WorldWideScience

Sample records for based onphysiologically realistic

  1. Normal and Pathological NCAT Image and PhantomData Based onPhysiologically Realistic Left Ventricle Finite-Element Models

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.; Tsui,Benjamin M.W.; Gullberg, Grant T.

    2006-08-02

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical model was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function

  2. Realistic terrain visualization based on 3D virtual world technology

    Science.gov (United States)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  3. Measurable realistic image-based 3D mapping

    Science.gov (United States)

    Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.

    2011-12-01

    Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable

  4. Ultra-realistic 3-D imaging based on colour holography

    International Nuclear Information System (INIS)

    Bjelkhagen, H I

    2013-01-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  5. A Realistic Seizure Prediction Study Based on Multiclass SVM.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César A; Sales, Francisco; Castelo-Branco, Miguel; Dourado, António

    2017-05-01

    A patient-specific algorithm, for epileptic seizure prediction, based on multiclass support-vector machines (SVM) and using multi-channel high-dimensional feature sets, is presented. The feature sets, combined with multiclass classification and post-processing schemes aim at the generation of alarms and reduced influence of false positives. This study considers 216 patients from the European Epilepsy Database, and includes 185 patients with scalp EEG recordings and 31 with intracranial data. The strategy was tested over a total of 16,729.80[Formula: see text]h of inter-ictal data, including 1206 seizures. We found an overall sensitivity of 38.47% and a false positive rate per hour of 0.20. The performance of the method achieved statistical significance in 24 patients (11% of the patients). Despite the encouraging results previously reported in specific datasets, the prospective demonstration on long-term EEG recording has been limited. Our study presents a prospective analysis of a large heterogeneous, multicentric dataset. The statistical framework based on conservative assumptions, reflects a realistic approach compared to constrained datasets, and/or in-sample evaluations. The improvement of these results, with the definition of an appropriate set of features able to improve the distinction between the pre-ictal and nonpre-ictal states, hence minimizing the effect of confounding variables, remains a key aspect.

  6. Magnetic resonance fingerprinting based on realistic vasculature in mice.

    Science.gov (United States)

    Pouliot, Philippe; Gagnon, Louis; Lam, Tina; Avti, Pramod K; Bowen, Chris; Desjardins, Michèle; Kakkar, Ashok K; Thorin, Eric; Sakadzic, Sava; Boas, David A; Lesage, Frédéric

    2017-04-01

    Magnetic resonance fingerprinting (MRF) was recently proposed as a novel strategy for MR data acquisition and analysis. A variant of MRF called vascular MRF (vMRF) followed, that extracted maps of three parameters of physiological importance: cerebral oxygen saturation (SatO 2 ), mean vessel radius and cerebral blood volume (CBV). However, this estimation was based on idealized 2-dimensional simulations of vascular networks using random cylinders and the empirical Bloch equations convolved with a diffusion kernel. Here we focus on studying the vascular MR fingerprint using real mouse angiograms and physiological values as the substrate for the MR simulations. The MR signal is calculated ab initio with a Monte Carlo approximation, by tracking the accumulated phase from a large number of protons diffusing within the angiogram. We first study the identifiability of parameters in simulations, showing that parameters are fully estimable at realistically high signal-to-noise ratios (SNR) when the same angiogram is used for dictionary generation and parameter estimation, but that large biases in the estimates persist when the angiograms are different. Despite these biases, simulations show that differences in parameters remain estimable. We then applied this methodology to data acquired using the GESFIDE sequence with SPIONs injected into 9 young wild type and 9 old atherosclerotic mice. Both the pre injection signal and the ratio of post-to-pre injection signals were modeled, using 5-dimensional dictionaries. The vMRF methodology extracted significant differences in SatO 2 , mean vessel radius and CBV between the two groups, consistent across brain regions and dictionaries. Further validation work is essential before vMRF can gain wider application. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Research of shot noise based on realistic nano-MOSFETs

    Directory of Open Access Journals (Sweden)

    Xiaofei Jia

    2017-05-01

    Full Text Available Experimental measurements and simulation results have shown that the dominant noise source of current noise changes from thermal noise to shot noise with scaling of MOSFET, and shot noise were suppressed by Fermi and Coulomb interactions. In this paper, Shot noise test system is established, and experimental results proved that shot noise were suppressed, and the expressions of shot noise in realistic nano-MOSFETs are derived with considering Fermi effect, Coulomb interaction and the combination of the both co-existence, respectively. On this basis, the variation of shot noise with voltage, temperature and source-drain doping were researched. The results we obtained are consistent with those from experiments and the theoretically explanation is given. At the same time, the shot noise test system is suitable for traditional nanoscale electronic components; the shot noise model is suitable for nanoscale MOSFET.

  8. Track-based event recognition in a realistic crowded environment

    Science.gov (United States)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  9. Realistic evaluation of tester exposure based on Florida testing experience

    International Nuclear Information System (INIS)

    Schreiber, R.A.

    1990-01-01

    This paper reports on a radon decay product exposure model for Florida Certified Radon Measurement Technicians that has been formulated based on the guidance of 10CFR20. This model was used to estimate the exposure of 44 Florida measurement technicians from January through November of 1989. Comparing estimated testing and home exposure shows that 100% of the technicians observed received more exposure in the home than during testing activities. Exposure during normal office hours also exceed testing exposure in 86% of the technicians observed. Health and safety exposure data for radon measurement technicians does not follow the standard concepts of occupational radiation exposure normally accepted in 10CFR20

  10. Realistic generation of natural phenomena based on video synthesis

    Science.gov (United States)

    Wang, Changbo; Quan, Hongyan; Li, Chenhui; Xiao, Zhao; Chen, Xiao; Li, Peng; Shen, Liuwei

    2009-10-01

    Research on the generation of natural phenomena has many applications in special effects of movie, battlefield simulation and virtual reality, etc. Based on video synthesis technique, a new approach is proposed for the synthesis of natural phenomena, including flowing water and fire flame. From the fire and flow video, the seamless video of arbitrary length is generated. Then, the interaction between wind and fire flame is achieved through the skeleton of flame. Later, the flow is also synthesized by extending the video textures using an edge resample method. Finally, we can integrate the synthesized natural phenomena into a virtual scene.

  11. Complete methodology on generating realistic wind speed profiles based on measurements

    DEFF Research Database (Denmark)

    Gavriluta, Catalin; Spataru, Sergiu; Mosincat, Ioan

    2012-01-01

    , wind modelling for medium and large time scales is poorly treated in the present literature. This paper presents methods for generating realistic wind speed profiles based on real measurements. The wind speed profile is divided in a low- frequency component (describing long term variations...

  12. Developing Teaching Material Based on Realistic Mathematics Andoriented to the Mathematical Reasoning and Mathematical Communication

    OpenAIRE

    Habsah, Fitria

    2017-01-01

    This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental cla...

  13. Toward realistic pursuit-evasion using a roadmap-based approach

    KAUST Repository

    Rodriguez, Samuel

    2011-05-01

    In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. Our approach can be applied to more realistic scenarios than are typically studied in most previous work, including agents moving in 3D environments such as terrains, multi-story buildings, and dynamic environments. We also support more realistic three-dimensional visibility computations that allow evading agents to hide in crowds or behind hills. We demonstrate the utility of this approach on mobile robots and in simulation for a variety of scenarios including pursuit-evasion and tag on terrains, in multi-level buildings, and in crowds. © 2011 IEEE.

  14. Toward realistic pursuit-evasion using a roadmap-based approach

    KAUST Repository

    Rodriguez, Samuel; Denny, Jory; Burgos, Juan; Mahadevan, Aditya; Manavi, Kasra; Murray, Luke; Kodochygov, Anton; Zourntos, Takis; Amato, Nancy M.

    2011-01-01

    be applied to more realistic scenarios than are typically studied in most previous work, including agents moving in 3D environments such as terrains, multi-story buildings, and dynamic environments. We also support more realistic three-dimensional visibility

  15. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    Science.gov (United States)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  16. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  17. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    International Nuclear Information System (INIS)

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan

    2015-01-01

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  18. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  19. Population of 224 realistic human subject-based computational breast phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David W. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Wells, Jered R., E-mail: jered.wells@duke.edu [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Sturgeon, Gregory M. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Dobbins, James T. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Segars, W. Paul [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Electrical and Computer Engineering and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-01-15

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  20. Research protocol: a realist synthesis of contestability in community-based mental health markets.

    Science.gov (United States)

    Durham, Jo; Bains, Amara

    2015-03-25

    In most developed nations, there has been a shift from public services to a marketisation of public goods and services - representing a significant reform process aiming to transform the way in which community-based human services, such as health, are delivered and consumed. For services, this means developing the capacity to adapt and innovate in response to changing circumstances to achieve quality. The availability of rigorous research to demonstrate whether a market approach and contestability, in particular, is a coherent reform process is largely absent. Contestability operates on the premise that better procurement processes allow more providers to enter the market and compete for contracts. This is expected to create stimulus for greater efficiencies, innovation and improved service delivery to consumers. There is limited understanding, however, about how community-based providers morph and re-configure in response to the opportunities posed by contestability. This study focuses on the effect of a contestability policy on the community-managed mental health sector. A realist review will be undertaken to understand how and why the introduction of contestability into a previously incontestable market influences the ways in which community-based mental health providers respond to contestability. The review will investigate those circumstances that shape organisational response and generate outcomes through activating mechanisms. An early scoping has helped to formulate the initial program theory. A realist synthesis will be undertaken to identify relevant journal articles and grey literature. Data will be extracted in relation to the emerging contextual factors, mechanisms and outcomes and their configurations. The analysis will seek patterns and regularities in these configurations across the extracted data and will focus on addressing our theory-based questions. Increasingly, community-based mental health markets are moving to contestability models. Rigorous

  1. What are the assets and weaknesses of HFO detectors? A benchmark framework based on realistic simulations.

    Directory of Open Access Journals (Sweden)

    Nicolas Roehri

    Full Text Available High-frequency oscillations (HFO have been suggested as biomarkers of epileptic tissues. While visual marking of these short and small oscillations is tedious and time-consuming, automatic HFO detectors have not yet met a large consensus. Even though detectors have been shown to perform well when validated against visual marking, the large number of false detections due to their lack of robustness hinder their clinical application. In this study, we developed a validation framework based on realistic and controlled simulations to quantify precisely the assets and weaknesses of current detectors. We constructed a dictionary of synthesized elements-HFOs and epileptic spikes-from different patients and brain areas by extracting these elements from the original data using discrete wavelet transform coefficients. These elements were then added to their corresponding simulated background activity (preserving patient- and region- specific spectra. We tested five existing detectors against this benchmark. Compared to other studies confronting detectors, we did not only ranked them according their performance but we investigated the reasons leading to these results. Our simulations, thanks to their realism and their variability, enabled us to highlight unreported issues of current detectors: (1 the lack of robust estimation of the background activity, (2 the underestimated impact of the 1/f spectrum, and (3 the inadequate criteria defining an HFO. We believe that our benchmark framework could be a valuable tool to translate HFOs into a clinical environment.

  2. Realistic modelling of the effects of asynchronous motion at the base of bridge piers

    International Nuclear Information System (INIS)

    Romanelli, F.; Panza, G.F.; Vaccari, F.

    2002-11-01

    Frequently long-span bridges provide deep valley crossings, which require special consideration due to the possibility of local amplification of the ground motion as a consequence of topographical irregularities and local soil conditions. This does in fact cause locally enhanced seismic input with the possibility for the bridge piers to respond asynchronously. This introduces special design requirements so that possible out-of-phase ground displacements and the associated large relative displacements of adjacent piers can be accommodated without excessive damage. Assessment of the local variability of the ground motion due to local lateral heterogeneities and to attenuation properties is thus crucial toward the realistic definition of the asynchronous motion at the base of the bridge piers. We illustrate the work done in the framework of a large international cooperation to assess the importance of non-synchronous seismic excitation of long structures. To accomplish this task we compute complete synthetic accelerograms using as input a set of parameters that describes, to the best of our knowledge, the geological structure and seismotectonic setting of the investigated area. (author)

  3. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  4. Students' Critical Mathematical Thinking Skills and Character: Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    Science.gov (United States)

    Palinussa, Anderson L.

    2013-01-01

    This paper presents the findings of a quasi-experimental with pre-test-post-test design and control group that aims to assess students' critical mathematical thinking skills and character through realistic mathematics education (RME) culture-based. Subjects of this study were 106 junior high school students from two low and medium schools level in…

  5. Improvements on a simple muscle-based 3D face for realistic facial expressions

    NARCIS (Netherlands)

    Bui, T.D.; Heylen, Dirk K.J.; Nijholt, Antinus; Badler, N.; Thalmann, D.

    2003-01-01

    Facial expressions play an important role in face-to-face communication. With the development of personal computers capable of rendering high quality graphics, computer facial animation has produced more and more realistic facial expressions to enrich human-computer communication. In this paper, we

  6. Mathematics Instructional Model Based on Realistic Mathematics Education to Promote Problem Solving Ability at Junior High School Padang

    OpenAIRE

    Edwin Musdi

    2016-01-01

    This research aims to develop a mathematics instructional model based realistic mathematics education (RME) to promote students' problem-solving abilities. The design research used Plomp models, which consists of preliminary phase, development or proto-typing phase and assessment phase.  At this study, only the first two phases conducted. The first phase, a preliminary investigation, carried out with a literature study to examine the theory-based instructional learning RME model, characterist...

  7. Comparison of temporal realistic telecommunication base station exposure with worst-case estimation in two countries

    International Nuclear Information System (INIS)

    Mahfouz, Z.; Verloock, L.; Joseph, W.; Tanghe, E.; Gati, A.; Wiart, J.; Lautru, D.; Hanna, V. F.; Martens, L.

    2013-01-01

    The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed down-link packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days. (authors)

  8. Comparison of temporal realistic telecommunication base station exposure with worst-case estimation in two countries.

    Science.gov (United States)

    Mahfouz, Zaher; Verloock, Leen; Joseph, Wout; Tanghe, Emmeric; Gati, Azeddine; Wiart, Joe; Lautru, David; Hanna, Victor Fouad; Martens, Luc

    2013-12-01

    The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed downlink packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days.

  9. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom.

    Science.gov (United States)

    Lesperance, Marielle; Inglis-Whalen, M; Thomson, R M

    2014-02-01

    To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with(125)I, (103)Pd, or (131)Cs seeds, and to investigate doses to ocular structures. An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20-30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%-10% and 13%-14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%-17% and 29%-34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model

  10. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    International Nuclear Information System (INIS)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-01-01

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with 125 I, 103 Pd, or 131 Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up

  11. 3D realistic head model simulation based on transcranial magnetic stimulation.

    Science.gov (United States)

    Yang, Shuo; Xu, Guizhi; Wang, Lei; Chen, Yong; Wu, Huanli; Li, Ying; Yang, Qingxin

    2006-01-01

    Transcranial magnetic stimulation (TMS) is a powerful non-invasive tool for investigating functions in the brain. The target inside the head is stimulated with eddy currents induced in the tissue by the time-varying magnetic field. Precise spatial localization of stimulation sites is the key of efficient functional magnetic stimulations. Many researchers devote to magnetic field analysis in empty free space. In this paper, a realistic head model used in Finite Element Method has been developed. The magnetic field inducted in the head bt TMS has been analysed. This three-dimensional simulation is useful for spatial localization of stimulation.

  12. Microscopic calculations of elastic scattering between light nuclei based on a realistic nuclear interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dohet-Eraly, Jeremy [F.R.S.-FNRS (Belgium); Sparenberg, Jean-Marc; Baye, Daniel, E-mail: jdoheter@ulb.ac.be, E-mail: jmspar@ulb.ac.be, E-mail: dbaye@ulb.ac.be [Physique Nucleaire et Physique Quantique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium)

    2011-09-16

    The elastic phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions are calculated in a cluster approach by the Generator Coordinate Method coupled with the Microscopic R-matrix Method. Two interactions are derived from the realistic Argonne potentials AV8' and AV18 with the Unitary Correlation Operator Method. With a specific adjustment of correlations on the {alpha} + {alpha} collision, the phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions agree rather well with experimental data.

  13. A Local-Realistic Model of Quantum Mechanics Based on a Discrete Spacetime

    Science.gov (United States)

    Sciarretta, Antonio

    2018-01-01

    This paper presents a realistic, stochastic, and local model that reproduces nonrelativistic quantum mechanics (QM) results without using its mathematical formulation. The proposed model only uses integer-valued quantities and operations on probabilities, in particular assuming a discrete spacetime under the form of a Euclidean lattice. Individual (spinless) particle trajectories are described as random walks. Transition probabilities are simple functions of a few quantities that are either randomly associated to the particles during their preparation, or stored in the lattice nodes they visit during the walk. QM predictions are retrieved as probability distributions of similarly-prepared ensembles of particles. The scenarios considered to assess the model comprise of free particle, constant external force, harmonic oscillator, particle in a box, the Delta potential, particle on a ring, particle on a sphere and include quantization of energy levels and angular momentum, as well as momentum entanglement.

  14. Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Paar, N.; Papakonstantinou, P.; Hergert, H.; Roth, R.

    2006-01-01

    We investigate collective multipole excitations for closed shell nuclei from 16 O to 208 Pb using correlated realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant short-range central and tensor correlations a re treated explicitly within the Unitary Correlation Operator Method (UCOM), which provides a phase-shift equivalent correlated interaction VUCOM adapted to simple uncorrelated Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated transition operators. Using VUCOM we solve the Hartree-Fock problem and employ the single-particle states as starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e. the same correlated nucleon-nucleon interact ion is used in calculations of the HF ground state and in the residual RPA interaction. Consequently, the spurious state associated with the center-of-mass motion is properly removed and the sum-rules are exhausted within ±3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole, and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole resonance, the resonance energies are in agreement with experiment hinting at a reasonable compressibility. However, in the 1 - and 2 + channels the resonance energies are overestimated due to missing long-range correlations and three-body contributions. (orig.)

  15. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    Directory of Open Access Journals (Sweden)

    Mohammed Hazim Alkawaz

    2014-01-01

    Full Text Available Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry and blushing (anger and happiness is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.

  16. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    Science.gov (United States)

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.

  17. Toward Simulating Realistic Pursuit-Evasion Using a Roadmap-Based Approach

    KAUST Repository

    Rodriguez, Samuel; Denny, Jory; Zourntos, Takis; Amato, Nancy M.

    2010-01-01

    In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. We demonstrate

  18. Assessment of realistic nowcasting lead-times based on predictability analysis of Mediterranean Heavy Precipitation Events

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2014-05-01

    ' precipitation forecasts showed some skill (improvement over persistence) for lead times up to 60' for moderate intensities (up to 1 mm in 30') and up to 2.5h for lower rates (above 0.1 mm). However an important event-to-event variability has been found as illustrated by the fact that hit rates of rain-no-rain forecasts achieved the 60% value at 90' in the 7 September 2005 and only 40' in the 2 November 2008 case. The discussion of these results provides useful information on the potential application of nowcasting systems and realistic values to be contrasted with specific end-user requirements. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa'nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radarbased nowcasting technique. Journal of Hydrometeorology 6: 532-549 http://dx.doi.org/10.1175/JHM433.1 Berenguer M, D Sempere, G Pegram, 2011: SBMcast - An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. Journal of Hydrology 404: 226-240 http://dx.doi.org/10.1016/j.jhydrol.2011.04.033 Pierce C, A Seed, S Ballard, D Simonin, Z Li, 2012: Nowcasting. In Doppler Radar Observations (J Bech, JL Chau, ed.) Ch. 13, 98-142. InTech, Rijeka, Croatia http://dx.doi.org/10.5772/39054

  19. A Realistic Process Example for MIMO MPC based on Autoregressive Models

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2014-01-01

    for advanced control design develo pment which may be used by non experts in control theory. This paper presents and illustra tes the use of a simple methodology to design an offset-free MPC based on ARX models. Hence a mecha nistic process model is not required. The forced circulation evaporator by Newell...... and Lee is used to illustrate the offset-free MPC based on ARX models for a nonlinear multivariate process ....

  20. Toward Simulating Realistic Pursuit-Evasion Using a Roadmap-Based Approach

    KAUST Repository

    Rodriguez, Samuel

    2010-01-01

    In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. We demonstrate the utility of this approach for a variety of scenarios including pursuit-evasion on terrains, in multi-level buildings, and in crowds. © 2010 Springer-Verlag Berlin Heidelberg.

  1. Role of institutional entrepreneurship in building adaptive capacity in community-based healthcare organisations: realist review protocol.

    Science.gov (United States)

    Iyengar, Sweatha; Katz, Aaron; Durham, Jo

    2016-03-24

    Over the past 3 decades, there has been a substantial shift to the marketisation of government-funded health services. For organisations traditionally buffered from the competitive pressures of for-profit enterprises, such as community-based organisations, this means developing the capacity to adapt to competitive tendering processes, shifting client expectations, and increasing demands for greater accountability. Drawing on ideas of institutional entrepreneurship, we believe that attempts to build adaptive capacity require the transformation of existing institutional arrangements. Key in this may be identifying and fostering institutional entrepreneurs--actors who take the lead in being the impetus for, and giving direction to, structural change. This study focuses on the strategies used by institutional entrepreneurs to build adaptive capacity in the community-based healthcare sector. The research will use an adapted rapid realist review. The review will find underlying theories that explain the circumstances surrounding the implementation of capacity-building strategies that shape organisational response and generate outcomes by activating causal mechanisms. An early scoping of the literature, and consultations with key stakeholders, will be undertaken to identify an initial programme theory. We will search for relevant journal articles and grey literature. Data will be extracted based on contextual factors, mechanisms and outcomes, and their configurations. The analysis will seek patterns and regularities in these configurations and will focus on confirming, refuting or refining our programme theory. The study does not involve primary research and, therefore, does not require formal ethical approval. However, ethical standards of utility, usefulness, feasibility, propriety, accuracy and accountability will be followed. The results will be written up according to the Realist and Meta-Review Evidence Synthesis: Evolving Standards guidelines. Once completed

  2. Ultimate realistic losses of ZrF/sub 4/ based IR fibres

    International Nuclear Information System (INIS)

    France, P.W.; Carter, S.F.; Moore, M.W.; Williams, J.R.

    1986-01-01

    An estimation has been made of the minimum loss that might be expected in ZrF/sub 4/ based IR fibre taking into account extrinsic absorption losses as well as the intrinsic loss mechanisms associated with the IR edge and Rayleigh scattering. The results suggest that an overall loss of approximately 0.03 dB/km might be expected at 2.56 μm, a factor of three higher than the intrinsic loss and a factor of seven lower than overall loss in a typical silica fibre

  3. From Workshops to Walkshops: Evaluating Mobile Locastion-Based Applications in Realistic Settings

    DEFF Research Database (Denmark)

    Korn, Matthias; Zander, Pär-Ola

    2010-01-01

    Many open questions on how to best observe the mobile user experience remain - at the stage of design time as well as use time. In this paper, we are focusing on the stage of design time and describe our experiences from evaluating a mobile application for citizen involvement in municipal land use...... planning. Due to the problems and issues identified after conducting several user workshops in our exemplary case process, we propose "walkshops" as a complement to traditional workshops and prototype field studies specifically to evaluate mobile location-based applications (and similar context......-aware systems). We report some problems with workshops and outline how a walkshop may be carried out. The first trials of the new method are promising and have generated valuable feedback, insights and discussions about using the mobile application within the intended contexts. Many open questions on how...

  4. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    International Nuclear Information System (INIS)

    De Geeter, N; Crevecoeur, G; Dupré, L; Leemans, A

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values. (paper)

  5. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  6. Mathematics Instructional Model Based on Realistic Mathematics Education to Promote Problem Solving Ability at Junior High School Padang

    Directory of Open Access Journals (Sweden)

    Edwin Musdi

    2016-02-01

    Full Text Available This research aims to develop a mathematics instructional model based realistic mathematics education (RME to promote students' problem-solving abilities. The design research used Plomp models, which consists of preliminary phase, development or proto-typing phase and assessment phase.  At this study, only the first two phases conducted. The first phase, a preliminary investigation, carried out with a literature study to examine the theory-based instructional learning RME model, characteristics of learners, learning management descriptions by junior high school mathematics teacher and relevant research. The development phase is done by developing a draft model (an early prototype model that consists of the syntax, the social system, the principle of reaction, support systems, and the impact and effects of instructional support. Early prototype model contain a draft model, lesson plans, worksheets, and assessments. Tesssmer formative evaluation model used to revise the model. In this study only phase of one to one evaluation conducted. In the ppreliminary phase has produced a theory-based learning RME model, a description of the characteristics of learners in grade VIII Junior High School Padang and the description of teacher teaching in the classroom. The result showed that most students were still not be able to solve the non-routine problem. Teachers did not optimally facilitate students to develop problem-solving skills of students. It was recommended that the model can be applied in the classroom.

  7. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction

    Science.gov (United States)

    Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC 0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503

  8. Building a ROS-Based Testbed for Realistic Multi-Robot Simulation: Taking the Exploration as an Example

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-09-01

    Full Text Available While the robotics community agrees that the benchmarking is of high importance to objectively compare different solutions, there are only few and limited tools to support it. To address this issue in the context of multi-robot systems, we have defined a benchmarking process based on experimental designs, which aimed at improving the reproducibility of experiments by making explicit all elements of a benchmark such as parameters, measurements and metrics. We have also developed a ROS (Robot Operating System-based testbed with the goal of making it easy for users to validate, benchmark, and compare different algorithms including coordination strategies. Our testbed uses the MORSE (Modular OpenRobots Simulation Engine simulator for realistic simulation and a computer cluster for decentralized computation. In this paper, we present our testbed in details with the architecture and infrastructure, the issues encountered in implementing the infrastructure, and the automation of the deployment. We also report a series of experiments on multi-robot exploration, in order to demonstrate the capabilities of our testbed.

  9. Generating realistic images using Kray

    Science.gov (United States)

    Tanski, Grzegorz

    2004-07-01

    Kray is an application for creating realistic images. It is written in C++ programming language, has a text-based interface, solves global illumination problem using techniques such as radiosity, path tracing and photon mapping.

  10. Bending and Twisting the Embryonic Heart: A Computational Model for C-Looping Based on Realistic Geometry

    Directory of Open Access Journals (Sweden)

    Yunfei eShi

    2014-08-01

    Full Text Available The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and contraction in the omphalomesenteric veins (primitive atria and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  11. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  12. Normal and Pathological NCAT Image and Phantom Data Based on Physiologically Realistic Left Ventricle Finite-Element Models

    International Nuclear Information System (INIS)

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.; Tsui, Benjamin M.W.; Gullberg, Grant T.

    2006-01-01

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, which provides a realistic model of the normal human anatomy and cardiac and respiratory motions, is used in medical imaging research to evaluate and improve imaging devices and techniques, especially dynamic cardiac applications. One limitation of the phantom is that it lacks the ability to accurately simulate altered functions of the heart that result from cardiac pathologies such as coronary artery disease (CAD). The goal of this work was to enhance the 4D NCAT phantom by incorporating a physiologically based, finite-element (FE) mechanical model of the left ventricle (LV) to simulate both normal and abnormal cardiac motions. The geometry of the FE mechanical model was based on gated high-resolution x-ray multi-slice computed tomography (MSCT) data of a healthy male subject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees at the epicardial surface, through 0 degrees at the mid-wall, to 90 degrees at the endocardial surface. A time varying elastance model was used to simulate fiber contraction, and physiological intraventricular systolic pressure-time curves were applied to simulate the cardiac motion over the entire cardiac cycle. To demonstrate the ability of the FE mechanical model to accurately simulate the normal cardiac motion as well abnormal motions indicative of CAD, a normal case and two pathologic cases were simulated and analyzed. In the first pathologic model, a subendocardial anterior ischemic region was defined. A second model was created with a transmural ischemic region defined in the same location. The FE based deformations were incorporated into the 4D NCAT cardiac model through the control points that define the cardiac structures in the phantom which were set to move according to the predictions of the mechanical model. A simulation study was performed using the FE-NCAT combination to investigate how the

  13. Using Realist Synthesis to Develop an Evidence Base from an Identified Data Set on Enablers and Barriers for Alcohol and Drug Program Implementation

    Science.gov (United States)

    Hunter, Barbara; MacLean, Sarah; Berends, Lynda

    2012-01-01

    The purpose of this paper is to show how "realist synthesis" methodology (Pawson, 2002) was adapted to review a large sample of community based projects addressing alcohol and drug use problems. Our study drew on a highly varied sample of 127 projects receiving funding from a national non-government organisation in Australia between 2002…

  14. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study.

    Science.gov (United States)

    Narita, Akihiro; Ohkubo, Masaki; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2017-10-01

    The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. Good agreement of the virtual nodules generated from

  15. Bayesian Population Physiologically-Based Pharmacokinetic (PBPK Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations.

    Directory of Open Access Journals (Sweden)

    Markus Krauss

    Full Text Available Interindividual variability in anatomical and physiological properties results in significant differences in drug pharmacokinetics. The consideration of such pharmacokinetic variability supports optimal drug efficacy and safety for each single individual, e.g. by identification of individual-specific dosings. One clear objective in clinical drug development is therefore a thorough characterization of the physiological sources of interindividual variability. In this work, we present a Bayesian population physiologically-based pharmacokinetic (PBPK approach for the mechanistically and physiologically realistic identification of interindividual variability. The consideration of a generic and highly detailed mechanistic PBPK model structure enables the integration of large amounts of prior physiological knowledge, which is then updated with new experimental data in a Bayesian framework. A covariate model integrates known relationships of physiological parameters to age, gender and body height. We further provide a framework for estimation of the a posteriori parameter dependency structure at the population level. The approach is demonstrated considering a cohort of healthy individuals and theophylline as an application example. The variability and co-variability of physiological parameters are specified within the population; respectively. Significant correlations are identified between population parameters and are applied for individual- and population-specific visual predictive checks of the pharmacokinetic behavior, which leads to improved results compared to present population approaches. In the future, the integration of a generic PBPK model into an hierarchical approach allows for extrapolations to other populations or drugs, while the Bayesian paradigm allows for an iterative application of the approach and thereby a continuous updating of physiological knowledge with new data. This will facilitate decision making e.g. from preclinical to

  16. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.

    Science.gov (United States)

    Reinhardt, James W; Gooch, Keith J

    2014-02-01

    Agent-based modeling was used to model collagen fibrils, composed of a string of nodes serially connected by links that act as Hookean springs. Bending mechanics are implemented as torsional springs that act upon each set of three serially connected nodes as a linear function of angular deflection about the central node. These fibrils were evaluated under conditions that simulated axial extension, simple three-point bending and an end-loaded cantilever. The deformation of fibrils under axial loading varied <0.001% from the analytical solution for linearly elastic fibrils. For fibrils between 100 μm and 200 μm in length experiencing small deflections, differences between simulated deflections and their analytical solutions were <1% for fibrils experiencing three-point bending and <7% for fibrils experiencing cantilever bending. When these new rules for fibril mechanics were introduced into a model that allowed for cross-linking of fibrils to form a network and the application of cell traction force, the fibrous network underwent macroscopic compaction and aligned between cells. Further, fibril density increased between cells to a greater extent than that observed macroscopically and appeared similar to matrical tracks that have been observed experimentally in cell-populated collagen gels. This behavior is consistent with observations in previous versions of the model that did not allow for the physically realistic simulation of fibril mechanics. The significance of the torsional spring constant value was then explored to determine its impact on remodeling of the simulated fibrous network. Although a stronger torsional spring constant reduced the degree of quantitative remodeling that occurred, the inclusion of torsional springs in the model was not necessary for the model to reproduce key qualitative aspects of remodeling, indicating that the presence of Hookean springs is essential for this behavior. These results suggest that traction force mediated matrix

  17. Mathematics Literacy on Problem Based Learning with Indonesian Realistic Mathematics Education Approach Assisted E-Learning Edmodo

    Science.gov (United States)

    Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.

    2016-02-01

    This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.

  18. Stroke patients' utilisation of extrinsic feedback from computer-based technology in the home: a multiple case study realistic evaluation.

    Science.gov (United States)

    Parker, Jack; Mawson, Susan; Mountain, Gail; Nasr, Nasrin; Zheng, Huiru

    2014-06-05

    Evidence indicates that post-stroke rehabilitation improves function, independence and quality of life. A key aspect of rehabilitation is the provision of appropriate information and feedback to the learner.Advances in information and communications technology (ICT) have allowed for the development of various systems to complement stroke rehabilitation that could be used in the home setting. These systems may increase the provision of rehabilitation a stroke survivor receives and carries out, as well as providing a learning platform that facilitates long-term self-managed rehabilitation and behaviour change. This paper describes the application of an innovative evaluative methodology to explore the utilisation of feedback for post-stroke upper-limb rehabilitation in the home. Using the principles of realistic evaluation, this study aimed to test and refine intervention theories by exploring the complex interactions of contexts, mechanisms and outcomes that arise from technology deployment in the home. Methods included focus groups followed by multi-method case studies (n = 5) before, during and after the use of computer-based equipment. Data were analysed in relation to the context-mechanism-outcome hypotheses case by case. This was followed by a synthesis of the findings to answer the question, 'what works for whom and in what circumstances and respects?' Data analysis reveals that to achieve desired outcomes through the use of ICT, key elements of computer feedback, such as accuracy, measurability, rewarding feedback, adaptability, and knowledge of results feedback, are required to trigger the theory-driven mechanisms underpinning the intervention. In addition, the pre-existing context and the personal and environmental contexts, such as previous experience of service delivery, personal goals, trust in the technology, and social circumstances may also enable or constrain the underpinning theory-driven mechanisms. Findings suggest that the theory-driven mechanisms

  19. Students’ Critical Mathematical Thinking Skills and Character:Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    Directory of Open Access Journals (Sweden)

    Anderson L. Palinussa

    2013-01-01

    Full Text Available This paper presents the findings of a quasi-experimental with pre-test-post-test design and control group that aims to assess students’ critical mathematical thinking skills and character through realistic mathematics education (RME culture-based. Subjects of this study were 106 junior high school students from two low and medium schools level in Ambon. The instruments of the study are: students’ early math skills test, critical thinking skills mathematical test and perception scale of students’character. Data was analyzed by using t-test and Anova. The study found that: 1 Achievements and enhancement of students’ critical mathematical thinking skills who were treated with by realistic mathematics education is better then students’ skills were treated by conventional mathematics education. The differences are considered to: a overall students, b the level of early math skills, and c schools’ level; 2 Quality of students’ character who were treated by realistic mathematics education is better then students’ character who were treated by conventional mathematics education The differences are considered to: a overall students, b the level of early math skills, and c schools’ level  Keywords: Critical Thinking, Students’ Character, Realistic Mathematics Education Culture-Based DOI: http://dx.doi.org/10.22342/jme.4.1.566.75-94

  20. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.

    Science.gov (United States)

    Crichton, Gamal; Guo, Yufan; Pyysalo, Sampo; Korhonen, Anna

    2018-05-21

    Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation between nodes. Recently several works have used neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate performances with comprehensive metrics or explain when or why neural network methods outperform. We investigated how inputs from four node representation algorithms affect performance of a neural link predictor on random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and report performance across five metrics. In random- and time-sliced experiments when the neural network methods were able to learn good node representations and there was a negligible amount of disconnected nodes, those approaches outperformed the baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes, baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while neural network methods benefit from large amounts of data, they require considerable amounts of computational resources to utilise them. Our results indicate

  1. A realistic approach to modeling an in-duct desulfurization process based on an experimental pilot plant study

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, F.J.G.; Ollero, P. [University of Seville, Seville (Spain)

    2008-07-15

    This paper has been written to provide a realistic approach to modeling an in-duct desulfurization process and because of the disagreement between the results predicted by published kinetic models of the reaction between hydrated lime and SO{sub 2} at low temperature and the experimental results obtained in pilot plants where this process takes place. Results were obtained from an experimental program carried out in a 3-MWe pilot plant. Additionally, five kinetic models, from the literature, of the reaction of sulfation of Ca(OH){sub 2} at low temperatures were assessed by simulation and indicate that the desulfurization efficiencies predicted by them are clearly lower than those experimentally obtained in our own pilot plant as well as others. Next, a general model was fitted by minimizing the difference between the calculated and the experimental results from the pilot plant, using Matlab{sup TM}. The parameters were reduced as much as possible, to only two. Finally, after implementing this model in a simulation tool of the in-duct sorbent injection process, it was validated and it was shown to yield a realistic approach useful for both analyzing results and aiding in the design of an in-duct desulfurization process.

  2. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations

    Science.gov (United States)

    Baxa, Michael C.; Haddadian, Esmael J.; Jumper, John M.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    The loss of conformational entropy is a major contribution in the thermodynamics of protein folding. However, accurate determination of the quantity has proven challenging. We calculate this loss using molecular dynamic simulations of both the native protein and a realistic denatured state ensemble. For ubiquitin, the total change in entropy is TΔSTotal = 1.4 kcal⋅mol−1 per residue at 300 K with only 20% from the loss of side-chain entropy. Our analysis exhibits mixed agreement with prior studies because of the use of more accurate ensembles and contributions from correlated motions. Buried side chains lose only a factor of 1.4 in the number of conformations available per rotamer upon folding (ΩU/ΩN). The entropy loss for helical and sheet residues differs due to the smaller motions of helical residues (TΔShelix−sheet = 0.5 kcal⋅mol−1), a property not fully reflected in the amide N-H and carbonyl C=O bond NMR order parameters. The results have implications for the thermodynamics of folding and binding, including estimates of solvent ordering and microscopic entropies obtained from NMR. PMID:25313044

  3. A realist evaluation of value-based care delivery in home care: The influence of actors, autonomy and accountability.

    Science.gov (United States)

    Dainty, Katie N; Golden, Brian R; Hannam, Rosemary; Webster, Fiona; Browne, Gina; Mittmann, Nicole; Stern, Anita; Zwarenstein, Merrick

    2018-06-01

    The increasing demand for home care is occurring in tandem with the need for governments to contain health care costs, maximize appropriate resource utilization and respond to patient preferences for where they receive care. We describe the evaluation of the Integrated Client Care Project (ICCP), a government funded project designed to improve value for outcomes for patients referred to community wound care services in Ontario, Canada. We applied a realist evaluation methodology in order to unpack the influences of contextual and mechanistic choices on the intended outcomes of the ICCP implementation. We collected data through ethnographic methods including 36 months of field observation, 46 key informant interviews and contemporaneous document analysis. The findings presented here highlight how theoretical mechanisms were negatively impacted by strong contextual patterns and weak implementation which led to underwhelming outcomes. Autonomy of the participant organizations, lack of power within the implementation team to drive change, opacity of the goals of the program, and disregard for the impact of complex historical relations within the home care sector compounded to undermine the intended outcome. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. SU-F-J-208: Prompt Gamma Imaging-Based Prediction of Bragg Peak Position for Realistic Treatment Error Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y; Macq, B; Bondar, L [Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Janssens, G [IBA, Louvain-la-Neuve (Belgium)

    2016-06-15

    Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees, and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for

  5. MR-based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator.

    Science.gov (United States)

    Mandija, Stefano; Petrov, Petar I; Neggers, Sebastian F W; Luijten, Peter R; van den Berg, Cornelis A T

    2016-11-01

    Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (B TMS ) produced by standard TMS stimulators are still lacking. Such a validation can be performed by mapping B TMS produced by a realistic TMS setup. In this study, we show that MRI can provide precise quantification of the magnetic field produced by a realistic TMS coil and a clinically used TMS stimulator in the region in which neurostimulation occurs. Measurements of the phase accumulation created by TMS pulses applied during a tailored MR sequence were performed in a phantom. Dedicated hardware was developed to synchronize a typical, clinically used, TMS setup with a 3-T MR scanner. For comparison purposes, electromagnetic simulations of B TMS were performed. MR-based measurements allow the mapping and quantification of B TMS starting 2.5 cm from the TMS coil. For closer regions, the intra-voxel dephasing induced by B TMS prohibits TMS field measurements. For 1% TMS output, the maximum measured value was ~0.1 mT. Simulations reflect quantitatively the experimental data. These measurements can be used to validate electromagnetic models of TMS coils, to guide TMS coil positioning, and for dosimetry and quality assessment of concurrent TMS-MRI studies without the need for crude methods, such as motor threshold, for stimulation dose determination. Copyright © 2016 John Wiley & Sons, Ltd.

  6. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent; Biondo, Stephane; Vervisch, Vanessa [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231,13397 Marseille Cedex 20, (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344, (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol, (Belgium); Saenger, Richard [Schlumberger, Clamart, (France); Lyoussi, Abadallah [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Work is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)

  7. Kuhn: Realist or Antirealist?

    Directory of Open Access Journals (Sweden)

    Michel Ghins

    1998-06-01

    Full Text Available Although Kuhn is much more an antirealist than a realist, the earlier and later articulations of realist and antirealist ingredients in his views merit close scrutiny. What are the constituents of the real invariant World posited by Kuhn and its relation to the mutable paradigm-related worlds? Various proposed solutions to this problem (dubbed the "new-world problem" by Ian Hacking are examined and shown to be unsatisfactory. In The Structure of Scientific Revolutions, the stable World can reasonably be taken to be made up of ordinary perceived objects, whereas in Kuhn's later works the transparadigmatic World is identified with something akin to the Kantian world-in-itself. It is argued that both proposals are beset with insuperable difficulties which render Kuhn's earlier and later versions of antirealism implausible.

  8. Realistic Material Appearance Modelling

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří; Hatka, Martin

    2010-01-01

    Roč. 2010, č. 81 (2010), s. 13-14 ISSN 0926-4981 R&D Projects: GA ČR GA102/08/0593 Institutional research plan: CEZ:AV0Z10750506 Keywords : bidirectional texture function * texture modelling Subject RIV: BD - Theory of Information http:// library .utia.cas.cz/separaty/2010/RO/haindl-realistic material appearance modelling.pdf

  9. Deconvolution of continuous paleomagnetic data from pass-through magnetometer: A new algorithm to restore geomagnetic and environmental information based on realistic optimization

    Science.gov (United States)

    Oda, Hirokuni; Xuan, Chuang

    2014-10-01

    development of pass-through superconducting rock magnetometers (SRM) has greatly promoted collection of paleomagnetic data from continuous long-core samples. The output of pass-through measurement is smoothed and distorted due to convolution of magnetization with the magnetometer sensor response. Although several studies could restore high-resolution paleomagnetic signal through deconvolution of pass-through measurement, difficulties in accurately measuring the magnetometer sensor response have hindered the application of deconvolution. We acquired reliable sensor response of an SRM at the Oregon State University based on repeated measurements of a precisely fabricated magnetic point source. In addition, we present an improved deconvolution algorithm based on Akaike's Bayesian Information Criterion (ABIC) minimization, incorporating new parameters to account for errors in sample measurement position and length. The new algorithm was tested using synthetic data constructed by convolving "true" paleomagnetic signal containing an "excursion" with the sensor response. Realistic noise was added to the synthetic measurement using Monte Carlo method based on measurement noise distribution acquired from 200 repeated measurements of a u-channel sample. Deconvolution of 1000 synthetic measurements with realistic noise closely resembles the "true" magnetization, and successfully restored fine-scale magnetization variations including the "excursion." Our analyses show that inaccuracy in sample measurement position and length significantly affects deconvolution estimation, and can be resolved using the new deconvolution algorithm. Optimized deconvolution of 20 repeated measurements of a u-channel sample yielded highly consistent deconvolution results and estimates of error in sample measurement position and length, demonstrating the reliability of the new deconvolution algorithm for real pass-through measurements.

  10. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    International Nuclear Information System (INIS)

    Furusawa, S; Togashi, H; Nagakura, H; Sumiyoshi, K; Yamada, S; Suzuki, H; Takano, M

    2017-01-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  11. Performance optimization of MOS-like carbon nanotube-FETs with realistic source/drain contacts based on electrostatic doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hailiang; Zhang Minxuan [School of Computer, National University of Defense Technology, Changsha 410073 (China); Hao Yue, E-mail: hlzhou@nudt.edu.cn [School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-12-15

    Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS-like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold performance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application. (semiconductor devices)

  12. Performance optimization of MOS-like carbon nanotube-FETs with realistic source/drain contacts based on electrostatic doping

    International Nuclear Information System (INIS)

    Zhou Hailiang; Zhang Minxuan; Hao Yue

    2010-01-01

    Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS-like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold performance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application. (semiconductor devices)

  13. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    Directory of Open Access Journals (Sweden)

    Johannes P M Heinonen

    Full Text Available Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  14. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    Science.gov (United States)

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  15. A realistic EU vision of a lignite-based energy system in transition: Case study of Serbia

    Directory of Open Access Journals (Sweden)

    Batas-Bjelić Ilija

    2015-01-01

    Full Text Available Several Contracting Parties to the Treaty establishing the Energy Community of the South East Europe, currently in energy transition, have electricity production dominantly based on lignite which contrasts their new reality. Planning approach to designing a new feasible energy policy is presented in this paper. This novel approach in using EnergyPLAN tool stems from analysis of market operation of lignite thermal power plants on hourly basis, and quantification of the feasibility of the energy policy and its alignment with EU vision, and is presented in few scenarios. It was found out that the Serbian energy system is highly sensitive to the electricity market and CO2 tax increase, because the marginal costs for lignite generation will increase to more than 50€/MWh. Shifting in the merit order will be observed even at lower CO2 tax levels, because of the intensity of the emission of the electricity sector (calculated to be higher than 700gCO2/kWhel, according to current energy policy. Based on the increased use of renewable energy sources and more efficient energy conversion technologies, socio-economic and energy policy feasibility would be increased, while long-term marginal costs would be improved by 2€/MWh and emission intensity by 258 gCO2/kWhel, compared to the current energy policy. These contributions, shown in the Serbian case, are of general importance for other lignite dominated Contracting Parties to Treaty establishing the Energy Community. [Projekat Ministartsva nauke Republike Srbije, br. 42009

  16. Getting realistic; Endstation Demut

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.P.

    2004-01-28

    The fuel cell hype of the turn of the millenium has reached its end. The industry is getting realistic. If at all, fuel cell systems for private single-family and multiple dwellings will not be available until the next decade. With a Europe-wide field test, Vaillant intends to advance the PEM technology. [German] Der Brennstoffzellen-Hype der Jahrtausendwende ist verfolgen. Die Branche uebt sich in Bescheidenheit. Die Marktreife der Systeme fuer Ein- und Mehrfamilienhaeuser wird - wenn ueberhaupt - wohl erst im naechsten Jahrzehnt erreicht sein. Vaillant will durch einen europaweiten Feldtest die Entwicklung der PEM-Technologie vorantreiben. (orig.)

  17. The realistic consideration of human factors in model based simulation tools for the air traffic control domain.

    Science.gov (United States)

    Duca, Gabriella; Attaianese, Erminia

    2012-01-01

    Advanced Air Traffic Management (ATM) concepts related to automation, airspace organization and operational procedures are driven by the overall goal to increase ATM system performance. Independently on the nature and/or impact of envisaged changes (e.g. from a short term procedure adjustment to a very long term operational concept or aid tools completion), the preliminary assessment of possible gains in airspace/airport capacity, safety and cost-effectiveness is done by running Model Based Simulations (MBSs, also known as Fast Time Simulations - FTS). Being a not human-in-the-loop technique, the reliability of a MBS results depend on the accuracy and significance of modeled human factors. Despite that, it can be observed in the practice that modeling tools commonly assume a generalized standardization of human behaviors and tasks and consider a very few range of work environment factors that, in the reality, affect the actual human-system performance. The present paper is aimed at opening a discussion about the possibility to keep task description and related weight at a high/general level, suitable for an efficient use of MBSs and, at the same time, increasing simulations reliability adopting some adjustment coming from the elaboration of further variables related to the human aspects of controllers workload.

  18. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Science.gov (United States)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.

    2017-08-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  19. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    International Nuclear Information System (INIS)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M.; Folini, D.; Popov, M. V.; Walder, R.

    2017-01-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  20. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M. [Astrophysics Group, University of Exeter, Exeter EX4 4QL (United Kingdom); Folini, D.; Popov, M. V.; Walder, R., E-mail: i.baraffe@ex.ac.uk [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France)

    2017-08-10

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  1. Comparing photon and proton-based hypofractioned SBRT for prostate cancer accounting for robustness and realistic treatment deliverability.

    Science.gov (United States)

    Goddard, Lee C; Brodin, N Patrik; Bodner, William R; Garg, Madhur K; Tomé, Wolfgang A

    2018-05-01

    To investigate whether photon or proton-based stereotactic body radiation therapy (SBRT is the preferred modality for high dose hypofractionation prostate cancer treatment. Achievable dose distributions were compared when uncertainties in target positioning and range uncertainties were appropriately accounted for. 10 patients with prostate cancer previously treated at our institution (Montefiore Medical Center) with photon SBRT using volumetric modulated arc therapy (VMAT) were identified. MRI images fused to the treatment planning CT allowed for accurate target and organ at risk (OAR) delineation. The clinical target volume was defined as the prostate gland plus the proximal seminal vesicles. Critical OARs include the bladder wall, bowel, femoral heads, neurovascular bundle, penile bulb, rectal wall, urethra and urogenital diaphragm. Photon plan robustness was evaluated by simulating 2 mm isotropic setup variations. Comparative proton SBRT plans employing intensity modulated proton therapy (IMPT) were generated using robust optimization. Plan robustness was evaluated by simulating 2 mm setup variations and 3% or 1% Hounsfield unit (HU) calibration uncertainties. Comparable maximum OAR doses are achievable between photon and proton SBRT, however, robust optimization results in higher maximum doses for proton SBRT. Rectal maximum doses are significantly higher for Robust proton SBRT with 1% HU uncertainty compared to photon SBRT (p = 0.03), whereas maximum doses were comparable for bladder wall (p = 0.43), urethra (p = 0.82) and urogenital diaphragm (p = 0.50). Mean doses to bladder and rectal wall are lower for proton SBRT, but higher for neurovascular bundle, urethra and urogenital diaphragm due to increased lateral scatter. Similar target conformality is achieved, albeit with slightly larger treated volume ratios for proton SBRT, >1.4 compared to 1.2 for photon SBRT. Similar treatment plans can be generated with IMPT compared to VMAT in terms of

  2. Exploring ‘generative mechanisms’ of the antiretroviral adherence club intervention using the realist approach: a scoping review of research-based antiretroviral treatment adherence theories

    Directory of Open Access Journals (Sweden)

    Ferdinand C. Mukumbang

    2017-05-01

    Full Text Available Abstract Background Poor retention in care and non-adherence to antiretroviral therapy (ART continue to undermine the success of HIV treatment and care programmes across the world. There is a growing recognition that multifaceted interventions – application of two or more adherence-enhancing strategies – may be useful to improve ART adherence and retention in care among people living with HIV/AIDS. Empirical evidence shows that multifaceted interventions produce better results than interventions based on a singular perspective. Nevertheless, the bundle of mechanisms by which multifaceted interventions promote ART adherence are poorly understood. In this paper, we reviewed theories on ART adherence to identify candidate/potential mechanisms by which the adherence club intervention works. Methods We searched five electronic databases (PubMed, EBSCOhost, CINAHL, PsycARTICLES and Google Scholar using Medical Subject Headings (MeSH terms. A manual search of citations from the reference list of the studies identified from the electronic databases was also done. Twenty-six articles that adopted a theory-guided inquiry of antiretroviral adherence behaviour were included for the review. Eleven cognitive and behavioural theories underpinning these studies were explored. We examined each theory for possible ‘generative causality’ using the realist evaluation heuristic (Context-Mechanism-Outcome configuration, then, we selected candidate mechanisms thematically. Results We identified three major sets of theories: Information-Motivation-Behaviour, Social Action Theory and Health Behaviour Model, which explain ART adherence. Although they show potential in explaining adherence bebahiours, they fall short in explaining exactly why and how the various elements they outline combine to explain positive or negative outcomes. Candidate mechanisms indentified were motivation, self-efficacy, perceived social support, empowerment, perceived threat, perceived

  3. Exploring 'generative mechanisms' of the antiretroviral adherence club intervention using the realist approach: a scoping review of research-based antiretroviral treatment adherence theories.

    Science.gov (United States)

    Mukumbang, Ferdinand C; Van Belle, Sara; Marchal, Bruno; van Wyk, Brian

    2017-05-04

    Poor retention in care and non-adherence to antiretroviral therapy (ART) continue to undermine the success of HIV treatment and care programmes across the world. There is a growing recognition that multifaceted interventions - application of two or more adherence-enhancing strategies - may be useful to improve ART adherence and retention in care among people living with HIV/AIDS. Empirical evidence shows that multifaceted interventions produce better results than interventions based on a singular perspective. Nevertheless, the bundle of mechanisms by which multifaceted interventions promote ART adherence are poorly understood. In this paper, we reviewed theories on ART adherence to identify candidate/potential mechanisms by which the adherence club intervention works. We searched five electronic databases (PubMed, EBSCOhost, CINAHL, PsycARTICLES and Google Scholar) using Medical Subject Headings (MeSH) terms. A manual search of citations from the reference list of the studies identified from the electronic databases was also done. Twenty-six articles that adopted a theory-guided inquiry of antiretroviral adherence behaviour were included for the review. Eleven cognitive and behavioural theories underpinning these studies were explored. We examined each theory for possible 'generative causality' using the realist evaluation heuristic (Context-Mechanism-Outcome) configuration, then, we selected candidate mechanisms thematically. We identified three major sets of theories: Information-Motivation-Behaviour, Social Action Theory and Health Behaviour Model, which explain ART adherence. Although they show potential in explaining adherence bebahiours, they fall short in explaining exactly why and how the various elements they outline combine to explain positive or negative outcomes. Candidate mechanisms indentified were motivation, self-efficacy, perceived social support, empowerment, perceived threat, perceived benefits and perceived barriers. Although these candidate

  4. Neural Correlates of a Perspective-taking Task Using in a Realistic Three-dimmensional Environment Based Task: A Pilot Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Agarwal, Sri Mahavir; Shivakumar, Venkataram; Kalmady, Sunil V; Danivas, Vijay; Amaresha, Anekal C; Bose, Anushree; Narayanaswamy, Janardhanan C; Amorim, Michel-Ange; Venkatasubramanian, Ganesan

    2017-08-31

    Perspective-taking ability is an essential spatial faculty that is of much interest in both health and neuropsychiatric disorders. There is limited data on the neural correlates of perspective taking in the context of a realistic three-dimensional environment. We report the results of a pilot study exploring the same in eight healthy volunteers. Subjects underwent two runs of an experiment in a 3 Tesla magnetic resonance imaging (MRI) involving alternate blocks of a first-person perspective based allocentric object location memory task (OLMT), a third-person perspective based egocentric visual perspective taking task (VPRT), and a table task (TT) that served as a control. Difference in blood oxygen level dependant response during task performance was analyzed using Statistical Parametric Mapping software, version 12. Activations were considered significant if they survived family-wise error correction at the cluster level using a height threshold of p <0.001, uncorrected at the voxel level. A significant difference in accuracy and reaction time based on task type was found. Subjects had significantly lower accuracy in VPRT compared to TT. Accuracy in the two active tasks was not significantly different. Subjects took significantly longer in the VPRT in comparison to TT. Reaction time in the two active tasks was not significantly different. Functional MRI revealed significantly higher activation in the bilateral visual cortex and left temporoparietal junction (TPJ) in VPRT compared to OLMT. The results underscore the importance of TPJ in egocentric manipulation in healthy controls in the context of reality-based spatial tasks.

  5. A realist review of mobile phone-based health interventions for non-communicable disease management in sub-Saharan Africa.

    Science.gov (United States)

    Opoku, Daniel; Stephani, Victor; Quentin, Wilm

    2017-02-06

    The prevalence of non-communicable diseases (NCDs) is increasing in sub-Saharan Africa. At the same time, the use of mobile phones is rising, expanding the opportunities for the implementation of mobile phone-based health (mHealth) interventions. This review aims to understand how, why, for whom, and in what circumstances mHealth interventions against NCDs improve treatment and care in sub-Saharan Africa. Four main databases (PubMed, Cochrane Library, Web of Science, and Google Scholar) and references of included articles were searched for studies reporting effects of mHealth interventions on patients with NCDs in sub-Saharan Africa. All studies published up until May 2015 were included in the review. Following a realist review approach, middle-range theories were identified and integrated into a Framework for Understanding the Contribution of mHealth Interventions to Improved Access to Care for patients with NCDs in sub-Saharan Africa. The main indicators of the framework consist of predisposing characteristics, needs, enabling resources, perceived usefulness, and perceived ease of use. Studies were analyzed in depth to populate the framework. The search identified 6137 titles for screening, of which 20 were retained for the realist synthesis. The contribution of mHealth interventions to improved treatment and care is that they facilitate (remote) access to previously unavailable (specialized) services. Three contextual factors (predisposing characteristics, needs, and enabling resources) influence if patients and providers believe that mHealth interventions are useful and easy to use. Only if they believe mHealth to be useful and easy to use, will mHealth ultimately contribute to improved access to care. The analysis of included studies showed that the most important predisposing characteristics are a positive attitude and a common language of communication. The most relevant needs are a high burden of disease and a lack of capacity of first-contact providers

  6. Benchmark test cases for evaluation of computer-based methods for detection of setup errors: realistic digitally reconstructed electronic portal images with known setup errors

    International Nuclear Information System (INIS)

    Fritsch, Daniel S.; Raghavan, Suraj; Boxwala, Aziz; Earnhart, Jon; Tracton, Gregg; Cullip, Timothy; Chaney, Edward L.

    1997-01-01

    Purpose: The purpose of this investigation was to develop methods and software for computing realistic digitally reconstructed electronic portal images with known setup errors for use as benchmark test cases for evaluation and intercomparison of computer-based methods for image matching and detecting setup errors in electronic portal images. Methods and Materials: An existing software tool for computing digitally reconstructed radiographs was modified to compute simulated megavoltage images. An interface was added to allow the user to specify which setup parameter(s) will contain computer-induced random and systematic errors in a reference beam created during virtual simulation. Other software features include options for adding random and structured noise, Gaussian blurring to simulate geometric unsharpness, histogram matching with a 'typical' electronic portal image, specifying individual preferences for the appearance of the 'gold standard' image, and specifying the number of images generated. The visible male computed tomography data set from the National Library of Medicine was used as the planning image. Results: Digitally reconstructed electronic portal images with known setup errors have been generated and used to evaluate our methods for automatic image matching and error detection. Any number of different sets of test cases can be generated to investigate setup errors involving selected setup parameters and anatomic volumes. This approach has proved to be invaluable for determination of error detection sensitivity under ideal (rigid body) conditions and for guiding further development of image matching and error detection methods. Example images have been successfully exported for similar use at other sites. Conclusions: Because absolute truth is known, digitally reconstructed electronic portal images with known setup errors are well suited for evaluation of computer-aided image matching and error detection methods. High-quality planning images, such as

  7. Investigating the organisational impacts of quality improvement: a protocol for a realist evaluation of improvement approaches drawing on the Resource Based View of the Firm.

    Science.gov (United States)

    Burton, Christopher R; Rycroft Malone, Jo; Robert, Glenn; Willson, Alan; Hopkins, Angela

    2014-07-31

    Little is understood about the role of quality improvement in enabling health organisations to survive and thrive in the contemporary context of financial and economic challenges. We will draw on the theoretical foundations of the 'Resource Based View of the Firm' (RBV) to develop insights into why health organisations engage in improvement work, how impacts are conceptualised, and 'what works' in delivering these impacts. Specifically, RBV theorises that the mix and use of resources across different organisations may explain differences in performance. Whether improvement work influences these resources is unclear. Case study research will be conducted across health organisations participating in four approaches to improvement, including: a national improvement programme; a multiorganisational partnership around implementation; an organisational strategy for quality improvement; and a coproduction project designed to enhance the experience of a clinical service from the perspective of patients. Data will comprise in-depth interviews with key informants, observation of key events and documents; analysed within and then across cases. Adopting a realist perspective, the core tenets of RBV will be evaluated as a programme theory, focusing on the interplay between organisational conditions and behavioural or resource responses that are reported through engagement in improvement. The study has been approved by Bangor University Ethics Committee. The investigation will not judge the relative merits of different approaches to healthcare quality improvement. Rather, we will develop unique insights into the organisational consequences, and dependencies of quality improvement, providing an opportunity to add to the explanatory potential of RBV in this and other contexts. In addition to scientific and lay reports of the study findings, research outputs will include a framework for constructing the economic impacts of quality improvement and practical guidance for health

  8. Development of a realistic human airway model.

    Science.gov (United States)

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained.

  9. Triangulating and guarding realistic polygons

    NARCIS (Netherlands)

    Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

    2014-01-01

    We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards. We show that k-guardable polygons generalize two previously identified classes of realistic input. Following this, we give two simple algorithms for triangulating

  10. How do eHealth Programs for Adolescents With Depression Work? A Realist Review of Persuasive System Design Components in Internet-Based Psychological Therapies.

    Science.gov (United States)

    Wozney, Lori; Huguet, Anna; Bennett, Kathryn; Radomski, Ashley D; Hartling, Lisa; Dyson, Michele; McGrath, Patrick J; Newton, Amanda S

    2017-08-09

    Major depressive disorders are common among adolescents and can impact all aspects of their daily life. Traditional therapies, cognitive behavioral therapy (CBT), and interpersonal psychotherapy (IPT) have been delivered face-to-face. However, Internet-based (online) delivery of these therapies is emerging as an option for adolescents. Internet-based CBT and IPT involve therapeutic content, interaction between the user and the system, and different technological features embedded into the online program (eg, multimedia). Studies of Internet-based CBT and IPT for adolescent depression differ on all three aspects, and variable, positive therapy effects have been reported. A better understanding of the treatment conditions that influence therapy outcomes is important to designing and evaluating these novel therapies. Our aim was to examine the technological and program delivery features of Internet-based CBT and IPT for adolescent depression and to document their potential relation to treatment outcomes and program use. We performed a realist synthesis. We started with an extensive search of published and gray literature. We included intervention studies that evaluated Internet-based CBT or IPT for adolescent depression. We included mixed-methods and qualitative studies, theoretical papers, and policy/implementation documents if they included a focus on how Internet-based psychological therapy is proposed to work for adolescents with depression/depressive symptoms. We used the Mixed-Methods Appraisal Tool to assess the methodological quality of studies. We used the Persuasive System Design (PSD) model as a framework for data extraction and analysis to examine how Internet-based CBT and IPT, as technology-based systems, influence the attitudes and behaviors of system users. PSD components described for the therapies were linked to reported outcomes using a cross-case comparison method and thematic synthesis. We identified 19 Internet-based CBT programs in 59 documents

  11. Iterated interactions method. Realistic NN potential

    International Nuclear Information System (INIS)

    Gorbatov, A.M.; Skopich, V.L.; Kolganova, E.A.

    1991-01-01

    The method of iterated potential is tested in the case of realistic fermionic systems. As a base for comparison calculations of the 16 O system (using various versions of realistic NN potentials) by means of the angular potential-function method as well as operators of pairing correlation were used. The convergence of genealogical series is studied for the central Malfliet-Tjon potential. In addition the mathematical technique of microscopical calculations is improved: new equations for correlators in odd states are suggested and the technique of leading terms was applied for the first time to calculations of heavy p-shell nuclei in the basis of angular potential functions

  12. Satellite Maps Deliver More Realistic Gaming

    Science.gov (United States)

    2013-01-01

    When Redwood City, California-based Electronic Arts (EA) decided to make SSX, its latest snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was NASA's ASTER Global Digital Elevation Map, made available by the Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.

  13. Realistic Visualization of Virtual Views

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    that can be impractical and sometime impossible. In addition, the artificial nature of data often makes visualized virtual scenarios not realistic enough. Not realistic in the sense that a synthetic scene is easy to discriminate visually from a natural scene. A new field of research has consequently...... developed and received much attention in recent years: Realistic Virtual View Synthesis. The main goal is a high fidelity representation of virtual scenarios while easing modeling and physical phenomena simulation. In particular, realism is achieved by the transfer to the novel view of all the physical...... phenomena captured in the reference photographs, (i.e. the transfer of photographic-realism). An overview of most prominent approaches in realistic virtual view synthesis will be presented and briefly discussed. Applications of proposed methods to visual survey, virtual cinematography, as well as mobile...

  14. Realistic Simulation of Rice Plant

    Directory of Open Access Journals (Sweden)

    Wei-long DING

    2011-09-01

    Full Text Available The existing research results of virtual modeling of rice plant, however, is far from perfect compared to that of other crops due to its complex structure and growth process. Techniques to visually simulate the architecture of rice plant and its growth process are presented based on the analysis of the morphological characteristics at different stages. Firstly, the simulations of geometrical shape, the bending status and the structural distortion of rice leaves are conducted. Then, by using an improved model for bending deformation, the curved patterns of panicle axis and various types of panicle branches are generated, and the spatial shape of rice panicle is therefore created. Parametric L-system is employed to generate its topological structures, and finite-state automaton is adopted to describe the development of geometrical structures. Finally, the computer visualization of three-dimensional morphologies of rice plant at both organ and individual levels is achieved. The experimental results showed that the proposed methods of modeling the three-dimensional shapes of organs and simulating the growth of rice plant are feasible and effective, and the generated three-dimensional images are realistic.

  15. Any realistic theory must be computationally realistic: a response to N. Gisin's definition of a Realistic Physics Theory

    OpenAIRE

    Bolotin, Arkady

    2014-01-01

    It is argued that the recent definition of a realistic physics theory by N. Gisin cannot be considered comprehensive unless it is supplemented with requirement that any realistic theory must be computationally realistic as well.

  16. Adapting realist synthesis methodology: The case of workplace harassment interventions.

    Science.gov (United States)

    Carr, Tracey; Quinlan, Elizabeth; Robertson, Susan; Gerrard, Angie

    2017-12-01

    Realist synthesis techniques can be used to assess complex interventions by extracting and synthesizing configurations of contexts, mechanisms, and outcomes found in the literature. Our novel and multi-pronged approach to the realist synthesis of workplace harassment interventions describes our pursuit of theory to link macro and program level theories. After discovering the limitations of a dogmatic approach to realist synthesis, we adapted our search strategy and focused our analysis on a subset of data. We tailored our realist synthesis to understand how, why, and under what circumstances workplace harassment interventions are effective. The result was a conceptual framework to test our theory-based interventions and provide the basis for subsequent realist evaluation. Our experience documented in this article contributes to an understanding of how, under what circumstances, and with what consequences realist synthesis principles can be customized. Copyright © 2017 John Wiley & Sons, Ltd.

  17. On Realistically Attacking Tor with Website Fingerprinting

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2016-10-01

    Full Text Available Website fingerprinting allows a local, passive observer monitoring a web-browsing client’s encrypted channel to determine her web activity. Previous attacks have shown that website fingerprinting could be a threat to anonymity networks such as Tor under laboratory conditions. However, there are significant differences between laboratory conditions and realistic conditions. First, in laboratory tests we collect the training data set together with the testing data set, so the training data set is fresh, but an attacker may not be able to maintain a fresh data set. Second, laboratory packet sequences correspond to a single page each, but for realistic packet sequences the split between pages is not obvious. Third, packet sequences may include background noise from other types of web traffic. These differences adversely affect website fingerprinting under realistic conditions. In this paper, we tackle these three problems to bridge the gap between laboratory and realistic conditions for website fingerprinting. We show that we can maintain a fresh training set with minimal resources. We demonstrate several classification-based techniques that allow us to split full packet sequences effectively into sequences corresponding to a single page each. We describe several new algorithms for tackling background noise. With our techniques, we are able to build the first website fingerprinting system that can operate directly on packet sequences collected in the wild.

  18. Quantum cryptography: towards realization in realistic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Imoto, M; Koashi, M; Shimizu, K [NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 (Japan); Huttner, B [Universite de Geneve, GAP-optique, 20, Rue de l` Ecole de Medecine CH1211, Geneve 4 (Switzerland)

    1997-05-11

    Many of quantum cryptography schemes have been proposed based on some assumptions such as no transmission loss, no measurement error, and an ideal single photon generator. We have been trying to develop a theory of quantum cryptography considering realistic conditions. As such attempts, we propose quantum cryptography with coherent states, quantum cryptography with two-photon interference, and generalization of two-state cryptography to two-mixed-state cases. (author) 15 refs., 1 fig., 1 tab.

  19. Quantum cryptography: towards realization in realistic conditions

    International Nuclear Information System (INIS)

    Imoto, M.; Koashi, M.; Shimizu, K.; Huttner, B.

    1997-01-01

    Many of quantum cryptography schemes have been proposed based on some assumptions such as no transmission loss, no measurement error, and an ideal single photon generator. We have been trying to develop a theory of quantum cryptography considering realistic conditions. As such attempts, we propose quantum cryptography with coherent states, quantum cryptography with two-photon interference, and generalization of two-state cryptography to two-mixed-state cases. (author)

  20. Progress in realistic LOCA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Young, M Y; Bajorek, S M; Ohkawa, K [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    1994-12-31

    While LOCA is a complex transient to simulate, the state of art in thermal hydraulics has advanced sufficiently to allow its realistic prediction and application of advanced methods to actual reactor design as demonstrated by methodology described in this paper 6 refs, 5 figs, 3 tabs

  1. Time management: a realistic approach.

    Science.gov (United States)

    Jackson, Valerie P

    2009-06-01

    Realistic time management and organization plans can improve productivity and the quality of life. However, these skills can be difficult to develop and maintain. The key elements of time management are goals, organization, delegation, and relaxation. The author addresses each of these components and provides suggestions for successful time management.

  2. Triangulating and guarding realistic polygons

    NARCIS (Netherlands)

    Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

    2008-01-01

    We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards in the interior of the object. In this abstract, we describe a simple algorithm for triangulating k-guardable polygons. Our algorithm, which is easily implementable, takes

  3. Should scientific realists be platonists?

    DEFF Research Database (Denmark)

    Busch, Jacob; Morrison, Joe

    2015-01-01

    an appropriate use of the resources of Scientific Realism (in particular, IBE) to achieve platonism? (§2) We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should be Scientific...

  4. Realistic rhetoric and legal decision

    Directory of Open Access Journals (Sweden)

    João Maurício Adeodato

    2017-06-01

    Full Text Available The text aims to lay the foundations of a realistic rhetoric, from the descriptive perspective of how the legal decision actually takes place, without normative considerations. Aristotle's rhetorical idealism and its later prestige reduced rhetoric to the art of persuasion, eliminating important elements of sophistry, especially with regard to legal decision. It concludes with a rhetorical perspective of judicial activism in complex societies.

  5. Simple and Realistic Data Generation

    DEFF Research Database (Denmark)

    Pedersen, Kenneth Houkjær; Torp, Kristian; Wind, Rico

    2006-01-01

    This paper presents a generic, DBMS independent, and highly extensible relational data generation tool. The tool can efficiently generate realistic test data for OLTP, OLAP, and data streaming applications. The tool uses a graph model to direct the data generation. This model makes it very simple...... to generate data even for large database schemas with complex inter- and intra table relationships. The model also makes it possible to generate data with very accurate characteristics....

  6. Realist cinema as world cinema

    OpenAIRE

    Nagib, Lucia

    2017-01-01

    The idea that “realism” is the common denominator across the vast range of productions normally labelled as “world cinema” is widespread and seemly uncontroversial. Leaving aside oppositional binaries that define world cinema as the other of Hollywood or of classical cinema, this chapter will test the realist premise by locating it in the mode of production. It will define this mode as an ethics that engages filmmakers, at cinema’s creative peaks, with the physical and historical environment,...

  7. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment.

    Science.gov (United States)

    Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio

    2016-01-01

    Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under - and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (É cole Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.

  8. Tuukka Kaidesoja on Critical Realist Transcendental Realism

    Directory of Open Access Journals (Sweden)

    Groff Ruth

    2015-09-01

    Full Text Available I argue that critical realists think pretty much what Tukka Kaidesoja says that he himself thinks, but also that Kaidesoja’s objections to the views that he attributes to critical realists are not persuasive.

  9. Realistic and efficient 2D crack simulation

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  10. Margin improvement initiatives: realistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.K.; Paquette, S. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Cunning, T.A. [Department of National Defence, Ottawa, ON (Canada); French, C.; Bonin, H.W. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Pandey, M. [Univ. of Waterloo, Waterloo, ON (Canada); Murchie, M. [Cameco Fuel Manufacturing, Port Hope, ON (Canada)

    2014-07-01

    With reactor core aging, safety margins are particularly tight. Two realistic and practical approaches are proposed here to recover margins. The first project is related to the use of a small amount of neutron absorbers in CANDU Natural Uranium (NU) fuel bundles. Preliminary results indicate that the fuelling transient and subsequent reactivity peak can be lowered to improve the reactor's operating margins, with minimal impact on burnup when less than 1000 mg of absorbers is added to a fuel bundle. The second project involves the statistical analysis of fuel manufacturing data to demonstrate safety margins. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to generate input for ELESTRES and ELOCA. It is found that the fuel response distributions are far below industrial failure limits, implying that margin exists in the current fuel design. (author)

  11. Understanding the impact of area-based interventions on area safety in deprived areas: realist evaluation of a neighbour nuisance intervention in Arnhem, the Netherlands

    NARCIS (Netherlands)

    Kramer, Daniëlle; Harting, Janneke; Kunst, Anton E.

    2016-01-01

    Area-based health inequalities may partly be explained by higher levels of area disorder in deprived areas. Area disorder may cause safety concerns and hence impair health. This study assessed how, for whom and in what conditions the intervention Meeting for Care and Nuisance (MCN) had an impact on

  12. Realistic Features in Analysing the Effect of the Seismic Motion upon Localized Structures Considering Base Isolation Influence on Their Dynamic Behaviour

    Science.gov (United States)

    Apostol, Bogdan Felix; Florin Balan, Stefan; Ionescu, Constantin

    2017-12-01

    The effects of the earthquakes on buildings and the concept of seismic base isolation are investigated by using the model of the vibrating bar embedded at one end. The normal modes and the eigenfrequencies of the bar are highlighted and the amplification of the response due to the excitation of the normal modes (eigenmodes) is computed. The effect is much enhanced at resonance, for oscillating shocks which contain eigenfrequencies of the bar. Also, the response of two linearly joined bars with one end embedded is calculated. It is shown that for very different elastic properties the eigenfrequencies are due mainly to the “softer” bar. The effect of the base isolation in seismic structural engineering is assessed by formulating the model of coupled harmonic oscillators, as a simplified model for the structure building-foundation viewed as two coupled vibrating bars. The coupling decreases the lower eigenfrequencies of the structure and increases the higher ones. Similar amplification factors are derived for coupled oscillators at resonance with an oscillating shock.

  13. The nightmare of indeterminate follicular proliferations: when liquid-based cytology and ancillary techniques are not a moon landing but a realistic plan.

    Science.gov (United States)

    Rossi, Esther Diana; Fadda, Guido; Schmitt, Fernando

    2014-01-01

    Thyroid nodules are a common finding in the general population, including both nonneoplastic and neoplastic entities. Fine-needle aspiration cytology (FNAC) is the first tool for evaluating thyroid nodules. In spite of its high diagnostic accuracy, 25% of nodules result in the category of follicular neoplasms (FN), with varying risk of malignancy and different management strategies. The use of ancillary techniques is reshaping the practice of FNAC. These tools can significantly empower the morphological diagnosis and prognosis of thyroid nodules, allowing a more accurate prediction of the nature of the lesion. Several studies have underlined the role of single or multiple testing for the category of FN as strong indicators of cancer. Every cytological preparation can be used for the application of ancillary techniques but the introduction of liquid-based cytology (LBC) might facilitate the application. Our experience involving an immunocytochemical panel made up of HBME-1 and galectin-3 pointed to an 81% overall diagnostic accuracy in discriminating between low and high risk of malignancy in FN. The application of these techniques on LBC represents an adjunct to the morphological evaluation of FN. They represent a critical and challenging, but also a feasible, tool in the preoperative diagnoses, allowing specific prognostic and predictive details regardless of the cytological preparation. © 2014 S. Karger AG, Basel.

  14. The Evidence-base for Using Ontologies and Semantic Integration Methodologies to Support Integrated Chronic Disease Management in Primary and Ambulatory Care: Realist Review. Contribution of the IMIA Primary Health Care Informatics WG.

    Science.gov (United States)

    Liyanage, H; Liaw, S-T; Kuziemsky, C; Terry, A L; Jones, S; Soler, J K; de Lusignan, S

    2013-01-01

    Most chronic diseases are managed in primary and ambulatory care. The chronic care model (CCM) suggests a wide range of community, technological, team and patient factors contribute to effective chronic disease management. Ontologies have the capability to enable formalised linkage of heterogeneous data sources as might be found across the elements of the CCM. To describe the evidence base for using ontologies and other semantic integration methods to support chronic disease management. We reviewed the evidence-base for the use of ontologies and other semantic integration methods within and across the elements of the CCM. We report them using a realist review describing the context in which the mechanism was applied, and any outcome measures. Most evidence was descriptive with an almost complete absence of empirical research and important gaps in the evidence-base. We found some use of ontologies and semantic integration methods for community support of the medical home and for care in the community. Ubiquitous information technology (IT) and other IT tools were deployed to support self-management support, use of shared registries, health behavioural models and knowledge discovery tools to improve delivery system design. Data quality issues restricted the use of clinical data; however there was an increased use of interoperable data and health system integration. Ontologies and semantic integration methods are emergent with limited evidence-base for their implementation. However, they have the potential to integrate the disparate community wide data sources to provide the information necessary for effective chronic disease management.

  15. Realistic microscopic level densities for spherical nuclei

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented

  16. Progress in realistic LOCA analysis

    International Nuclear Information System (INIS)

    Young, M.Y.; Bajorek, S.M.; Ohkawa, K.

    2004-01-01

    In 1988 the USNRC revised the ECCS rule contained in Appendix K and Section 50.46 of 10 CFR Part 50, which governs the analysis of the Loss Of Coolant Accident (LOCA). The revised regulation allows the use of realistic computer models to calculate the loss of coolant accident. In addition, the new regulation allows the use of high probability estimates of peak cladding temperature (PCT), rather than upper bound estimates. Prior to this modification, the regulations were a prescriptive set of rules which defined what assumptions must be made about the plant initial conditions and how various physical processes should be modeled. The resulting analyses were highly conservative in their prediction of the performance of the ECCS, and placed tight constraints on core power distributions, ECCS set points and functional requirements, and surveillance and testing. These restrictions, if relaxed, will allow for additional economy, flexibility, and in some cases, improved reliability and safety as well. For example, additional economy and operating flexibility can be achieved by implementing several available core and fuel rod designs to increase fuel discharge burnup and reduce neutron flux on the reactor vessel. The benefits of application of best estimate methods to LOCA analyses have typically been associated with reductions in fuel costs, resulting from optimized fuel designs, or increased revenue from power upratings. Fuel cost savings are relatively easy to quantify, and have been estimated at several millions of dollars per cycle for an individual plant. Best estimate methods are also likely to contribute significantly to reductions in O and M costs, although these reductions are more difficult to quantify. Examples of O and M cost reductions are: 1) Delaying equipment replacement. With best estimate methods, LOCA is no longer a factor in limiting power levels for plants with high tube plugging levels or degraded safety injection systems. If other requirements for

  17. Parametrization of 2,2,2-trifluoroethanol based on the generalized AMBER force field provides realistic agreement between experimental and calculated properties of pure liquid as well as water-mixed solutions.

    Science.gov (United States)

    Vymětal, Jiří; Vondrášek, Jiří

    2014-09-04

    We present a novel force field model of 2,2,2-trifluoroethanol (TFE) based on the generalized AMBER force field. The model was exhaustively parametrized to reproduce liquid-state properties of pure TFE, namely, density, enthalpy of vaporization, self-diffusion coefficient, and population of trans and gauche conformers. The model predicts excellently other liquid-state properties such as shear viscosity, thermal expansion coefficient, and isotropic compressibility. The resulting model describes unexpectedly well the state equation of the liquid region in the range of 100 K and 10 MPa. More importantly, the proposed TFE model was optimized for use in combination with the TIP4P/Ew and TIP4P/2005 water models. It does not manifest excessive aggregation, which is known for other models, and therefore, it is supposed to more realistically describe the behavior of TFE/water mixtures. This was demonstrated by means of the Kirkwood-Buff theory of solutions and reasonable agreement with experimental data. We explored a considerable part of the parameter space and systematically tested individual combinations of parameters for performance in combination with the TIP4P/Ew and TIP4P/2005 water models. We observed ambiguity in parameters describing pure liquid TFE; however, most of them failed for TFE/water mixtures. We clearly demonstrated the necessity for balanced TFE-TFE, TFE-water, and water-water interactions which can be acquired only by employing implicit polarization correction in the course of parametrization.

  18. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Singh, Parm Pal; Singh, Sukhmeet

    2010-01-01

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  19. A possible definition of a {\\it Realistic} Physics Theory

    OpenAIRE

    Gisin, Nicolas

    2014-01-01

    A definition of a {\\it Realistic} Physics Theory is proposed based on the idea that, at all time, the set of physical properties possessed (at that time) by a system should unequivocally determine the probabilities of outcomes of all possible measurements.

  20. Numerical computation of aeroacoustic transfer functions for realistic airfoils

    NARCIS (Netherlands)

    De Santana, Leandro Dantas; Miotto, Renato Fuzaro; Wolf, William Roberto

    2017-01-01

    Based on Amiet's theory formalism, we propose a numerical framework to compute the aeroacoustic transfer function of realistic airfoil geometries. The aeroacoustic transfer function relates the amplitude and phase of an incoming periodic gust to the respective unsteady lift response permitting,

  1. Nuclear properties with realistic Hamiltonians through spectral distribution theory

    International Nuclear Information System (INIS)

    Vary, J.P.; Belehrad, R.; Dalton, B.J.

    1979-01-01

    Motivated by the need of non-perturbative methods for utilizing realistic nuclear Hamiltonians H, the authors use spectral distribution theory, based on calculated moments of H, to obtain specific bulk and valence properties of finite nuclei. The primary emphasis here is to present results for the binding energies of nuclei obtained with and without an assumed core. (Auth.)

  2. Place of a Realistic Teacher Education Pedagogy in an ICT ...

    African Journals Online (AJOL)

    This article is based on a study undertaken to examine the impact of introducing a realistic teacher education pedagogy (RTEP) oriented learning environment supported by ICT on distance teacher education in Uganda. It gives an overview of the quality, quantity and training of teachers in primary and secondary schools

  3. Estimating the relative weights of visual and auditory tau versus heuristic-based cues for time-to-contact judgments in realistic, familiar scenes by older and younger adults.

    Science.gov (United States)

    Keshavarz, Behrang; Campos, Jennifer L; DeLucia, Patricia R; Oberfeld, Daniel

    2017-04-01

    Estimating time to contact (TTC) involves multiple sensory systems, including vision and audition. Previous findings suggested that the ratio of an object's instantaneous optical size/sound intensity to its instantaneous rate of change in optical size/sound intensity (τ) drives TTC judgments. Other evidence has shown that heuristic-based cues are used, including final optical size or final sound pressure level. Most previous studies have used decontextualized and unfamiliar stimuli (e.g., geometric shapes on a blank background). Here we evaluated TTC estimates by using a traffic scene with an approaching vehicle to evaluate the weights of visual and auditory TTC cues under more realistic conditions. Younger (18-39 years) and older (65+ years) participants made TTC estimates in three sensory conditions: visual-only, auditory-only, and audio-visual. Stimuli were presented within an immersive virtual-reality environment, and cue weights were calculated for both visual cues (e.g., visual τ, final optical size) and auditory cues (e.g., auditory τ, final sound pressure level). The results demonstrated the use of visual τ as well as heuristic cues in the visual-only condition. TTC estimates in the auditory-only condition, however, were primarily based on an auditory heuristic cue (final sound pressure level), rather than on auditory τ. In the audio-visual condition, the visual cues dominated overall, with the highest weight being assigned to visual τ by younger adults, and a more equal weighting of visual τ and heuristic cues in older adults. Overall, better characterizing the effects of combined sensory inputs, stimulus characteristics, and age on the cues used to estimate TTC will provide important insights into how these factors may affect everyday behavior.

  4. Determination of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  5. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

  6. Results of recent calculations using realistic potentials

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Results of recent calculations for the triton using realistic potentials with strong tensor forces are reviewed, with an emphasis on progress made using the many different calculational schemes. Several test problems are suggested. 49 refs., 5 figs

  7. Sotsialistlik realist Keskküla

    Index Scriptorium Estoniae

    1998-01-01

    Londonis 1998. a. ilmunud inglise kunstikriitiku Matthew Cullerne Bowni monograafias "Socialist Realist Painting" on eesti kunstnikest Enn Põldroos, Nikolai Kormashov, Ando Keskküla, Kormashovi ja Keskküla maalide reproduktsioonid

  8. Evaluation of photovoltaic panel temperature in realistic scenarios

    International Nuclear Information System (INIS)

    Du, Yanping; Fell, Christopher J.; Duck, Benjamin; Chen, Dong; Liffman, Kurt; Zhang, Yinan; Gu, Min; Zhu, Yonggang

    2016-01-01

    Highlights: • The developed realistic model captures more reasonably the thermal response and hysteresis effects. • The predicted panel temperature is as high as 60 °C under a solar irradiance of 1000 W/m"2 in no-wind weather. • In realistic scenarios, the thermal response normally takes 50–250 s. • The actual heating effect may cause a photoelectric efficiency drop of 2.9–9.0%. - Abstract: Photovoltaic (PV) panel temperature was evaluated by developing theoretical models that are feasible to be used in realistic scenarios. Effects of solar irradiance, wind speed and ambient temperature on the PV panel temperature were studied. The parametric study shows significant influence of solar irradiance and wind speed on the PV panel temperature. With an increase of ambient temperature, the temperature rise of solar cells is reduced. The characteristics of panel temperature in realistic scenarios were analyzed. In steady weather conditions, the thermal response time of a solar cell with a Si thickness of 100–500 μm is around 50–250 s. While in realistic scenarios, the panel temperature variation in a day is different from that in steady weather conditions due to the effect of thermal hysteresis. The heating effect on the photovoltaic efficiency was assessed based on real-time temperature measurement of solar cells in realistic weather conditions. For solar cells with a temperature coefficient in the range of −0.21%∼−0.50%, the current field tests indicated an approximate efficiency loss between 2.9% and 9.0%.

  9. The development of social-realistic «tropes» in the screenwriting of the early 1960s: based on Gennady Shpalikov’s screenplay «Berth»

    Directory of Open Access Journals (Sweden)

    Artemyeva E.A.

    2017-06-01

    Full Text Available the paper focuses on the development of the social-realistic tradition in the culture of the early 1960s. Special attention is paid to the first full-length feature Gennady Shpalikov’s screenplay «Berth», which is an example of the development and the change of social-realistic «tropes» in the screenwriting of «Ottepel / the Thaw»: «a positive hero», «big family» and «war». The author concludes that these fundamental «tropes» define all Shpalikov’s work, the screenwriting and the poetry.

  10. Realistic Scheduling Mechanism for Smart Homes

    Directory of Open Access Journals (Sweden)

    Danish Mahmood

    2016-03-01

    Full Text Available In this work, we propose a Realistic Scheduling Mechanism (RSM to reduce user frustration and enhance appliance utility by classifying appliances with respective constraints and their time of use effectively. Algorithms are proposed regarding functioning of home appliances. A 24 hour time slot is divided into four logical sub-time slots, each composed of 360 min or 6 h. In these sub-time slots, only desired appliances (with respect to appliance classification are scheduled to raise appliance utility, restricting power consumption by a dynamically modelled power usage limiter that does not only take the electricity consumer into account but also the electricity supplier. Once appliance, time and power usage limiter modelling is done, we use a nature-inspired heuristic algorithm, Binary Particle Swarm Optimization (BPSO, optimally to form schedules with given constraints representing each sub-time slot. These schedules tend to achieve an equilibrium amongst appliance utility and cost effectiveness. For validation of the proposed RSM, we provide a comparative analysis amongst unscheduled electrical load usage, scheduled directly by BPSO and RSM, reflecting user comfort, which is based upon cost effectiveness and appliance utility.

  11. Comparing Realistic Subthalamic Nucleus Neuron Models

    Science.gov (United States)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  12. Simulation of microarray data with realistic characteristics

    Directory of Open Access Journals (Sweden)

    Lehmussola Antti

    2006-07-01

    Full Text Available Abstract Background Microarray technologies have become common tools in biological research. As a result, a need for effective computational methods for data analysis has emerged. Numerous different algorithms have been proposed for analyzing the data. However, an objective evaluation of the proposed algorithms is not possible due to the lack of biological ground truth information. To overcome this fundamental problem, the use of simulated microarray data for algorithm validation has been proposed. Results We present a microarray simulation model which can be used to validate different kinds of data analysis algorithms. The proposed model is unique in the sense that it includes all the steps that affect the quality of real microarray data. These steps include the simulation of biological ground truth data, applying biological and measurement technology specific error models, and finally simulating the microarray slide manufacturing and hybridization. After all these steps are taken into account, the simulated data has realistic biological and statistical characteristics. The applicability of the proposed model is demonstrated by several examples. Conclusion The proposed microarray simulation model is modular and can be used in different kinds of applications. It includes several error models that have been proposed earlier and it can be used with different types of input data. The model can be used to simulate both spotted two-channel and oligonucleotide based single-channel microarrays. All this makes the model a valuable tool for example in validation of data analysis algorithms.

  13. Realistic costs of carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS

  14. Realistically Rendering SoC Traffic Patterns with Interrupt Awareness

    DEFF Research Database (Denmark)

    Angiolini, Frederico; Mahadevan, Sharkar; Madsen, Jan

    2005-01-01

    to generate realistic test traffic. This paper presents a selection of applications using interrupt-based synchronization; a reference methodology to split such applications in execution subflows and to adjust the overall execution stream based upon hardware events; a reactive simulation device capable...... of correctly replicating such software behaviours in the MPSoC design phase. Additionally, we validate the proposed concept by showing cycle-accurate reproduction of a previously traced application flow....

  15. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2013-11-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces isolated from the boundary of P or even local minima, which are undesirable for several practical reasons. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs and show that the straight skeleton induces a realistic roof with maximum height and volume. We also show that the maximum possible number of distinct realistic roofs over P is ((n-4)(n-4)/4 /2⌋) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n4) preprocessing time. We also present an O(n5)-time algorithm for computing a realistic roof with minimum height or volume. © 2013 Elsevier B.V.

  16. An Overview of Westinghouse Realistic Large Break LOCA Evaluation Model

    Directory of Open Access Journals (Sweden)

    Cesare Frepoli

    2008-01-01

    Full Text Available Since the 1988 amendment of the 10 CFR 50.46 rule in 1988, Westinghouse has been developing and applying realistic or best-estimate methods to perform LOCA safety analyses. A realistic analysis requires the execution of various realistic LOCA transient simulations where the effect of both model and input uncertainties are ranged and propagated throughout the transients. The outcome is typically a range of results with associated probabilities. The thermal/hydraulic code is the engine of the methodology but a procedure is developed to assess the code and determine its biases and uncertainties. In addition, inputs to the simulation are also affected by uncertainty and these uncertainties are incorporated into the process. Several approaches have been proposed and applied in the industry in the framework of best-estimate methods. Most of the implementations, including Westinghouse, follow the Code Scaling, Applicability and Uncertainty (CSAU methodology. Westinghouse methodology is based on the use of the WCOBRA/TRAC thermal-hydraulic code. The paper starts with an overview of the regulations and its interpretation in the context of realistic analysis. The CSAU roadmap is reviewed in the context of its implementation in the Westinghouse evaluation model. An overview of the code (WCOBRA/TRAC and methodology is provided. Finally, the recent evolution to nonparametric statistics in the current edition of the W methodology is discussed. Sample results of a typical large break LOCA analysis for a PWR are provided.

  17. Are there realistically interpretable local theories?

    International Nuclear Information System (INIS)

    d'Espagnat, B.

    1989-01-01

    Although it rests on strongly established proofs, the statement that no realistically interpretable local theory is compatible with some experimentally testable predictions of quantum mechanics seems at first sight to be incompatible with a few general ideas and clear-cut statements occurring in recent theoretical work by Griffiths, Omnes, and Ballentine and Jarrett. It is shown here that in fact none of the developments due to these authors can be considered as a realistically interpretable local theory, so that there is no valid reason for suspecting that the existing proofs of the statement in question are all flawed

  18. A Radiosity Approach to Realistic Image Synthesis

    Science.gov (United States)

    1992-12-01

    AD-A259 082 AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE SYNTHESIS THESIS Richard L. Remington Captain, USAF fl ECTE AFIT/GCE/ENG/92D...09 SJANl 1993U 93-00134 Approved for public release; distribution unlimited 93& 1! A -A- AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE...assistance in creating the input geometry file for the AWACS aircraft interior. Without his assistance, a good model for the diffuse radiosity implementation

  19. Realist review and synthesis of retention studies for health workers in rural and remote areas

    NARCIS (Netherlands)

    Dieleman, M.A.; Kane, Sumit; Zwanikken, Prisca A C; Gerretsen, Barend

    2011-01-01

    This report uses a realist review, which is a theory-based method, to address the questions of “why” and “how” certain rural retention interventions work better in some contexts and fail in others. Through applying a realist perspective to the review of these retention studies, a greater

  20. Realist synthesis: illustrating the method for implementation research

    Directory of Open Access Journals (Sweden)

    Rycroft-Malone Jo

    2012-04-01

    Full Text Available Abstract Background Realist synthesis is an increasingly popular approach to the review and synthesis of evidence, which focuses on understanding the mechanisms by which an intervention works (or not. There are few published examples of realist synthesis. This paper therefore fills a gap by describing, in detail, the process used for a realist review and synthesis to answer the question ‘what interventions and strategies are effective in enabling evidence-informed healthcare?’ The strengths and challenges of conducting realist review are also considered. Methods The realist approach involves identifying underlying causal mechanisms and exploring how they work under what conditions. The stages of this review included: defining the scope of the review (concept mining and framework formulation; searching for and scrutinising the evidence; extracting and synthesising the evidence; and developing the narrative, including hypotheses. Results Based on key terms and concepts related to various interventions to promote evidence-informed healthcare, we developed an outcome-focused theoretical framework. Questions were tailored for each of four theory/intervention areas within the theoretical framework and were used to guide development of a review and data extraction process. The search for literature within our first theory area, change agency, was executed and the screening procedure resulted in inclusion of 52 papers. Using the questions relevant to this theory area, data were extracted by one reviewer and validated by a second reviewer. Synthesis involved organisation of extracted data into evidence tables, theming and formulation of chains of inference, linking between the chains of inference, and hypothesis formulation. The narrative was developed around the hypotheses generated within the change agency theory area. Conclusions Realist synthesis lends itself to the review of complex interventions because it accounts for context as well as

  1. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    We consider navigation or search schemes on networks which have a degree distribution of the form () ∝ exp(−). In addition, the linking probability is taken to be dependent on social distances and is governed by a parameter . The searches are realistic in the sense that not all search chains can be completed.

  2. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing

  3. Interferometric data modelling: issues in realistic data generation

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2004-01-01

    This study describes algorithms developed for modelling interferometric noise in a realistic manner, i.e. incorporating non-stationarity that can be seen in the data from the present generation of interferometers. The noise model is based on individual component models (ICM) with the application of auto regressive moving average (ARMA) models. The data obtained from the model are vindicated by standard statistical tests, e.g. the KS test and Akaike minimum criterion. The results indicate a very good fit. The advantage of using ARMA for ICMs is that the model parameters can be controlled and hence injection and efficiency studies can be conducted in a more controlled environment. This realistic non-stationary noise generator is intended to be integrated within the data monitoring tool framework

  4. Separable expansion for realistic multichannel scattering problems

    International Nuclear Information System (INIS)

    Canton, L.; Cattapan, G.; Pisent, G.

    1987-01-01

    A new approach to the multichannel scattering problem with realistic local or nonlocal interactions is developed. By employing the negative-energy solutions of uncoupled Sturmian eigenvalue problems referring to simple auxiliary potentials, the coupling interactions appearing to the original multichannel problem are approximated by finite-rank potentials. By resorting to integral-equation tecniques the coupled-channel equations are then reduced to linear algebraic equations which can be straightforwardly solved. Compact algebraic expressions for the relevant scattering matrix elements are thus obtained. The convergence of the method is tasted in the single-channel case with realistic optical potentials. Excellent agreement is obtained with a few terms in the separable expansion for both real and absorptive interactions

  5. Realistic Approach for Phasor Measurement Unit Placement

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    This paper presents a realistic cost-effectivemodel for optimal placement of phasor measurement units (PMUs) for complete observability of a power system considering practical cost implications. The proposed model considers hidden or otherwise unaccounted practical costs involved in PMU...... installation. Consideration of these hidden but significant and integral part of total PMU installation costs was inspired from practical experience on a real-life project. The proposedmodel focuses on the minimization of total realistic costs instead of a widely used theoretical concept of a minimal number...... of PMUs. The proposed model has been applied to IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, New England 39-bus, and large power system of 300 buses and real life Danish grid. A comparison of the presented results with those reported by traditionalmethods has also been shown to justify the effectiveness...

  6. RenderGAN: Generating Realistic Labeled Data

    Directory of Open Access Journals (Sweden)

    Leon Sixt

    2018-06-01

    Full Text Available Deep Convolutional Neuronal Networks (DCNNs are showing remarkable performance on many computer vision tasks. Due to their large parameter space, they require many labeled samples when trained in a supervised setting. The costs of annotating data manually can render the use of DCNNs infeasible. We present a novel framework called RenderGAN that can generate large amounts of realistic, labeled images by combining a 3D model and the Generative Adversarial Network framework. In our approach, image augmentations (e.g., lighting, background, and detail are learned from unlabeled data such that the generated images are strikingly realistic while preserving the labels known from the 3D model. We apply the RenderGAN framework to generate images of barcode-like markers that are attached to honeybees. Training a DCNN on data generated by the RenderGAN yields considerably better performance than training it on various baselines.

  7. Realistic molecular model of kerogen's nanostructure.

    Science.gov (United States)

    Bousige, Colin; Ghimbeu, Camélia Matei; Vix-Guterl, Cathie; Pomerantz, Andrew E; Suleimenova, Assiya; Vaughan, Gavin; Garbarino, Gaston; Feygenson, Mikhail; Wildgruber, Christoph; Ulm, Franz-Josef; Pellenq, Roland J-M; Coasne, Benoit

    2016-05-01

    Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.

  8. Non realist tendencies in new Turkish cinema

    OpenAIRE

    Can, İclal

    2016-01-01

    http://hdl.handle.net/11693/29111 Thesis (M.S.): Bilkent University, Department of Communication and Design, İhsan Doğramacı Bilkent University, 2016. Includes bibliographical references (leaves 113-123). The realist tendency which had been dominant in cinema became more apparent with Italian neorealism affecting other national cinemas to a large extent. With the changing and developing socio economic and cultural dynamics, realism gradually has stopped being a natural const...

  9. Security of quantum cryptography with realistic sources

    International Nuclear Information System (INIS)

    Lutkenhaus, N.

    1999-01-01

    The interest in practical implementations of quantum key distribution is steadily growing. However, there is still a need to give a precise security statement which adapts to realistic implementation. In this paper I give the effective key rate we can obtain in a practical setting within scenario of security against individual attacks by an eavesdropper. It illustrates previous results that high losses together with detector dark counts can make secure quantum key distribution impossible. (Author)

  10. Quantifying introgression risk with realistic population genetics

    OpenAIRE

    Ghosh, Atiyo; Meirmans, Patrick G.; Haccou, Patsy

    2012-01-01

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, rep...

  11. Security of quantum cryptography with realistic sources

    Energy Technology Data Exchange (ETDEWEB)

    Lutkenhaus, N [Helsinki Institute of Physics, P.O. Box 9, 00014 Helsingin yliopisto (Finland)

    1999-08-01

    The interest in practical implementations of quantum key distribution is steadily growing. However, there is still a need to give a precise security statement which adapts to realistic implementation. In this paper I give the effective key rate we can obtain in a practical setting within scenario of security against individual attacks by an eavesdropper. It illustrates previous results that high losses together with detector dark counts can make secure quantum key distribution impossible. (Author)

  12. Blend Shape Interpolation and FACS for Realistic Avatar

    Science.gov (United States)

    Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Basori, Ahmad Hoirul; Saba, Tanzila

    2015-03-01

    The quest of developing realistic facial animation is ever-growing. The emergence of sophisticated algorithms, new graphical user interfaces, laser scans and advanced 3D tools imparted further impetus towards the rapid advancement of complex virtual human facial model. Face-to-face communication being the most natural way of human interaction, the facial animation systems became more attractive in the information technology era for sundry applications. The production of computer-animated movies using synthetic actors are still challenging issues. Proposed facial expression carries the signature of happiness, sadness, angry or cheerful, etc. The mood of a particular person in the midst of a large group can immediately be identified via very subtle changes in facial expressions. Facial expressions being very complex as well as important nonverbal communication channel are tricky to synthesize realistically using computer graphics. Computer synthesis of practical facial expressions must deal with the geometric representation of the human face and the control of the facial animation. We developed a new approach by integrating blend shape interpolation (BSI) and facial action coding system (FACS) to create a realistic and expressive computer facial animation design. The BSI is used to generate the natural face while the FACS is employed to reflect the exact facial muscle movements for four basic natural emotional expressions such as angry, happy, sad and fear with high fidelity. The results in perceiving the realistic facial expression for virtual human emotions based on facial skin color and texture may contribute towards the development of virtual reality and game environment of computer aided graphics animation systems.

  13. Towards an agential realist concept of learning

    DEFF Research Database (Denmark)

    Plauborg, Helle

    2018-01-01

    Drawing on agential realism, this article explores how learning can be understood. An agential realist way of thinking about learning is sensitive to the complexity that characterises learning as a phenomenon. Thus, learning is seen as a dynamic and emergent phenomenon, constantly undergoing...... processes of becoming and expanding the range of components involved in such constitutive processes. With inspiration from Barad’s theorisation of spatiality, temporality and the interdependence of discourse and materiality, this article focuses on timespacemattering and material-discursivity. Concepts...

  14. MANAJEMEN LABA: PERILAKU MANAJEMEN OPPORTUNISTIC ATAU REALISTIC ?

    Directory of Open Access Journals (Sweden)

    I Nyoman Wijana Asmara Putra

    2011-01-01

    Full Text Available Earnings management is a still attractive issue. It is often associatedwith negative behavior conducted by management for its own interest. In fact,it also has different side to be examined. There is another motivation to do so,such as to improve the company’s operation. This literature study aims toreview management motivation of doing earnings management, whetheropportunistic or realistic. What conflict that earnings management brings,what pro and cons about it, what would happen if earnings is not managed,whether the company would be better off or worse off.

  15. Realistic thermodynamic and statistical-mechanical measures for neural synchronization.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2014-04-15

    Synchronized brain rhythms, associated with diverse cognitive functions, have been observed in electrical recordings of brain activity. Neural synchronization may be well described by using the population-averaged global potential VG in computational neuroscience. The time-averaged fluctuation of VG plays the role of a "thermodynamic" order parameter O used for describing the synchrony-asynchrony transition in neural systems. Population spike synchronization may be well visualized in the raster plot of neural spikes. The degree of neural synchronization seen in the raster plot is well measured in terms of a "statistical-mechanical" spike-based measure Ms introduced by considering the occupation and the pacing patterns of spikes. The global potential VG is also used to give a reference global cycle for the calculation of Ms. Hence, VG becomes an important collective quantity because it is associated with calculation of both O and Ms. However, it is practically difficult to directly get VG in real experiments. To overcome this difficulty, instead of VG, we employ the instantaneous population spike rate (IPSR) which can be obtained in experiments, and develop realistic thermodynamic and statistical-mechanical measures, based on IPSR, to make practical characterization of the neural synchronization in both computational and experimental neuroscience. Particularly, more accurate characterization of weak sparse spike synchronization can be achieved in terms of realistic statistical-mechanical IPSR-based measure, in comparison with the conventional measure based on VG. Copyright © 2014. Published by Elsevier B.V.

  16. Ultra-Reliable Communications in Failure-Prone Realistic Networks

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Lauridsen, Mads; Alvarez, Beatriz Soret

    2016-01-01

    We investigate the potential of different diversity and interference management techniques to achieve the required downlink SINR outage probability for ultra-reliable communications. The evaluation is performed in a realistic network deployment based on site-specific data from a European capital....... Micro and macroscopic diversity techniques are proved to be important enablers of ultra-reliable communications. Particularly, it is shown how a 4x4 MIMO scheme with three orders of macroscopic diversity can achieve the required SINR outage performance. Smaller gains are obtained from interference...

  17. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  18. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Porter, G.D.; Rognlien, T.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    2001-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and nite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  19. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Por, G.D. ter; Rognlien, T.D.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    1999-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the E x B drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  20. TMS modeling toolbox for realistic simulation.

    Science.gov (United States)

    Cho, Young Sun; Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong

    2010-01-01

    Transcranial magnetic stimulation (TMS) is a technique for brain stimulation using rapidly changing magnetic fields generated by coils. It has been established as an effective stimulation technique to treat patients suffering from damaged brain functions. Although TMS is known to be painless and noninvasive, it can also be harmful to the brain by incorrect focusing and excessive stimulation which might result in seizure. Therefore there is ongoing research effort to elucidate and better understand the effect and mechanism of TMS. Lately Boundary element method (BEM) and Finite element method (FEM) have been used to simulate the electromagnetic phenomenon of TMS. However, there is a lack of general tools to generate the models of TMS due to some difficulties in realistic modeling of the human head and TMS coils. In this study, we have developed a toolbox through which one can generate high-resolution FE TMS models. The toolbox allows creating FE models of the head with isotropic and anisotropic electrical conductivities in five different tissues of the head and the coils in 3D. The generated TMS model is importable to FE software packages such as ANSYS for further and efficient electromagnetic analysis. We present a set of demonstrative results of realistic simulation of TMS with our toolbox.

  1. Realistic Affective Forecasting: The Role of Personality

    Science.gov (United States)

    Hoerger, Michael; Chapman, Ben; Duberstein, Paul

    2016-01-01

    Affective forecasting often drives decision making. Although affective forecasting research has often focused on identifying sources of error at the event level, the present investigation draws upon the ‘realistic paradigm’ in seeking to identify factors that similarly influence predicted and actual emotions, explaining their concordance across individuals. We hypothesized that the personality traits neuroticism and extraversion would account for variation in both predicted and actual emotional reactions to a wide array of stimuli and events (football games, an election, Valentine’s Day, birthdays, happy/sad film clips, and an intrusive interview). As hypothesized, individuals who were more introverted and neurotic anticipated, correctly, that they would experience relatively more unpleasant emotional reactions, and those who were more extraverted and less neurotic anticipated, correctly, that they would experience relatively more pleasant emotional reactions. Personality explained 30% of the concordance between predicted and actual emotional reactions. Findings suggest three purported personality processes implicated in affective forecasting, highlight the importance of individual-differences research in this domain, and call for more research on realistic affective forecasts. PMID:26212463

  2. Novel high-fidelity realistic explosion damage simulation for urban environments

    Science.gov (United States)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  3. Evaluating impact of clinical guidelines using a realist evaluation framework.

    Science.gov (United States)

    Reddy, Sandeep; Wakerman, John; Westhorp, Gill; Herring, Sally

    2015-12-01

    The Remote Primary Health Care Manuals (RPHCM) project team manages the development and publication of clinical protocols and procedures for primary care clinicians practicing in remote Australia. The Central Australian Rural Practitioners Association Standard Treatment Manual, the flagship manual of the RPHCM suite, has been evaluated for accessibility and acceptability in remote clinics three times in its 20-year history. These evaluations did not consider a theory-based framework or a programme theory, resulting in some limitations with the evaluation findings. With the RPHCM having an aim of enabling evidence-based practice in remote clinics and anecdotally reported to do so, testing this empirically for the full suite is vital for both stakeholders and future editions of the RPHCM. The project team utilized a realist evaluation framework to assess how, why and for what the RPHCM were being used by remote practitioners. A theory regarding the circumstances in which the manuals have and have not enabled evidence-based practice in the remote clinical context was tested. The project assessed this theory for all the manuals in the RPHCM suite, across government and aboriginal community-controlled clinics, in three regions of Australia. Implementing a realist evaluation framework to generate robust findings in this context has required innovation in the evaluation design and adaptation by researchers. This article captures the RPHCM team's experience in designing this evaluation. © 2015 John Wiley & Sons, Ltd.

  4. Fabrication of a set of realistic torso phantoms for calibration of transuranic nuclide lung counting facilities

    International Nuclear Information System (INIS)

    Griffith, R.V.; Anderson, A.L.; Sundbeck, C.W.; Alderson, S.W.

    1983-01-01

    A set of 16 tissue equivalent torso phantoms has been fabricated for use by major laboratories involved in counting transuranic nuclides in the lung. These phantoms, which have bone equivalent plastic rib cages, duplicate the performance of the DOE Realistic Phantom set. The new phantoms (and their successors) provide the user laboratories with a highly realistic calibration tool. Moreover, use of these phantoms will allow participating laboratories to intercompare calibration information, both on formal and informal bases. 3 refs., 2 figs

  5. Building Realistic Mobility Models for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Adrian Pullin

    2018-04-01

    Full Text Available A mobile ad hoc network (MANET is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR, destination-sequenced distance-vector routing (DSDV, and ad hoc n-demand distance vector routing (AODV. The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To

  6. Realistic page-turning of electronic books

    Science.gov (United States)

    Fan, Chaoran; Li, Haisheng; Bai, Yannan

    2014-01-01

    The booming electronic books (e-books), as an extension to the paper book, are popular with readers. Recently, many efforts are put into the realistic page-turning simulation o f e-book to improve its reading experience. This paper presents a new 3D page-turning simulation approach, which employs piecewise time-dependent cylindrical surfaces to describe the turning page and constructs smooth transition method between time-dependent cylinders. The page-turning animation is produced by sequentially mapping the turning page into the cylinders with different radii and positions. Compared to the previous approaches, our method is able to imitate various effects efficiently and obtains more natural animation of turning page.

  7. Realistic Simulations of Coronagraphic Observations with WFIRST

    Science.gov (United States)

    Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)

    2018-01-01

    We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.

  8. Operator representation for effective realistic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Dennis; Feldmeier, Hans; Neff, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2013-07-01

    We present a method to derive an operator representation from the partial wave matrix elements of effective realistic nucleon-nucleon potentials. This method allows to employ modern effective interactions, which are mostly given in matrix element representation, also in nuclear many-body methods requiring explicitly the operator representation, for example ''Fermionic Molecular Dynamics'' (FMD). We present results for the operator representation of effective interactions obtained from the Argonne V18 potential with the Uenitary Correlation Operator Method'' (UCOM) and the ''Similarity Renormalization Group'' (SRG). Moreover, the operator representation allows a better insight in the nonlocal structure of the potential: While the UCOM transformed potential only shows a quadratic momentum dependence, the momentum dependence of SRG transformed potentials is beyond such a simple polynomial form.

  9. Level density from realistic nuclear potentials

    International Nuclear Information System (INIS)

    Calboreanu, A.

    2006-01-01

    Nuclear level density of some nuclei is calculated using a realistic set of single particle states (sps). These states are derived from the parameterization of nuclear potentials that describe the observed sps over a large number of nuclei. This approach has the advantage that one can infer level density for nuclei that are inaccessible for a direct study, but are very important in astrophysical processes such as those close to the drip lines. Level densities at high excitation energies are very sensitive to the actual set of sps. The fact that the sps spectrum is finite has extraordinary consequences upon nuclear reaction yields due to the leveling-off of the level density at extremely high excitation energies wrongly attributed so far to other nuclear effects. Single-particle level density parameter a parameter is extracted by fitting the calculated densities to the standard Bethe formula

  10. HELIOSEISMOLOGY OF A REALISTIC MAGNETOCONVECTIVE SUNSPOT SIMULATION

    International Nuclear Information System (INIS)

    Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L. Jr.

    2012-01-01

    We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.

  11. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  12. MetAssimulo:Simulation of Realistic NMR Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2010-10-01

    Full Text Available Abstract Background Probing the complex fusion of genetic and environmental interactions, metabolic profiling (or metabolomics/metabonomics, the study of small molecules involved in metabolic reactions, is a rapidly expanding 'omics' field. A major technique for capturing metabolite data is 1H-NMR spectroscopy and this yields highly complex profiles that require sophisticated statistical analysis methods. However, experimental data is difficult to control and expensive to obtain. Thus data simulation is a productive route to aid algorithm development. Results MetAssimulo is a MATLAB-based package that has been developed to simulate 1H-NMR spectra of complex mixtures such as metabolic profiles. Drawing data from a metabolite standard spectral database in conjunction with concentration information input by the user or constructed automatically from the Human Metabolome Database, MetAssimulo is able to create realistic metabolic profiles containing large numbers of metabolites with a range of user-defined properties. Current features include the simulation of two groups ('case' and 'control' specified by means and standard deviations of concentrations for each metabolite. The software enables addition of spectral noise with a realistic autocorrelation structure at user controllable levels. A crucial feature of the algorithm is its ability to simulate both intra- and inter-metabolite correlations, the analysis of which is fundamental to many techniques in the field. Further, MetAssimulo is able to simulate shifts in NMR peak positions that result from matrix effects such as pH differences which are often observed in metabolic NMR spectra and pose serious challenges for statistical algorithms. Conclusions No other software is currently able to simulate NMR metabolic profiles with such complexity and flexibility. This paper describes the algorithm behind MetAssimulo and demonstrates how it can be used to simulate realistic NMR metabolic profiles with

  13. Realistic edge field model code REFC for designing and study of isochronous cyclotron

    International Nuclear Information System (INIS)

    Ismail, M.

    1989-01-01

    The focussing properties and the requirements for isochronism in cyclotron magnet configuration are well-known in hard edge field model. The fact that they quite often change considerably in realistic field can be attributed mainly to the influence of the edge field. A solution to this problem requires a field model which allows a simple construction of equilibrium orbit and yield simple formulae. This can be achieved by using a fitted realistic edge field (Hudson et al 1975) in the region of the pole edge and such a field model is therefore called a realistic edge field model. A code REFC based on realistic edge field model has been developed to design the cyclotron sectors and the code FIELDER has been used to study the beam properties. In this report REFC code has been described along with some relevant explaination of the FIELDER code. (author). 11 refs., 6 figs

  14. Neutron dosemeter responses in workplace fields and the implications of using realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Thomas, D.J.; Horwood, N.; Taylor, G.C.

    1999-01-01

    The use of realistic neutron calibration fields to overcome some of the problems associated with the response functions of presently available dosemeters, both area survey instruments and personal dosemeters, has been investigated. Realistic calibration fields have spectra which, compared to conventional radionuclide source based calibration fields, more closely match those of the workplace fields in which dosemeters are used. Monte Carlo simulations were performed to identify laboratory systems which would produce appropriate workplace-like calibration fields. A detailed analysis was then undertaken of the predicted under- and over-responses of dosemeters in a wide selection of measured workplace field spectra assuming calibration in a selection of calibration fields. These included both conventional radionuclide source calibration fields, and also several proposed realistic calibration fields. The present state of the art for dosemeter performance, and the possibilities of improving accuracy by using realistic calibration fields are both presented. (author)

  15. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  16. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  17. Music therapy for palliative care: A realist review.

    Science.gov (United States)

    McConnell, Tracey; Porter, Sam

    2017-08-01

    Music therapy has experienced a rising demand as an adjunct therapy for symptom management among palliative care patients. We conducted a realist review of the literature to develop a greater understanding of how music therapy might benefit palliative care patients and the contextual mechanisms that promote or inhibit its successful implementation. We searched electronic databases (CINAHL, Embase, Medline, and PsychINFO) for literature containing information on music therapy for palliative care. In keeping with the realist approach, we examined all relevant literature to develop theories that could explain how music therapy works. A total of 51 articles were included in the review. Music therapy was found to have a therapeutic effect on the physical, psychological, emotional, and spiritual suffering of palliative care patients. We also identified program mechanisms that help explain music therapy's therapeutic effects, along with facilitating contexts for implementation. Music therapy may be an effective nonpharmacological approach to managing distressing symptoms in palliative care patients. The findings also suggest that group music therapy may be a cost-efficient and effective way to support staff caring for palliative care patients. We encourage others to continue developing the evidence base in order to expand our understanding of how music therapy works, with the aim of informing and improving the provision of music therapy for palliative care patients.

  18. Is islet transplantation a realistic approach to curing diabetes?

    Science.gov (United States)

    Jin, Sang-Man; Kim, Kwang-Won

    2017-01-01

    Since the report of type 1 diabetes reversal in seven consecutive patients by the Edmonton protocol in 2000, pancreatic islet transplantation has been reappraised based on accumulated clinical evidence. Although initially expected to therapeutically target long-term insulin independence, islet transplantation is now indicated for more specific clinical benefits. With the long-awaited report of the first phase 3 clinical trial in 2016, allogeneic islet transplantation is now transitioning from an experimental to a proven therapy for type 1 diabetes with problematic hypoglycemia. Islet autotransplantation has already been therapeutically proven in chronic pancreatitis with severe abdominal pain refractory to conventional treatments, and it holds promise for preventing diabetes after partial pancreatectomy due to benign pancreatic tumors. Based on current evidence, this review focuses on islet transplantation as a realistic approach to treating diabetes.

  19. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  20. Quantifying introgression risk with realistic population genetics.

    Science.gov (United States)

    Ghosh, Atiyo; Meirmans, Patrick G; Haccou, Patsy

    2012-12-07

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, repeated invasions and stochasticity. In addition, the use of linkage as a risk mitigation strategy has not been studied properly yet with genetic introgression models. Current genetic introgression studies fail to take repeated invasions and demographic stochasticity into account properly, and use incorrect measures of introgression risk that can be manipulated by arbitrary choices. In this study, we present proper methods for risk quantification that overcome these difficulties. We generalize a probabilistic risk measure, the so-called hazard rate of introgression, for application to introgression models with complex genetics and small natural population sizes. We illustrate the method by studying the effects of linkage and recombination on transgene introgression risk at different population sizes.

  1. Exophobic Quasi-Realistic Heterotic String Vacua

    CERN Document Server

    Assel, Benjamin; Faraggi, Alon E; Kounnas, Costas; Rizos, John

    2009-01-01

    We demonstrate the existence of heterotic-string vacua that are free of massless exotic fields. The need to break the non-Abelian GUT symmetries in k=1 heterotic-string models by Wilson lines, while preserving the GUT embedding of the weak-hypercharge and the GUT prediction sin^2\\theta_w(M(GUT))=3/8, necessarily implies that the models contain states with fractional electric charge. Such states are severely restricted by observations, and must be confined or sufficiently massive and diluted. We construct the first quasi-realistic heterotic-string models in which the exotic states do not appear in the massless spectrum, and only exist, as they must, in the massive spectrum. The SO(10) GUT symmetry is broken to the Pati-Salam subgroup. Our PS heterotic-string models contain adequate Higgs representations to break the GUT and electroweak symmetry, as well as colour Higgs triplets that can be used for the missing partner mechanism. By statistically sampling the space of Pati-Salam vacua we demonstrate the abundan...

  2. Challenges and solutions for realistic room simulation

    Science.gov (United States)

    Begault, Durand R.

    2002-05-01

    Virtual room acoustic simulation (auralization) techniques have traditionally focused on answering questions related to speech intelligibility or musical quality, typically in large volumetric spaces. More recently, auralization techniques have been found to be important for the externalization of headphone-reproduced virtual acoustic images. Although externalization can be accomplished using a minimal simulation, data indicate that realistic auralizations need to be responsive to head motion cues for accurate localization. Computational demands increase when providing for the simulation of coupled spaces, small rooms lacking meaningful reverberant decays, or reflective surfaces in outdoor environments. Auditory threshold data for both early reflections and late reverberant energy levels indicate that much of the information captured in acoustical measurements is inaudible, minimizing the intensive computational requirements of real-time auralization systems. Results are presented for early reflection thresholds as a function of azimuth angle, arrival time, and sound-source type, and reverberation thresholds as a function of reverberation time and level within 250-Hz-2-kHz octave bands. Good agreement is found between data obtained in virtual room simulations and those obtained in real rooms, allowing a strategy for minimizing computational requirements of real-time auralization systems.

  3. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana; Ait Abderrahmane, Hamid; Upadhyay, Ranjit Kumar; Kumari, Nitu

    2013-01-01

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  4. Breaking with fun, educational and realistic learning games

    DEFF Research Database (Denmark)

    Duus Henriksen, Thomas

    2009-01-01

    are commonly conceived as means for staging learning processes, and that thinking learning games so has an inhibiting effect in regard to creating learning processes. The paper draws upon a qualitative study of participants' experiences with ‘the EIS Simulation', which is a computer-based learning game......This paper addresses the game conceptions and values that learning games inherit from regular gaming, as well as how they affect the use and development of learning games. Its key points concern the issues of thinking learning games as fun, educative and realistic, which is how learning games...... for teaching change management and change implementation. The EIS is played in groups, who share the game on a computer, and played by making change decisions in order to implement an IT system in an organisation. In this study, alternative participatory incentives, means for creating learning processes...

  5. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    Science.gov (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  6. Using Concrete and Realistic Data in Evaluating Initial Visualization Designs

    DEFF Research Database (Denmark)

    Knudsen, Søren; Pedersen, Jeppe Gerner; Herdal, Thor

    2016-01-01

    We explore means of designing and evaluating initial visualization ideas, with concrete and realistic data in cases where data is not readily available. Our approach is useful in exploring new domains and avenues for visualization, and contrasts other visualization work, which typically operate...... under the assumption that data has already been collected, and is ready to be visualized. We argue that it is sensible to understand data requirements and evaluate the potential value of visualization before devising means of automatic data collection. We base our exploration on three cases selected...... the design case and problem, the manner in which we collected data, and the findings obtained from evaluations. Afterwards, we describe four factors of our data collection approach, and discuss potential outcomes from it....

  7. Simulating realistic implementations of spin field effect transistor

    Science.gov (United States)

    Gao, Yunfei; Lundstrom, Mark S.; Nikonov, Dmitri E.

    2011-04-01

    The spin field effect transistor (spinFET), consisting of two ferromagnetic source/drain contacts and a Si channel, is predicted to have outstanding device and circuit performance. We carry out a rigorous numerical simulation of the spinFET based on the nonequilibrium Green's function formalism self-consistently coupled with a Poisson solver to produce the device I-V characteristics. Good agreement with the recent experiments in terms of spin injection, spin transport, and the magnetoresistance ratio (MR) is obtained. We include factors crucial for realistic devices: tunneling through a dielectric barrier, and spin relaxation at the interface and in the channel. Using these simulations, we suggest ways of optimizing the device. We propose that by choosing the right contact material and inserting tunnel oxide barriers between the source/drain and channel to filter different spins, the MR can be restored to ˜2000%, which would be beneficial to the reconfigurable logic circuit application.

  8. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana

    2013-05-19

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  9. Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.

    2015-01-01

    An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).

  10. Realistic nurse-led policy implementation, optimization and evaluation: novel methodological exemplar.

    Science.gov (United States)

    Noyes, Jane; Lewis, Mary; Bennett, Virginia; Widdas, David; Brombley, Karen

    2014-01-01

    To report the first large-scale realistic nurse-led implementation, optimization and evaluation of a complex children's continuing-care policy. Health policies are increasingly complex, involve multiple Government departments and frequently fail to translate into better patient outcomes. Realist methods have not yet been adapted for policy implementation. Research methodology - Evaluation using theory-based realist methods for policy implementation. An expert group developed the policy and supporting tools. Implementation and evaluation design integrated diffusion of innovation theory with multiple case study and adapted realist principles. Practitioners in 12 English sites worked with Consultant Nurse implementers to manipulate the programme theory and logic of new decision-support tools and care pathway to optimize local implementation. Methods included key-stakeholder interviews, developing practical diffusion of innovation processes using key-opinion leaders and active facilitation strategies and a mini-community of practice. New and existing processes and outcomes were compared for 137 children during 2007-2008. Realist principles were successfully adapted to a shorter policy implementation and evaluation time frame. Important new implementation success factors included facilitated implementation that enabled 'real-time' manipulation of programme logic and local context to best-fit evolving theories of what worked; using local experiential opinion to change supporting tools to more realistically align with local context and what worked; and having sufficient existing local infrastructure to support implementation. Ten mechanisms explained implementation success and differences in outcomes between new and existing processes. Realistic policy implementation methods have advantages over top-down approaches, especially where clinical expertise is low and unlikely to diffuse innovations 'naturally' without facilitated implementation and local optimization. © 2013

  11. Realistic Noise Assessment and Strain Analysis of Iranian Permanent GPS Stations

    Science.gov (United States)

    Razeghi, S. M.; Amiri Simkooei, A. A.; Sharifi, M. A.

    2012-04-01

    To assess noise characteristics of Iranian Permanent GPS Stations (IPGS), northwestern part of this network namely Azerbaijan Continuous GPS Station (ACGS), was selected. For a realistic noise assessment it is required to model all deterministic signals of the GPS time series by means of least squares harmonic estimation (LS-HE) and derive all periodic behavior of the series. After taking all deterministic signals into account, the least squares variance component estimation (LS-VCE) is used to obtain a realistic noise model (white noise plus flicker noise) of the ACGS. For this purpose, one needs simultaneous GPS time series for which a multivariate noise assessment is applied. Having determined realistic noise model, a realistic strain analysis of the network is obtained for which one relies on the finite element methods. Finite element is now considered to be a new functional model and the new stochastic model is given based on the multivariate noise assessment using LS-VCE. The deformation rates of the components along with their full covariance matries are input to the strain analysis. Further, the results are also provided using a pure white noise model. The normalized strains for these two models show that the strain parameters derived from a realistic noise model are less significant than those derived from the white model. This could be either due to the short time span of the time series used or due to the intrinsic behavior of the strain parameters in the ACGS. Longer time series are required to further elaborate this issue.

  12. Realist Stronghold in the Land of Thucydides? - Appraising and Resisting a Realist Tradition in Greece

    Directory of Open Access Journals (Sweden)

    Kyriakos Mikelis

    2015-10-01

    Full Text Available Given the integration of the discipline of International Relations in Greece into the global discipline since a few decades, the article addresses the reflection of the ‘realism in and for the globe’ question to this specific case. Although the argument doesn’t go as far as to ‘recover’ forgotten IR theorists or self-proclaimed realists, a geopolitical dimension of socio-economic thought during interwar addressed concerns which could be related to the intricacies of realpolitik. Then again at current times, certain scholars have been eager to maintain a firm stance in favor of realism, focusing on the work of ancient figures, especially Thucydides or Homer, and on questions of the offensive-defensive realism debate as well as on the connection with the English School, while others have offered fruitful insights matching the broad constructivist agenda. Overall, certain genuine arguments have appeared, reflecting diversified views about sovereignty and its function or mitigation.

  13. Realistic thermal transient margin analysis of 'MONJU' based on plant performance measurements. Reactor vessel outlet nozzle and evaporator feed water inlet tube sheet of the manual reactor plant trip

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Mori, Takero

    2005-01-01

    In order to develop technologies and achieve safe and stable operation of Monju' as well as realize optimized design and construction of safe and economically competitive fast breeder reactors, the authors are evaluating design approach applied to 'Monju' based on actually measured behavioral data during plant operations. This report uses actual measured characteristic data of 'Monju' during a plant trip test obtained at a commissioning stage with up to 40% power output and introduces plant thermal hydraulic behavior analysis in a representative thermal transient event, i.e. a manual plant trip. Thermal transient driven loads incurred by the reactor vessel outlet nozzle and by the evaporator feed water inlet tube sheet were further derived by structural analyses and were compared with the previously derived values in the design stage and with the limit values. Though the reactor vessel outlet nozzle was exposed to larger temperature change in the trip test than the analytical prediction, the newly calculated mechanical load was about 50% of the previous evaluation in the design stage. Also, the newly analyzed mechanical load incurred by the evaporator feed water inlet tube sheet in this event had a large margin against the limit value of cumulative damage cycle fraction, although the observed temperature disturbance in a steam blow test was wilder than the analytical prediction. Thus we concluded that the Monju' plant has an assured safety margin against thermal transient in plant trip events. (author)

  14. When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1-6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations.

    Science.gov (United States)

    Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc

    2017-04-11

    All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.

  15. Aquatic risk assessment of a realistic exposure to pesticides used in bulb crops: a microcosm study

    NARCIS (Netherlands)

    Wijngaarden, van R.P.A.; Cuppen, J.G.M.; Arts, G.H.P.; Crum, S.J.H.; Hoorn, van den M.W.; Brink, van den P.J.; Brock, T.C.M.

    2004-01-01

    The fungicide fluazinam, the insecticide lambda-cyhalothrin, and the herbicides asulam and metamitron were applied to indoor freshwater microcosms (water volume approximately 0.6 m3). The treatment regime was based on a realistic application scenario in tulip cultivation. Concentrations of each

  16. 'Semi-realistic'F-term inflation model building in supergravity

    International Nuclear Information System (INIS)

    Kain, Ben

    2008-01-01

    We describe methods for building 'semi-realistic' models of F-term inflation. By semi-realistic we mean that they are built in, and obey the requirements of, 'semi-realistic' particle physics models. The particle physics models are taken to be effective supergravity theories derived from orbifold compactifications of string theory, and their requirements are taken to be modular invariance, absence of mass terms and stabilization of moduli. We review the particle physics models, their requirements and tools and methods for building inflation models

  17. Use of clinical guidelines in remote Australia: A realist evaluation.

    Science.gov (United States)

    Reddy, Sandeep; Orpin, Victoria; Herring, Sally; Mackie-Schneider, Stephanie; Struber, Janet

    2018-02-01

    The aim of this evaluation was to assess the acceptability, accessibility, and compliance with the 2014 editions of the Remote Primary Health Care Manuals (RPHCM) in health care centres across remote areas of Northern and Central Australia. To undertake a comprehensive evaluation that considered context, the evaluation used a realist evaluation framework. The evaluation used a variety of methods including interviews and survey to develop and test a programme theory. Many remote health practitioners have adopted standardized, evidence-based practice because of the use of the RPHCM. The mechanisms that led to the use of the manuals include acceptance of the worth of the protocols to their clinical practice, reliance on manual content to guide their practice, the perception of credibility, the applicability of RPHCM content to the context, and a fear of the consequences of not using the RPHCMs. Some remote health practitioners are less inclined to use the RPHCM regularly because of a perception that the content is less suited to their needs and daily practice or it is hard to navigate or understand. The evaluation concluded that there is work to be done to widen the RPHCM user base, and organizations need to increase support for their staff to use the RPHCM protocols better. These measures are expected to enable standardized clinical practice in the remote context. © 2017 John Wiley & Sons, Ltd.

  18. Entrepreneurial Education: A Realistic Alternative for Women and Minorities.

    Science.gov (United States)

    Steward, James F.; Boyd, Daniel R.

    1989-01-01

    Entrepreneurial education is a valid, realistic occupational training alternative for minorities and women in business. Entrepreneurship requires that one become involved with those educational programs that contribute significantly to one's success. (Author)

  19. Student Work Experience: A Realistic Approach to Merchandising Education.

    Science.gov (United States)

    Horridge, Patricia; And Others

    1980-01-01

    Relevant and realistic experiences are needed to prepare the student for a future career. Addresses the results of a survey of colleges and universities in the United States in regard to their student work experience (SWE) in fashion merchandising. (Author)

  20. Physically realistic modeling of maritime training simulation

    OpenAIRE

    Cieutat , Jean-Marc

    2003-01-01

    Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...

  1. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  2. Trends in hydrodesulfurization catalysis based on realistic surface models

    DEFF Research Database (Denmark)

    Moses, P.G.; Grabow, L.C.; Fernandez Sanchez, Eva

    2014-01-01

    elementary reactions in HDS of thiophene. These linear correlations are used to develop a simple kinetic model, which qualitatively describes experimental trends in activity. The kinetic model identifies the HS-binding energy as a descriptor of HDS activity. This insight contributes to understanding...... the effect of promotion and structure-activity relationships. Graphical Abstract: [Figure not available: see fulltext.] © 2014 Springer Science+Business Media New York....

  3. Track-based event recognition in a realistic crowded environment

    NARCIS (Netherlands)

    Huis, J.R. van; Bouma, H.; Baan, J.; Burghouts, G.J.; Eendebak, P.T.; Hollander, R.J.M.; Dijk, J.; Rest, J.H.C. van

    2014-01-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale

  4. Assumptions behind size-based ecosystem models are realistic

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Blanchard, Julia L.; Fulton, Elizabeth A.

    2016-01-01

    A recent publication about balanced harvesting (Froese et al., ICES Journal of Marine Science; doi:10.1093/icesjms/fsv122) contains several erroneous statements about size-spectrum models. We refute the statements by showing that the assumptions pertaining to size-spectrum models discussed by Fro...... that there is indeed a constructive role for a wide suite of ecosystem models to evaluate fishing strategies in an ecosystem context...

  5. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    Science.gov (United States)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  6. Realistic, achievable and effective targets and timetables

    International Nuclear Information System (INIS)

    Hambley, M.G.

    1997-01-01

    The current status of U.S. policy regarding climate change, and the U.S. perspective on targets and timetables were discussed. U.S. policy is based on four particular points: (1) legally binding, multi-year emissions budgets, (2) focus on medium, not short-term targets, (3) maximum flexibility offered to parties to reach whatever targets are agreed upon, and (4) a proposal concerning developing countries. It was strongly suggested that if the December 1997 conference in Kyoto is to succeed, developing countries would have to have a role in negotiations. Greenhouse gas emissions and climate change are global issues, and can only be solved by global action

  7. Realistic training scenario simulations and simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, William H.; Koncher, Tawny R.; Luke, Stanley John; Sweeney, Jerry Joseph; White, Gregory K.

    2017-12-05

    In one embodiment, a system includes a signal generator operatively coupleable to one or more detectors; and a controller, the controller being both operably coupled to the signal generator and configured to cause the signal generator to: generate one or more signals each signal being representative of at least one emergency event; and communicate one or more of the generated signal(s) to a detector to which the signal generator is operably coupled. In another embodiment, a method includes: receiving data corresponding to one or more emergency events; generating at least one signal based on the data; and communicating the generated signal(s) to a detector.

  8. Toward developing more realistic groundwater models using big data

    Science.gov (United States)

    Vahdat Aboueshagh, H.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.

    2017-12-01

    Rich geological data is the backbone of developing realistic groundwater models for groundwater resources management. However, constructing realistic groundwater models can be challenging due to inconsistency between different sources of geological, hydrogeological and geophysical data and difficulty in processing big data to characterize the subsurface environment. This study develops a framework to utilize a big geological dataset to create a groundwater model for the Chicot Aquifer in the southwestern Louisiana, which borders on the Gulf of Mexico at south. The Chicot Aquifer is the principal source of fresh water in southwest Louisiana, underlying an area of about 9,000 square miles. Agriculture is the largest groundwater consumer in this region and overpumping has caused significant groundwater head decline and saltwater intrusion from the Gulf and deep formations. A hydrostratigraphy model was constructed using around 29,000 electrical logs and drillers' logs as well as screen lengths of pumping wells through a natural neighbor interpolation method. These sources of information have different weights in terms of accuracy and trustworthy. A data prioritization procedure was developed to filter untrustworthy log information, eliminate redundant data, and establish consensus of various lithological information. The constructed hydrostratigraphy model shows 40% sand facies, which is consistent with the well log data. The hydrostratigraphy model confirms outcrop areas of the Chicot Aquifer in the north of the study region. The aquifer sand formation is thinning eastward to merge into Atchafalaya River alluvial aquifer and coalesces to the underlying Evangeline aquifer. A grid generator was used to convert the hydrostratigraphy model into a MODFLOW grid with 57 layers. A Chicot groundwater model was constructed using the available hydrologic and hydrogeological data for 2004-2015. Pumping rates for irrigation wells were estimated using the crop type and acreage

  9. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    International Nuclear Information System (INIS)

    Aristovich, K Y; Khan, S H

    2010-01-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  10. Blending critical realist and emancipatory practice development methodologies: making critical realism work in nursing research.

    LENUS (Irish Health Repository)

    Parlour, Randal

    2012-12-01

    This paper examines the efficacy of facilitation as a practice development intervention in changing practice within an Older Person setting and in implementing evidence into practice. It outlines the influences exerted by the critical realist paradigm in guiding emancipatory practice development activities and, in particular, how the former may be employed within an emancipatory practice development study to elucidate and increase understanding pertinent to causation and outcomes. The methodology is based upon an emancipatory practice development approach set within a realistic evaluation framework. This allows for systematic analysis of the social and contextual elements that influence the explication of outcomes associated with facilitation. The study is concentrated upon five practice development cycles, within which a sequence of iterative processes is integrated. The authors assert that combining critical realist and emancipatory processes offers a robust and practical method for translating evidence and implementing changes in practice, as the former affirms or falsifies the influence that emancipatory processes exert on attaining culture shift, and enabling transformation towards effective clinical practice. A new framework for practice development is proposed that establishes methodological coherency between emancipatory practice development and realistic evaluation. This augments the existing theoretical bases for both these approaches by contributing new theoretical and methodological understandings of causation.

  11. Metastable cosmic strings in realistic models

    International Nuclear Information System (INIS)

    Holman, R.

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2) L x SU(2) R x U(1) B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed

  12. Realistic effective interactions for nuclear systems

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.

    1994-09-01

    A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs

  13. Implementing enhanced recovery pathways: a literature review with realist synthesis.

    Science.gov (United States)

    Coxon, Astrid; Nielsen, Karina; Cross, Jane; Fox, Chris

    2017-10-01

    Enhanced Recovery Pathways (ERPs) are an increasingly popular, evidenced-based approach to surgery, designed to improve patient outcomes and reduce costs. Despite evidence demonstrating the benefits of these pathways, implementation and adherence have been inconsistent. Using realist synthesis, this review explored the current literature surrounding the implementation of ERPs in the UK. Knowledge consolidation between authors and consulting with field experts helped to guide the search strategy. Relevant medical and social science databases were searched from 2000 to 2016, as well as a general web search. A total of 17 papers were identified, including original research, reviews, case studies and guideline documents. Full texts were analysed, cross-examined, and data extracted and synthesised. Several implementation strategies were identified, including the contexts in which these operated, the subsequent mechanisms of action that were triggered, and the outcome patterns they produced. Context-Mechanism-Outcome (CMO) configurations were generated, tested, and refined. These were grouped to develop two programme theories concerning ERP implementation, one related to the strategy of consulting with staff, the other with appointing a change agent to coordinate and drive the implementation process. These theories highlight instances in which implementation could be improved. Current literature in ERP research is primarily focussed on measuring patient outcomes and cost effectiveness, and as a result, important detail regarding the implementation process is often not reported or described robustly. This review not only provides recommendations for future improvements in ERP implementation, but also highlights specific areas of focus for furthering ERP implementation research.

  14. Bayesian inversion using a geologically realistic and discrete model space

    Science.gov (United States)

    Jaeggli, C.; Julien, S.; Renard, P.

    2017-12-01

    Since the early days of groundwater modeling, inverse methods play a crucial role. Many research and engineering groups aim to infer extensive knowledge of aquifer parameters from a sparse set of observations. Despite decades of dedicated research on this topic, there are still several major issues to be solved. In the hydrogeological framework, one is often confronted with underground structures that present very sharp contrasts of geophysical properties. In particular, subsoil structures such as karst conduits, channels, faults, or lenses, strongly influence groundwater flow and transport behavior of the underground. For this reason it can be essential to identify their location and shape very precisely. Unfortunately, when inverse methods are specially trained to consider such complex features, their computation effort often becomes unaffordably high. The following work is an attempt to solve this dilemma. We present a new method that is, in some sense, a compromise between the ergodicity of Markov chain Monte Carlo (McMC) methods and the efficient handling of data by the ensemble based Kalmann filters. The realistic and complex random fields are generated by a Multiple-Point Statistics (MPS) tool. Nonetheless, it is applicable with any conditional geostatistical simulation tool. Furthermore, the algorithm is independent of any parametrization what becomes most important when two parametric systems are equivalent (permeability and resistivity, speed and slowness, etc.). When compared to two existing McMC schemes, the computational effort was divided by a factor of 12.

  15. From Delivery to Adoption of Physical Activity Guidelines: Realist Synthesis

    Directory of Open Access Journals (Sweden)

    Liliana Leone

    2017-10-01

    Full Text Available Background: Evidence-based guidelines published by health authorities for the promotion of health-enhancing physical activity (PA, continue to be implemented unsuccessfully and demonstrate a gap between evidence and policies. This review synthesizes evidence on factors influencing delivery, adoption and implementation of PA promotion guidelines within different policy sectors (e.g., health, transport, urban planning, sport, education. Methods: Published literature was initially searched using PubMed, EBSCO, Google Scholar and continued through an iterative snowball technique. The literature review spanned the period 2002–2017. The realist synthesis approach was adopted to review the content of 39 included studies. An initial programme theory with a four-step chain from evidence emersion to implementation of guidelines was tested. Results: The synthesis furthers our understanding of the link between PA guidelines delivery and the actions of professionals responsible for implementation within health services, school departments and municipalities. The main mechanisms identified for guidance implementation were scientific legitimation, enforcement, feasibility, familiarity with concepts and PA habits. Threats emerged to the successful implementation of PA guidelines at national/local jurisdictional levels. Conclusions: The way PA guidelines are developed may influence their adoption by policy-makers and professionals. Useful lessons emerged that may inform synergies between policymaking and professional practices, promoting win-win multisectoral strategies.

  16. Improved transcranial magnetic stimulation coil design with realistic head modeling

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2013-03-01

    We are investigating Transcranial magnetic stimulation (TMS) as a noninvasive technique based on electromagnetic induction which causes stimulation of the neurons in the brain. TMS can be used as a pain-free alternative to conventional electroconvulsive therapy (ECT) which is still widely implemented for treatment of major depression. Development of improved TMS coils capable of stimulating subcortical regions could also allow TMS to replace invasive deep brain stimulation (DBS) which requires surgical implantation of electrodes in the brain. Our new designs allow new applications of the technique to be established for a variety of diagnostic and therapeutic applications of psychiatric disorders and neurological diseases. Calculation of the fields generated inside the head is vital for the use of this method for treatment. In prior work we have implemented a realistic head model, incorporating inhomogeneous tissue structures and electrical conductivities, allowing the site of neuronal activation to be accurately calculated. We will show how we utilize this model in the development of novel TMS coil designs to improve the depth of penetration and localization of stimulation produced by stimulator coils.

  17. Management of long term sickness absence: a systematic realist review.

    Science.gov (United States)

    Higgins, Angela; O'Halloran, Peter; Porter, Sam

    2012-09-01

    The increasing impact and costs of long term sickness absence have been well documented. However, the diversity and complexity of interventions and of the contexts in which these take place makes a traditional review problematic. Therefore, we undertook a systematic realist review to identify the dominant programme theories underlying best practice, to assess the evidence for these theories, and to throw light on important enabling or disabling contextual factors. A search of the scholarly literature from 1950 to 2011 identified 5,576 articles, of which 269 formed the basis of the review. We found that the dominant programme theories in relation to effective management related to: early intervention or referral by employers; having proactive organisational procedures; good communication and cooperation between stakeholders; and workplace-based occupational rehabilitation. Significant contextual factors were identified as the level of support for interventions from top management, the size and structure of the organisation, the level of financial and organisational investment in the management of long-term sickness absence, and the quality of relationships between managers and staff. Consequently, those with responsibility for managing absence should bear in mind the contextual factors that are likely to have an impact on interventions, and do what they can to ensure stakeholders have at least a mutual understanding (if not a common purpose) in relation to their perceptions of interventions, goals, culture and practice in the management of long term sickness absence.

  18. A realistic 3+1D Viscous Hydro Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Romatschke, Paul [Univ. of Colorado, Boulder, CO (United States)

    2015-05-31

    DoE funds were used as bridge funds for the faculty position for the PI at the University of Colorado. The total funds for the Years 3-5 of the JET Topical Collaboration amounted to about 50 percent of the academic year salary of the PI.The PI contributed to the JET Topical Collaboration by developing, testing and applying algorithms for a realistic simulation of the bulk medium created in relativistic ion collisions.Specifically, two approaches were studied, one based on a new Lattice-Boltzmann (LB) framework, and one on a more traditional viscous hydro-dynamics framework. Both approaches were found to be viable in principle, with the LB approach being more elegant but needing still more time to develop.The traditional approach led to the super-hybrid model of ion collisions dubbed 'superSONIC', and has been successfully used for phenomenology of relativistic heavy-ion and light-on-heavy-ion collisions.In the time-frame of the JET Topical Collaboration, the Colorado group has published 15 articles in peer-reviewed journals, three of which were published in Physical Review Letters. The group graduated one Master student during this time-frame and two more PhD students are expected to graduate in the next few years. The PI has given more than 28 talks and presentations during this period.

  19. Generating Realistic Labelled, Weighted Random Graphs

    Directory of Open Access Journals (Sweden)

    Michael Charles Davis

    2015-12-01

    Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.

  20. Realistic modeling of radiation transmission inspection systems

    International Nuclear Information System (INIS)

    Sale, K.E.

    1993-01-01

    We have applied Monte Carlo particle transport methods to assess a proposed neutron transmission inspection system for checked luggage. The geometry of the system and the time, energy and angle dependence of the source have been modeled in detail. A pulsed deuteron beam incident on a thick Be target generates a neutron pulse with a very broad energy spectrum which is detected after passage through the luggage item by a plastic scintillator detector operating in current mode (as opposed to pulse counting mode). The neutron transmission as a function of time information is used to infer the densities of hydrogen, carbon, oxygen and nitrogen in the volume sampled. The measured elemental densities can be compared to signatures for explosives or other contraband. By using such computational modeling it is possible to optimize many aspects of the design of an inspection system without costly and time consuming prototyping experiments or to determine that a proposed scheme will not work. The methods applied here can be used to evaluate neutron or photon schemes based on transmission, scattering or reaction techniques

  1. Highly Realistic Training for Navy Corpsmen: A Follow-up Assessment

    Science.gov (United States)

    2017-10-12

    based training for military medical providers. One such training is highly realistic training. Based on the success of the Infantry Immersion ...observation with minimal participation improves paediatric emergency medicine knowledge, skills and confidence. Emergency Medicine Journal , 32(3), 195... immersive training for Navy corpsmen: Preliminary results. Military Medicine, 179(12), 1439–1443. Booth-Kewley, S., McWhorter, S. K., Dell’Acqua, R

  2. Simulation of Magnetic Phenomena at Realistic Interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2016-02-04

    In modern technology exciting developments are related to the ability to understand and control interfaces. Particularly, magnetic interfaces revealing spindependent electron transport are of great interest for modern spintronic devices, such as random access memories and logic devices. From the technological point of view, spintronic devices based on magnetic interfaces enable manipulation of the magnetism via an electric field. Such ability is a result of the different quantum effects arising from the magnetic interfaces (for example, spin transfer torque or spin-orbit torque) and it can reduce the energy consumption as compared to the traditional semiconductor electronic devices. Despite many appealing characteristics of these materials, fundamental understanding of their microscopic properties and related phenomena needs to be established by thorough investigation. In this work we implement first principles calculations in order to study the structural, electric, and magnetic properties as well as related phenomena of two types of interfaces with large potential in spintronic applications: 1) interfaces between antiferromagnetic 3d-metal-oxides and ferromagnetic 3d-metals and 2) interfaces between non-magnetic 5d(4d)- and ferromagnetic 3d-metals. A major difficulty in studying such interfaces theoretically is the typically large lattice mismatch. By employing supercells with Moir e patterns, we eliminate the artificial strain that leads to doubtful results and are able to describe the dependence of the atomic density at the interfaces on the component materials and their thicknesses. After establishing understanding about the interface structures, we investigate the electronic and magnetic properties. A Moir e supercell with transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces. In addition, we systematically study the magnetic anisotropy and Rashba band

  3. Realistic Real-Time Outdoor Rendering in Augmented Reality

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  4. Problem Posing with Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Mahendra, R.; Slamet, I.; Budiyono

    2017-09-01

    One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.

  5. Realistic real-time outdoor rendering in augmented reality.

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  6. Achieving successful community engagement: a rapid realist review.

    Science.gov (United States)

    De Weger, E; Van Vooren, N; Luijkx, K G; Baan, C A; Drewes, H W

    2018-04-13

    Community engagement is increasingly seen as crucial to achieving high quality, efficient and collaborative care. However, organisations are still searching for the best and most effective ways to engage citizens in the shaping of health and care services. This review highlights the barriers and enablers for engaging communities in the planning, designing, governing, and/or delivering of health and care services on the macro or meso level. It provides policymakers and professionals with evidence-based guiding principles to implement their own effective community engagement (CE) strategies. A Rapid Realist Review was conducted to investigate how interventions interact with contexts and mechanisms to influence the effectiveness of CE. A local reference panel, consisting of health and care professionals and experts, assisted in the development of the research questions and search strategy. The panel's input helped to refine the review's findings. A systematic search of the peer-reviewed literature was conducted. Eight action-oriented guiding principles were identified: Ensure staff provide supportive and facilitative leadership to citizens based on transparency; foster a safe and trusting environment enabling citizens to provide input; ensure citizens' early involvement; share decision-making and governance control with citizens; acknowledge and address citizens' experiences of power imbalances between citizens and professionals; invest in citizens who feel they lack the skills and confidence to engage; create quick and tangible wins; take into account both citizens' and organisations' motivations. An especially important thread throughout the CE literature is the influence of power imbalances and organisations' willingness, or not, to address such imbalances. The literature suggests that 'meaningful participation' of citizens can only be achieved if organisational processes are adapted to ensure that they are inclusive, accessible and supportive of citizens.

  7. Survey of Approaches to Generate Realistic Synthetic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.

  8. Realistic respiratory motion margins for external beam partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Leigh; Quirk, Sarah [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Smith, Wendy L., E-mail: wendy.smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2015-09-15

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  9. Realistic respiratory motion margins for external beam partial breast irradiation

    International Nuclear Information System (INIS)

    Conroy, Leigh; Quirk, Sarah; Smith, Wendy L.

    2015-01-01

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  10. Fatigue - determination of a more realistic usage factor

    International Nuclear Information System (INIS)

    Lang, H.

    2001-01-01

    The ability to use a suitable counting method for determining the stress range spectrum in elastic and simplified elastic-plastic fatigue analyses is of crucial importance for enabling determination of a realistic usage factor. Determination of elastic-plastic strain range using the K e factor from fictitious elastically calculated loads is also important in the event of elastic behaviour being exceeded. This paper thus examines both points in detail. A fatigue module with additional options, which functions on this basis is presented. The much more realistic determination of usage factor presented here offers various economic benefits depending on the application

  11. Putting a Realistic Theory of Mind into Agency Theory

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Stea, Diego

    2014-01-01

    Agency theory is one of the most important foundational theories in management research, but it rests on contestable cognitive assumptions. Specifically, the principal is assumed to hold a perfect (correct) theory regarding some of the content of the agent's mind, while he is entirely ignorant...... concerning other such content. More realistically, individuals have some limited access to the minds of others. We explore the implications for classical agency theory of realistic assumptions regarding the human potential for interpersonal sensemaking. We discuss implications for the design and management...

  12. Biochemical transport modeling, estimation, and detection in realistic environments

    Science.gov (United States)

    Ortner, Mathias; Nehorai, Arye

    2006-05-01

    Early detection and estimation of the spread of a biochemical contaminant are major issues for homeland security applications. We present an integrated approach combining the measurements given by an array of biochemical sensors with a physical model of the dispersion and statistical analysis to solve these problems and provide system performance measures. We approximate the dispersion model of the contaminant in a realistic environment through numerical simulations of reflected stochastic diffusions describing the microscopic transport phenomena due to wind and chemical diffusion using the Feynman-Kac formula. We consider arbitrary complex geometries and account for wind turbulence. Localizing the dispersive sources is useful for decontamination purposes and estimation of the cloud evolution. To solve the associated inverse problem, we propose a Bayesian framework based on a random field that is particularly powerful for localizing multiple sources with small amounts of measurements. We also develop a sequential detector using the numerical transport model we propose. Sequential detection allows on-line analysis and detecting wether a change has occurred. We first focus on the formulation of a suitable sequential detector that overcomes the presence of unknown parameters (e.g. release time, intensity and location). We compute a bound on the expected delay before false detection in order to decide the threshold of the test. For a fixed false-alarm rate, we obtain the detection probability of a substance release as a function of its location and initial concentration. Numerical examples are presented for two real-world scenarios: an urban area and an indoor ventilation duct.

  13. Realistic camera noise modeling with application to improved HDR synthesis

    Science.gov (United States)

    Goossens, Bart; Luong, Hiêp; Aelterman, Jan; Pižurica, Aleksandra; Philips, Wilfried

    2012-12-01

    Due to the ongoing miniaturization of digital camera sensors and the steady increase of the "number of megapixels", individual sensor elements of the camera become more sensitive to noise, even deteriorating the final image quality. To go around this problem, sophisticated processing algorithms in the devices, can help to maximally exploit the knowledge on the sensor characteristics (e.g., in terms of noise), and offer a better image reconstruction. Although a lot of research focuses on rather simplistic noise models, such as stationary additive white Gaussian noise, only limited attention has gone to more realistic digital camera noise models. In this article, we first present a digital camera noise model that takes several processing steps in the camera into account, such as sensor signal amplification, clipping, post-processing,.. We then apply this noise model to the reconstruction problem of high dynamic range (HDR) images from a small set of low dynamic range (LDR) exposures of a static scene. In literature, HDR reconstruction is mostly performed by computing a weighted average, in which the weights are directly related to the observer pixel intensities of the LDR image. In this work, we derive a Bayesian probabilistic formulation of a weighting function that is near-optimal in the MSE sense (or SNR sense) of the reconstructed HDR image, by assuming exponentially distributed irradiance values. We define the weighting function as the probability that the observed pixel intensity is approximately unbiased. The weighting function can be directly computed based on the noise model parameters, which gives rise to different symmetric and asymmetric shapes when electronic noise or photon noise is dominant. We also explain how to deal with the case that some of the noise model parameters are unknown and explain how the camera response function can be estimated using the presented noise model. Finally, experimental results are provided to support our findings.

  14. A Generalized Pyramid Matching Kernel for Human Action Recognition in Realistic Videos

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2013-10-01

    Full Text Available Human action recognition is an increasingly important research topic in the fields of video sensing, analysis and understanding. Caused by unconstrained sensing conditions, there exist large intra-class variations and inter-class ambiguities in realistic videos, which hinder the improvement of recognition performance for recent vision-based action recognition systems. In this paper, we propose a generalized pyramid matching kernel (GPMK for recognizing human actions in realistic videos, based on a multi-channel “bag of words” representation constructed from local spatial-temporal features of video clips. As an extension to the spatial-temporal pyramid matching (STPM kernel, the GPMK leverages heterogeneous visual cues in multiple feature descriptor types and spatial-temporal grid granularity levels, to build a valid similarity metric between two video clips for kernel-based classification. Instead of the predefined and fixed weights used in STPM, we present a simple, yet effective, method to compute adaptive channel weights of GPMK based on the kernel target alignment from training data. It incorporates prior knowledge and the data-driven information of different channels in a principled way. The experimental results on three challenging video datasets (i.e., Hollywood2, Youtube and HMDB51 validate the superiority of our GPMK w.r.t. the traditional STPM kernel for realistic human action recognition and outperform the state-of-the-art results in the literature.

  15. UE4Sim: A Photo-Realistic Simulator for Computer Vision Applications

    KAUST Repository

    Mueller, Matthias; Casser, Vincent; Lahoud, Jean; Smith, Neil; Ghanem, Bernard

    2017-01-01

    We present a photo-realistic training and evaluation simulator (UE4Sim) with extensive applications across various fields of computer vision. Built on top of the Unreal Engine, the simulator integrates full featured physics based cars, unmanned aerial vehicles (UAVs), and animated human actors in diverse urban and suburban 3D environments. We demonstrate the versatility of the simulator with two case studies: autonomous UAV-based tracking of moving objects and autonomous driving using supervised learning. The simulator fully integrates both several state-of-the-art tracking algorithms with a benchmark evaluation tool and a deep neural network (DNN) architecture for training vehicles to drive autonomously. It generates synthetic photo-realistic datasets with automatic ground truth annotations to easily extend existing real-world datasets and provides extensive synthetic data variety through its ability to reconfigure synthetic worlds on the fly using an automatic world generation tool.

  16. UE4Sim: A Photo-Realistic Simulator for Computer Vision Applications

    KAUST Repository

    Mueller, Matthias

    2017-08-19

    We present a photo-realistic training and evaluation simulator (UE4Sim) with extensive applications across various fields of computer vision. Built on top of the Unreal Engine, the simulator integrates full featured physics based cars, unmanned aerial vehicles (UAVs), and animated human actors in diverse urban and suburban 3D environments. We demonstrate the versatility of the simulator with two case studies: autonomous UAV-based tracking of moving objects and autonomous driving using supervised learning. The simulator fully integrates both several state-of-the-art tracking algorithms with a benchmark evaluation tool and a deep neural network (DNN) architecture for training vehicles to drive autonomously. It generates synthetic photo-realistic datasets with automatic ground truth annotations to easily extend existing real-world datasets and provides extensive synthetic data variety through its ability to reconfigure synthetic worlds on the fly using an automatic world generation tool.

  17. Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications

    KAUST Repository

    Müller, Matthias

    2018-03-24

    We present a photo-realistic training and evaluation simulator (Sim4CV) (http://www.sim4cv.org) with extensive applications across various fields of computer vision. Built on top of the Unreal Engine, the simulator integrates full featured physics based cars, unmanned aerial vehicles (UAVs), and animated human actors in diverse urban and suburban 3D environments. We demonstrate the versatility of the simulator with two case studies: autonomous UAV-based tracking of moving objects and autonomous driving using supervised learning. The simulator fully integrates both several state-of-the-art tracking algorithms with a benchmark evaluation tool and a deep neural network architecture for training vehicles to drive autonomously. It generates synthetic photo-realistic datasets with automatic ground truth annotations to easily extend existing real-world datasets and provides extensive synthetic data variety through its ability to reconfigure synthetic worlds on the fly using an automatic world generation tool.

  18. Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario

    Science.gov (United States)

    Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell

    2010-01-01

    Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.

  19. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

    OpenAIRE

    Zhang, Han; Xu, Tao; Li, Hongsheng; Zhang, Shaoting; Wang, Xiaogang; Huang, Xiaolei; Metaxas, Dimitris

    2017-01-01

    Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aiming at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of the object based on given...

  20. Evaluation of Highly Realistic Training for Independent Duty Corpsmen Students

    Science.gov (United States)

    2015-05-21

    that he or she can perform desired actions or behaviors ( Bandura , 1977). In the present study, three types of self-efficacy were assessed: general...such as resilience. IDC Highly Realistic Training 10 REFERENCES Bandura , A (1977). Self-efficacy: Toward a unifying theory of behavioral

  1. Using a Realist Research Methodology in Policy Analysis

    Science.gov (United States)

    Lourie, Megan; Rata, Elizabeth

    2017-01-01

    The article describes the usefulness of a realist methodology in linking sociological theory to empirically obtained data through the development of a methodological device. Three layers of analysis were integrated: 1. the findings from a case study about Maori language education in New Zealand; 2. the identification and analysis of contradictions…

  2. Automated Finger Spelling by Highly Realistic 3D Animation

    Science.gov (United States)

    Adamo-Villani, Nicoletta; Beni, Gerardo

    2004-01-01

    We present the design of a new 3D animation tool for self-teaching (signing and reading) finger spelling the first basic component in learning any sign language. We have designed a highly realistic hand with natural animation of the finger motions. Smoothness of motion (in real time) is achieved via programmable blending of animation segments. The…

  3. Creating a Realistic Context for Team Projects in HCI

    NARCIS (Netherlands)

    Koppelman, Herman; van Dijk, Betsy

    2006-01-01

    Team projects are nowadays common practice in HCI education. This paper focuses on the role of clients and users in team projects in introductory HCI courses. In order to provide projects with a realistic context we invite people from industry to serve as clients for the student teams. Some of them

  4. Generalized Warburg impedance on realistic self-affine fractals ...

    Indian Academy of Sciences (India)

    Administrator

    Generalized Warburg impedance on realistic self-affine fractals: Comparative study of statistically corrugated and isotropic roughness. RAJESH KUMAR and RAMA KANT. Journal of Chemical Sciences, Vol. 121, No. 5, September 2009, pp. 579–588. 1. ( ) c. L. R ω on page 582, column 2, para 2, after eq (8) should read as ...

  5. Empirical Evidence for Niss' "Implemented Anticipation" in Mathematising Realistic Situations

    Science.gov (United States)

    Stillman, Gloria; Brown, Jill P.

    2012-01-01

    Mathematisation of realistic situations is an on-going focus of research. Classroom data from a Year 9 class participating in a program of structured modelling of real situations was analysed for evidence of Niss's theoretical construct, implemented anticipation, during mathematisation. Evidence was found for two of three proposed aspects. In…

  6. Two-Capacitor Problem: A More Realistic View.

    Science.gov (United States)

    Powell, R. A.

    1979-01-01

    Discusses the two-capacitor problem by considering the self-inductance of the circuit used and by determining how well the usual series RC circuit approximates the two-capacitor problem when realistic values of L, C, and R are chosen. (GA)

  7. Rethinking Mathematics Teaching in Liberia: Realistic Mathematics Education

    Science.gov (United States)

    Stemn, Blidi S.

    2017-01-01

    In some African cultures, the concept of division does not necessarily mean sharing money or an item equally. How an item is shared might depend on the ages of the individuals involved. This article describes the use of the Realistic Mathematics Education (RME) approach to teach division word problems involving money in a 3rd-grade class in…

  8. Improving Mathematics Teaching in Kindergarten with Realistic Mathematical Education

    Science.gov (United States)

    Papadakis, Stamatios; Kalogiannakis, Michail; Zaranis, Nicholas

    2017-01-01

    The present study investigates and compares the influence of teaching Realistic Mathematics on the development of mathematical competence in kindergarten. The sample consisted of 231 Greek kindergarten students. For the implementation of the survey, we conducted an intervention, which included one experimental and one control group. Children in…

  9. Towards a Realist Sociology of Education: A Polyphonic Review Essay

    Science.gov (United States)

    Grenfell, Michael; Hood, Susan; Barrett, Brian D.; Schubert, Dan

    2017-01-01

    This review essay evaluates Karl Maton's "Knowledge and Knowers: Towards a Realist Sociology of Education" as a recent examination of the sociological causes and effects of education in the tradition of the French social theorist Pierre Bourdieu and the British educational sociologist Basil Bernstein. Maton's book synthesizes the…

  10. Principles of maximally classical and maximally realistic quantum ...

    Indian Academy of Sciences (India)

    Principles of maximally classical and maximally realistic quantum mechanics. S M ROY. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. Abstract. Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2N-dimensional phase space, ...

  11. Elements of a realistic 17 GHz FEL/TBA design

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Halbach, K.; Hoyer, E.H.; Sessler, A.M.; Sternbach, E.J.

    1989-01-01

    Recently, renewed interest in an FEL version of a two-beam accelerator (TBA) has prompted a study of practical system and structure designs for achieving the specified physics goals. This paper presents elements of a realistic design for an FEL/TBA suitable for a 1 TeV, 17 GHz linear collider. 13 refs., 8 figs., 2 tabs

  12. International Management: Creating a More Realistic Global Planning Environment.

    Science.gov (United States)

    Waldron, Darryl G.

    2000-01-01

    Discusses the need for realistic global planning environments in international business education, introducing a strategic planning model that has teams interacting with teams to strategically analyze a selected multinational company. This dynamic process must result in a single integrated written analysis that specifies an optimal strategy for…

  13. Rehand: Realistic electric prosthetic hand created with a 3D printer.

    Science.gov (United States)

    Yoshikawa, Masahiro; Sato, Ryo; Higashihara, Takanori; Ogasawara, Tsukasa; Kawashima, Noritaka

    2015-01-01

    Myoelectric prosthetic hands provide an appearance with five fingers and a grasping function to forearm amputees. However, they have problems in weight, appearance, and cost. This paper reports on the Rehand, a realistic electric prosthetic hand created with a 3D printer. It provides a realistic appearance that is same as the cosmetic prosthetic hand and a grasping function. A simple link mechanism with one linear actuator for grasping and 3D printed parts achieve low cost, light weight, and ease of maintenance. An operating system based on a distance sensor provides a natural operability equivalent to the myoelectric control system. A supporter socket allows them to wear the prosthetic hand easily. An evaluation using the Southampton Hand Assessment Procedure (SHAP) demonstrated that an amputee was able to operate various objects and do everyday activities with the Rehand.

  14. A Realistic Human Exposure Assessment of Indoor Radon released from Groundwater

    International Nuclear Information System (INIS)

    Yu, Dong Han; Han, Moon Hee

    2002-01-01

    The work presents a realistic human exposure assessment of indoor radon released from groundwater in a house. At first, a two-compartment model is developed to describe the generation and transfer of radon in indoor air from groundwater. The model is used to estimate radon concentrations profile of indoor air in a house using by showering, washing clothes, and flushing toilets. Then, the study performs an uncertainty analysis of model input parameters to quantify the uncertainty in radon concentration profile. In order to estimate a daily internal dose of a specific tissue group in an adult through the inhalation of such indoor radon, a PBPK(Physiologically-Based Pharmaco-Kinetic) model is developed. Combining indoor radon profile and PBPK model is used to a realistic human assessment for such exposure. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor radon released from groundwater

  15. A linear evolution for non-linear dynamics and correlations in realistic nuclei

    International Nuclear Information System (INIS)

    Levin, E.; Lublinsky, M.

    2004-01-01

    A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings

  16. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  17. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  18. Realistic Visualization of Virtual Views and Virtual Cinema

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    Realistic Virtual View Visualization is a new field of research which has received increasing attention in recent years. It is strictly related to the increased popularity of virtual reality and the spread of its applications, among which virtual photography and cinematography. The use of computer...... generated characters, "virtual actors", in the motion picture production increases every day. While the most known computer graphics techniques have largely been adopted successfully in nowadays fictions, it still remains very challenging to implement virtual actors which would resemble, visually, human...... beings. Interestingly, film directors have been looking at the recent progress achieved by the research community in the field of realistic visualization of virtual views, and they have successfully implemented state of the art research approaches in their productions. An innovative concept...

  19. Photo-Realistic Image Synthesis and Virtual Cinematography

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    Realistic Virtual View Synthesis is a new field of research that has received increasing attention in recent years. It is strictly related to the grown popularity of virtual reality and the spread of its applications, among which virtual photography and cinematography. The use of computer generated...... characters, "virtual actors", in the motion picture production increases every day. While the most known computer graphics techniques have largely been adopted successfully in nowadays fictions, it still remains very challenging to implement virtual actors which would resemble, visually, human beings....... Interestingly, film directors have been looking at the recent progress achieved by the research community in the field of realistic visualization of virtual views, and they have successfully implemented state of the art research approaches in their productions. An innovative concept is then gaining consensus...

  20. Role-playing for more realistic technical skills training.

    Science.gov (United States)

    Nikendei, C; Zeuch, A; Dieckmann, P; Roth, C; Schäfer, S; Völkl, M; Schellberg, D; Herzog, W; Jünger, J

    2005-03-01

    Clinical skills are an important and necessary part of clinical competence. Simulation plays an important role in many fields of medical education. Although role-playing is common in communication training, there are no reports about the use of student role-plays in the training of technical clinical skills. This article describes an educational intervention with analysis of pre- and post-intervention self-selected student survey evaluations. After one term of skills training, a thorough evaluation showed that the skills-lab training did not seem very realistic nor was it very demanding for trainees. To create a more realistic training situation and to enhance students' involvement, case studies and role-plays with defined roles for students (i.e. intern, senior consultant) were introduced into half of the sessions. Results of the evaluation in the second term showed that sessions with role-playing were rated significantly higher than sessions without role-playing.

  1. Realistic minimum accident source terms - Evaluation, application, and risk acceptance

    International Nuclear Information System (INIS)

    Angelo, P. L.

    2009-01-01

    The evaluation, application, and risk acceptance for realistic minimum accident source terms can represent a complex and arduous undertaking. This effort poses a very high impact to design, construction cost, operations and maintenance, and integrated safety over the expected facility lifetime. At the 2005 Nuclear Criticality Safety Division (NCSD) Meeting in Knoxville Tenn., two papers were presented mat summarized the Y-12 effort that reduced the number of criticality accident alarm system (CAAS) detectors originally designed for the new Highly Enriched Uranium Materials Facility (HEUMF) from 258 to an eventual as-built number of 60. Part of that effort relied on determining a realistic minimum accident source term specific to the facility. Since that time, the rationale for an alternate minimum accident has been strengthened by an evaluation process that incorporates realism. A recent update to the HEUMF CAAS technical basis highlights the concepts presented here. (authors)

  2. Realistic electricity market simulator for energy and economic studies

    International Nuclear Information System (INIS)

    Bernal-Agustin, Jose L.; Contreras, Javier; Conejo, Antonio J.; Martin-Flores, Raul

    2007-01-01

    Electricity market simulators have become a useful tool to train engineers in the power industry. With the maturing of electricity markets throughout the world, there is a need for sophisticated software tools that can replicate the actual behavior of power markets. In most of these markets, power producers/consumers submit production/demand bids and the Market Operator clears the market producing a single price per hour. What makes markets different from each other are the bidding rules and the clearing algorithms to balance the market. This paper presents a realistic simulator of the day-ahead electricity market of mainland Spain. All the rules that govern this market are modeled. This simulator can be used either to train employees by power companies or to teach electricity markets courses in universities. To illustrate the tool, several realistic case studies are presented and discussed. (author)

  3. Facilities upgrade for natural forces: traditional vs. realistic approach

    International Nuclear Information System (INIS)

    Terkun, V.

    1985-01-01

    The traditional method utilized for upgrading existing buildings and equipment involves the following steps: performs structural study using finite element analysis and some in situ testing; compare predicted member forces/stresses to material code allowables; determine strengthening schemes for those structural members judged to be weak; estimate cost for required upgrades. This approach will result in structural modifications that are not only conservative but very expensive as well. The realistic structural evaluation approach uses traditional data to predict structural weaknesses as a final step. Next, using considerable information now available for buildings and equipment exposed to natural hazards, engineering judgments about structures being evaluated can be made with a great deal of confidence. This approach does not eliminate conservatism entirely, but it does reduce it to a reasonable and realistic level. As a result, the upgrade cost goes down without compromising the low risk necessary for vital facilities

  4. Realistic full wave modeling of focal plane array pixels.

    Energy Technology Data Exchange (ETDEWEB)

    Campione, Salvatore [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Jorgenson, Roy E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Davids, Paul [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.; Peters, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.

    2017-11-01

    Here, we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.

  5. Fully Realistic Multi-Criteria Multi-Modal Routing

    OpenAIRE

    Gündling, Felix; Keyhani, Mohammad Hossein; Schnee, Mathias; Weihe, Karsten

    2014-01-01

    We report on a multi-criteria search system, in which the German long- and short-distance trains, local public transport, walking, private car, private bike, and taxi are incorporated. The system is fully realistic. Three optimization criteria are addressed: travel time, travel cost, and convenience. Our algorithmic approach computes a complete Pareto set of reasonable connections. The computational study demonstrates that, even in such a large-scale, highly complex scenario, approp...

  6. Realistic modeling of chamber transport for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-01-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions

  7. A scan for models with realistic fermion mass patterns

    International Nuclear Information System (INIS)

    Bijnens, J.; Wetterich, C.

    1986-03-01

    We consider models which have no small Yukawa couplings unrelated to symmetry. This situation is generic in higher dimensional unification where Yukawa couplings are predicted to have strength similar to the gauge couplings. Generations have then to be differentiated by symmetry properties and the structure of fermion mass matrices is given in terms of quantum numbers alone. We scan possible symmetries leading to realistic mass matrices. (orig.)

  8. Creating photo-realistic works in a 3D scene using layers styles to create an animation

    Science.gov (United States)

    Avramescu, A. M.

    2015-11-01

    Creating realist objects in a 3D scene is not an easy work. We have to be very careful to make the creation very detailed. If we don't know how to make these photo-realistic works, by using the techniques and a good reference photo we can create an amazing amount of detail and realism. For example, in this article there are some of these detailed methods from which we can learn the techniques necessary to make beautiful and realistic objects in a scene. More precisely, in this paper, we present how to create a 3D animated scene, mainly using the Pen Tool and Blending Options. Indeed, this work is based on teaching some simple ways of using the Layer Styles to create some great shadows, lights, textures and a realistic sense of 3 Dimension. The present work involves also showing how some interesting ways of using the illuminating and rendering options can create a realistic effect in a scene. Moreover, this article shows how to create photo realistic 3D models from a digital image. The present work proposes to present how to use Illustrator paths, texturing, basic lighting and rendering, how to apply textures and how to parent the building and objects components. We also propose to use this proposition to recreate smaller details or 3D objects from a 2D image. After a critic art stage, we are able now to present in this paper the architecture of a design method that proposes to create an animation. The aim is to create a conceptual and methodological tutorial to address this issue both scientifically and in practice. This objective also includes proposing, on strong scientific basis, a model that gives the possibility of a better understanding of the techniques necessary to create a realistic animation.

  9. Bell Operator Method to Classify Local Realistic Theories

    International Nuclear Information System (INIS)

    Nagata, Koji

    2010-01-01

    We review the historical fact of multipartite Bell inequalities with an arbitrary number of settings. An explicit local realistic model for the values of a correlation function, given in a two-setting Bell experiment (two-setting model), works only for the specific set of settings in the given experiment, but cannot construct a local realistic model for the values of a correlation function, given in a continuous-infinite settings Bell experiment (infinite-setting model), even though there exist two-setting models for all directions in space. Hence, the two-setting model does not have the property that the infinite-setting model has. Here, we show that an explicit two-setting model cannot construct a local realistic model for the values of a correlation function, given in an M-setting Bell experiment (M-setting model), even though there exist two-setting models for the M measurement directions chosen in the given M-setting experiment. Hence, the two-setting model does not have the property that the M-setting model has. (general)

  10. I-Love relations for incompressible stars and realistic stars

    Science.gov (United States)

    Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.

    2015-02-01

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  11. Methodology for estimating realistic responses of buildings and components under earthquake motion and its application

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Abe, Kiyoharu; Kohno, Kunihiko; Nakamura, Hidetaka; Itoh, Mamoru.

    1996-11-01

    Failure probabilities of buildings and components under earthquake motion are estimated as conditional probabilities that their realistic responses exceed their capacities. Two methods for estimating their failure probabilities have already been developed. One is a detailed method developed in the Seismic Safety margins Research Program of Lawrence Livermore National Laboratory in U.S.A., which is called 'SSMRP method'. The other is a simplified method proposed by Kennedy et al., which is called 'Zion method'. The Zion method is sometimes called 'response factor method'. The authors adopted the response factor method. In order to enhance the estimation accuracy of failure probabilities of buildings and components, however, a new methodology for improving the response factor method was proposed. Based on the improved method, response factors of buildings and components designed to seismic design standard in Japan were estimated, and their realistic responses were also calculated. By using their realistic responses and capacities, the failure probabilities of a reactor building and relays were estimated. In order to identify the difference between new method, SSMRP method and original response factor method, the failure probabilities were compared estimated by these three methods. A similar method of SSMRP was used instead of the original SSMRP for saving time and labor. The viewpoints for selecting the methods to estimate failure probabilities of buildings and components were also proposed. (author). 55 refs

  12. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    Science.gov (United States)

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

    Science.gov (United States)

    Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J.

    2018-04-01

    This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2–4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.

  14. ObamaNet: Photo-realistic lip-sync from text

    OpenAIRE

    Kumar, Rithesh; Sotelo, Jose; Kumar, Kundan; de Brebisson, Alexandre; Bengio, Yoshua

    2017-01-01

    We present ObamaNet, the first architecture that generates both audio and synchronized photo-realistic lip-sync videos from any new text. Contrary to other published lip-sync approaches, ours is only composed of fully trainable neural modules and does not rely on any traditional computer graphics methods. More precisely, we use three main modules: a text-to-speech network based on Char2Wav, a time-delayed LSTM to generate mouth-keypoints synced to the audio, and a network based on Pix2Pix to ...

  15. Gauge coupling unification in realistic free-fermionic string models

    International Nuclear Information System (INIS)

    Dienes, K.R.; Faraggi, A.E.

    1995-01-01

    We discuss the unification of gauge couplings within the framework of a wide class of realistic free-fermionic string models which have appeared in the literature, including the flipped SU(5), SO(6)xSO(4), and various SU(3)xSU(2)xU(1) models. If the matter spectrum below the string scale is that of the Minimal Supersymmetric Standard Model (MSSM), then string unification is in disagreement with experiment. We therefore examine several effects that may modify the minimal string predictions. First, we develop a systematic procedure for evaluating the one-loop heavy string threshold corrections in free-fermionic string models, and we explicitly evaluate these corrections for each of the realistic models. We find that these string threshold corrections are small, and we provide general arguments explaining why such threshold corrections are suppressed in string theory. Thus heavy thresholds cannot resolve the disagreement with experiment. We also study the effect of non-standard hypercharge normalizations, light SUSY thresholds, and intermediate-scale gauge structure, and similarly conclude that these effects cannot resolve the disagreement with low-energy data. Finally, we examine the effects of additional color triplets and electroweak doublets beyond the MSSM. Although not required in ordinary grand unification scenarios, such states generically appear within the context of certain realistic free-fermionic string models. We show that if these states exist at the appropriate thresholds, then the gauge couplings will indeed unify at the string scale. Thus, within these string models, string unification can be in agreement with low-energy data. (orig.)

  16. Capturing and reproducing realistic acoustic scenes for hearing research

    DEFF Research Database (Denmark)

    Marschall, Marton; Buchholz, Jörg

    Accurate spatial audio recordings are important for a range of applications, from the creation of realistic virtual sound environments to the evaluation of communication devices, such as hearing instruments and mobile phones. Spherical microphone arrays are particularly well-suited for capturing....... The properties of MOA microphone layouts and processing were investigated further by considering several order combinations. It was shown that the performance for horizontal vs. elevated sources can be adjusted by varying the order combination, but that a benefit of the higher horizontal orders can only be seen...

  17. Scaling up complex interventions: insights from a realist synthesis.

    Science.gov (United States)

    Willis, Cameron D; Riley, Barbara L; Stockton, Lisa; Abramowicz, Aneta; Zummach, Dana; Wong, Geoff; Robinson, Kerry L; Best, Allan

    2016-12-19

    Preventing chronic diseases, such as cancer, cardiovascular disease and diabetes, requires complex interventions, involving multi-component and multi-level efforts that are tailored to the contexts in which they are delivered. Despite an increasing number of complex interventions in public health, many fail to be 'scaled up'. This study aimed to increase understanding of how and under what conditions complex public health interventions may be scaled up to benefit more people and populations.A realist synthesis was conducted and discussed at an in-person workshop involving practitioners responsible for scaling up activities. Realist approaches view causality through the linkages between changes in contexts (C) that activate mechanisms (M), leading to specific outcomes (O) (CMO configurations). To focus this review, three cases of complex interventions that had been successfully scaled up were included: Vibrant Communities, Youth Build USA and Pathways to Education. A search strategy of published and grey literature related to each case was developed, involving searches of relevant databases and nominations from experts. Data extracted from included documents were classified according to CMO configurations within strategic themes. Findings were compared and contrasted with guidance from diffusion theory, and interpreted with knowledge users to identify practical implications and potential directions for future research.Four core mechanisms were identified, namely awareness, commitment, confidence and trust. These mechanisms were activated within two broad scaling up strategies, those of renewing and regenerating, and documenting success. Within each strategy, specific actions to change contexts included building partnerships, conducting evaluations, engaging political support and adapting funding models. These modified contexts triggered the identified mechanisms, leading to a range of scaling up outcomes, such as commitment of new communities, changes in relevant

  18. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia

    2016-01-01

    Enhanced Inter-Cell Interference Coordination (eICIC) is a key ingredient to boost the performance of co-channel Heterogeneous Networks (HetNets). eICIC encompasses two main techniques: Almost Blank Subframes (ABS), during which the macro cell remains silent to reduce the interference, and biased...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  19. Realistic shell-model calculations for Sn isotopes

    International Nuclear Information System (INIS)

    Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.

    1997-01-01

    We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)

  20. On Small Antenna Measurements in a Realistic MIMO Scenario

    DEFF Research Database (Denmark)

    Yanakiev, Boyan; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2010-01-01

    . The problem using coaxial cable is explained and a solution suitable for long distance channel sounding is presented. A large scale measurement campaign is then described. Special attention is paid to bring the measurement setup as close as possible to a realistic LTE network of the future, with attention......This paper deals with the challenges related to evaluating the performance of multiple, small terminal antennas within a natural MIMO environment. The focus is on the antenna measurement accuracy. First a method is presented for measuring small phone mock-ups, with the use of optical fibers...

  1. A continuous family of realistic SUSY SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bajc, Borut, E-mail: borut.bajc@ijs.si [J. Stefan Institute, Jamova cesta 39, 1000, Ljubljana (Slovenia)

    2016-06-21

    It is shown that the minimal renormalizable supersymmetric SU(5) is still realistic providing the supersymmetric scale is at least few tens of TeV or large R-parity violating terms are considered. In the first case the vacuum is metastable, and different consistency constraints can give a bounded allowed region in the tan β − m{sub susy} plane. In the second case the mass eigenstate electron (down quark) is a linear combination of the original electron (down quark) and Higgsino (heavy colour triplet), and the mass ratio of bino and wino is determined. Both limits lead to light gravitino dark matter.

  2. Understanding how appraisal of doctors produces its effects: a realist review protocol.

    Science.gov (United States)

    Brennan, Nicola; Bryce, Marie; Pearson, Mark; Wong, Geoff; Cooper, Chris; Archer, Julian

    2014-06-23

    UK doctors are now required to participate in revalidation to maintain their licence to practise. Appraisal is a fundamental component of revalidation. However, objective evidence of appraisal changing doctors' behaviour and directly resulting in improved patient care is limited. In particular, it is not clear how the process of appraisal is supposed to change doctors' behaviour and improve clinical performance. The aim of this research is to understand how and why appraisal of doctors is supposed to produce its effect. Realist review is a theory-driven interpretive approach to evidence synthesis. It applies realist logic of inquiry to produce an explanatory analysis of an intervention that is, what works, for whom, in what circumstances, in what respects. Using a realist review approach, an initial programme theory of appraisal will be developed by consulting with key stakeholders in doctors' appraisal in expert panels (ethical approval is not required), and by searching the literature to identify relevant existing theories. The search strategy will have a number of phases including a combination of: (1) electronic database searching, for example, EMBASE, MEDLINE, the Cochrane Library, ASSIA, (2) 'cited by' articles search, (3) citation searching, (4) contacting authors and (5) grey literature searching. The search for evidence will be iteratively extended and refocused as the review progresses. Studies will be included based on their ability to provide data that enable testing of the programme theory. Data extraction will be conducted, for example, by note taking and annotation at different review stages as is consistent with the realist approach. The evidence will be synthesised using realist logic to interrogate the final programme theory of the impact of appraisal on doctors' performance. The synthesis results will be written up according to RAMESES guidelines and disseminated through peer-reviewed publication and presentations. The protocol is registered with

  3. Protocol - realist and meta-narrative evidence synthesis: Evolving Standards (RAMESES

    Directory of Open Access Journals (Sweden)

    Westhorp Gill

    2011-08-01

    Full Text Available Abstract Background There is growing interest in theory-driven, qualitative and mixed-method approaches to systematic review as an alternative to (or to extend and supplement conventional Cochrane-style reviews. These approaches offer the potential to expand the knowledge base in policy-relevant areas - for example by explaining the success, failure or mixed fortunes of complex interventions. However, the quality of such reviews can be difficult to assess. This study aims to produce methodological guidance, publication standards and training resources for those seeking to use the realist and/or meta-narrative approach to systematic review. Methods/design We will: [a] collate and summarise existing literature on the principles of good practice in realist and meta-narrative systematic review; [b] consider the extent to which these principles have been followed by published and in-progress reviews, thereby identifying how rigour may be lost and how existing methods could be improved; [c] using an online Delphi method with an interdisciplinary panel of experts from academia and policy, produce a draft set of methodological steps and publication standards; [d] produce training materials with learning outcomes linked to these steps; [e] pilot these standards and training materials prospectively on real reviews-in-progress, capturing methodological and other challenges as they arise; [f] synthesise expert input, evidence review and real-time problem analysis into more definitive guidance and standards; [g] disseminate outputs to audiences in academia and policy. The outputs of the study will be threefold: 1. Quality standards and methodological guidance for realist and meta-narrative reviews for use by researchers, research sponsors, students and supervisors 2. A 'RAMESES' (Realist and Meta-review Evidence Synthesis: Evolving Standards statement (comparable to CONSORT or PRISMA of publication standards for such reviews, published in an open

  4. Didactic Contracts in Realistic Mathematics Education Teaching Practice in Indonesia: A lesson on addition

    DEFF Research Database (Denmark)

    Putra, Zetra Hainul

    combinations that make ten based on a Palembang traditional food, pempek, and tablets of medicine. The result shows that some features such as formulation and validation appear during the teaching and learning process. The students are able to produce combinations that make ten individually and collectively......This paper aims to investigate characterize features of didactic contracts in realistic mathematics education teaching practice in Indonesia in the case of a lesson on addition. We just focus on some episodes of 26 first grade students and a female teacher from SDN 197 Palembang learning...

  5. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart

    Science.gov (United States)

    Trayanova, Natalia A; Tice, Brock M

    2009-01-01

    Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease. PMID:20628585

  6. Semantic modeling for theory clarification: The realist vs liberal international relations perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bray, O.H. [Sandia National Labs., Albuquerque, NM (United States)]|[Univ. of New Mexico, Albuquerque, NM (United States). Political Science Dept.

    1994-04-01

    This paper describes a natural language based, semantic information modeling methodology and explores its use and value in clarifying and comparing political science theories and frameworks. As an example, the paper uses this methodology to clarify and compare some of the basic concepts and relationships in the realist (e.g. Waltz) and the liberal (e.g. Rosenau) paradigms for international relations. The methodology can provide three types of benefits: (1) it can clarify and make explicit exactly what is meant by a concept; (2) it can often identify unanticipated implications and consequence of concepts and relationships; and (3) it can help in identifying and operationalizing testable hypotheses.

  7. Generating Geospatially Realistic Driving Patterns Derived From Clustering Analysis Of Real EV Driving Data

    DEFF Research Database (Denmark)

    Pedersen, Anders Bro; Aabrandt, Andreas; Østergaard, Jacob

    2014-01-01

    In order to provide a vehicle fleet that realistically represents the predicted Electric Vehicle (EV) penetration for the future, a model is required that mimics people driving behaviour rather than simply playing back collected data. When the focus is broadened from on a traditional user...... scales, which calls for a statistically correct, yet flexible model. This paper describes a method for modelling EV, based on non-categorized data, which takes into account the plug in locations of the vehicles. By using clustering analysis to extrapolate and classify the primary locations where...

  8. Report of the workshop on realistic SSC lattices

    International Nuclear Information System (INIS)

    1985-10-01

    A workshop was held at the SSC Central Design Group from May 29 to June 4, 1985, on topics relating to the lattice of the SSC. The workshop marked a shift of emphasis from the investigation of simplified test lattices to the development of a realistic lattice suitable for the conceptual design report. The first day of the workshop was taken up by reviews of accelerator system requirements, of the reference design solutions for these requirements, of lattice work following the reference design, and of plans for the workshop. The work was divided among four working groups. The first, chaired by David Douglas, concerned the arcs of regular cells. The second group, which studied the utility insertions, was chaired by Beat Leemann. The third group, under David E. Johnson, concerned itself with the experimental insertions, dispersion suppressors, and phase trombones. The fourth group, responsible for global lattice considerations and the design of a new realistic lattice example, was led by Ernest Courant. The papers resulting from this workshop are roughly divided into three sets: those relating to specific lattice components, to complete lattices, and to other topics. Among the salient accomplishments of the workshop were additions to and optimization of lattice components, especially those relating to lattices using 1-in-1 magnets, either horizontally or vertically separated, and the design of complete lattice examples. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Electron percolation in realistic models of carbon nanotube networks

    International Nuclear Information System (INIS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-01-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models

  10. Spectroscopy of light nuclei with realistic NN interaction JISP

    International Nuclear Information System (INIS)

    Shirokov, A. M.; Vary, J. P.; Mazur, A. I.; Weber, T. A.

    2008-01-01

    Recent results of our systematic ab initio studies of the spectroscopy of s- and p-shell nuclei in fully microscopic large-scale (up to a few hundred million basis functions) no-core shell-model calculations are presented. A new high-quality realistic nonlocal NN interaction JISP is used. This interaction is obtained in the J-matrix inverse-scattering approach (JISP stands for the J-matrix inverse-scattering potential) and is of the form of a small-rank matrix in the oscillator basis in each of the NN partial waves, providing a very fast convergence in shell-model studies. The current purely two-body JISP model of the nucleon-nucleon interaction JISP16 provides not only an excellent description of two-nucleon data (deuteron properties and np scattering) with χ 2 /datum = 1.05 but also a better description of a wide range of observables (binding energies, spectra, rms radii, quadrupole moments, electromagnetic-transition probabilities, etc.) in all s-and p-shell nuclei than the best modern interaction models combining realistic nucleon-nucleon and three-nucleon interactions.

  11. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  12. Neural Correlates of Realistic and Unrealistic Auditory Space Perception

    Directory of Open Access Journals (Sweden)

    Akiko Callan

    2011-10-01

    Full Text Available Binaural recordings can simulate externalized auditory space perception over headphones. However, if the orientation of the recorder's head and the orientation of the listener's head are incongruent, the simulated auditory space is not realistic. For example, if a person lying flat on a bed listens to an environmental sound that was recorded by microphones inserted in ears of a person who was in an upright position, the sound simulates an auditory space rotated 90 degrees to the real-world horizontal axis. Our question is whether brain activation patterns are different between the unrealistic auditory space (ie, the orientation of the listener's head and the orientation of the recorder's head are incongruent and the realistic auditory space (ie, the orientations are congruent. River sounds that were binaurally recorded either in a supine position or in an upright body position were served as auditory stimuli. During fMRI experiments, participants listen to the stimuli and pressed one of two buttons indicating the direction of the water flow (horizontal/vertical. Behavioral results indicated that participants could not differentiate between the congruent and the incongruent conditions. However, neuroimaging results showed that the congruent condition activated the planum temporale significantly more than the incongruent condition.

  13. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  14. An inexpensive yet realistic model for teaching vasectomy

    Directory of Open Access Journals (Sweden)

    Taylor M. Coe

    2015-04-01

    Full Text Available Purpose Teaching the no-scalpel vasectomy is important, since vasectomy is a safe, simple, and cost-effective method of contraception. This minimally invasive vasectomy technique involves delivering the vas through the skin with specialized tools. This technique is associated with fewer complications than the traditional incisional vasectomy (1. One of the most challenging steps is the delivery of the vas through a small puncture in the scrotal skin, and there is a need for a realistic and inexpensive scrotal model for beginning learners to practice this step. Materials and Methods After careful observation using several scrotal models while teaching residents and senior trainees, we developed a simplified scrotal model that uses only three components–bicycle inner tube, latex tubing, and a Penrose drain. Results This model is remarkably realistic and allows learners to practice a challenging step in the no-scalpel vasectomy. The low cost and simple construction of the model allows wide dissemination of training in this important technique. Conclusions We propose a simple, inexpensive model that will enable learners to master the hand movements involved in delivering the vas through the skin while mitigating the risks of learning on patients.

  15. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    International Nuclear Information System (INIS)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  16. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  17. Radioactive waste management in Brazil: a realistic view

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador; Xavier, Ana Maria

    2014-01-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  18. A Local Realistic Reconciliation of the EPR Paradox

    Science.gov (United States)

    Sanctuary, Bryan

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  19. How to estimate realistic energy savings in Energy Performance Certificates

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Altmann, Nagmeh; Berecová, Monika

    Given the fact that most MS use fixed or other kinds of default values as boundary condition input for energy performance calculations, it is not surprising that the calculated energy performance differs from the measured energy consumption. As a consequence, the calculated energy savings due...... stationary calculation tools using monthly average values. The optimum solution for energy performance certificates and calculating realistic energy savings is to have two calculations. One calculation, using default values to calculate the label itself, and one with actual input parameters for calculating...... energy performance before and after implementing energy saving measures. Actual values though, may be difficult to identify, so there is a need to make adaptations to reality easy. Even if actual values are available, there are still issues that cause calculated energy savings to differ from the obtained...

  20. From Minimal to Realistic Supersymmetric SU(5) Grand Unification

    CERN Document Server

    Altarelli, Guido; Masina, I; Altarelli, Guido; Feruglio, Ferruccio; Masina, Isabella

    2000-01-01

    We construct and discuss a "realistic" example of SUSY SU(5) GUT model, with an additional U(1) flavour symmetry, that is not plagued by the need of large fine tunings, like those associated with doublet-triplet splitting in the minimal model, and that leads to an acceptable phenomenology. This includes coupling unification with a value of alpha_s(m_Z) in much better agreement with the data than in the minimal version, an acceptable hierarchical pattern for fermion masses and mixing angles, also including neutrino masses and mixings, and a proton decay rate compatible with present limits (but the discovery of proton decay should be within reach of the next generation of experiments). In the neutrino sector the preferred solution is one with nearly maximal mixing both for atmospheric and solar neutrinos.

  1. Magnetic exchange at realistic CoO/Ni interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2012-07-30

    We study the CoO/Ni interface by first principles calculations. Because the lattice mismatch is large, a realistic description requires a huge supercell. We investigate two interface configurations: in interface 1 the coupling between the Ni and Co atoms is mediated by O, whereas in interface 2 the Ni and Co atoms are in direct contact. We find that the magnetization (including the orbital moment) in interface 1 has a similar value as in bulk Ni but opposite sign, while in interface 2 it grows by 164%. The obtained magnetic moments can be explained by the local atomic environments. In addition, we find effects of charge transfer between the interface atoms. The Co 3d local density of states of interface 2 exhibits surprisingly small deviations from the corresponding bulk result, although the first coordination sphere is no longer octahedral. © Springer-Verlag 2012.

  2. Realistic control considerations for electromagnetically levitated urban transit vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Billing, J R

    1976-04-01

    A discussion is given of realistic control considerations of suspension dynamics and vehicle/guideway interaction for electromagnetically-levitated urban transit vehicles in the context of revenue applications. The emphasis is on safety, reliability, and maintainability rather than performance. An example urban transit system is described, and the following considerations of dynamics and control are examined: stability, magnet force requirements, magnet airgap requirements, vehicle ride, and component failures. It is shown that it is a formidable problem to ensure suspension stability under all conditions; that operation on curves is a critical magnet and control system design case; that operation of the magnets in the non-linear regime is unavoidable and that component failures will be a major problem. However, good vehicle ride is to be expected. It is concluded that magnetic levitation suspension technology requires substantial development effort before it can be considered suitable for revenue operation.

  3. Generating realistic environments for cyber operations development, testing, and training

    Science.gov (United States)

    Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.

    2012-06-01

    Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.

  4. Realistic limitations of detecting planets around young active stars

    Directory of Open Access Journals (Sweden)

    Pinfield D.

    2013-04-01

    Full Text Available Current planet hunting methods using the radial velocity method are limited to observing middle-aged main-sequence stars where the signatures of stellar activity are much less than on young stars that have just arrived on the main-sequence. In this work we apply our knowledge from the surface imaging of these young stars to place realistic limitations on the possibility of detecting orbiting planets. In general we find that the magnitude of the stellar jitter is directly proportional to the stellar vsini. For G and K dwarfs, we find that it is possible, for models with high stellar activity and low stellar vsini, to be able to detect a 1 MJupiter mass planet within 50 epochs of observations and for the M dwarfs it is possible to detect a habitable zone Earth-like planet in 10s of observational epochs.

  5. Resolving conflict realistically in today's health care environment.

    Science.gov (United States)

    Smith, S B; Tutor, R S; Phillips, M L

    2001-11-01

    Conflict is a natural part of human interaction, and when properly addressed, results in improved interpersonal relationships and positive organizational culture. Unchecked conflict may escalate to verbal and physical violence. Conflict that is unresolved creates barriers for people, teams, organizational growth, and productivity, leading to cultural disintegration within the establishment. By relying on interdependence and professional collaboration, all parties involved grow and, in turn, benefit the organization and population served. When used in a constructive manner, conflict resolution can help all parties involved see the whole picture, thus allowing freedom for growth and change. Conflict resolution is accomplished best when emotions are controlled before entering into negotiation. Positive confrontation, problem solving, and negotiation are processes used to realistically resolve conflict. Everyone walks away a winner when conflict is resolved in a positive, professional manner (Stone, 1999).

  6. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  7. Electron distribution in polar heterojunctions within a realistic model

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Nguyen Thanh, E-mail: thanhtienctu@gmail.com [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Thao, Dinh Nhu [Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Thao, Pham Thi Bich [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Quang, Doan Nhat [Institute of Physics, Vietnamese Academy of Science and Technology, 10 Dao Tan Street, Hanoi (Viet Nam)

    2015-12-15

    We present a theoretical study of the electron distribution, i.e., two-dimensional electron gas (2DEG) in polar heterojunctions (HJs) within a realistic model. The 2DEG is confined along the growth direction by a triangular quantum well with a finite potential barrier and a bent band figured by all confinement sources. Therein, interface polarization charges take a double role: they induce a confining potential and, furthermore, they can make some change in other confinements, e.g., in the Hartree potential from ionized impurities and 2DEG. Confinement by positive interface polarization charges is necessary for the ground state of 2DEG existing at a high sheet density. The 2DEG bulk density is found to be increased in the barrier, so that the scattering occurring in this layer (from interface polarization charges and alloy disorder) becomes paramount in a polar modulation-doped HJ.

  8. Magnetic exchange at realistic CoO/Ni interfaces

    KAUST Repository

    Grytsyuk, Sergiy; Cossu, Fabrizio; Schwingenschlö gl, Udo

    2012-01-01

    We study the CoO/Ni interface by first principles calculations. Because the lattice mismatch is large, a realistic description requires a huge supercell. We investigate two interface configurations: in interface 1 the coupling between the Ni and Co atoms is mediated by O, whereas in interface 2 the Ni and Co atoms are in direct contact. We find that the magnetization (including the orbital moment) in interface 1 has a similar value as in bulk Ni but opposite sign, while in interface 2 it grows by 164%. The obtained magnetic moments can be explained by the local atomic environments. In addition, we find effects of charge transfer between the interface atoms. The Co 3d local density of states of interface 2 exhibits surprisingly small deviations from the corresponding bulk result, although the first coordination sphere is no longer octahedral. © Springer-Verlag 2012.

  9. Radioactive waste management in Brazil: a realistic view

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador, E-mail: paulo@cnen.gov.br, E-mail: jperez@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana Maria, E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil)

    2014-07-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  10. Detailed performance analysis of realistic solar photovoltaic systems at extensive climatic conditions

    International Nuclear Information System (INIS)

    Gupta, Ankit; Chauhan, Yogesh K.

    2016-01-01

    In recent years, solar energy has been considered as one of the principle renewable energy source for electric power generation. In this paper, single diode photovoltaic (PV) system and double/bypass diode based PV system are designed in MATLAB/Simulink environment based on their mathematical modeling and are validated with a commercially available solar panel. The novelty of the paper is to include the effect of climatic conditions i.e. variable irradiation level, wind speed, temperature, humidity level and dust accumulation in the modeling of both the PV systems to represent a realistic PV system. The comprehensive investigations are made on both the modeled PV systems. The obtained results show the satisfactory performance for realistic models of the PV system. Furthermore, an in depth comparative analysis is carried out for both PV systems. - Highlights: • Modeling of Single diode and Double diode PV systems in MATLAB/Simulink software. • Validation of designed PV systems with a commercially available PV panel. • Acquisition and employment of key climatic factors in modeling of the PV systems. • Evaluation of main model parameters of both the PV systems. • Detailed comparative assessment of both the modeled PV system parameters.

  11. The work is never ending: uncovering teamwork sustainability using realistic evaluation.

    Science.gov (United States)

    Frykman, Mandus; von Thiele Schwarz, Ulrica; Muntlin Athlin, Åsa; Hasson, Henna; Mazzocato, Pamela

    2017-03-20

    Purpose The purpose of this paper is to uncover the mechanisms influencing the sustainability of behavior changes following the implementation of teamwork. Design/methodology/approach Realistic evaluation was combined with a framework (DCOM®) based on applied behavior analysis to study the sustainability of behavior changes two and a half years after the initial implementation of teamwork at an emergency department. The DCOM® framework was used to categorize the mechanisms of behavior change interventions (BCIs) into the four categories of direction, competence, opportunity, and motivation. Non-participant observation and interview data were used. Findings The teamwork behaviors were not sustained. A substantial fallback in managerial activities in combination with a complex context contributed to reduced direction, opportunity, and motivation. Reduced direction made staff members unclear about how and why they should work in teams. Deterioration of opportunity was evident from the lack of problem-solving resources resulting in accumulated barriers to teamwork. Motivation in terms of management support and feedback was reduced. Practical implications The implementation of complex organizational changes in complex healthcare contexts requires continuous adaption and managerial activities well beyond the initial implementation period. Originality/value By integrating the DCOM® framework with realistic evaluation, this study responds to the call for theoretically based research on behavioral mechanisms that can explain how BCIs interact with context and how this interaction influences sustainability.

  12. Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma Boundary Global Ocean

    Directory of Open Access Journals (Sweden)

    Arghya Goswami

    2018-01-01

    Full Text Available At present, global paleoclimate simulations are prepared with bathtub-like, flat, featureless and steep walled ocean bathymetry, which is neither realistic nor suitable. In this article, we present the first enhanced version of a reconstructed paleobathymetry for Cenomanian–Turonian (94 Ma time in a 0.1° × 0.1° resolution, that is both realistic and suitable for use in paleo-climate studies. This reconstruction is an extrapolation of a parameterized modern ocean bathymetry that combines simple geophysical models (standard plate cooling model for the oceanic lithosphere based on ocean crustal age, global modern oceanic sediment thicknesses, and generalized shelf-slope-rise structures calibrated from a published global relief model of the modern world (ETOPO1 at active and passive continental margins. The base version of this Cenomanian–Turonian paleobathymetry reconstruction is then updated with known submarine large igneous provinces, plateaus, and seamounts to minimize the difference between the reconstructed paleobathymetry and the real bathymetry that once existed.

  13. Evaluation of health promotion in schools: a realistic evaluation approach using mixed methods

    Science.gov (United States)

    2010-01-01

    Background Schools are key settings for health promotion (HP) but the development of suitable approaches for evaluating HP in schools is still a major topic of discussion. This article presents a research protocol of a program developed to evaluate HP. After reviewing HP evaluation issues, the various possible approaches are analyzed and the importance of a realistic evaluation framework and a mixed methods (MM) design are demonstrated. Methods/Design The design is based on a systemic approach to evaluation, taking into account the mechanisms, context and outcomes, as defined in realistic evaluation, adjusted to our own French context using an MM approach. The characteristics of the design are illustrated through the evaluation of a nationwide HP program in French primary schools designed to enhance children's social, emotional and physical health by improving teachers' HP practices and promoting a healthy school environment. An embedded MM design is used in which a qualitative data set plays a supportive, secondary role in a study based primarily on a different quantitative data set. The way the qualitative and quantitative approaches are combined through the entire evaluation framework is detailed. Discussion This study is a contribution towards the development of suitable approaches for evaluating HP programs in schools. The systemic approach of the evaluation carried out in this research is appropriate since it takes account of the limitations of traditional evaluation approaches and considers suggestions made by the HP research community. PMID:20109202

  14. Realistic modeling of seismic input for megacities and large urban areas

    International Nuclear Information System (INIS)

    Panza, Giuliano F.; Alvarez, Leonardo; Aoudia, Abdelkrim

    2002-06-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  15. Realistic methods for calculating the releases and consequences of a large LOCA

    International Nuclear Information System (INIS)

    Stephenson, W.; Dutton, L.M.C.; Handy, B.J.; Smedley, C.

    1992-01-01

    This report describes a calculational route to predict realistic radiological consequences for a successfully terminated large-loss-of-coolant accident (LOCA) at a pressurized-water reactor (PWR). All steps in the calculational route are considered. For each one, a brief comment is made on the significant differences between the methods of calculation that were identified in the benchmark studies and recommendations are made for the methods and data for carrying out realistic calculations. These are based on the best supportable methods and data and the technical basis for each recommendation is given. Where the lack of well-validated methods or data means that the most realistic method that can be justified is considered to be very conservative, the need for further research is identified. The behaviour of inorganic iodine and the removal of aerosols from the atmosphere of the reactor building are identified as areas of particular importance. Where the retention of radioactivity is sensitive to design features, these are identified and, for the most importance features, the impact of different designs on the release of activity is indicated. The predictions of the proposed model are calculated for each stage and compared with the releases of activity predicted by the licensing methods that were used in the earlier benchmark studies. The conservative nature of the latter is confirmed. Methods and data are also presented for calculating the resulting doses to members of the public of the National Radiological Protection Boards as a result of work carried out by several national bodies in the UK. Other, equally acceptable, models are used in other countries of the Community and some examples are given

  16. Critical reflections on realist review: insights from customizing the methodology to the needs of participatory research assessment.

    Science.gov (United States)

    Jagosh, Justin; Pluye, Pierre; Wong, Geoff; Cargo, Margaret; Salsberg, Jon; Bush, Paula L; Herbert, Carol P; Green, Lawrence W; Greenhalgh, Trish; Macaulay, Ann C

    2014-06-01

    Realist review has increased in popularity as a methodology for complex intervention assessment. Our experience suggests that the process of designing a realist review requires its customization to areas under investigation. To elaborate on this idea, we first describe the logic underpinning realist review and then present critical reflections on our application experience, organized in seven areas. These are the following: (1) the challenge of identifying middle range theory; (2) addressing heterogeneity and lack of conceptual clarity; (3) the challenge of appraising the quality of complex evidence; (4) the relevance of capturing unintended outcomes; (5) understanding the process of context, mechanism, and outcome (CMO) configuring; (6) incorporating middle-range theory in the CMO configuration process; and (7) using middle range theory to advance the conceptualization of outcomes - both visible and seemingly 'hidden'. One conclusion from our experience is that the degree of heterogeneity of the evidence base will determine whether theory can drive the development of review protocols from the outset, or will follow only after an intense period of data immersion. We hope that presenting a critical reflection on customizing realist review will convey how the methodology can be tailored to the often complex and idiosyncratic features of health research, leading to innovative evidence syntheses. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Processing of the GALILEO fuel rod code model uncertainties within the AREVA LWR realistic thermal-mechanical analysis methodology

    International Nuclear Information System (INIS)

    Mailhe, P.; Barbier, B.; Garnier, C.; Landskron, H.; Sedlacek, R.; Arimescu, I.; Smith, M.; Bellanger, P.

    2013-01-01

    The availability of reliable tools and associated methodology able to accurately predict the LWR fuel behavior in all conditions is of great importance for safe and economic fuel usage. For that purpose, AREVA has developed its new global fuel rod performance code GALILEO along with its associated realistic thermal-mechanical analysis methodology. This realistic methodology is based on a Monte Carlo type random sampling of all relevant input variables. After having outlined the AREVA realistic methodology, this paper will be focused on the GALILEO code benchmarking process, on its extended experimental database and on the GALILEO model uncertainties assessment. The propagation of these model uncertainties through the AREVA realistic methodology is also presented. This GALILEO model uncertainties processing is of the utmost importance for accurate fuel design margin evaluation as illustrated on some application examples. With the submittal of Topical Report GALILEO to the U.S. NRC in 2013, GALILEO and its methodology are on the way to be industrially used in a wide range of irradiation conditions. (authors)

  18. Satisfaction and sustainability: a realist review of decentralized models of perinatal surgery for rural women.

    Science.gov (United States)

    Kornelsen, Jude; McCartney, Kevin; Williams, Kim

    2016-01-01

    This article was developed as part of a larger realist review investigating the viability and efficacy of decentralized models of perinatal surgical services for rural women in the context of recent and ongoing service centralization witnessed in many developed nations. The larger realist review was commissioned by the British Columbia Ministry of Health and Perinatal Services of British Columbia, Canada. Findings from that review are addressed in this article specific to the sustainability of rural perinatal surgical sites and the satisfaction of providers that underpins their recruitment to and retention at such sites. A realist method was used in the selection and analysis of literature with the intention to iteratively develop a sophisticated understanding of how perinatal surgical services can best meet the needs of women who live in rural and remote environments. The goal of a realist review is to examine what works for whom under what circumstances and why. The high sensitivity search used language (English) and year (since 1990) limiters in keeping with both a realist and rapid review tradition of using reasoned contextual boundaries. No exclusions were made based on methodology or methodological approach in keeping with a realist review. Databases searched included MEDLINE, PubMed, EBSCO, CINAHL, EBM Reviews, NHS Economic Evaluation Database and PAIS International for literature in December 2013. Database searching produced 103 included academic articles. A further 59 resources were added through pearling and 13 grey literature reports were added on recommendation from the commissioner. A total of 42 of these 175 articles were included in this article as specific to provider satisfaction and service sustainability. Operative perinatal practice was found to be a lynchpin of sustainable primary and surgical services in rural communities. Rural shortages of providers, including challenges with recruitment and retention, were found to be a complex issue, with

  19. What works for whom in pharmacist-led smoking cessation support: realist review.

    Science.gov (United States)

    Greenhalgh, Trisha; Macfarlane, Fraser; Steed, Liz; Walton, Robert

    2016-12-16

    New models of primary care are needed to address funding and staffing pressures. We addressed the research question "what works for whom in what circumstances in relation to the role of community pharmacies in providing lifestyle interventions to support smoking cessation?" This is a realist review conducted according to RAMESES standards. We began with a sample of 103 papers included in a quantitative review of community pharmacy intervention trials identified through systematic searching of seven databases. We supplemented this with additional papers: studies that had been excluded from the quantitative review but which provided rigorous and relevant additional data for realist theorising; citation chaining (pursuing reference lists and Google Scholar forward tracking of key papers); the 'search similar citations' function on PubMed. After mapping what research questions had been addressed by these studies and how, we undertook a realist analysis to identify and refine candidate theories about context-mechanism-outcome configurations. Our final sample consisted of 66 papers describing 74 studies (12 systematic reviews, 6 narrative reviews, 18 RCTs, 1 process detail of a RCT, 1 cost-effectiveness study, 12 evaluations of training, 10 surveys, 8 qualitative studies, 2 case studies, 2 business models, 1 development of complex intervention). Most studies had been undertaken in the field of pharmacy practice (pharmacists studying what pharmacists do) and demonstrated the success of pharmacist training in improving confidence, knowledge and (in many but not all studies) patient outcomes. Whilst a few empirical studies had applied psychological theories to account for behaviour change in pharmacists or people attempting to quit, we found no studies that had either developed or tested specific theoretical models to explore how pharmacists' behaviour may be affected by organisational context. Because of the nature of the empirical data, only a provisional realist analysis

  20. Mean-Field and RPA Approaches to Stable and Unstable Nuclei with Semi-Realistic Interactions

    International Nuclear Information System (INIS)

    Nakada, H.

    2009-01-01

    We have developed semi-realistic NN interactions [1, 2] by modifying the M3Y interaction [3] that was derived from the G-matrix. The modification has been made so that the saturation and the spin-orbit splittings could be reproduced. The new interactions contain finite-range LS and tensor channels, as well as Yukawa-form central channels having reasonable spin and spin-isospin properties. In order to handle such interactions in practical calculations, we have also developed new numerical methods [4-6], in which the Gaussian expansion method [7] is applied. It is noted that these methods have the following advantages: (i) we can efficiently describe the energy-dependent asymptotics of single-particle wave functions at large r, as is typified in arguments on the deformed neutron halo in 4 0M g [6], (ii) we can handle various effective interactions, including those having non-locality, and (iii) a single-set of bases is applicable to wide mass range of nuclei and therefore is suitable to systematic calculations. Thereby we can implement Hartree-Fock, Hartree-Fock-Bogolyubov and RPA calculations for stable and unstable nuclei with the semi-realistic interactions. It will be shown first that the new interactions have desired characters for the nuclear matter and for the single- and double-closed nuclei. We shall particularly focus on roles of specific channels of the effective interaction, by studying (a) 'shell evolution' and role of the spin-isospin and the tensor channels [8] in stable and unstable nuclei, and (b) the magnetic response in a fully self-consistent RPA calculation with the tensor force [9]. All these properties seem to be simultaneously and naturally reproduced by the semi-realistic interactions. Thus the semi-realistic interactions are promising in describing various aspects of nuclear structure from stable to drip-line nuclei, in a self-consistent and unified manner. Since they have microscopic origin with minimal modification, we can expect high

  1. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  2. Effective realistic interactions for low momentum Hilbert spaces

    International Nuclear Information System (INIS)

    Weber, Dennis

    2012-01-01

    Realistic nucleon-nucleon potentials are an essential ingredient of modern microscopic many-body calculations. These potentials can be represented in two different ways: operator representation or matrix element representation. In operator representation the potential is represented by a set of quantum mechanical operators while in matrix element representation it is defined by the matrix elements in a given basis. Many modern potentials are constructed directly in matrix element representation. While the matrix element representation can be calculated from the operator representation, the determination of the operator representation from the matrix elements is more difficult. Some methods to solve the nuclear many-body problem, such as Fermionic Molecular Dynamics (FMD) or the Green's Function Monte Carlo (GFMC) method, however require explicitly the operator representation of the potential, as they do not work in a fixed many-body basis. It is therefore desirable to derive an operator representation also for the interactions given by matrix elements. In this work a method is presented which allows the derivation of an approximate operator representation starting from the momentum space partial wave matrix elements of the interaction. For that purpose an ansatz for the operator representation is chosen. The parameters in the ansatz are determined by a fit to the partial wave matrix elements. Since a perfect reproduction of the matrix elements in general cannot be achieved with a finite number of operators and the quality of the results depends on the choice of the ansatz, the obtained operator representation is tested in nuclear many-body calculations and the results are compared with those from the initial interaction matrix elements. For the calculation of the nucleon-nucleon scattering phase shifts and the deuteron properties a computer code written within this work is used. For larger nuclei the No Core Shell Model (NCSM) and FMD are applied. The described

  3. Can complex health interventions be evaluated using routine clinical and administrative data? - a realist evaluation approach.

    Science.gov (United States)

    Riippa, Iiris; Kahilakoski, Olli-Pekka; Linna, Miika; Hietala, Minni

    2014-12-01

    Interventions aimed at improving chronic care typically consist of multiple interconnected parts, all of which are essential to the effect of the intervention. Limited attention has been paid to the use of routine clinical and administrative data in the evolution of these complex interventions. The purpose of this study is to examine the feasibility of routinely collected data when evaluating complex interventions and to demonstrate how a theory-based, realist approach to evaluation may increase the feasibility of routine data. We present a case study of evaluating a complex intervention, namely, the chronic care model (CCM), in Finnish primary health care. Issues typically faced when evaluating the effects of a complex intervention on health outcomes and resource use are identified by using routine data in a natural setting, and we apply context-mechanism-outcome (CMO) approach from the realist evaluation paradigm to improve the feasibility of using routine data in evaluating complex interventions. From an experimentalist approach that dominates the medical literature, routine data collected from a single centre offered a poor starting point for evaluating complex interventions. However, the CMO approach offered tools for identifying indicators needed to evaluate complex interventions. Applying the CMO approach can aid in a typical evaluation setting encountered by primary care managers: one in which the intervention is complex, the primary data source is routinely collected clinical and administrative data from a single centre, and in which randomization of patients into two research arms is too resource consuming to arrange. © 2014 John Wiley & Sons, Ltd.

  4. Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes

    Directory of Open Access Journals (Sweden)

    Le Novère Nicolas

    2010-03-01

    Full Text Available Abstract Background Most cellular signal transduction mechanisms depend on a few molecular partners whose roles depend on their position and movement in relation to the input signal. This movement can follow various rules and take place in different compartments. Additionally, the molecules can form transient complexes. Complexation and signal transduction depend on the specific states partners and complexes adopt. Several spatial simulator have been developed to date, but none are able to model reaction-diffusion of realistic multi-state transient complexes. Results Meredys allows for the simulation of multi-component, multi-feature state molecular species in two and three dimensions. Several compartments can be defined with different diffusion and boundary properties. The software employs a Brownian dynamics engine to simulate reaction-diffusion systems at the reactive particle level, based on compartment properties, complex structure, and hydro-dynamic radii. Zeroth-, first-, and second order reactions are supported. The molecular complexes have realistic geometries. Reactive species can contain user-defined feature states which can modify reaction rates and outcome. Models are defined in a versatile NeuroML input file. The simulation volume can be split in subvolumes to speed up run-time. Conclusions Meredys provides a powerful and versatile way to run accurate simulations of molecular and sub-cellular systems, that complement existing multi-agent simulation systems. Meredys is a Free Software and the source code is available at http://meredys.sourceforge.net/.

  5. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    Science.gov (United States)

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  6. Realistic ion optical transfer maps for Super-FRS magnets from numerical field data

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Erika; Boine-Frankenheim, Oliver [Technische Universitaet Darmstadt (Germany)

    2016-07-01

    In large aperture accelerators such as Super-FRS, the non-linearity of the magnetic field in bending elements leads to the non-linear beam dynamics, which cannot be described by means of linear ion optics. Existing non-linear approach is based on the Fourier harmonics formalism and is not working if horizontal aperture is bigger as vertical or vice versa. In Super-FRS dipole the horizontal aperture is much bigger than the vertical. Hence, it is necessary to find a way to create the higher order transfer map for this dipole to accurately predict the particle dynamics in the realistic magnetic fields in the whole aperture. The aim of this work is to generate an accurate high order transfer map of magnetic elements from measured or simulated 3D magnetic field data. Using differential algebraic formalism allows generating transfer maps automatically via numerical integration of ODEs of motion in beam physics coordinates along the reference path. To make the transfer map accurate for all particles in the beam, the magnetic field along the integration path should be represented by analytical function, matching with the real field distribution in the volume of interest. Within this work the steps of high order realistic transfer map production starting from the field values on closed box, covering the volume of interest, will be analyzed in detail.

  7. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.

    Science.gov (United States)

    Buhusi, Catalin V; Oprisan, Sorinel A

    2013-05-01

    In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    Science.gov (United States)

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  9. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.

    Science.gov (United States)

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T

    2015-01-01

    Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (pmasks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.

  10. Multimedia psychoeducational interventions to support patient self-care in degenerative conditions: A realist review.

    Science.gov (United States)

    O'Halloran, Peter; Scott, David; Reid, Joanne; Porter, Sam

    2015-10-01

    Multimedia interventions are increasingly used to deliver information in order to promote self-care among patients with degenerative conditions. We carried out a realist review of the literature to investigate how the characteristics of multimedia psychoeducational interventions combine with the contexts in which they are introduced to help or hinder their effectiveness in supporting self-care for patients with degenerative conditions. Electronic databases (Medline, Science Direct, PSYCHinfo, EBSCO, and Embase) were searched in order to identify papers containing information on multimedia psychoeducational interventions. Using a realist review approach, we reviewed all relevant studies to identify theories that explained how the interventions work. Ten papers were included in the review. All interventions sought to promote self-care behaviors among participants. We examined the development and content of the multimedia interventions and the impact of patient motivation and of the organizational context of implementation. We judged seven studies to be methodologically weak. All completed studies showed small effects in favor of the intervention. Multimedia interventions may provide high-quality information in an accessible format, with the potential to promote self-care among patients with degenerative conditions, if the patient perceives the information as important and develops confidence about self-care. The evidence base is weak, so that research is needed to investigate effective modes of delivery at different resource levels. We recommend that developers consider how an intervention will reduce uncertainty and increase confidence in self-care, as well as the impact of the context in which it will be employed.

  11. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    Science.gov (United States)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  12. Percolation dans des reseaux realistes de nanostructures de carbone

    Science.gov (United States)

    Simoneau, Louis-Philippe

    Carbon nanotubes have very interesting mechanical and electrical properties for various applications in electronics. They are highly resistant to deformation and can be excellent conductors or semiconductors. However, manipulating individual nanotubes to build structured devices remains very difficult. There is no method for controlling all of the electrical properties, the orientation and the spatial positioning of a large number of nanotubes. The fabrication of disordered networks of nanotubes is much easier, and these systems have a good electrical conductivity which makes them very interesting, especially as materials of transparent and flexible electrodes. There are three main methods of production used to make networks of nanotubes: the solution deposition, the direct growth on substrate and the embedding in a polymer matrix. The solution deposition method can form networks of various densities on a variety of substrates, the direct growth of nanotubes allows the creation of very clean networks on substrates such as SiO2, and the embedding in a polymer matrix can give composite volumes containing varying amounts of nanotubes. Many parameters such as the length of the tubes, their orientation or their tortuosity influence the properties of these networks and the presence of structural disorder complicates the understanding of their interactions. Predicting the properties of a network, such as conductivity, from a few characteristics such as size and density of the tubes can be difficult. This task becomes even more complex if one wants to identify the parameters that will optimize the performance of a device containing the material. We chose to address the carbon nanotube networks problem by developing a series of computer simulation tools that are mainly based on the Monte Carlo method. We take into account a large number of parameters to describe the characteristics of the networks, which allows for a more reliable representation of real networks as well as

  13. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause

    Science.gov (United States)

    Tsyganenko, N. A.

    1995-01-01

    Empirical data-based models of the magnetosphereic magnetic field have been widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) have three serious deficiencies: (1) an unstable de facto magnetopause, (2) a crude parametrization by the K(sub p) index, and (3) inaccuracies in the equatorial magnetotail B(sub z) values. This paper describes a new approach to the problem; the essential new features are (1) a realistic shape and size of the magnetopause, based on fits to a large number of observed crossing (allowing a parametrization by the solar wind pressure), (2) fully controlled shielding of the magnetic field produced by all magnetospheric current systems, (3) new flexible representations for the tail and ring currents, and (4) a new directional criterion for fitting the model field to spacecraft data, providing improved accuracy for field line mapping. Results are presented from initial efforts to create models assembled from these modules and calibrated against spacecraft data sets.

  14. Characteristics of 454 pyrosequencing data--enabling realistic simulation with flowsim.

    Science.gov (United States)

    Balzer, Susanne; Malde, Ketil; Lanzén, Anders; Sharma, Animesh; Jonassen, Inge

    2010-09-15

    The commercial launch of 454 pyrosequencing in 2005 was a milestone in genome sequencing in terms of performance and cost. Throughout the three available releases, average read lengths have increased to approximately 500 base pairs and are thus approaching read lengths obtained from traditional Sanger sequencing. Study design of sequencing projects would benefit from being able to simulate experiments. We explore 454 raw data to investigate its characteristics and derive empirical distributions for the flow values generated by pyrosequencing. Based on our findings, we implement Flowsim, a simulator that generates realistic pyrosequencing data files of arbitrary size from a given set of input DNA sequences. We finally use our simulator to examine the impact of sequence lengths on the results of concrete whole-genome assemblies, and we suggest its use in planning of sequencing projects, benchmarking of assembly methods and other fields. Flowsim is freely available under the General Public License from http://blog.malde.org/index.php/flowsim/.

  15. Developing workshop module of realistic mathematics education: Follow-up workshop

    Science.gov (United States)

    Palupi, E. L. W.; Khabibah, S.

    2018-01-01

    Realistic Mathematics Education (RME) is a learning approach which fits the aim of the curriculum. The success of RME in teaching mathematics concepts, triggering students’ interest in mathematics and teaching high order thinking skills to the students will make teachers start to learn RME. Hence, RME workshop is often offered and done. This study applied development model proposed by Plomp. Based on the study by RME team, there are three kinds of RME workshop: start-up workshop, follow-up workshop, and quality boost. However, there is no standardized or validated module which is used in that workshops. This study aims to develop a module of RME follow-up workshop which is valid and can be used. Plopm’s developmental model includes materials analysis, design, realization, implementation, and evaluation. Based on the validation, the developed module is valid. While field test shows that the module can be used effectively.

  16. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    In the present study, a novel multichannel loudspeaker-based virtual auditory environment (VAE) is introduced. The VAE aims at providing a versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room...... reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution...... the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  17. Predicting perceptual quality of images in realistic scenario using deep filter banks

    Science.gov (United States)

    Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang

    2018-03-01

    Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.

  18. EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models.

    Science.gov (United States)

    De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto

    2012-05-01

    Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.

  19. A Data-Driven Approach to Realistic Shape Morphing

    KAUST Repository

    Gao, Lin; Lai, Yu-Kun; Huang, Qi-Xing; Hu, Shi-Min

    2013-01-01

    Morphing between 3D objects is a fundamental technique in computer graphics. Traditional methods of shape morphing focus on establishing meaningful correspondences and finding smooth interpolation between shapes. Such methods however only take geometric information as input and thus cannot in general avoid producing unnatural interpolation, in particular for large-scale deformations. This paper proposes a novel data-driven approach for shape morphing. Given a database with various models belonging to the same category, we treat them as data samples in the plausible deformation space. These models are then clustered to form local shape spaces of plausible deformations. We use a simple metric to reasonably represent the closeness between pairs of models. Given source and target models, the morphing problem is casted as a global optimization problem of finding a minimal distance path within the local shape spaces connecting these models. Under the guidance of intermediate models in the path, an extended as-rigid-as-possible interpolation is used to produce the final morphing. By exploiting the knowledge of plausible models, our approach produces realistic morphing for challenging cases as demonstrated by various examples in the paper. © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  20. Convective aggregation in idealised models and realistic equatorial cases

    Science.gov (United States)

    Holloway, Chris

    2015-04-01

    Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapour (CWV) field. To investigate the relevance of this behaviour to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.

  1. Nonstandard Farey sequences in a realistic diode map

    International Nuclear Information System (INIS)

    Perez, G.; Sinha, S.; Cerdeira, H.

    1991-06-01

    We study a realistic coupled map system, modelling a p - i - n diode structure. As we vary the parameter corresponding to the (scaled) external potential in the model, the dynamics goes through a flip bifurcation and then a Hopf bifurcation, and as the parameter is increased further, we find evidence of a sequence of mode locked windows embedded in the quasiperiodic motion, with periodic attractors whose winding numbers p = p/q, are given by a Farey series. The interesting thing about this Farey sequence is that it is generated between two parent attractors with p = 2/7 and 2/8, where 2/8 implies two distinct coexisting attractors with p = 1/4, and the correct series is obtained only when we use parent winding number 2/8 and not 1/4. So unlike a regular Farey tree, p and q need not be relatively prime here, p = 2 x p/2 x q is permissible, where such attractors are actually comprised of two coexisting attractors with p = p/q. We also checked that the positions and widths of these windows exhibit well defined power law scaling. When the potential is increased further, the Farey windows still provide a ''skeleton'' for the dynamics, and within each window there is a host of other interesting dynamical features, including multiple forward and reverse Feigenbaum trees. (author). 15 refs, 7 figs

  2. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Albajar, F.; Johner, J.; Granata, G.

    2000-08-01

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  3. Factors influencing intercultural doctor-patient communication: a realist review.

    Science.gov (United States)

    Paternotte, Emma; van Dulmen, Sandra; van der Lee, Nadine; Scherpbier, Albert J J A; Scheele, Fedde

    2015-04-01

    Due to migration, doctors see patients from different ethnic backgrounds. This causes challenges for the communication. To develop training programs for doctors in intercultural communication (ICC), it is important to know which barriers and facilitators determine the quality of ICC. This study aimed to provide an overview of the literature and to explore how ICC works. A systematic search was performed to find literature published before October 2012. The search terms used were cultural, communication, healthcare worker. A realist synthesis allowed us to use an explanatory focus to understand the interplay of communication. In total, 145 articles met the inclusion criteria. We found ICC challenges due to language, cultural and social differences, and doctors' assumptions. The mechanisms were described as factors influencing the process of ICC and divided into objectives, core skills and specific skills. The results were synthesized in a framework for the development of training. The quality of ICC is influenced by the context and by the mechanisms. These mechanisms translate into practical points for training, which seem to have similarities with patient-centered communication. Training for improving ICC can be developed as an extension of the existing training for patient-centered communication. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Atomistic simulations of graphite etching at realistic time scales.

    Science.gov (United States)

    Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C

    2017-10-01

    Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.

  5. The construction of ``realistic'' four-dimensional strings through orbifolds

    Science.gov (United States)

    Font, A.; Ibáñez, L. E.; Quevedo, F.; Sierra, A.

    1990-02-01

    We discuss the construction of "realistic" lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z 3 three-generation SU(3) × SU(2) × U(1) models as well as models incorporating a left-right SU(2) L × SU(2) R × U(1) B-L symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z 3 × Z 3 orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z 3 × Z 3 model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory.

  6. The construction of 'realistic' four-dimensional strings through orbifolds

    International Nuclear Information System (INIS)

    Font, A.; Quevedo, F.; Sierra, A.

    1990-01-01

    We discuss the construction of 'realistic' lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z 3 three-generation SU(3)xSU(2)xU(1) models as well as models incorporating a left-right SU(2) L xSU(2) R xU(1) B-L symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z 3 xZ 3 orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z 3 xZ 3 model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory. (orig.)

  7. Nucleon decay in a realistic SO(10) SUSY GUT

    International Nuclear Information System (INIS)

    Lucas, V.; Raby, S.

    1997-01-01

    In this paper, we calculate neutron and proton decay rates and branching ratios in a predictive SO(10) SUSY GUT which agrees well with low energy data. We show that the nucleon lifetimes are consistent with the experimental bounds. The nucleon decay rates are calculated using all one-loop chargino and gluino-dressed diagrams regardless of their chiral structure. We show that the four-fermion operator C jk (u R d jR )(d kL ν τL ), commonly neglected in previous nucleon decay calculations, not only contributes significantly to nucleon decay, but, for many values of the initial GUT parameters and for large tanβ, actually dominates the decay rate. As a consequence, we find that τ p /τ n is often substantially larger than the prediction obtained in small tanβ models. We also find that gluino-dressed diagrams, often neglected in nucleon decay calculations, contribute significantly to nucleon decay. In addition we find that the branching ratios obtained from this realistic SO(10) SUSY GUT differ significantly from the predictions obtained from open-quotes genericclose quotes SU(5) SUSY GUT close-quote s. Thus, nucleon decay branching ratios, when observed, can be used to test theories of fermion masses. copyright 1997 The American Physical Society

  8. Uncovering gender discrimination cues in a realistic setting.

    Science.gov (United States)

    Dupuis-Roy, Nicolas; Fortin, Isabelle; Fiset, Daniel; Gosselin, Frédéric

    2009-02-10

    Which face cues do we use for gender discrimination? Few studies have tried to answer this question and the few that have tried typically used only a small set of grayscale stimuli, often distorted and presented a large number of times. Here, we reassessed the importance of facial cues for gender discrimination in a more realistic setting. We applied Bubbles-a technique that minimizes bias toward specific facial features and does not necessitate the distortion of stimuli-to a set of 300 color photographs of Caucasian faces, each presented only once to 30 participants. Results show that the region of the eyes and the eyebrows-probably in the light-dark channel-is the most important facial cue for accurate gender discrimination; and that the mouth region is driving fast correct responses (but not fast incorrect responses)-the gender discrimination information in the mouth region is concentrated in the red-green color channel. Together, these results suggest that, when color is informative in the mouth region, humans use it and respond rapidly; and, when it's not informative, they have to rely on the more robust but more sluggish luminance information in the eye-eyebrow region.

  9. Linear perspective limitations on virtual reality and realistic displays

    Science.gov (United States)

    Temme, Leonard A.

    2007-04-01

    The visual images of the natural world, with their immediate intuitive appeal, seem like the logical gold standard for evaluating displays. After all, since photorealistic displays look so increasingly like the real world, what could be better? Part of the shortcoming of this intuitive appeal for displays is its naivete. Realism itself is full of potential illusions that we do not notice because, most of the time, realism is good enough for our everyday tasks. But when confronted with tasks that go beyond those for which our visual system has evolved, we may be blindsided. If we survive, blind to our erroneous perceptions and oblivious to our good fortune at having survived, we will not be any wiser next time. Realist displays depend on linear perspective (LP), the mathematical mapping of three dimensions onto two. Despite the fact that LP is a seductively elegant system that predicts results with defined mathematical procedures, artists do not stick to the procedures, not because they are math-phobic but because LP procedures, if followed explicitly, produce ugly, limited, and distorted images. If artists bother with formal LP procedures at all, they invariably temper the renderings by eye. The present paper discusses LP assumptions, limitations, and distortions. It provides examples of kluges to cover some of these LP shortcomings. It is important to consider the limitations of LP so that we do not let either naive assumptions or the seductive power of LP guide our thinking or expectations unrealistically as we consider its possible uses in advanced visual displays.

  10. Urban renewal, gentrification and health equity: a realist perspective.

    Science.gov (United States)

    Mehdipanah, Roshanak; Marra, Giulia; Melis, Giulia; Gelormino, Elena

    2018-04-01

    Up to now, research has focused on the effects of urban renewal programs and their impacts on health. While some of this research points to potential negative health effects due to gentrification, evidence that addresses the complexity associated with this relation is much needed. This paper seeks to better understand when, why and how health inequities arise from urban renewal interventions resulting in gentrification. A realist review, a qualitative systematic review method, aimed to better explain the relation between context, mechanism and outcomes, was used. A literature search was done to identify theoretical models of how urban renewal programs can result in gentrification, which in turn could have negative impacts on health. A systematic approach was then used to identify peer-reviewed studies that provided evidence to support or refute the initial assumptions. Urban renewal programs that resulted in gentrification tended to have negative health effects primarily in residents that were low-income. Urban renewal policies that were inclusive of populations that are vulnerable, from the beginning were less likely to result in gentrification and more likely to positively impact health through physical and social improvements. Research has shown urban renewal policies have significant impacts on populations that are vulnerable and those that result in gentrification can result in negative health consequences for this population. A better understanding of this is needed to impact future policies and advocate for a community-participatory model that includes such populations in the early planning stages.

  11. Towards realistic string vacua from branes at singularities

    Science.gov (United States)

    Conlon, Joseph P.; Maharana, Anshuman; Quevedo, Fernando

    2009-05-01

    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.

  12. A Data-Driven Approach to Realistic Shape Morphing

    KAUST Repository

    Gao, Lin

    2013-05-01

    Morphing between 3D objects is a fundamental technique in computer graphics. Traditional methods of shape morphing focus on establishing meaningful correspondences and finding smooth interpolation between shapes. Such methods however only take geometric information as input and thus cannot in general avoid producing unnatural interpolation, in particular for large-scale deformations. This paper proposes a novel data-driven approach for shape morphing. Given a database with various models belonging to the same category, we treat them as data samples in the plausible deformation space. These models are then clustered to form local shape spaces of plausible deformations. We use a simple metric to reasonably represent the closeness between pairs of models. Given source and target models, the morphing problem is casted as a global optimization problem of finding a minimal distance path within the local shape spaces connecting these models. Under the guidance of intermediate models in the path, an extended as-rigid-as-possible interpolation is used to produce the final morphing. By exploiting the knowledge of plausible models, our approach produces realistic morphing for challenging cases as demonstrated by various examples in the paper. © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  13. Compiling quantum circuits to realistic hardware architectures using temporal planners

    Science.gov (United States)

    Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy

    2018-04-01

    To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.

  14. OFDM versus Single Carrier: A Realistic Multi-Antenna Comparison

    Directory of Open Access Journals (Sweden)

    Moonen Marc

    2004-01-01

    Full Text Available There is an ongoing discussion in the broadband wireless world about the respective benefits of orthogonal frequency division multiplexing (OFDM and single carrier with frequency domain equalization (SC-FD. SC-FD allows for more relaxed front-end requirements, of which the power amplifier efficiency is very important for battery-driven terminals. OFDM, on the other hand, can yield improved BER performance at low complexity. Both schemes have extensions to multiple antennas to enhance the spectral efficiency and/or the link reliability. Moreover, both schemes have nonlinear versions using decision feedback equalization (DFE to further improve performance of the linear equalizers. In this paper, we compare these high-performance OFDM and SC-FD schemes using multiple antennas and DFE, while also accounting for the power amplifier efficiency. To make a realistic comparison, we also consider most important digital imperfections, such as channel and noise estimation, transmit and receive filtering, clipping and quantization, as well as link layer impact. Our analysis shows that for frequency-selective channels the relative performance impact of the power amplifier is negligible compared to the frequency diversity impact. The higher frequency diversity exploitation of SC-FD allows it to outperform OFDM in most cases. Therefore, SC-FD is a suitable candidate for broadband wireless communication.

  15. Use of realistic anthropomorphic models for calculation of radiation dose in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, Michael G.; Emmons, Mary A.; Fernald, Michael J.; Brill, A.B.; Segars, W.Paul

    2008-01-01

    Anthropomorphic phantoms based on simple geometric structures have been used in radiation dose calculations for many years. We have now developed a series of anatomically realistic phantoms representing adults and children using body models based on non-uniform rational B-spline (NURBS), with organ and body masses based on the reference values given in ICRP Publication 89. Age-dependent models were scaled and shaped to represent the reference individuals described in ICRP 89 (male and female adults, newborns, 1-, 5-, 10- and 15-year-olds), using a software tool developed in Visual C++. Voxel-based versions of these models were used with GEANT4 radiation transport codes for calculation of specific absorbed fractions (SAFs) for internal sources of photons and electrons, using standard starting energy values. Organ masses in the models were within a few % of ICRP reference masses, and physicians reviewed the models for anatomical realism. Development of individual phantoms was much faster than manual segmentation of medical images, and resulted in a very uniform standardized phantom series. SAFs were calculated on the Vanderbilt multi node computing network (ACCRE). Photon and electron SAFs were calculated for all organs in all models, and were compared to values from similar phantoms developed by others. Agreement was very good in most cases; some differences were seen, due to differences in organ mass and geometry. This realistic phantom series represents a possible replacement for the Cristy/Eckerman series of the 1980's. Both phantom sets will be included in the next release of the OLINDA/EXM personal computer code, and the new phantoms will be made generally available to the research community for other uses. Calculated radiation doses for diagnostic and therapeutic radiopharmaceuticals will be compared with previous values. (author)

  16. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    OpenAIRE

    A. Goswami; P. L. Olson; L. A. Hinnov; A. Gnanadesikan

    2015-01-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in th...

  17. Pengembangan Lembar Kerja Siswa (LKS) Berbasis Pendekatan Realistic Mathematic Education (RME) untuk Memfasilitasi Kemampuan Representasi Matematis Siswa SMP

    OpenAIRE

    Ranti Mustika Sari; Zubaidah Amir M. Z.; Risnawati Risnawati

    2017-01-01

    This research aimed at developing, producing a valid and practical students' workbook Realistic Mathematic Education Approach Based and facilitating student mathematic representing ability on Systems of Linear Equations in Two Variables material.The method of this research was a Research and Development (R&D) through the development of 4-D (Define, Design, Develop, and Disseminate) Model.This research was administered at State Junior High School 2 Pasir Penyu.The subjects of this research...

  18. Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor

    OpenAIRE

    Zhang, K.; Ghobadian, A.; Nouri, J. M.

    2017-01-01

    A comparative study of two combustion models based on non-premixed assumption and partially premixed assumptions using the overall models of Zimont Turbulent Flame Speed Closure Method (ZTFSC) and Extended Coherent Flamelet Method (ECFM) are conducted through Reynolds stress turbulence modelling of Tay model gas turbine combustor for the first time. The Tay model combustor retains all essential features of a realistic gas turbine combustor. It is seen that the non-premixed combustion model fa...

  19. Development of Realistic Safety Analysis Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Rho, G. H.

    2010-04-01

    The following 3 research items have been studied to develop and establish the realistic safety analysis and the associated technologies for a CANDU reactor. At the first, WIMS-CANDU which is physics cell code for a CANDU has been improved and validated against the physics criticality experiment data transferred through the international cooperation programs. Also an improved physics model to take into account the pressure tube creep was developed and utilized to assess the effects of the pressure tube creep of 0%, 2.5% and 5% diametral increase of pressure tube on core physics parameters. Secondly, the interfacing module between physics and thermal-hydraulics codes has been developed to provide the enhancement of reliability and convenience of the calculation results of the physics parameters such as power coefficient which was calculated by independent code systems. Finally, the important parameters related to the complex heat transfer mechanisms in the crept pressure tubes were identified to find how to improve the existing fuel channel models. One of the important parameters such as the oxidation model of Zr-steam reaction was identified, implemented and verified with the experimental data of the high pressure and temperature fuel channel and its model was utilized for CFD analysis of the crept pressure tube effect on the reactor safety. The results were also provided to validate the CATNENA models of the crept pressure tube and the effects of the pressure tube creep on the blowdown and post-blowdown phase during LOCA was assessed. The results of this study can be used to assess the uncertainty analysis of coolant void reactivity and the effects of the creep deformed pressure tubes on physics/TH/safety issues. Also, those results will be used to improve the current design and operational safety analysis codes, and to technically support the related issues to resolve their problems

  20. Coil optimisation for transcranial magnetic stimulation in realistic head geometry.

    Science.gov (United States)

    Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J

    Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  2. Realistic phantoms to characterize dosimetry in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Carver, Diana E.; Kost, Susan D.; Fraser, Nicholas D.; Pickens, David R.; Price, Ronald R.; Stabin, Michael G. [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Segars, W.P. [Duke University, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2017-05-15

    The estimation of organ doses and effective doses for children receiving CT examinations is of high interest. Newer, more realistic anthropomorphic body models can provide information on individual organ doses and improved estimates of effective dose. Previously developed body models representing 50th-percentile individuals at reference ages (newborn, 1, 5, 10 and 15 years) were modified to represent 10th, 25th, 75th and 90th height percentiles for both genders and an expanded range of ages (3, 8 and 13 years). We calculated doses for 80 pediatric reference phantoms from simulated chest-abdomen-pelvis exams on a model of a Philips Brilliance 64 CT scanner. Individual organ and effective doses were normalized to dose-length product (DLP) and fit as a function of body diameter. We calculated organ and effective doses for 80 reference phantoms and plotted them against body diameter. The data were well fit with an exponential function. We found DLP-normalized organ dose to correlate strongly with body diameter (R{sup 2}>0.95 for most organs). Similarly, we found a very strong correlation with body diameter for DLP-normalized effective dose (R{sup 2}>0.99). Our results were compared to other studies and we found average agreement of approximately 10%. We provide organ and effective doses for a total of 80 reference phantoms representing normal-stature children ranging in age and body size. This information will be valuable in replacing the types of vendor-reported doses available. These data will also permit the recording and tracking of individual patient doses. Moreover, this comprehensive dose database will facilitate patient matching and the ability to predict patient-individualized dose prior to examination. (orig.)

  3. Realistic Goals and Processes for Future Space Astronomy Portfolio Planning

    Science.gov (United States)

    Morse, Jon

    2015-08-01

    It is generally recognized that international participation and coordination is highly valuable for maximizing the scientific impact of modern space science facilities, as well as for cost-sharing reasons. Indeed, all large space science missions, and most medium and small missions, are international, even if one country or space agency has a clear leadership role and bears most of the development costs. International coordination is a necessary aspect of future mission planning, but how that coordination is done remains debatable. I propose that the community's scientific vision is generally homogeneous enough to permit international coordination of decadal-scale strategic science goals. However, the timing and budget allocation/funding mechanisms of individual countries and/or space agencies are too disparate for effective long-term strategic portfolio planning via a single international process. Rather, I argue that coordinated space mission portfolio planning is a natural consequence of international collaboration on individual strategic missions. I review the process and outcomes of the U.S. 2010 decadal survey in astronomy & astrophysics from the perspective of a government official who helped craft the survey charter and transmitted guidance to the scientific community on behalf of a sponsoring agency (NASA), while continuing to manage the current portfolio that involved ongoing negotiations with other space agencies. I analyze the difficulties associated with projecting long-term budgets, obtaining realistic mission costs (including the additional cost burdens of international partnerships), and developing new (possibly transformational) technologies. Finally, I remark on the future role that privately funded space science missions can have in accomplishing international science community goals.

  4. Characterization of photomultiplier tubes with a realistic model through GPU-boosted simulation

    Science.gov (United States)

    Anthony, M.; Aprile, E.; Grandi, L.; Lin, Q.; Saldanha, R.

    2018-02-01

    The accurate characterization of a photomultiplier tube (PMT) is crucial in a wide-variety of applications. However, current methods do not give fully accurate representations of the response of a PMT, especially at very low light levels. In this work, we present a new and more realistic model of the response of a PMT, called the cascade model, and use it to characterize two different PMTs at various voltages and light levels. The cascade model is shown to outperform the more common Gaussian model in almost all circumstances and to agree well with a newly introduced model independent approach. The technical and computational challenges of this model are also presented along with the employed solution of developing a robust GPU-based analysis framework for this and other non-analytical models.

  5. Performance Analysis of Relays in LTE for a Realistic Suburban Deployment Scenario

    DEFF Research Database (Denmark)

    Coletti, Claudio; Mogensen, Preben; Irmer, Ralf

    2011-01-01

    Relays are likely to play an important role in the deployment of Beyond 3G networks, such as LTE-Advanced, thanks to the possibility of effectively extending Macro network coverage and fulfilling the expected high data-rate requirements. Up until now, the relay technology potential and its cost......-effectiveness have been widely investigated in the literature, considering mainly statistical deployment scenarios, like regular networks with uniform traffic distribution. This paper is envisaged to illustrate the performances of different relay technologies (In-Band/Out-band) in a realistic suburban network...... scenario with real Macro site positions, user density map and spectrum band availability. Based on a proposed heuristic deployment algorithm, results show that deploying In-band relays can significantly reduce the user outage if high backhaul link quality is ensured, whereas Out-band relaying and the usage...

  6. Heterogeneous Deployment to Meet Traffic Demand in a Realistic LTE Urban Scenario

    DEFF Research Database (Denmark)

    Coletti, Claudio; Hu, Liang; Nguyen, Huan Cong

    2012-01-01

    growth of mo-bile broadband traffic. Emphasis is put on how to optimally as-sign the spectrum for the different networks layers in an evolved HetNet including outdoor and indoor small cells. The study is conducted for a “Hot-Zone” scenario, i.e. a high-traffic area within a realistic dense urban...... performance with a minimum user data rate of 1 Mbps is achieved when deploying small cells on dedicated channels rather than co-channel deployment. Fur-thermore, the joint pico and femto deployment turns out to be the right trade-off between increased base station density and en-hanced network capacity....

  7. The relative greenhouse gas impacts of realistic dietary choices

    International Nuclear Information System (INIS)

    Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N.

    2012-01-01

    The greenhouse gas (GHG) emissions embodied in 61 different categories of food are used, with information on the diet of different groups of the population (omnivorous, vegetarian and vegan), to calculate the embodied GHG emissions in different dietary scenarios. We calculate that the embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 , or 2.7 t CO 2 e person −1 y −1 . This gives total food-related GHG emissions of 167 Mt CO 2 e (1 Mt=10 6 metric tonnes; CO 2 e being the mass of CO 2 that would have the same global warming potential, when measured over 100 years, as a given mixture of greenhouse gases) for the entire UK population in 2009. This is 27% of total direct GHG emissions in the UK, or 19% of total GHG emissions from the UK, including those embodied in goods produced abroad. We calculate that potential GHG savings of 22% and 26% can be made by changing from the current UK-average diet to a vegetarian or vegan diet, respectively. Taking the average GHG saving from six vegetarian or vegan dietary scenarios compared with the current UK-average diet gives a potential national GHG saving of 40 Mt CO 2 e y −1 . This is equivalent to a 50% reduction in current exhaust pipe emissions from the entire UK passenger car fleet. Hence realistic choices about diet can make substantial differences to embodied GHG emissions. - Highlights: ► We calculate the greenhouse gas emissions embodied in different diets. ► The embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 . ► Changing to a vegetarian or vegan diet reduces GHG emissions by 22–26%. ► Changing to a vegetarian or vegan diet would reduce UK GHG emissions by 40 Mt CO 2 e y −1 .

  8. Analysis of Heterogeneous Networks with Dual Connectivity in a Realistic Urban Deployment

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Barcos, Sonia; Wang, Hua

    2015-01-01

    the performance in this realistic layout. Due to the uneven load distribution observed in realistic deployments, DC is able to provide fast load balancing gains also at relatively high load - and not only at low load as typically observed in 3GPP scenarios. For the same reason, the proposed cell selection...

  9. Neutron star models with realistic high-density equations of state

    International Nuclear Information System (INIS)

    Malone, R.C.; Johnson, M.B.; Bethe, H.A.

    1975-01-01

    We calculate neutron star models using four realistic high-density models of the equation of state. We conclude that the maximum mass of a neutron star is unlikely to exceed 2 M/sub sun/. All of the realistic models are consistent with current estimates of the moment of inertia of the Crab pulsar

  10. Using realist evaluation to assess primary healthcare teams' responses to intimate partner violence in Spain.

    Science.gov (United States)

    Goicolea, Isabel; Hurtig, Anna-Karin; San Sebastian, Miguel; Marchal, Bruno; Vives-Cases, Carmen

    2015-01-01

    Few evaluations have assessed the factors triggering an adequate health care response to intimate partner violence. This article aimed to: 1) describe a realist evaluation carried out in Spain to ascertain why, how and under what circumstances primary health care teams respond to intimate partner violence, and 2) discuss the strengths and challenges of its application. We carried out a series of case studies in four steps. First, we developed an initial programme theory (PT1), based on interviews with managers. Second, we refined PT1 into PT2 by testing it in a primary healthcare team that was actively responding to violence. Third, we tested the refined PT2 by incorporating three other cases located in the same region. Qualitative and quantitative data were collected and thick descriptions were produced and analysed using a retroduction approach. Fourth, we analysed a total of 15 cases, and identified combinations of contextual factors and mechanisms that triggered an adequate response to violence by using qualitative comparative analysis. There were several key mechanisms -the teams' self-efficacy, perceived preparation, women-centred care-, and contextual factors -an enabling team environment and managerial style, the presence of motivated professionals, the use of the protocol and accumulated experience in primary health care- that should be considered to develop adequate primary health-care responses to violence. The full application of this realist evaluation was demanding, but also well suited to explore a complex intervention reflecting the situation in natural settings. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  11. Treatments for people living with schizophrenia in Sub-Saharan Africa: an adapted realist review.

    Science.gov (United States)

    Chidarikire, S; Cross, M; Skinner, I; Cleary, M

    2018-03-01

    To identify the treatments and interventions available and their impact on people living with schizophrenia in Sub-Saharan Africa. Help-seeking behaviour and the choice of treatment are largely influenced by socio-cultural factors and beliefs about the causes of mental illness. This review addresses the gap in knowledge regarding the treatment options available to people living with schizophrenia in Sub-Saharan Africa. Adapted realist literature review. Electronic databases searched in June 2016 included PubMed, EMBASE, PsycINFO, ProQuest and CINAHL. The adapted realist review approach used to synthesize the published research involved identifying the review aim, searching and selecting relevant studies, extracting, iteratively analysing and synthesizing relevant data and reporting results. Forty studies from eight countries were reviewed. Most people were treated by both faith/traditional healers and modern psychiatry. Common treatments included antipsychotics, electroconvulsive therapy and psychosocial interventions. Few treatment options were available outside major centres, there was poor adherence to medication and families reported a high level of burden associated with caring for a relative. Major limitations of this review were the lack of studies, variable quality and low level of evidence available from most countries from Sub-Saharan Africa and lack of generalizability. People living with schizophrenia in Sub-Saharan Africa were treated by faith, traditional healers and modern psychiatry, if at all. Further research is needed to better understand the local situation and the implications for caring for people from this region. Mental health services in Sub-Saharan Africa are limited by fiscal shortages, lack of mental health services and qualified mental health professionals. This review provides evidence to inform nursing and healthcare policy, including recruiting and training mental health professionals and ensuring access to evidence-based, person

  12. Shifting mindsets: a realist synthesis of evidence from self-management support training.

    Science.gov (United States)

    Davies, Freya; Wood, Fiona; Bullock, Alison; Wallace, Carolyn; Edwards, Adrian

    2018-03-01

    Accompanying the growing expectation of patient self-management is the need to ensure health care professionals (HCPs) have the required attitudes and skills to provide effective self-management support (SMS). Results from existing training interventions for HCPs in SMS have been mixed and the evidence base is weaker for certain settings, including supporting people with progressive neurological conditions (PNCs). We set out to understand how training operates, and to identify barriers and facilitators to training designed to support shifts in attitudes amongst HCPs. We undertook a realist literature synthesis focused on: (i) the influence of how HCPs, teams and organisations view and adopt self-management; and (ii) how SMS needs to be tailored for people with PNCs. A traditional database search strategy was used alongside citation tracking, grey literature searching and stakeholder recommendations. We supplemented PNC-specific literature with data from other long-term conditions. Key informant interviews and stakeholder advisory group meetings informed the synthesis process. Realist context-mechanism-outcome configurations were generated and mapped onto the stages described in Mezirow's Transformative Learning Theory. Forty-four original articles were included (19 relating to PNCs), from which seven refined theories were developed. The theories identified important training elements (evidence provision, building skills and confidence, facilitating reflection and generating empathy). The significant influence of workplace factors as possible barriers or facilitators was highlighted. Embracing SMS often required challenging traditional professional role boundaries. The integration of SMS into routine care is not an automatic outcome from training. A transformative learning process is often required to trigger the necessary mindset shift. Training should focus on how individual HCPs define and value SMS and how their work context (patient group and organisational

  13. Centralized Cooperative Positioning and Tracking with Realistic Communications Constraints

    DEFF Research Database (Denmark)

    Mensing, Christian; Nielsen, Jimmy Jessen

    2010-01-01

    on the overall performance will be assessed. As we are considering a dynamic scenario, the cooperative positioning algorithms are based on extended Kalman filtering for position estimation and tracking. Simulation results for ultra-wideband based ranging information and WLAN based communications infrastructure...

  14. Development of Sensor Based Applications for the Android Platform: an Approach Based on Realistic Simulation

    Directory of Open Access Journals (Sweden)

    Pablo CAMPILLO-SÁNCHEZ

    2013-05-01

    Full Text Available Smart phones are equipped with a wide range of sensors (such as GPS, light, accelerometer, gyroscope, etc. and allow users to be connected everywhere. These characteristics offer a rich information source for creating context-aware applications. However, testing these applications in the lab, before their deployment, could become a hard task or impossible because of sensors correlation, too wide testing area or an excessive number of people involved. This work aims to solve these problems carrying out the testing in a simulator, simulating the world in which the application user is immersed into. Tester controls her avatar and the avatar has a simulated smart phone that is connected with the user’s smart phone. Applications under test are installed on the real smart phone and are compiled with a library that replaces standard services of the sensors by others that offer data sensor from the simulator (depending on the simulated smart phone context instead of real world.

  15. Model-based Evaluation of Location-based Relaying Policies in a Realistic Mobile Indoor Scenario

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Olsen, Rasmus Løvenstein; Madsen, Tatiana Kozlova

    2012-01-01

    For WLAN systems in which relaying is exploited for improving throughput performance, node mobility and in- formation collection delays can have a significant impact on the performance of a relay selection scheme. This paper analyzes this influence on the decision process using a previously...

  16. The role of students' activities in Indonesian realistic mathematics education in primary schools of Aceh

    Science.gov (United States)

    Zubainur, Cut Morina; Veloo, Arsaythamby; Khalid, Rozalina

    2015-05-01

    This study aims to explore the implementation of the Indonesian Realistic Mathematics Education (PMRI) in Aceh primary schools, Indonesia. This study investigates the students' mathematics activities involved in the implementation of PMRI and for this purpose; students' mathematics activities in the classroom were observed. Students were observed three times within five weeks during mathematics class, based on PMRI. A total of 25 year five students from a public school participated in this study. Observation check list was used in this study based on ten items. The observation conducted was based on two different time periods which were 105 minutes for group A and 70 minutes for group B. The observation was conducted every 5 minutes. The results show that PMRI is being practised in Aceh, but not completely. This study shows that mathematics activities for those who were taught using PMRI are higher than for those using the traditional approach. Overall, the findings showed that the number of student activities undertaken in PMRI achieved 90.56%. The higher percentage of activities suggests that the Aceh Education Office expands the implementation of PMRI in all primary schools so that learning of mathematics is more effective. This indirectly increases the mathematics achievement of students in Aceh to a higher level on par with Indonesia's national achievement.

  17. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    Directory of Open Access Journals (Sweden)

    Effandi Zakaria

    2017-02-01

    Full Text Available This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30$ namely, the Realistic Mathematics Approach group (PMR and the control group $(n = 31$ namely, the traditional group. This study was conducted for six weeks. The instruments used in this study were the achievement test and the attitudes towards mathematics questionnaires. Data were analyzed using SPSS. To determine the difference in mean achievement and attitudes between the two groups, data were analyzed using one-way ANOVA test. The result showed significant differences between the Realistic Mathematics Approach and the traditional approach in terms of achievement. The study showed no significant difference between the Realistic Mathematics Approach and the traditional approach in term of attitudes towards mathematics. It can be concluded that the use of realistic mathematics education approach enhanced students' mathematics achievement, but not attitudes towards mathematics. The Realistic Mathematics Education Approach encourage students to participate actively in the teaching and learning of mathematics. Thus, Realistic Mathematics Education Approach is an appropriate methods to improve the quality of teaching and learning process.

  18. Realistic Safe-Separation Distance Determination for Mass Fire Hazards

    Science.gov (United States)

    2013-03-25

    amidships tossed the upper decks back, curled and flattened like a banana peel as indicated in Figure 5. Sections of the Liberte were hurled outward...powders are based on nitrocellulose alone (typically an ether- alcohol colloid of nitrocellulose). Double-based powders have both nitrocellulose and...during the Cold War and details were, and still are, hard to get . For example, several articles mentioned casualties but do not give numbers. http

  19. Experimental Section: On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head

    NARCIS (Netherlands)

    Meijs, J.W.H.; Bosch, F.G.C.; Peters, M.J.; Lopes da silva, F.H.

    1987-01-01

    The magnetic field distribution around the head is simulated using a realistically shaped compartment model of the head. The model is based on magnetic resonance images. The 3 compartments describe the brain, the skull and the scalp. The source is represented by a current dipole situated in the

  20. English as a Medium of Instruction in East Asia's Higher Education Sector: A Critical Realist Cultural Political Economy Analysis of Underlying Logics

    Science.gov (United States)

    Kedzierski, Matt

    2016-01-01

    As discourses of globalisation and the knowledge-based economy become increasingly influential in both policy-making and in public debates about education, employability and national competitiveness--the choice of language in the classroom takes on a strategic importance. The paper employs a critical realist Cultural Political Economy lens to…

  1. [A new age of mass casuality education? : The InSitu project: realistic training in virtual reality environments].

    Science.gov (United States)

    Lorenz, D; Armbruster, W; Vogelgesang, C; Hoffmann, H; Pattar, A; Schmidt, D; Volk, T; Kubulus, D

    2016-09-01

    . Interactive, identifiable, and realistic training environments based on projector systems could in future enable a repetitive exercise with changes within a decision tree, in reproducibility, and within different occupational groups. With a hard- and software environment numerous accident situations can be depicted and practiced. The main expense is the creation of the virtual accident scenes. As the appropriate city models and other three-dimensional geographical data are already available, this expenditure is very low compared with the planning costs of a large-scale exercise.

  2. Model of Ni-63 battery with realistic PIN structure

    Science.gov (United States)

    Munson, Charles E.; Arif, Muhammad; Streque, Jeremy; Belahsene, Sofiane; Martinez, Anthony; Ramdane, Abderrahim; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; Ougazzaden, Abdallah

    2015-09-01

    GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-n structure under scanning electron microscope illumination.

  3. Model of Ni-63 battery with realistic PIN structure

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Charles E.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [Georgia Tech Lorraine, Georgia Tech-C.N.R.S., UMI2958, 2-3 rue Marconi, 57070 Metz (France); School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, 30332-0250 Atlanta (United States); Arif, Muhammad; Salvestrini, Jean-Paul [Georgia Tech Lorraine, Georgia Tech-C.N.R.S., UMI2958, 2-3 rue Marconi, 57070 Metz (France); Université de Lorraine, CentraleSupélec, LMOPS, EA 4423, 2 rue E. Belin, 57070 Metz (France); Streque, Jeremy; El Gmili, Youssef [Georgia Tech Lorraine, Georgia Tech-C.N.R.S., UMI2958, 2-3 rue Marconi, 57070 Metz (France); Belahsene, Sofiane; Martinez, Anthony; Ramdane, Abderrahim [Laboratory for Photonics and Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis (France)

    2015-09-14

    GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-n structure under scanning electron microscope illumination.

  4. Model of Ni-63 battery with realistic PIN structure

    International Nuclear Information System (INIS)

    Munson, Charles E.; Voss, Paul L.; Ougazzaden, Abdallah; Arif, Muhammad; Salvestrini, Jean-Paul; Streque, Jeremy; El Gmili, Youssef; Belahsene, Sofiane; Martinez, Anthony; Ramdane, Abderrahim

    2015-01-01

    GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-n structure under scanning electron microscope illumination

  5. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    Science.gov (United States)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  6. 3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation

    Science.gov (United States)

    Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2018-01-01

    Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.

  7. Herd Immunity to Ebolaviruses Is Not a Realistic Target for Current Vaccination Strategies

    Directory of Open Access Journals (Sweden)

    Stuart G. Masterson

    2018-05-01

    Full Text Available The recent West African Ebola virus pandemic, which affected >28,000 individuals increased interest in anti-Ebolavirus vaccination programs. Here, we systematically analyzed the requirements for a prophylactic vaccination program based on the basic reproductive number (R0, i.e., the number of secondary cases that result from an individual infection. Published R0 values were determined by systematic literature research and ranged from 0.37 to 20. R0s ≥ 4 realistically reflected the critical early outbreak phases and superspreading events. Based on the R0, the herd immunity threshold (Ic was calculated using the equation Ic = 1 − (1/R0. The critical vaccination coverage (Vc needed to provide herd immunity was determined by including the vaccine effectiveness (E using the equation Vc = Ic/E. At an R0 of 4, the Ic is 75% and at an E of 90%, more than 80% of a population need to be vaccinated to establish herd immunity. Such vaccination rates are currently unrealistic because of resistance against vaccinations, financial/logistical challenges, and a lack of vaccines that provide long-term protection against all human-pathogenic Ebolaviruses. Hence, outbreak management will for the foreseeable future depend on surveillance and case isolation. Clinical vaccine candidates are only available for Ebola viruses. Their use will need to be focused on health-care workers, potentially in combination with ring vaccination approaches.

  8. The need for and development of behaviourally realistic agents

    NARCIS (Netherlands)

    Jager, W; Janssen, M; Sichman, JS; Bousquet, F; Davidsson, P

    2003-01-01

    In this paper we argue that simulating complex systems involving human behaviour requires agent rules based on a theoretically rooted structure that captures basic behavioural processes. Essential components of such a structure involve needs, decision-making processes and learning. Such a structure

  9. Simulation of realistic background noise using multiple loudspeakers

    DEFF Research Database (Denmark)

    Song, Wookeun; Marschall, Marton; Gil Corrales, Juan David

    2015-01-01

    Three methods for reproduction of sound using a maximum of eight loudspeakers were investigated in the context of testing telecommunication devices. They are the four-loudspeaker-based method as described in ETSI EG 202 396-1, Higher-Order ambisonics (HOA), and a matrix inversion method. HOA opti...

  10. Restricted dynamic programming: a flexible framework for solving realistic VRPs

    NARCIS (Netherlands)

    Gromicho, J.; van Hoorn, J.J.; Kok, A.L.; Schutten, Johannes M.J.

    2009-01-01

    Most solution methods for solving large vehicle routing and schedu- ling problems are based on local search. A drawback of these ap- proaches is that they are designed and optimized for specific types of vehicle routing problems (VRPs). As a consequence, it is hard to adapt these solution methods to

  11. DMTO: a realistic ontology for standard diabetes mellitus treatment.

    Science.gov (United States)

    El-Sappagh, Shaker; Kwak, Daehan; Ali, Farman; Kwak, Kyung-Sup

    2018-02-06

    Treatment of type 2 diabetes mellitus (T2DM) is a complex problem. A clinical decision support system (CDSS) based on massive and distributed electronic health record data can facilitate the automation of this process and enhance its accuracy. The most important component of any CDSS is its knowledge base. This knowledge base can be formulated using ontologies. The formal description logic of ontology supports the inference of hidden knowledge. Building a complete, coherent, consistent, interoperable, and sharable ontology is a challenge. This paper introduces the first version of the newly constructed Diabetes Mellitus Treatment Ontology (DMTO) as a basis for shared-semantics, domain-specific, standard, machine-readable, and interoperable knowledge relevant to T2DM treatment. It is a comprehensive ontology and provides the highest coverage and the most complete picture of coded knowledge about T2DM patients' current conditions, previous profiles, and T2DM-related aspects, including complications, symptoms, lab tests, interactions, treatment plan (TP) frameworks, and glucose-related diseases and medications. It adheres to the design principles recommended by the Open Biomedical Ontologies Foundry and is based on ontological realism that follows the principles of the Basic Formal Ontology and the Ontology for General Medical Science. DMTO is implemented under Protégé 5.0 in Web Ontology Language (OWL) 2 format and is publicly available through the National Center for Biomedical Ontology's BioPortal at http://bioportal.bioontology.org/ontologies/DMTO . The current version of DMTO includes more than 10,700 classes, 277 relations, 39,425 annotations, 214 semantic rules, and 62,974 axioms. We provide proof of concept for this approach to modeling TPs. The ontology is able to collect and analyze most features of T2DM as well as customize chronic TPs with the most appropriate drugs, foods, and physical exercises. DMTO is ready to be used as a knowledge base for

  12. Comparative analysis of the effectiveness of three immunization strategies in controlling disease outbreaks in realistic social networks.

    Directory of Open Access Journals (Sweden)

    Zhijing Xu

    Full Text Available The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred stochastic immunization strategies-acquaintance immunization, community-bridge immunization, and ring vaccination-were analyzed in this work. The optimal immunization ratios for acquaintance immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures. However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results could have important significance for epidemic control research and practice.

  13. Comparative analysis of the effectiveness of three immunization strategies in controlling disease outbreaks in realistic social networks.

    Science.gov (United States)

    Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie

    2014-01-01

    The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred stochastic immunization strategies-acquaintance immunization, community-bridge immunization, and ring vaccination-were analyzed in this work. The optimal immunization ratios for acquaintance immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures). However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results could have important significance for epidemic control research and practice.

  14. Realistic Avatar Eye and Head Animation Using a Neurobiological Model of Visual Attention

    National Research Council Canada - National Science Library

    Itti, L; Dhavale, N; Pighin, F

    2003-01-01

    We describe a neurobiological model of visual attention and eye/head movements in primates, and its application to the automatic animation of a realistic virtual human head watching an unconstrained...

  15. The effects of presenting multidigit mathematics problems in a realistic context on sixth graders' problem solving

    NARCIS (Netherlands)

    Hickendorff, M.

    2013-01-01

    Mathematics education and assessments increasingly involve arithmetic problems presented in context: a realistic situation that requires mathematical modeling. This study assessed the effects of such typical school mathematics contexts on two aspects of problem solving: performance and strategy use.

  16. Reinventing Sex: The Construction of Realistic Definitions of Sex and Gender.

    Science.gov (United States)

    Small, Chanley M.

    1998-01-01

    Presents a set of criteria for constructing a fair and realistic understanding of sex. Recognizes the impact that science can have on social policies and values and recommends that the definitions of sex and gender be carefully crafted. (DDR)

  17. Development of Realistic Head Models for Electromagnetic Source Imaging of the Human Brain

    National Research Council Canada - National Science Library

    Akalin, Z

    2001-01-01

    In this work, a methodology is developed to solve the forward problem of electromagnetic source imaging using realistic head models, For this purpose, first segmentation of the 3 dimensional MR head...

  18. Book Review: A Liberal Actor in a Realist World the European Union ...

    African Journals Online (AJOL)

    Abstract. Book Title: A Liberal Actor in a Realist World the European Union Regulatory State and the Global Political Economy of Energy. Book Author: Andreas Goldthau & Nick Sitter. Oxford University Press Oxford 2015. ISBN 9780198719595 ...

  19. Development of Realistic Head Models for Electromagnetic Source Imaging of the Human Brain

    National Research Council Canada - National Science Library

    Akalin, Z

    2001-01-01

    ... images is performed Then triangular, quadratic meshes are formed for the interfaces of the tissues, Thus, realistic meshes, representing scalp, skull, CSF, brain and eye tissues, are formed, At least...

  20. Computational investigation of nonlinear microwave tomography on anatomically realistic breast phantoms

    DEFF Research Database (Denmark)

    Jensen, P. D.; Rubæk, Tonny; Mohr, J. J.

    2013-01-01

    The performance of a nonlinear microwave tomography algorithm is tested using simulated data from anatomically realistic breast phantoms. These tests include several different anatomically correct breast models from the University of Wisconsin-Madison repository with and without tumors inserted....

  1. Reproduction of Realistic Background Noise for Testing Telecommunications Devices

    DEFF Research Database (Denmark)

    Gil Corrales, Juan David; Song, Wookeun; MacDonald, Ewen

    2015-01-01

    A method for reproduction of sound, based on crosstalk cancellation using inverse filters, was implemented in the context of testing telecommunications devices. The effect of the regularization parameter, number of loudspeakers, type of background noise, and a technique to attenuate audible......, the performance was equally good when using eight or four loudspeakers, and the reproduction method was shown to be robust for different program materials. The proposed technique to reduce audible artifacts increased the perceived similarity....

  2. Developing Scene Understanding Neural Software for Realistic Autonomous Outdoor Missions

    Science.gov (United States)

    2017-09-01

    computer using a single graphics processing unit (GPU). To the best of our knowledge, an implementation of the open-source Python -based AlexNet CNN on...1. Introduction Neurons in the brain enable us to understand scenes by assessing the spatial, temporal, and feature relations of objects in the...effort to use computer neural networks to augment human neural intelligence to improve our scene understanding (Krizhevsky et al. 2012; Zhou et al

  3. Fast, Automated, Photo realistic, 3D Modeling of Building Interiors

    Science.gov (United States)

    2016-09-12

    runtime of the proposed EKF estimator is only linear in the acquisition time. Secondly, by including in our EKF estimator the laser scanner’s spatial...that the runtime of the proposed EKF estimator is only linear in the acquisition time. Secondly, by including in our EKF estimator the laser...34Berkeley Based Startups Win Big at ARPA-E" Indoor Reality was among three winners of a start-up pitch competition to a panel of four investors

  4. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    OpenAIRE

    Effandi Zakaria; Muzakkir Syamaun

    2017-01-01

    This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30)$ namely, the Realistic Mathematics Approach group ...

  5. More-Realistic Digital Modeling of a Human Body

    Science.gov (United States)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  6. A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity - evaluation with auditory habituation.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available In this work we propose a biologically realistic local cortical circuit model (LCCM, based on neural masses, that incorporates important aspects of the functional organization of the brain that have not been covered by previous models: (1 activity dependent plasticity of excitatory synaptic couplings via depleting and recycling of neurotransmitters and (2 realistic inter-laminar dynamics via laminar-specific distribution of and connections between neural populations. The potential of the LCCM was demonstrated by accounting for the process of auditory habituation. The model parameters were specified using Bayesian inference. It was found that: (1 besides the major serial excitatory information pathway (layer 4 to layer 2/3 to layer 5/6, there exists a parallel "short-cut" pathway (layer 4 to layer 5/6, (2 the excitatory signal flow from the pyramidal cells to the inhibitory interneurons seems to be more intra-laminar while, in contrast, the inhibitory signal flow from inhibitory interneurons to the pyramidal cells seems to be both intra- and inter-laminar, and (3 the habituation rates of the connections are unsymmetrical: forward connections (from layer 4 to layer 2/3 are more strongly habituated than backward connections (from Layer 5/6 to layer 4. Our evaluation demonstrates that the novel features of the LCCM are of crucial importance for mechanistic explanations of brain function. The incorporation of these features into a mass model makes them applicable to modeling based on macroscopic data (like EEG or MEG, which are usually available in human experiments. Our LCCM is therefore a valuable building block for future realistic models of human cognitive function.

  7. Applying a realistic evaluation model to occupational safety interventions

    DEFF Research Database (Denmark)

    Pedersen, Louise Møller

    2018-01-01

    Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal characte......Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal...... and qualitative methods. This revised model has, however, not been applied in a real life context. Method: The model is applied in a controlled, four-component, integrated behaviour-based and safety culture-based safety intervention study (2008-2010) in a medium-sized wood manufacturing company. The interventions...... involve the company’s safety committee, safety manager, safety groups and 130 workers. Results: The model provides a framework for more valid evidence of what works within injury prevention. Affective commitment and role behaviour among key actors are identified as crucial for the implementation...

  8. Improvement of Modeling Scheme of the Safety Injection Tank with Fluidic Device for Realistic LBLOCA Calculation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Cheong, Aeju; Woo, Sweng Woong

    2014-01-01

    Confirmation of the performance of the SIT with FD should be based on thermal-hydraulic analysis of LBLOCA and an adequate and physical model simulating the SIT/FD should be used in the LBLOCA calculation. To develop such a physical model on SIT/FD, simulation of the major phenomena including flow distribution of by standpipe and FD should be justified by full scale experiment and/or plant preoperational testing. Author's previous study indicated that an approximation of SIT/FD phenomena could be obtained by a typical system transient code, MARS-KS, and using 'accumulator' component model, however, that additional improvement on modeling scheme of the FD and standpipe flow paths was needed for a reasonable prediction. One problem was a depressurizing behavior after switchover to low flow injection phase. Also a potential to release of nitrogen gas from the SIT to the downstream pipe and then reactor core through flow paths of FD and standpipe has been concerned. The intrusion of noncondensible gas may have an effect on LBLOCA thermal response. Therefore, a more reliable model on SIT/FD has been requested to get a more accurate prediction and a confidence of the evaluation of LBLOCA. The present paper is to discuss an improvement of modeling scheme from the previous study. Compared to the existing modeling, effect of the present modeling scheme on LBLOCA cladding thermal response is discussed. The present study discussed the modeling scheme of SIT with FD for a realistic simulation of LBLOCA of APR1400. Currently, the SIT blowdown test can be best simulated by the modeling scheme using 'pipe' component with dynamic area reduction. The LBLOCA analysis adopting the modeling scheme showed the PCT increase of 23K when compared to the case of 'accumulator' component model, which was due to the flow rate decrease at transition phase low flow injection and intrusion of nitrogen gas to the core. Accordingly, the effect of SIT/FD modeling

  9. Protocol: a realist review of user fee exemption policies for health services in Africa.

    Science.gov (United States)

    Robert, Emilie; Ridde, Valéry; Marchal, Bruno; Fournier, Pierre

    2012-01-01

    Background Four years prior to the Millenium Development Goals (MDGs) deadline, low- and middle-income countries and international stakeholders are looking for evidence-based policies to improve access to healthcare for the most vulnerable populations. User fee exemption policies are one of the potential solutions. However, the evidence is disparate, and systematic reviews have failed to provide valuable lessons. The authors propose to produce an innovative synthesis of the available evidence on user fee exemption policies in Africa to feed the policy-making process. Methods The authors will carry out a realist review to answer the following research question: what are the outcomes of user fee exemption policies implemented in Africa? why do they produce such outcomes? and what contextual elements come into play? This type of review aims to understand how contextual elements influence the production of outcomes through the activation of specific mechanisms, in the form of context-mechanism-outcome configurations. The review will be conducted in five steps: (1) identifying with key stakeholders the mechanisms underlying user fee exemption policies to develop the analytical framework, (2) searching for and selecting primary data, (3) assessing the quality of evidence using the Mixed-Method Appraisal Tool, (4) extracting the data using the analytical framework and (5) synthesising the data in the form of context-mechanism-outcomes configurations. The output will be a middle-range theory specifying how user fee exemption policies work, for what populations and under what circumstances. Ethics and dissemination The two main target audiences are researchers who are looking for examples to implement a realist review, and policy-makers and international stakeholders looking for lessons learnt on user fee exemption. For the latter, a knowledge-sharing strategy involving local scientific and policy networks will be implemented. The study has been approved by the ethics

  10. Use of a realistic breathing lung phantom to evaluate dose delivery errors

    International Nuclear Information System (INIS)

    Court, Laurence E.; Seco, Joao; Lu Xingqi; Ebe, Kazuyu; Mayo, Charles; Ionascu, Dan; Winey, Brian; Giakoumakis, Nikos; Aristophanous, Michalis; Berbeco, Ross; Rottman, Joerg; Bogdanov, Madeleine; Schofield, Deborah; Lingos, Tania

    2010-01-01

    Purpose: To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. Methods: A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated arc therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. Results: After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU

  11. Use of a realistic breathing lung phantom to evaluate dose delivery errors

    Energy Technology Data Exchange (ETDEWEB)

    Court, Laurence E.; Seco, Joao; Lu Xingqi; Ebe, Kazuyu; Mayo, Charles; Ionascu, Dan; Winey, Brian; Giakoumakis, Nikos; Aristophanous, Michalis; Berbeco, Ross; Rottman, Joerg; Bogdanov, Madeleine; Schofield, Deborah; Lingos, Tania [Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States); Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 (United States); Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02130 (United States); JA Jouetsu Hospital, Jouetsu 355-0063 (Japan); University of Massachusetts Memorial Medical Center, Worcester, Massachusetts 01655 (United States); William Beaumont Hospital, Royal Oak, Michigan 48073 (United States); Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States) and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 (United States); Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2010-11-15

    Purpose: To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. Methods: A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated arc therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. Results: After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU

  12. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Science.gov (United States)

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  13. Implications of introducing realistic fire response traits in a Dynamic Global Vegetation Model

    Science.gov (United States)

    Kelley, D.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    the next growing season, while regenerating from seed at 10% the rate of non-resprouters. Tests of LPX-Mv1 for Australia - a continent with a wide range of fire-adapted ecosystems - show that it produces a 33% improvement in the simulation of vegetation composition compared to the previous version of the model, with more realistic vegetation transitions from forests to woodland/savanna. It also produces a 19% improvement in the simulation of burnt area compared to the original model. Resprouting PFTs dominate tropical and temperate areas where the climate is semi-humid but are not common in very dry or very wet areas. Comparison with site-based observations of the abundance of resprouters indicate this is realistic. Ecosystems dominated by resprouters in the simulations recover to pre-fire levels of biomass within 5-7 years, much faster than ecosystems dominated by non-resprouters; again this is confirmed by our analyses of the observations. Simulations of the response to projected future climate change show that the incorporation of adaptive bark thickness and of resprouting has a significant effect on terrestrial carbon stocks in fire-affected areas.

  14. Towards more realistic assessment of reactor accident consequences

    International Nuclear Information System (INIS)

    Tveten, U.

    1985-07-01

    The purpose of the Nordic project described in the report has been to improve the data base used in accident consequence assessments, and also to improve the assessment models in use in the Nordic countries. The following data related questions have been dealt with: Terrestrial transfer factors, the freshwater pathways, comparison of dynamic and static calculation models for fish, and the shielding effect of buildings. The work on terrestrial transfer factors has resulted in the generation of a Nordic fallout data bank. The following experimental investigations have been performed: Natural decontamination of roofs under summer and winter conditions, deposition in urban areas, and the filter effect of buildings. Various aspects of mitigating actions have also been examined

  15. Feasibility of BCI Control in a Realistic Smart Home Environment

    Science.gov (United States)

    Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand

    2016-01-01

    Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the “Domus”1 smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%). PMID:27616986

  16. Feasibility of BCI Control in a Realistic Smart Home Environment

    Directory of Open Access Journals (Sweden)

    Nataliya Kosmyna

    2016-08-01

    Full Text Available Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI and apply it in the Domus smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time, usability and feasibility (USE questionnaire on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%.

  17. The Influence of Realistic Reynolds Numbers on Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2012-01-01

    The slat noise from the 30P/30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. Varying the Reynolds number from 1.71 to 12.0 million based on the stowed chord resulted in slight changes in the radiated noise. Tonal features in the spectra were robust and evident for all Reynolds numbers and even when a spanwise flow was imposed. The general trends observed in near-field fluctuations were also similar for all the different Reynolds numbers. Experiments on simplified, subscale high-lift systems have exhibited noticeable dependencies on the Reynolds number and tripping, although primarily for tonal features rather than the broadband portion of the spectra. Either the 30P/30N model behaves differently, or the computational model is unable to capture these effects. Hence, the results underscore the need for more detailed measurements of the slat cove flow.

  18. Stereoscopic augmented reality with pseudo-realistic global illumination effects

    Science.gov (United States)

    de Sorbier, Francois; Saito, Hideo

    2014-03-01

    Recently, augmented reality has become very popular and has appeared in our daily life with gaming, guiding systems or mobile phone applications. However, inserting object in such a way their appearance seems natural is still an issue, especially in an unknown environment. This paper presents a framework that demonstrates the capabilities of Kinect for convincing augmented reality in an unknown environment. Rather than pre-computing a reconstruction of the scene like proposed by most of the previous method, we propose a dynamic capture of the scene that allows adapting to live changes of the environment. Our approach, based on the update of an environment map, can also detect the position of the light sources. Combining information from the environment map, the light sources and the camera tracking, we can display virtual objects using stereoscopic devices with global illumination effects such as diffuse and mirror reflections, refractions and shadows in real time.

  19. Feasibility of BCI Control in a Realistic Smart Home Environment.

    Science.gov (United States)

    Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand

    2016-01-01

    Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the "Domus" smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%).

  20. Realistic Measurement of Student Attendance in LMS Using Biometrics

    Directory of Open Access Journals (Sweden)

    Elisardo Gonzalez-Agulla

    2010-10-01

    Full Text Available In this paper we propose a solution to obtain useful and reliable student session logs in a Learning Management System (LMS combining current logs with biometrics-based logs that show the student behaviour during the whole learning session. The aims of our solution are to guarantee that the online student is who he/she claims to be, and also to know exactly how much time he/she spends in front of the computer reading each LMS content. Even when the proposed solution does not completely avoid cheating, the use of biometric data during authentication and face tracking provides additional help to validate student performance during learning sessions. In this way it is possible to improve security for specific contents, to gain feedback of the student effort and to check the actual time spent in learning.

  1. A Realistic $U(2)$ Model of Flavor arXiv

    CERN Document Server

    Linster, Matthias

    We propose a simple $U(2)$ model of flavor compatible with an $SU(5)$ GUT structure. All hierarchies in fermion masses and mixings arise from powers of two small parameters that control the $U(2)$ breaking. In contrast to previous $U(2)$ models this setup can be realized without supersymmetry and provides an excellent fit to all SM flavor observables including neutrinos. We also consider a variant of this model based on a $D_6 \\times U(1)_F$ flavor symmetry, which closely resembles the $U(2)$ structure, but allows for Majorana neutrino masses from the Weinberg operator. Remarkably, in this case one naturally obtains large mixing in the lepton sector from small mixing in the quark sector. The model also offers a natural option for addressing the Strong CP Problem and Dark Matter by identifying the Goldstone boson of the $U(1)_F$ factor as the QCD axion.

  2. Educational Borrowing and Mathematics Curriculum: Realistic Mathematics Education in the Dutch and Indonesian Primary Curriculum

    Directory of Open Access Journals (Sweden)

    Shintia Revina

    2018-02-01

    Full Text Available Since the late 1990s, Indonesian mathematics educators have considered Realistic Mathematics Education (RME, the Dutch approach to mathematics instruction, to be the basis for educational reform. In the National curriculum development, RME has, therefore, been reviewed as among the theoretical references to the curriculum goals and content. In the present study, an analysis of the consistency between RME and the curriculum descriptors and contents in Indonesia is presented. This is supplemented with some comparisons to that in the Netherlands. Findings in this study revealed that while most of RME principles are reflected in the Indonesian curriculum, the descriptions were often very general and less explicit compared to the Dutch curriculum. They were also limited by the content-based approach as well as by the centralized decision making process of the contents to be taught which have been pre-determined at the national level. This study suggests future research to see how the curriculum may influence teachers’ enactment of RME at classroom level.

  3. Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment

    Science.gov (United States)

    Long, GuiLu; Qin, Wei; Yang, Zhe; Li, Jun-Lin

    2018-03-01

    In this paper, a realistic interpretation (REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description. Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer (MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.

  4. Calculation of electrical potentials on the surface of a realistic head model by finite differences

    International Nuclear Information System (INIS)

    Lemieux, L.; McBride, A.; Hand, J.W.

    1996-01-01

    We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)

  5. Generic Simulator Environment for Realistic Simulation - Autonomous Entity Proof and Emotion in Decision Making

    Directory of Open Access Journals (Sweden)

    Mickaël Camus

    2004-10-01

    Full Text Available Simulation is usually used as an evaluation and testing system. Many sectors are concerned such as EUROPEAN SPACE AGENCY or the EUROPEAN DEFENCE. It is important to make sure that the project is error-free in order to continue it. The difficulty is to develop a realistic environment for the simulation and the execution of a scenario. This paper presents PALOMA, a Generic Simulator Environment. This project is based essantially on the Chaos Theory and Complex Systems to create and direct an environment for a simulation. An important point is the generic aspect. PALOMA will be able to create an environment for different sectors (Aero-space, Biology, Mathematic, .... PALOMA includes six components : the Simulation Engine, the Direction Module, the Environment Generator, the Natural Behavior Restriction, the Communication API and the User API. Three languages are used to develop this simulator. SCHEME for the Direction language, C/C++ for the development of modules and OZ/MOZART for the heart of PALOMA.

  6. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    Energy Technology Data Exchange (ETDEWEB)

    Togashi, H., E-mail: hajime.togashi@riken.jp [Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakazato, K. [Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Takehara, Y.; Yamamuro, S.; Suzuki, H. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan); Takano, M. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2017-05-15

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas–Fermi calculation is performed to obtain the minimized free energy of a Wigner–Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas–Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid–gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  7. Feasibility study for a realistic training dedicated to radiological protection improvement

    International Nuclear Information System (INIS)

    Courageot, E.; Kutschera, R.; Gaillard-Lecanu, E.; Jahan, S.; Riedel, A.; Therache, B.

    2013-01-01

    An evident purpose of the radiological protection training is to use suitable protective equipment and to behave correctly if unexpected working conditions happen. A major difficulty of this training consist in having the most realistic reading from the monitoring devices for a given exposure situation, but without using real radioactive sources. A new approach is developed at EDF R/D for radiological protection training. This approach combines different technologies, in an environment representative of the workplace but geographically separated from the nuclear power plant: a training area representative of a workplace, a Man Machine Interface used by the trainer to define the source configuration and the training scenario, a geo-localization system, fictive radiation monitoring devices and a particle transport code able to calculate in real time the dose map due to the virtual sources. In a first approach, our real-time particles transport code, called Moderato, used only an attenuation low in straight line. To improve the realism further, we would like to switch a code based on the Monte Carlo transport of particles like Geant 4 or MCNPX instead of Moderato. The aim of our study is the evaluation of the code in our application, in particular, the possibility to keep a real time response of our architecture. (authors)

  8. Evaluation of digital image correlation techniques using realistic ground truth speckle images

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2010-01-01

    Digital image correlation (DIC) has been acknowledged and widely used in recent years in the field of experimental mechanics as a contactless method for determining full field displacements and strains. Even though several sub-pixel motion estimation algorithms have been proposed in the literature, little is known about their accuracy and limitations in reproducing complex underlying motion fields occurring in real mechanical tests. This paper presents a new method for evaluating sub-pixel motion estimation algorithms using ground truth speckle images that are realistically warped using artificial motion fields that were obtained following two distinct approaches: in the first, the horizontal and vertical displacement fields are created according to theoretical formulas for the given type of experiment while the second approach constructs the displacements through radial basis function interpolation starting from real DIC results. The method is applied in the evaluation of five DIC algorithms with results indicating that the gradient-based DIC methods generally have a quality advantage when using small sized blocks and are a better choice for calculating very small displacements and strains. The Newton–Raphson is the overall best performing method with a notable quality advantage when large block sizes are employed and in experiments where large strain fields are of interest

  9. Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hale, Elaine T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgindy, Tarek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rossol, Michael N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vergara, Claudio [MIT; Domingo, Carlos Mateo [IIT Comillas; Postigo, Fernando [IIT Comillas; de Cuadra, Fernando [IIT Comillas; Gomez, Tomas [IIT Comillas; Duenas, Pablo [MIT; Luke, Max [MIT; Li, Vivian [MIT; Vinoth, Mohan [GE Grid Solutions; Kadankodu, Sree [GE Grid Solutions

    2017-08-09

    The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present the goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.

  10. Realistic absorption coefficient of each individual film in a multilayer architecture

    Science.gov (United States)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2015-02-01

    A spectrophotometric strategy, termed multilayer-method (ML-method), is presented and discussed to realistically calculate the absorption coefficient of each individual layer embedded in multilayer architectures without reverse engineering, numerical refinements and assumptions about the layer homogeneity and thickness. The strategy extends in a non-straightforward way a consolidated route, already published by the authors and here termed basic-method, able to accurately characterize an absorbing film covering transparent substrates. The ML-method inherently accounts for non-measurable contribution of the interfaces (including multiple reflections), describes the specific film structure as determined by the multilayer architecture and used deposition approach and parameters, exploits simple mathematics, and has wide range of applicability (high-to-weak absorption regions, thick-to-ultrathin films). Reliability tests are performed on films and multilayers based on a well-known material (indium tin oxide) by deliberately changing the film structural quality through doping, thickness-tuning and underlying supporting-film. Results are found consistent with information obtained by standard (optical and structural) analysis, the basic-method and band gap values reported in the literature. The discussed example-applications demonstrate the ability of the ML-method to overcome the drawbacks commonly limiting an accurate description of multilayer architectures.

  11. Anatomy, technology, art, and culture: toward a realistic perspective of the brain.

    Science.gov (United States)

    Cavalcanti, Daniel D; Feindel, William; Goodrich, James T; Dagi, T Forcht; Prestigiacomo, Charles J; Preul, Mark C

    2009-09-01

    In the 15th century, brain illustration began to change from a schematic system that involved scant objective rendering of the brain, to accurate depictions based on anatomical dissections that demanded significant artistic talent. Notable examples of this innovation are the drawings of Leonardo da Vinci (1498-1504), Andreas Vesalius' association with the bottega of Titian to produce the drawings of Vesalius' De humani corporis fabrica (1543), and Christopher Wren's illustrations for Thomas Willis' Cerebri Anatome (1664). These works appeared during the Renaissance and Age of Enlightenment, when advances in brain imaging, or really brain rendering, reflected not only the abilities and dedications of the artists, but also the influences of important cultural and scientific factors. Anatomy and human dissection became popular social phenomena as well as scholarly pursuits, linked with the world of the fine arts. The working philosophy of these artists involved active participation in both anatomical study and illustration, and the belief that their discoveries of the natural world could best be communicated by rendering them in objective form (that is, with realistic perspective). From their studies emerged the beginning of contemporary brain imaging. In this article, the authors examine how the brain began to be imaged in realism within a cultural and scientific milieu that witnessed the emergence of anatomical dissection, the geometry of linear perspective, and the closer confluence of art and science.

  12. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  13. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    International Nuclear Information System (INIS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-01-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C 4 H 4 N 2 ) in H 2 O-rich ice mixtures that contain NH 3 , CH 3 OH, or CH 4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H 2 O, CH 3 OH, and NH 3 , with or without CH 4 , to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  14. Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study

    Directory of Open Access Journals (Sweden)

    Niels Trusbak Haumann

    2018-05-01

    Full Text Available Music information retrieval (MIR methods offer interesting possibilities for automatically identifying time points in music recordings that relate to specific brain responses. However, how the acoustical features and the novelty of the music structure affect the brain response is not yet clear. In the present study, we tested a new method for automatically identifying time points of brain responses based on MIR analysis. We utilized an existing database including brain recordings of 48 healthy listeners measured with electroencephalography (EEG and magnetoencephalography (MEG. While we succeeded in capturing brain responses related to acoustical changes in the modern tango piece Adios Nonino, we obtained less reliable brain responses with a metal rock piece and a modern symphony orchestra musical composition. However, brain responses might also relate to the novelty of the music structure. Hence, we added a manual musicological analysis of novelty in the musical structure to the computational acoustic analysis, obtaining strong brain responses even to the rock and modern pieces. Although no standardized method yet exists, these preliminary results suggest that analysis of novelty in music is an important aid to MIR analysis for investigating brain responses to realistic music.

  15. Quarkonium at finite temperature: towards realistic phenomenology from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Burnier, Yannis [Institute of Theoretical Physics, EPFL,CH-1015 Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld,D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University,Philosophenweg 16, 69120 Heidelberg (Germany)

    2015-12-16

    We present the finite temperature spectra of both bottomonium and charmonium, obtained from a consistent lattice QCD based potential picture. Starting point is the complex in-medium potential extracted on full QCD lattices with dynamical u,d and s quarks, generated by the HotQCD collaboration. Using the generalized Gauss law approach, vetted in a previous study on quenched QCD, we fit Re[V] with a single temperature dependent parameter m{sub D}, the Debye screening mass, and confirm the up to now tentative values of Im[V]. The obtained analytic expression for the complex potential allows us to compute quarkonium spectral functions by solving an appropriate Schrödinger equation. These spectra exhibit thermal widths, which are free from the resolution artifacts that plague direct reconstructions from Euclidean correlators using Bayesian methods. In the present adiabatic setting, we find clear evidence for sequential melting and derive melting temperatures for the different bound states. Quarkonium is gradually weakened by both screening (Re[V]) and scattering (Im[V]) effects that in combination lead to a shift of their in-medium spectral features to smaller frequencies, contrary to the mass gain of elementary particles at finite temperature.

  16. Ultra-realistic imaging: a new beginning for display holography

    Science.gov (United States)

    Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David

    2014-02-01

    Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.

  17. Realistic Approach of the Relations of Uncertainty of Heisenberg

    Directory of Open Access Journals (Sweden)

    Paul E. Sterian

    2013-01-01

    Full Text Available Due to the requirements of the principle of causality in the theory of relativity, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in the conjugate Fourier spaces. Instead of admitting that a particle’s position and its conjugate momentum cannot be accurately measured at the same time, we consider the only probabilities which can be determined when working at subatomic level to be valid. On the other hand, based on Schwinger's action principle and using the quadridimensional form of the unitary transformation generator function of the quantum operators in the paper, the general form of the evolution equation for these operators is established. In the nonrelativistic case one obtains the Heisenberg's type evolution equations which can be particularized to derive Heisenberg's uncertainty relations. The analysis of the uncertainty relations as implicit evolution equations allows us to put into evidence the intrinsic nature of the correlation expressed by these equations in straight relations with the measuring process. The independence of the quantisation postulate from the causal evolution postulate of quantum mechanics is also put into discussion.

  18. Realistic decision-making processes in a vaccination game

    Science.gov (United States)

    Iwamura, Yoshiro; Tanimoto, Jun

    2018-03-01

    Previous studies of vaccination games have nearly always assumed a pairwise comparison between a focal and neighboring player for the strategy updating rule, which comes from numerous compiled studies on spatial versions of 2-player and 2-strategy (2 × 2) games such as the spatial prisoner's dilemma (SPD). We propose, in this study, new update rules because the human decision-making process of whether to commit to a vaccination is obviously influenced by a "sense of crisis" or "fear" urging him/her toward vaccination, otherwise they will likely be infected. The rule assumes that an agent evaluates whether getting a vaccination or trying to free ride should be attempted based on observations of whether neighboring non-vaccinators were able to successfully free ride during the previous time-step. Compared to the conventional updating rule (standard pairwise comparison assuming a Fermi function), the new rules generally realize higher vaccination coverage and smaller final epidemic sizes. One rule in particular shows very good performance with significantly smaller epidemic sizes despite comparable levels of vaccination coverage. This is because the specific update rule helps vaccinators spread widely in the domain, which effectively hampers the spread of epidemics.

  19. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  20. A realistic approach to nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Knapp, R.W.; Pedersen, T.J.

    1993-01-01

    The future global role of nuclear power is determined by a puzzling set of considerations. Like any other substantial contributor to the world's energy needs, nuclear power must be generated at an acceptable cost and with a negligible effect on the environment. Furthermore, it must achieve and maintain a socially reasonable level of public acceptance, which in turn is not necessarily governed by rational assessments of the true safety and environmental impact of nuclear power plants. ABB's approach to this situation can be best characterized as a open-quotes cautious evolutionclose quotes-step by step improvements rather dramatic design changes. For the next decade(s), ABB will therefore largely base its offerings to the market on open-quotes evolutionsclose quotes of its successful versions of the two reactor types that represent the overwhelming portion of installed generating capacity world-wide, namely with BWR and the PWR. In addition to these, and owing to the extensive lead time that relate to the development, verification and licensing of distinctly new reactor concepts, ABB continues to develop designs of the open-quotes passiveclose quotes type in preparation of future generations. Accordingly, the paper will elaborate on ABB's current reactor designs-the BWR 90 and the System 80+ TM PWR plants. Both can be designed, licensed and constructed in accordance with any safety regulations now in force or envisaged in the Western world. Emphasis has been, and will be, placed on features that aim at ensuring predictability with regard to licensing and, hence, construction time and corresponding electricity costs. An overview of the status of ABB's open-quotes passiveclose quotes PIUS system will also be presented

  1. A realistic approach to nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Knapp, R.W.; Pedersen, T.J.

    1993-01-01

    The future global role of nuclear power is determined by a puzzling set of considerations. Like any other substantial contributor to the world's energy needs, nuclear power must be generated at an acceptable cost and with a negligible effect on the environment. Furthermore, it must achieve and maintain a socially reasonable level of public acceptance, which in turn is not necessarily governed by rational assessments of the true safety and environmental impact of nuclear power plants. ABB's approach to this situation can be best characterized as a open-quotes cautious evolutionclose quotes-step by step improvements rather dramatic design changes. For the next decade(s), ABB will therefore largely base its offerings to the market on open-quotes evolutionclose quotesof its successful versions of the two reactor types that represent the overwhelming portion of installed generating capacity world-wide, namely the BWR and PWR. In addition to these, and owing to the extensive lead time that relate to the development, verification and licensing of distinctly new reactor concepts, ABB continues to develop designs of the open-quotes passiveclose quotes type in preparation for future generations. Accordingly, the paper will elaborate on ABB's current reactor designs the BWR 90 and the System 80*TM PWR plants. Both can be designed, licensed and constructed in accordance with any safety regulations now in force or envisaged in the Western world. Emphasis has been, and will be, placed on features that aim at ensuring predictability with regard to licensing and, hence, construction time and corresponding electricity generation costs. An overview of the status of ABB's open-quotes passiveclose quotes PIUS system will also be presented

  2. Dose related risk and effect assessment model (DREAM) -- A more realistic approach to risk assessment of offshore discharges

    International Nuclear Information System (INIS)

    Johnsen, S.; Furuholt, E.

    1995-01-01

    Risk assessment of discharges from offshore oil and gas production to the marine environment features determination of potential environmental concentration (PEC) levels and no observed effect concentration (NOEC) levels. The PEC values are normally based on dilution of chemical components in the actual discharge source in the recipient, while the NOEC values are determined by applying a safety factor to acute toxic effects from laboratory tests. The DREAM concept focuses on realistic exposure doses as function of contact time and dilution, rather than fixed exposure concentrations of chemicals in long time exposure regimes. In its present state, the DREAM model is based on a number of assumptions with respect to the link between real life exposure doses and effects observed in laboratory tests. A research project has recently been initiated to develop the concept further, with special focus on chronic effects of different chemical compounds on the marine ecosystem. One of the questions that will be addressed is the link between exposure time, dose, concentration and effect. Validation of the safety factors applied for transforming acute toxic data into NOEC values will also be included. The DREAM model has been used by Statoil for risk assessment of discharges from new and existing offshore oil and gas production fields, and has been found to give a much more realistic results than conventional risk assessment tools. The presentation outlines the background for the DREAM approach, describes the model in its present state, discusses further developments and applications, and shows a number of examples on the performance of DREAM

  3. Evaluating the implementation of a national clinical programme for diabetes to standardise and improve services: a realist evaluation protocol.

    Science.gov (United States)

    McHugh, S; Tracey, M L; Riordan, F; O'Neill, K; Mays, N; Kearney, P M

    2016-07-28

    Over the last three decades in response to the growing burden of diabetes, countries worldwide have developed national and regional multifaceted programmes to improve the monitoring and management of diabetes and to enhance the coordination of care within and across settings. In Ireland in 2010, against a backdrop of limited dedicated strategic planning and engrained variation in the type and level of diabetes care, a national programme was established to standardise and improve care for people with diabetes in Ireland, known as the National Diabetes Programme (NDP). The NDP comprises a range of organisational and service delivery changes to support evidence-based practices and policies. This realist evaluation protocol sets out the approach that will be used to identify and explain which aspects of the programme are working, for whom and in what circumstances to produce the outcomes intended. This mixed method realist evaluation will develop theories about the relationship between the context, mechanisms and outcomes of the diabetes programme. In stage 1, to identify the official programme theories, documentary analysis and qualitative interviews were conducted with national stakeholders involved in the design, development and management of the programme. In stage 2, as part of a multiple case study design with one case per administrative region in the health system, qualitative interviews are being conducted with frontline staff and service users to explore their responses to, and reasoning about, the programme's resources (mechanisms). Finally, administrative data will be used to examine intermediate implementation outcomes such as service uptake, acceptability, and fidelity to models of care. This evaluation is using the principles of realist evaluation to examine the implementation of a national programme to standardise and improve services for people with diabetes in Ireland. The concurrence of implementation and evaluation has enabled us to produce formative

  4. Comparison of student's learning achievement through realistic mathematics education (RME) approach and problem solving approach on grade VII

    Science.gov (United States)

    Ilyas, Muhammad; Salwah

    2017-02-01

    The type of this research was experiment. The purpose of this study was to determine the difference and the quality of student's learning achievement between students who obtained learning through Realistic Mathematics Education (RME) approach and students who obtained learning through problem solving approach. This study was a quasi-experimental research with non-equivalent experiment group design. The population of this study was all students of grade VII in one of junior high school in Palopo, in the second semester of academic year 2015/2016. Two classes were selected purposively as sample of research that was: year VII-5 as many as 28 students were selected as experiment group I and VII-6 as many as 23 students were selected as experiment group II. Treatment that used in the experiment group I was learning by RME Approach, whereas in the experiment group II by problem solving approach. Technique of data collection in this study gave pretest and posttest to students. The analysis used in this research was an analysis of descriptive statistics and analysis of inferential statistics using t-test. Based on the analysis of descriptive statistics, it can be concluded that the average score of students' mathematics learning after taught using problem solving approach was similar to the average results of students' mathematics learning after taught using realistic mathematics education (RME) approach, which are both at the high category. In addition, It can also be concluded that; (1) there was no difference in the results of students' mathematics learning taught using realistic mathematics education (RME) approach and students who taught using problem solving approach, (2) quality of learning achievement of students who received RME approach and problem solving approach learning was same, which was at the high category.

  5. DC electrophoresis and viscosity of realistic salt-free concentrated suspensions: non-equilibrium dissociation-association processes.

    Science.gov (United States)

    Ruiz-Reina, Emilio; Carrique, Félix; Lechuga, Luis

    2014-03-01

    Most of the suspensions usually found in industrial applications are concentrated, aqueous and in contact with the atmospheric CO2. The case of suspensions with a high concentration of added salt is relatively well understood and has been considered in many studies. In this work we are concerned with the case of concentrated suspensions that have no ions different than: (1) those stemming from the charged colloidal particles (the added counterions, that counterbalance their surface charge); (2) the H(+) and OH(-) ions from water dissociation, and (3) the ions generated by the atmospheric CO2 contamination. We call this kind of systems "realistic salt-free suspensions". We show some theoretical results about the electrophoretic mobility of a colloidal particle and the electroviscous effect of realistic salt-free concentrated suspensions. The theoretical framework is based on a cell model that accounts for particle-particle interactions in concentrated suspensions, which has been successfully applied to many different phenomena in concentrated suspensions. On the other hand, the water dissociation and CO2 contamination can be described following two different levels of approximation: (a) by local equilibrium mass-action equations, because it is supposed that the reactions are so fast that chemical equilibrium is attained everywhere in the suspension, or (b) by non-equilibrium dissociation-association kinetic equations, because it is considered that some reactions are not rapid enough to ensure local chemical equilibrium. Both approaches give rise to different results in the range from dilute to semidilute suspensions, causing possible discrepancies when comparing standard theories and experiments concerning transport properties of realistic salt-free suspensions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A Low-cost System for Generating Near-realistic Virtual Actors

    Science.gov (United States)

    Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.

    2015-06-01

    Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.

  7. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    Science.gov (United States)

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  8. Beyond the realist turn: a socio-material analysis of heart failure self-care.

    Science.gov (United States)

    McDougall, Allan; Kinsella, Elizabeth Anne; Goldszmidt, Mark; Harkness, Karen; Strachan, Patricia; Lingard, Lorelei

    2018-01-01

    For patients living with chronic illnesses, self-care has been linked with positive outcomes such as decreased hospitalisation, longer lifespan, and improved quality of life. However, despite calls for more and better self-care interventions, behaviour change trials have repeatedly fallen short on demonstrating effectiveness. The literature on heart failure (HF) stands as a case in point, and a growing body of HF studies advocate realist approaches to self-care research and policymaking. We label this trend the 'realist turn' in HF self-care. Realist evaluation and realist interventions emphasise that the relationship between self-care interventions and positive health outcomes is not fixed, but contingent on social context. This paper argues socio-materiality offers a productive framework to expand on the idea of social context in realist accounts of HF self-care. This study draws on 10 interviews as well as researcher reflections from a larger study exploring health care teams for patients with advanced HF. Leveraging insights from actor-network theory (ANT), this study provides two rich narratives about the contextual factors that influence HF self-care. These descriptions portray not self-care contexts but self-care assemblages, which we discuss in light of socio-materiality. © 2018 Foundation for the Sociology of Health & Illness.

  9. Performance assessment of a micro-cogeneration system under realistic operating conditions

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio

    2013-01-01

    Highlights: • Performances of a micro-cogeneration system have been experimentally evaluated. • Cogenerator performances have been compared with those of a traditional system. • Measured data have been analyzed from both energy and exergy points of view. - Abstract: The European Parliament stated that high-efficiency cogeneration is a Community priority given the potential benefits of cogeneration with regard to saving primary energy and reducing emissions. According to this position, the performance of many micro-cogeneration systems have been assessed from an energy and environmental point of view. However, in the most part of cases, the assessments have been performed by using technical data from manufacturers and/or experimental results measured during steady-state operation, without considering the inefficiencies related to the transient periods; in addition, few works have been devoted to analyze the system operation from an exergy-based point of view. In this paper the electric load-following operation of an internal combustion engine based micro-cogeneration unit with 6.0 kW as nominal electric output has been experimentally investigated in electric load-following operation during a 24 h dynamic test with the application of a realistic daily load profile representing the Italian domestic non-HVAC electric demand for a multi-family house of five dwellings. The measured data have been compared with those that would be associated with servicing the building with electricity from the central electric grid and heat from a natural gas fired boiler from an energy, exergy and environmental points of view

  10. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Science.gov (United States)

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  11. A realist evaluation of the management of a well-performing regional hospital in Ghana.

    Science.gov (United States)

    Marchal, Bruno; Dedzo, McDamien; Kegels, Guy

    2010-01-25

    Realist evaluation offers an interesting approach to evaluation of interventions in complex settings, but has been little applied in health care. We report on a realist case study of a well performing hospital in Ghana and show how such a realist evaluation design can help to overcome the limited external validity of a traditional case study. We developed a realist evaluation framework for hypothesis formulation, data collection, data analysis and synthesis of the findings. Focusing on the role of human resource management in hospital performance, we formulated our hypothesis around the high commitment management concept. Mixed methods were used in data collection, including individual and group interviews, observations and document reviews. We found that the human resource management approach (the actual intervention) included induction of new staff, training and personal development, good communication and information sharing, and decentralised decision-making. We identified 3 additional practices: ensuring optimal physical working conditions, access to top managers and managers' involvement on the work floor. Teamwork, recognition and trust emerged as key elements of the organisational climate. Interviewees reported high levels of organisational commitment. The analysis unearthed perceived organisational support and reciprocity as underlying mechanisms that link the management practices with commitment. Methodologically, we found that realist evaluation can be fruitfully used to develop detailed case studies that analyse how management interventions work and in which conditions. Analysing the links between intervention, mechanism and outcome increases the explaining power, while identification of essential context elements improves the usefulness of the findings for decision-makers in other settings (external validity). We also identified a number of practical difficulties and priorities for further methodological development. This case suggests that a well

  12. A realist evaluation of the management of a well- performing regional hospital in Ghana

    Directory of Open Access Journals (Sweden)

    Kegels Guy

    2010-01-01

    Full Text Available Abstract Background Realist evaluation offers an interesting approach to evaluation of interventions in complex settings, but has been little applied in health care. We report on a realist case study of a well performing hospital in Ghana and show how such a realist evaluation design can help to overcome the limited external validity of a traditional case study. Methods We developed a realist evaluation framework for hypothesis formulation, data collection, data analysis and synthesis of the findings. Focusing on the role of human resource management in hospital performance, we formulated our hypothesis around the high commitment management concept. Mixed methods were used in data collection, including individual and group interviews, observations and document reviews. Results We found that the human resource management approach (the actual intervention included induction of new staff, training and personal development, good communication and information sharing, and decentralised decision-making. We identified 3 additional practices: ensuring optimal physical working conditions, access to top managers and managers' involvement on the work floor. Teamwork, recognition and trust emerged as key elements of the organisational climate. Interviewees reported high levels of organisational commitment. The analysis unearthed perceived organisational support and reciprocity as underlying mechanisms that link the management practices with commitment. Methodologically, we found that realist evaluation can be fruitfully used to develop detailed case studies that analyse how management interventions work and in which conditions. Analysing the links between intervention, mechanism and outcome increases the explaining power, while identification of essential context elements improves the usefulness of the findings for decision-makers in other settings (external validity. We also identified a number of practical difficulties and priorities for further

  13. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    Science.gov (United States)

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  14. On the applicability of the Natori formula to realistic multi-layer quantum well III-V FETs

    Science.gov (United States)

    Gili, A.; Xanthakis, J. P.

    2017-10-01

    We investigated the validity of the Natori formalism for realistic multi-layer quantum well FETs. We show that the assumption of a single layer (the channel) carrying all of the current density is far from reality in the sub-threshold region, where in fact most of the current density resides below the channel. Our analysis is based on comparing results of Natori calculations with experimental ones and on comparing with other first-principles calculations. If the Natori calculations are employed in the subthreshold region then a misleadingly small subthreshold slope would be obtained. We propose a way to remedy this inefficiency of this formulation so that it can be applicable to realistic many-layer devices. In particular we show that if the 1-dimensional quantum well of the Natori method enclosing the electron gas is expanded to include the supply layer-usually below the channel- and a proper ab initio potential is used to obtain its eigenvalues, then the Natori formula regains its validity.

  15. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    Science.gov (United States)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  16. Using the realist perspective to link theory from qualitative evidence synthesis to quantitative studies: Broadening the matrix approach.

    Science.gov (United States)

    van Grootel, Leonie; van Wesel, Floryt; O'Mara-Eves, Alison; Thomas, James; Hox, Joop; Boeije, Hennie

    2017-09-01

    This study describes an approach for the use of a specific type of qualitative evidence synthesis in the matrix approach, a mixed studies reviewing method. The matrix approach compares quantitative and qualitative data on the review level by juxtaposing concrete recommendations from the qualitative evidence synthesis against interventions in primary quantitative studies. However, types of qualitative evidence syntheses that are associated with theory building generate theoretical models instead of recommendations. Therefore, the output from these types of qualitative evidence syntheses cannot directly be used for the matrix approach but requires transformation. This approach allows for the transformation of these types of output. The approach enables the inference of moderation effects instead of direct effects from the theoretical model developed in a qualitative evidence synthesis. Recommendations for practice are formulated on the basis of interactional relations inferred from the qualitative evidence synthesis. In doing so, we apply the realist perspective to model variables from the qualitative evidence synthesis according to the context-mechanism-outcome configuration. A worked example shows that it is possible to identify recommendations from a theory-building qualitative evidence synthesis using the realist perspective. We created subsets of the interventions from primary quantitative studies based on whether they matched the recommendations or not and compared the weighted mean effect sizes of the subsets. The comparison shows a slight difference in effect sizes between the groups of studies. The study concludes that the approach enhances the applicability of the matrix approach. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Framing the Real: Lefèbvre and NeoRealist Cinematic Space as Practice

    OpenAIRE

    Brancaleone, David

    2014-01-01

    In 1945 Roberto Rossellini's Neo-realist Rome, Open City set in motion an approach to cinema and its representation of real life – and by extension real spaces – that was to have international significance in film theory and practice. However, the re-use of the real spaces of the city, and elsewhere, as film sets in Neo-realist film offered (and offers) more than an influential aesthetic and set of cinematic theories. Through Neo-realism, it can be argued that we gain access to a cinematic re...

  18. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  19. Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine

    Energy Technology Data Exchange (ETDEWEB)

    Mule, S.J.; Lomax, P.; Gross, S.J.

    1988-05-01

    Human urine samples obtained before and after active and passive exposure to marijuana were analyzed by immune kits (Roche, Amersham, and Syva) and gas chromatography/mass spectrometry (GC/MS). Seven of eight subjects were positive for the entire five-day test period with one immune kit. The latter correlated with GC/MS in 98% of the samples. Passive inhalation experiments under conditions likely to reflect realistic exposure resulted consistently in less than 10 ng/mL of cannabinoids. The 10-100-ng/mL cannabinoid concentration range essential for detection of occasional and moderate marijuana users is thus unaffected by realistic passive inhalation.

  20. Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine

    International Nuclear Information System (INIS)

    Mule, S.J.; Lomax, P.; Gross, S.J.

    1988-01-01

    Human urine samples obtained before and after active and passive exposure to marijuana were analyzed by immune kits (Roche, Amersham, and Syva) and gas chromatography/mass spectrometry (GC/MS). Seven of eight subjects were positive for the entire five-day test period with one immune kit. The latter correlated with GC/MS in 98% of the samples. Passive inhalation experiments under conditions likely to reflect realistic exposure resulted consistently in less than 10 ng/mL of cannabinoids. The 10-100-ng/mL cannabinoid concentration range essential for detection of occasional and moderate marijuana users is thus unaffected by realistic passive inhalation

  1. Toward the M(F)--Theory Embedding of Realistic Free-Fermion Models

    CERN Document Server

    Berglund, P; Faraggi, A E; Nanopoulos, Dimitri V; Qiu, Z; Berglund, Per; Ellis, John; Faraggi, Alon E.; Qiu, Zongan

    1998-01-01

    We construct a Landau-Ginzburg model with the same data and symmetries as a $Z_2\\times Z_2$ orbifold that corresponds to a class of realistic free-fermion models. Within the class of interest, we show that this orbifolding connects between different $Z_2\\times Z_2$ orbifold models and commutes with the mirror symmetry. Our work suggests that duality symmetries previously discussed in the context of specific $M$ and $F$ theory compactifications may be extended to the special $Z_2\\times Z_2$ orbifold that characterizes realistic free-fermion models.

  2. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  3. Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge

    Science.gov (United States)

    Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.

    2013-12-01

    We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean

  4. Spatial performance of RegEM climate field reconstruction techniques in a realistic pseudoproxy context

    Science.gov (United States)

    Wang, J.; Emile-Geay, J.; Guillot, D.

    2011-12-01

    Several methods of climate field reconstructions (CFRs) have been introduced in the past few years to estimate past climate variability from proxy data over the Common Era. The pseudoproxy framework has become a tool of choice for assessing the relative merits of such methods. Here we compare four variants of the RegEM algorithm [Schneider, 2001], using a pseudoproxy network mimicking the key spatio-temporal characteristics of the network of Mann et al., 2008 (hereinafter M08); the methods are (1) RegEM TTLS (2) RegEM iTTLS (3) GraphEM and (4) RegEM iRIDGE. To ensure continuity with previous work [Smerdon et al. 2011], pseudoproxy series are designed as a white-noise degraded version of the simulated temperature field [Amman et al. 2007] over 850-1980 C.E. colocated with 1138 M08 proxies. We use signal-to-noise ratios (SNRs) of: ∞ (no noise), 1.0, 0.5 and 0.25, to simulate differences in proxy quality. Two novelties in pseudoproxy design are introduced here: (1) the decrease in proxy availability over time follows that found in M08, (2) a realistic case where the SNR is empirically derived from correlations between each M08 proxy and the HadCRUT3v temperature field. It is found that this realistic SNR is clustered around 0.3, but ranges from 0.1 to 0.8. Verification statistics such as RE, CE, r2, bias, standard deviation ratio and RMSE are presented for each method at each SNR level. The results show that all methods perform relatively well at SNR levels higher than 0.5, but display drastically different performances at lower SNR levels. Compared with results using pseudoproxy network of Mann et al., 1998, (hereinafter MBH98), the reconstruction skill of the M08 network is relatively improved, in line with the findings of Smerdon et al., 2011. Overall, we find that GraphEM and iTTLS tend to produce more robust estimates of the temperature field at low SNR levels than other schemes, while preserving a higher amount of variance in the target field. Ammann, C. M., F

  5. A realist evaluation of social prescribing: an exploration into the context and mechanisms underpinning a pathway linking primary care with the voluntary sector.

    Science.gov (United States)

    Bertotti, Marcello; Frostick, Caroline; Hutt, Patrick; Sohanpal, Ratna; Carnes, Dawn

    2018-05-01

    This article adopts a realist approach to evaluate a social prescribing pilot in the areas of Hackney and City in London (United Kingdom). It unpacks the contextual factors and mechanisms that influenced the development of this pilot for the benefits of GPs, commissioners and practitioners, and reflects on the realist approach to evaluation as a tool for the evaluation of health interventions. Primary care faces considerable challenges including the increase in long-term conditions, GP consultation rates, and widening health inequalities. With its emphasis on linking primary care to non-clinical community services via a social prescribing coordinator (SPC), some models of social prescribing could contribute to reduce the burden on primary care, tackle health inequalities and encourage people to make greater use of non-clinical forms of support. This realist analysis was based on qualitative interviews with users, commissioners, a GP survey, focus groups and learning events to explore stakeholders' experience. To enable a detailed analysis, we adapted the realist approach by subdividing the social prescribing pathway into stages, each with contextual factors, mechanisms and outcomes. SPCs were pivotal to the effective functioning of the social prescribing service and responsible for the activation and initial beneficial impact on users. Although social prescribing shows significant potential for the benefit of patients and primary care, several challenges need to be considered and overcome, including 'buy in' from some GPs, branding, and funding for the third sector in a context where social care cuts are severely affecting the delivery of health care. With its emphasis on context and mechanisms, the realist evaluation approach is useful in understanding how to identify and improve health interventions, and analyse in greater detail the contribution of different stakeholders. As the SPC is central to social prescribing, more needs to be done to understand their role

  6. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach.

    Science.gov (United States)

    Gagliardi, Anna R; Légaré, France; Brouwers, Melissa C; Webster, Fiona; Wiljer, David; Badley, Elizabeth; Straus, Sharon

    2011-03-22

    Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT) approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. A preliminary conceptual framework for patient-mediated KT interventions was compiled to describe intended purpose, recipients, delivery context, intervention, and outcomes. A realist review will be conducted in consultation with stakeholders from the arthritis and cancer fields to explore how these interventions work, for whom, and in what contexts. To identify patient-mediated KT interventions in these fields, we will search MEDLINE, the Cochrane Library, and EMBASE from 1995 to 2010; scan references of all eligible studies; and examine five years of tables of contents for journals likely to publish quantitative or qualitative studies that focus on developing, implementing, or evaluating patient-mediated KT interventions. Screening and data collection will be performed independently by two individuals. The conceptual framework of patient-mediated KT options and outcomes could be used by healthcare providers, managers, educationalists, patient advocates, and policy makers to guide program planning, service delivery, and quality improvement and by us and other researchers to evaluate existing interventions or develop new interventions. By raising awareness of options for involving patients in improving their own care, outcomes based on using a KT approach may lead to greater patient-centred care delivery and improved healthcare outcomes.

  7. Supporting international medical graduates' transition to their host-country: realist synthesis.

    Science.gov (United States)

    Kehoe, Amelia; McLachlan, John; Metcalf, Jane; Forrest, Simon; Carter, Madeline; Illing, Jan

    2016-10-01

    Many health services and systems rely on the contribution of international medical graduates (IMGs) to the workforce. However, concern has grown around their regulation and professional practice. There is a need, in the absence of strong evidence and a robust theoretical base, for a deeper understanding of the efficacy of interventions used to support IMGs' transition to their host countries. This study seeks to explore and synthesise evidence relating to interventions developed for IMGs. It aims to provide educators and policy makers with an understanding of how interventions should be developed to support IMGs in their transition to the workplace, particularly looking to identify how and why they are effective. The realist synthesis involved an initial systematic search of the literature for the period January 1990 to April 2015. Secondary searches were conducted throughout the review in order to inform and test the developing programme theory. The context, mechanism and outcome data were extracted from all sources meeting the inclusion criteria. Fourteen case studies were included to further aid theory refinement. Sixty-two articles were identified, describing diverse interventions of varying intensity. A further 26 articles were identified through a secondary search. The findings illustrate that, alongside a developed programme, ongoing support and cultural awareness at organisational and training levels are crucial. Individual differences must also be taken into consideration. This will ensure that IMGs engage in transformative learning, increase their levels of self-efficacy and cultural health capital, and reduce feelings of stress and anxiety. These factors will have an impact on work, interactions and cultural adjustment. Organisational, training and individual contexts all play a role in IMGs' adjustment during the transition process. Establishing ongoing support is critical. A list of recommendations for implementation is given. © 2016 The Authors

  8. Remote vital parameter monitoring in neonatology - robust, unobtrusive heart rate detection in a realistic clinical scenario.

    Science.gov (United States)

    Blanik, Nikolai; Heimann, Konrad; Pereira, Carina; Paul, Michael; Blazek, Vladimir; Venema, Boudewijn; Orlikowsky, Thorsten; Leonhardt, Steffen

    2016-12-01

    Vital parameter monitoring of term and preterm infants during incubator care with self-adhesive electrodes or sensors directly positioned on the skin [e.g. photoplethysmography (PPG) for oxygen saturation or electrocardiography (ECG)] is an essential part of daily routine care in neonatal intensive care units. For various reasons, this kind of monitoring contains a lot of stress for the infants. Therefore, there is a need to measure vital parameters (for instance respiration, temperature, pulse, oxygen saturation) without mechanical or conductive contact. As a non-contact method of monitoring, we present an adapted version of camera-based photoplethysmography imaging (PPGI) according to neonatal requirements. Similar to classic PPG, the PPGI camera detects small temporal changes in the term and preterm infant's skin brightness due to the cardiovascular rhythm of dermal blood perfusion. We involved 10 preterm infants in a feasibility study [five males and five females; mean gestational age: 26 weeks (24-28 weeks); mean biological age: 35 days (8-41 days); mean weight at the time of investigation: 960 g (670-1290 g)]. The PPGI camera was placed directly above the incubators with the infant inside illuminated by an infrared light emitting diode (LED) array (850 nm). From each preterm infant, 5-min video sequences were recorded and analyzed post hoc. As the measurement scenario was kept as realistic as possible, the infants were not constrained in their movements in front of the camera. Movement intensities were assigned into five classes (1: no visible motion to 5: heavy struggling). PPGI was found to be significantly sensitive to movement artifacts. However, for movement classes 1-4, changes in blood perfusion according to the heart rate (HR) were recovered successfully (Pearson correlation: r=0.9759; r=0.765 if class 5 is included). The study was approved by the Ethics Committee of the Universal Hospital of the RWTH Aachen University, Aachen, Germany (EK 254/13).

  9. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach

    Directory of Open Access Journals (Sweden)

    Wiljer David

    2011-03-01

    Full Text Available Abstract Background Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. Methods A preliminary conceptual framework for patient-mediated KT interventions was compiled to describe intended purpose, recipients, delivery context, intervention, and outcomes. A realist review will be conducted in consultation with stakeholders from the arthritis and cancer fields to explore how these interventions work, for whom, and in what contexts. To identify patient-mediated KT interventions in these fields, we will search MEDLINE, the Cochrane Library, and EMBASE from 1995 to 2010; scan references of all eligible studies; and examine five years of tables of contents for journals likely to publish quantitative or qualitative studies that focus on developing, implementing, or evaluating patient-mediated KT interventions. Screening and data collection will be performed independently by two individuals. Conclusions The conceptual framework of patient-mediated KT options and outcomes could be used by healthcare providers, managers, educationalists, patient advocates, and policy makers to guide program planning, service delivery, and quality improvement and by us and other researchers to evaluate existing interventions or develop new interventions. By raising awareness of options for involving patients in improving their own care, outcomes based on using a KT approach may lead to greater patient-centred care delivery and improved healthcare outcomes.

  10. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach

    Science.gov (United States)

    2011-01-01

    Background Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT) approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. Methods A preliminary conceptual framework for patient-mediated KT interventions was compiled to describe intended purpose, recipients, delivery context, intervention, and outcomes. A realist review will be conducted in consultation with stakeholders from the arthritis and cancer fields to explore how these interventions work, for whom, and in what contexts. To identify patient-mediated KT interventions in these fields, we will search MEDLINE, the Cochrane Library, and EMBASE from 1995 to 2010; scan references of all eligible studies; and examine five years of tables of contents for journals likely to publish quantitative or qualitative studies that focus on developing, implementing, or evaluating patient-mediated KT interventions. Screening and data collection will be performed independently by two individuals. Conclusions The conceptual framework of patient-mediated KT options and outcomes could be used by healthcare providers, managers, educationalists, patient advocates, and policy makers to guide program planning, service delivery, and quality improvement and by us and other researchers to evaluate existing interventions or develop new interventions. By raising awareness of options for involving patients in improving their own care, outcomes based on using a KT approach may lead to greater patient-centred care delivery and improved healthcare outcomes. PMID:21426573

  11. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Science.gov (United States)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  12. Region of interest evaluation of SPECT image reconstruction methods using a realistic brain phantom

    International Nuclear Information System (INIS)

    Xia, Weishi; Glick, S.J.; Soares, E.J.

    1996-01-01

    A realistic numerical brain phantom, developed by Zubal et al, was used for a region-of-interest evaluation of the accuracy and noise variance of the following SPECT reconstruction methods: (1) Maximum-Likelihood reconstruction using the Expectation-Maximization (ML-EM) algorithm; (2) an EM algorithm using ordered-subsets (OS-EM); (3) a re-scaled block iterative EM algorithm (RBI-EM); and (4) a filtered backprojection algorithm that uses a combination of the Bellini method for attenuation compensation and an iterative spatial blurring correction method using the frequency-distance principle (FDP). The Zubal phantom was made from segmented MRI slices of the brain, so that neuro-anatomical structures are well defined and indexed. Small regions-of-interest (ROIs) from the white matter, grey matter in the center of the brain and grey matter from the peripheral area of the brain were selected for the evaluation. Photon attenuation and distance-dependent collimator blurring were modeled. Multiple independent noise realizations were generated for two different count levels. The simulation study showed that the ROI bias measured for the EM-based algorithms decreased as the iteration number increased, and that the OS-EM and RBI-EM algorithms (16 and 64 subsets were used) achieved the equivalent accuracy of the ML-EM algorithm at about the same noise variance, with much fewer number of iterations. The Bellini-FDP restoration algorithm converged fast and required less computation per iteration. The ML-EM algorithm had a slightly better ROI bias vs. variance trade-off than the other algorithms

  13. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art

    DEFF Research Database (Denmark)

    Nielsen, Jesper Duemose; Madsen, Kristoffer Hougaard; Puonti, Oula

    2018-01-01

    Anatomically realistic volume conductor models of the human head are important for accurate forward modeling of the electric field during transcranial brain stimulation (TBS), electro- (EEG) and magnetoencephalography (MEG). In particular, the skull compartment exerts a strong influence on the fi......Anatomically realistic volume conductor models of the human head are important for accurate forward modeling of the electric field during transcranial brain stimulation (TBS), electro- (EEG) and magnetoencephalography (MEG). In particular, the skull compartment exerts a strong influence...... local defects. In contrast to FSL BET2, the SPM12-based segmentation with extended spatial tissue priors and the BrainSuite-based segmentation provide coarse reconstructions of the vertebrae, enabling the construction of volume conductor models that include the neck. We exemplarily demonstrate...

  14. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitroulas, Panagiotis; Efthimiou, Nikos; Nikiforidis, George C.; Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04 (Greece); Loudos, George [Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos Street, Egaleo GR 122 10, Athens (Greece); Le Maitre, Amandine; Hatt, Mathieu; Tixier, Florent; Visvikis, Dimitris [Medical Information Processing Laboratory (LaTIM), National Institute of Health and Medical Research (INSERM), 29609 Brest (France)

    2013-11-15

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines

  15. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    International Nuclear Information System (INIS)

    Papadimitroulas, Panagiotis; Efthimiou, Nikos; Nikiforidis, George C.; Kagadis, George C.; Loudos, George; Le Maitre, Amandine; Hatt, Mathieu; Tixier, Florent; Visvikis, Dimitris

    2013-01-01

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with

  16. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios.

    Science.gov (United States)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from

  17. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge

    DEFF Research Database (Denmark)

    Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova

    2016-01-01

    of inlet flow conditions, particle size, electrostatic charge, and flowrate. While most computer simulations assume a uniform velocity at the mouth inlet, we found that using a more realistic inlet profile based on Laser Doppler Anemometry measurements resulted in enhanced deposition, mostly on the tongue...... between particle size, electrostatic charge, and flowrate. Our results suggest that in silico models should be customized for specific applications, ensuring all relevant physical effects are accounted for in a self-consistent fashion....

  18. The tenants in the vineyard (GThom 65/Mark 12:1-12): A realistic ...

    African Journals Online (AJOL)

    Kloppenborg's reading of the parable of the tenants (Mk 12:1- 12/GThom 65) can be regarded as the first thoroughgoing realistic interpretation of the Tenants. By using extensive literary evidence on viticulture from 300 BCE to 300 CE, Kloppenborg argues that GThom 65 most probably comes closest to the original form of ...

  19. Context problems in realistic mathematics education: A calculus course as an example

    NARCIS (Netherlands)

    Gravemeijer, K.P.E.; Doorman, L.M.

    1999-01-01

    This article discusses the role of context problems, as they are used in the Dutch approach that is known as realistic mathematics education (RME). In RME, context problems are intended for supporting a reinvention process that enables students to come to grips with formal mathematics. This approach

  20. Do absorption and realistic distraction influence performance of component task surgical procedure?

    NARCIS (Netherlands)

    Pluyter, J.R.; Buzink, S.N.; Rutkowski, A.F.; Jakimowicz, J.J.

    2009-01-01

    Background. Surgeons perform complex tasks while exposed to multiple distracting sources that may increase stress in the operating room (e.g., music, conversation, and unadapted use of sophisticated technologies). This study aimed to examine whether such realistic social and technological

  1. Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways

    NARCIS (Netherlands)

    Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Nordlund, Markus; Belka, M.; Lizal, F.; Elcner, J.; Jicha, M.; Geurts, Bernardus J.

    An Eulerian internally mixed aerosol model is used for predictions of deposition inside a realistic cast of the human upper airways. The model, formulated in the multi-species and compressible framework, is solved using the sectional discretization of the droplet size distribution function to

  2. Establishing Upper Limits for Item Ratings for the Angoff Method: Are Resulting Standards More 'Realistic'?

    Science.gov (United States)

    Reid, Jerry B.

    This report investigates an area of uncertainty in using the Angoff method for setting standards, namely whether or not a judge's conceptualizations of borderline group performance are realistic. Ratings are usually made with reference to the performance of this hypothetical group, therefore the Angoff method's success is dependent on this point.…

  3. Using realist synthesis to understand the mechanisms of interprofessional teamwork in health and social care.

    Science.gov (United States)

    Hewitt, Gillian; Sims, Sarah; Harris, Ruth

    2014-11-01

    Realist synthesis offers a novel and innovative way to interrogate the large literature on interprofessional teamwork in health and social care teams. This article introduces realist synthesis and its approach to identifying and testing the underpinning processes (or "mechanisms") that make an intervention work, the contexts that trigger those mechanisms and their subsequent outcomes. A realist synthesis of the evidence on interprofessional teamwork is described. Thirteen mechanisms were identified in the synthesis and findings for one mechanism, called "Support and value" are presented in this paper. The evidence for the other twelve mechanisms ("collaboration and coordination", "pooling of resources", "individual learning", "role blurring", "efficient, open and equitable communication", "tactical communication", "shared responsibility and influence", "team behavioural norms", "shared responsibility and influence", "critically reviewing performance and decisions", "generating and implementing new ideas" and "leadership") are reported in a further three papers in this series. The "support and value" mechanism referred to the ways in which team members supported one another, respected other's skills and abilities and valued each other's contributions. "Support and value" was present in some, but far from all, teams and a number of contexts that explained this variation were identified. The article concludes with a discussion of the challenges and benefits of undertaking this realist synthesis.

  4. Transforming the patient care environment with Lean Six Sigma and realistic evaluation.

    Science.gov (United States)

    Black, Jason

    2009-01-01

    Lean Six Sigma (LSS) is a structured methodology for transforming processes, but it does not fully consider the complex social interactions that cause processes to form in hospital organizations. By combining LSS implementations with the concept of Realistic Evaluation, a methodology that promotes change by assessing and considering the individual characteristics of an organization's social environment, successful and sustainable process improvement is more likely.

  5. Phenomenology of a realistic accelerating universe using tracker fields

    Indian Academy of Sciences (India)

    We present a realistic scenario of tracking of scalar fields with varying equation of state. The astrophysical constraints on the evolution of scalar fields in the physical universe are discussed. The nucleosynthesis and the galaxy formation constraints have been used to put limits on and estimate during cosmic evolution.

  6. Lessons learned in using realist evaluation to assess maternal and newborn health programming in rural Bangladesh.

    Science.gov (United States)

    Adams, Alayne; Sedalia, Saroj; McNab, Shanon; Sarker, Malabika

    2016-03-01

    Realist evaluation furnishes valuable insight to public health practitioners and policy makers about how and why interventions work or don't work. Moving beyond binary measures of success or failure, it provides a systematic approach to understanding what goes on in the 'Black Box' and how implementation decisions in real life contexts can affect intervention effectiveness. This paper reflects on an experience in applying the tenets of realist evaluation to identify optimal implementation strategies for scale-up of Maternal and Newborn Health (MNH) programmes in rural Bangladesh. Supported by UNICEF, the three MNH programmes under consideration employed different implementation models to deliver similar services and meet similar MNH goals. Programme targets included adoption of recommended antenatal, post-natal and essential newborn care practices; health systems strengthening through improved referral, accountability and administrative systems, and increased community knowledge. Drawing on focused examples from this research, seven steps for operationalizing the realist evaluation approach are offered, while emphasizing the need to iterate and innovate in terms of methods and analysis strategies. The paper concludes by reflecting on lessons learned in applying realist evaluation, and the unique insights it yields regarding implementation strategies for successful MNH programming. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  7. Two politicians in a realistic experiment: attraction, discrepancy, intensity of delivery, and attitude change

    NARCIS (Netherlands)

    Wiegman, O.

    1985-01-01

    The leader of the Socialists in the Dutch Parliament and his Liberal opponent participated in this realistic experiment. Identical TV interviews with the two politicians were recorded and shown to subjects of both parties. The intensity of delivery was also varied: emotional versus rational. Our

  8. Microscopic study of the α-16O interaction on the basis of the realistic effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Shinichiro; Horiuchi, Hisashi; Yabana, Kazuhiro.

    1989-01-01

    We calculate the α- 16 O complex potential by the totally microscopic method where we use the many-body theory taking into account the Pauli principle explicitly and the realistic effective interactions. The comparison of the theoretical inter-nucleus potential with the phenomenological 'unique' optical potential is performed. (author)

  9. Developing a learning environment on realistic mathematics education for Indonesian student teachers

    NARCIS (Netherlands)

    Zulkardi, Z.

    2002-01-01

    The CASCADE-IMEI study was started to explore the role of a learning environment (LE) in assisting mathematics student teachers learning Realistic Mathematics Education (RME) as a new instructional approach in mathematics education in Indonesia. The LE for this study has been developed and evaluated

  10. CASCADE-IMEI: A learning environment of realistic mathematics for student teachers in Indonesia

    NARCIS (Netherlands)

    Zulkardi, Z.; Nieveen, N.M.

    2001-01-01

    This paper reports on the second phase of a four-year study which aims to develop a learning environment that supports prospective mathematics teachers learning realistic mathematics education (RME) in teacher education in Indonesia. The results suggest that by giving student teachers experiences in

  11. CASCADE-IMEI: Web site support for student teachers learning Realistic Mathematics Education (RME) in Indonesia

    NARCIS (Netherlands)

    Zulkardi, Z.; Nieveen, N.M.

    2001-01-01

    CASCADE-IMEI is a learning environment in the form of a face-to-face course and a web site (www.cascadeimei.com) which aims to support student teachers in Indonesia to learn Realistic Mathematics Education (RME). RME is an instructional theory in mathematics education that was originally developed

  12. Realistic versus Schematic Interactive Visualizations for Learning Surveying Practices: A Comparative Study

    Science.gov (United States)

    Dib, Hazar; Adamo-Villani, Nicoletta; Garver, Stephen

    2014-01-01

    Many benefits have been claimed for visualizations, a general assumption being that learning is facilitated. However, several researchers argue that little is known about the cognitive value of graphical representations, be they schematic visualizations, such as diagrams or more realistic, such as virtual reality. The study reported in the paper…

  13. Depictions and Gaps: Portrayal of U.S. Poverty in Realistic Fiction Children's Picture Books

    Science.gov (United States)

    Kelley, Jane E.; Darragh, Janine J.

    2011-01-01

    Researchers conducted a critical multicultural analysis of 58 realistic fiction children's picture books that portray people living in poverty and compared these depictions to recent statistics from the United States Census Bureau. The picture books were examined for the following qualities: main character, geographic locale and time era, focal…

  14. Assessing Outcomes of a Realistic Major Preview in an Introductory Sport Management Course

    Science.gov (United States)

    Pierce, David; Wanless, Elizabeth; Johnson, James

    2014-01-01

    This paper assessed the outcomes of a field experience assignment (FEA) in an introductory sport management course designed as a realistic major preview. Student learning outcomes assessed were commitment to the major, intent to pursue the major, expectation of a career in sports, and perceived preparation for a career in sports. A…

  15. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models

    NARCIS (Netherlands)

    Koppert, M.M.J.; Kalitzin, S.; Lopes da Silva, F.H.; Viergever, M.A.

    2011-01-01

    In previous studies we showed that autonomous absence seizure generation and termination can be explained by realistic neuronal models eliciting bi-stable dynamics. In these models epileptic seizures are triggered either by external stimuli (reflex epilepsies) or by internal fluctuations. This

  16. The tenants in the vineyard (GThom 65/Mark 12:1-12): A realistic ...

    African Journals Online (AJOL)

    p1243322

    understanding and his own realistic reading of the Wirkungsgeschichte of the ...... maximize the quality of the wine, while the tenants' interest was to harvest the grapes later in ..... appreciation of that person in the eyes of others (i. e., claim and.

  17. Rapidly re-computable EEG (electroencephalography) forward models for realistic head shapes

    International Nuclear Information System (INIS)

    Ermer, J.J.; Mosher, J.C.; Baillet, S.; Leahy, R.M.

    2001-01-01

    Solution of the EEG source localization (inverse) problem utilizing model-based methods typically requires a significant number of forward model evaluations. For subspace based inverse methods like MUSIC (6), the total number of forward model evaluations can often approach an order of 10 3 or 10 4 . Techniques based on least-squares minimization may require significantly more evaluations. The observed set of measurements over an M-sensor array is often expressed as a linear forward spatio-temporal model of the form: F = GQ + N (1) where the observed forward field F (M-sensors x N-time samples) can be expressed in terms of the forward model G, a set of dipole moment(s) Q (3xP-dipoles x N-time samples) and additive noise N. Because of their simplicity, ease of computation, and relatively good accuracy, multi-layer spherical models (7) (or fast approximations described in (1), (7)) have traditionally been the 'forward model of choice' for approximating the human head. However, approximation of the human head via a spherical model does have several key drawbacks. By its very shape, the use of a spherical model distorts the true distribution of passive currents in the skull cavity. Spherical models also require that the sensor positions be projected onto the fitted sphere (Fig. 1), resulting in a distortion of the true sensor-dipole spatial geometry (and ultimately the computed surface potential). The use of a single 'best-fitted' sphere has the added drawback of incomplete coverage of the inner skull region, often ignoring areas such as the frontal cortex. In practice, this problem is typically countered by fitting additional sphere(s) to those region(s) not covered by the primary sphere. The use of these additional spheres results in added complication to the forward model. Using high-resolution spatial information obtained via X-ray CT or MR imaging, a realistic head model can be formed by tessellating the head into a set of contiguous regions (typically the scalp

  18. Realistic Modeling and Animation of Human Body Based on Scanned Data

    Institute of Scientific and Technical Information of China (English)

    Yong-You Ma; Hui Zhang; Shou-Wei Jiang

    2004-01-01

    In this paper we propose a novel method for building animation model of real human body from surface scanned data.The human model is represented by a triangular mesh and described as a layered geometric model.The model consists of two layers: the control skeleton generating body animation from motion capture data,and the simplified surface model providing an efficient representation of the skin surface shape.The skeleton is generated automatically from surface scanned data using the feature extraction,and thena point-to-line mapping is used to map the surface model onto the underlying skeleton.The resulting model enables real-time and smooth animation by manipulation of the skeleton while maintaining the surface detail.Compared with earlier approach,the principal advantages of our approach are the automated generation of body control skeletons from the scanned data for real-time animation,and the automatic mapping and animation of the captured human surface shape.The human model constructed in this work can be used for applications of ergonomic design,garment CAD,real-time simulating humans in virtual reality environment and so on.

  19. Efficient PDE based numerical estimation of credit and liquidity risk measures for realistic derivative portfolios

    NARCIS (Netherlands)

    de Graaf, C.S.L.

    2016-01-01

    In the Basel III accords in 2013, it was stated that financial institutions should charge Credit Value Adjustment (CVA) to their counterparties for (previously under-regulated) Over-The-Counter (OTC) trades. This CVA can be used to hedge a possible default of the counterparty. One important

  20. Squeezing based on nondegenerate frequency doubling internal to a realistic laser

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Tidemand-Lichtenberg, Peter; Buchhave, Preben

    2004-01-01

    We investigate theoretically the quantum fluctuations of the fundamental field in the output of a nondegenerate second-harmonic generation process occurring inside a laser cavity. Due to the nondegenerate character of the nonlinear medium, a field orthogonal to the laser field is for some operating...... conditions independent of the fluctuations produced by the laser medium. We show that this fact may lead to perfect squeezing for a certain polarization mode of the fundamental field. The experimental feasibility of the system is also discussed....