley; Yazici, A Ruya; Gorucu, Jale; Ertan, Atilla; Pala, Kansad; Ustun, Yakup; Antonson, Sibel A; Antonson, Donald E

    2011-07-01

    This in vitro study evaluated the effect of different cavity disinfection agents on bond strength of a silorane-based resin composite. Thirty-six caries-free human third mandibular molars sectioned in mesio-distal direction were mounted in acrylic resin with their flat dentin surfaces exposed. After the dentin surfaces were wet ground with # 600 silicon carbide paper, the teeth were randomly divided into 6 groups of 12 each according to the cavity disinfection agents; chlorhexidine (CHX); sodium hypochlorite (NaOCl), propolis, ozone, Er,Cr:YSGG laser and no treatment (control). After treatment of dentin surfaces with one of these cavity disinfection agents, Filtek Silorane adhesive system was applied. The silorane-based resin composite, Filtek Silorane was condensed into a mold and polymerized. After storage at 37°C for 24 hours, the specimens were tested in shear mode at a crosshead speed of 1.0 mm/minute. The results were analyzed by one-way ANOVA. No statistically significant difference was observed between the groups (p>0.05). The use of the tested cavity disinfection agents, chlorhexidine, sodium hypochlorite, propolis, ozone and Er,Cr:YSGG laser did not significantly affect the dentin bond strength of a silorane-based resin composite, filtek supreme. Cavity disinfectant applications did not affect the dentin bond strength of a silorane-based resin composite.

  5. Ply-based Optimization of Laminated Composite Shell Structures under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2012-01-01

    This work concerns a new ply-based parameterization for performing simultaneous material selection and topology optimization of fiber reinforced laminated composite structures while ensuring that a series of different manufacturing constraints are fulfilled. The material selection can either......) with an additional constraint on the maximum allowable amount mass....

  6. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure.

    Science.gov (United States)

    He, Fupo; Ye, Jiandong

    2013-08-01

    In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid) and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair.

  7. Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base

    Czech Academy of Sciences Publication Activity Database

    Paligová, M.; Vilčáková, J.; Sáha, P.; Křesálek, V.; Stejskal, Jaroslav; Quadrat, Otakar

    2004-01-01

    Roč. 335, 3-4 (2004), s. 421-429 ISSN 0378-4371 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : polymer composites * short carbon fibers * polyaniline base Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.369, year: 2004

  8. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  9. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  10. Bidirectional composition on lie groups for gradient-based image alignment.

    Science.gov (United States)

    Mégret, Rémi; Authesserre, Jean-Baptiste; Berthoumieu, Yannick

    2010-09-01

    In this paper, a new formulation based on bidirectional composition on Lie groups (BCL) for parametric gradient-based image alignment is presented. Contrary to the conventional approaches, the BCL method takes advantage of the gradients of both template and current image without combining them a priori. Based on this bidirectional formulation, two methods are proposed and their relationship with state-of-the-art gradient based approaches is fully discussed. The first one, i.e., the BCL method, relies on the compositional framework to provide the minimization of the compensated error with respect to an augmented parameter vector. The second one, the projected BCL (PBCL), corresponds to a close approximation of the BCL approach. A comparative study is carried out dealing with computational complexity, convergence rate and frequence of convergence. Numerical experiments using a conventional benchmark show the performance improvement especially for asymmetric levels of noise, which is also discussed from a theoretical point of view.

  11. Spent fuel isotopic composition data base system on WWW. SFCOMPO on W3

    International Nuclear Information System (INIS)

    Suyama, Kenya

    1997-11-01

    Spent Fuel Composition Data Base System 'SFCOMPO' has been developed on IBM compatible PC. This data base system is not widely used, since users must purchase the data base software by themselves. 'SFCOMPO on W3' is a system to overcome this problem. User can search and visualize the data in the data base by accessing WWW server through the Internet from local machine. Only a browsing software to access WWW should be prepared. It enables us to easily search data of spent fuel composition if we can access the Internet. This system can be operated on WWW server machine which supports use of Common Gateway Interface (CGI). This report describes the background of the development of SFCOMPO on W3 and is it's user's manual. (author)

  12. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  13. Kinetics of radiation-induced structural alterations in electron-irradiated polymer-based composites

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Potanin, A.S.; Koztaeva, U.P.

    2002-01-01

    Complete text of publication follows. In our previous studies measurements of internal friction temperature dependence were used for characterization of thermally activated and radiation-induced structural evolution in different types of polymer-based composites. This paper supplements these measurements with kinetic studies of internal friction (IF) parameters and EPR signals in a glass-cloth epoxy-filled laminate ST-ETF after electron irradiation up to doses of 1-10 MGy. Experiment have shown that the lifetime of free radicals in this composite considerably exceeds the characteristic time of molecular structural rearrangement due to scission and cross-linking after irradiation, as determined from IF measurements. This result is explained by slow proceeding of sterically hindered disproportionation reactions that stabilize the end groups of the macro-chain disrupt during irradiation and finally fix the act of scission. A mathematical model is formulated for description of structural evolution and alterations of IF parameters in polymer-based composites during and after electron irradiation. The description is based on the track model of radiation damage in polymers and phenomenological theory of radiation-induced structural transformations. General description does not give details of radiation-chemical conversion in different structural components of composites but indicates the direction of their structural evolution. In the model considered a composite material was divided into three parts (binder, filler, and a boundary layer). It was supposed that after primary distribution of radiation energy radiation-chemical conversion proceeds independently in each of these regions. It was also suggested that all the radical reactions were of the second order. On the example of glass-cloth laminate ST-ETF it is shown that this model allows to describe alterations in composite structural characteristics during irradiation and in the course of their self-organization after

  14. Chemical composition of organic bases from semicoking tar of lignites from the near-Moscow fields

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Polovetskaya, O.S. [Lev Tolstoi State Pedagogical University, Tula (Russian Federation)

    1999-02-01

    The chemical composition of organic bases from the semicoking tar of lignite from the near-Moscow fields was studied in detail by chemical functional, emission spectrum, and structural-group analyses, LR, UV and {sup 1}H and {sup 13}C NMR spectroscopy, cryoscopy, capillary gas chromatography, and chromatography-mass spectrometry. A scheme was developed for separation of the organic bases by adsorption liquid chromatography.

  15. Effect of 38% carbamide peroxide on the microleakage of silorane-based versus methacrylate-based composite restorations

    Directory of Open Access Journals (Sweden)

    Sedighe Sadat Hashemi Kamangar

    2014-08-01

    Full Text Available Objectives This study aimed to assess the effect of 38% carbamide peroxide on the microleakage of class V cavities restored with either a silorane-based composite or two methacrylate-based composites. Materials and Methods A total of 96 class V cavities were prepared on the buccal surface of extracted human teeth with both enamel and dentin margins and were randomly assigned into three groups of Filtek P90 (3M-ESPE + P90 system adhesive (3M-ESPE(group A, Filtek Z250 (3M-ESPE + Adper Prompt L-Pop (3M-ESPE(group B and Filtek Z350XT (3M-ESPE + Adper Prompt L-Pop (group C. Half of the teeth were randomly underwent bleaching (38% carbamide peroxide, Day White, Discus Dental, applying for 15 min, twice a day for 14 day while the remaining half (control were not bleached. Dye penetration was measured following immersion in basic fuchsine. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests at a level of 0.05. Results No significant differences were found between composites in the control groups in enamel (p = 0.171 or dentin (p = 0.094 margins. After bleaching, microleakage of Z250 (in enamel [p = 0.867] or dentin [p = 0.590] margins and Z350 (in enamel [p = 0.445] or dentin [p = 0.591] margins did not change significantly, but the microleakage of P90 significantly increased in both enamel (p = 0.042 and dentin (p = 0.002 margins. Conclusions No significant differences were noted between the bleached and control subgroups of two methacrylate-based composites in enamel or dentin margins. Microleakage of silorane-based composite significantly increased after bleaching.

  16. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    Science.gov (United States)

    Jiang, F. D.; Feng, J. Y.

    2008-02-01

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.

  17. Production of Heat Resistant Composite based on Siloxane Elastomer and Multiwall Carbon Nanotubes

    Science.gov (United States)

    Bessonov, I. V.; Karelina, N. V.; Kopitsyna, M. N.; Morozov, A. S.; Reznik, S. V.; Skidchenko, V. Yu.

    2016-02-01

    Development of a new generation of composite with unique thermal properties is an important task in the fields of science and technology where material is operated at high temperatures and exposure to a short-wave radiation. Recent studies show that carbon nanomaterials (fullerenes and carbon nanotubes) could improve the thermal, radiation and thermal-oxidative stability of the polymer matrix. In this article the development of a new heat resistant composite based on elastomer and carbon nanotubes (CNT) was performed and physicochemical properties of final product were evaluated.

  18. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    International Nuclear Information System (INIS)

    Jiang, F D; Feng, J Y

    2008-01-01

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap E g is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap E g induced by anion alloying are addressed

  19. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Energy Technology Data Exchange (ETDEWEB)

    Zhul' kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L., E-mail: iordan@chph.ras.ru [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  20. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    International Nuclear Information System (INIS)

    Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-01-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  1. Ply-based Optimization of Laminated Composite Shell Structures under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2012-01-01

    This work concerns a new ply-based parameterization for performing simultaneous material selection and topology optimization of fiber reinforced laminated composite structures while ensuring that a series of different manufacturing constraints are fulfilled. The material selection can either...... be performed on the basis of different materials, and/or consist of discrete selection of the same orthotropic material with different orientations of the fibers. The problem considered is the optimization of a general laminated composite shell structure with respect to maximum stiffness (minimum compliance...

  2. A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production.

    Science.gov (United States)

    Xing, Zheng; Chen, Zhigang; Zong, Xu; Wang, Lianzhou

    2014-06-28

    A new type of graphitic C3N4-based composite photocatalysts was designed and prepared by co-loading PEDOT as a hole transport pathway and Pt as an electron trap on C3N4. The as-prepared C3N4-PEDOT-Pt composites showed drastically enhanced activity for visible light-driven photocatalytic H2 production compared to those of C3N4-PEDOT and C3N4-Pt, possibly due to the spatial separation of the reduction and oxidation reaction sites.

  3. Plasticized Biodegradable Poly(lactic acid Based Composites Containing Cellulose in Micro- and Nanosize

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2013-01-01

    Full Text Available The aim of this work was to study the characteristics of thermal processed poly(lactic acid composites. Poly(ethylene glycol (PEG400, microcrystalline cellulose (MCC, and ultrasound-treated microcrystalline cellulose (USMCC were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, wide angle X-ray diffraction (WAXD, and degradation test.

  4. Response of multiferroic composites inferred from a fast-Fourier-transform-based numerical scheme

    International Nuclear Information System (INIS)

    Brenner, Renald; Bravo-Castillero, Julián

    2010-01-01

    The effective response and the local fields within periodic magneto-electric multiferroic composites are investigated by means of a numerical scheme based on fast Fourier transforms. This computational framework relies on the iterative resolution of coupled series expansions for the magnetic, electric and strain fields. By using an augmented Lagrangian formulation, a simple and robust procedure which makes use of the uncoupled Green operators for the elastic, electrostatics and magnetostatics problems is proposed. Its accuracy is assessed in the cases of laminated and fibrous two-phase composites for which analytical solutions exist

  5. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders.

    Science.gov (United States)

    Wang, Xinjie; Guo, Yuwen; Liu, Jingyang; Qiao, Qi; Liang, Jijun

    2010-12-01

    The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Leaching of the potentially toxic pollutants from composites based on waste raw material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available The disposal of the fly ash generated in coal based power-plants may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Also, there is a risk of leaching even when fly ash is built-in the construction composites. Fly ashes from various landfills were applied in several composite samples (mortar, concrete and brick without any physical or thermal pre-treatment. The leachability of the potentially toxic pollutants from the fly ash based products was investigated. The leaching behavior and potential environmental impact of the 11 potentially hazardous elements was tracked: Pb, Cd, Zn, Cu, Ni, Cr, Hg, As, Ba, Sb and Se. A detailed study of physico-chemical characteristics of the fly ash, with accent on trace elements and the chemical composition investigation is included. Physico/chemical properties of fly ash were investigated by means of X-ray fluorescence, differential thermal analysis and X-ray diffraction methods. Scanning electron microscope was used in microstructural analysis. The results show that most of the elements are more easily leachable from the fly ash in comparison with the fly ash based composites. The leaching of investigated pollutants is within allowed range thus investigated fly ashes can be reused in construction materials production.

  7. Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material

    International Nuclear Information System (INIS)

    Birčáková, Zuzana; Kollár, Peter; Füzer, Ján; Bureš, Radovan; Fáberová, Mária

    2017-01-01

    The analytical expression for the initial magnetization curve for Fe-phenolphormaldehyde resin composite material was derived based on the already proposed ideas of the magnetization vector deviation function and the domain wall annihilation function, characterizing the reversible magnetization processes through the extent of deviation of magnetization vectors from magnetic field direction and the irreversible processes through the effective numbers of movable domain walls, respectively. As for composite materials the specific dependences of these functions were observed, the ideas were extended meeting the composites special features, which are principally the much higher inner demagnetizing fields produced by magnetic poles on ferromagnetic particle surfaces. The proposed analytical expression enables us to find the relative extent of each type of magnetization processes when magnetizing a specimen along the initial curve. - Highlights: • Analytical expression of the initial curve derived for SMC. • Initial curve described by elementary magnetization processes. • Influence of inner demagnetizing fields on magnetization process in SMC.

  8. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Esfandiari, Nina; Baracos, Vickie; Jägersand, Martin

    2016-02-01

    The proportions of muscle and fat tissues in the human body, referred to as body composition is a vital measurement for cancer patients. Body composition has been recently linked to patient survival and the onset/recurrence of several types of cancers in numerous cancer research studies. This paper introduces a fully automatic framework for the segmentation of muscle and fat tissues from CT images to estimate body composition. We developed a novel finite element method (FEM) deformable model that incorporates a priori shape information via a statistical deformation model (SDM) within the template-based segmentation framework. The proposed method was validated on 1000 abdominal and 530 thoracic CT images and we obtained very good segmentation results with Jaccard scores in excess of 90% for both the muscle and fat regions.

  9. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  10. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  11. Polymer composites on the aryl alicyclic polyimide base with another polymers

    International Nuclear Information System (INIS)

    Zhubanov, B.; Kudajkulova, S.; Musapirova, Z.

    2003-01-01

    Optimal conditions for synthesis of polymer composites on the base of aryl alicyclic polyimide (PI) with thermo stable polymers - polycarbonate (PC) and polysulfone (PS) - were selected. It was found 2 ways for obtain polymer-polymer composites: 1) mechanical mixing in m-cresol the polymers at different ratio of PI/PC and PI/PS equal to 90/10, 80/20,70/30; 2) reaction mixing of solution of PC or PS in m-cresol with monomers for syntheses of polyimide - tree cyclo decen tetra carbonic acid and oxydianiline. Physico-chemical properties and structure of the composites were studied by methods of UR-, X-ray-spectroscopy, optical microscopy and viscosimeter. X-ray phase spectroscopy possess to determine structure of polymers and their changes, phase transformations and conformation of macromolecules under different kinds of influence. It was shown that new modern materials with nano structure can be synthesised by suggested method

  12. An Information System of Human Body Composition Based on Android Client

    Directory of Open Access Journals (Sweden)

    Bing Liu

    2014-12-01

    Full Text Available This paper proposes an information system of human body composition based on Android client. The system consists of the Android client, the measurement unit, the Database Server, the FTP Server, the Web Server and portable storage devices. It is able to collect, restore, synchronize, and batch import and export user profile information and human body composition information. The merits of the system are that the development cycle is shortened, the cost and energy consumption of equipment are reduced, and the portability and mobility are enhanced. The system has also optimized the communication of human body composition measurement. As a result, the client and the measurement unit are robust and capable of addressing the fault and solving deficiencies in the communication process. With a more reliable system, accurate transmission of data can be guaranteed.

  13. Preparation and Magnetic Properties of MnBi-based Hard/Soft Composite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yilong; Liu, Xubo; Gandha, Kinjal; Vuong, Nguyen V.; Yang, Y. B.; Yang, Jinbo; Poudyal, Narayan; Cui, Jun; Liu, J.Ping

    2014-05-07

    Bulk anisotropic composite magnets based on MnBi/Co(Fe) exhibiting the different morphology of the soft magnetic phase were prepared by powder metallurgy processing. First, single-phase MnBi bulk magnets were produced using a maximum energy product [(BH)m] of 6.3 MGOe at room temperature. The nanoscale soft phase with the different morphology was then added to form a composite magnet. It was observed that addition of magnetic soft-phase nanoparticles and nanoflakes causes a dramatic coercivity reduction. However, the addition of soft magnetic phase nanowires enhanced the composite magnetization without sacrificing the coercivity. Nevertheless, a kink was still observed on the demagnetization curves and the coercivity decreased when the soft-phase content was larger than 10 wt. %, which was caused by the agglomeration of the soft phase nanowires that also led to a decreased degree of texture.

  14. The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets

    Science.gov (United States)

    Perets, Yulia; Aleksandrovych, Lyudmila; Melnychenko, Mykola; Lazarenko, Oleksandra; Vovchenko, Lyudmila; Matzui, Lyudmila

    2017-06-01

    In the present work, we have investigated the concentration dependences of electrical conductivity of monopolymer composites with graphite nanoplatelets or multiwall carbon nanotubes and hybrid composites with both multiwall carbon nanotubes and graphite nanoplatelets. The latter filler was added to given systems in content of 0.24 vol%. The content of multiwall carbon nanotubes is varied from 0.03 to 4 vol%. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment for 20 min. It was found that the addition of nanocarbon to the low-viscosity suspension (polymer, acetone, hardener) results in formation of two percolation transitions. The percolation transition of the composites based on carbon nanotubes is the lowest (0.13 vol%).

  15. Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material

    Energy Technology Data Exchange (ETDEWEB)

    Birčáková, Zuzana, E-mail: zuzana.bircakova@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Kollár, Peter; Füzer, Ján [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Bureš, Radovan; Fáberová, Mária [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2017-02-01

    The analytical expression for the initial magnetization curve for Fe-phenolphormaldehyde resin composite material was derived based on the already proposed ideas of the magnetization vector deviation function and the domain wall annihilation function, characterizing the reversible magnetization processes through the extent of deviation of magnetization vectors from magnetic field direction and the irreversible processes through the effective numbers of movable domain walls, respectively. As for composite materials the specific dependences of these functions were observed, the ideas were extended meeting the composites special features, which are principally the much higher inner demagnetizing fields produced by magnetic poles on ferromagnetic particle surfaces. The proposed analytical expression enables us to find the relative extent of each type of magnetization processes when magnetizing a specimen along the initial curve. - Highlights: • Analytical expression of the initial curve derived for SMC. • Initial curve described by elementary magnetization processes. • Influence of inner demagnetizing fields on magnetization process in SMC.

  16. Study of molybdenum/lanthanum-based composite conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Yang Lihui; Li Junqing; Lin Cunguo; Zhang Milin; Wu Jianhua

    2011-01-01

    The molybdenum/lanthanum-based (Mo/La) composite conversion coating on AZ31 magnesium alloy was investigated and the corrosion resistance was evaluated as well. The morphology, composition and corrosion resistance of the coating were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and potentiodynamic polarization analysis, respectively. The results revealed that the conversion coating consisted of spherical nodular particles, which was mainly composed of Mo, La, O and Mg. After conversion treatment the corrosion potential shifts about 500 mV positively, and the corrosion current density decreases two orders of magnitude. The corrosion resistance of AZ31 alloy is remarkably improved by Mo/La composite conversion coating.

  17. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce expanded nano composites (foams) based on starch, PVA and sodium montmorillonite and characterize them according to their expansion index (EI), density, water absorption capacity (WSC), mechanical properties and X-ray diffraction. The nano composites were prepared in a single-screw extruder using different starch contents (97.6 - 55.2 g/100 g formulation), PVA (0 - 40 g/100 g formulation), unmodified nano clay - Closite - Na (0 - 4. 8 g/100 g formulation) and glycerol (20 g/100 g formulation) as plasticizer. The addition of montmorillonite and PVA resulted in an increase of EI and a decrease of density of the samples, and reduced WSC and increased the mechanical strength of the foams. Through the analysis of X-ray diffraction can be observed that the addition of montmorillonite led to production of intercalated nano composites in all samples. (author)

  18. Economical bridge solutions based on innovative composite dowels and integrated abutments ecobridge

    CERN Document Server

    Băncilă, Radu

    2015-01-01

    This book is an outcome of the research project “ECOBRIDGE – Demonstration of ECOnomical BRIDGE solutions based on innovative composite dowels and integrated abutments – RFCS – CT 2010-00024”, which has been co-funded by the Research Fund for Coal and Steel (R.F.C.S.) of the European Community. The main topics of the book are the following: design of integral bridges, innovative composite dowels for the shear transmission, construction of bridges, structural analysis of bridges and monitoring. The book joins the technical experience and the contributions of the involved research partners. The technical content of all the papers is present-day in the field of the design, construction and monitoring of innovative composite bridges. The efficient design and construction improve and consolidate the market position of steel construction and steel producing industry. In addition, the advanced forms of construction are contributing to savings in material and energy consumption for the structure during prod...

  19. Influence of microbial composition on foam formation in a manure-based digester

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; O-Thong, Sompong

    2012-01-01

    manure-based digester of Lemvig biogas plant that was facing foaming problem, comparing with three non-foaming digesters. The research was focused on the quantitative and qualitative analysis of Bacteria and Archaea population and on the identification of Gordonia sp. The reactor samples were analysed...... composition and the presence of specific microorganisms. The filamentous microorganisms are known to be the major cause of foaming in sludge digester as they are attached to the gas bubbles and accumulated on the surface of the reactor. The present case study investigated the microbial composition of one...... for foaming properties and microbial analysis. The dynamic population of Bacteria and Archaea were studied by PCR-DGGE method. The results obtained from this study showed that the composition of Bacteria in all reactors was not significantly different indicating that foaming was not caused by Bacteria...

  20. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  1. Composite Based Chitosan/Zinc-Doped HA as a Candidate Material for Bone Substitute Applications

    Science.gov (United States)

    Wicaksono, S. T.; Rasyida, A.; Purnomo, A.; Pradita, N. N.; Ardhyananta, H.; Hidayat, M. I. P.

    2017-05-01

    The composite based Zinc-doped in Chitosan/Hydroxyapatite was successfully prepared by wet mixing method through the addition of 10, 15, and 20wt% of chitosan. The addition of Chitosan increased the compressive strength and the modulus elasticity. However, it decreased the density and the surface hardness of HA-Zn. Mechanical characterization revealed that these composites are suitable as a candidate of a cancellous bone substitute. Composite with 10% chitosan has compressive strength and modulus elasticity of 57.03 MPa and 0.15 GPa, respectively. Hence, it has the physical and mechanical properties that meet the standards as a cancellous bone substitute material. Also, in vitro biocompatibility test against BHK-21 cells exhibited non-toxic materials.

  2. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  3. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  4. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    International Nuclear Information System (INIS)

    Hernandez-Lopez, S; Vigueras-Santiago, E; Mayorga-Rojas, M; Reyes-Contreras, D

    2009-01-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30 μm, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T g of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T g , producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 μ m thickness sample the hysteresis loop was lost after four cycles.

  5. Tannin-based flax fibre reinforced composites for structural applications in vehicles

    Science.gov (United States)

    Zhu, J.; Abhyankar, H.; Nassiopoulos, E.; Njuguna, J.

    2012-09-01

    Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°]4 and [0, +45°, 90°, -45°]2) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.

  6. Segmentation of 9Cr Steel Samples based on Composition and Mechanical Property

    Science.gov (United States)

    Krishnamurthy, Narayanan; Maddali, Siddharth; Vyacheslav, Romanov; Hawk, Jeffrey

    Data mining approaches were used to look at composition-process-property linkage in 9Cr steel. We present results of cluster identification using 7 principal composition elements and analyze its significance with respect to mechanical tensile properties. Data set comprises 82 compositional variants of 9Cr steel whose Cr weight fraction ranges 8-13%. The alloys underwent heat treatments (homogenization, normalization, and 1 to 3 tempering cycles) and were tested for tensile and creep properties at room temperature and elevated temperatures (427/800 oC median/max). In this study, alloys were partitioned into groups, and their mechanical properties were analyzed for significant differences across groups. Normalized weight fractions were used to delineate groups of alloys. Partitioning Around Medoids (PAM) clustering was used, with dissimilarities instead of distance metrics. Dataset of 21 chemical components, with Fe being the majority component, followed by Cr and C. Major contributors of composition to PAM clustering were obtained from PCA scores. Mean ultimate tensile strength of segmented groups of alloys was analyzed with ANOVA & Tukey HSD tests to identify the final 3 groups based on composition and mechanical property.

  7. Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceuticals.

    Science.gov (United States)

    Bridgeman, Devon; Corral, Javier; Quach, Ashley; Xian, Xiaojun; Forzani, Erica

    2014-09-09

    Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper, the sensor responds to the environment's relative humidity and changes color accordingly. The humidity indicator is prepared by casting a few microliters of low-toxicity reagents on a nontoxic substrate. The sensing material is a newly synthesized liquid composite that comprises a hygroscopic medium for environmental humidity capture and a color indicator that translates the humidity level into a distinct color change. Sodium borohydride was used to form a liquid composite medium, and DenimBlu30 dye was used as a redox indicator. The liquid composite medium provides a hygroscopic response to the relative humidity, and DenimBlu30 translates the chemical changes into a visual change from yellow to blue. The borate-redox dye-based humidity sensor was prepared, and then Fourier transform infrared spectroscopy, differential scanning calorimetry, and image analysis methods were used to characterize the chemical composition, optimize synthesis, and gain insight into the sensor reactivity. Test results indicated that this new sensing material can detect relative humidity in the range of 5-100% in an irreversible manner with good reproducibility and high accuracy. The sensor is a low-cost, highly sensitive, easy-to-use humidity indicator. More importantly, it can be easily packaged with products to monitor humidity levels in pharmaceutical and food packaging.

  8. Tannin-based flax fibre reinforced composites for structural applications in vehicles

    International Nuclear Information System (INIS)

    Zhu, J; Abhyankar, H; Nassiopoulos, E; Njuguna, J

    2012-01-01

    Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°] 4 and [0, +45°, 90°, −45°] 2 ) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.

  9. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi [Department of Chemistry, Indonesia University of Education, Setiabudi 229 Bandung, West Java, Indonesia 40154 (Indonesia)

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  10. Carbon nanotube-based structural health monitoring for fiber reinforced composite materials

    Science.gov (United States)

    Liu, Hao; Liu, Kan; Mardirossian, Aris; Heider, Dirk; Thostenson, Erik

    2017-04-01

    In fiber reinforced composite materials, the modes of damage accumulation, ranging from microlevel to macro-level (matrix cracks development, fiber breakage, fiber-matrix de-bonding, delamination, etc.), are complex and hard to be detected through conventional non-destructive evaluation methods. Therefore, in order to assure the outstanding structural performance and high durability of the composites, there has been an urgent need for the design and fabrication smart composites with self-damage sensing capabilities. In recent years, the macroscopic forms of carbon nanotube materials have been maturely investigated, which provides the opportunity for structural health monitoring based on the carbon nanotubes that are integrated in the inter-laminar areas of advanced fiber composites. Here in this research, advanced fiber composites embedded with laminated carbon nanotube layers are manufactured for damage detection due to the relevant spatial electrical property changes once damage occurs. The mechanical-electrical coupling response is recorded and analyzed during impact test. The design and manufacturing of integrating the carbon nanotubes intensely affect the detecting sensitivity and repeatability of the integrated multifunctional sensors. The ultimate goal of the reported work is to develop a novel structural health monitoring method with the capability of reporting information on the damage state in a real-time way.

  11. Sintering of fly ash based composites with zeolite and bentonite addition for application in construction materials

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2017-01-01

    Full Text Available Due to pozzolanic characteristics, fly ash is commonly used as a cement replacement in construction composites. Addition of natural clays with sorption ability (i.e. zeolite and bentonite in to the fly ash based construction materials is of both scientific and industrial interest. Namely, due to the application of sorptive clay minerals, it is possible to immobilize toxic heavy metals from the composite structure. The thermal compatibility of fly ash and zeolite, as well as fly ash and bentonite, within the composite was observed during sintering procedure. The starting components were used in 1:1 ratio and they were applied without additional mechanical treatment. The used compaction pressure for the tablets was 2 t•cm-2. The sintering process was conducted at 1000ºC and 1200ºC for two hours in the air atmosphere. The mineralogical phase composition of the non-treated and sintered samples was analyzed using X-ray diffraction method. Scanning electron microscopy was applied in the analysis of the microstructure of starting and sintered samples. The thermal behavior was observed via DTA method. The influence of temperature on the properties of fly ash-zeolite and fly ash-bentonite composites was investigated. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45008 and OI 172057

  12. The Effect of Hydrogen Peroxide 35% on Surface Roughness of Silorane and Methacrylate Based Composites

    Directory of Open Access Journals (Sweden)

    L. Rezaei Sofi

    2015-04-01

    Full Text Available Introduction & Objectives: Surface roughness affects beauty, hygiene, plaque retention and health of the gingival adjacent to the composite restoration. Many people use bleaching agents to beautify their teeth that may lead to changes in surface roughness. This study was designed to compare the silorane and methacrylate-based composites in bleached teeth. Materials & Methods: In this experimental study 48 composite resin disks were prepared and divided into 4 groups: P90, Z250, Z250XT and Z350XT (n=12. To determine the surface roughness, surface profile measurement of the samples was performed using profilometer. Samples of each diet group underwent 35% hydrogen peroxide in office whitening (Hpmax in three 45-minute sessions one week apart. The secondary instances of surface profile was then measured. The data collected by the Kolmogorov-Smirnov test, one-way ANOVA, Tukey test and paired t- test at a significance level of 0.05 were analyzed using spss16. Results: There was a significant difference (P<0.05 in the surface roughness after bleaching on composite Z350XT with P90 and Z350XT with Z250. The surface roughness of all groups before and after bleaching showed a significant difference (P<0.05. Conclusion: The use of hydrogen peroxide 35% causes a significant increase in the surface roughness of composite P90, Z250, Z250XT and Z350XT. (Sci J Hamadan Univ Med Sci 2015; 22 (1:23-29

  13. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  14. The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets.

    Science.gov (United States)

    Perets, Yulia; Aleksandrovych, Lyudmila; Melnychenko, Mykola; Lazarenko, Oleksandra; Vovchenko, Lyudmila; Matzui, Lyudmila

    2017-12-01

    In the present work, we have investigated the concentration dependences of electrical conductivity of monopolymer composites with graphite nanoplatelets or multiwall carbon nanotubes and hybrid composites with both multiwall carbon nanotubes and graphite nanoplatelets. The latter filler was added to given systems in content of 0.24 vol%. The content of multiwall carbon nanotubes is varied from 0.03 to 4 vol%. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment for 20 min. It was found that the addition of nanocarbon to the low-viscosity suspension (polymer, acetone, hardener) results in formation of two percolation transitions. The percolation transition of the composites based on carbon nanotubes is the lowest (0.13 vol%).It was determined that the combination of two electroconductive fillers in the low-viscosity polymer results in a synergistic effect above the percolation threshold, which is revealed in increase of the conductivity up to 20 times. The calculation of the number of conductive chains in the composite and contact electric resistance in the framework of the model of effective electrical resistivity allowed us to explain the nature of synergistic effect. Reduction of the electric contact resistance in hybrid composites may be related to a thinner polymer layer between the filler particles and the growing number of the particles which take part in the electroconductive circuit.

  15. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O. [LLNL; (Sandia)

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  16. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  17. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  18. A base composition analysis of natural patterns for the preprocessing of metagenome sequences.

    Science.gov (United States)

    Bonham-Carter, Oliver; Ali, Hesham; Bastola, Dhundy

    2013-01-01

    On the pretext that sequence reads and contigs often exhibit the same kinds of base usage that is also observed in the sequences from which they are derived, we offer a base composition analysis tool. Our tool uses these natural patterns to determine relatedness across sequence data. We introduce spectrum sets (sets of motifs) which are permutations of bacterial restriction sites and the base composition analysis framework to measure their proportional content in sequence data. We suggest that this framework will increase the efficiency during the pre-processing stages of metagenome sequencing and assembly projects. Our method is able to differentiate organisms and their reads or contigs. The framework shows how to successfully determine the relatedness between these reads or contigs by comparison of base composition. In particular, we show that two types of organismal-sequence data are fundamentally different by analyzing their spectrum set motif proportions (coverage). By the application of one of the four possible spectrum sets, encompassing all known restriction sites, we provide the evidence to claim that each set has a different ability to differentiate sequence data. Furthermore, we show that the spectrum set selection having relevance to one organism, but not to the others of the data set, will greatly improve performance of sequence differentiation even if the fragment size of the read, contig or sequence is not lengthy. We show the proof of concept of our method by its application to ten trials of two or three freshly selected sequence fragments (reads and contigs) for each experiment across the six organisms of our set. Here we describe a novel and computationally effective pre-processing step for metagenome sequencing and assembly tasks. Furthermore, our base composition method has applications in phylogeny where it can be used to infer evolutionary distances between organisms based on the notion that related organisms often have much conserved code.

  19. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    Science.gov (United States)

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Novel high-strength Fe-based composite materials with large plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzna; Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Siegel, Uwe; Bartusch, Birgit; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland)

    2007-07-01

    Among glass-forming alloy systems reported so far, Fe-based bulk metallic glasses play a special role. Compared to other amorphous alloys e.g. Zr-, Ti-based, such glasses show superior mechanical strength. However, due to the general brittleness their wider application as structural materials is strongly restricted. The alternative approach to overcome this defect is to design BMG composites. In this work we present a series of new Fe-Cr-Mo-Ga-(Si,C) composite materials derived from an Fe-Cr-Mo-Ga-C-P-B glassy alloy, with the aim to improve the ductility of this high-strength material. The effect of the composition and the phase formation on the resulting mechanical properties was investigated. It has been found that the formation of a complex microstructure, which essentially consists of soft Ga-rich dendrites embedded in a hard Cr- and Mo-rich matrix, leads to a material with excellent compressive mechanical properties. While the obtained values of true strength are comparable with data reported for Fe-Cr-Mo-Ga-C-P-B BMG, the values of true strain are greatly improved for investigated composites.

  1. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    Science.gov (United States)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  2. Image segmentation with a novel regularized composite shape prior based on surrogate study.

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2016-05-01

    Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived. The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

  3. Quantitative analysis of mutation and selection pressures on base composition skews in bacterial chromosomes

    Directory of Open Access Journals (Sweden)

    Chen Carton W

    2007-08-01

    Full Text Available Abstract Background Most bacterial chromosomes exhibit asymmetry of base composition with respect to leading vs. lagging strands (GC and AT skews. These skews reflect mainly those in protein coding sequences, which are driven by asymmetric mutation pressures during replication and transcription (notably asymmetric cytosine deamination plus subsequent selection for preferred structures, signals, amino acid or codons. The transcription-associated effects but not the replication-associated effects contribute to the overall skews through the uneven distribution of the coding sequences on the leading and lagging strands. Results Analysis of 185 representative bacterial chromosomes showed diverse and characteristic patterns of skews among different clades. The base composition skews in the coding sequences were used to derive quantitatively the effect of replication-driven mutation plus subsequent selection ('replication-associated pressure', RAP, and the effect of transcription-driven mutation plus subsequent selection at translation level ('transcription-associate pressure', TAP. While different clades exhibit distinct patterns of RAP and TAP, RAP is absent or nearly absent in some bacteria, but TAP is present in all. The selection pressure at the translation level is evident in all bacteria based on the analysis of the skews at the three codon positions. Contribution of asymmetric cytosine deamination was found to be weak to TAP in most phyla, and strong to RAP in all the Proteobacteria but weak in most of the Firmicutes. This possibly reflects the differences in their chromosomal replication machineries. A strong negative correlation between TAP and G+C content and between TAP and chromosomal size were also revealed. Conclusion The study reveals the diverse mutation and selection forces associated with replication and transcription in various groups of bacteria that shape the distinct patterns of base composition skews in the chromosomes during

  4. Direct displacement-based design of special composite RC shear walls with steel boundary elements

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2016-06-01

    Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.

  5. On the design of dental resin-based composites: a micromechanical approach.

    Science.gov (United States)

    Kahler, Bill; Kotousov, Andrei; Swain, Michael V

    2008-01-01

    Adhesive resin-based restorative materials have the potential to considerably strengthen teeth and offer more economically viable alternatives to traditional materials such as gold, amalgam or ceramics. Other advantages are direct and immediate placement and the elimination of the use of mercury. However, polymerization shrinkage during curing of an adhesive restoration and mismatch in mechanical properties can lead to the initiation and development of interfacial defects. These defects could have a detrimental effect on the longevity of the restored tooth. The current study is focused on some design issues of resin-based composites affecting the longevity of the tooth-restoration interface. The theoretical approach is based on self-consistent micromechanical modelling that takes into account the effect of the material properties, volume concentration of the dispersed particle phase as well as the shape of these particles on the overall thermomechanical properties of the composite. Results obtained for resin-based composites reinforced with spherical, disc and short fibre particles highlight the advantages of disc shaped and short fibre particles.

  6. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  7. Fiber Strength Utilization in Carbon/Carbon Composites: Part 2. Extended Studies With Pitch- and PAN-Based Fibers

    National Research Council Canada - National Science Library

    Zaldivar, R

    1998-01-01

    ...) composites as a function of heat treatment temperature (HTT) have been extended beyond the original group of DuPont pitch-based E-series fibers to include additional pitch and PAN-based fibers...

  8. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe

    International Nuclear Information System (INIS)

    Lu, W.R.; Gao, C.Y.; Ke, Y.L.

    2014-01-01

    The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models

  9. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Kaveh Movlaee

    2017-11-01

    Full Text Available Iron oxide nanostructures (IONs in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (biochemical substances.

  10. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Science.gov (United States)

    Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz

    2017-01-01

    Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771

  11. Burning and radiance properties of red phosphorus in Magnesium/PTFE/Viton (MTV)-based compositions

    Science.gov (United States)

    Li, Jie; Chen, Xian; Wang, Yanli; Shi, Yuanliang; Shang, Junteng

    2017-09-01

    Red phosphorus (RP) a highly efficient smoke-producing agent. In this study different contents of RP are added into the Magnesium/PTFE/Viton (MTV)-based composition, with the aim of investigating the influence of RP on the burning and radiance properties of MTV-based composition by using a high-temperature differential thermobalance method, a Fourier Transform Infrared (FTIR) remote-sensing spectrometer, a FTIR Spectrometer and a far-infrared thermal imager. The results show that RP improves the initial reaction temperature and reduces the mass burning rate by 0.1-0.17 g·s-1 (34-59%). The addition of RP has no obvious effect on the burning temperature and far-infrared radiation brightness, but the radiating area raises substantially (by 141%), and thus improves the radiation intensity (by 155%).

  12. A novel method of S-box design based on chaotic map and composition method

    International Nuclear Information System (INIS)

    Lambić, Dragan

    2014-01-01

    Highlights: • Novel chaotic S-box generation method is presented. • Presented S-box has better cryptographic properties than other examples of chaotic S-boxes. • The advantages of the proposed method are the low complexity and large key space. -- Abstract: An efficient algorithm for obtaining random bijective S-boxes based on chaotic maps and composition method is presented. The proposed method is based on compositions of S-boxes from a fixed starting set. The sequence of the indices of starting S-boxes used is obtained by using chaotic maps. The results of performance test show that the S-box presented in this paper has good cryptographic properties. The advantages of the proposed method are the low complexity and the possibility to achieve large key space

  13. Rheological Behavior of Composites Based on Carbon Fibers Recycled from Aircraft Waste

    Science.gov (United States)

    Marcaníková, Lucie; Hausnerová, Berenika; Kitano, Takeshi

    2009-07-01

    Rheological investigation of composite materials prepared from the recycled aircraft waste materials based on thermoset (epoxy/resin) matrix and long carbon fibers (CF) is presented with the aim of their utilization in consumer industry applications. The carbon fibers recovered via thermal process of pyrolysis were cut into about 150 μm length and melt mixed with thermoplastic matrices based on polypropylene (PP) and polyamide 6 (PA) and various modifiers—ethylene-ethyl acrylate-maleic anhydride (E-EA-MAH), polypropylene grafted maleic anhydride (PP-g-MA) and poly(styrene)-block-poly(ethylene-co-but-1-ene)-block-poly(styrene) (SEBS). Rheological, electrical, mechanical, thermal and morphological results revealed the composites of recycled CF and PP/PP-g-MA as well as PA/E-EA-MAH to be the most promising candidates for new applications.

  14. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    Science.gov (United States)

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Directory of Open Access Journals (Sweden)

    Yongsheng Wang

    2014-04-01

    Full Text Available The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC were investigated by using an in-situ tensile test under transmission electron microscopy (TEM. It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  16. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response

    Science.gov (United States)

    Han, Xiao; Gao, Xiguang; Song, Yingdong

    2017-10-01

    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  17. An overview of graphene-based hydroxyapatite composites for orthopedic applications

    Directory of Open Access Journals (Sweden)

    Ming Li

    2018-03-01

    Full Text Available Hydroxyapatite (HA is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vitro/in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.

  18. Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites.

    Science.gov (United States)

    Chladek, Grzegorz; Basa, Katarzyna; Żmudzki, Jarosław; Malara, Piotr; Nowak, Agnieszka J; Kasperski, Jacek

    2016-01-01

    The purpose of this study was to investigate the effect of different plasticizing aging solutions on wear resistance and hardness of selected universal resin-based dental composites. Three light cured (one nanofilled, two microhybride) and one hybride chemical cured composites were aged at 37 °C for 48 h in distillated water, ethyl alcohol solution or Listerine mouthwash. After aging the microhardness tests were carried out and then tribological tests were performed in the presence of aging solution at 37 °C. During wear testing coefficients of friction were determined. The maximal vertical loss in micrometers was determined with profilometer. Aging in all liquids resulted in a significant decrease in hardness of the test materials, with the largest values obtained successively in ethanol solution, mouthwash and water. The effect of the liquid was dependent on the particular material, but not the type of material (interpreted as the size of filler used). Introduction of mouthwash instead of water or ethanol solution resulted in a significant reduction in the coefficient of friction. The lowest wear resistance was registered after aging in ethanol and for the chemical cured hybrid composite, but the vertical loss was strongly material dependent. The effect of different aging solution, including commercial mouthrinse, on hardness and wear was material dependent, and cannot be deduced from their category or filler loading. There is no simple correlation between hardness of resin-based dental composites and their wear resistance, but softening of particular composites materials during aging leads to the reduction of its wear resistance.

  19. Facile Fabrication of 100% Bio-based and Degradable Ternary Cellulose/PHBV/PLA Composites

    Directory of Open Access Journals (Sweden)

    Tao Qiang

    2018-02-01

    Full Text Available Modifying bio-based degradable polymers such as polylactide (PLA and poly(hydroxybutyrate-co-hydroxyvalerate (PHBV with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials.

  20. Thermomechanical response of HTPB-based composite beams subjected to near-resonant inertial excitation

    OpenAIRE

    Woods, Daniel; Miller, Jacob; Rhoads, Jeffrey

    2014-01-01

    At this time, there is a pressing need to develop new technologies capable of detecting, identifying, and potentially neutralizing energetic materials, preferably from a stand-off distance. To address this need, an improved understanding of the mechanics of energetic materials, prior to detonation or deflagration, must be developed. In light of this, the present effort seeks to characterize the thermomechanical response of a polymer-based composite material, which is a mechanical surrogate fo...

  1. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    OpenAIRE

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization tec...

  2. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress...

  3. A Flexible UV-Vis-NIR Photodetector based on a Perovskite/Conjugated-Polymer Composite.

    Science.gov (United States)

    Chen, Shan; Teng, Changjiu; Zhang, Miao; Li, Yingru; Xie, Dan; Shi, Gaoquan

    2016-07-01

    A lateral photodetector based on the bilayer composite film of a perovskite and a conjugated polymer is reported. It exhibits significantly enhanced responsivity in the UV-vis region and sensitive photoresponse in the near-IR (NIR) region at a low applied voltage. This broadband photodetector also shows excellent mechanical flexibility and improved environmental stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Biocompatible Synthetic Lung Fluid Based on Human Respiratory Tract Lining Fluid Composition

    OpenAIRE

    Kumar, Abhinav; Terakosolphan, Wachirun; Hassoun, Mireille; Vandera, Kalliopi-Kelli; Novicky, Astrid; Harvey, Richard; Royall, Paul G.; Bicer, Elif Melis; Eriksson, Jonny; Edwards, Katarina; Valkenborg, Dirk; Nelissen, Inge; Hassall, Dave; Mudway, Ian S.; Forbes, Ben

    2017-01-01

    Purpose: To characterise a biorelevant simulated lung fluid (SLF) based on the composition of human respiratory tract lining fluid. SLF was compared to other media which have been utilized as lung fluid simulants in terms of fluid structure, biocompatibility and performance in inhalation biopharmaceutical assays. Methods: The structure of SLF was investigated using cryo-transmission electron microscopy, photon correlation spectroscopy and Langmuir isotherms. Biocompatibility with A549 alveola...

  5. Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures

    Science.gov (United States)

    2008-12-01

    formulations have been developed. The FAVE-L resin uses 65% Bisphenol A vinyl ester monomer, 20 wt% styrene, and 15 wt% methacrylated lauric acid (MLau...composites, fatty acid , vinyl ester 9. Distribution $tatement (requr’iedl lsmanuscript subjectto export control? E ruo I yes Circfe appropriate l tter and...resins is to replace some or all of the styrene with fatty acid -based monomers. These fatty acid vinyl ester resins allow for the formulation of high

  6. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    OpenAIRE

    Dai, Hongbo; Thostenson, Erik T.; Schumacher, Thomas

    2015-01-01

    This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified ...

  7. Yield strengths of tungsten-base composites determined from bend tests

    International Nuclear Information System (INIS)

    Zukas, E.G.; Eash, D.T.

    1976-08-01

    The variation in yield strength with either strain rate or temperature was determined for a number of tungsten-base composites by use of the simple three-point bend test. The yield strengths were comparable with those obtained in standard tensile tests. Additional studies on 1019 steel, either in the as-rolled or annealed condition, gave results in agreement with handbook values, as did two aluminum alloys. These results demonstrate that the bend test deserves wider acceptance in materials testing programs

  8. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights ...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  9. Pseudo-binary phase diagram for Zr-based in situ ß phase composites

    OpenAIRE

    Lee, S. Y.; Kim, C. P.; Almer, J. D.; Lienert, U.; Ustundag, E.; Johnson, W. L.

    2007-01-01

    The pseudo-binary (quasi-equilibrium) phase diagram for Zr-based bulk metallic glasses with crystalline in situ precipitates (ß phase) has been constructed from high-temperature phase information and chemical composition analysis. The phase evolution was detected in situ by high-energy synchrotron x-ray diffraction followed by Rietveld analysis of the data for volume fraction estimation. The phase diagram delineates phase fields and allows the control of phase fractions. Combined with related...

  10. Active Vibration damping of Smart composite beams based on system identification technique

    Science.gov (United States)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  11. Phenolic-containing Mannich base reaction products and fuel compositions containing same

    Energy Technology Data Exchange (ETDEWEB)

    Chibnik, S.

    1990-01-01

    This patent describes a composition. It comprises: a major amount of a liquid hydrocarbyl fuel normally susceptible to oxidation and a minor antioxidant amount of an additive product prepared by reacting a preformed Mannich base derived from a phenol, a C{sub 1}-C{sub 8} alkyl aldehyde and a low boiling amine, and a reactive compound having at least one reactive hydrogen selected from reactive hydrocarbyl amines.

  12. Cement based composites for thin building elements: Fracture and fatigue parameters

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Bílek, V.; Keršner, Z.; Veselý, J.

    2010-01-01

    Roč. 2, č. 1 (2010), s. 911-916 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GA103/08/0963 Institutional research plan: CEZ:AV0Z20410507 Keywords : Cement-based composites * Fatigue concrete * Wöhler curve * Fibers Subject RIV: JL - Materials Fatigue, Friction Mechanics

  13. Carbon fiber based composites stress analysis. Experimental and computer comparative studies

    Science.gov (United States)

    Sobek, M.; Baier, A.; Buchacz, A.; Grabowski, Ł.; Majzner, M.

    2015-11-01

    Composite materials used nowadays for the production of composites are the result of advanced research. This allows assuming that they are among the most elaborate tech products of our century. That fact is evidenced by the widespread use of them in the most demanding industries like aerospace and space industry. But the heterogeneous materials and their advantages have been known to mankind in ancient times and they have been used by nature for millions of years. Among the fibers used in the industry most commonly used are nylon, polyester, polypropylene, boron, metal, glass, carbon and aramid. Thanks to their physical properties last three fiber types deserve special attention. High strength to weight ratio allow the use of many industrial solutions. Composites based on carbon and glass fibers are widely used in the automotive. Aramid fibers ideal for the fashion industry where the fabric made from the fibers used to produce the protective clothing. In the paper presented issues of stress analysis of composite materials have been presented. The components of composite materials and principles of composition have been discussed. Particular attention was paid to the epoxy resins and the fabrics made from carbon fibers. The article also includes basic information about strain measurements performed on with a resistance strain gauge method. For the purpose of the laboratory tests a series of carbon - epoxy composite samples were made. For this purpose plain carbon textile was used with a weight of 200 g/mm2 and epoxy resin LG730. During laboratory strain tests described in the paper Tenmex's delta type strain gauge rosettes were used. They were arranged in specific locations on the surface of the samples. Data acquisition preceded using HBM measurement equipment, which included measuring amplifier and measuring head. Data acquisition was performed using the Easy Catman. In order to verify the results of laboratory tests numerical studies were carried out in a

  14. Water Uptake of a Silorane-Based Composite Used in Restorative Dentistry

    Science.gov (United States)

    Pieters, P.; Gaumet, S.; Bérard, A.; Dupuis, V.; Tassery, H.; Gillet, D.

    2014-07-01

    The mechanical properties of the resin-based composites used in restorative dentistry are known to be influenced by the presence of water. The aim of this study was to characterize in vitro the parameters of water uptake of a silorane-based composite (SBC). Polymerized discs of one SBC (Filtek Silorane®), two different resin-based composites (RBCs: Grandio®, G, and Tetric®, T), and a compomer (Hytac®, H), either immersed in distilled water or held in dried air, were compared. Specimens were weighed over one year, and variations in their weight, the kinetics of water uptake, and the diffusion coefficient D were determined. The equilibrium time was one week for the two RBCs, about two months for the SBC, and about six months for the compomer. The water uptake was in the range of 17-21mg/mm3 for the SBC and the compomer, but about 8 mg/mm3 for the RBCs. The values of D (10-12 m2 s-1) were 15.96 for the SBC, 23.26 for G, 45.87 for T, and 27.39 for H. The SBC showed a decrease in the diffusion coefficient, its equilibrium time was about two months, and its total water uptake was close to that of the compomer.

  15. Eco-Friendly (Water Melon Peels: Alternatives to Wood-based Particleboard Composites

    Directory of Open Access Journals (Sweden)

    U. D. Idris

    2011-12-01

    Full Text Available The aim of this study was to investigate the suitability of using water melon peels as alternatives to wood-based particleboard composites. The water melon peels composite boards were produced by compressive moulding using recycled low density polyethylene (RLDPE as a binder. The RLDPE was varies from 30 to 70wt% with interval of 10wt%. The microstructure, water absorption(WA, thickness swelling index(TS, modulus of rupture (MOR, modulus of elasticity (MOE, internal bonding strength(IB, impact strength and wear properties of the boards were determined. The results showed that high modulus of rupture of 11.45N/mm2, MOE of 1678N/mm2, IB of 0.58N/mm2, wear rate of 0.31g were obtained from particleboard produced at 60wt%RLDPE. The uniform distribution of the water melon particles and the RLDPE in the microstructure of the composites board is the major factor responsible for the improvement in the mechanical properties. The results showed that the MOE, MOR and IB meet the minimum requirements of the European standards, for general purpose like panelling, ceiling, partitioning. Hence, water melon particles can be used as a substitute to wood-based particleboard for general purpose applications also besides being environmental friendly of using watermelon and RLDPE in production of particleboard, this alternative to wood-based particleboard is very cost-effective.

  16. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  17. New insight into the "depth of cure" of dimethacrylate-based dental composites.

    Science.gov (United States)

    Leprince, Julian G; Leveque, Philippe; Nysten, Bernard; Gallez, Bernard; Devaux, Jacques; Leloup, Gaetane

    2012-05-01

    To demonstrate that determination of the depth of cure of resin-based composites needs to take into account the depth at which the transition between glassy and rubbery states of the resin matrix occurs. A commercially available nano-hybrid composite (Grandio) in a thick layer was light cured from one side for 10 or 40 s. Samples were analyzed by Vickers indentation, Raman spectroscopy, atomic force microscopy, electron paramagnetic imaging and differential scanning calorimetry to measure the evolution of the following properties with depth: microhardness, degree of conversion, elastic modulus of the resin matrix, trapped free radical concentration and glass transition temperature. These measurements were compared to the composite thickness remaining after scraping off the uncured, soft composite. There was a progressive decrease in the degree of conversion and microhardness with depth as both properties still exhibited 80% of their upper surface values at 4 and 3.8 mm, respectively, for 10 s samples, and 5.6 and 4.8 mm, respectively, for 40 s samples. In contrast, there was a rapid decrease in elastic modulus at around 2.4 mm for the 10 s samples and 3.0 mm for the 40 s samples. A similar decrease was observed for concentrations of propagating radicals at 2 mm, but not for concentrations of allylic radicals, which decreased progressively. Whereas the upper composite layers presented a glass transition temperature - for 10 s, 55°C (±4) at 1 mm, 56.3°C (±2.3) at 2 mm; for 40 s, 62.3°C (±0.6) at 1 mm, 62°C (±1) at 2 mm, 62°C (±1.7) at 3 mm - the deeper layers did not display any glass transition. The thickness remaining after scraping off the soft composite was 7.01 (±0.07 mm) for 10 s samples and 9.48 (±0.22 mm) for 40 s samples. Appropriate methods show that the organic matrix of resin-based composite shifts from a glassy to a gel state at a certain depth. Hence, we propose a new definition for the "depth of cure" as the depth at which the resin matrix

  18. The effect of load cycling on microleakage of low shrinkage methacrylate base composite compared with silorane base composite and SEM evaluation of marginal integrity

    Directory of Open Access Journals (Sweden)

    Hamid Kermanshah

    2013-04-01

    Full Text Available Background and Aims: Marginal seal in class V cavity and determination of the best restorative material in reducing microleakage is of great concern in operative dentistry. The aim of this study was to evaluate the effect of load cycling on the microleakage of low shrinkage composites compared with methacrylate-based composites with low shirinkage rate in class V cavity preparation. Marginal integrity of these materials was assessed using scanning electron microscope (SEM. Materials and Methods: In this in vitro study, class V cavity preparations were made on the buccal and lingual surfaces of 48 human premolars and molars (96 cavities. The specimens were divided into four groups each containing 12 teeth (24 cavities: group 1 (Kalore-GC+ G-Bond , group 2 (Futurabond NR+Grandio, group 3(All Bond SE+ Aelite LS Posterior, group 4 (LS System Adhesive Primer & Bond+Filtek P90. All the specimens were thermocycled for 2000 cycles (5-50oC. In each group, half of the specimens (n=12 were subjected to 200,000 cycles of loading at 80 N. Epoxy resin replicas of 32 specimens (4 restorations in each subgroup were evaluated using SEM and the interfacial gaps were measured. Finally, the teeth were immersed in 0.5% basic fuchsin dye for 24 hours at 370C, then sectioned and observed under stereomicroscope. The data were analyzed using Kruskal-Wallis and Mann-Whitney U tests and the comparison between occlusal and gingival microleakage was made with Wilcoxon test. Results: Within unloaded or loaded specimens, there were no significant differences in microleakage among four groups on the occlusal margins (P>0.05. But there were statistically significant differences in microleakage between silorane and Aelite on the gingival margins (P0.05. Conclusion: Silorane did not perform better than the conventional low shrinkage methacrylate-based composite in terms of sealing ability (except Aelite. Cyclic loading did not increase the extent of leakage in any groups.

  19. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    Science.gov (United States)

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  20. Composite Field Multiplier based on Look-Up Table for Elliptic Curve Cryptography Implementation

    Directory of Open Access Journals (Sweden)

    Marisa W. Paryasto

    2013-09-01

    Full Text Available Implementing a secure cryptosystem requires operations involving hundreds of bits. One of the most recommended algorithm is Elliptic Curve Cryptography (ECC. The complexity of elliptic curve algorithms and parameters with hundreds of bits requires specific design and implementation strategy. The design architecture must be customized according to security requirement, available resources and parameter choices. In this work we propose the use of composite field to implement finite field multiplication for ECC implementation. We use 299-bit keylength represented in GF((21323 instead of in GF(2299. Composite field multiplier can be implemented using different multiplier for ground-field and for extension field. In this paper, LUT is used for multiplication in the ground-field and classic multiplieris used for the extension field multiplication. A generic architecture for the multiplier is presented. Implementation is done with VHDL with the target device Altera DE2. The work in this paper uses the simplest algorithm to confirm the idea that by dividing field into composite, use different multiplier for base and extension field would give better trade-off for time and area. This work will be the beginning of our more advanced further research that implements composite-field using Mastrovito Hybrid, KOA and LUT.

  1. Mathematical modeling of cross-linking monomer elution from resin-based dental composites.

    Science.gov (United States)

    Manojlovic, Dragica; Radisic, Marina; Lausevic, Mila; Zivkovic, Slavoljub; Miletic, Vesna

    2013-01-01

    Elution of potentially toxic substances, including monomers, from resin-based dental composites may affect the biocompatibility of these materials in clinical conditions. In addition to the amounts of eluted monomers, mathematical modeling of elution kinetics reveals composite restorations as potential chronic sources of leachable monomers. The aim of this work was to experimentally quantify elution of main cross-linking monomers from four commercial composites and offer a mathematical model of elution kinetics. Composite samples (n = 7 per group) of Filtek Supreme XT (3M ESPE), Tetric EvoCeram (Ivoclar Vivadent), Admira (Voco), and Filtek Z250 (3M ESPE) were prepared in 2-mm thick Teflon moulds and cured with halogen or light-emitting diode light. Monomer elution in ethanol and water was analyzed using high-performance liquid chromatography up to 28 days postimmersion. The mathematical model was expressed as a sum of two exponential regression functions representing the first-order kinetics law. Elution kinetics in all cases followed the same mathematical model though differences in rate constants as well as the extent of monomer elution were material-, LCU-, medium-dependent. The proposed mechanisms of elution indicate fast elution from surface and subsurface layers and up to 100 times slower monomer extraction from the bulk polymer. Copyright © 2012 Wiley Periodicals, Inc.

  2. Composite Field Multiplier based on Look-Up Table for Elliptic Curve Cryptography Implementation

    Directory of Open Access Journals (Sweden)

    Marisa W. Paryasto

    2012-04-01

    Full Text Available Implementing a secure cryptosystem requires operations involving hundreds of bits. One of the most recommended algorithm is Elliptic Curve Cryptography (ECC. The complexity of elliptic curve algorithms and parameters with hundreds of bits requires specific design and implementation strategy. The design architecture must be customized according to security requirement, available resources and parameter choices. In this work we propose the use of composite field to implement finite field multiplication for ECC implementation. We use 299-bit keylength represented in GF((21323 instead of in GF(2299. Composite field multiplier can be implemented using different multiplier for ground-field and for extension field. In this paper, LUT is used for multiplication in the ground-field and classic multiplieris used for the extension field multiplication. A generic architecture for the multiplier is presented. Implementation is done with VHDL with the target device Altera DE2. The work in this paper uses the simplest algorithm to confirm the idea that by dividing field into composite, use different multiplier for base and extension field would give better trade-off for time and area. This work will be the beginning of our more advanced further research that implements composite-field using Mastrovito Hybrid, KOA and LUT.

  3. Characterization of composites based on expanded polystyrene wastes and wood flour.

    Science.gov (United States)

    Poletto, Matheus; Dettenborn, Juliane; Zeni, Mara; Zattera, Ademir J

    2011-04-01

    This paper aims to evaluate the potential for the use of recycled expanded polystyrene and wood flour as materials for the development of wood plastic composites. The effects of wood flour loading and coupling agent addition on the mechanical properties and morphology of wood thermoplastic composites were examined. In addition, a methodology for the thermo-mechanical recycling of expanded polystyrene waste was developed. The results show that the mechanical properties decreased as the wood flour loading increased. On the other hand, the use of poly(styrene-co-maleic anhydride), SMA, as a coupling agent improved the compatibility between the wood flour and polystyrene matrix and the mechanical properties subsequently improved. A morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The density values obtained for the composites were compared with the theoretical values and showed agreement with the rule of mixtures. Based on the findings of this work, it appears that both recycled materials can be used to manufacture composites with high mechanical properties and low density. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Processing of high performance composites based on peek by aqueous suspension prepregging

    Directory of Open Access Journals (Sweden)

    Liliana Burakowski Nohara

    2010-06-01

    Full Text Available The use of polyamic acid (PAA precursor as interphase in polymer composites is one of the many applications of polyimides (PIs. In this work, composites based on poly(ether-ether-ketone (PEEK and carbon fibers were prepared using two manufacturing techniques for thermoplastic composites: hot compression molding, and aqueous polymeric suspension prepregging using PIs as interphase. Two PAAs were synthesized and used as interphases: 3,3'-4,4'-benzophenonetetracarboxylic dianhydride/oxydianiline (BTDA/ODA and pyromellitic dianhydride/oxydianiline (PMDA/ODA. The PAA/PI systems were analyzed by differential scanning calorimetry (DSC, thermogravimetry (TGA, Fourier transform infrared spectroscopy (FTIR and nuclear magnetic resonance (NMR. Results from these analyses confirmed the synthesis of these compounds. Aqueous polymeric suspension prepregging was more efficient than hot compression molding when the PMDA/ODA PAA/PI interphase was used; also, the interlaminar shear strength of composites produced using this technique was 14.5% higher than the one produced using hot compression molding.

  5. Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites.

    Science.gov (United States)

    Yin, Guoling; Yang, Yu; Song, Feilong; Renard, Christophe; Dang, Zhi-Min; Shi, Chang-Yong; Wang, Dongrui

    2017-02-15

    Dielectric elastomer generators (DEGs), which follow the physics of variable capacitors and harvest electric energy from mechanical work, have attracted intensive attention over the past decade. The lack of ideal dielectric elastomers, after nearly two decades of research, has become the bottleneck for DEGs' practical applications. Here, we fabricated a series of polyurethane-based ternary composites and estimated their potential as DEGs to harvest electric energy for the first time. Thermoplastic polyurethane (PU) with high relative permittivity (∼8) was chosen as the elastic matrix. Barium titanate (BT) nanoparticles and dibutyl phthalate (DBP) plasticizers, which were selected to improve the permittivity and mechanical properties, respectively, were blended into the PU matrix. As compared to pristine PU, the resultant ternary composite films fabricated through a solution casting approach showed enhanced permittivity, remarkably reduced elastic modulus, and relatively good electrical breakdown strength, dielectric loss, and strain at break. Most importantly, the harvested energy density of PU was significantly enhanced when blended with BT and DBP. A composite film containing 25 phr of BT and 60 phr of DBP with the harvested energy density of 1.71 mJ/cm 3 was achieved, which is about 4 times greater than that of pure PU and 8 times greater than that of VHB adhesives. Remarkably improved conversion efficiency of mechano-electric energy was also obtained via cofilling BT and DBP into PU. The results shown in this work strongly suggest compositing is a very promising way to provide better dielectric elastomer candidates for forthcoming practical DEGs.

  6. QoS measurement of workflow-based web service compositions using Colored Petri net.

    Science.gov (United States)

    Nematzadeh, Hossein; Motameni, Homayun; Mohamad, Radziah; Nematzadeh, Zahra

    2014-01-01

    Workflow-based web service compositions (WB-WSCs) is one of the main composition categories in service oriented architecture (SOA). Eflow, polymorphic process model (PPM), and business process execution language (BPEL) are the main techniques of the category of WB-WSCs. Due to maturity of web services, measuring the quality of composite web services being developed by different techniques becomes one of the most important challenges in today's web environments. Business should try to provide good quality regarding the customers' requirements to a composed web service. Thus, quality of service (QoS) which refers to nonfunctional parameters is important to be measured since the quality degree of a certain web service composition could be achieved. This paper tried to find a deterministic analytical method for dependability and performance measurement using Colored Petri net (CPN) with explicit routing constructs and application of theory of probability. A computer tool called WSET was also developed for modeling and supporting QoS measurement through simulation.

  7. Development of Composite Adsorbent Coating Based Acrylic Polymer/Bentonite for Methylene Blue Removal

    Directory of Open Access Journals (Sweden)

    Syahida Farhan Azha

    2017-07-01

    Full Text Available The development of composite adsorbent coating based acrylic polymer solution (APS mixed with bentonite (ben was investigated. The composite adsorbent coating was prepared and coated to a high surface area substrate, cotton cellulosic fiber (CCF. The APS/ben-CCF was used for a single cationic methylene blue (MB dye adsorption system. Characterization of composition and structure of materials and coating was carried out by X-ray fluorescence (XRF, scanning electron microscopy (SEM, and UV-spectroscopy (UV-VIS. The adsorption properties of the APS/ben-CCF were investigated as a function of solution pH, initial dye concentration and contact time as well as solution temperature of MB dye. The result revealed that the APS/ben-CCF functioned well in solutions of various pH (acidic to alkaline, achieving 100% removal of MB within 2 hours of adsorption for 50 ppm. Kinetic studies showed that APS/ben-CCF is endothermic in nature since the adsorption capacity increased with increasing solution temperature. These results demonstrate that APS/ben-CCF composite adsorbent coating is an advanced adsorbent with advantages such as easy phase separation and capability to remove cationic dyes in a short time period.

  8. Power generation from base excitation of a Kevlar composite beam with ZnO nanowires

    Science.gov (United States)

    Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.

    2015-04-01

    One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.

  9. Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting

    Science.gov (United States)

    Das, Satyabati; Biswal, Asutya Kumar; Parida, Kalpana; Choudhary, R. N. P.; Roy, Amritendu

    2018-01-01

    The pyrochlore-free 30-PMN-PT/CNT/PVDF based piezoelectric flexible composite film has been synthesized for potential application in piezoelectric energy harvesting. Electrical characterization reveals that the maximum output voltage and current generated by the 30 vol.% PMN-PT/CNT/PVDF composite is ∼4 V and 30 nA respectively, comparable with the available literature. Further, impedance analysis has revealed a significant improvement in permittivity at low frequency and high temperature with a minimal dielectric loss. AC conductivity behavior fits well with Johnscher's universal power law that predicts the motion of the charge carriers is translational with sudden hopping. The Nyquist plots indicate the contributions of both grain and grain boundaries at lower temperature (25-100 °C) and additional electrode effect of higher temperature (100-150 °C) on the capacitive and resistive properties of the composite. Mechanical characterization of the composite shows an increase in Young's modulus of 705 MPa compared to 597 MPa in pure PVDF.

  10. Ultrathin Polydiacetylene-Based Synergetic Composites with Plasmon-Enhanced Photoelectric Properties.

    Science.gov (United States)

    Dubas, Anastasiia L; Tameev, Alexey R; Zvyagina, Alexandra I; Ezhov, Alexander A; Ivanov, Vladimir K; König, Burkhard; Arslanov, Vladimir V; Gribkova, Oxana L; Kalinina, Maria A

    2017-12-20

    Fabricating plasmon-enhanced organic nanomaterials with technologically relevant supporting architectures on planar solids remains a challenging task in the chemistry of thin films and interfaces. In this work, we report a bottom-up assembly of ultrathin layered composites of conductive polymers with photophysical properties enhanced by gold nanoparticles. The polydiacetylene component was formed by photopolymerization of a catanionic mixture of pentacosadiynoic surfactants on a surface of citrate-stabilized gold hydrosol monitored by a fiber optic spectrometer. Microscopic examination of the 3 nm thick solid-immobilized film showed that gold nanoparticles (AuNPs) do not aggregate within the monolayer upon polymerization. This polydiacetylene/AuNPs monolayer was coupled with 60 nm thick polyaniline-based layer deposited atop. The resulting polymer composite with an integrated 4-stripe electric cell showed nonadditive electric behavior due to the formation of electron-hole pairs with increased charge carrier mobility at the interface between the polymer layers. Under visible light irradiation of the composite film, a plasmonic effect of the gold nanoparticles was observed at the onset of photoconductivity, although neither polydiacetylene nor the polyaniline component alone are photoconductive polymers. The results indicate that our bottom-up strategy can be expanded to design other plasmon-enhanced ultrathin polymer composites with potential applications in optoelectronics and photovoltaics.

  11. Chemiluminescence and reactivity of the composites based on blends of polypropylene and polyamide

    Science.gov (United States)

    Vorontsov, N. V.; Popov, A. A.; Margolin, A. L.

    2017-12-01

    The effect of the composition of blends based on isotactic polypropylene (PP) and aliphatic polyamide 6/66-4 (PA) on the rate of photo-oxidation of their mixtures in air at room temperature has been studied. The decay of photoinduced chemiluminescence was studied to determine the kinetics of peroxyl radical termination in composites and the rate constants of this process depending on the composition of the mixtures. In the presence of PA, the rate of photo-oxidation of mixtures is much higher than the rates of photo-oxidation of separately taken components, PP and PA. Thus, the kinetics of photo-oxidation of mixtures differs from the simple sum of photo-oxidation kinetics of PP and PA, which should be expected in the absence of chemical and physical interaction of the components of the mixture. A decrease in the rate constants due to PA additives indicates a decrease in the mobility of molecules in the composites and explains the observed increase in photo-oxidation of mixtures.

  12. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  13. Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Mambrini, Raquel V.; Fonseca, Thales L. [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Dias, Anderson [Departamento de Quimica, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000 (Brazil); Oliveira, Luiz C.A.; Araujo, Maria Helena [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Moura, Flavia C.C., E-mail: flaviamoura@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer New magnetic molybdenum carbide composites can be prepared by CVD from ethanol. Black-Right-Pointing-Pointer Magnetic molybdenum carbide shows promising results for pollutants removal. Black-Right-Pointing-Pointer The carbide composites can be easily recovered magnetically and reused. - Abstract: New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo{sub 2}C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 and 900 Degree-Sign C) with catalytic deposition of carbon from ethanol producing molybdenum carbide on Ni surface. In the absence of molybdenum the formation of Ni/C was observed. The magnetic molybdenum carbide was successfully used as pollutants removal by adsorption of sulfur and nitrogen compounds from liquid fuels and model dyes such as methylene blue and indigo carmine. The dibenzothiofene adsorption process over Ni/Mo{sub 2}C reached approximately 20 mg g{sup -1}, notably higher than other materials described in the literature and also removed almost all methylene blue dye. The great advantage of these carbide composites is that they may be easily recovered magnetically and reused.

  14. Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal

    International Nuclear Information System (INIS)

    Mambrini, Raquel V.; Fonseca, Thales L.; Dias, Anderson; Oliveira, Luiz C.A.; Araujo, Maria Helena; Moura, Flávia C.C.

    2012-01-01

    Highlights: ► New magnetic molybdenum carbide composites can be prepared by CVD from ethanol. ► Magnetic molybdenum carbide shows promising results for pollutants removal. ► The carbide composites can be easily recovered magnetically and reused. - Abstract: New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo 2 C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 and 900 °C) with catalytic deposition of carbon from ethanol producing molybdenum carbide on Ni surface. In the absence of molybdenum the formation of Ni/C was observed. The magnetic molybdenum carbide was successfully used as pollutants removal by adsorption of sulfur and nitrogen compounds from liquid fuels and model dyes such as methylene blue and indigo carmine. The dibenzothiofene adsorption process over Ni/Mo 2 C reached approximately 20 mg g −1 , notably higher than other materials described in the literature and also removed almost all methylene blue dye. The great advantage of these carbide composites is that they may be easily recovered magnetically and reused.

  15. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  16. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations.

    Science.gov (United States)

    Alizadeh Oskoee, Parnian; Pournaghi Azar, Fatemeh; Jafari Navimipour, Elmira; Ebrahimi Chaharom, Mohammad Esmaeel; Naser Alavi, Fereshteh; Salari, Ashkan

    2017-01-01

    Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90]) and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C). Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P composite resin type, preheating and interactive effect of these variables on gap formation were significant (Pcomposite resins (Pcomposite resins at room temperature compared to composite resins after 40 preheating cycles (Pcomposite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  17. Modeling of the physico-chemical ablation of carbon-based composites

    International Nuclear Information System (INIS)

    Lachaud, J.

    2006-12-01

    Carbon-based composites are used in extreme conditions: Tokamaks, re-entry bodies, nozzle throats, plane brakes. Their walls undergo a surface recession, called ablation, mainly due to some gasification phenomena (oxidation or even sublimation). This work is a contribution to the improvement of the understanding of the near-wall material/environment interaction and to its modeling. Some original gasification experiments have been carried out, modeled, and quantitatively analyzed; a complex multi-scale behavior of the materials is observed through their average recession velocity and a surface roughness onset mainly caused by their heterogeneous anisotropic structure. In order to explain these observations, a multi-scale modeling strategy has been set up; it follows the characteristic scales of the composites: nano-scopic (carbon texture), microscopic (fiber, inter-fiber matrix), mesoscopic (yarn, inter-yarn matrix), and macroscopic (homogenized composite) scales. The proposed models notably integrate the local recession of the wall, the heterogeneous gasification reactions, and mass transfer. A numerical simulation tool, based on Monte-Carlo Random Walks with Simplified Marching Cubes for the front tracking, has been implemented, validated, and used to solve these models. Using some numerically validated hypotheses, an analytical solution has been obtained; it provides a comprehensive understanding of ablation phenomena. It provides the effective behavior of the composites from that of their microscopic components through two changes of scale. The results of these phenomenological models have been validated by comparison to the laboratory experiments and applied for the analysis of actual applications. Physics-based criterions are made available for the choice or the fabrication of ideal materials. (author)

  18. Are flowable resin-based composites a reliable material for metal orthodontic bracket bonding?

    Science.gov (United States)

    Pick, Bárbara; Rosa, Vinícius; Azeredo, Tatiana Rocha; Cruz Filho, Eduardo Augusto Mascarenhas; Miranda, Walter Gomes

    2010-07-01

    To compare the tensile bond strength (TBS) and adhesive remnant index (ARI) of three flowable resin-based composites and three orthodontic adhesive systems for metal bracket bonding. Sixty bovine incisors were randomly divided into six groups. Enamel surfaces were etched with 37 percent phosphoric acid for 30 seconds and stainless steel orthodontic brackets were bonded using either flowable resin-based composites (3M Flow, FL; Tetric Flow, TF; and Wave, WA) or orthodontic bonding systems (Transbond XT, TX; Concise Orthodontic, CO; Fill Magic Ortodôntico, FM). All specimens were thermal cycled and stored in distilled water at 37°C for 24 hours, after which they were subsequently tested for TBS using a universal testing machine. ARI scores were determined after the failure of brackets. TBS and ARI data were submitted to ANOVA, Tukey, and Kruskal-Wallis tests (p=0.05), respectively. Rankings of the resin-based composites based on TBS means (MPa) were TX (6.4 ± 2.1), followed by CO (4.5 ± 2.7), FM (3.7 ± 1.2), FL (3.6 ± 1.2), TF (3.3 ± 1.2), and WA (2.4 ± 0.6). CO exhibited the lowest ARI mean score (0.9 ± 1.2) which was significantly different from the other five materials: TX (2.8 ± 0.42), FM (2.8 ± 0.42), FL (2.9 ± 0.32), TF (2.9 ± 0.32), and WA (3.0 ± 0.01). However, there were no statistically significant differences among the other groups with mean scores of 2.8-3.0. A score of 3.0 indicated that all the resin remained bonded to the tooth surface. The flowable resin-based composites tested (Fl, TF, and WA) used to bond metal orthodontic brackets to bovine enamel had low mean TBS values but acceptable ARI mean scores. Flowable composites may not be appropriate for bracket bonding, unless the teeth to be bonded are not subjected to higher orthodontic stresses, such as those without an antagonist.

  19. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  20. Fake Plate Vehicle Auditing Based on Composite Constraints in Internet of Things Environment

    Science.gov (United States)

    Li, Shasha; Xiangji Huang, Jimmy; Tohti, Turdi

    2018-03-01

    Accordance to the real application demands, this paper proposes a fake plate vehicle auditing method based on composite constrains strategy, a corresponding simulated IOT (internet of things) environment was created and uses liner matrix, Base64 encryption and grid monitoring technology and puts forward a real-time detecting algorithm for fake plate vehicles. The developed real system not only shows the superiority on its speed, detection accuracy and visualization, it also be good at realizing the vehicle’s real-time position and predicting the possible traveling trajectory.