WorldWideScience

Sample records for based onphysiologically realistic

  1. Normal and Pathological NCAT Image and PhantomData Based onPhysiologically Realistic Left Ventricle Finite-Element Models

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.; Tsui,Benjamin M.W.; Gullberg, Grant T.

    2006-08-02

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical model was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function

  2. Realistic face modeling based on multiple deformations

    Institute of Scientific and Technical Information of China (English)

    GONG Xun; WANG Guo-yin

    2007-01-01

    On the basis of the assumption that the human face belongs to a linear class, a multiple-deformation model is proposed to recover face shape from a few points on a single 2D image. Compared to the conventional methods, this study has the following advantages. First, the proposed modified 3D sparse deforming model is a noniterative approach that can compute global translation efficiently and accurately. Subsequently, the overfitting problem can be alleviated based on the proposed multiple deformation model. Finally, by keeping the main features, the texture generated is realistic. The comparison results show that this novel method outperforms the existing methods by using ground truth data and that realistic 3D faces can be recovered efficiently from a single photograph.

  3. Rheology-based facial animation realistic face model

    Institute of Scientific and Technical Information of China (English)

    ZENG Dan; PEI Li

    2009-01-01

    This paper presents a rheology-based approach to animate realistic face model. The dynamic and biorheological characteristics of the force member (muscles) and stressed member (face) are considered. The stressed face can be modeled as viscoelastic bodies with the Hooke bodies and Newton bodies connected in a composite series-parallel manner. Then, the stress-strain relationship is derived, and the constitutive equations established. Using these constitutive equations, the face model can be animated with the force generated by muscles. Experimental results show that this method can realistically simulate the mechanical properties and motion characteristics of human face, and performance of this method is satisfactory.

  4. The use and limitation of realistic evaluation as a tool for evidence-based practice: a critical realist perspective.

    Science.gov (United States)

    Porter, Sam; O'Halloran, Peter

    2012-03-01

    The use and limitation of realistic evaluation as a tool for evidence-based practice: a critical realist perspective In this paper, we assess realistic evaluation's articulation with evidence-based practice (EBP) from the perspective of critical realism. We argue that the adoption by realistic evaluation of a realist causal ontology means that it is better placed to explain complex healthcare interventions than the traditional method used by EBP, the randomized controlled trial (RCT). However, we do not conclude from this that the use of RCTs is without merit, arguing that it is possible to use both methods in combination under the rubric of realist theory. More negatively, we contend that the rejection of critical theory and utopianism by realistic evaluation in favour of the pragmatism of piecemeal social engineering means that it is vulnerable to accusations that it promotes technocratic interpretations of human problems. We conclude that, insofar as realistic evaluation adheres to the ontology of critical realism, it provides a sound contribution to EBP, but insofar as it rejects the critical turn of Bhaskar's realism, it replicates the technocratic tendencies inherent in EBP. PMID:22212367

  5. Realistic terrain visualization based on 3D virtual world technology

    Science.gov (United States)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  6. Ultra-realistic 3-D imaging based on colour holography

    Science.gov (United States)

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  7. Assumptions behind size-based ecosystem models are realistic

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Blanchard, Julia L.; Fulton, Elizabeth A.;

    2016-01-01

    Froese et al. are realistic and consistent. We further show that the assumption about density-dependence being described by a stock recruitment relationship is responsible for determining whether a peak in the cohort biomass of a population occurs late or early in life. Finally, we argue that there is...... indeed a constructive role for a wide suite of ecosystem models to evaluate fishing strategies in an ecosystem context...

  8. Model-based Evaluation of Location-based Relaying Policies in a Realistic Mobile Indoor Scenario

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Olsen, Rasmus Løvenstein; Madsen, Tatiana Kozlova;

    2012-01-01

    developed Markov Chain model for a realistic indoor scenario that is based on ray-tracing enriched measurements from the WHERE2 project. These results are furthermore compared to results obtained using an idealistic path loss model, and it is shown that the performance impact of node mobility and...

  9. Interaction Design of National Dance Based on Realistic 3D Character

    Directory of Open Access Journals (Sweden)

    Guoxin Tan

    2013-08-01

    Full Text Available Great improvement has been achieved in the protection of national dance through multimedia technology. An interactive design approach for national dance based on realistic 3D character is proposed in this paper. This approach comes with three sub steps: Firstly, the realistic face was reconstructed based on a front photo, in this step, the facial feature points of photo are selected interactively; and then, the realistic face was built through texture mapping and fusion based on the standardized face model database. Secondly, the construction of realistic body is realized through introducing the stretching model and the vector differential adjuster. Finally, the interactive display of national dance is realized by virtual reality engine. The experimental results show that this approach is user-friendly, and can generate a high-quality realistic 3D character in real time while protects the worthy cultural heritage effectively at the same time.

  10. Influence of atmospheric turbulence on OAM-based FSO system with use of realistic link model

    Science.gov (United States)

    Li, Ming; Yu, Zhongyuan; Cvijetic, Milorad

    2016-04-01

    We study the influence of atmospheric turbulence on OAM-based free-space optical (FSO) communication by using the Pump turbulence spectrum model which accurately characterizes the realistic FSO link. A comprehensive comparison is made between the Pump and Kolmogorov spectrum models with respect to the turbulence impact. The calculated results show that obtained turbulence-induced crosstalk is lower, which means that a higher channel capacity is projected when the realistic Pump spectrum is used instead of the Kolmogorov spectrum. We believe that our results prove that performance of practical OAM-based FSO is better than one predicted by using the original Kolmogorov turbulence model.

  11. Realistic Approach towards Quantitative Analysis and Simulation of EEHC-Based Routing for Wireless Sensor Networks

    CERN Document Server

    Sharma, Manju

    2010-01-01

    This paper presents the realistic approach towards the quantitative analysis and simulation of Energy Efficient Hierarchical Cluster (EEHC)-based routing for wireless sensor networks. Here the efforts have been done to combine analytical hardware model with the modified EEHC-based routing model. The dependence of various performance metrics like: optimum number of clusters, Energy Consumption, and Energy consumed per round etc. based on analytical hardware sensor model and EEHC model has been presented.

  12. A realist review of family-based interventions for children of substance abusing parents

    OpenAIRE

    Usher, Amelia M; McShane, Kelly E.; Dwyer, Candice

    2015-01-01

    Background Millions of children across North America and Europe live in families with alcohol or drug abusing parents. These children are at risk for a number of negative social, emotional and developmental outcomes, including an increased likelihood of developing a substance use disorder later in life. Family-based intervention programs for children with substance abusing parents can yield positive outcomes. This study is a realist review of evaluations of family-based interventions aimed at...

  13. Toward realistic pursuit-evasion using a roadmap-based approach

    KAUST Repository

    Rodriguez, Samuel

    2011-05-01

    In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. Our approach can be applied to more realistic scenarios than are typically studied in most previous work, including agents moving in 3D environments such as terrains, multi-story buildings, and dynamic environments. We also support more realistic three-dimensional visibility computations that allow evading agents to hide in crowds or behind hills. We demonstrate the utility of this approach on mobile robots and in simulation for a variety of scenarios including pursuit-evasion and tag on terrains, in multi-level buildings, and in crowds. © 2011 IEEE.

  14. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    Science.gov (United States)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  15. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    International Nuclear Information System (INIS)

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  16. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  17. Adaptation and applications of a realistic digital phantom based on patient lung tumor trajectories

    International Nuclear Information System (INIS)

    Digital phantoms continue to play a significant role in modeling and characterizing medical imaging. The currently available XCAT phantom incorporates both the flexibility of mathematical phantoms and the realistic nature of voxelized phantoms. This phantom generates images based on a regular breathing pattern and can include arbitrary lung tumor trajectories. In this work, we present an algorithm that modifies the current XCAT phantom to generate 4D imaging data based on irregular breathing. First, a parameter is added to the existing XCAT phantom to include any arbitrary tumor motion. This modification introduces the desired tumor motion but, comes at the cost of decoupled diaphragm, chest wall and lung motion. To remedy this problem diaphragm and chest wall motion is first modified based on initial tumor location and then input to the XCAT phantom. This generates a phantom with synchronized respiratory motion. Mapping of tumor motion trajectories to diaphragm and chest wall motion is done by adaptively calculating a scale factor based on tumor to lung contour distance. The distance is calculated by projecting the initial tumor location to lung edge contours characterized by quadratic polynomials. Data from ten patients were used to evaluate the accuracy between actual independent tumor location and the location obtained from the modified XCAT phantom. The RMSE and standard deviations for ten patients in x, y, and z directions are: (0.29 ± 0.04, 0.54 ± 0.17, and0.39 ± 0.06) mm. To demonstrate the utility of the phantom, we use the new phantom to simulate a 4DCT acquisition as well as a recently published method for phase sorting. The modified XCAT phantom can be used to generate more realistic imaging data for enhanced testing of algorithms for CT reconstruction, tumor tracking, and dose reconstruction. (paper)

  18. Realistic modelling of the effects of asynchronous motion at the base of bridge piers

    CERN Document Server

    Romanelli, F; Vaccari, F

    2002-01-01

    Frequently long-span bridges provide deep valley crossings, which require special consideration due to the possibility of local amplification of the ground motion as a consequence of topographical irregularities and local soil conditions. This does in fact cause locally enhanced seismic input with the possibility for the bridge piers to respond asynchronously. This introduces special design requirements so that possible out-of-phase ground displacements and the associated large relative displacements of adjacent piers can be accommodated without excessive damage. Assessment of the local variability of the ground motion due to local lateral heterogeneities and to attenuation properties is thus crucial toward the realistic definition of the asynchronous motion at the base of the bridge piers. We illustrate the work done in the framework of a large international cooperation to assess the importance of non-synchronous seismic excitation of long structures. To accomplish this task we compute complete synthetic acc...

  19. AREVA LOCA and non-LOCA realistic methodology development strategy based on CATHARE

    International Nuclear Information System (INIS)

    The CATHARE code developed since 1979 by AREVA, Cea, EDF and IRSN is one of the major thermal-hydraulic system codes worldwide. The paper gives an overview of CATHARE 2 Version 2.5 based realistic methodologies elaborated by AREVA for LOCA and non-LOCA and the underlying process (called DRM) applied for that purpose, the special features and improvements implemented in the code to handle additional needs and possible future requirements for industrial applications such as the effect of high Burn-up on fuel and cladding behaviour during LOCAs, coupling with core thermal-hydraulics, 3-dimensional core physics and instrumentation and control, capability to account for asymmetric reactor coolant system flow transients by means of dedicated vessel mixing matrices, second order numerical resolution scheme for boron front propagation for non-LOCA transients. (Author)

  20. Realistic modelling of the effects of asynchronous motion at the base of bridge piers

    International Nuclear Information System (INIS)

    Frequently long-span bridges provide deep valley crossings, which require special consideration due to the possibility of local amplification of the ground motion as a consequence of topographical irregularities and local soil conditions. This does in fact cause locally enhanced seismic input with the possibility for the bridge piers to respond asynchronously. This introduces special design requirements so that possible out-of-phase ground displacements and the associated large relative displacements of adjacent piers can be accommodated without excessive damage. Assessment of the local variability of the ground motion due to local lateral heterogeneities and to attenuation properties is thus crucial toward the realistic definition of the asynchronous motion at the base of the bridge piers. We illustrate the work done in the framework of a large international cooperation to assess the importance of non-synchronous seismic excitation of long structures. To accomplish this task we compute complete synthetic accelerograms using as input a set of parameters that describes, to the best of our knowledge, the geological structure and seismotectonic setting of the investigated area. (author)

  1. A realistic projection simulator for laboratory based X-ray micro-CT

    Science.gov (United States)

    Dhaene, Jelle; Pauwels, Elin; De Schryver, Thomas; De Muynck, Amelie; Dierick, Manuel; Van Hoorebeke, Luc

    2015-01-01

    In X-ray computed tomography (CT) each voxel of the reconstructed image contains a calculated grey value which represents the linear attenuation coefficient for the materials in that voxel. Conventional laboratory based CT scanners use polychromatic X-ray sources and integrating detectors with an energy dependent efficiency. Consequently the reconstructed attenuation coefficients will depend on the spectrum of the source and the spectral sensitivity of the detector. Beam hardening will alter the spectrum significantly as the beam propagates through the sample. Therefore, sample composition and shape will affect the reconstructed attenuation coefficients as well. A polychromatic projection simulator has been developed at the "Centre for X-ray Tomography" of the Ghent University (UGCT) which takes into account the aforementioned variables, allowing for complete and realistic simulations of CT scans for a wide range of geometrical setups. Monte Carlo simulations of the X-ray tubes and detectors were performed to model their spectral behaviour. In this paper, the implementation and features of the program are discussed. Simulated and real CT scans are compared to demonstrate the quantitative correctness of the simulations. Experiments performed at two different UGCT scanners yield a maximum deviation of 3.9% and 6.5% respectively, between the measured and simulated reconstructed attenuation coefficients.

  2. A realistic projection simulator for laboratory based X-ray micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Dhaene, Jelle, E-mail: jelle.dhaene@ugent.be; Pauwels, Elin, E-mail: elin.pauwels@ugent.be; De Schryver, Thomas; De Muynck, Amelie; Dierick, Manuel; Van Hoorebeke, Luc

    2015-01-01

    In X-ray computed tomography (CT) each voxel of the reconstructed image contains a calculated grey value which represents the linear attenuation coefficient for the materials in that voxel. Conventional laboratory based CT scanners use polychromatic X-ray sources and integrating detectors with an energy dependent efficiency. Consequently the reconstructed attenuation coefficients will depend on the spectrum of the source and the spectral sensitivity of the detector. Beam hardening will alter the spectrum significantly as the beam propagates through the sample. Therefore, sample composition and shape will affect the reconstructed attenuation coefficients as well. A polychromatic projection simulator has been developed at the “Centre for X-ray Tomography” of the Ghent University (UGCT) which takes into account the aforementioned variables, allowing for complete and realistic simulations of CT scans for a wide range of geometrical setups. Monte Carlo simulations of the X-ray tubes and detectors were performed to model their spectral behaviour. In this paper, the implementation and features of the program are discussed. Simulated and real CT scans are compared to demonstrate the quantitative correctness of the simulations. Experiments performed at two different UGCT scanners yield a maximum deviation of 3.9% and 6.5% respectively, between the measured and simulated reconstructed attenuation coefficients.

  3. Students' Critical Mathematical Thinking Skills and Character: Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    Science.gov (United States)

    Palinussa, Anderson L.

    2013-01-01

    This paper presents the findings of a quasi-experimental with pre-test-post-test design and control group that aims to assess students' critical mathematical thinking skills and character through realistic mathematics education (RME) culture-based. Subjects of this study were 106 junior high school students from two low and medium schools level in…

  4. Internet-based medical education: a realist review of what works, for whom and in what circumstances

    OpenAIRE

    Greenhalgh Trisha; Wong Geoff; Pawson Ray

    2010-01-01

    Abstract Background Educational courses for doctors and medical students are increasingly offered via the Internet. Despite much research, course developers remain unsure about what (if anything) to offer online and how. Prospective learners lack evidence-based guidance on how to choose between the options on offer. We aimed to produce theory driven criteria to guide the development and evaluation of Internet-based medical courses. Methods Realist review - a qualitative systematic review meth...

  5. Comparison of temporal realistic telecommunication base station exposure with worst-case estimation in two countries

    International Nuclear Information System (INIS)

    The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed down-link packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days. (authors)

  6. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa K1S 5B6 (Canada)

    2014-02-15

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model

  7. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    International Nuclear Information System (INIS)

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with125I, 103Pd, or 131Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16

  8. Microscopic calculations of elastic scattering between light nuclei based on a realistic nuclear interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dohet-Eraly, Jeremy [F.R.S.-FNRS (Belgium); Sparenberg, Jean-Marc; Baye, Daniel, E-mail: jdoheter@ulb.ac.be, E-mail: jmspar@ulb.ac.be, E-mail: dbaye@ulb.ac.be [Physique Nucleaire et Physique Quantique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium)

    2011-09-16

    The elastic phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions are calculated in a cluster approach by the Generator Coordinate Method coupled with the Microscopic R-matrix Method. Two interactions are derived from the realistic Argonne potentials AV8' and AV18 with the Unitary Correlation Operator Method. With a specific adjustment of correlations on the {alpha} + {alpha} collision, the phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions agree rather well with experimental data.

  9. Validity analysis of development lesson plan and student worksheet based realistic mathematics education

    Science.gov (United States)

    Zulfaneti, Rismen, Sefna; Suryani, Mulia

    2016-02-01

    The previous research showed that the teachers of the fourth grade at elementary school in West Sumatra need lesson plan and teaching materials which integrated with character education especially on mathematics subject. Teachers need teaching materials which encompasses the daily life problems (contextual) so that, it can increase students' understanding of mathematics. Realistic mathematics education is a solution to these problems. The aims of the research are to develop learning equipment, i. e lesson plan sand valid worksheets. Development model referred to the Plomp development model which consists of three phase namely preliminary research, prototyping phase, and assessment phase. However, in this research, it is only presented the results in the expert review which is in the part of prototyping phase. The instrument was the validation worksheet. Expert stated that each of lesson plan and students' worksheet were in valid criterion

  10. Nucleon-pair states of even-even Sn isotopes based on realistic effective interactions

    Science.gov (United States)

    Cheng, Y. Y.; Qi, C.; Zhao, Y. M.; Arima, A.

    2016-08-01

    In this paper we study yrast states of 128,126,124Sn and 104,106,108Sn by using the monopole-optimized realistic interactions in terms of both the shell model (SM) and the nucleon-pair approximation (NPA). For yrast states of 128,126Sn and 104,106Sn, we calculate the overlaps between the wave functions obtained in the full SM space and those obtained in the truncated NPA space, and find that most of these overlaps are very close to 1. Very interestingly, for most of these states with positive parity and even spin or with negative parity and odd spin, the SM wave function is found to be well represented by one nucleon-pair basis state, viz., a simple picture of "nucleon-pair states" (nucleon-pair configuration without mixings) emerges. In 128,126Sn, the positive-parity (or negative-parity) yrast states with spin J >10 (or J >7 ) are found to be well described by breaking one or two S pairs in the 101+ (or 71-) state, i.e., the yrast state of seniority-two, spin-maximum, and positive-parity (or negative-parity), into non-S pair(s). Similar regularity is also pointed out for 104,106Sn. The evolution of E 2 transition rates between low-lying states in 128,126,124Sn is discussed in terms of the seniority scheme.

  11. Comparison of CaO-based synthetic CO{sub 2} sorbents under realistic calcination conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gemma Grasa; Belen Gonzalez; Monica Alonso; J. Carlos Abanades [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2007-12-15

    Several concepts to capture CO{sub 2} in power plants and hydrogen generation plants are under development using CaO as regenerable sorbent. The drastic decay in sorbent capture capacity of CaO obtained through calcination of natural sources of CaCO{sub 3} (limestones or dolomites) justifies the search of synthetic sorbents that aim to overcome this decay in capture capacity. We have reviewed some of the recent literature on the subject and tested some of the proposed sorbents under comparable conditions. Our results confirm the good performance of some of these synthetic sorbents under mild conditions and/or long carbonation times used in the original references. However, we show that these sorbents deactivate also very quickly when realistic regeneration conditions (high temperatures for calcination at high partial pressures of CO{sub 2}) are used in the laboratory test. We conclude that none of the reviewed sorbents have a chance to compete with the performance of natural limestones, of much lower cost. 24 refs., 4 figs.

  12. Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    We investigate collective multipole excitations for closed shell nuclei from 16O to 208Pb using correlated realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant short-range central and tensor correlations a re treated explicitly within the Unitary Correlation Operator Method (UCOM), which provides a phase-shift equivalent correlated interaction VUCOM adapted to simple uncorrelated Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated transition operators. Using VUCOM we solve the Hartree-Fock problem and employ the single-particle states as starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e. the same correlated nucleon-nucleon interact ion is used in calculations of the HF ground state and in the residual RPA interaction. Consequently, the spurious state associated with the center-of-mass motion is properly removed and the sum-rules are exhausted within ±3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole, and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole resonance, the resonance energies are in agreement with experiment hinting at a reasonable compressibility. However, in the 1- and 2+ channels the resonance energies are overestimated due to missing long-range correlations and three-body contributions. (orig.)

  13. Modeling and Design of Realistic Si3N4-BASED Integrated Optical Programmable Power Splitter

    Science.gov (United States)

    Uranus, H. P.; Hoekstra, H. J. W. M.; Stoffer, R.

    Controllable splitting of optical power with a large splitting ratio range is often required in an integrated optical chip, e.g. for the readout of phase-shift in a slow-light sensor. In this work, we report the modeling and design of an integrated optical programmable power splitter consisting of a Y-junction with a programmable phase-shifter cascaded to a directional coupler. We used a vectorial mode solver, and a combination of a transfer matrix method with a 3D vectorial coupled-mode theory (CMT) to compute the power transfer ratio of a realistic device structure made of Si3N4, TEOS, and SiO2 grown on a Si substrate. In the simulations, waveguide attenuation values derived from the measured attenuation of a prefabricated test wafer, have been taken into account. Vectorial modal fields of individual waveguides, as computed by a mode solver, were used as the basis for the CMT computation. In the simulation, an operational wavelength around 632.8 nm was assumed. Our simulations reveal that maximum power splitting ratio can be achieved when the directional coupler is operated as a 3-dB coupler with the phase-shifter set to produce a 90° phase-shift. The required coupler length for such desired operating condition is highly-dependent on the gap size. On the other hand, the inclusion of the waveguide loss and the non-parallel section of the directional coupler into the model only slightly affect the results.

  14. Toward Simulating Realistic Pursuit-Evasion Using a Roadmap-Based Approach

    KAUST Repository

    Rodriguez, Samuel

    2010-01-01

    In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. We demonstrate the utility of this approach for a variety of scenarios including pursuit-evasion on terrains, in multi-level buildings, and in crowds. © 2010 Springer-Verlag Berlin Heidelberg.

  15. Assessment of realistic nowcasting lead-times based on predictability analysis of Mediterranean Heavy Precipitation Events

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2014-05-01

    ' precipitation forecasts showed some skill (improvement over persistence) for lead times up to 60' for moderate intensities (up to 1 mm in 30') and up to 2.5h for lower rates (above 0.1 mm). However an important event-to-event variability has been found as illustrated by the fact that hit rates of rain-no-rain forecasts achieved the 60% value at 90' in the 7 September 2005 and only 40' in the 2 November 2008 case. The discussion of these results provides useful information on the potential application of nowcasting systems and realistic values to be contrasted with specific end-user requirements. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa'nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radarbased nowcasting technique. Journal of Hydrometeorology 6: 532-549 http://dx.doi.org/10.1175/JHM433.1 Berenguer M, D Sempere, G Pegram, 2011: SBMcast - An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. Journal of Hydrology 404: 226-240 http://dx.doi.org/10.1016/j.jhydrol.2011.04.033 Pierce C, A Seed, S Ballard, D Simonin, Z Li, 2012: Nowcasting. In Doppler Radar Observations (J Bech, JL Chau, ed.) Ch. 13, 98-142. InTech, Rijeka, Croatia http://dx.doi.org/10.5772/39054

  16. Role of institutional entrepreneurship in building adaptive capacity in community-based healthcare organisations: realist review protocol

    Science.gov (United States)

    Iyengar, Sweatha; Katz, Aaron; Durham, Jo

    2016-01-01

    Introduction Over the past 3 decades, there has been a substantial shift to the marketisation of government-funded health services. For organisations traditionally buffered from the competitive pressures of for-profit enterprises, such as community-based organisations, this means developing the capacity to adapt to competitive tendering processes, shifting client expectations, and increasing demands for greater accountability. Drawing on ideas of institutional entrepreneurship, we believe that attempts to build adaptive capacity require the transformation of existing institutional arrangements. Key in this may be identifying and fostering institutional entrepreneurs—actors who take the lead in being the impetus for, and giving direction to, structural change. This study focuses on the strategies used by institutional entrepreneurs to build adaptive capacity in the community-based healthcare sector. Methods and analysis The research will use an adapted rapid realist review. The review will find underlying theories that explain the circumstances surrounding the implementation of capacity-building strategies that shape organisational response and generate outcomes by activating causal mechanisms. An early scoping of the literature, and consultations with key stakeholders, will be undertaken to identify an initial programme theory. We will search for relevant journal articles and grey literature. Data will be extracted based on contextual factors, mechanisms and outcomes, and their configurations. The analysis will seek patterns and regularities in these configurations and will focus on confirming, refuting or refining our programme theory. Ethics and dissemination The study does not involve primary research and, therefore, does not require formal ethical approval. However, ethical standards of utility, usefulness, feasibility, propriety, accuracy and accountability will be followed. The results will be written up according to the Realist and Meta-Review Evidence

  17. Variational-method-based higher order mode analysis extendible to realistic tapered disk-loaded structures

    Science.gov (United States)

    Wang, L. F.; Lin, Y. Z.; Higo, T.

    2002-04-01

    In order to obtain high luminosity and energy efficiency in future linear colliders, most designs for e + and e - collisions in the TeV range will use multi-bunch operation. Therefore, the study of higher order modes excited by previous bunches in the train becomes very important for the optimal design of the accelerator components. Many designs have used tapered disk-loaded waveguides for acceleration. Various numerical methods have been used for the modal analysis of the structure. In this paper, a high-precision eigenmode-computation analysis based on a variational method will be discussed. It allows for rounding the edge of a disk hole without any approximation in shape treatment and calculates the exactly synchronous modes. It converges much faster than the mesh-based computer code SUPERFISH. Good agreement was observed between the results of the variational method and those of other methods.

  18. Variational-method-based higher order mode analysis extendible to realistic tapered disk-loaded structures

    CERN Document Server

    Wang, L F; Higo, T

    2002-01-01

    In order to obtain high luminosity and energy efficiency in future linear colliders, most designs for e sup + and e sup - collisions in the TeV range will use multi-bunch operation. Therefore, the study of higher order modes excited by previous bunches in the train becomes very important for the optimal design of the accelerator components. Many designs have used tapered disk-loaded waveguides for acceleration. Various numerical methods have been used for the modal analysis of the structure. In this paper, a high-precision Eigenmode-computation analysis based on a variational method will be discussed. It allows for rounding the edge of a disk hole without any approximation in shape treatment and calculates the exactly synchronous modes. It converges much faster than the mesh-based computer code SUPERFISH. Good agreement was observed between the results of the variational method and those of other methods.

  19. Construction of Realistic Scene in Virtual Turning Based on Global Illumination Model and Chip Simulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the rapid development of manufacturing technology, the traditional simulation of machining can not meet the people's need. Research on virtual machining environment is one of the key parts of virtual manufacturing technology. According to the features of virtual turning, this paper proposes a simplified Whitted lighting model based on analysis of Phong and other local illumination model. This model takes the material and roughness of workpiece into account to calculate the roughness coefficient D, geom...

  20. Research protocol: a realist synthesis of contestability in community-based mental health markets

    OpenAIRE

    Durham, Jo; Bains, Amara

    2015-01-01

    Background In most developed nations, there has been a shift from public services to a marketisation of public goods and services - representing a significant reform process aiming to transform the way in which community-based human services, such as health, are delivered and consumed. For services, this means developing the capacity to adapt and innovate in response to changing circumstances to achieve quality. The availability of rigorous research to demonstrate whether a market approach an...

  1. Nuclear equation of state based on density dependent realistic effective NN interaction

    CERN Document Server

    Basu, D N

    2003-01-01

    A density dependent M3Y effective nucleon-nucleon (NN) interaction based on the G-matrix elements of the Reid-Elliott NN potential is used to determine the nuclear matter equation of state. The equilibrium density of the nuclear matter is determined by minimizing the energy per nucleon. The density dependence parameters are chosen to reproduce the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The nuclear matter equation of state thus obtained is then used to calculate the pressure, the energy density, the nuclear incompressibility and the velocity of sound in nuclear medium.

  2. Realistic approach for reliability assessment of computer based systems : an overview

    International Nuclear Information System (INIS)

    Use of computer-based-systems (CBSs) is increasing in nuclear power plants (NPPs). Modern monitoring and control and instrumentation (C and I) systems rely on hardware systems driven by computer software. Safety assessment of such systems requires modelling techniques that can adequately represent the complex interaction among its subsystems and quantify the reliability in order to facilitate comparison with respect to the reliability targets, safety margins and overall safety goals. This paper presents an overview of these new modelling techniques and the result of a comparative study carried out in order to find out the effectiveness and adequacy of the new features that are claimed to be improving the system modelling techniques, specially, the fault tree analysis method. This paper also addresses the issue of quantification of software failure rate for using the same in PRA/PSA studies and discusses the approach suggested in the literatures to associate a probability value with the failure of software part of the CBSs. Context based approach was found to be reasonable one although it recommends use of probability of failure due to error forcing context caused by incorrect design rather than software failure isolation. The paper concludes with suggestion of an acceptable solution in this regard

  3. From Workshops to Walkshops: Evaluating Mobile Locastion-Based Applications in Realistic Settings

    DEFF Research Database (Denmark)

    Korn, Matthias; Zander, Pär-Ola

    2010-01-01

    Many open questions on how to best observe the mobile user experience remain - at the stage of design time as well as use time. In this paper, we are focusing on the stage of design time and describe our experiences from evaluating a mobile application for citizen involvement in municipal land use...... planning. Due to the problems and issues identified after conducting several user workshops in our exemplary case process, we propose "walkshops" as a complement to traditional workshops and prototype field studies specifically to evaluate mobile location-based applications (and similar context......-aware systems). We report some problems with workshops and outline how a walkshop may be carried out. The first trials of the new method are promising and have generated valuable feedback, insights and discussions about using the mobile application within the intended contexts. Many open questions on how to...

  4. An A4-based see-saw model for realistic neutrino mass and mixing

    CERN Document Server

    Pramanick, Soumita

    2015-01-01

    We present an $A4$-based model where neutrino masses arise from a combination of see-saw mechanisms. The model is motivated by several small mixing and mass parameters indicated by the data. These are $\\theta_{13}$, the solar mass splitting, and the small deviation of $\\theta_{23}$ from maximal mixing (= $\\pi/4$). We take the above as indications that at some level the small quantities are well-approximated by zero. In particular the mixing angles, to a zero order, should be either 0 or $\\pi/4$. Accordingly, in this model the Type-II see-saw dominates and generates the larger atmospheric mass splitting and sets $\\theta_{23} = \\pi/4$. The other mixing angles are vanishing as is the solar splitting. We show how the $A4$ assignment for the lepton doublets leads to this form. We also specify the $A4$ properties of the right-handed neutrinos which result in a smaller Type-I see-saw contribution that acts as a perturbation and shifts the angles $\\theta_{12}$ and $\\theta_{13}$ into the correct range and the desired ...

  5. Teaching and learning based on peer review: a realistic approach in forensic sciences

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge; Magalhães, Teresa

    2016-01-01

    Teaching and learning methods need a continuous upgrade in higher education. However it is also true that some of the modern methodologies do not reduce or prevent school failure. Perhaps the real limitation is the inability to identify the true reasons that may explain it or ignore/undervalue the problem. In our opinion, one of the current constraints of the teaching/learning process is the excess of and inadequate bibliography recommended by the teacher, which results in continuous student difficulties and waste of time in searching and selecting useful information. The need to change the paradigm of the teaching/learning process comes also from employers. They claim forensic experts armed with useful knowledge to face professional life. It is therefore mandatory to identify the new needs and opportunities regarding pedagogical methodologies. This article reflects on the recent importance of peer review in teaching/learning forensic sciences based on the last 10 years of pedagogical experience inseparably from the scientific activity.

  6. SEM-EBSD based Realistic Modeling and Crystallographic Homogenization FE Analyses of LDH Formability Tests

    Science.gov (United States)

    Kuramae, Hiroyuki; Ngoc Tam, Nguyen; Nakamura, Yasunori; Sakamoto, Hidetoshi; Morimoto, Hideo; Nakamachi, Eiji

    2007-05-01

    Homogenization algorithm is introduced to the elastic/crystalline viscoplastic finite element (FE) procedure to develop multi-scale analysis code to predict the formability of sheet metal in macro scale, and simultaneously the crystal texture and hardening evolutions in micro scale. The isotropic and kinematical hardening lows are employed in the crystalline plasticity constitutive equation. For the multi-scale structure, two scales are considered. One is a microscopic polycrystal structure and the other a macroscopic elastic plastic continuum. We measure crystal morphologies by using the scanning electron microscope (SEM) with electron back scattered diffraction (EBSD), and define a three dimensional representative volume element (RVE) of micro ploycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. Since nonlinear multi-scale FE analysis requires large computation time, development of parallel computing technique is needed. To realize the parallel analysis on PC cluster system, the dynamic explicit FE formulations are employed. Applying the domain partitioning technique to FE mesh of macro continuum, homogenized stresses based on micro crystal structures are computed in parallel without solving simultaneous linear equation. The parallel FEM code is applied to simulate the limit dome height (LDH) test problem and hemispherical cup deep drawing problem of aluminum alloy AL6022, mild steel DQSK, high strength steel HSLA, and dual phase steel DP600 sheet metals. The localized distribution of thickness strain and the texture evolution are obtained.

  7. Teaching and learning based on peer review: a realistic approach in forensic sciences.

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge; Magalhães, Teresa

    2016-01-01

    Teaching and learning methods need a continuous upgrade in higher education. However it is also true that some of the modern methodologies do not reduce or prevent school failure. Perhaps the real limitation is the inability to identify the true reasons that may explain it or ignore/undervalue the problem. In our opinion, one of the current constraints of the teaching/learning process is the excess of and inadequate bibliography recommended by the teacher, which results in continuous student difficulties and waste of time in searching and selecting useful information. The need to change the paradigm of the teaching/learning process comes also from employers. They claim forensic experts armed with useful knowledge to face professional life. It is therefore mandatory to identify the new needs and opportunities regarding pedagogical methodologies. This article reflects on the recent importance of peer review in teaching/learning forensic sciences based on the last 10 years of pedagogical experience inseparably from the scientific activity. PMID:27547377

  8. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  9. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    International Nuclear Information System (INIS)

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values. (paper)

  10. Mathematics Instructional Model Based on Realistic Mathematics Education to Promote Problem Solving Ability at Junior High School Padang

    Directory of Open Access Journals (Sweden)

    Edwin Musdi

    2016-02-01

    Full Text Available This research aims to develop a mathematics instructional model based realistic mathematics education (RME to promote students' problem-solving abilities. The design research used Plomp models, which consists of preliminary phase, development or proto-typing phase and assessment phase.  At this study, only the first two phases conducted. The first phase, a preliminary investigation, carried out with a literature study to examine the theory-based instructional learning RME model, characteristics of learners, learning management descriptions by junior high school mathematics teacher and relevant research. The development phase is done by developing a draft model (an early prototype model that consists of the syntax, the social system, the principle of reaction, support systems, and the impact and effects of instructional support. Early prototype model contain a draft model, lesson plans, worksheets, and assessments. Tesssmer formative evaluation model used to revise the model. In this study only phase of one to one evaluation conducted. In the ppreliminary phase has produced a theory-based learning RME model, a description of the characteristics of learners in grade VIII Junior High School Padang and the description of teacher teaching in the classroom. The result showed that most students were still not be able to solve the non-routine problem. Teachers did not optimally facilitate students to develop problem-solving skills of students. It was recommended that the model can be applied in the classroom.

  11. Bending and Twisting the Embryonic Heart: A Computational Model for C-Looping Based on Realistic Geometry

    Directory of Open Access Journals (Sweden)

    Yunfei eShi

    2014-08-01

    Full Text Available The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and contraction in the omphalomesenteric veins (primitive atria and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  12. Normal and Pathological NCAT Image and Phantom Data Based on Physiologically Realistic Left Ventricle Finite-Element Models

    International Nuclear Information System (INIS)

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, which provides a realistic model of the normal human anatomy and cardiac and respiratory motions, is used in medical imaging research to evaluate and improve imaging devices and techniques, especially dynamic cardiac applications. One limitation of the phantom is that it lacks the ability to accurately simulate altered functions of the heart that result from cardiac pathologies such as coronary artery disease (CAD). The goal of this work was to enhance the 4D NCAT phantom by incorporating a physiologically based, finite-element (FE) mechanical model of the left ventricle (LV) to simulate both normal and abnormal cardiac motions. The geometry of the FE mechanical model was based on gated high-resolution x-ray multi-slice computed tomography (MSCT) data of a healthy male subject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees at the epicardial surface, through 0 degrees at the mid-wall, to 90 degrees at the endocardial surface. A time varying elastance model was used to simulate fiber contraction, and physiological intraventricular systolic pressure-time curves were applied to simulate the cardiac motion over the entire cardiac cycle. To demonstrate the ability of the FE mechanical model to accurately simulate the normal cardiac motion as well abnormal motions indicative of CAD, a normal case and two pathologic cases were simulated and analyzed. In the first pathologic model, a subendocardial anterior ischemic region was defined. A second model was created with a transmural ischemic region defined in the same location. The FE based deformations were incorporated into the 4D NCAT cardiac model through the control points that define the cardiac structures in the phantom which were set to move according to the predictions of the mechanical model. A simulation study was performed using the FE-NCAT combination to investigate how the

  13. Internet-based medical education: a realist review of what works, for whom and in what circumstances

    Directory of Open Access Journals (Sweden)

    Greenhalgh Trisha

    2010-02-01

    Full Text Available Abstract Background Educational courses for doctors and medical students are increasingly offered via the Internet. Despite much research, course developers remain unsure about what (if anything to offer online and how. Prospective learners lack evidence-based guidance on how to choose between the options on offer. We aimed to produce theory driven criteria to guide the development and evaluation of Internet-based medical courses. Methods Realist review - a qualitative systematic review method whose goal is to identify and explain the interaction between context, mechanism and outcome. We searched 15 electronic databases and references of included articles, seeking to identify theoretical models of how the Internet might support learning from empirical studies which (a used the Internet to support learning, (b involved doctors or medical students; and (c reported a formal evaluation. All study designs and outcomes were considered. Using immersion and interpretation, we tested theories by considering how well they explained the different outcomes achieved in different educational contexts. Results 249 papers met our inclusion criteria. We identified two main theories of the course-in-context that explained variation in learners' satisfaction and outcomes: Davis's Technology Acceptance Model and Laurillard's model of interactive dialogue. Learners were more likely to accept a course if it offered a perceived advantage over available non-Internet alternatives, was easy to use technically, and compatible with their values and norms. 'Interactivity' led to effective learning only if learners were able to enter into a dialogue - with a tutor, fellow students or virtual tutorials - and gain formative feedback. Conclusions Different modes of course delivery suit different learners in different contexts. When designing or choosing an Internet-based course, attention must be given to the fit between its technical attributes and learners' needs and

  14. Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the plaques at the left coronary artery (LCA) and their effect on the haemodynamic and wall shear stress (WSS) in realistic patient models. Three sample patients with left coronary disease were selected based on CT data. The plaques were present at the left anterior descending and left circumflex branches with more than 50 % lumen narrowing. Computational fluid dynamics analysis was used to perform simulation of patient-specific models with realistic physiological conditions that demonstrate in vivo cardiac flow. WSS and blood flow in the LCA were measured during cardiac cycles. Our results showed that WSS was found to increase at the stenotic locations and decrease at pre- and post-plaque locations, whilst the recirculation location was found at post-plaque regions. There is a strong correlation between coronary bifurcation plaques and hemodynamic and WSS changes, based on the realistic coronary disease models.

  15. Simulation of realistic EarthCARE spaceborne Doppler products from ARM ground-based, SPIDER airborne and CRM data

    Science.gov (United States)

    Sy, O. O.; Tanelli, S.; Takahashi, N.; Ohno, Y.; Horie, H.; Kollias, P.

    2011-12-01

    The Cloud-profiling radar on ESA and JAXA's future EarthCARE mission will be the first spaceborne Doppler radar to ever fly [1]. This W-band CPR, which operates at 94.05 GHz, should provide an unprecedented global coverage of vertical-velocity field distribution of the Earth's atmosphere, and therewith a better characterization of dynamic energy transfers in the atmosphere. Prior to EarthCARE's launch, one needs to simulate the Doppler products to be expected from such a CPR, viz. the radar reflectivity and the mean velocity. Our work addresses this need by using existing ground-based and airborne Doppler measurements to generate realistic EarthCARElike spaceborne data. The input to our algorithm consists of actual atmospheric Doppler measurements obtained either from ground-based ARM [2], or from an airborne platform such as SPIDER [3], the Japanese CPR from the National institute od Information and Communications Technologies (NICT). Several corrections are then applied to account for the spacecraft motion as well as the spaceborneantenna characteristics. The realism of the simulated products is also achieved in terms of spatial and temporal resolution. Further, the effects of random fluctuations, noise and finite temporal sampling are included. In addition to highlighting the peculiarities of the generation of Doppler products according to the source of the original input data, our paper will show the corrections that are applied to recover the mean-Doppler velocity, particularly in the presence of aliasing and non-uniform beam-filling contaminations. Several scenarii will be discussed to explore the added value of EarthCARE data at a finer spatial resolution.

  16. Mathematics Literacy on Problem Based Learning with Indonesian Realistic Mathematics Education Approach Assisted E-Learning Edmodo

    Science.gov (United States)

    Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.

    2016-02-01

    This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.

  17. Bayesian Population Physiologically-Based Pharmacokinetic (PBPK Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations.

    Directory of Open Access Journals (Sweden)

    Markus Krauss

    Full Text Available Interindividual variability in anatomical and physiological properties results in significant differences in drug pharmacokinetics. The consideration of such pharmacokinetic variability supports optimal drug efficacy and safety for each single individual, e.g. by identification of individual-specific dosings. One clear objective in clinical drug development is therefore a thorough characterization of the physiological sources of interindividual variability. In this work, we present a Bayesian population physiologically-based pharmacokinetic (PBPK approach for the mechanistically and physiologically realistic identification of interindividual variability. The consideration of a generic and highly detailed mechanistic PBPK model structure enables the integration of large amounts of prior physiological knowledge, which is then updated with new experimental data in a Bayesian framework. A covariate model integrates known relationships of physiological parameters to age, gender and body height. We further provide a framework for estimation of the a posteriori parameter dependency structure at the population level. The approach is demonstrated considering a cohort of healthy individuals and theophylline as an application example. The variability and co-variability of physiological parameters are specified within the population; respectively. Significant correlations are identified between population parameters and are applied for individual- and population-specific visual predictive checks of the pharmacokinetic behavior, which leads to improved results compared to present population approaches. In the future, the integration of a generic PBPK model into an hierarchical approach allows for extrapolations to other populations or drugs, while the Bayesian paradigm allows for an iterative application of the approach and thereby a continuous updating of physiological knowledge with new data. This will facilitate decision making e.g. from preclinical to

  18. RAMESES publication standards: realist syntheses

    Directory of Open Access Journals (Sweden)

    Wong Geoff

    2013-01-01

    Full Text Available Abstract Background There is growing interest in realist synthesis as an alternative systematic review method. This approach offers the potential to expand the knowledge base in policy-relevant areas - for example, by explaining the success, failure or mixed fortunes of complex interventions. No previous publication standards exist for reporting realist syntheses. This standard was developed as part of the RAMESES (Realist And MEta-narrative Evidence Syntheses: Evolving Standards project. The project's aim is to produce preliminary publication standards for realist systematic reviews. Methods We (a collated and summarized existing literature on the principles of good practice in realist syntheses; (b considered the extent to which these principles had been followed by published syntheses, thereby identifying how rigor may be lost and how existing methods could be improved; (c used a three-round online Delphi method with an interdisciplinary panel of national and international experts in evidence synthesis, realist research, policy and/or publishing to produce and iteratively refine a draft set of methodological steps and publication standards; (d provided real-time support to ongoing realist syntheses and the open-access RAMESES online discussion list so as to capture problems and questions as they arose; and (e synthesized expert input, evidence syntheses and real-time problem analysis into a definitive set of standards. Results We identified 35 published realist syntheses, provided real-time support to 9 on-going syntheses and captured questions raised in the RAMESES discussion list. Through analysis and discussion within the project team, we summarized the published literature and common questions and challenges into briefing materials for the Delphi panel, comprising 37 members. Within three rounds this panel had reached consensus on 19 key publication standards, with an overall response rate of 91%. Conclusion This project used multiple

  19. Realist RCTs of complex interventions - an oxymoron.

    Science.gov (United States)

    Marchal, Bruno; Westhorp, Gill; Wong, Geoff; Van Belle, Sara; Greenhalgh, Trisha; Kegels, Guy; Pawson, Ray

    2013-10-01

    Bonell et al. discuss the challenges of carrying out randomised controlled trials (RCTs) to evaluate complex interventions in public health, and consider the role of realist evaluation in enhancing this design (Bonell, Fletcher, Morton, Lorenc, & Moore, 2012). They argue for a "synergistic, rather than oppositional relationship between realist and randomised evaluation" and that "it is possible to benefit from the insights provided by realist evaluation without relinquishing the RCT as the best means of examining intervention causality." We present counter-arguments to their analysis of realist evaluation and their recommendations for realist RCTs. Bonell et al. are right to question whether and how (quasi-)experimental designs can be improved to better evaluate complex public health interventions. However, the paper does not explain how a research design that is fundamentally built upon a positivist ontological and epistemological position can be meaningfully adapted to allow it to be used from within a realist paradigm. The recommendations for "realist RCTs" do not sufficiently take into account important elements of complexity that pose major challenges for the RCT design. They also ignore key tenets of the realist evaluation approach. We propose that the adjective 'realist' should continue to be used only for studies based on a realist philosophy and whose analytic approach follows the established principles of realist analysis. It seems more correct to call the approach proposed by Bonell and colleagues 'theory informed RCT', which indeed can help in enhancing RCTs. PMID:23850482

  20. Realistic Hair from a Sketch

    OpenAIRE

    Wither, Jamie; Bertails, Florence; Cani, Marie-Paule

    2007-01-01

    This paper explores a sketch-based interface for quickly yet accurately creating visually realistic hair for virtual characters. Recently, physically-based models have proved successful for generating a wide variety of hair types, but they do not provide a straightforward method for designing target hairstyles. The contribution of this paper is to propose a user-friendly method for controlling such a physically-based model, requiring no specific knowledge of mechanics or hair styling: the use...

  1. Community-based services for homeless adults experiencing concurrent mental health and substance use disorders: a realist approach to synthesizing evidence.

    Science.gov (United States)

    O'Campo, Patricia; Kirst, Maritt; Schaefer-McDaniel, Nicole; Firestone, Michelle; Scott, Allison; McShane, Kelly

    2009-11-01

    Consultations with community-based service providers in Toronto identified a lack of strong research evidence about successful community-based interventions that address the needs of homeless clients experiencing concurrent mental health and substance use disorders. We undertook a collaborative research effort between academic-based and community-based partners to conduct a systematic evidence synthesis drawing heavily from Pawson's realist review methodology to focus on both whether programs are successful and why and how they lead to improved outcomes. We examined scholarly and nonscholarly literature to explore program approaches and program elements that lead to improvements in mental health and substance use disorders among homeless individuals with concurrent disorders (CD). Information related to program contexts, elements, and successes and failures were extracted and further supplemented by key informant interviews and author communication regarding reviewed published studies. From the ten programs that we reviewed, we identified six important and promising program strategies that reduce mental health and, to a far lesser degree, substance use problems: client choice in treatment decision-making, positive interpersonal relationships between client and provider, assertive community treatment approaches, providing supportive housing, providing supports for instrumental needs, and nonrestrictive program approaches. These promising program strategies function, in part, by promoting and supporting autonomy among homeless adults experiencing CD. Our realist informed review is a useful methodology for synthesizing complex programming information on community-based interventions. PMID:19760155

  2. Human factor integration into the development of a realistic tree-rendering system based on lidar remote sensing

    Science.gov (United States)

    Fujisaki, Ikuko; Evans, David L.; Moorhead, Robert J.; Mohammadi-Aragh, Mahnas Jean; Irby, Derek W.; Roberts, Scott D.

    2004-05-01

    This paper introduces application of the Cave Automatic Virtual Environment (CAVE) to forest visualization and user studies which were designed to gain insight into human factors for system development. This interdisciplinary research project was undertaken by the Visualization, Analysis, and Imaging Laboratory and the Department of Forestry at Mississippi State University (MSU). The purpose was to create a forest management tool for remote examination of stands in a stereoscopic environment which allows users to observe and interact with realistic virtual stands. The datasets used in this study include measurements such as total height, Diameter at the Breast Height (DBH), and crown radii. The datasets were directly and indirectly generated from Light Detection and Ranging (LiDAR) data. The datasets from immature (eight-years-old) high density and mature (40-years-old) low density loblolly pine (Pinus taeda) stands were used to generate three types of tree models. These three models represent trees in different graphic-complexities and thus interactivity. In general, higher fidelity is preferred in visualization. However, there is a trade-off between graphic details and interaction speed. To determine an optimal model, a user study was designed to examine the influence photo-reality and interactivity have on the viewer's perception. Human subjects recruited from MSU's Department of Forestry will explore virtual stands rendered with one of the tree models in the CAVE and estimate forest parameters.

  3. The ASTROID Simulator Software Package: Realistic Modelling of High-Precision High-Cadence Space-Based Imaging

    CERN Document Server

    Marcos-Arenal, P; De Ridder, J; Huygen, R; Aerts, C

    2014-01-01

    The preparation of a space-mission that carries out any kind of imaging to detect high-precision low-amplitude variability of its targets requires a robust model for the expected performance of its instruments. This model cannot be derived from simple addition of noise properties due to the complex interaction between the various noise sources. While it is not feasible to build and test a prototype of the imaging device on-ground, realistic numerical simulations in the form of an end-to-end simulator can be used to model the noise propagation in the observations. These simulations not only allow studying the performance of the instrument, its noise source response and its data quality, but also the instrument design verification for different types of configurations, the observing strategy and the scientific feasibility of an observing proposal. In this way, a complete description and assessment of the objectives to expect from the mission can be derived. We present a high-precision simulation software packag...

  4. Self-replication of chemical systems based on recognition within a double or a triple helix - A realistic hypothesis

    Science.gov (United States)

    Kanavarioti, Anastassia

    1992-01-01

    A scenario is proposed for the non-enzymatic self-replication of short RNA molecules. The self-replication of an oligopyrimidine strand is considered and the process of template-directed synthesis based on recognition within a double helix is discussed. Replication mechanisms are suggested for selected oligonucleotides. The mechanisms are based on Watson-Crick base pairing between complementary nucleotides as well as Hoogsteen base pairing between a duplex and the complementary third strand. It is suggested that self-replication based on these mechanisms may be accomplished but may result in a substantial amount of misinformation transfer when mixed oligonucleotides are used.

  5. Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructures

    Science.gov (United States)

    Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo

    2015-10-01

    Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.

  6. Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling

    Science.gov (United States)

    Chen, Jhen-Si; Chu, Daping; Smithwick, Quinn

    2014-03-01

    An approach of rapid hologram generation for the realistic three-dimensional (3-D) image reconstruction based on the angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously developed layer-based method for hologram calculation. A 3-D object is simplified as layered cross-sectional images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the incorporation of clear depth cues, occlusion, and shading in the generated holograms for angular tiling. The combination of these techniques together with parallel computing reduces the computation time of a single-view hologram for a 3-D image of extended graphics array resolution to 176 ms using a single consumer graphics processing unit card.

  7. Expanding the Parameters for Excellence in Patient Assignments: Is Leveraging an Evidence-Data-Based Acuity Methodology Realistic?

    Science.gov (United States)

    Gray, Joel; Kerfoot, Karlene

    2016-01-01

    Finding the balance of equitable assignments continues to be a challenge for health care organizations seeking to leverage evidence-based leadership practices. Ratios and subjective acuity strategies for nurse-patient staffing continue to be the dominant approach in health care organizations. In addition to ratio-based assignments and acuity-based assignment models driven by financial targets, more emphasis on using evidence-based leadership strategies to manage and create science for effective staffing is needed. In particular, nurse leaders are challenged to increase the sophistication of management of patient turnover (admissions, discharges, and transfers) and integrate tools from Lean methodologies and quality management strategies to determine the effectiveness of nurse-patient staffing. PMID:26636229

  8. Modelling Hen Harrier Dynamics to Inform Human-Wildlife Conflict Resolution: A Spatially-Realistic, Individual-Based Approach

    OpenAIRE

    Heinonen, Johannes P. M.; Palmer, Stephen C.F.; Redpath, Steve M.; Travis, Justin M. J.

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical ...

  9. Kuhn: Realist or Antirealist?

    Directory of Open Access Journals (Sweden)

    Michel Ghins

    1998-06-01

    Full Text Available Although Kuhn is much more an antirealist than a realist, the earlier and later articulations of realist and antirealist ingredients in his views merit close scrutiny. What are the constituents of the real invariant World posited by Kuhn and its relation to the mutable paradigm-related worlds? Various proposed solutions to this problem (dubbed the "new-world problem" by Ian Hacking are examined and shown to be unsatisfactory. In The Structure of Scientific Revolutions, the stable World can reasonably be taken to be made up of ordinary perceived objects, whereas in Kuhn's later works the transparadigmatic World is identified with something akin to the Kantian world-in-itself. It is argued that both proposals are beset with insuperable difficulties which render Kuhn's earlier and later versions of antirealism implausible.

  10. Students’ Critical Mathematical Thinking Skills and Character: Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    OpenAIRE

    Anderson L. Palinussa

    2013-01-01

    This paper presents the findings of a quasi-experimental with pre-testpost-test design and control group that aims to assess students’ critical mathematical thinking skills and character through realisticmathematics education (RME) culture-based. Subjects of this studywere 106 junior high school students from two low and medium schools level in Ambon. The instruments of the study are: students’ early math skills test, critical thinking skills mathematical test and perception scale of students...

  11. Realistic Material Appearance Modelling

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří; Hatka, Martin

    2010-01-01

    Roč. 2010, č. 81 (2010), s. 13-14. ISSN 0926-4981 R&D Projects: GA ČR GA102/08/0593 Institutional research plan: CEZ:AV0Z10750506 Keywords : bidirectional texture function * texture modelling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2010/RO/haindl-realistic material appearance modelling.pdf

  12. Realistic outcomes: lessons from community-based research and demonstration programs for the prevention of cardiovascular diseases.

    Science.gov (United States)

    Mittelmark, M B; Hunt, M K; Heath, G W; Schmid, T L

    1993-01-01

    Public health departments nation-wide are implementing community-based cardiovascular disease (CVD) prevention programs. Many such programs are turning for guidance to three research and demonstration projects: the Stanford Five City Project, the Pawtucket Heart Health Program, and the Minnesota Heart Health Program. This article summarizes some of the lessons learned in these projects and recommends strategies for the new generation of CVD prevention programs. The core of a successful program is the community organization process. This involves identification and activation of key community leaders, stimulation of citizens and organizations to volunteer time and offer resources to CVD prevention, and the promotion of prevention as a community theme. A wide range of intervention settings are available for health promotion. As is true for the workplace, places of worship are receptive to health promotion programs and have access to large numbers of people. Mass media are effective when used in conjunction with complementary messages delivered through other channels, such as school programs, adult education programs, and self-help programs. Community health professionals play a vital role in providing program endorsement and stimulating the participation of other community leaders. School-based programs promote long-term behavior change and reach beyond the school to actively involve parents. Innovative health promotion contests have widespread appeal and promote participation in other community interventions. In the area of evaluation, health program participation rates are appropriate primary outcome measures in most community-oriented prevention programs. Other program evaluation priorities include community analysis and formative evaluation, providing data to fine-tune interventions and define the needs and preferences of the community. It is premature to comment conclusively on the effectiveness of community-based CVD prevention programs in reducing population

  13. Stability of realistic strange stars (RSS)

    CERN Document Server

    Bhowmick, S; Dey, M; Ray, S; Ray, R; Bhowmick, Siddhartha; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Ray, Ranjan

    2001-01-01

    Strange stars (SS) calculated from a realistic equation of state (EOS) are very stable, for example under fast rotation but have a soft surface, on which ripples may occur when radiation is emitted close to it. We suggest this as a natural explanation of the fluctuations observed in the intensity profile of X-ray pulsars. In contrast, SS based on EOS derived from the bag models (Bag SS) are less stable against fast rotation and do not have a hard surface and cannot explain these ripples. There are other important differences between Bag SS and the SS, based on a realistic EOS, which we call realistic strange stars (RSS).

  14. Performance optimization of MOS-like carbon nanotube-FETs with realistic source/drain contacts based on electrostatic doping

    International Nuclear Information System (INIS)

    Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS-like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold performance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application. (semiconductor devices)

  15. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    Directory of Open Access Journals (Sweden)

    Johannes P M Heinonen

    Full Text Available Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  16. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    Science.gov (United States)

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860

  17. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering

    Directory of Open Access Journals (Sweden)

    Benoit M

    2015-03-01

    Full Text Available Michel Benoit,1,2 Rachid Guerchouche,3 Pierre-David Petit,1 Emmanuelle Chapoulie,3 Valeria Manera,1 Gaurav Chaurasia,3 George Drettakis,3 Philippe Robert1,4 1EA CoBTeK/IA, University of Nice Sophia Antipolis, 2Clinique de Psychiatrie, Pole des Neurosciences Cliniques, CHU de Nice, 3Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, 4Centre Mémoire de Ressources et de Recherche, CHU de Nice, Nice, France Background: Virtual reality (VR opens up a vast number of possibilities in many domains of therapy. The primary objective of the present study was to evaluate the acceptability for elderly subjects of a VR experience using the image-based rendering virtual environment (IBVE approach and secondly to test the hypothesis that visual cues using VR may enhance the generation of autobiographical memories.Methods: Eighteen healthy volunteers (mean age 68.2 years presenting memory complaints with a Mini-Mental State Examination score higher than 27 and no history of neuropsychiatric disease were included. Participants were asked to perform an autobiographical fluency task in four conditions. The first condition was a baseline grey screen, the second was a photograph of a well-known location in the participant’s home city (FamPhoto, and the last two conditions displayed VR, ie, a familiar image-based virtual environment (FamIBVE consisting of an image-based representation of a known landmark square in the center of the city of experimentation (Nice and an unknown image-based virtual environment (UnknoIBVE, which was captured in a public housing neighborhood containing unrecognizable building fronts. After each of the four experimental conditions, participants filled in self-report questionnaires to assess the task acceptability (levels of emotion, motivation, security, fatigue, and familiarity. CyberSickness and Presence questionnaires were also assessed after the two VR conditions. Autobiographical memory was assessed

  18. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures.

    Science.gov (United States)

    Kewes, Günter; Schoengen, Max; Neitzke, Oliver; Lombardi, Pietro; Schönfeld, Rolf-Simon; Mazzamuto, Giacomo; Schell, Andreas W; Probst, Jürgen; Wolters, Janik; Löchel, Bernd; Toninelli, Costanza; Benson, Oliver

    2016-01-01

    Tremendous enhancement of light-matter interaction in plasmonic-dielectric hybrid devices allows for non-linearities at the level of single emitters and few photons, such as single photon transistors. However, constructing integrated components for such devices is technologically extremely challenging. We tackle this task by lithographically fabricating an on-chip plasmonic waveguide-structure connected to far-field in- and out-coupling ports via low-loss dielectric waveguides. We precisely describe our lithographic approach and characterize the fabricated integrated chip. We find excellent agreement with rigorous numerical simulations. Based on these findings we perform a numerical optimization and calculate concrete numbers for a plasmonic single-photon transistor. PMID:27364604

  19. Monte-Carlo Simulations of Spin-Crossover Phenomena Based on a Vibronic Ising-like Model with Realistic Parameters

    CERN Document Server

    Ye, Hong-zhou; Jiang, Hong

    2014-01-01

    Materials with spin-crossover (SCO) properties hold great potentials in information storage and therefore have received a lot of concerns in the recent decades. The hysteresis phenomena accompanying SCO is attributed to the intermolecular cooperativity whose underlying mechanism may have a vibronic origin. In this work, a new vibronic Ising-like model in which the elastic coupling between SCO centers is included by considering harmonic stretching and bending (SAB) interactions is proposed and solved by Monte Carlo simulations. The key parameters in the new model, $k_1$ and $k_2$, corresponding to the elastic constant of the stretching and bending mode, respectively, can be directly related to the macroscopic bulk and shear modulus of the material in study, which can be readily estimated either based on experimental measurements or first-principles calculations. The convergence issue in the MC simulations of the thermal hysteresis has been carefully checked, and it was found that the stable hysteresis loop can...

  20. A realistic EU vision of a lignite-based energy system in transition: Case study of Serbia

    Directory of Open Access Journals (Sweden)

    Batas-Bjelić Ilija

    2015-01-01

    Full Text Available Several Contracting Parties to the Treaty establishing the Energy Community of the South East Europe, currently in energy transition, have electricity production dominantly based on lignite which contrasts their new reality. Planning approach to designing a new feasible energy policy is presented in this paper. This novel approach in using EnergyPLAN tool stems from analysis of market operation of lignite thermal power plants on hourly basis, and quantification of the feasibility of the energy policy and its alignment with EU vision, and is presented in few scenarios. It was found out that the Serbian energy system is highly sensitive to the electricity market and CO2 tax increase, because the marginal costs for lignite generation will increase to more than 50€/MWh. Shifting in the merit order will be observed even at lower CO2 tax levels, because of the intensity of the emission of the electricity sector (calculated to be higher than 700gCO2/kWhel, according to current energy policy. Based on the increased use of renewable energy sources and more efficient energy conversion technologies, socio-economic and energy policy feasibility would be increased, while long-term marginal costs would be improved by 2€/MWh and emission intensity by 258 gCO2/kWhel, compared to the current energy policy. These contributions, shown in the Serbian case, are of general importance for other lignite dominated Contracting Parties to Treaty establishing the Energy Community. [Projekat Ministartsva nauke Republike Srbije, br. 42009

  1. Teaching and learning based on peer review: a realistic approach in forensic sciences [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ricardo Jorge Dinis-Oliveira

    2016-05-01

    Full Text Available Teaching and learning methods need a continuous upgrade in higher education. However it is also true that some of the modern methodologies do not reduce or prevent school failure. Perhaps the real limitation is the inability to identify the true reasons that may explain it or ignore/undervalue the problem. In our opinion, one of the current constraints of the teaching/learning process is the excess of and inadequate bibliography recommended by the teacher, which results in continuous student difficulties and waste of time in searching and selecting useful information. The need to change the paradigm of the teaching/learning process comes also from employers. They claim forensic experts armed with useful knowledge to face professional life. It is therefore mandatory to identify the new needs and opportunities regarding pedagogical methodologies. This article reflects on the recent importance of peer review in teaching/learning forensic sciences based on the last 10 years of pedagogical experience inseparably from the scientific activity.

  2. Towards an agential realist thinking of learning

    DEFF Research Database (Denmark)

    Plauborg, Helle

    2014-01-01

    This paper explores what can be understood by learning based on agential realist thinking. An agential realist thinking about learning is sensitive to the complexity that characterizes learning as a phenomenon. Thus, learning, from an agential realist perspective, is a dynamic and emergent....... This paper argues that intra-activity and 'leaps' are characteristics of learning. Thereby, transfer will be addressed and explained. Re-configurations are pivotal for this thinking about learning, and the concept of re-configurations breaks the tendency to understand learning as either more of the...

  3. A realistic lattice example

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.; Garren, A.A.

    1985-10-01

    A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.

  4. Realistic Composite Higgs Models

    CERN Document Server

    Anastasiou, Charalampos; Santiago, Jose

    2009-01-01

    We study the role of fermionic resonances in realistic composite Higgs models. We consider the low energy effective description of a model in which the Higgs arises as the pseudo-Goldstone boson of an SO(5)/SO(4) global symmetry breaking pattern. Assuming that only fermionic resonances are present below the cut-off of our effective theory, we perform a detailed analysis of the electroweak constraints on such a model. This includes the exact one-loop calculation of the T parameter and the anomalous Zbb coupling for arbitrary new fermions and couplings. Other relevant observables, like b to s gamma and Delta B=2 processes have been also examined. We find that, while minimal models are difficult to make compatible with electroweak precision tests, models with several fermionic resonances, such as the ones that appear in the spectrum of viable composite Higgs models from warped extra dimensions, are fully realistic in a large region of parameter space. These fermionic resonances could be the first observable sign...

  5. Realistic Human Path Planning using Fluid Simulation

    OpenAIRE

    Burgess, Rene G.; Darken, Christian J.

    2004-01-01

    This paper describes an approach for obtaining very realistic movement paths through a terrain set by applying the properties of a fluid simulation to produce intuitively human-like results. Similar to the concepts described in the physical world by the Principle of Least Action, realistic paths for human movement generally tend to follow "natural lines of drift". This common military term describes a method of route selection based on least effort expenditure (or highest possible speed) en...

  6. Ce K edge XAS of ceria-based redox materials under realistic conditions for the two-step solar thermochemical dissociation of water and/or CO2.

    Science.gov (United States)

    Rothensteiner, Matthäus; Sala, Simone; Bonk, Alexander; Vogt, Ulrich; Emerich, Hermann; van Bokhoven, Jeroen A

    2015-10-28

    X-ray absorption spectroscopy was used to characterise ceria-based materials under realistic conditions present in a reactor for solar thermochemical two-step water and carbon dioxide splitting. A setup suitable for in situ measurements in transmission mode at the cerium K edge from room temperature up to 1773 K is presented. Time-resolved X-ray absorption near-edge structure (XANES) data, collected for a 10 mol% hafnium-doped ceria sample (Ce0.9Hf0.1O2-δ) during reduction at 1773 K in a flow of inert gas and during re-oxidation by CO2 at 1073 K, enables the quantitative determination of the non-stoichiometry δ of the fluorite-type structure. XANES analysis suggests the formation of the hexagonal Ce2O3 phase upon reduction in 2% hydrogen/helium at 1773 K. We discuss the experimental limitations and possibilities of high-temperature in situ XAS at edges of lower energy as well as the importance of the technique for understanding and improving the properties of ceria-based oxygen storage materials for thermochemical solar energy conversion. PMID:26412705

  7. Benchmark test cases for evaluation of computer-based methods for detection of setup errors: realistic digitally reconstructed electronic portal images with known setup errors

    International Nuclear Information System (INIS)

    Purpose: The purpose of this investigation was to develop methods and software for computing realistic digitally reconstructed electronic portal images with known setup errors for use as benchmark test cases for evaluation and intercomparison of computer-based methods for image matching and detecting setup errors in electronic portal images. Methods and Materials: An existing software tool for computing digitally reconstructed radiographs was modified to compute simulated megavoltage images. An interface was added to allow the user to specify which setup parameter(s) will contain computer-induced random and systematic errors in a reference beam created during virtual simulation. Other software features include options for adding random and structured noise, Gaussian blurring to simulate geometric unsharpness, histogram matching with a 'typical' electronic portal image, specifying individual preferences for the appearance of the 'gold standard' image, and specifying the number of images generated. The visible male computed tomography data set from the National Library of Medicine was used as the planning image. Results: Digitally reconstructed electronic portal images with known setup errors have been generated and used to evaluate our methods for automatic image matching and error detection. Any number of different sets of test cases can be generated to investigate setup errors involving selected setup parameters and anatomic volumes. This approach has proved to be invaluable for determination of error detection sensitivity under ideal (rigid body) conditions and for guiding further development of image matching and error detection methods. Example images have been successfully exported for similar use at other sites. Conclusions: Because absolute truth is known, digitally reconstructed electronic portal images with known setup errors are well suited for evaluation of computer-aided image matching and error detection methods. High-quality planning images, such as

  8. Benchmark test cases for evaluation of computer-based methods for detection of setup errors: realistic digitally reconstructed electronic portal images with known setup errors

    International Nuclear Information System (INIS)

    Purpose/Objective: The potential for on-line error detection using electronic portal images (EPIs) has stimulated the investigation of computer-based methods for matching portal images with reference or 'gold standard' images. The lack of absolute truth for clinical images is a major obstacle to the evaluation of these methods. The purpose of this investigation was to create a set of realistic test EPIs with known setup errors for use as a benchmark for evaluation and intercomparison of computer-based methods, including automatic and user-guided techniques, for EPI analysis. Materials and Methods: Digitally reconstructed electronic portal images (DREPIs) were computed using the visible male CT data set from the National Library of Medicine (NLM). (DREPIs are computed using high energy attenuation coefficients to simulate megavoltage images.) The NLM CT data set comprises 512x512x1 mm contiguous slices from the tip of the head to below the knees. The subject was frozen and scanned very soon after non-traumatizing death, and thus the visualized anatomy closely resembles that of a living person, but without breathing and other motion artifacts. Also since dose was not a consideration the signal-to-noise ratio is higher compared with typical 1 mm slices obtained on a living person. Because of the quality of the CT data, the quality of the DREPIs had to be degraded, and modified in other ways, to create realistic test cases. Modifications included: 1) contrast histogram matching to actual EPIs, 2) addition of structured noise by blending an 'open field' EPI image with the DREPI, 3) addition of random unstructured noise, and 4) Gaussian blurring to simulate patient motion and head scatter effects. (It is important to note that there is no standard appearance or quality for EPIs. The appearance of EPIs is quite variable, especially across EPIDs from different manufacturers. Even for a given system, EPIs are quite sensitive to system calibration and acquisition parameters

  9. Realist evaluation: an immanent critique.

    Science.gov (United States)

    Porter, Sam

    2015-10-01

    This paper critically analyses realist evaluation, focussing on its primary analytical concepts: mechanisms, contexts, and outcomes. Noting that nursing investigators have had difficulty in operationalizing the concepts of mechanism and context, it is argued that their confusion is at least partially the result of ambiguities, inconsistencies, and contradictions in the realist evaluation model. Problematic issues include the adoption of empiricist and idealist positions, oscillation between determinism and voluntarism, subsumption of agency under structure, and categorical confusion between context and mechanism. In relation to outcomes, it is argued that realist evaluation's adoption of the fact/value distinction prevents it from taking into account the concerns of those affected by interventions. The aim of the paper is to use these immanent critiques of realist evaluation to construct an internally consistent realist approach to evaluation that is more amenable to being operationalized by nursing researchers. PMID:26392234

  10. Satellite Maps Deliver More Realistic Gaming

    Science.gov (United States)

    2013-01-01

    When Redwood City, California-based Electronic Arts (EA) decided to make SSX, its latest snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was NASA's ASTER Global Digital Elevation Map, made available by the Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.

  11. Improving Intuition Skills with Realistic Mathematics Education

    Science.gov (United States)

    Hirza, Bonita; Kusumah, Yaya S.; Darhim; Zulkardi

    2014-01-01

    The intention of the present study was to see the improvement of students' intuitive skills. This improvement was seen by comparing the Realistic Mathematics Education (RME)-based instruction with the conventional mathematics instruction. The subject of this study was 164 fifth graders of elementary school in Palembang. The design of this study…

  12. Progress in realistic LOCA analysis

    International Nuclear Information System (INIS)

    While LOCA is a complex transient to simulate, the state of art in thermal hydraulics has advanced sufficiently to allow its realistic prediction and application of advanced methods to actual reactor design as demonstrated by methodology described in this paper

  13. Realistic applications of CNTs

    Directory of Open Access Journals (Sweden)

    John Robertson

    2004-10-01

    Full Text Available Carbon nanotubes (CNTs are a fascinating subject for curiosity-driven research. But will they give rise to commercially viable applications? CNTs are rolled up sheets of sp2; bonded graphite with no surface broken bonds. Their possible applications1,2; arise from the remarkable properties of single-walled nanotubes (SWNTs such as the highest Young's modulus, highest thermal conductivity, ballistic electron transport, and high aspect ratio structure. To date, development of nanotube-based products has been delayed by a lack of availability of quantities of material and lack of control of their growth. Supplies of multi-walled nanotubes (MWNTs or nanofibers have been available from Hyperion Catalysis International, but under constraint and only as preformed composites. The supply situation is now improving with several firms producing on a larger scale, such as CNI, Showa Denko, Thomas Swan, and Nanocyl. Now is, therefore, a good time to look at applications from a more business view.

  14. Realistic Simulation of Rice Plant

    Institute of Scientific and Technical Information of China (English)

    DING Wei-long; ZHANG Yu-ping; ZHANG Qian-yuan; ZHU De-feng; CHEN Qi

    2011-01-01

    The existing research results of virtual modeling of rice plant,however,is far from perfect compared to that of other crops due to its complex structure and growth process.Techniques to visually simulate the architecture of rice plant and its growth process are presented based on the analysis of the morphological characteristics at different stages.Firstly,the simulations of geometrical shape,the bending status and the structural distortion of rice leaves are conducted.Then,by using an improved model for bending deformation,the curved patterns of panicle axis and various types of panicle branches are generated,and the spatial shape of rice panicle is therefore created.Parametric L-system is employed to generate its topological structures,and finite-state automaton is adopted to describe the development of geometrical structures.Finally,the computer visualization of three-dimensional morphologies of rice plant at both organ and individual levels is achieved.The experimental results showed that the proposed methods of modeling the three-dimensional shapes of organs and simulating the growth of rice plant are feasible and effective,and the generated three-dimensional images are realistic.

  15. A realistic renormalizable supersymmetric E6 model

    CERN Document Server

    Bajc, Borut

    2013-01-01

    A complete realistic model based on the supersymmetric version of $E_6$ is presented. It consists of three copies of matter 27, and a Higgs sector made of $2\\times(27+\\bar{27})+351'+\\bar{351'}$ representations. An analytic solution to the equations of motion is found which spontaneously breaks the gauge group into the Standard Model. The light fermion mass matrices are written down explicitly as non-linear functions of three Yukawa matrices. This contribution is based on Ref. [1].

  16. Should scientific realists be platonists?

    DEFF Research Database (Denmark)

    Busch, Jacob; Morrison, Joe

    2015-01-01

    Realists about are arrived at by any inferen- tial route which eschews causes (§3), and nor is there any direct pressure for Scientific Real- ists to change their inferential methods (§4). We suggest that in order to maintain inferential parity with Scientific Realism, proponents of EIA need to give......Enhanced Indispensability Arguments (EIA) claim that Scientific Realists are committed to the existence of mathematical entities due to their reliance on Inference to the Best Explana- tion (IBE). Our central question concerns this purported parity of reasoning: do people who defend the EIA make an...... appropriate use of the resources of Scientific Realism (in particular, IBE) to achieve platonism? (§2) We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should be Scientific...

  17. Realistic Visualization of Virtual Views

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    developed and received much attention in recent years: Realistic Virtual View Synthesis. The main goal is a high fidelity representation of virtual scenarios while easing modeling and physical phenomena simulation. In particular, realism is achieved by the transfer to the novel view of all the physical......Computer Graphics allows us today to visualize in real-time innumerable and amazing scenarios with no limits on viewpoint and viewing direction. However, to design accurate object models and to simulate all the physical phenomena occurring in analogous real situations often represents a job that...... can be impractical and sometime impossible. In addition, the artificial nature of data often makes visualized virtual scenarios not realistic enough. Not realistic in the sense that a synthetic scene is easy to discriminate visually from a natural scene. A new field of research has consequently...

  18. Improving Intuition Skills with Realistic Mathematics Education

    OpenAIRE

    Bonita Hirza; Yaya S. Kusumah; Darhim; Zulkardi

    2014-01-01

    The intention of the present study was to see the improvement of students’ intuitive skills. This improvement was seen by comparing the Realistic Mathematics Education (RME)-based instruction with the conventional mathematics instruction. The subject of this study was 164 fifth graders of elementary school in Palembang. The design of this study was a Pretest-Posttest Control Group Experiment. Data was analyzed with the help of SPSS. The result of this study showed that there was differe...

  19. Humanoid Robot Simulator: A Realistic Dynamics Approach

    OpenAIRE

    Lima, José; Gonçalves, José; Costa, Paulo; Moreira, António

    2008-01-01

    This paper describes a humanoid robot simulator with realistic dynamics. As simulation is a powerful tool for speeding up the control software development, the suggested accurate simulator allows to accomplish this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback and allows the user to test any control strategy without damaging the real robot in the early stages of the development. The proposed simulator also captures some c...

  20. Realistic behaviour simulation of a humanoid robot

    OpenAIRE

    Lima, José; Gonçalves, José; Costa, Paulo; Moreira, António

    2008-01-01

    This paper describes a humanoid robot simulator with realistic dynamics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfil this goal. The simulator is based on the Open Dynamics Engine and GLScene graphics library, providing instant visual feedback. User is able to test any control strategy without bringing damage to the real robot in the early stages of the development. The proposed simulator also captures some...

  1. Realistic Machine Simulation with Virtual Reality

    OpenAIRE

    Neugebauer, R.; Klimant, P.; M. Witt

    2014-01-01

    Today highly complex components are manufactured on NC-controlled machine tools. The NC programs, controlling these machines, are usually automatically generated by CAM software. This automatic processing is often erroneous. The VR-based realistic machine simulation, presented in this paper, extends the usual content of a machine simulation, like material removal and collision detection, by various new aspects. The coupling of a real NC unit allows the recognition and elimination of all proce...

  2. Quantum cryptography: towards realization in realistic conditions

    International Nuclear Information System (INIS)

    Many of quantum cryptography schemes have been proposed based on some assumptions such as no transmission loss, no measurement error, and an ideal single photon generator. We have been trying to develop a theory of quantum cryptography considering realistic conditions. As such attempts, we propose quantum cryptography with coherent states, quantum cryptography with two-photon interference, and generalization of two-state cryptography to two-mixed-state cases. (author)

  3. Assessment and realistic mathematics education

    OpenAIRE

    Heuvel-Panhuizen, M.H.A.M. van den

    1996-01-01

    This book describes the consequences of Realistic Mathematics Education (RME) for assessing students’ understanding of mathematics in primary school. RME is the Dutch answer to the worldwide need to reform mathematics education. Changed ideas about mathematics as a school subject, its goals, ideas about teaching and learning mathematics, require new forms of assessment. Within RME this means a preference for observation and individual interviews. However, written tests have not been abandoned...

  4. Simple and Realistic Data Generation

    DEFF Research Database (Denmark)

    Pedersen, Kenneth Houkjær; Torp, Kristian; Wind, Rico

    2006-01-01

    This paper presents a generic, DBMS independent, and highly extensible relational data generation tool. The tool can efficiently generate realistic test data for OLTP, OLAP, and data streaming applications. The tool uses a graph model to direct the data generation. This model makes it very simple...... to generate data even for large database schemas with complex inter- and intra table relationships. The model also makes it possible to generate data with very accurate characteristics....

  5. Classification of local realistic theories

    International Nuclear Information System (INIS)

    Recently, it has been shown that an explicit local realistic model for the values of a correlation function, given in a two-setting Bell experiment (two-setting model), works only for the specific set of settings in the given experiment, but cannot construct a local realistic model for the values of a correlation function, given in a continuous-infinite settings Bell experiment (infinite-setting model), even though there exist two-setting models for all directions in space. Hence, the two-setting model does not have the property which the infinite-setting model has. Here, we show that an explicit two-setting model cannot construct a local realistic model for the values of a correlation function, given in an only discrete-three settings Bell experiment (three-setting model), even though there exist two-setting models for the three measurement directions chosen in the given three-setting experiment. Hence, the two-setting model does not have the property which the three-setting model has

  6. Toward a realistic low-field SSC lattice

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S. [Univ. of Houston, TX (United States)

    1985-10-01

    Three six-fold lattices for 3 T superferric SSC have been generated at TAC. The program based on the first order canonical transformation was used to compare lattices. On this basis the realistic race-track lattices were generated.

  7. Realist model approach to quantum mechanics

    Science.gov (United States)

    Hájíček, P.

    2013-06-01

    The paper proves that quantum mechanics is compatible with the constructive realism of modern philosophy of science. The proof is based on the observation that properties of quantum systems that are uniquely determined by their preparations can be assumed objective without the difficulties that are encountered by the same assumption about values of observables. The resulting realist interpretation of quantum mechanics is made rigorous by studying the space of quantum states—the convex set of state operators. Prepared states are classified according to their statistical structure into indecomposable and decomposable instead of pure and mixed. Simple objective properties are defined and showed to form a Boolean lattice.

  8. Realistic and efficient 2D crack simulation

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  9. Editor's Introduction: Realist Methodology : A Review

    OpenAIRE

    Olsen, W K., Jamie Morgan.

    2010-01-01

    Critical realists offer a set of philosophical underpinnings for social research. Critical realists also engage constructively with social theory, but they are more than just theorists. In this chapter I list and describe various innovative methodological contributions made in recent years by realists. I point out ways in which research methods (i.e. techniques) fit with particular methodological assertions. There is a historical legacy of empiricism which critical realists often use as a foi...

  10. Applying realistic mathematics education in Vietnam : teaching middle school geometry

    OpenAIRE

    Le, Tuan Anh

    2007-01-01

    Since 1971, the Freudenthal Institute has developed an approach to mathematics education named Realistic Mathematics Education (RME). The philosophy of RME is based on Hans Freudenthal’s concept of ‘mathematics as a human activity’. Prof. Hans Freudenthal (1905-1990), a mathematician and educator, believes that ‘ready-made mathematics’ should not be taught in school. By contrast, he urges that students should be offered ‘realistic situations’ so that they can rediscover from informal to forma...

  11. Realistic Solar Surface Convection Simulations

    Science.gov (United States)

    Stein, Robert F.; Nordlund, Ake

    2000-01-01

    We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-convection.

  12. REALISTIC CONCEPTION OF V.M. BEHTEREV

    Directory of Open Access Journals (Sweden)

    Korobkova S. N.

    2016-02-01

    Full Text Available In the focus of the article we have the philosophical concept of the outstanding scientist and social activist V.M. Behterev, which is considered as philosophical realism. Philosophical realism is a trend of Russian intellectual thought. It aims to study the nature and the man is substantial part of which. In this way, the realism is based on the anthropological tradition. Realistic ideology, which is developed by scientists, indicates the comprehension of the relationship of material and ideal in nature. To designate such connection the author proposes the concept of "philosophical conversion". Behterev's theory is positioned as a particular expression of philosophical realism in nature science, and it is termed by "evolutionary monism". It means a correlative connection of a total processes in nature. By analyzing the philosophical views of the scientist, the author concludes that psychic energy appears as a correlate of material and ideal and it is intermediated by humans. Psychic energy like other forms of energy is never destroyed and provides a social immortality of the man. The accumulation of mental energy leads to the creation of higher moral being named «progenerativ». The realistic concept of Behterev is interesting both a historical point of view and in the context of contemporary interdisciplinary efforts to comprehend the "second reality" of man, namely a virtual reality

  13. Centralized Cooperative Positioning and Tracking with Realistic Communications Constraints

    DEFF Research Database (Denmark)

    Mensing, Christian; Nielsen, Jimmy Jessen

    2010-01-01

    on the overall performance will be assessed. As we are considering a dynamic scenario, the cooperative positioning algorithms are based on extended Kalman filtering for position estimation and tracking. Simulation results for ultra-wideband based ranging information and WLAN based communications...... infrastructure show the benefits of cooperative position and tracking for realistic measurement and mobility models....

  14. The Coupled Spectral Element/Normal Mode Method: Application to the Testing of Several Approximations Based on Normal Mode Theory for the Computation of Seismograms in a Realistic 3D Earth.

    Science.gov (United States)

    Capdeville, Y.; Gung, Y.; Romanowicz, B.

    2002-12-01

    The spectral element method (SEM) has recently been adapted successfully for global spherical earth wave propagation applications. Its advantage is that it provides a way to compute exact seismograms in a 3D earth, without restrictions on the size or wavelength of lateral heterogeneity at any depth, and can handle diffraction and other interactions with major structural boundaries. Its disadvantage is that it is computationally heavy. In order to partly address this drawback, a coupled SEM/normal mode method was developed (Capdeville et al., 2000). This enables us to more efficiently compute bodywave seismograms to realistically short periods (10s or less). In particular, the coupled SEM/normal mode method is a powerful tool to test the validity of some analytical approximations that are currently used in global waveform tomography, and that are considerably faster computationally. Here, we focus on several approximations based on normal mode perturbation theory: the classical "path-average approximation" (PAVA) introduced by Woodhouse and Dziewonski (1984) and well suited for fundamental mode surface waves (1D sensitivity kernels); the non-linear asymptotic coupling theory (NACT), which introduces coupling between mode branches and 2D kernels in the vertical plane containing the source and the receiver (Li and Tanimoto, 1993; Li and Romanowicz, 1995); an extension of NACT which includes out of plane focusing terms computed asymptotically (e.g. Romanowicz, 1987) and introduces 3D kernels; we also consider first order perturbation theory without asymptotic approximations, such as developed for example by Dahlen et al. (2000). We present the results of comparisons of realistic seismograms for different models of heterogeneity, varying the strength and sharpness of the heterogeneity and its location in depth in the mantle. We discuss the consequences of different levels of approximations on our ability to resolve 3D heterogeneity in the earth's mantle.

  15. Non-Realistic Video Rendering

    OpenAIRE

    Johannesová, Daniela

    2012-01-01

    Práce se zabývá způsoby pro nerealistické zobrazení videa. Jsou zde shrnuty techniky pro zpracování videa, hlavní zaměření je na malířské techniky a zpracování videa těmito technikami. Pozornost je věnována jednotlivým operacím při zpracování snímku a způsobům pro zajištění koherence mezi snímky videa. Součástí práce je aplikace na zpracování videa, využívající knihovnu OpenCV. The thesis deals a with ways of non-realistic view of video. There are summarized video processing techniques in ...

  16. Realistically Rendering SoC Traffic Patterns with Interrupt Awareness

    DEFF Research Database (Denmark)

    Angiolini, Frederico; Mahadevan, Sharkar; Madsen, Jan;

    2005-01-01

    generate realistic test traffic. This paper presents a selection of applications using interrupt-based synchronization; a reference methodology to split such applications in execution subflows and to adjust the overall execution stream based upon hardware events; a reactive simulation device capable of...

  17. Progress in realistic LOCA analysis

    International Nuclear Information System (INIS)

    In 1988 the USNRC revised the ECCS rule contained in Appendix K and Section 50.46 of 10 CFR Part 50, which governs the analysis of the Loss Of Coolant Accident (LOCA). The revised regulation allows the use of realistic computer models to calculate the loss of coolant accident. In addition, the new regulation allows the use of high probability estimates of peak cladding temperature (PCT), rather than upper bound estimates. Prior to this modification, the regulations were a prescriptive set of rules which defined what assumptions must be made about the plant initial conditions and how various physical processes should be modeled. The resulting analyses were highly conservative in their prediction of the performance of the ECCS, and placed tight constraints on core power distributions, ECCS set points and functional requirements, and surveillance and testing. These restrictions, if relaxed, will allow for additional economy, flexibility, and in some cases, improved reliability and safety as well. For example, additional economy and operating flexibility can be achieved by implementing several available core and fuel rod designs to increase fuel discharge burnup and reduce neutron flux on the reactor vessel. The benefits of application of best estimate methods to LOCA analyses have typically been associated with reductions in fuel costs, resulting from optimized fuel designs, or increased revenue from power upratings. Fuel cost savings are relatively easy to quantify, and have been estimated at several millions of dollars per cycle for an individual plant. Best estimate methods are also likely to contribute significantly to reductions in O and M costs, although these reductions are more difficult to quantify. Examples of O and M cost reductions are: 1) Delaying equipment replacement. With best estimate methods, LOCA is no longer a factor in limiting power levels for plants with high tube plugging levels or degraded safety injection systems. If other requirements for

  18. Breaking with fun, educational and realistic learning games

    DEFF Research Database (Denmark)

    Duus Henriksen, Thomas

    2009-01-01

    This paper addresses the game conceptions and values that learning games inherit from regular gaming, as well as how they affect the use and development of learning games. Its key points concern the issues of thinking learning games as fun, educative and realistic, which is how learning games are...... commonly conceived as means for staging learning processes, and that thinking learning games so has an inhibiting effect in regard to creating learning processes. The paper draws upon a qualitative study of participants' experiences with ‘the EIS Simulation', which is a computer-based learning game for...... between the game and other didactic activities that formed the learning process; and, the game might have been intended to be realistic, but it was in the gaps where this realism was critically assessed that learned understanding was forged. While thinking learning games as fun, educative and realistic...

  19. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  20. Realistic Prediction of BER for Adaptive OFDM Systems

    OpenAIRE

    Luo, Meiling; Villemaud, Guillaume; Gorce, Jean-Marie; Jie ZHANG

    2013-01-01

    Adaptive OFDM systems improve the spectral efficiency. In this paper, block adaptive modulation is implemented based on the realistic prediction of BER and fading parameters from the MR-FDPF model. The aggregate data rate from block adaptive modulation is compared to that from non-adaptive modulation, and at the end, the data rate gain is obtained.

  1. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

  2. Probabilistic infrasound propagation using realistic atmospheric perturbations

    NARCIS (Netherlands)

    Smets, P.S.M.; Evers, L.G.; Näsholm, S.P.; Gibbons, S.J.

    2015-01-01

    This study demonstrates probabilistic infrasound propagation modeling using realistic perturbations. The ensembles of perturbed analyses, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), include error variances of both model and assimilated observations. Ensemble spread pr

  3. Sotsialistlik realist Keskküla

    Index Scriptorium Estoniae

    1998-01-01

    Londonis 1998. a. ilmunud inglise kunstikriitiku Matthew Cullerne Bowni monograafias "Socialist Realist Painting" on eesti kunstnikest Enn Põldroos, Nikolai Kormashov, Ando Keskküla, Kormashovi ja Keskküla maalide reproduktsioonid

  4. Realistic Scheduling Mechanism for Smart Homes

    Directory of Open Access Journals (Sweden)

    Danish Mahmood

    2016-03-01

    Full Text Available In this work, we propose a Realistic Scheduling Mechanism (RSM to reduce user frustration and enhance appliance utility by classifying appliances with respective constraints and their time of use effectively. Algorithms are proposed regarding functioning of home appliances. A 24 hour time slot is divided into four logical sub-time slots, each composed of 360 min or 6 h. In these sub-time slots, only desired appliances (with respect to appliance classification are scheduled to raise appliance utility, restricting power consumption by a dynamically modelled power usage limiter that does not only take the electricity consumer into account but also the electricity supplier. Once appliance, time and power usage limiter modelling is done, we use a nature-inspired heuristic algorithm, Binary Particle Swarm Optimization (BPSO, optimally to form schedules with given constraints representing each sub-time slot. These schedules tend to achieve an equilibrium amongst appliance utility and cost effectiveness. For validation of the proposed RSM, we provide a comparative analysis amongst unscheduled electrical load usage, scheduled directly by BPSO and RSM, reflecting user comfort, which is based upon cost effectiveness and appliance utility.

  5. Realistic costs of carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS

  6. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2013-11-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces isolated from the boundary of P or even local minima, which are undesirable for several practical reasons. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs and show that the straight skeleton induces a realistic roof with maximum height and volume. We also show that the maximum possible number of distinct realistic roofs over P is ((n-4)(n-4)/4 /2⌋) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n4) preprocessing time. We also present an O(n5)-time algorithm for computing a realistic roof with minimum height or volume. © 2013 Elsevier B.V.

  7. An Overview of Westinghouse Realistic Large Break LOCA Evaluation Model

    Directory of Open Access Journals (Sweden)

    Cesare Frepoli

    2008-01-01

    Full Text Available Since the 1988 amendment of the 10 CFR 50.46 rule in 1988, Westinghouse has been developing and applying realistic or best-estimate methods to perform LOCA safety analyses. A realistic analysis requires the execution of various realistic LOCA transient simulations where the effect of both model and input uncertainties are ranged and propagated throughout the transients. The outcome is typically a range of results with associated probabilities. The thermal/hydraulic code is the engine of the methodology but a procedure is developed to assess the code and determine its biases and uncertainties. In addition, inputs to the simulation are also affected by uncertainty and these uncertainties are incorporated into the process. Several approaches have been proposed and applied in the industry in the framework of best-estimate methods. Most of the implementations, including Westinghouse, follow the Code Scaling, Applicability and Uncertainty (CSAU methodology. Westinghouse methodology is based on the use of the WCOBRA/TRAC thermal-hydraulic code. The paper starts with an overview of the regulations and its interpretation in the context of realistic analysis. The CSAU roadmap is reviewed in the context of its implementation in the Westinghouse evaluation model. An overview of the code (WCOBRA/TRAC and methodology is provided. Finally, the recent evolution to nonparametric statistics in the current edition of the W methodology is discussed. Sample results of a typical large break LOCA analysis for a PWR are provided.

  8. Neo-realistic Features in Snow Child

    Institute of Scientific and Technical Information of China (English)

    夏静林

    2013-01-01

    This essay illustrates neo-realistic features in Snow Child. This short story inherits and develops“the typical character in the typical environment”and the traditional linear time order in realistic works. At the same time, it has some changes and transcendent. It uses real brands, events and goods in reality to create a-true to-life picture of the contemporary world. It ex⁃plores deeper in character’s psychology and creates a circular narration with three flashbacks.

  9. Development of KAERI LBLOCA realistic evaluation model

    International Nuclear Information System (INIS)

    A realistic evaluation model (REM) for LBLOCA licensing calculation is developed and proposed for application to pressurized light water reactors. The developmental aim of the KAERI-REM is to provide a systematic methodology that is simple in structure and to use and built upon sound logical reasoning, for improving the code capability to realistically describe the LBLOCA phenomena and for evaluating the associated uncertainties. The method strives to be faithful to the intention of being best-estimate, that is, the method aims to evaluate the best-estimate values and the associated uncertainties while complying to the requirements in the ECCS regulations. (author)

  10. Realist synthesis: illustrating the method for implementation research

    Directory of Open Access Journals (Sweden)

    Rycroft-Malone Jo

    2012-04-01

    Full Text Available Abstract Background Realist synthesis is an increasingly popular approach to the review and synthesis of evidence, which focuses on understanding the mechanisms by which an intervention works (or not. There are few published examples of realist synthesis. This paper therefore fills a gap by describing, in detail, the process used for a realist review and synthesis to answer the question ‘what interventions and strategies are effective in enabling evidence-informed healthcare?’ The strengths and challenges of conducting realist review are also considered. Methods The realist approach involves identifying underlying causal mechanisms and exploring how they work under what conditions. The stages of this review included: defining the scope of the review (concept mining and framework formulation; searching for and scrutinising the evidence; extracting and synthesising the evidence; and developing the narrative, including hypotheses. Results Based on key terms and concepts related to various interventions to promote evidence-informed healthcare, we developed an outcome-focused theoretical framework. Questions were tailored for each of four theory/intervention areas within the theoretical framework and were used to guide development of a review and data extraction process. The search for literature within our first theory area, change agency, was executed and the screening procedure resulted in inclusion of 52 papers. Using the questions relevant to this theory area, data were extracted by one reviewer and validated by a second reviewer. Synthesis involved organisation of extracted data into evidence tables, theming and formulation of chains of inference, linking between the chains of inference, and hypothesis formulation. The narrative was developed around the hypotheses generated within the change agency theory area. Conclusions Realist synthesis lends itself to the review of complex interventions because it accounts for context as well as

  11. Righteous realists: Perceptions of American power and responsibility in the nuclear age

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, J.H.

    1988-01-01

    This is a study of the moral and ethical dimensions of political realism in post-World War II America, especially in relation to realist thought on nuclear weapons issues. Emphasis is placed on evolving notions of power and responsibility as they form the basis for a realist philosophy of power in the nuclear age. It is argued that the realists developed a concept of responsible power which was a hybrid of traditional American ideals and European Realpolitik. Included are chapters on the personal and intellectual background of five noteworthy realists, the realist position on some basic dilemmas in political ethics, the problem of usable and unusable force, the realists' view on deterrence and arms control, the question of democracy versus guardianship, and the realists as cultural critics. This study highlights the coherence of realist thought while pointing out the paradoxes upon which it is based. It situates realism in its historical context and reveals realism's relationship to explicit political and cultural values. It concludes that at their core, the realists were moralists; and realism was the entity through which they reconciled morality and power.

  12. Evolution of migration rate in a spatially realistic metapopulation model.

    OpenAIRE

    Heino,-M; Hanski,-I

    2001-01-01

    We use an individual-based, spatially realistic metapopulation model to study the evolution of migration rate. We first explore the consequences of habitat change in hypothetical patch networks on a regular lattice. If the primary consequence of habitat change is an increase in local extinction risk as a result of decreased local population sizes, migration rate increases. A nonmonotonic response, with migration rate decreasing at high extinction rate, was obtained only by assuming very frequ...

  13. Evolution of Migration Rate in a Spatially Realistic Metapopulation Model.

    OpenAIRE

    Heino, M.; Hanski, I.

    2000-01-01

    We use an individual-based, spatially realistic metapopulation model to study the evolution of migration rate. We first explore the evolutionary consequences of habitat change in hypothetical patch networks on a regular lattice. If the primary consequence of habitat change is an increase in local extinction risk due to decreased local population sizes, migration rate increases. A non-monotonic response, with migration rate decreasing at high extinction rate, was obtained only by assuming very...

  14. Realistic teleportation with linear optical elements

    OpenAIRE

    Trump, C.; Bruss, D.; Lewenstein, M.

    2000-01-01

    We calculate the highest possible information gain in a measurement of entangled states when employing a beamsplitter. The result is used to evaluate the fidelity, averaged over all unknown inputs, in a realistic teleportation protocol that takes account of the imperfect detection of Bell states. Finally, we introduce a probabilistic teleportation scheme, where measurements are made in a partially entangled basis.

  15. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia; Gerardino, Guillermo Andrés Pocovi; Wang, Hua

    2016-01-01

    Enhanced Inter-Cell Interference Coordination (eICIC) is a key ingredient to boost the performance of co-channel Heterogeneous Networks (HetNets). eICIC encompasses two main techniques: Almost Blank Subframes (ABS), during which the macro cell remains silent to reduce the interference, and biased...... user association to offload more users to the picocells. However, its application to realistic irregular deployments opens a number of research questions. In this paper, we investigate the operation of eICIC in a realistic deployment based on three-dimensional data from a dense urban European capital...... area. Rather than the classical semi-static and network-wise configuration, the importance of having highly dynamic and distributed mechanisms that are able to adapt to local environment conditions is revealed. We propose two promising cell association algorithms: one aiming at pure load balancing and...

  16. An iterative approach for generating statistically realistic populations of households

    CERN Document Server

    Gargiulo, Floriana; Huet, Sylvie; Deffuant, Guillaume

    2009-01-01

    Background: Many different simulation frameworks, in different topics, need to treat realistic datasets to initialize and calibrate the system. A precise reproduction of initial states is extremely important to obtain reliable forecast from the model. Methodology/Principal Findings: This paper proposes an algorithm to create an artificial population where individuals are described by their age, and are gathered in households respecting a variety of statistical constraints (distribution of household types, sizes, age of household head, difference of age between partners and among parents and children). Such a population is often the initial state of microsimulation or (agent) individual-based models. To get a realistic distribution of households is often very important, because this distribution has an impact on the demographic evolution. Usual techniques from microsimulation approach cross different sources of aggregated data for generating individuals. In our case the number of combinations of different hous...

  17. Realistic molecular model of kerogen's nanostructure

    Science.gov (United States)

    Bousige, Colin; Ghimbeu, Camélia Matei; Vix-Guterl, Cathie; Pomerantz, Andrew E.; Suleimenova, Assiya; Vaughan, Gavin; Garbarino, Gaston; Feygenson, Mikhail; Wildgruber, Christoph; Ulm, Franz-Josef; Pellenq, Roland J.-M.; Coasne, Benoit

    2016-05-01

    Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp2/sp3 hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.

  18. Cellular automaton for realistic modelling of landslides

    Directory of Open Access Journals (Sweden)

    E. Segre

    1995-01-01

    Full Text Available A numerical model is developed for the simulation of debris flow in landslides over a complex three dimensional topography. The model is then validated by comparing a simulation with reported field data. Our model is in fact a realistic elaboration of simpler "sandpile automata", which have in recent years been studied as supposedly paradigmatic of "self-organized criticality". Statistics and scaling properties of the simulation are examined, and show that the model has an intermittent behaviour.

  19. IBM symmetries in realistic shell model states

    International Nuclear Information System (INIS)

    An approximate dynamical symmetry referring to IBM-type bosons is shown to be latent in the shell model eigenfunctions for 54Cr and 56Fe. No symmetry is assumed in the approach, which invokes only a realistic shell model interaction and an interpretation of the bosons as nucleon pairs. Particular emphasis is placed on the levels involved in M1 excitation. 25 refs., 4 tabs., 1 fig

  20. Algorithm for Realistic Modeling of Graphitic Systems

    Directory of Open Access Journals (Sweden)

    A.V. Khomenko

    2011-01-01

    Full Text Available An algorithm for molecular dynamics simulations of graphitic systems using realistic semiempirical interaction potentials of carbon atoms taking into account both short-range and long-range contributions is proposed. Results of the use of the algorithm for a graphite sample are presented. The scalability of the algorithm depending on the system size and the number of processor cores involved in the calculations is analyzed.

  1. Behaviorly realistic simulations of stock market traders with a soul

    Science.gov (United States)

    Solomon, Sorin

    1999-09-01

    The price fluctuations of the stocks in the financial markets are the result of the individual operations by many individual investors. However for many decades the financial theory did not use directly this “microscopic representation” of the markets. The main difficulties preventing this approach were solved recently with the advent of modern computer technology: - massive detailed data on the individual market operations became available; - “microscopic simulations” of the stock markets in terms of their individual participating agents allow very realistic treatment of the problem. By taking advantage of the modern computer processing and simulation techniques, we are now able to confront real market data with the results of simulating “microscopic” realistic models of the markets. These models have the potential to include and study the effects on the market of any desired feature in the investors behavior: departures from rationality, herding effects, heterogeneous investor-specific trading strategies. We propose to use the comparison of computer simulations of microscopic models with the actual market data in order to validate and enhance the knowledge on the financial behavior of individuals. Moreover we hope to explain, understand (and may be predict and control) macroscopic market dynamical features (e.g., cycles of booms and crashes, investors wealth distribution, market returns probability distribution etc.) based on realistic models using this knowledge.

  2. Blend Shape Interpolation and FACS for Realistic Avatar

    Science.gov (United States)

    Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Basori, Ahmad Hoirul; Saba, Tanzila

    2015-03-01

    The quest of developing realistic facial animation is ever-growing. The emergence of sophisticated algorithms, new graphical user interfaces, laser scans and advanced 3D tools imparted further impetus towards the rapid advancement of complex virtual human facial model. Face-to-face communication being the most natural way of human interaction, the facial animation systems became more attractive in the information technology era for sundry applications. The production of computer-animated movies using synthetic actors are still challenging issues. Proposed facial expression carries the signature of happiness, sadness, angry or cheerful, etc. The mood of a particular person in the midst of a large group can immediately be identified via very subtle changes in facial expressions. Facial expressions being very complex as well as important nonverbal communication channel are tricky to synthesize realistically using computer graphics. Computer synthesis of practical facial expressions must deal with the geometric representation of the human face and the control of the facial animation. We developed a new approach by integrating blend shape interpolation (BSI) and facial action coding system (FACS) to create a realistic and expressive computer facial animation design. The BSI is used to generate the natural face while the FACS is employed to reflect the exact facial muscle movements for four basic natural emotional expressions such as angry, happy, sad and fear with high fidelity. The results in perceiving the realistic facial expression for virtual human emotions based on facial skin color and texture may contribute towards the development of virtual reality and game environment of computer aided graphics animation systems.

  3. Quantum coding theory with realistic physical constraints

    CERN Document Server

    Yoshida, Beni

    2010-01-01

    The following open problems, which concern a fundamental limit on coding properties of quantum codes with realistic physical constraints, are analyzed and partially answered here: (a) the upper bound on code distances of quantum error-correcting codes with geometrically local generators, (b) the feasibility of a self-correcting quantum memory. To investigate these problems, we study stabilizer codes supported by local interaction terms with translation and scale symmetries on a $D$-dimensional lattice. Our analysis uses the notion of topology emerging in geometric shapes of logical operators, which sheds a surprising new light on theory of quantum codes with physical constraints.

  4. Pairing and realistic shell-model interactions

    OpenAIRE

    Covello, A; Gargano, A.; Kuo, T. T. S.

    2012-01-01

    This paper starts with a brief historical overview of pairing in nuclei, which fulfills the purpose of properly framing the main subject. This concerns the pairing properties of a realistic shell-model effective interaction which has proved very successful in describing nuclei around doubly magic 132Sn. We focus attention on the two nuclei 134Te and 134Sn with two valence protons and neutrons, respectively. Our study brings out the key role of one particle-one hole excitations in producing a ...

  5. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    Parogama Sen

    2008-08-01

    We consider navigation or search schemes on networks which have a degree distribution of the form () ∝ exp(−). In addition, the linking probability is taken to be dependent on social distances and is governed by a parameter . The searches are realistic in the sense that not all search chains can be completed. An estimate of = ρ/d, where is the success rate and d the dynamic path length, shows that for a network of nodes, ∝ - in general. Dynamic small world effect, i.e., ≃ 0 is shown to exist in a restricted region of the - plane.

  6. Any realistic model of a physical system must be computationally realistic

    International Nuclear Information System (INIS)

    It is argued that any possible definition of a realistic physics theory – i.e., a mathematical model representing the real world – cannot be considered comprehensive unless it is supplemented with requirement of being computationally realistic. That is, the mathematical structure of a realistic model of a physical system must allow the collection of all the system's physical quantities to compute all possible measurement outcomes on some computational device not only in an unambiguous way but also in a reasonable amount of time. In the paper, it is shown that a deterministic quantum model of a microscopic system evolving in isolation should be regarded as realistic since the NP-hard problem of finding the exact solution to the Schrödinger equation for an arbitrary physical system can be surely solved in a reasonable amount of time in the case, in which the system has just a small number of degrees of freedom. In contrast to this, the deterministic quantum model of a truly macroscopic object ought to be considered as non-realistic since in a world of limited computational resources the intractable problem possessing that enormous amount of degrees of freedom would be the same as mere unsolvable

  7. Ultra-Reliable Communications in Failure-Prone Realistic Networks

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Lauridsen, Mads; Alvarez, Beatriz Soret;

    2016-01-01

    We investigate the potential of different diversity and interference management techniques to achieve the required downlink SINR outage probability for ultra-reliable communications. The evaluation is performed in a realistic network deployment based on site-specific data from a European capital....... Micro and macroscopic diversity techniques are proved to be important enablers of ultra-reliable communications. Particularly, it is shown how a 4x4 MIMO scheme with three orders of macroscopic diversity can achieve the required SINR outage performance. Smaller gains are obtained from interference...

  8. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  9. Optical Communications Performance with Realistic Weather and Automated Repeat Query

    Science.gov (United States)

    Clare, L.; Miles, G.; Breidenthal, J.

    2016-05-01

    Deep-space optical communications are subject to outages arising from deterministic clear line-of-sight dynamics as well as unpredictable weather effects at the ground station. These effects can be mitigated using buffering and automatic retransmission techniques. We provide an analysis that incorporates a realistic weather model based on a two-state Markov chain. Performance for a hypothetical Mars 2022 optical mission is derived incorporating dynamics over an entire 728-day synodic cycle, during which link passes and link data rate vary. Buffer sizing is addressed and operational implications are identified. Also, buffer occupancy results are extended for deep-space missions spanning a range of link data rates.

  10. Effects of realistic partial state densities on preequilibrium decay

    International Nuclear Information System (INIS)

    We reported earlier on the inclusion in code ALICE of a subroutine which calculates partial state densities for preequilibrium decay using realistic single particle levels. In this work we present results using single particle levels due to Seegar-Howard and Seegar-Perisho. Since the earlier work, we have modified the intranuclear transition rates for nucleon scattering based on the final density of three exciton states available. We summarize the changes made in the hybrid subroutine of ALICE and present our results. 5 refs., 1 fig

  11. Realistic Radio Communications in Pilot Simulator Training

    Science.gov (United States)

    Burki-Cohen, Judith; Kendra, Andrew J.; Kanki, Barbara G.; Lee, Alfred T.

    2000-01-01

    Simulators used for total training and evaluation of airline pilots must satisfy stringent criteria in order to assure their adequacy for training and checking maneuvers. Air traffic control and company radio communications simulation, however, may still be left to role-play by the already taxed instructor/evaluators in spite of their central importance in every aspect of the flight environment. The underlying premise of this research is that providing a realistic radio communications environment would increase safety by enhancing pilot training and evaluation. This report summarizes the first-year efforts of assessing the requirement and feasibility of simulating radio communications automatically. A review of the training and crew resource/task management literature showed both practical and theoretical support for the need for realistic radio communications simulation. A survey of 29 instructor/evaluators from 14 airlines revealed that radio communications are mainly role-played by the instructor/evaluators. This increases instructor/evaluators' own workload while unrealistically lowering pilot communications load compared to actual operations, with a concomitant loss in training/evaluation effectiveness. A technology review searching for an automated means of providing radio communications to and from aircraft with minimal human effort showed that while promising, the technology is still immature. Further research and the need for establishing a proof-of-concept are also discussed.

  12. Can realistic interaction be useful for nuclear mean-field approaches?

    CERN Document Server

    Nakada, H; Inakura, T; Margueron, J

    2016-01-01

    Recent applications of the M3Y-type semi-realistic interaction to the nuclear mean-field approaches are presented: (i) Prediction of magic numbers and (ii) isotope shifts of nuclei with magic proton numbers. The results exemplify that realistic interaction, which is derived from the base $2N$ and $3N$ interaction, furnish a new theoretical instrument for advancing nuclear mean-field approaches.

  13. Realistic Detectability of Close Interstellar Comets

    CERN Document Server

    Cook, Nathaniel V; Granvik, Mikael; Stephens, Denise C

    2016-01-01

    During the planet formation process, billions of comets are created and ejected into interstellar space. The detection and characterization of such interstellar comets (also known as extra-solar planetesimals or extra-solar comets) would give us in situ information about the efficiency and properties of planet formation throughout the galaxy. However, no interstellar comets have ever been detected, despite the fact that their hyperbolic orbits would make them readily identifiable as unrelated to the solar system. Moro-Mart\\'in et al. 2009 have made a detailed and reasonable estimate of the properties of the interstellar comet population. We extend their estimates of detectability with a numerical model that allows us to consider "close" interstellar comets, e.g., those that come within the orbit of Jupiter. We include several constraints on a "detectable" object that allow for realistic estimates of the frequency of detections expected from the Large Synoptic Survey Telescope (LSST) and other surveys. The inf...

  14. The Radiative Tail of Realistic Gravitational Collapse

    CERN Document Server

    Hod, S

    2000-01-01

    An astrophysically realistic model of wave dynamics in black-hole spacetimes must involve a {\\it non}-spherical background geometry with {\\it angular momentum}. We consider the evolution of {\\it gravitational} (and electromagnetic) perturbations in {\\it rotating} Kerr spacetimes. We show that a rotating Kerr black hole becomes ``bald'' {\\it slower} than the corresponding spherically-symmetric Schwarzschild black hole. Moreover, our results {\\it turn over} the traditional belief (which has been widely accepted during the last three decades) that the late-time tail of gravitational collapse is universal. In particular, we show that different fields have {\\it different} decaying rates. Our results are also of importance both to the study of the no-hair conjecture and the mass-inflation scenario (stability of Cauchy horizons).

  15. Helioseismology of a Realistic Magnetoconvective Sunspot Simulation

    Science.gov (United States)

    Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L., Jr.

    2012-01-01

    We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.

  16. Realistic page-turning of electronic books

    Science.gov (United States)

    Fan, Chaoran; Li, Haisheng; Bai, Yannan

    2014-01-01

    The booming electronic books (e-books), as an extension to the paper book, are popular with readers. Recently, many efforts are put into the realistic page-turning simulation o f e-book to improve its reading experience. This paper presents a new 3D page-turning simulation approach, which employs piecewise time-dependent cylindrical surfaces to describe the turning page and constructs smooth transition method between time-dependent cylinders. The page-turning animation is produced by sequentially mapping the turning page into the cylinders with different radii and positions. Compared to the previous approaches, our method is able to imitate various effects efficiently and obtains more natural animation of turning page.

  17. Operator representation for effective realistic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Dennis; Feldmeier, Hans; Neff, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2013-07-01

    We present a method to derive an operator representation from the partial wave matrix elements of effective realistic nucleon-nucleon potentials. This method allows to employ modern effective interactions, which are mostly given in matrix element representation, also in nuclear many-body methods requiring explicitly the operator representation, for example ''Fermionic Molecular Dynamics'' (FMD). We present results for the operator representation of effective interactions obtained from the Argonne V18 potential with the Uenitary Correlation Operator Method'' (UCOM) and the ''Similarity Renormalization Group'' (SRG). Moreover, the operator representation allows a better insight in the nonlocal structure of the potential: While the UCOM transformed potential only shows a quadratic momentum dependence, the momentum dependence of SRG transformed potentials is beyond such a simple polynomial form.

  18. Realistic Multimedia Simulations for Informatics Students

    Directory of Open Access Journals (Sweden)

    Ioannis Pachoulaki

    2012-08-01

    Full Text Available Realistic multimedia simulations are effective in helping students overcome their fear of physics and gain fundamental knowledge of physical processes. An elective course has been designed in the Applied Informatics and Multimedia Department at TEI of Crete to help informatics students overcome their physics shyness by hands-on experience on scientific multimedia simulations. The approach is justified in terms of the rich employment opportunities in the game and multimedia industries where a sound basis in physics, mathematics and numerical analysis is a necessity. Student feedback shows that they embrace the adopted approach, which uses open source tools to minimize programming so as to allow both instructor and students to focus on the science and complete a greater number of simulations.

  19. MetAssimulo:Simulation of Realistic NMR Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2010-10-01

    Full Text Available Abstract Background Probing the complex fusion of genetic and environmental interactions, metabolic profiling (or metabolomics/metabonomics, the study of small molecules involved in metabolic reactions, is a rapidly expanding 'omics' field. A major technique for capturing metabolite data is 1H-NMR spectroscopy and this yields highly complex profiles that require sophisticated statistical analysis methods. However, experimental data is difficult to control and expensive to obtain. Thus data simulation is a productive route to aid algorithm development. Results MetAssimulo is a MATLAB-based package that has been developed to simulate 1H-NMR spectra of complex mixtures such as metabolic profiles. Drawing data from a metabolite standard spectral database in conjunction with concentration information input by the user or constructed automatically from the Human Metabolome Database, MetAssimulo is able to create realistic metabolic profiles containing large numbers of metabolites with a range of user-defined properties. Current features include the simulation of two groups ('case' and 'control' specified by means and standard deviations of concentrations for each metabolite. The software enables addition of spectral noise with a realistic autocorrelation structure at user controllable levels. A crucial feature of the algorithm is its ability to simulate both intra- and inter-metabolite correlations, the analysis of which is fundamental to many techniques in the field. Further, MetAssimulo is able to simulate shifts in NMR peak positions that result from matrix effects such as pH differences which are often observed in metabolic NMR spectra and pose serious challenges for statistical algorithms. Conclusions No other software is currently able to simulate NMR metabolic profiles with such complexity and flexibility. This paper describes the algorithm behind MetAssimulo and demonstrates how it can be used to simulate realistic NMR metabolic profiles with

  20. The Research on Plant's Realistic Modeling Method%植物真实感建模方法研究

    Institute of Scientific and Technical Information of China (English)

    毛卫强; 耿卫东; 潘云鹤

    2000-01-01

    Plant's 3D structure is quite complex. This paper presents an Open Synthetic Plant Modeling Method. It includes three parts:plant's realistic representation model,synthetic modeling method and realistic display method. Branch is the base element of plant's realistic representation model and is simulated by cublic parameter surface. The synthetic modeling method is implemented by interactively using several simulation methods in the growth procedure of plant. Bark texture and leaf are added to realistically display the plant's 3D structure, Four test examples indicate that this method is feasible in plant's 3D modeling.

  1. A Simplified Model for Generating 3D Realistic Sound in the Multimedia and Virtual Reality Systems

    Institute of Scientific and Technical Information of China (English)

    赵Yu; 何志均; 等

    1996-01-01

    It is a key feature to embed 3D realistic sound effect in the future multimedia and virtual reality systems.Recent research on acoustics and psychoacoustics reveals the important cues for sound localization and sound perception.One promising approach to generate 3D realistic sound effect uses two earphones by simulating the sound waveforms from sound source to eardrum.This paper summarizes two methods for generating 3D realistic sound and points out their inherent drawbacks.To overcome these drawbacks we propose a simplified model to generate 3D realistic sound at any positions in the horizontal plane based on the results of sound perception and localization.Experimental results show that the model is correct and efficient.

  2. A conceptual ENSO model under realistic noise forcing

    Directory of Open Access Journals (Sweden)

    J. Saynisch

    2006-01-01

    Full Text Available We investigated the influence of atmospheric noise on the generation of interannual El Niño variability. Therefore, we perturbed a conceptual ENSO delay model with surrogate windstress data generated from tropical windspeed measurements. The effect of the additional stochastic forcing was studied for various parameter sets including periodic and chaotic regimes. The evaluation was based on a spectrum and amplitude-period relation comparison between model and measured sea surface temperature data. The additional forcing turned out to increase the variability of the model output in general. The noise-free model was unable to reproduce the observed spectral bandwidth for any choice of parameters. On the contrary, the stochastically forced model is capable of producing a realistic spectrum. The weakly nonlinear regimes of the model exhibit a proportional relation between amplitude and period matching the relation derived from measurement data. The chaotic regime, however, shows an inversely proportional relation. A stability analysis of the different regimes revealed that the spectra of the weakly nonlinear regimes are robust against slight parameter changes representing disregarded physical mechanisms, whereas the chaotic regime exhibits a very unstable realistic spectrum. We conclude that the model including stochastic forcing in a parameter range of moderate nonlinearity best matches the real conditions. This suggests that atmospheric noise plays an important role in the coupled tropical pacific ocean-atmosphere system.

  3. Simulation of Combustion Systems with Realistic g-jitter

    Science.gov (United States)

    Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.

    2003-01-01

    In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.

  4. Realistic simulation of the Space-borne Compton Polarimeter POLAR

    Science.gov (United States)

    Xiao, Hualin

    2016-07-01

    POLAR is a compact wide field space-borne detector dedicated for precise measurements of the linear polarization of hard x-rays emitted by transient sources. Its energy range sensitivity is optimized for the detection of the prompt emission of Gamma-ray bursts (GRBs). POLAR is developed by an international collaboration of China, Switzerland and Poland. It is planned to be launched into space in 2016 onboard the Chinese space laboratory TG2. The energy range of POLAR spans between 50 keV and 500 keV. POLAR detects gamma rays with an array of 1600 plastic scintillator bars read out by 25 muti-anode PMTs (MAPMTs). Polarization measurements use Compton scattering process and are based on detection of energy depositions in the scintillator bars. Reconstruction of the polarization degree and polarization angle of GRBs requires comparison of experimental modulation curves with realistic simulations of the full instrument response. In this paper we present a method to model and parameterize the detector response including efficiency of the light collection, contributions from crosstalk and non-uniformity of MAPMTs as well as dependency on low energy detection thresholds and noise from readout electronics. The performance of POLAR for determination of polarization is predicted with such realistic simulations and carefully cross-checked with dedicated laboratory tests.

  5. Applying a realistic evaluation model to occupational safety interventions

    DEFF Research Database (Denmark)

    Pedersen, Louise Møller

    2016-01-01

    characteristics of key actors (defined mechanisms), and the interplay between them, and can be categorized as expected or unexpected. However, little is known about ’how’ to include context and mechanisms in evaluations of intervention effectiveness. A revised realistic evaluation model has been introduced as a...... method to overcome these challenges. Focus is: What works, for whom, under what circumstances, in what respects, and how? Contextual factors such as underreporting of accidents/injuries and mechanisms, e.g. leader motivation, are included in the model and proposed to be measured using quantitative and...... qualitative methods. This revised model has, however, not been applied in a real life context. Method: The model is applied in a controlled, four-component, integrated behaviour-based and safety culture-based safety intervention study (2008-2010) in a medium-sized wood manufacturing company. The interventions...

  6. Pricing European Options in Realistic Markets

    CERN Document Server

    Schaden, M

    2002-01-01

    We investigate the relation between the fair price for European-style vanilla options and the distribution of short-term returns on the underlying asset ignoring transaction and other costs. We compute the risk-neutral probability density conditional on the total variance of the asset's returns when the option expires. If the asset's future price has finite expectation, the option's fair value satisfies a parabolic partial differential equation of the Black-Scholes type in which the variance of the asset's returns rather than a trading time is the evolution parameter. By immunizing the portfolio against large-scale price fluctuations of the asset, the valuation of options is extended to the realistic case\\cite{St99} of assets whose short-term returns have finite variance but very large, or even infinite, higher moments. A dynamic Delta-hedged portfolio that is statically insured against exceptionally large fluctuations includes at least two different options on the asset. The fair value of an option in this c...

  7. Realistic anomaly mediation with bulk gauge fields

    International Nuclear Information System (INIS)

    We present a simple general framework for realistic models of supersymmetry breaking driven by anomaly mediation. We consider a 5-dimensional 'brane universe' where the visible and hidden sectors are localized on different branes, and the standard model gauge bosons propagate in the bulk. In this framework there can be charged scalar messengers that have contact interactions with the hidden sector, either localized in the hidden sector or in the bulk. These scalars obtain soft masses that feed into visible sector scalar masses at two loop order via bulk gauge interactions. This contribution is automatically flavor-blind, and can be naturally positive. If the messengers are in the bulk this contribution is automatically the same order of magnitude as the anomaly mediated contribution, independent of the brane spacing. If the messengers are localized to a brane the two effects are of the same order for relatively small brane spacings. The gaugino masses and A terms are determined completely by anomaly mediation. In order for anomaly mediation to dominate over radion mediation the radion must be is stabilized in a manner that preserves supersymmetry, with supergravity effects included. We show that this occurs in simple models. We also show that the mu problem can be solved by the vacuum expectation value of a singlet in this framework. (author)

  8. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  9. Differentiability of correlations in realistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Alejandro [Instituto de Matemática, UFRJ, CEP 21941-909 Rio de Janeiro, Rio de Janeiro (Brazil); Faria, Edson de [Instituto de Matemática e Estatística, USP, Rua do Matão 1010, SP 05508-090 São Paulo, São Paulo (Brazil); Pujals, Enrique [IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Rio de Janeiro (Brazil); Tresser, Charles [IBM, P.O. Box 218, Yorktown Heights, New York 10598 (United States)

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.

  10. Limiting angular velocity of realistic relativistic neutron star models

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K. (California Univ., Berkeley (USA). Div. of Nuclear Science)

    1991-05-01

    The Keplerian velocity as well as those frequencies at which instability against gravitational radiation-reaction sets in are calculated for rotating neutron star models of gravitational mass 1.5 M{sub sun}. The investigation is based on four different, realistic neutron star matter equations of state. Our results indicate that the gravitational radiation instability sets in well below (i.e., 63-71% of) the Keplerian frequency, and that young neutron stars are limited to rotational periods greater than about 1 ms. In young and therefore hot (T {approx equal} 10{sup 10} K) neutron stars the m = 5 (+- 1) modes and in old stars after being spun up and reheated by mass accretion, the m = 4 and/or m = 3 modes may set the limit on stable rotation. (orig.).

  11. Womat & Forecast Making Realistic Maps of the Microwave Sky

    CERN Document Server

    Jaffe, A H; Finkbeiner, D; Baker, J C; Balbi, A; Davis, M; Hanany, S; Holzapfel, W; Krumholz, M R; Moustakas, L; Robinson, J; Scannapieco, E S; Smoot, G F; Silk, J; Jaffe, Andrew H.; Gawiser, Eric; Finkbeiner, Douglas; Baker, Joanne C.; Balbi, Amedeo; Davis, Marc; Hanany, Shaul; Holzapfel, William; Krumholz, Mark; Moustakas, Leonidas; Robinson, James; Scannapieco, Evan; Smoot, George F.; Silk, Joseph

    1999-01-01

    The Wavelength-Oriented Microwave Background Analysis Team (WOMBAT) is constructing microwave maps which will be more realistic than previous simulations. Our foreground models represent a considerable improvement: where spatial templates are available for a given foreground, we predict the flux and spectral index of that component at each place on the sky and estimate uncertainties. We will produce maps containing simulated CMB anisotropy combined with expected foregrounds. The simulated maps will be provided to the community as the WOMBAT Challenge, so such maps can be analyzed to extract cosmological parameters by scientists who are unaware of their input values. This will test the efficacy of foreground subtraction, power spectrum analysis, and parameter estimation techniques and help identify the areas most in need of progress. These maps are also part of the FORECAST project, which allows web-based access to the known foreground maps for the planning of CMB missions.

  12. Publishing Set-Valued Data Against Realistic Adversaries

    Institute of Scientific and Technical Information of China (English)

    Jun-Qiang Liu

    2012-01-01

    Privacy protection in publishing set-valued data is an important problem.However,privacy notions proposed in prior works either assume that the adversary has unbounded knowledge and hence provide over-protection that causes excessive distortion,or ignore the knowledge about the absence of certain items and do not prevent attacks based on such knowledge.To address these issues,we propose a new privacy notion,(k,e)(m,n)-privacy,which prevents both the identity disclosure and the sensitive item disclosure to a realistic privacy adversary who has bounded knowledge about the presence of items and the bounded knowledge about the absence of items.In addition to the new notion,our contribution is an efficient algorithm that finds a near-optimal solution and is applicable for anonymizing real world databases.Extensive experiments on real world databases showed that our algorithm outperforms the state of the art algorithms.

  13. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana D.

    2013-05-19

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  14. Realistic Mobility Modeling for Vehicular Ad Hoc Networks

    Science.gov (United States)

    Akay, Hilal; Tugcu, Tuna

    2009-08-01

    Simulations used for evaluating the performance of routing protocols for Vehicular Ad Hoc Networks (VANET) are mostly based on random mobility and fail to consider individual behaviors of the vehicles. Unrealistic assumptions about mobility produce misleading results about the behavior of routing protocols in real deployments. In this paper, a realistic mobility modeling tool, Mobility for Vehicles (MOVE), which considers the basic mobility behaviors of vehicles, is proposed for a more accurate evaluation. The proposed model is tested against the Random Waypoint (RWP) model using AODV and OLSR protocols. The results show that the mobility model significantly affects the number of nodes within the transmission range of a node, the volume of control traffic, and the number of collisions. It is shown that number of intersections, grid size, and node density are important parameters when dealing with VANET performance.

  15. Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.

    2015-01-01

    An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).

  16. Configuration of Dual Connectivity with Flow Control in a Realistic Urban Scenario

    DEFF Research Database (Denmark)

    Wang, Hua; Gerardino, Guillermo Andrés Pocovi; Rosa, Claudio;

    2015-01-01

    Dual connectivity (DC) is a promising technique to boost the user throughput performance by allowing user equipments (UEs) to receive data simultaneously from a macro cell and a small cell. In order to ensure high degree of realism and practical relevance of the results, we investigate the perfor...... DC under realistic conditions. A modified opportunistic cell association algorithm is proposed. Simulation results show that with proper configuration of UEs with DC, the performance of DC exhibits similar gains as observed in generic 3GPP scenarios....... performance of DC in a realistic deployment based on three-dimensional data from a dense urban European capital area, assuming realistic flow control on the backhaul connections between the macro and small cell eNBs. It is found that the configuration of UEs with DC plays a critical role in the performance of...

  17. Study of Dynamic eICIC in a Realistic Urban Deployment

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Soret, Beatriz; Barcos, Sonia; Gerardino, Guillermo Andrés Pocovi; Wang, Hua

    2015-01-01

    In this paper, we investigate the operation of eICIC in a realistic deployment based on site specific data from a dense urban European capital area. Rather than the classical semistatic and common network-wide configuration, the importance of having highly dynamic and distributed mechanisms that ...

  18. Directional Hidden Markov Model for Indoor Tracking of Mobile Users and Realistic Case Study

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Amiot, Nicolas; Madsen, Tatiana Kozlova

    2013-01-01

    - positely intersecting trajectories demonstrated a significant im- provement of location accuracy with the Directional HMM algorithm. Further results for a scenario with realistic simulation based movement trajectories also showed improvements for 60% of the cases, however only if the HMM models are trained...

  19. Divertor target shape optimization in realistic edge plasma geometry

    International Nuclear Information System (INIS)

    Tokamak divertor design for next-step fusion reactors heavily relies on numerical simulations of the plasma edge. Currently, the design process is mainly done in a forward approach, where the designer is strongly guided by his experience and physical intuition in proposing divertor shapes, which are then thoroughly assessed by numerical computations. On the other hand, automated design methods based on optimization have proven very successful in the related field of aerodynamic design. By recasting design objectives and constraints into the framework of a mathematical optimization problem, efficient forward-adjoint based algorithms can be used to automatically compute the divertor shape which performs the best with respect to the selected edge plasma model and design criteria. In the past years, we have extended these methods to automated divertor target shape design, using somewhat simplified edge plasma models and geometries. In this paper, we build on and extend previous work to apply these shape optimization methods for the first time in more realistic, single null edge plasma and divertor geometry, as commonly used in current divertor design studies. In a case study with JET-like parameters, we show that the so-called one-shot method is very effective is solving divertor target design problems. Furthermore, by detailed shape sensitivity analysis we demonstrate that the development of the method already at the present state provides physically plausible trends, allowing to achieve a divertor design with an almost perfectly uniform power load for our particular choice of edge plasma model and design criteria. (paper)

  20. Trends in hydrodesulfurization catalysis based on realistic surface models

    DEFF Research Database (Denmark)

    Moses, P.G.; Grabow, L.C.; Fernandez Sanchez, Eva;

    2014-01-01

    Trends in hydrodesulfurization (HDS) activity are investigated on the basis of surface properties calculated by density functional theory for a series of HDS catalysts. It is shown that approximately linear correlations exist between HS group binding energies and activation barriers of key elemen...

  1. Quantum cryptography based on realistic "single-photon" source

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan; Haderka, Ondřej; Soubusta, Jan

    Rochester: Optical Society of America, 2004 - (Bigelow, N.; Eberly, J.; Stroud, C.; Walmsley, I.), --- [International Conference on Quantum Information. Rochester (US), 10.06.2003-13.06.2003] R&D Projects: GA MŠk(CZ) LN00A015 Keywords : quantum cryptography * single-photon source Subject RIV: BH - Optics, Masers, Lasers

  2. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    Science.gov (United States)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  3. Atomic entanglement near a realistic microsphere

    OpenAIRE

    Dung, Ho Trung; Scheel, S.; Welsch, D-G; Knöll, L

    2001-01-01

    We study a scheme for entangling two-level atoms located close to the surface of a dielectric microsphere. The effect is based on medium-assisted spontaneous decay, rigorously taking into account dispersive and absorptive properties of the microsphere. We show that even in the weak-coupling regime, where the Markov approximation applies, entanglement up to 0.35 ebits between two atoms can be created. However, larger entanglement and violation of Bell's inequality can only be achieved in the s...

  4. Importance of realistic mobility models for vanet network simulation

    OpenAIRE

    Boukenadil, Bahidja

    2014-01-01

    In the performance evaluation of a protocol for a vehicular ad hoc network, the protocol should be tested under a realistic conditions including, representative data traffic models, and realistic movements of the mobile nodes which are the vehicles (i.e., a mobility model). This work is a comparative study between two mobility models that are used in the simulations of vehicular networks, i.e., MOVE (MObility model generator for VEhicular networks) and CityMob, a mobility pattern generator fo...

  5. Realistic Real-Time Rendering of Landscapes Using Billboard Clouds

    OpenAIRE

    Behrendt, Stephan; Colditz, Carsten; Franzke, Oliver; Kopf, Johannes; Deussen, Oliver

    2005-01-01

    We present techniques for realistic real-time rendering of complex landscapes that consist of many highly detailed plant models. The plants are approximated by dynamically changing sets of billboards. Realistic illumination is approximated using spherical harmonics. Since even the rendering of simple billboard cloud plants is too time consuming, the landscape in the background is approximated with shell textures. The combination of these techniques allows us to render large scenes in real-tim...

  6. ON THE REALISTIC STOCHASTIC MODEL OF GPS OBSERVABLES: IMPLEMENTATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    F. Zangeneh-Nejad

    2015-12-01

    Full Text Available High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE is applied to GPS observables using the geometry-based observation model (GBOM. To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR. The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  7. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  8. Generating Realistic Labelled, Weighted Random Graphs

    CERN Document Server

    Davis, Michael Charles; Liu, Weiru; Miller, Paul; Hunter, Ruth; Kee, Frank

    2015-01-01

    Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels a...

  9. Metastable cosmic strings in realistic models

    International Nuclear Information System (INIS)

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2)L x SU(2) R x U(1)B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed

  10. Realistic effective interactions for nuclear systems

    International Nuclear Information System (INIS)

    A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs

  11. A realistic 3+1D Viscous Hydro Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Romatschke, Paul [Univ. of Colorado, Boulder, CO (United States)

    2015-05-31

    DoE funds were used as bridge funds for the faculty position for the PI at the University of Colorado. The total funds for the Years 3-5 of the JET Topical Collaboration amounted to about 50 percent of the academic year salary of the PI.The PI contributed to the JET Topical Collaboration by developing, testing and applying algorithms for a realistic simulation of the bulk medium created in relativistic ion collisions.Specifically, two approaches were studied, one based on a new Lattice-Boltzmann (LB) framework, and one on a more traditional viscous hydro-dynamics framework. Both approaches were found to be viable in principle, with the LB approach being more elegant but needing still more time to develop.The traditional approach led to the super-hybrid model of ion collisions dubbed 'superSONIC', and has been successfully used for phenomenology of relativistic heavy-ion and light-on-heavy-ion collisions.In the time-frame of the JET Topical Collaboration, the Colorado group has published 15 articles in peer-reviewed journals, three of which were published in Physical Review Letters. The group graduated one Master student during this time-frame and two more PhD students are expected to graduate in the next few years. The PI has given more than 28 talks and presentations during this period.

  12. Karstification beneath dam sites: From conceptual models to realistic scenarios

    Science.gov (United States)

    Hiller, Thomas; Kaufmann, Georg; Romanov, Douchko

    2010-05-01

    Dam sites located above soluble rock such as limestone or gypsum can leak in relatively short times (tenths of years), when compared to the natural time scale of karstification (10.000-100.000 years). The reason for this leakage is the high hydraulic gradient imposed by the reservoir that drives aggressive water through the fracture and fissure system of the bedrock and this aggressive water dissolves the rock and increases permeability fairly fast. Thus, on the one hand water losses through enlarged fractures can become a problem for the reservoir. On the other hand, the void space itself can be a risk for the dam structure above. This may have unpredictable ecological and economical consequences. We present a three-dimensional conceptual model study of karstification in dam-site areas on limestone bedrock. We compare our three-dimensional model to a standard two-dimensional dam site model to verify the results of our code. We further carry out a sensitivity analysis on the physical and chemical parameters driving the karstification to derive an empirical formulation of the breakthrough time TB. In a next step we implement a statistical fracture network and topography to approach a more realistic scenario. Finally we show the results of a three dimensional model based on a real dam site.

  13. Local gyrokinetic Vlasov simulations with realistic tokamak MHD equilibria

    International Nuclear Information System (INIS)

    A local gyrokinetic Vlasov simulation code GKV is extended to incorporate realistic tokamak equilibria including up-down asymmetry, which are produced by a free-boundary 2D Grad-Shafranov equation solver MEUDAS. By using a newly developed interface code IGS, two dimensional rectangular equilibrium data from MEUDAS is converted to straight-field-line flux coordinates such as Hamada, Boozer, and axisymmetric coordinates, which are useful for gyrokinetic micro-instability and turbulent transport analyses. The developed codes have been verified by a cross-code benchmark test using Cyclone-base-case like MHD equilibrium, where good agreement in the dispersion relation of ion temperature gradient (ITG) driven mode has been confirmed. The extended GKV is applied to two types of shaped plasmas expected in JT-60SA tokamak devices, i.e., ITER-like and highly-shaped plasmas, and ITG-mode stability and residual zonal-flow level are investigated. Through the detailed comparisons, more favorable stability properties against the ITG mode are revealed for the highly-shaped case, where the lower ITG-mode growth rate and higher residual zonal-flow levels compared to the ITER-like case are identified. (author)

  14. Blending critical realist and emancipatory practice development methodologies: making critical realism work in nursing research.

    LENUS (Irish Health Repository)

    Parlour, Randal

    2012-12-01

    This paper examines the efficacy of facilitation as a practice development intervention in changing practice within an Older Person setting and in implementing evidence into practice. It outlines the influences exerted by the critical realist paradigm in guiding emancipatory practice development activities and, in particular, how the former may be employed within an emancipatory practice development study to elucidate and increase understanding pertinent to causation and outcomes. The methodology is based upon an emancipatory practice development approach set within a realistic evaluation framework. This allows for systematic analysis of the social and contextual elements that influence the explication of outcomes associated with facilitation. The study is concentrated upon five practice development cycles, within which a sequence of iterative processes is integrated. The authors assert that combining critical realist and emancipatory processes offers a robust and practical method for translating evidence and implementing changes in practice, as the former affirms or falsifies the influence that emancipatory processes exert on attaining culture shift, and enabling transformation towards effective clinical practice. A new framework for practice development is proposed that establishes methodological coherency between emancipatory practice development and realistic evaluation. This augments the existing theoretical bases for both these approaches by contributing new theoretical and methodological understandings of causation.

  15. Sustainability and meat consumption: is reduction realistic?

    Directory of Open Access Journals (Sweden)

    Jantine Voordouw

    2013-10-01

    Full Text Available Meat is critical with respect to sustainability because meat products are among the most energy-intensive and ecologically burdensome foods. Empirical studies of the meat-consumption frequency of Dutch consumers show that, apart from meat-avoiders and meat-eaters, many people are meat-reducers that eat no meat at least one day per week. Meat-consumption frequencies provide empirical evidence for different modes of “flexitarianism,” including light, medium, and heavy flexitarians. In particular, the existence of heavy flexitarians suggests that the customary position of meat and other animal-based dietary products in the food hierarchy is not inviolable. To improve our understanding of meat reduction, cluster analysis adds information about differences across flexitarians. Given the enormous environmental impact of animal-protein consumption and the apparent sympathy of consumers for meat reduction, it is surprising that politicians and policy makers demonstrate little, if any, interest in strategies to reduce meat consumption and to encourage more sustainable eating practices.

  16. Surface Detail Capturing for Realistic Facial Animation

    Institute of Scientific and Technical Information of China (English)

    Pei-Hsuan Tu; I-Chen Lin; Jeng-Sheng Yeh; Rung-Huei Liang; Ming Ouhyoung

    2004-01-01

    In this paper, a facial animation system is proposed for capturing both geometrical information and illumination changes of surface details, called expression details, from video clips simultaneously, and the captured data can be widely applied to different 2D face images and 3D face models. While tracking the geometric data,we record the expression details by ratio images. For 2D facial animation synthesis, these ratio images are used to generate dynamic textures. Because a ratio image is obtained via dividing colors of an expressive face by those of a neutral face, pixels with ratio value smaller than one are where a wrinkle or crease appears. Therefore, the gradients of the ratio value at each pixel in ratio images are regarded as changes of a face surface, and original normals on the surface can be adjusted according to these gradients. Based on this idea, we can convert the ratio images into a sequence of normal maps and then apply them to animated 3D model rendering. With the expression detail mapping, the resulted facial animations are more life-like and more expressive.

  17. Generating Realistic Labelled, Weighted Random Graphs

    Directory of Open Access Journals (Sweden)

    Michael Charles Davis

    2015-12-01

    Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.

  18. Land -sea correlations: Are they realistic

    Science.gov (United States)

    Singhvi, A. K.

    2013-05-01

    Most of Land - Sea or Land - Land correlation have been and are being made assuming a synchronicity of events, processes and resulting changes, on the land and in the oceans. There is a tendency, to match the terrestrial records on the land with those from the oceans and/or ice cores and then deduce the forcing leading to a circular argument. Thus, for example it is commonplace that odd number marine isotopic stages are correlated directly with warmer, soil forming episodes. In such studies, it is implicitly assumed that analogous to marine or ice core records, the terrestrial archives are also created / accreted continuously and that the terrestrial sediment attributes behave in the same manner as the ocean or ice proxies. Based on this, identical periodicities in the response of terrestrial systems have been inferred in numerous cases and major inferences have been drawn. Further complications arise from multi-proxy data with a simplistic assumption that all proxies respond to the forcing in a synchronous manner and that the larger the number of proxies the better it is. But these multi-proxy convergences of evidence are often imposed rather than being observed. Aspects of proxy response, the threshold for proxy response, response times, and relaxation times of proxies for a given forcing are invariably ignored, imposing serious constraints on the presence or absence of correlations. Direct dating of geological archives show that spatial gradients in landform response to the same climate forcing exist and lead to differences in timing of the responses of sedimentation events. Spatial and temporal gradients arise as sedimentation on land needs a window of opportunity to create a sediment record and records are preserved partially. Therefore, terrestrial systems have a lagged response to a forcing due to thresholds and preservation. Three chronometrically constrained case studies of dryland responses to Monsoon changes, namely: 1) clear evidence of lagged Aeolian

  19. Realistic humanoid robot simulation with an optimized controller: a power consumption minimization approach

    OpenAIRE

    Lima, José; Gonçalves, José; Costa, Paulo; Moreira, António

    2008-01-01

    This paper describes a humanoid robot simulator supporting joint trajectory optimization, following accurately the real robot characteristics. The simulator, based on a rigid body simulator (Open Dynamics Engine) and an OpenGL based graphics library (GLScene), provides instant visual feedback and realistic dynamics. It allows to design and test behaviours and control methods without access to the real hardware, preventing damages in the real robot in the earlier stages of development. Having ...

  20. Simulation of Magnetic Phenomena at Realistic Interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2016-02-04

    In modern technology exciting developments are related to the ability to understand and control interfaces. Particularly, magnetic interfaces revealing spindependent electron transport are of great interest for modern spintronic devices, such as random access memories and logic devices. From the technological point of view, spintronic devices based on magnetic interfaces enable manipulation of the magnetism via an electric field. Such ability is a result of the different quantum effects arising from the magnetic interfaces (for example, spin transfer torque or spin-orbit torque) and it can reduce the energy consumption as compared to the traditional semiconductor electronic devices. Despite many appealing characteristics of these materials, fundamental understanding of their microscopic properties and related phenomena needs to be established by thorough investigation. In this work we implement first principles calculations in order to study the structural, electric, and magnetic properties as well as related phenomena of two types of interfaces with large potential in spintronic applications: 1) interfaces between antiferromagnetic 3d-metal-oxides and ferromagnetic 3d-metals and 2) interfaces between non-magnetic 5d(4d)- and ferromagnetic 3d-metals. A major difficulty in studying such interfaces theoretically is the typically large lattice mismatch. By employing supercells with Moir e patterns, we eliminate the artificial strain that leads to doubtful results and are able to describe the dependence of the atomic density at the interfaces on the component materials and their thicknesses. After establishing understanding about the interface structures, we investigate the electronic and magnetic properties. A Moir e supercell with transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces. In addition, we systematically study the magnetic anisotropy and Rashba band

  1. Using polychromatic X-radiography to examine realistic imitation firearms.

    Science.gov (United States)

    Austin, J C; Day, C R; Kearon, A T; Valussi, S; Haycock, P W

    2008-10-25

    Sections 36-41 of the Violent Crimes Reduction Act (2006), which came into force in England and Wales on 1st October 2007, have placed significant restrictions on the sale and possession of 'realistic imitation firearms'. This legislation attempts to produce a definition of a 'realistic imitation' which clearly differentiates these items from other imitation firearms (which are not covered by the legislation). This paper will go a stage further by demonstrating techniques by which blank firing realistic imitation firearms which may be suitable for illegal conversion to fire live rounds may be differentiated from other less 'suitable' (but visually identical) realistic imitations. The article reports on the use of X-radiography, utilizing the bremsstrahlung of a commercial broad spectrum X-ray source, to identify the differences between alloys constituting the barrels of distinct replica and/or blank firing handguns. The resulting pseudo-signatures are transmission spectra over a range from 20 to 75 kV, taken at 1 kV intervals, which are extracted from stacks of registered, field flattened images. It is shown that it is possible to quantify differences between transmission spectra for components of different realistic imitation fire arms, and apply the results to determine the suitability of particular gun barrels from blank firing imitation firearms for illegal conversion to fire live rounds, or related illegal modifications. PMID:18842365

  2. Principles of maximally classical and maximally realistic quantum mechanics

    Indian Academy of Sciences (India)

    S M Roy

    2002-08-01

    Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2-dimensional phase space, a maximally realistic quantum mechanics can have quantum probabilities of no more than + 1 complete commuting cets (CCS) of observables coexisting as marginals of one positive phase space density. Here I formulate a stationary principle which gives a nonperturbative definition of a maximally classical as well as maximally realistic phase space density. I show that the maximally classical trajectories are in fact exactly classical in the simple examples of coherent states and bound states of an oscillator and Gaussian free particle states. In contrast, it is known that the de Broglie–Bohm realistic theory gives highly nonclassical trajectories.

  3. Performance Evaluation of Realistic Vanet Using Traffic Light Scenario

    CERN Document Server

    Nidhi,

    2012-01-01

    Vehicular Ad-hoc Networks (VANETs) is attracting considerable attention from the research community and the automotive industry to improve the services of Intelligent Transportation System (ITS). As today's transportation system faces serious challenges in terms of road safety, efficiency, and environmental friendliness, the idea of so called "ITS" has emerged. Due to the expensive cost of deployment and complexity of implementing such a system in real world, research in VANET relies on simulation. This paper attempts to evaluate the performance of VANET in a realistic environment. The paper contributes by generating a real world road Map of JNU using existing Google Earth and GIS tools. Traffic data from a limited region of road Map is collected to capture the realistic mobility. In this work, the entire region has been divided into various smaller routes. The realistic mobility model used here considers the driver's route choice at the run time. It also studies the clustering effect caused by traffic lights...

  4. Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions.

    Science.gov (United States)

    Knott, Brandon C; Molinero, Valeria; Doherty, Michael F; Peters, Baron

    2012-12-01

    Methane hydrates are ice-like inclusion compounds with importance to the oil and natural gas industry, global climate change, and gas transportation and storage. The molecular mechanism by which these compounds form under conditions relevant to industry and nature remains mysterious. To understand the mechanism of methane hydrate nucleation from supersaturated aqueous solutions, we performed simulations at controlled and realistic supersaturation. We found that critical nuclei are extremely large and that homogeneous nucleation rates are extremely low. Our findings suggest that nucleation of methane hydrates under these realistic conditions cannot occur by a homogeneous mechanism. PMID:23148735

  5. Putting a Realistic Theory of Mind into Agency Theory

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Stea, Diego

    2014-01-01

    Agency theory is one of the most important foundational theories in management research, but it rests on contestable cognitive assumptions. Specifically, the principal is assumed to hold a perfect (correct) theory regarding some of the content of the agent's mind, while he is entirely ignorant...... concerning other such content. More realistically, individuals have some limited access to the minds of others. We explore the implications for classical agency theory of realistic assumptions regarding the human potential for interpersonal sensemaking. We discuss implications for the design and management...

  6. Bosonic condensates in realistic supersymmetric GUT cosmic strings

    Science.gov (United States)

    Allys, Erwan

    2016-04-01

    We study the realistic structure of F-term Nambu-Goto cosmic strings forming in a general supersymmetric Grand Unified Theory implementation, assuming standard hybrid inflation. Examining the symmetry breaking of the unification gauge group down to the Standard Model, we discuss the minimal field content necessary to describe abelian cosmic strings appearing at the end of inflation. We find that several fields will condense in most theories, questioning the plausible occurrence of associated currents (bosonic and fermionic). We perturbatively evaluate the modification of their energy per unit length due to the condensates. We provide a criterion for comparing the usual abelian Higgs approximation used in cosmology to realistic situations.

  7. A Generalized Pyramid Matching Kernel for Human Action Recognition in Realistic Videos

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2013-10-01

    Full Text Available Human action recognition is an increasingly important research topic in the fields of video sensing, analysis and understanding. Caused by unconstrained sensing conditions, there exist large intra-class variations and inter-class ambiguities in realistic videos, which hinder the improvement of recognition performance for recent vision-based action recognition systems. In this paper, we propose a generalized pyramid matching kernel (GPMK for recognizing human actions in realistic videos, based on a multi-channel “bag of words” representation constructed from local spatial-temporal features of video clips. As an extension to the spatial-temporal pyramid matching (STPM kernel, the GPMK leverages heterogeneous visual cues in multiple feature descriptor types and spatial-temporal grid granularity levels, to build a valid similarity metric between two video clips for kernel-based classification. Instead of the predefined and fixed weights used in STPM, we present a simple, yet effective, method to compute adaptive channel weights of GPMK based on the kernel target alignment from training data. It incorporates prior knowledge and the data-driven information of different channels in a principled way. The experimental results on three challenging video datasets (i.e., Hollywood2, Youtube and HMDB51 validate the superiority of our GPMK w.r.t. the traditional STPM kernel for realistic human action recognition and outperform the state-of-the-art results in the literature.

  8. Realistic avatar eye and head animation using a neurobiological model of visual attention

    Science.gov (United States)

    Itti, Laurent; Dhavale, Nitin; Pighin, Frederic

    2004-01-01

    We describe a neurobiological model of visual attention and eye/head movements in primates, and its application to the automatic animation of a realistic virtual human head watching an unconstrained variety of visual inputs. The bottom-up (image-based) attention model is based on the known neurophysiology of visual processing along the occipito-parietal pathway of the primate brain, while the eye/head movement model is derived from recordings in freely behaving Rhesus monkeys. The system is successful at autonomously saccading towards and tracking salient targets in a variety of video clips, including synthetic stimuli, real outdoors scenes and gaming console outputs. The resulting virtual human eye/head animation yields realistic rendering of the simulation results, both suggesting applicability of this approach to avatar animation and reinforcing the plausibility of the neural model.

  9. A realistic model for complex networks with local interaction, self-organization and order

    Institute of Scientific and Technical Information of China (English)

    Chen Fei; Chen Zeng-Qiang; Yuan Zhu-Zhi

    2007-01-01

    In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution with an exponent in a range of 3-to-5 is given. Moreover, this model could also reproduce the exponential distribution that is discovered in some real networks. Finally, the analytical result of the model is given and the simulation shows the validity of our result.

  10. A Realistic Treatment of Geomagnetic Cherenkov Radiation from Cosmic Ray Air Showers

    OpenAIRE

    Werner, Klaus; de Vries, Krijn D.; Scholten, Olaf

    2012-01-01

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from three-dimensional Monte Carlo simulations of air showers in a realistic geo-magnetic field. We discuss the importance of a correct treatment of the index of refraction in air, given by the law of Gladstone and Dale, which affects the pulses enormously for certain configurations, compared to a simplified treatment using a const...

  11. Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario

    Science.gov (United States)

    Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell

    2010-01-01

    Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.

  12. Near-field SAR for signature and camouflage evaluation in realistic backgrounds

    OpenAIRE

    Larsson, Christer; Jersblad, Johan

    2011-01-01

    Outdoor ranges are commonly used for accurate RCS measurements of full scale vehicles with or without camouflage. Furthermore, ISAR processing is often used to obtain high quality imagery of the objects. However, these images do not show the vehicles in the environment where they are supposed to operate. This paper describes a ground based SAR system that is used to make accurate measurements on vehicles or other objects in realistic backgrounds. A transportable short range SAR measurement...

  13. Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

    OpenAIRE

    Rogério M. Branco; Antônio S. Coelho; Sérgio F. Mayerle

    2016-01-01

    This paper discusses the application of heuristic-based evolutionary technique in search for solutions concerning the dynamic job-shop scheduling problems with dependent setup times and alternate routes. With a combinatorial nature, these problems belong to an NP-hard class, with an aggravated condition when in realistic, dynamic and therefore, more complex cases than the traditional static ones. The proposed genetic algorithm executes two important functions: choose the routes using dispatch...

  14. Simulation and assessment of realistic breast lesions using fractal growth models.

    OpenAIRE

    Rashidnasab, A; Elangovan, P.; Yip, M.; Diaz, O; Dance, DR; Young, KC; Wells, K

    2013-01-01

    A new method of generating realistic three dimensional simulated breast lesions known as diffusion limited aggregation (DLA) is presented, and compared with the random walk (RW) method. Both methods of lesion simulation utilize a physics-based method for inserting these simulated lesions into 2D clinical mammogram images that takes into account the polychromatic x-ray spectrum, local glandularity and scatter. DLA and RW masses were assessed for realism via a receiver operating characteristic ...

  15. The Potential and Challenges of Critical Realist Ethnography

    Science.gov (United States)

    Barron, Ian

    2013-01-01

    This article revisits the critical realist ethnographic process that was adopted in my doctoral thesis, which was concerned with the experiences of ethnic identity of white British and Pakistani British children as they started kindergarten in the northwest of England. The article focuses on the ethnography that emerged from the visits that I…

  16. On Small Antenna Measurements in a Realistic MIMO Scenario

    DEFF Research Database (Denmark)

    Yanakiev, Boyan; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2010-01-01

    problem using coaxial cable is explained and a solution suitable for long distance channel sounding is presented. A large scale measurement campaign is then described. Special attention is paid to bring the measurement setup as close as possible to a realistic LTE network of the future, with attention to...

  17. Synthesis Of Realistic Animations Of A Person Speaking

    Science.gov (United States)

    Scott, Kenneth C.; Kagels, David S.; Watson, Stephen H.; Rom, Hillel S.; Lorre, Jean J.; Wright, John R.; Duxbury, Elizabeth D.

    1995-01-01

    Actors computer program implements automated process that synthesizes realistic animations of person speaking. Produces "newscaster" type video sequences. Uses images of person and, therefore, not limited to cartoons and cartoonlike movies. Potential applications also include use of process for automatically producing on-the-fly animations for human/computer interfaces and for reducing bandwidth needed to transmit video telephone signals.

  18. Realistic Interactions and Dilepton production off pp-collisions

    OpenAIRE

    de Jong, F.; Mosel, U.

    1996-01-01

    We present a model for dilepton production of proton-proton collisions using a realist T-matrix that by incorporating Delta-isobar degrees of freedom fits the NN-scattering data up to 2 GeV. The results we find differ in details from earlier work that use less sophisticated interactions but the overall agreement with these calculations is good.

  19. Performance Evaluation of Realistic VANET Using Traffic Light Scenario

    Directory of Open Access Journals (Sweden)

    Nidhi

    2012-03-01

    Full Text Available Vehicular Ad-hoc Networks (VANETs is attracting considerable attention from the research community and the automotive industry to improve the services of Intelligent Transportation System (ITS. As today’s transportation system faces serious challenges in terms of road safety, efficiency, and environmental friendliness, the idea of so called “ITS” has emerged. Due to the expensive cost of deployment and complexity of implementing such a system in real world, research in VANET relies on simulation. This paper attempts to evaluate the performance of VANET in a realistic environment. The paper contributes by generating a real world road Map of JNU using existing Google Earth and GIS tools. Traffic data from a limited region of road Map is collected to capture the realistic mobility. In this work, the entire region has been divided into various smaller routes. The realistic mobility model used here considers the driver’s route choice at the run time. It also studies the clustering effect caused by traffic lights used at the intersection to regulate traffic movement at different directions. Finally, the performance of the VANET is evaluated in terms of average delivery ratio, packet loss, and router drop as statistical measures for driver route choice with traffic light scenario. This experiment has provided insight into the performance of vehicular traffic communication for a small realistic scenario.

  20. Realistic glottal motion and airflow rate during human breathing.

    Science.gov (United States)

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Lagier, Aude; Legou, Thierry; Pichelin, Marine; Caillibotte, Georges; Giovanni, Antoine

    2015-09-01

    The glottal geometry is a key factor in the aerosol delivery efficiency for treatment of lung diseases. However, while glottal vibrations were extensively studied during human phonation, the realistic glottal motion during breathing is poorly understood. Therefore, most current studies assume an idealized steady glottis in the context of respiratory dynamics, and thus neglect the flow unsteadiness related to this motion. This is particularly important to assess the aerosol transport mechanisms in upper airways. This article presents a clinical study conducted on 20 volunteers, to examine the realistic glottal motion during several breathing tasks. Nasofibroscopy was used to investigate the glottal geometrical variations simultaneously with accurate airflow rate measurements. In total, 144 breathing sequences of 30s were recorded. Regarding the whole database, two cases of glottal time-variations were found: "static" or "dynamic" ones. Typically, the peak value of glottal area during slow breathing narrowed from 217 ± 54 mm(2) (mean ± STD) during inspiration, to 178 ± 35 mm(2) during expiration. Considering flow unsteadiness, it is shown that the harmonic approximation of the airflow rate underevaluates the inertial effects as compared to realistic patterns, especially at the onset of the breathing cycle. These measurements provide input data to conduct realistic numerical simulations of laryngeal airflow and particle deposition. PMID:26159687

  1. Foreword: In situ gas surface interactions: approaching realistic conditions

    Science.gov (United States)

    Lundgren, Edvin; Over, Herbert

    2008-03-01

    This special issue is devoted to the application of in situ surface-sensitive techniques in the elucidation of catalysed reactions at (model) catalyst surfaces. Both reaction intermediates and the nature of the catalytically active phase are the targets of these investigations. In situ surface science techniques are also used to study the interaction of water with surfaces under realistic conditions. Since 80% of all technical chemicals are manufactured by utilizing (heterogeneous) catalysis, scientific understanding and technological development of catalysis are of central practical importance in modern society [1]. Heterogeneously catalysed reactions take place at the gas/solid interface. Therefore one of the major topics in surface chemistry and physics is closely related to heterogeneous catalysis, with the aim of developing novel catalysts and to improve catalysts' performances on the basis of atomic scale based knowledge. Despite the economical and environmental rewards—if such a goal is achieved—and despite 40 years of intensive research, practical catalysis is still safely in a black box: the reactivity and selectivity of a catalyst are commercially still optimized on a trial and error basis, applying the high throughput screening approach. The reason for this discrepancy between ambition and reality lies in the inherent complexity of the catalytic system, consisting of the working catalyst and the interaction of the catalyst with the reactant mixture. Practical (solid) catalysts consist of metal or oxide nanoparticles which are dispersed and stabilized on a support and which may be promoted by means of additives. These particles catalyse a reaction in pressures as high as 100 bar. Practical catalysis is in general considered to be far too complex for gaining atomic-scale understanding of the mechanism of the catalysed reaction of an industrial catalyst during its operation. Therefore it has been necessary to introduce idealization and simplification of

  2. Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model

    International Nuclear Information System (INIS)

    We calculate the induced electric stress forces on transient hydrophobic pores in the membrane of an erythrocyte exposed to an electric field. For this purpose, we use a finite element numerical technique and a realistic shape for the biconcave erythrocyte represented by a set of parametric equations in terms of Jacobi elliptic functions. The results clearly show that the electrical forces on the base and sidewalls of the pore favour the opening of the pore. A comparison of the force densities obtained for an unstretched flat membrane and for the realistic erythrocyte model shows that the thinning and curvature of the membrane cannot be neglected. We also show that the pore deformation depends strongly on the orientation of the pore with respect to the external field, and in particular is very small when the field is tangent to the membrane surface

  3. A new three-step cellular automaton model considering a realistic driving decision

    International Nuclear Information System (INIS)

    Most cellular automaton (CA) traffic flow models include four steps and take the velocity as the driver’s main concern. To better understand traffic behaviors, a new three-step CA model is studied, in which a realistic driving decision is divided into three stages: decision-making, action and result. The new model is novel in using the acceleration as a decision variable. It considers the deceleration limitation and proposes the maximum deceleration to be 2 cells per time step, based on real experimental data. Simulation results show that the model can reproduce the synchronized flow effectively and describe the phase transition well. Moreover, it can exhibit metastability and hysteresis if the slow-to-start effect is involved. Finally, a realistic application to systematic flow optimization is analyzed and an interesting result is obtained that a restriction of the inflow can lead to an improvement of the total flow through a bottleneck. (paper)

  4. Efficient calculation method for realistic deep 3D scene hologram using orthographic projection

    Science.gov (United States)

    Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro

    2016-03-01

    We propose a fast calculation method to synthesize a computer-generated hologram (CGH) of realistic deep three-dimensional (3D) scene. In our previous study, we have proposed a calculation method of CGH for reproducing such scene called ray-sampling-plane (RSP) method, in which light-ray information of a scene is converted to wavefront, and the wavefront is numerically propagated based on diffraction theory. In this paper, we introduce orthographic projection to the RSP method for accelerating calculation time. By numerical experiments, we verified the accelerated calculation with the ratio of 28-times compared to the conventional RSP method. The calculated CGH was fabricated by the printing system using laser lithography and demonstrated deep 3D image reconstruction in 52mm×52mm with realistic appearance effect such as gloss and translucent effect.

  5. Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C S; Ku, S; Greengard, L; Park, G [Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States); Diamond, P; Dif-Pradalier, G [University of California at San Diego, La Jolla, CA 92093 (United States); Adams, M; Keyes, D [Columbia University, New York, NY 10027 (United States); Barreto, R; D' Azevedo, E; Klasky, S; Podhorszki, N [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chen, Y; Parker, S [University of Colorado at Boulder, Boulder, CO 80309 (United States); Cummings, J [California Institute of Technology, Pasadena, CA 91125 (United States); Ethier, S; Hahm, T S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Hinton, F [Hinton Associates, Escondido, CA 92029 (United States); Lin, Z [University of California at Irvine, Irvine, CA 92697 (United States); Lofstead, J, E-mail: cschang@cims.nyu.ed [Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-07-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  6. Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C S [New York University; Ku, Seung-Hoe [New York University; Diamond, P. H. [University of California, San Diego; Adams, Mark [Columbia University; Tchoua, Roselyne B [ORNL; Chen, Yang [University of Colorado, Boulder; Cummings, J. [California Institute of Technology, University of California, Davis; D' Azevedo, Ed F [ORNL; Dif-Pradalier, Guilhem [University of California, San Diego; Ethier, Stephane [Princeton Plasma Physics Laboratory (PPPL); Greengard, Leslie [New York University; Hahm, Taik Soo [Princeton Plasma Physics Laboratory (PPPL); Hinton, Fred [University of California, San Diego; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Lin, Z. [University of California, Irvine; Lofstead, J. [Georgia Institute of Technology; Park, G. [New York University; Podhorszki, Norbert [ORNL; Schwan, Karsten [Georgia Institute of Technology; Shoshani, A. [Lawrence Berkeley National Laboratory (LBNL); Silver, D. [Rutgers University; Wolf, M. [Georgia Institute of Technology; Worley, Patrick H [ORNL; Zorin, Denis [New York University

    2009-01-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  7. A realistic polarizing Sagnac topology with DC readout for the Einstein Telescope

    CERN Document Server

    Wang, Mengyao; Brown, Daniel; Brueckner, Frank; Carbone, Ludovico; Palmer, Rebecca; Freise, Andreas

    2013-01-01

    The Einstein Telescope (ET) is a proposed future gravitational wave detector. Its design is original, using a triangular orientation of three detectors and a xylophone configuration, splitting each detector into one high-frequency and one low-frequency system. In other aspects the current design retains the dual-recycled Michelson interferometer typical of current detectors, such as Advanced LIGO. In this paper, we investigate the feasibility of replacing the low-frequency part of the ET detectors with a Sagnac interferometer. We show that a Sagnac interferometer, using realistic optical parameters based on the ET design, could provide a similar level of radiation pressure noise suppression without the need for a signal recycling mirror and the extensive filter cavities. We consider the practical issues of a realistic, power-recycled Sagnac, using linear arm cavities and polarizing optics. In particular we investigate the effects of non-perfect polarizing optics and propose a new method for the generation of ...

  8. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  9. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  10. A general realistic treatment of the disk paradox

    CERN Document Server

    Pantazis, George

    2016-01-01

    Mechanical angular momentum is not conserved in systems involving electromagnetic fields with non-zero electromagnetic field angular momentum. Conservation is restored only if the total (mechanical and field) angular momentum is considered. Previous studies have investigated this effect, known as "Feynman's Electromagnetic Paradox" or simply "Disk Paradox" in the context of idealized systems (infinite or infinitesimal solenoids and charged cylinders \\etc). In the present analysis we generalize previous studies by considering more realistic systems with finite components and demonstrating explicitly the conservation of the total angular momentum. This is achieved by expressing both the mechanical and the field angular momentum in terms of charges and magnetic field fluxes through various system components. Using this general expression we demonstrate explicitly the conservation of total angular momentum in both idealized and realistic systems (finite solenoid concentric with two charged long cylinders) taking ...

  11. Realistic electricity market simulator for energy and economic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Agustin, Jose L. [University of Zaragoza, C/Maria de Luna, 3, Zaragoza 50018 (Spain); Contreras, Javier; Conejo, Antonio J. [University of Castilla-La Mancha, Campus Universitario s/n, Ciudad Real 13071 (Spain); Martin-Flores, Raul [Airbus Spain S.L., Paseo John Lennon, Getafe 28906 (Spain)

    2007-01-15

    Electricity market simulators have become a useful tool to train engineers in the power industry. With the maturing of electricity markets throughout the world, there is a need for sophisticated software tools that can replicate the actual behavior of power markets. In most of these markets, power producers/consumers submit production/demand bids and the Market Operator clears the market producing a single price per hour. What makes markets different from each other are the bidding rules and the clearing algorithms to balance the market. This paper presents a realistic simulator of the day-ahead electricity market of mainland Spain. All the rules that govern this market are modeled. This simulator can be used either to train employees by power companies or to teach electricity markets courses in universities. To illustrate the tool, several realistic case studies are presented and discussed. (author)

  12. How to estimate realistic energy savings in Energy Performance Certificates

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Altmann, Nagmeh; Berecová, Monika

    2015-01-01

    Given the fact that most MS use fixed or other kinds of default values as boundary condition input for energy performance calculations, it is not surprising that the calculated energy performance differs from the measured energy consumption. As a consequence, the calculated energy savings due to...... suggested building energy upgrading in the EPC will also deviate from the actual achieved energy savings. Adjusting input boundary condition to the actual values, will often result in realistic (comparable with measured energy consumption) calculated energy demands. This even happens in simple, quasi...... stationary calculation tools using monthly average values. The optimum solution for energy performance certificates and calculating realistic energy savings is to have two calculations. One calculation, using default values to calculate the label itself, and one with actual input parameters for calculating...

  13. Realistic shell-model calculations for neutron deficient Sn isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, F.; Coraggio, L.; Covello, A.; Gargano, A.; Kuo, T.T.; Li, Z.B.; Porrino, A. [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II]|[Istituto Nazionale di Fisica Nucleare, Mostra d`Oltremare, Pad. 20, 80125 Napoli (Italy)]|[Department of Physics, SUNY, Stony Brook, New York 11794 (United States)

    1996-10-01

    We have performed shell-model calculations for {sup 102,103,104,105}Sn using two realistic effective interactions derived from the Bonn A and Paris nucleon-nucleon potentials, respectively. From the comparison of the calculated spectra of {sup 104}Sn and {sup 105}Sn with the experimental ones it turns out that the best agreement is obtained with the weaker tensor force potential (Bonn A). This agreement appears to be significantly better than for other nuclear regions, such as the {ital sd} shell, and thus encourages use of modern realistic potentials in shell-model calculations for medium- and heavy-mass nuclei. In addition, it supports confidence in our predictions of the spectra of the hitherto unknown isotopes {sup 102}Sn and {sup 103}Sn. {copyright} {ital 1996 The American Physical Society.}

  14. Realistic shell-model calculations for neutron deficient Sn isotopes

    International Nuclear Information System (INIS)

    We have performed shell-model calculations for 102,103,104,105Sn using two realistic effective interactions derived from the Bonn A and Paris nucleon-nucleon potentials, respectively. From the comparison of the calculated spectra of 104Sn and 105Sn with the experimental ones it turns out that the best agreement is obtained with the weaker tensor force potential (Bonn A). This agreement appears to be significantly better than for other nuclear regions, such as the sd shell, and thus encourages use of modern realistic potentials in shell-model calculations for medium- and heavy-mass nuclei. In addition, it supports confidence in our predictions of the spectra of the hitherto unknown isotopes 102Sn and 103Sn. copyright 1996 The American Physical Society

  15. Facilities upgrade for natural forces: traditional vs. realistic approach

    International Nuclear Information System (INIS)

    The traditional method utilized for upgrading existing buildings and equipment involves the following steps: performs structural study using finite element analysis and some in situ testing; compare predicted member forces/stresses to material code allowables; determine strengthening schemes for those structural members judged to be weak; estimate cost for required upgrades. This approach will result in structural modifications that are not only conservative but very expensive as well. The realistic structural evaluation approach uses traditional data to predict structural weaknesses as a final step. Next, using considerable information now available for buildings and equipment exposed to natural hazards, engineering judgments about structures being evaluated can be made with a great deal of confidence. This approach does not eliminate conservatism entirely, but it does reduce it to a reasonable and realistic level. As a result, the upgrade cost goes down without compromising the low risk necessary for vital facilities

  16. Precision robotic control of agricultural vehicles on realistic farm trajectories

    Science.gov (United States)

    Bell, Thomas

    High-precision "autofarming", or precise agricultural vehicle guidance, is rapidly becoming a reality thanks to increasing computing power and carrier-phase differential GPS ("CPDGPS") position and attitude sensors. Realistic farm trajectories will include not only rows but also arcs created by smoothly joining rows or path-planning algorithms, spirals for farming center-pivot irrigated fields, and curved trajectories dictated by nonlinear field boundaries. In addition, fields are often sloped, and accurate control may be required either on linear trajectories or on curved contours. A three-dimensional vehicle model which adapts to changing vehicle and ground conditions was created, and a low-order model for controller synthesis was extracted based on nominal conditions. The model was extended to include a towed implement. Experimentation showed that an extended Kalman filter could identify the vehicle's state in real-time. An approximation was derived for the additional positional uncertainty introduced by the noisy "lever-arm correction" necessary to translate the GPS position measurement at the roof antenna to the vehicle's control point on the ground; this approximation was then used to support the assertion that attitude measurement accuracy was as important to control point position measurement as the original position measurement accuracy at the GPS antenna. The low-order vehicle control model was transformed to polar coordinates for control on arcs and spirals. Experimental data showed that the tractor's control, point tracked an arc to within a -0.3 cm mean and a 3.4 cm standard deviation and a spiral to within a -0.2 cm mean and a 5.3 cm standard deviation. Cubic splines were used to describe curve trajectories, and a general expression for the time-rate-of-change of curve-related parameters was derived. Four vehicle control algorithms were derived for curve tracking: linear local-error control based on linearizing the vehicle about the curve's radius of

  17. WOMBAT & FORECAST: Making Realistic Maps of the Microwave Sky

    OpenAIRE

    Jaffe, Andrew H.; Gawiser, Eric; Finkbeiner, Douglas; Baker, Joanne C.; Balbi, Amedeo; Davis, Marc; Hanany, Shaul; Holzapfel, William; Krumholz, Mark; Moustakas, Leonidas,; Robinson, James; Scannapieco, Evan; Smoot, George F.; Silk, Joseph

    1999-01-01

    The Wavelength-Oriented Microwave Background Analysis Team (WOMBAT) is constructing microwave maps which will be more realistic than previous simulations. Our foreground models represent a considerable improvement: where spatial templates are available for a given foreground, we predict the flux and spectral index of that component at each place on the sky and estimate uncertainties. We will produce maps containing simulated CMB anisotropy combined with expected foregrounds. The simulated map...

  18. Synthetic Seismograms in Realistic Media : A Wave-theoretical Approach

    OpenAIRE

    Kohketsu, Kazuki

    1988-01-01

    In order to interpret seismograms, we should separate the effects of source and medium, which are strongly coupled. The medium effect is usually estimated by computing synthetic seismograms for a model of the Earth. Of course, a three-dimensionally heterogeneous, arbitrarily anisotropic and attenuative medium is the most realistic model, but it requires a great deal of theoretical and numerical effort. At present one- or two-dimensionally layered, isotropic and attenuative media consisting of...

  19. QUANTUM KEY DISTRIBUTION WITH REALISTIC HERALDED SINGLE-PHOTON SOURCES

    OpenAIRE

    Lasota, Mikolaj; Demkowicz-Dobrzanski, Rafal; Banaszek, Konrad

    2013-01-01

    We analyze theoretically performance of four-state quantum key distribution protocols implemented with a realistic heralded single-photon source. The analysis assumes a noisy model for the detector heralding generation of individual photons via spontaneous parametric down-conversion, including dark counts and imperfect photon number resolution. We identify characteristics of the heralding detector that defines the attainable cryptographic key rate and the maximum secure distance. Approximate ...

  20. Automatic Perceptual Color Map Generation for Realistic Volume Visualization

    OpenAIRE

    Silverstein, Jonathan C.; Parsad, Nigel M.; Tsirline, Victor

    2008-01-01

    Advances in computed tomography imaging technology and inexpensive high performance computer graphics hardware are making high-resolution, full color (24-bit) volume visualizations commonplace. However, many of the color maps used in volume rendering provide questionable value in knowledge representation and are non-perceptual thus biasing data analysis or even obscuring information. These drawbacks, coupled with our need for realistic anatomical volume rendering for teaching and surgical pla...

  1. An Argument Against the Realistic Interpretation of the Wave Function

    Science.gov (United States)

    Rovelli, Carlo

    2016-07-01

    Testable predictions of quantum mechanics are invariant under time reversal. But the evolution of the quantum state in time is not so, neither in the collapse nor in the no-collapse interpretations of the theory. This is a fact that challenges any realistic interpretation of the quantum state. On the other hand, this fact raises no difficulty if we interpret the quantum state as a mere calculation device, bookkeeping past real quantum events.

  2. Are Drivers' Comparative Risk Judgments about spending Realistic?

    OpenAIRE

    Delhomme, P.; Verlhiac, Jf; Martha, C.

    2009-01-01

    We examined how these drivers assess their risk of sanctions and their risk of causing an automobile crash because of speeding in comparison to the estimated risks of other drivers, and how realistic their comparative risk judgments are. We measured the relationship between the drivers' comparative risk judgments, self-reported speeding, and driving-related sensation-seeking. We hypothesized that they would think they have less risk of sanctions and of causing a car accident than others, and ...

  3. Optimal control of photoelectron emission by realistic waveforms

    OpenAIRE

    Solanpää, Janne; Ciappina, Marcelo F.; Räsänen, Esa

    2016-01-01

    Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory (QOCT). In this work we bring QOCT to experimental feasibility by providing an optimal control scheme with realistic pulse representation. We apply th...

  4. Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

    OpenAIRE

    Müther, R. Fritz H.; Machleidt, R.

    1993-01-01

    We discuss two different approximation schemes for the self-consistent solution of the {\\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the pre...

  5. Numerical Modeling of Earthquake Dynamic Rupture : Requirements for Realistic Modeling

    OpenAIRE

    Fukuyama, Eiichi

    2003-01-01

    I propose a strategy to make a numerical computation applicable to the realistic modeling of an earthquake dynamic rupture process.To do this, it is important to introduce any observables into the simulation as initial and boundary conditions.As an initial condition, distribution of total stress before the dynamic rupture, and as boundary conditions, fault constitutive relation and geometry of the fault are necessary.The initial stress distribution would be obtained by both in-situ measuremen...

  6. Emulating Realistic Bidirectional Spatial Channels for MIMO OTA Testing

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Nielsen, Jesper Ødum;

    2015-01-01

    downlink channel models, whereas uplink channel is often modeled as free space line-of-sight channel without fading. Modeling realistic bidirectional (i.e., both uplink and downlink) propagation environments is essential to evaluate any bidirectional communication systems. There have been works stressing...... configurations) in the uplink and downlink. The simulation results are further supported by measurements in a practical MPAC setup. The proposed algorithm is shown to be a valid method to emulate bidirectional spatial channel models....

  7. The construction of `So What?? criminology: a realist analysis

    OpenAIRE

    Matthews, Roger A.

    2010-01-01

    Abstract From a realist perspective there is a growing body of criminology that can be classified as `So What?? criminology in that it involves a low level of theorisation, thin, inconsistent or vague concepts and categories, embodies a dubious methodology or has little or no policy relevance. The production of `So What?? criminology is, of course, no accident but the outcome of a number of lines of force that have served to shape the nature of mainstream academic criminology in re...

  8. Plastinated nasal model: a new concept of anatomically realistic cast.

    OpenAIRE

    Durand, Marc; Pourchez, Jérémie; Louis, Bruno; Pouget, Jean-François; Isabey, Daniel; Coste, André; Prades, Jean-Michel; Rusch, Philippe; Cottier, Michèle

    2011-01-01

    BACKGROUND: For many years, researchers have been interested in investigating airflow and aerosol deposition in the nasal cavities. The nasal airways appear to be a complex geometrical system. Thus, in vitro experimental studies are frequently conducted with a more or less biomimetic nasal replica. AIM: This study is devoted to the development of an anatomically realistic nose model with bilateral nasal cavities, i.e. nasal anatomy, airway geometry and aerodynamic properties as close as possi...

  9. A realistic simulation for self-organizing traffic lights

    OpenAIRE

    Cools, Seung Bae

    2006-01-01

    Traffic density has been growing during the last decades. New and better traffic light controllers are needed. Carlos Gershenson has proposed self- organizing traffic light controllers which are much better than current "green wave" methods. This has been tested by simulation with a realistic traffic simulator, which is an extended version of the Green Light District / iAtracos project. The simulations of the traffic light controllers are done for three scenarios. The third sce...

  10. Towards Performance Evaluation of Cognitive Radio Network in Realistic Environment

    Directory of Open Access Journals (Sweden)

    Vivek Kukreja

    2013-11-01

    Full Text Available The scarcity of free spectrum compels us to look for alternatives for ever increasing wireless applications. Cognitive Radios (CR is one such alternative that can solve this problem. The network nodes having CR capability is termed as Cognitive Radio Network (CRN. To have communication in CRN a routing protocol is required. The primary goal of which is to provide a route from source to destination. Various routing protocols have been proposed and tested in idealistic environment using simulation software such as NS-2 and QualNet. This paper is an effort in the same direction but the efficacy is evaluated in realistic conditions by designing a simulator in MATLAB-7. To make the network scenario realistic obstacles of different shapes, type, sizes and numbers have been introduced. In addition to that the shape of the periphery is also varied to find the impact of it on routing protocols. From the results it is observed that the outcomes in the realistic and idealistic vary significantly. The reason for the same has also been discussed in this paper.

  11. Near-realistic mobile exergames with wireless wearable sensors.

    Science.gov (United States)

    Mortazavi, Bobak; Nyamathi, Suneil; Lee, Sunghoon Ivan; Wilkerson, Thomas; Ghasemzadeh, Hassan; Sarrafzadeh, Majid

    2014-03-01

    Exergaming is expanding as an option for sedentary behavior in childhood/adult obesity and for extra exercise for gamers. This paper presents the development process for a mobile active sports exergame with near-realistic motions through the usage of body-wearable sensors. The process begins by collecting a dataset specifically targeted to mapping real-world activities directly to the games, then, developing the recognition system in a fashion to produce an enjoyable game. The classification algorithm in this paper has precision and recall of 77% and 77% respectively, compared with 40% and 19% precision and recall on current activity monitoring algorithms intended for general daily living activities. Aside from classification, the user experience must be strong enough to be a successful system for adoption. Indeed, fast and intense activities as well as competitive, multiplayer environments make for a successful, enjoyable exergame. This enjoyment is evaluated through a 30 person user study. Multiple aspects of the exergaming user experience trials have been merged into a comprehensive survey, called ExerSurvey. All but one user thought the motions in the game were realistic and difficult to cheat. Ultimately, a game with near-realistic motions was shown to be an enjoyable, active video exergame for any environment. PMID:24608050

  12. Creating photo-realistic works in a 3D scene using layers styles to create an animation

    Science.gov (United States)

    Avramescu, A. M.

    2015-11-01

    Creating realist objects in a 3D scene is not an easy work. We have to be very careful to make the creation very detailed. If we don't know how to make these photo-realistic works, by using the techniques and a good reference photo we can create an amazing amount of detail and realism. For example, in this article there are some of these detailed methods from which we can learn the techniques necessary to make beautiful and realistic objects in a scene. More precisely, in this paper, we present how to create a 3D animated scene, mainly using the Pen Tool and Blending Options. Indeed, this work is based on teaching some simple ways of using the Layer Styles to create some great shadows, lights, textures and a realistic sense of 3 Dimension. The present work involves also showing how some interesting ways of using the illuminating and rendering options can create a realistic effect in a scene. Moreover, this article shows how to create photo realistic 3D models from a digital image. The present work proposes to present how to use Illustrator paths, texturing, basic lighting and rendering, how to apply textures and how to parent the building and objects components. We also propose to use this proposition to recreate smaller details or 3D objects from a 2D image. After a critic art stage, we are able now to present in this paper the architecture of a design method that proposes to create an animation. The aim is to create a conceptual and methodological tutorial to address this issue both scientifically and in practice. This objective also includes proposing, on strong scientific basis, a model that gives the possibility of a better understanding of the techniques necessary to create a realistic animation.

  13. Protocol: realist synthesis of the impact of unemployment insurance policies on poverty and health.

    Science.gov (United States)

    Molnar, Agnes; O'Campo, Patricia; Ng, Edwin; Mitchell, Christiane; Muntaner, Carles; Renahy, Emilie; St John, Alexander; Shankardass, Ketan

    2015-02-01

    Unemployment insurance is an important social protection policy that buffers unemployed workers against poverty and poor health. Most unemployment insurance studies focus on whether increases in unemployment insurance generosity are predictive of poverty and health outcomes. Less work has used theory-driven approaches to understand and explain how and why unemployment insurance works, for whom, and under what circumstances. Given this, we present a realist synthesis protocol that seeks to unpack how contextual influences trigger relevant mechanisms to generate poverty and health outcomes. In this protocol, we conceptualize unemployment insurance as a key social protection policy; provide a supporting rationale on the need for a realist synthesis; and describe our process on identifying context-mechanism-outcome pattern configurations. Six methodological steps are described: initial theory development, search strategy; selection and appraisal of documents; data extraction; analysis and synthesis process; and presentation and dissemination of revised theory. Our forthcoming realist synthesis will be the first to build and test theory on the intended and unintended outcomes of unemployment insurance policies. Anticipated findings will allow policymakers to move beyond 'black box' approaches to consider 'mechanism-based' explanations that explicate the logic on how and why unemployment insurance matters. PMID:25265163

  14. Methodology for estimating realistic responses of buildings and components under earthquake motion and its application

    International Nuclear Information System (INIS)

    Failure probabilities of buildings and components under earthquake motion are estimated as conditional probabilities that their realistic responses exceed their capacities. Two methods for estimating their failure probabilities have already been developed. One is a detailed method developed in the Seismic Safety margins Research Program of Lawrence Livermore National Laboratory in U.S.A., which is called 'SSMRP method'. The other is a simplified method proposed by Kennedy et al., which is called 'Zion method'. The Zion method is sometimes called 'response factor method'. The authors adopted the response factor method. In order to enhance the estimation accuracy of failure probabilities of buildings and components, however, a new methodology for improving the response factor method was proposed. Based on the improved method, response factors of buildings and components designed to seismic design standard in Japan were estimated, and their realistic responses were also calculated. By using their realistic responses and capacities, the failure probabilities of a reactor building and relays were estimated. In order to identify the difference between new method, SSMRP method and original response factor method, the failure probabilities were compared estimated by these three methods. A similar method of SSMRP was used instead of the original SSMRP for saving time and labor. The viewpoints for selecting the methods to estimate failure probabilities of buildings and components were also proposed. (author). 55 refs

  15. Realistic prediction of solid pharmaceutical oxidation products by using a novel forced oxidation system.

    Science.gov (United States)

    Ueyama, Eiji; Tamura, Kousuke; Mizukawa, Kousei; Kano, Kenji

    2014-04-01

    This study investigated a novel solid-state-based forced oxidation system to enable a realistic prediction of pharmaceutical product oxidation, a key consideration in drug development and manufacture. Polysorbate 80 and ferric(III) acetylacetonate were used as an organic hydroperoxide source and a transition metal catalyst, respectively. Homogeneous solutions of target compounds and these reagents were prepared in a mixed organic solvent. The organic solvent was removed rapidly under reduced pressure, and the oxidation of the resulting dried solid was investigated. Analysis of the oxidation products generated in test compounds by this proposed forced oxidation system using HPLC showed a high similarity with those generated during more prolonged naturalistic drug oxidation. The proposed system provided a better predictive performance in prediction of realistic oxidative degradants of the drugs tested than did other established methods. Another advantage of this system was that the generation of undesired products of hydrolysis, solvolysis, and thermolysis was prevented because efficient oxidation was achieved under mild conditions. The results of this study suggest that this system is suitable for a realistic prediction of oxidative degradation of solid pharmaceuticals. PMID:24497072

  16. A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging

    International Nuclear Information System (INIS)

    Realistic three-dimensional (3D) mathematical models of subtle lesions are essential for many computed tomography (CT) studies focused on performance evaluation and optimization. In this paper, we develop a generic mathematical framework that describes the 3D size, shape, contrast, and contrast-profile characteristics of a lesion, as well as a method to create lesion models based on CT data of real lesions. Further, we implemented a technique to insert the lesion models into CT images in order to create hybrid CT datasets. This framework was used to create a library of realistic lesion models and corresponding hybrid CT images. The goodness of fit of the models was assessed using the coefficient of determination (R2) and the visual appearance of the hybrid images was assessed with an observer study using images of both real and simulated lesions and receiver operator characteristic (ROC) analysis. The average R2 of the lesion models was 0.80, implying that the models provide a good fit to real lesion data. The area under the ROC curve was 0.55, implying that the observers could not readily distinguish between real and simulated lesions. Therefore, we conclude that the lesion-modeling framework presented in this paper can be used to create realistic lesion models and hybrid CT images. These models could be instrumental in performance evaluation and optimization of novel CT systems. (paper)

  17. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    A loudspeaker-based virtual auditory environment (VAE) has been developed to provide a realistic versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room reverberation. The VAE allows a full control of...... the acoustic scenario in order to systematically study the auditory processing of reverberant sounds. It is based on the ODEON software, which is state-of-the-art software for room acoustic simulations developed at Acoustic Technology, DTU. First, a MATLAB interface to the ODEON software has been...

  18. Meteorological impact of realistic Terra Nova Bay polynyas.

    Science.gov (United States)

    Morelli, Sandra

    2010-05-01

    The energy exchange between the ocean and the atmosphere in the Antarctic marginal sea ice zone is influenced by the extent of sea-ice cover. In areas of open water, a direct contact is established and intense energy exchanges occur, due to the large difference of temperature between the water and the air above it. This implies that the polynyas are areas where the ocean exchanges energy with the atmosphere and as a result they have an effect on the polar meteorology/climate. The work presented here concerns real polynya events in the region of Terra Nova Bay (TNB), Antarctica, where a recurring coastal polynya occurs nearby the Italian Antarctic Base. The aim is the study of the impact of polynyas on the atmosphere by three-dimensional numerical simulations. The ETA model (Mesinger et al., 2006) was used and ECMWF and NCEP data provided the initial and boundary conditions. The model had already been successfully used in the Antarctic area (Casini and Morelli, 2007) A polynya of realistic size (as observed by satellite image) was included in the initial conditions for the simulations and a study of the air circulation during the events is found in Morelli et al. (2007), Morelli and Casini (2008), Morelli et al. (2009). The Eta Model reproduced the evolution of upper and mod-level conditions in good agreement with AVHRR observations (Morelli, 2008, Morelli and Parmiggiani, 2009). Also, the simulated 10 m wind was well correlated with the observed extension of the polynya. In order to isolate the effect of the presence of the open water area on the structure of the atmospheric boundary layer and on the atmospheric circulation, further simulations were performed without the presence of the polynya, i.e. with its extent covered with sea ice. The numerical simulations show that the polynyas act to increase the speed of the air above them and generate strong heat fluxes that warm the air. The effects are found over and downwind the sea ice free area. Results from the Eta

  19. Towards dense, realistic granular media in 2D

    International Nuclear Information System (INIS)

    The development of an applicable theory for granular matter—with both qualitative and quantitative value—is a challenging prospect, given the multitude of states, phases and (industrial) situations it has to cover. Given the general balance equations for mass, momentum and energy, the limiting case of dilute and almost elastic granular gases, where kinetic theory works perfectly well, is the starting point. In most systems, low density co-exists with very high density, where the latter is an open problem for kinetic theory. Furthermore, many additional nonlinear phenomena and material properties are important in realistic granular media, involving, e.g.: 1. multi-particle interactions and elasticity; 2. strong dissipation,; 3. friction,; 4. long-range forces and wet contacts,; 5. wide particle size distributions and; 6. various particle shapes. Note that, while some of these issues are more relevant for high density, others are important for both low and high densities; some of them can be dealt with by means of kinetic theory, some cannot. This paper is a review of recent progress towards more realistic models for dense granular media in 2D, even though most of the observations, conclusions and corrections given are qualitatively true also in 3D. Starting from an elastic, frictionless and monodisperse hard sphere gas, the (continuum) balance equations of mass, momentum and energy are given. The equation of state, the (Navier–Stokes level) transport coefficients and the energy-density dissipation rate are considered. Several corrections are applied to those constitutive material laws—one by one—in order to account for the realistic physical effects and properties listed above. (invited article)

  20. ROC Analysis and a Realistic Model of Heart Rate Variability

    CERN Document Server

    Thurner, S; Teich, M C; Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1998-01-01

    We have carried out a pilot study on a standard collection of electrocardiograms from patients who suffer from congestive heart failure, and subjects without cardiac pathology, using receiver-operating-characteristic (ROC) analysis. The scale-dependent wavelet-coefficient standard deviation superior to two commonly used measures of cardiac dysfunction when the two classes of patients cannot be completely separated. A jittered integrate-and-fire model with a fractal Gaussian-noise kernel provides a realistic simulation of heartbeat sequences for both heart-failure patients and normal subjects.

  1. Realistic metamaterial lenses: Limitations imposed by discrete structure

    Science.gov (United States)

    Lapine, M.; Jelinek, L.; Freire, M. J.; Marqués, R.

    2010-10-01

    We study the peculiarities of a metamaterial “superlens,” caused by its discrete structure and finite size. We show that precise modeling of the lens provides remarkable distinctions from continuous medium approximation. In particular, we address the problem of highest resolution that can be achieved with a realistic electrically thin metamaterial lens. We conclude that discrete structure imposes essential limitations on the resolution and that the resolution cannot be improved by decreasing dissipation in the system. Further implications related to effective medium description of discrete structures are discussed.

  2. Mode-Coupling in Realistic Rotating Gravitational Collapse

    CERN Document Server

    Hod, S

    2000-01-01

    We analyze the mode-coupling phenomena in realistic rotating gravitational collapse. Physically, this phenomena is caused by the dragging of reference frames, due to the black-hole (or star's) rotation. It is shown that different modes become coupled during the rotating collapse. As a consequence, the asymptotic late-time tails are dominated by modes which, in general, have an angular distribution different from the original one. We show that a rotating Kerr black hole becomes ``bald'' slower than a spherically-symmetric Schwarzschild black hole. This paper considers gravitational, electromagnetic and neutrino fields propagating on a Kerr background.

  3. Some Observations upon "Realistic" Trajectories in Bohmian Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    María C. Boscá

    2013-02-01

    Full Text Available Experimental situations in which we observe quantum effects that deviate from the intuitive expectations of the classical world call for an interdisciplinary discussion, and one fundamental issue to be considered is the compatibility between the description of phenomena and the assumption of an objective reality. This paper discusses the ontological interpretation of Bohmian quantum mechanics, focusing on the use of the term “trajectory” and the difficulties associated with its connection to a “real” (objective trajectory. My conclusion is that the intended realistic interpretation of Bohmian trajectories is highly doubtful.

  4. A continuous family of realistic Susy SU(5) GUTs

    Science.gov (United States)

    Bajc, Borut

    2016-06-01

    It is shown that the minimal renormalizable supersymmetric SU(5) is still realistic providing the supersymmetric scale is at least few tens of TeV or large R-parity violating terms are considered. In the first case the vacuum is metastable, and different consistency constraints can give a bounded allowed region in the tan β - msusy plane. In the second case the mass eigenstate electron (down quark) is a linear combination of the original electron (down quark) and Higgsino (heavy colour triplet), and the mass ratio of bino and wino is determined. Both limits lead to light gravitino dark matter.

  5. Photo-Realistic Image Synthesis and Virtual Cinematography

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    characters, "virtual actors", in the motion picture production increases every day. While the most known computer graphics techniques have largely been adopted successfully in nowadays fictions, it still remains very challenging to implement virtual actors which would resemble, visually, human beings......Realistic Virtual View Synthesis is a new field of research that has received increasing attention in recent years. It is strictly related to the grown popularity of virtual reality and the spread of its applications, among which virtual photography and cinematography. The use of computer generated...

  6. Realistic shell-model calculations for Sn isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Covello, A. [Napoli Federico-2 Univ. (Italy). Dipt. di Scienze Fisiche]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); Andreozzi, F. [Napoli Federico-2 Univ. (Italy). Dipt. di Scienze Fisiche]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); Coraggio, L. [Napoli Federico-2 Univ. (Italy). Dipt. di Scienze Fisiche]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); Gargano, A. [Napoli Federico-2 Univ. (Italy). Dipt. di Scienze Fisiche]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); Porrino, A. [Napoli Federico-2 Univ. (Italy). Dipt. di Scienze Fisiche]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy)

    1997-05-01

    We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)

  7. The KM phase in semi-realistic heterotic orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Giedt, Joel

    2000-07-05

    In string-inspired semi-realistic heterotic orbifolds models with an anomalous U(1){sub X},a nonzero Kobayashi-Masakawa (KM) phase is shown to arise generically from the expectation values of complex scalar fields, which appear in nonrenormalizable quark mass couplings. Modular covariant nonrenormalizable superpotential couplings are constructed. A toy Z{sub 3} orbifold model is analyzed in some detail. Modular symmetries and orbifold selection rules are taken into account and do not lead to a cancellation of the KM phase. We also discuss attempts to obtain the KM phase solely from renormalizable interactions.

  8. Effects of instruction based on realistic mathematics education on mathematics achievement: A meta-analysis studyGerçekçi matematik eğitimi destekli öğretimin matematik başarısına etkisi: Bir meta-analiz çalışması

    Directory of Open Access Journals (Sweden)

    Abdullah Kaplan

    2015-07-01

    Full Text Available The purpose of this research is to determine the overall effect of instruction based on realistic mathematics education on mathematics achievement. The Meta-Analysis method recently increased in popularity in the field of educational science is used to accomplish this goal. Some criterions have been put in the determination of the study included in the survey and 12 national thesis in accordance with these criterions constituted the sample of this study. Process effectiveness method of meta-analysis is used in the analysis of data and Hedges’s g is used in the calculation of effect size of the study. At the end of the study, realistic mathematics education has an overall, positive and moderate effect on the mathematics achievement (Q = 16.406; p = 0.127. Howewer, the distribution of the effect sizes of the studies included in the survey are found to be homogeneous. At the end of the Z test carried out for the purpose of statistical significance, the value of effect size is observed statistically significant (Z = 7.966; p <0.05. The number of error protection is calculated 91 study to determine the publication bias of the study according to Orwin’s method. According to Orwin’s Fail Safe-N, the research could not have publication bias.   Özet Bu araştırmanın amacı gerçekçi matematik eğitiminin matematik başarısı üzerindeki genel etkisini belirlemektir. Bu amacı gerçekleştirmek için eğitim bilimleri alanında yakın zamanda popülerliği artan meta-analiz yöntemi kullanılmıştır. Araştırmaya dâhil edilecek çalışmaların belirlenmesinde bazı kriterler belirlenmiş ve bu kriterlere uygun olan 12 ulusal tez bu araştırmanın örneklemini oluşturmuştur. Verilerin analizinde işlem etkililiği meta analizi yöntemi kullanılmış olup araştırmaların etki büyüklüklerinin hesaplanmasında Hedges’s g kullanılmıştır. Araştırma sonucunda gerçekçi matematik eğitiminin matematik başarısı üzerinde genel

  9. Protocol - realist and meta-narrative evidence synthesis: Evolving Standards (RAMESES

    Directory of Open Access Journals (Sweden)

    Westhorp Gill

    2011-08-01

    Full Text Available Abstract Background There is growing interest in theory-driven, qualitative and mixed-method approaches to systematic review as an alternative to (or to extend and supplement conventional Cochrane-style reviews. These approaches offer the potential to expand the knowledge base in policy-relevant areas - for example by explaining the success, failure or mixed fortunes of complex interventions. However, the quality of such reviews can be difficult to assess. This study aims to produce methodological guidance, publication standards and training resources for those seeking to use the realist and/or meta-narrative approach to systematic review. Methods/design We will: [a] collate and summarise existing literature on the principles of good practice in realist and meta-narrative systematic review; [b] consider the extent to which these principles have been followed by published and in-progress reviews, thereby identifying how rigour may be lost and how existing methods could be improved; [c] using an online Delphi method with an interdisciplinary panel of experts from academia and policy, produce a draft set of methodological steps and publication standards; [d] produce training materials with learning outcomes linked to these steps; [e] pilot these standards and training materials prospectively on real reviews-in-progress, capturing methodological and other challenges as they arise; [f] synthesise expert input, evidence review and real-time problem analysis into more definitive guidance and standards; [g] disseminate outputs to audiences in academia and policy. The outputs of the study will be threefold: 1. Quality standards and methodological guidance for realist and meta-narrative reviews for use by researchers, research sponsors, students and supervisors 2. A 'RAMESES' (Realist and Meta-review Evidence Synthesis: Evolving Standards statement (comparable to CONSORT or PRISMA of publication standards for such reviews, published in an open

  10. Hand effect on head specific absorption rate (SAR) exposed by two realistic phone models

    International Nuclear Information System (INIS)

    There have been some reports about possible effect of the hand presence on the head SAR if hand phantom is included in the measurements of the head SAR compliance assessment procedure. The objective of this computational study was to examine the reported effect by using realistic head models and realistic CAD based phone models. A commercially available FDTD based EM solver was used to carry out the computational work. Based on the results of this study considering the SAR values without hand phantom as reference, following conclusions can be made: 1. In general presence of the hand lead to significantly less conservative SAR values in the head for large majority of cases 2. For lower band GSM frequencies the presence of the hand decreases the head SAR up to ∼70%. 3. For the upper band GSM frequencies the presence of the hand decreases the head SAR up to ∼55%. Based on the results of this study the present SAR compliance protocol where hand phantom is not included leads to more conservative head SAR results compared to the cases where hand is included.

  11. Particle deposition in a realistic geometry of the human conducting airways

    DEFF Research Database (Denmark)

    Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova;

    2016-01-01

    of inlet flow conditions, particle size, electrostatic charge, and flowrate. While most computer simulations assume a uniform velocity at the mouth inlet, we found that using a more realistic inlet profile based on Laser Doppler Anemometry measurements resulted in enhanced deposition, mostly on the......, we use Large Eddy Simulations (LES) to investigate the deposition of inhaled aerosol particles with diameters of dp=0.1,0.5,1,2.5,5dp=0.1,0.5,1,2.5,5 and 10μm (particle density of 1200 kg/m3). We use a reconstructed geometry of the human airways obtained via computed tomography and assess the effects...

  12. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution....... Throughout the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  13. Generating Geospatially Realistic Driving Patterns Derived From Clustering Analysis Of Real EV Driving Data

    DEFF Research Database (Denmark)

    Pedersen, Anders Bro; Aabrandt, Andreas; Østergaard, Jacob;

    2014-01-01

    In order to provide a vehicle fleet that realistically represents the predicted Electric Vehicle (EV) penetration for the future, a model is required that mimics people driving behaviour rather than simply playing back collected data. When the focus is broadened from on a traditional user...... scales, which calls for a statistically correct, yet flexible model. This paper describes a method for modelling EV, based on non-categorized data, which takes into account the plug in locations of the vehicles. By using clustering analysis to extrapolate and classify the primary locations where the...

  14. Radiation-Spray Coupling for Realistic Flow Configurations

    Science.gov (United States)

    El-Asrag, Hossam; Iannetti, Anthony C.

    2011-01-01

    Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.

  15. Effects of realistic satellite shielding on SEE rates

    International Nuclear Information System (INIS)

    Realistic models of satellite shielding have been used to calculate SEE rates for Galactic Cosmic Rays (GCR) and solar flare protons. The results are compared with those obtained with a nominal 0.1 inch spherical shield. The rates for GCR (solar minimum) are systematically lower than those calculated with the nominal shield. The ratio of rates is greater than 75% for lightly shielded devices, but may be as high as a factor of two where there is shielding by other circuit boards. A more nearly realistic estimate of the rates would be obtained with a spherical shield with a thickness of at least 0.4 inches (3 gm/cm2) for the typical satellites considered. The calculation of the SEE rate due to protons was reformulated to expedite shielding calculations. When the method was applied to the 93L422 RAM for various flare spectra, it was apparent that shielding has a first order effect on rate predictions. The calculated flare upset rates for the TDRS satellite were within 20% of the observed rates. A spherical shield of thickness 0.3 inches (2 gm/cm2) would reproduce the rates. The method was also applied to a trapped proton environment predicted from standard models for CRRES. The predicted rate was consistent with the uncertainties of the environment

  16. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  17. Electron percolation in realistic models of carbon nanotube networks

    International Nuclear Information System (INIS)

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models

  18. Electron percolation in realistic models of carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, Louis-Philippe, E-mail: louis-philippe.simoneau@polymtl.ca; Villeneuve, Jérémie, E-mail: jeremie.villeneuve@polymtl.ca; Rochefort, Alain, E-mail: alain.rochefort@polymtl.ca [Département de génie physique and Regroupement québécois sur les matériaux de pointe (RQMP), École Polytechnique de Montréal, Montréal, Québec H3C 3A7 (Canada)

    2015-09-28

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  19. Report of the workshop on realistic SSC lattices

    International Nuclear Information System (INIS)

    A workshop was held at the SSC Central Design Group from May 29 to June 4, 1985, on topics relating to the lattice of the SSC. The workshop marked a shift of emphasis from the investigation of simplified test lattices to the development of a realistic lattice suitable for the conceptual design report. The first day of the workshop was taken up by reviews of accelerator system requirements, of the reference design solutions for these requirements, of lattice work following the reference design, and of plans for the workshop. The work was divided among four working groups. The first, chaired by David Douglas, concerned the arcs of regular cells. The second group, which studied the utility insertions, was chaired by Beat Leemann. The third group, under David E. Johnson, concerned itself with the experimental insertions, dispersion suppressors, and phase trombones. The fourth group, responsible for global lattice considerations and the design of a new realistic lattice example, was led by Ernest Courant. The papers resulting from this workshop are roughly divided into three sets: those relating to specific lattice components, to complete lattices, and to other topics. Among the salient accomplishments of the workshop were additions to and optimization of lattice components, especially those relating to lattices using 1-in-1 magnets, either horizontally or vertically separated, and the design of complete lattice examples. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. Toward the classification of the realistic free fermionic models

    International Nuclear Information System (INIS)

    The realistic free fermionic models have had remarkable success in providing plausible explanations for various properties of the Standard Model which include the natural appearance of three generations, the explanation of the heavy top quark mass and the qualitative structure of the fermion mass spectrum in general, the stability of the proton and more. These intriguing achievements makes evident the need to understand the general space of these models. While the number of possibilities is large, general patterns can be extracted. In this paper the author presents a detailed discussion on the construction of the realistic free fermionic models with the aim of providing some insight into the basic structures and building blocks that enter the construction. The role of free phases in the determination of the phenomenology of the models is discussed in detail. The author discusses the connection between the free phases and mirror symmetry in (2,2) models and the corresponding symmetries in the case of (2,0) models. The importance of the free phases in determining the effective low energy phenomenology is illustrated in several examples. The classification of the models in terms of boundary condition selection rules, real world-sheet fermion pairings, exotic matter states and the hidden sector is discussed

  1. Radiation Dose Estimation Using Realistic Postures with PIMAL

    International Nuclear Information System (INIS)

    For correct radiation dose assessment, it is important to take the posture into account. A computational phantom with moving arms and legs was previously developed to address this need. Further, an accompanying graphical user interface (GUI), called PIMAL, was developed to enable dose estimation using realistic postures in a user-friendly manner such that the analyst's time could be substantially reduced. The importance of the posture for correct dose estimation has been demonstrated with a few case studies in earlier analyses. The previous version of PIMAL was somewhat limited in its features (i.e., it contained only a hermaphrodite phantom model and allowed only isotropic source definition). Currently GUI is being further enhanced by incorporating additional phantom models, improving the features, and increasing the user friendliness in general. This paper describes recent updates to the PIMAL software. In this summary recent updates to the PIMAL software, which aims to perform radiation transport simulations for phantom models in realistic postures in a user-friendly manner, are described. In future work additional phantom models, including hybrid phantom models, will be incorporated. In addition to further enhancements, a library of input files for the case studies that have been analyzed to date will be included in the PIMAL.

  2. Spin-tensor analysis of realistic shell model interactions

    International Nuclear Information System (INIS)

    In this paper various realistic shell model effective interactions are analyzed in terms of their central, vector, and tensor components. The effective forces were obtained from phenomenological (Hamada-Johnston) as well as from modern meson-exchange (Bonn-Juelich and Paris) nucleon-nucleon potentials and were calculated to various approximations within the framework of perturbation theory. For all forces examined, the dominant contribution comes from the central part. The vector component is small for the bare G-matrix interaction, especially for T=0, but is considerably modified by renormalization. The tensor component is somewhat larger than the vector component and is relatively larger for the Hamada-Johnston potential than for the Bonn-Juelich and Paris potentials. Centroids in j-j and SU(3) coupling were obtained with and without noncentral contributions; considerable sensitivity was observed in the SU(3) basis

  3. Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak

    CERN Document Server

    Zhou, Fan; Cao, Wei; Stuart, Colin T; Gu, Jianqiang; Zhang, Weili; Sun, Cheng

    2011-01-01

    The invisibility cloak has been a long-standing dream for many researchers over the decades. The introduction of transformational optics has revitalized this field by providing a general method to design material distributions to hide the subject from detection. By transforming space and light propagation, a three-dimensional (3D) object is perceived as having a reduced number of dimensions, in the form of points, lines, and thin sheets, making it "undetectable" judging from the scattered field. Although a variety of cloaking devices have been reported at microwave and optical frequencies, the spectroscopically important Terahertz (THz) domain remains unexplored. Moreover, due to the difficulties in fabricating cloaking devices that are optically large in all three dimensions, hiding realistic 3D objects has yet to be demonstrated. Here, we report the first experimental demonstration of a 3D THz cloaking device fabricated using a scalable Projection Microstereolithography process. The cloak operates at a broa...

  4. Optimal continuous variable quantum teleportation protocol for realistic settings

    Science.gov (United States)

    Luiz, F. S.; Rigolin, Gustavo

    2015-03-01

    We show the optimal setup that allows Alice to teleport coherent states | α > to Bob giving the greatest fidelity (efficiency) when one takes into account two realistic assumptions. The first one is the fact that in any actual implementation of the continuous variable teleportation protocol (CVTP) Alice and Bob necessarily share non-maximally entangled states (two-mode finitely squeezed states). The second one assumes that Alice's pool of possible coherent states to be teleported to Bob does not cover the whole complex plane (| α | teleported state. These slight changes in the protocol are currently easy to be implemented and, as we show, give considerable gain in performance for a variety of possible pool of input states with Alice.

  5. Ring Current Modeling in a Realistic Magnetic Field Configuration

    Science.gov (United States)

    Fok, M.-C.; Moore, T. E.

    1997-01-01

    A 3-dimensional kinetic model has been developed to study the dynamics of the storm time ring current in a dipole magnetic field. In this paper, the ring current model is extended to include a realistic, time-varying magnetic field model. The magnetic field is expressed as the cross product of the gradients of two Euler potentials and the bounce-averaged particle drifts are calculated in the Euler potential coordinates. A dipolarization event is modeled by collapsing a tail-like magnetosphere to a dipole-like configuration. Our model is able to simulate the sudden enhancements in the ring current ion fluxes and the corresponding ionospheric precipitation during the substorm expansion.

  6. Towards a Realistic Model for Failure Propagation in Interdependent Networks

    CERN Document Server

    Sturaro, Agostino; Conti, Mauro; Das, Sajal K

    2015-01-01

    Modern networks are becoming increasingly interdependent. As a prominent example, the smart grid is an electrical grid controlled through a communications network, which in turn is powered by the electrical grid. Such interdependencies create new vulnerabilities and make these networks more susceptible to failures. In particular, failures can easily spread across these networks due to their interdependencies, possibly causing cascade effects with a devastating impact on their functionalities. In this paper we focus on the interdependence between the power grid and the communications network, and propose a novel realistic model, HINT (Heterogeneous Interdependent NeTworks), to study the evolution of cascading failures. Our model takes into account the heterogeneity of such networks as well as their complex interdependencies. We compare HINT with previously proposed models both on synthetic and real network topologies. Experimental results show that existing models oversimplify the failure evolution and network...

  7. Ab initio H2O in realistic hydrophilic confinement.

    Science.gov (United States)

    Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel

    2014-12-15

    A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765

  8. Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures

    Science.gov (United States)

    Brown, Andrew M.; Ferri, Aldo A.

    1998-01-01

    The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.

  9. Generating realistic environments for cyber operations development, testing, and training

    Science.gov (United States)

    Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.

    2012-06-01

    Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.

  10. Rabi Oscillations in Realistic Superlattice with Finite Bloch Bands

    Institute of Scientific and Technical Information of China (English)

    FAN Wen-Bin; ZHANG Ping; LUO Ying; ZHAO Xian-Geng

    2001-01-01

    We investigate the dynamical processes taking place in nanodevices by high-frequency dc-ac fields. We found that Rabi oscillations between minibands are clearly identified under theoretical resonant conditions derived by an ideal two-band superlattice model, the resonant conditions have broadened, and the amount of broadening is about four times of the Rabi oscillation frequency. We also want to elucidate the role of different mechanisms that could lead to loss of quantum coherence. Our results show how the dephasing effects of disorder of interface roughness and doping fluctuation that after some periods destroy coherent oscillations, such as Rabi oscillations,can be reduced dramatically if we apply a bias static electric field to the superlattice system. The doping fluctuation dephasing effect is much stronger than that of interface roughness in the coherent process of realistic superlattices.

  11. Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    CERN Document Server

    Duriez, Christian; Kheddar, Abderrahmane; Andriot, Claude

    2008-01-01

    A new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and s...

  12. Design for and efficient dynamic climate model with realistic geography

    Science.gov (United States)

    Suarez, M. J.; Abeles, J.

    1984-01-01

    The long term climate sensitivity which include realistic atmospheric dynamics are severely restricted by the expense of integrating atmospheric general circulation models are discussed. Taking as an example models used at GSFC for this dynamic model is an alternative which is of much lower horizontal or vertical resolution. The model of Heid and Suarez uses only two levels in the vertical and, although it has conventional grid resolution in the meridional direction, horizontal resolution is reduced by keeping only a few degrees of freedom in the zonal wavenumber spectrum. Without zonally asymmetric forcing this model simulates a day in roughly 1/2 second on a CRAY. The model under discussion is a fully finite differenced, zonally asymmetric version of the Heid-Suarez model. It is anticipated that speeds can be obtained a few seconds a day roughly 50 times faster than moderate resolution, multilayer GCM's.

  13. Optimal control of photoelectron emission by realistic waveforms

    CERN Document Server

    Solanpää, Janne; Räsänen, Esa

    2016-01-01

    Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory (QOCT). In this work we bring QOCT to experimental feasibility by providing an optimal control scheme with realistic pulse representation. We apply the technique to optimal control of above-threshold photoelectron emission from a one-dimensional hydrogen atom. By mixing different spectral channels and thus lowering the intensity requirements for individual channels, the resulting optimal pulses can extend the cutoff energies by at least up to 50% and bring up the electron yield by several orders of magnitude. Insights into the electron dynamics for optimized photoelectron emission are obtained with a semiclassical two-step model.

  14. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  15. Electronic structure of a realistic model of amorphous graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kapko, V.; Thorpe, M.F. [Department of Physics and Astronomy, Arizona State University, Tempe, AZ (United States); Drabold, D.A. [Department of Physics and Astronomy, Ohio University, Athens, OH (United States)

    2010-05-15

    In this note, we calculate the electronic properties of a realistic atomistic model of amorphous graphene. The model contains odd-membered rings, particularly five and seven membered rings and no coordination defects. We show that odd-membered rings increase the electronic density of states at the Fermi level relative to crystalline graphene; a honeycomb lattice with semi-metallic character. Some graphene samples contain amorphous regions, which even at small concentrations, may strongly affect many of the exotic properties of crystalline graphene, which arise because of the linear dispersion and semi-metallic character of perfectly crystalline graphene. Estimates are given for the density of states at the Fermi level using a tight-binding model for the {pi} states. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Mode engineering for realistic quantum-enhanced interferometry

    Science.gov (United States)

    Jachura, Michał; Chrapkiewicz, Radosław; Demkowicz-Dobrzański, Rafał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-01-01

    Quantum metrology overcomes standard precision limits by exploiting collective quantum superpositions of physical systems used for sensing, with the prominent example of non-classical multiphoton states improving interferometric techniques. Practical quantum-enhanced interferometry is, however, vulnerable to imperfections such as partial distinguishability of interfering photons. Here we introduce a method where appropriate design of the modal structure of input photons can alleviate deleterious effects caused by another, experimentally inaccessible degree of freedom. This result is accompanied by a laboratory demonstration that a suitable choice of spatial modes combined with position-resolved coincidence detection restores entanglement-enhanced precision in the full operating range of a realistic two-photon Mach–Zehnder interferometer, specifically around a point which otherwise does not even attain the shot-noise limit due to the presence of residual distinguishing information in the spectral degree of freedom. Our method highlights the potential of engineering multimode physical systems in metrologic applications. PMID:27125782

  17. Considerations for realistic ECCS evaluation methodology for LWRs

    International Nuclear Information System (INIS)

    This paper identifies the various phenomena which govern the course of large and small break LOCAs in LWRs, and affect the key parameters such as Peak Clad Temperature (PCT) and timing of the end of blowdown, beginning of reflood, PCT, and complete quench. A review of the best-estimate models and correlations for these phenomena in the current literature has been presented. Finally, a set of models have been recommended which may be incorporated in a present best-estimate code such as TRAC or RELAP5 in order to develop a realistic ECCS evaluation methodology for future LWRs and have also been compared with the requirements of current ECCS evaluation methodology as outlined in Appendix K of 10CFR50. 58 refs

  18. A realistic model of the semileptonic decays of beauty

    International Nuclear Information System (INIS)

    A realistic calculation of the semileptonic decays of B-mesons, which depends in an essential manner on the Kobayashi-Maskawa matrix elements Vsub(b->c) and Vsub(b->u) only, is presented. A very good fit to the experimental lepton spectrum is obtained for vertical strokeVsub(b->u)/Vsub(b->c)vertical stroke2 = 0.10+-0.06, and from the world average for the B-lifetime (tausub(B) = 1.04+-0.15 ps), Vsub(b->c) = (5.9+-0.4)x10-2 and Vsub(b->u) = (1.9+-0.5)x10-2 are derived. (orig.)

  19. Capturing and reproducing realistic acoustic scenes for hearing research

    DEFF Research Database (Denmark)

    Marschall, Marton; Buchholz, Jörg

    Accurate spatial audio recordings are important for a range of applications, from the creation of realistic virtual sound environments to the evaluation of communication devices, such as hearing instruments and mobile phones. Spherical microphone arrays are particularly well-suited for capturing......-order ambisonics (HOA) with additional, horizontally oriented spherical harmonic functions of higher orders. Simulations of a MOA array, with a higher density of microphones near the equator, and an array with a nearly uniform distribution of microphones were compared in terms of spatial resolution and robustness....... A MOA array was constructed, and some of the simulation results were validated with measurements. Results showed that for MOA, the spatial resolution was improved for horizontal sources at mid to high frequencies and the robustness to noise and measurement errors was similar to that of HOA. The...

  20. Ultra-realistic imaging and OptoClones

    Science.gov (United States)

    Bjelkhagen, Hans I.; Lembessis, Alkiviadis; Sarakinos, Andreas

    2016-03-01

    Recent improvements in solid state CW lasers, recording materials and light sources (such as LED lights) for displaying color holograms are described. Full-color analogue holograms can now be created with substantially better image characteristics than previously possible. To record ultra-realistic images depends on selecting the optimal recording laser wavelengths and employing ultra-fine-grain, silver-halide materials. The image quality is improved by using LED display light with improved spatial coherence. Recording museum artifacts using mobile holographic equipment is described. The most recent recorded such holograms (referred to as OptoClones™) are the Fabergé Eggs at the Fabergé Museum in St. Petersburg, Russia.

  1. Resolving conflict realistically in today's health care environment.

    Science.gov (United States)

    Smith, S B; Tutor, R S; Phillips, M L

    2001-11-01

    Conflict is a natural part of human interaction, and when properly addressed, results in improved interpersonal relationships and positive organizational culture. Unchecked conflict may escalate to verbal and physical violence. Conflict that is unresolved creates barriers for people, teams, organizational growth, and productivity, leading to cultural disintegration within the establishment. By relying on interdependence and professional collaboration, all parties involved grow and, in turn, benefit the organization and population served. When used in a constructive manner, conflict resolution can help all parties involved see the whole picture, thus allowing freedom for growth and change. Conflict resolution is accomplished best when emotions are controlled before entering into negotiation. Positive confrontation, problem solving, and negotiation are processes used to realistically resolve conflict. Everyone walks away a winner when conflict is resolved in a positive, professional manner (Stone, 1999). PMID:11725427

  2. Magnetic exchange at realistic CoO/Ni interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2012-07-30

    We study the CoO/Ni interface by first principles calculations. Because the lattice mismatch is large, a realistic description requires a huge supercell. We investigate two interface configurations: in interface 1 the coupling between the Ni and Co atoms is mediated by O, whereas in interface 2 the Ni and Co atoms are in direct contact. We find that the magnetization (including the orbital moment) in interface 1 has a similar value as in bulk Ni but opposite sign, while in interface 2 it grows by 164%. The obtained magnetic moments can be explained by the local atomic environments. In addition, we find effects of charge transfer between the interface atoms. The Co 3d local density of states of interface 2 exhibits surprisingly small deviations from the corresponding bulk result, although the first coordination sphere is no longer octahedral. © Springer-Verlag 2012.

  3. DEVELOPMENT OF REALISTIC QUALITY LOSS FUNCTIONS FOR INDUSTRIAL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Abdul-Baasit SHAIBU; Byung Rae CHO

    2006-01-01

    A number of quality loss functions, most recently the Taguchi loss function, have been developed to quantify the loss due to the deviation of product performance from the desired target value. All these loss functions assume the same loss at the specified specification limits. In many real life industrial applications, however, the losses at the two different specifications limits are often not the same.Further, current loss functions assume a product should be reworked or scrapped if product performance falls outside the specification limits. It is a common practice in many industries to replace a defective item rather than spending resources to repair it, especially if considerable amount of time is required. To rectify these two potential problems, this paper proposes more realistic quality loss functions for proper applications to real-world industrial problems. This paper also carries out a comparison studies of all the loss functions it considers.

  4. Mode engineering for realistic quantum-enhanced interferometry.

    Science.gov (United States)

    Jachura, Michał; Chrapkiewicz, Radosław; Demkowicz-Dobrzański, Rafał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-01-01

    Quantum metrology overcomes standard precision limits by exploiting collective quantum superpositions of physical systems used for sensing, with the prominent example of non-classical multiphoton states improving interferometric techniques. Practical quantum-enhanced interferometry is, however, vulnerable to imperfections such as partial distinguishability of interfering photons. Here we introduce a method where appropriate design of the modal structure of input photons can alleviate deleterious effects caused by another, experimentally inaccessible degree of freedom. This result is accompanied by a laboratory demonstration that a suitable choice of spatial modes combined with position-resolved coincidence detection restores entanglement-enhanced precision in the full operating range of a realistic two-photon Mach-Zehnder interferometer, specifically around a point which otherwise does not even attain the shot-noise limit due to the presence of residual distinguishing information in the spectral degree of freedom. Our method highlights the potential of engineering multimode physical systems in metrologic applications. PMID:27125782

  5. Bosonic structure of realistic SO(10) supersymmetric cosmic strings

    Science.gov (United States)

    Allys, Erwan

    2016-05-01

    We study the bosonic structure of F -term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory, and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the subrepresentations singlet under the standard model, which is sufficient to describe the string structure. We then introduce an ansatz for Abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.

  6. Bosonic structure of realistic SO(10) SUSY cosmic strings

    CERN Document Server

    Allys, E

    2015-01-01

    We study the bosonic structure of F-term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric Grand Unified Theory, and its SSB scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the sub-representations singlet under the Standard Model, which is sufficient to describe the string structure. We then introduce an ansatz for abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.

  7. Realistic physics perspectives using radioactive beams from SPIRAL at GANIL

    International Nuclear Information System (INIS)

    The majority of the large international community in nuclear physics is looking towards the use of radioactive ion beams to broaden the horizon of our understanding of the physics of the nucleus. In theory, the use of radioactive beams will open a new era in nuclear physics by allowing access to new isotopes and by increasing the production rates of nuclei which can presently only be populated with extremely low cross-sections or not at all. However the beam intensities as well as the rather low variety of accelerated species will be constraints at least at the start up of the new facilities. A realistic physics program at SPIRAL is described as well as the necessary experimental tools. These essentially consist in two major devices built in the framework of large european collaborations: the VAMOS spectrometer and the EXOGAM γ-ray array. (author)

  8. Light Higgsino Dark Matter in a Realistic String CMSSM

    CERN Document Server

    Mayes, Van E

    2014-01-01

    When supersymmetry breaking is dominated by the complex structure moduli and the universal dilaton, a subset of the supersymmetry parameter space in a realistic MSSM constructed from intersecting/magnetized D-branes is equivalent to the mSUGRA/CMSSM parameter space with the trilinear term fixed to be minus the gaugino mass, A_0=-m_{1/2}. More generally, the scalar mass-squared terms for sfermions are split about the Higgs mass-squared terms, m_{Q_L,L_L}^2=m_H^2 - \\Delta m^2$ and m_{Q_R,L_R}^2=m_H^2 + \\Delta m^2, for generic values of the Kahler moduli. The hyberbolic branch/focus point (HB/FP) regions of this parameter space are present for both \\Delta m^2 = 0 and \\Delta m^2 \

  9. Supersymmetry and Light Quark Masses in a Realistic Superstring Model

    CERN Document Server

    Halyo, E

    1994-01-01

    We examine the light quark masses in a standard--like superstring model in the four dimensional free fermionic formulation. We find that the supersymmetry constraints in the observable and hidden sectors eliminate all large contributions to $m_u$ and $m_d$ and force them to be much smaller than the other quark masses. The requirement for an acceptable Higgs doublet spectrum results in $m_u<realistic $m_d$ can always be obtained whereas $m_u$ is at most $10^{-5}~MeV$. For particular choices of flat directions or vacua $m_u$ can be as small as $10^{-7}~MeV$ but cannot vanish.

  10. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  11. An anatomically realistic brain phantom for quantification with positron tomography

    International Nuclear Information System (INIS)

    Phantom studies are useful in assessing and maximizing the accuracy and precision of quantification of absolute activity, assessing errors associated with patient positioning, and dosimetry. Most phantoms are limited by the use of simple shapes, which do not adequately reflect real anatomy. The authors have constructed an anatomically realistic life-size brain phantom for positron tomography studies. The phantom consists of separately fillable R + L caudates, R + L putamens, R + L globus passidus and cerebellum. These structures are contained in proper anatomic orientation within a fillable cerebrum. Solid ventricles are also present. The entire clear vinyl cerebrum is placed in a human skull. The internal brain structures were fabricated from polyester resin, with dimensions, shapes and sizes of the structures obtained from digitized contours of brain slices in the U.C.S.D. computerized brain atlas. The structures were filled with known concentrations of Ga-68 in water and scanned with our NeuroECAT. The phantom was aligned in the scanner for each structure, such that the tomographic slice passed through that structure's center. After calibration of the scanner with a standard phantom for counts/pixel uCi/cc conversion, the measured activity concentrations were compared with the actual concentrations. The ratio of measured to actual activity concentration (''recovery coefficient'') for the caudate was 0.33; for the putamen 0.42. For comparison, the ratio for spheres of diameters 9.5, 16,19 and 25.4 mm was 0.23, 0.54, 0.81, and 0.93. This phantom provides more realistic assessment of performance and allows calculation of correction factors

  12. Stereoscopic virtual realistic surgical simulation in intracranial aneurysms

    Directory of Open Access Journals (Sweden)

    Hiromichi Nakabayashi

    2012-01-01

    Full Text Available Background: Three-dimensional (3D-computed tomographic angiography (CTA has been widely used for surgical simulation of intracranial aneurysms. Stereo imaging technology is progressing rapidly in recent years and stereo imaging may make more realistic surgical simulation possible. Therefore, we aimed at the establishment of a technique for stereoscopic viewing of minute volume rendering images while pursuing a low cost. Materials and Methods: Between January 2009 and June 2011, 54 patients with ruptured intracranial aneurysms were enrolled in this study. CTA data was transferred to the workstation equipped with image-processing software, and multilayer fusion images were processed by neurosurgeons. Image data for stereoscopic viewing of multilayer fusion image from arbitrary directions were collected form rotational trajectories around an aneurysm and were output to MPEG file. Stereoscopic viewing using MPEG data was achieved by the freeware named Stereo Movie Maker. Stereo viewing method using QuickTime VR format was also tried. Results: Multilayer fusion image created from CTA data displayed clearly the anatomical information about not only the aneurysm but also the surrounding structures, such as parent artery, venous system, brain tissue, skull bone, and scalp. The quality of the resulting multilayer fusion image was suitable for surgical simulation with virtual reality. Virtual realistic surgical simulation became possible by the combination of minute multilayer fusion image and stereoscopic viewing by our method. Conclusions: Our method for stereo viewing of multilayer fusion images resulted in an improvement in the capability of diagnostic imaging and the image-guided support for neurosurgical procedures in intracranial aneurysm.

  13. Advances in production of realistic cracks to NDT development and qualification purposes of steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Virkkunen, I.; Kemppainen, M. [Truflaw Ltd., Espoo (Finland); Tchilian, J.-M. [AREVA Nuclear Power Plant Sector, Saskatoon, Saskatchewan (Canada); Martens, J. [AREVA NP Intercontrole (France)

    2009-07-01

    Realistic defects are needed for steam generator tube inspections when developing new NDT methods or assessing the performance and reliability of methods and procedures used. Furthermore, realistic defects give the most reliable results in assessing service-related reliability of steam generator tubes by, for example, burst or leak tests. It is crucial to have representative defects as the defect characteristics has marked effect on the results both in NDE, burst and leak tests. Representativeness should be to the actual service-induced defects, and the evaluation should be based on the essential defect characteristics. In this paper real world application cases are presented about crack production to steam generator tubes. Crack production technique used is based on controlled thermal fatigue process creating natural cracks. Such cracks have been produced in Alloy 690 and austenitic stainless steel steam generator tubes. These cracks have been used, for example, for advanced NDT qualification purposes of a new build nuclear power plant. Paper presents results of the destructive tests performed after validation tests of the crack manufacturing in the Alloy 690 and austenitic stainless steel. These results are shown for both of the materials with measured essential crack characteristics. In addition to metallographic analysis, the paper presents the results of performed NDT inspections for the Alloy 690. Results have been obtained with an advanced inspection technique developed and used for today's inspections of steam generator tubes in nuclear power plants. (author)

  14. Advanced Simulation of Coupled Earthquake and Tsunami Events (ASCETE) - Simulation Techniques for Realistic Tsunami Process Studies

    Science.gov (United States)

    Behrens, Joern; Bader, Michael; Breuer, Alexander N.; van Dinther, Ylona; Gabriel, Alice-A.; Galvez Barron, Percy E.; Rahnema, Kaveh; Vater, Stefan; Wollherr, Stephanie

    2015-04-01

    At the End of phase 1 of the ASCETE project a simulation framework for coupled physics-based rupture generation with tsunami propagation and inundation is available. Adaptive mesh tsunami propagation and inundation by discontinuous Galerkin Runge-Kutta methods allows for accurate and conservative inundation schemes. Combined with a tree-based refinement strategy to highly optimize the code for high-performance computing architectures, a modeling tool for high fidelity tsunami simulations has been constructed. Validation results demonstrate the capacity of the software. Rupture simulation is performed by an unstructured tetrahedral discontinuous Galerking ADER discretization, which allows for accurate representation of complex geometries. The implemented code was nominated for and was selected as a finalist for the Gordon Bell award in high-performance computing. Highly realistic rupture events can be simulated with this modeling tool. The coupling of rupture induced wave activity and displacement with hydrodynamic equations still poses a major problem due to diverging time and spatial scales. Some insight from the ASCETE set-up could be gained and the presentation will focus on the coupled behavior of the simulation system. Finally, an outlook to phase 2 of the ASCETE project will be given in which further development of detailed physical processes as well as near-realistic scenario computations are planned. ASCETE is funded by the Volkswagen Foundation.

  15. Realistic modeling of seismic input for megacities and large urban areas

    International Nuclear Information System (INIS)

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  16. Realistic methods for calculating the releases and consequences of a large LOCA

    International Nuclear Information System (INIS)

    This report describes a calculational route to predict realistic radiological consequences for a successfully terminated large-loss-of-coolant accident (LOCA) at a pressurized-water reactor (PWR). All steps in the calculational route are considered. For each one, a brief comment is made on the significant differences between the methods of calculation that were identified in the benchmark studies and recommendations are made for the methods and data for carrying out realistic calculations. These are based on the best supportable methods and data and the technical basis for each recommendation is given. Where the lack of well-validated methods or data means that the most realistic method that can be justified is considered to be very conservative, the need for further research is identified. The behaviour of inorganic iodine and the removal of aerosols from the atmosphere of the reactor building are identified as areas of particular importance. Where the retention of radioactivity is sensitive to design features, these are identified and, for the most importance features, the impact of different designs on the release of activity is indicated. The predictions of the proposed model are calculated for each stage and compared with the releases of activity predicted by the licensing methods that were used in the earlier benchmark studies. The conservative nature of the latter is confirmed. Methods and data are also presented for calculating the resulting doses to members of the public of the National Radiological Protection Boards as a result of work carried out by several national bodies in the UK. Other, equally acceptable, models are used in other countries of the Community and some examples are given

  17. Processing of the GALILEO fuel rod code model uncertainties within the AREVA LWR realistic thermal-mechanical analysis methodology

    International Nuclear Information System (INIS)

    The availability of reliable tools and associated methodology able to accurately predict the LWR fuel behavior in all conditions is of great importance for safe and economic fuel usage. For that purpose, AREVA has developed its new global fuel rod performance code GALILEO along with its associated realistic thermal-mechanical analysis methodology. This realistic methodology is based on a Monte Carlo type random sampling of all relevant input variables. After having outlined the AREVA realistic methodology, this paper will be focused on the GALILEO code benchmarking process, on its extended experimental database and on the GALILEO model uncertainties assessment. The propagation of these model uncertainties through the AREVA realistic methodology is also presented. This GALILEO model uncertainties processing is of the utmost importance for accurate fuel design margin evaluation as illustrated on some application examples. With the submittal of Topical Report GALILEO to the U.S. NRC in 2013, GALILEO and its methodology are on the way to be industrially used in a wide range of irradiation conditions. (authors)

  18. Toward modeling of regional myocardial ischemia and infarction: generation of realistic coronary arterial tree for the heart model of the XCAT phantom

    Science.gov (United States)

    Fung, George S. K.; Segars, W. Paul; Veress, Alexander I.; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2009-02-01

    A realistic 3D coronary arterial tree (CAT) has been developed for the heart model of the computer generated 3D XCAT phantom. The CAT allows generation of a realistic model of the location, size and shape of the associated regional ischemia or infarction for a given coronary arterial stenosis or occlusion. This in turn can be used in medical imaging applications. An iterative rule-based generation method that systematically utilized anatomic, morphometric and physiologic knowledge was used to construct a detailed realistic 3D model of the CAT in the XCAT phantom. The anatomic details of the myocardial surfaces and large coronary arterial vessel segments were first extracted from cardiac CT images of a normal patient with right coronary dominance. Morphometric information derived from porcine data from the literature, after being adjusted by scaling laws, provided statistically nominal diameters, lengths, and connectivity probabilities of the generated coronary arterial segments in modeling the CAT of an average human. The largest six orders of the CAT were generated based on the physiologic constraints defined in the coronary generation algorithms. When combined with the heart model of the XCAT phantom, the realistic CAT provides a unique simulation tool for the generation of realistic regional myocardial ischemia and infraction. Together with the existing heart model, the new CAT provides an important improvement over the current 3D XCAT phantom in providing a more realistic model of the normal heart and the potential to simulate myocardial diseases in evaluation of medical imaging instrumentation, image reconstruction, and data processing methods.

  19. Effective realistic interactions for low momentum Hilbert spaces

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Dennis

    2012-12-13

    Realistic nucleon-nucleon potentials are an essential ingredient of modern microscopic many-body calculations. These potentials can be represented in two different ways: operator representation or matrix element representation. In operator representation the potential is represented by a set of quantum mechanical operators while in matrix element representation it is defined by the matrix elements in a given basis. Many modern potentials are constructed directly in matrix element representation. While the matrix element representation can be calculated from the operator representation, the determination of the operator representation from the matrix elements is more difficult. Some methods to solve the nuclear many-body problem, such as Fermionic Molecular Dynamics (FMD) or the Green's Function Monte Carlo (GFMC) method, however require explicitly the operator representation of the potential, as they do not work in a fixed many-body basis. It is therefore desirable to derive an operator representation also for the interactions given by matrix elements. In this work a method is presented which allows the derivation of an approximate operator representation starting from the momentum space partial wave matrix elements of the interaction. For that purpose an ansatz for the operator representation is chosen. The parameters in the ansatz are determined by a fit to the partial wave matrix elements. Since a perfect reproduction of the matrix elements in general cannot be achieved with a finite number of operators and the quality of the results depends on the choice of the ansatz, the obtained operator representation is tested in nuclear many-body calculations and the results are compared with those from the initial interaction matrix elements. For the calculation of the nucleon-nucleon scattering phase shifts and the deuteron properties a computer code written within this work is used. For larger nuclei the No Core Shell Model (NCSM) and FMD are applied. The

  20. Sociology of pharmaceuticals development and regulation: a realist empirical research programme.

    Science.gov (United States)

    Abraham, John

    2008-09-01

    A realist conceptualization of interests is proposed in opposition to the fashionable view that interests, objectivity and reality are merely social constructs, and that sociological analyses should be confined to discourse, actor-networks and micro-contextual practices. The objective interests of pharmaceutical companies in profit-maximization, and of patients/public health in the optimisation of drugs' benefit-risk ratios, can be empirically validated. The relationship between those interests and pharmaceutical regulation is best characterised by 'neo-liberal corporate bias' at the macro- and meso-levels. How such bias manifests itself at the micro-social level of science-based pharmaceutical testing and regulatory decision making is examined using a realist sociology of scientific knowledge, which appreciates that assessment of the validity of techno-scientific knowledge claims is essential for their sociological explanation. Commercial interests are shown to have biased science away from the interests of public health, in favour of industry. International comparisons of drug regulation demonstrate that drug injuries are not necessarily an inevitable by-product of pharmaceutical progress because some countries have fewer drug safety problems than others. Similarly, the lowering of techno-scientific standards for drug safety testing is not an inevitable cost of faster development of therapeutically valuable medicines, but a consequence of the internationalization of neo-liberal corporate bias. PMID:18761508

  1. Effective shell-model hamiltonians from realistic nucleon–nucleon potentials within a perturbative approach

    International Nuclear Information System (INIS)

    This paper discusses the derivation of an effective shell-model hamiltonian starting from a realistic nucleon–nucleon potential by way of perturbation theory. More precisely, we present the state of the art of this approach when the starting point is the perturbative expansion of the Q-hat-box vertex function. Questions arising from diagrammatics, intermediate-states and order-by-order convergences, and their dependence on the chosen nucleon–nucleon potential, are discussed in detail, and the results of numerical applications for the p-shell model space starting from chiral next-to-next-to-next-to-leading order potentials are shown. Moreover, an alternative graphical method to derive the effective hamiltonian, based on the Z-hat-box vertex function recently introduced by Suzuki et al., is applied to the case of a non-degenerate (0+2)ħω model space. Finally, our shell-model results are compared with the exact ones obtained from no-core shell-model calculations. - Highlights: ► The derivation of nuclear realistic shell-model effective hamiltonians is studied. ► Perturbation theory. ► Diagrammatics, intermediate-states and order-by-order convergences are investigated. ► Shell-model calculations in degenerate and non-degenerate model spaces are presented. ► Shell-model results are compared with the exact ones.

  2. Accurate Transfer Maps for Realistic Beamline Elements: Part I, Straight Elements

    CERN Document Server

    Mitchell, Chad E

    2010-01-01

    The behavior of orbits in charged-particle beam transport systems, including both linear and circular accelerators as well as final focus sections and spectrometers, can depend sensitively on nonlinear fringe-field and high-order-multipole effects in the various beam-line elements. The inclusion of these effects requires a detailed and realistic model of the interior and fringe fields, including their high spatial derivatives. A collection of surface fitting methods has been developed for extracting this information accurately from 3-dimensional field data on a grid, as provided by various 3-dimensional finite-element field codes. Based on these realistic field models, Lie or other methods may be used to compute accurate design orbits and accurate transfer maps about these orbits. Part I of this work presents a treatment of straight-axis magnetic elements, while Part II will treat bending dipoles with large sagitta. An exactly-soluble but numerically challenging model field is used to provide a rigorous colle...

  3. A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction

    Science.gov (United States)

    Egolf, T. Alan; Sparks, S. Patrick

    1987-01-01

    A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.

  4. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    Science.gov (United States)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  5. Simulation and assessment of realistic breast lesions using fractal growth models

    Science.gov (United States)

    Rashidnasab, A.; Elangovan, P.; Yip, M.; Diaz, O.; Dance, D. R.; Young, K. C.; Wells, K.

    2013-08-01

    A new method of generating realistic three dimensional simulated breast lesions known as diffusion limited aggregation (DLA) is presented, and compared with the random walk (RW) method. Both methods of lesion simulation utilize a physics-based method for inserting these simulated lesions into 2D clinical mammogram images that takes into account the polychromatic x-ray spectrum, local glandularity and scatter. DLA and RW masses were assessed for realism via a receiver operating characteristic (ROC) study with nine observers. The study comprised 150 images of which 50 were real pathology proven mammograms, 50 were normal mammograms with RW inserted masses and 50 were normal mammograms with DLA inserted masses. The average area under the ROC curve for the DLA method was 0.55 (95% confidence interval 0.51-0.59) compared to 0.60 (95% confidence interval 0.56-0.63) for the RW method. The observer study results suggest that the DLA method produced more realistic masses with more variability in shape compared to the RW method. DLA generated lesions can overcome the lack of complexity in structure and shape in many current methods of mass simulation.

  6. Assessment of Organ Doses for a Glovebox Worker Using Realistic Postures with PIMAL and VOXMAT

    International Nuclear Information System (INIS)

    In an earlier effort, the Oak Ridge National Laboratory (ORNL) mathematical phantom has been revised to enable assessment of radiation dose for different postures in occupational exposures by enabling freely positioning arms and legs. The revised phantom is called PIMAL: Phantom wIth Moving Arms and Legs. Further, to assist the analyst with input preparation and output manipulation for different postures, a graphical user interface has been developed. Also, at ORNL a hybrid computational phantom, which uses a combination of voxelized and stylized geometry, for radiation dose assessment was recently developed. This phantom is based on the International Commission on Radiological Protection's (ICRP's) male phantom model and is called VOXMAT. For VOXMAT, the head and torso, which contain significant anatomical details, were described using voxel geometry. The arms and legs, which contain less-detailed anatomical structures, were modeled using the mathematical equations (stylized approach). With this approach the number of voxels was reduced from 7 million to 2.3 million, which translated into a proportional reduction in computational time and memory requirements. More importantly, VOXMAT allows easy the movement of arms and legs for radiation dose assessment for realistic postures. To determine/demonstrate the importance of the realistic posture for a case study, PIMAL and VOXMAT are applied to assess the dose to a glovebox worker. In this paper, the comparative computational results for the estimated dose are presented.

  7. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause

    Science.gov (United States)

    Tsyganenko, N. A.

    1995-01-01

    Empirical data-based models of the magnetosphereic magnetic field have been widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) have three serious deficiencies: (1) an unstable de facto magnetopause, (2) a crude parametrization by the K(sub p) index, and (3) inaccuracies in the equatorial magnetotail B(sub z) values. This paper describes a new approach to the problem; the essential new features are (1) a realistic shape and size of the magnetopause, based on fits to a large number of observed crossing (allowing a parametrization by the solar wind pressure), (2) fully controlled shielding of the magnetic field produced by all magnetospheric current systems, (3) new flexible representations for the tail and ring currents, and (4) a new directional criterion for fitting the model field to spacecraft data, providing improved accuracy for field line mapping. Results are presented from initial efforts to create models assembled from these modules and calibrated against spacecraft data sets.

  8. Toward Affordable, Theory-and-Simulation-Inspired, Models for Realistic Wind Turbine Aerodynamics and Noise

    Science.gov (United States)

    Ladeinde, Foluso; Alabi, Ken; Li, Wenhai

    2015-11-01

    The problem of generating design data for the operation of a farm of wind turbines for clean energy production is quite complicated, if properly done. Potential flow theories provide some models, but these are not suitable for the massive aerodynamic separation and turbulence that characterize many realistic wind turbine applications. Procedures, such as computational fluid dynamics (CFD), which can potentially resolve some of the accuracy problems with the purely theoretical approach, are quite expensive to use, and often prohibit real-time design and control. In our work, we seek affordable and acceptably-accurate models derived from the foregoing approaches. The simulation used in our study is based on high-fidelity CFD, meaning that we use high-order (compact-scheme based), mostly large-eddy simulation methods, with due regards for the proper treatment of the stochastic inflow turbulence data. Progress on the project described herein will be presented.

  9. Use of realistic anthropomorphic models for calculation of radiation dose in nuclear medicine

    International Nuclear Information System (INIS)

    Anthropomorphic phantoms based on simple geometric structures have been used in radiation dose calculations for many years. We have now developed a series of anatomically realistic phantoms representing adults and children using body models based on non-uniform rational B-spline (NURBS), with organ and body masses based on the reference values given in ICRP Publication 89. Age-dependent models were scaled and shaped to represent the reference individuals described in ICRP 89 (male and female adults, newborns, 1-, 5-, 10- and 15-year-olds), using a software tool developed in Visual C++. Voxel-based versions of these models were used with GEANT4 radiation transport codes for calculation of specific absorbed fractions (SAFs) for internal sources of photons and electrons, using standard starting energy values. Organ masses in the models were within a few % of ICRP reference masses, and physicians reviewed the models for anatomical realism. Development of individual phantoms was much faster than manual segmentation of medical images, and resulted in a very uniform standardized phantom series. SAFs were calculated on the Vanderbilt multi node computing network (ACCRE). Photon and electron SAFs were calculated for all organs in all models, and were compared to values from similar phantoms developed by others. Agreement was very good in most cases; some differences were seen, due to differences in organ mass and geometry. This realistic phantom series represents a possible replacement for the Cristy/Eckerman series of the 1980's. Both phantom sets will be included in the next release of the OLINDA/EXM personal computer code, and the new phantoms will be made generally available to the research community for other uses. Calculated radiation doses for diagnostic and therapeutic radiopharmaceuticals will be compared with previous values. (author)

  10. Use of realistic anthropomorphic models for calculation of radiation dose in nuclear medicine

    International Nuclear Information System (INIS)

    Anthropomorphic phantoms based on simple geometric structures have been used in radiation dose calculations for many years. We have now developed a series of anatomically realistic phantoms representing adults and children using body models based on non-uniform rational B-spline (NURBS), with organ and body masses based on the reference values given in ICRP Publication 89. Age-dependent models were scaled and shaped to represent the reference individuals described in ICRP 89 (male and female adults, newborns, 1-, 5-, 10- and 15-year-olds), using a software tool developed in Visual C++. Voxel-based versions of these models were used with GEANT4 radiation transport codes for calculation of specific absorbed fractions (SAFs) for internal sources of photons and electrons, using standard starting energy values. Organ masses in the models were within a few % of ICRP reference masses, and physicians reviewed the models for anatomical realism. Development of individual phantoms was much faster than manual segmentation of medical images, and resulted in a very uniform standardized phantom series. SAFs were calculated on the Vanderbilt multinode computing network (ACCRE). Photon and electron SAFs were calculated for all organs in all models, and were compared to values from similar phantoms developed by others. Agreement was very good in most cases; some differences were seen, due to differences in organ mass and geometry. This realistic phantom series represents a possible replacement for the Cristy/Eckerman series of the 1980's. Both phantom sets will be included in the next release of the OLINDA/EXM personal computer code, and the new phantoms will be made generally available to the research community for other uses. Calculated radiation doses for diagnostic and therapeutic radiopharmaceuticals will be compared with previous values. (author)

  11. Realistic Modeling of Spontaneous Flow Eruptions in the Quiet Sun

    Science.gov (United States)

    Kitiashvili, Irina; Yoon, Seokkwan S

    2014-06-01

    Ground and space observations reveal that the solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The origin and driving forces of the observed eruptions are still unknown. Using realistic numerical simulations we find that small-scale plasma eruptions can be produced by ubiquitous magnetized vortex tubes generated in the Sun's turbulent convection. The vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and strengthen the background magnetic field, and push surrounding material up, generating impulses of Alfven waves and shocks. Our simulations reveal complicated high-speed flows, thermodynamic, and magnetic structures in the erupting vortex tubes. We find that the eruptions are initiated in the subsurface layers, and initially are driven by high-pressure gradients in the subphotosphere and photosphere, and are accelerated by the Lorentz force in the higher atmospheric layers. The eruptions are often quasi-periodic with a characteristic period of 2-5 min. These vortex eruptions have a complicated flow helical pattern, with predominantly downward flows in the vortex tube cores and upward flows in their surroundings. For comparison with observations we calculate full Stokes profiles in different wavelength for different space and ground instruments, such as HMI/SDO, Hinode, NST/BBSO, IMaX/Sunrise. In particular, we find that the observed eruption events are not always associated with strong magnetic field concentrations, and that strong field patches can be a source of several simultaneous eruptions.

  12. Time-Distance Helioseismology of Two Realistic Sunspot Simulations

    CERN Document Server

    DeGrave, K; Rempel, M

    2014-01-01

    Linear time-distance helioseismic inversions are carried out using several filtering schemes to determine vector flow velocities within two $\\sim100^2\\,{\\rm Mm^2}\\times 20\\,{\\rm Mm}$ realistic magnetohydrodynamic sunspot simulations of 25~hr. One simulation domain contains a model of a full sunspot (i.e. one with both an umbra and penumbra), while the other contains a pore (i.e. a spot without a penumbra). The goal is to test current helioseismic methods using these state-of-the-art simulations of magnetic structures. We find that horizontal flow correlations between inversion and simulation flow maps are reasonably high ($\\sim0.5$--0.8) in the upper 3~Mm at distances exceeding 25--30~Mm from spot center, but are substantially lower at smaller distances and larger depths. Inversions of forward-modeled travel times consistently outperform those of our measured travel times in terms of horizontal flow correlations, suggesting that our inability to recover flow structure near these active regions is largely due ...

  13. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    Science.gov (United States)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  14. A Data-Driven Approach to Realistic Shape Morphing

    KAUST Repository

    Gao, Lin

    2013-05-01

    Morphing between 3D objects is a fundamental technique in computer graphics. Traditional methods of shape morphing focus on establishing meaningful correspondences and finding smooth interpolation between shapes. Such methods however only take geometric information as input and thus cannot in general avoid producing unnatural interpolation, in particular for large-scale deformations. This paper proposes a novel data-driven approach for shape morphing. Given a database with various models belonging to the same category, we treat them as data samples in the plausible deformation space. These models are then clustered to form local shape spaces of plausible deformations. We use a simple metric to reasonably represent the closeness between pairs of models. Given source and target models, the morphing problem is casted as a global optimization problem of finding a minimal distance path within the local shape spaces connecting these models. Under the guidance of intermediate models in the path, an extended as-rigid-as-possible interpolation is used to produce the final morphing. By exploiting the knowledge of plausible models, our approach produces realistic morphing for challenging cases as demonstrated by various examples in the paper. © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  15. Towards realistic string vacua from branes at singularities

    International Nuclear Information System (INIS)

    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.

  16. Realistic Low-Momentum Nucleon-Nucleon Potential

    Science.gov (United States)

    Kuo, T. T. S.; Bogner, S. K.; Coraggio, L.; Covello, A.; Itaco, N.

    2002-04-01

    A low-momentum nucleon-nucleon (NN) potential Vlow-k is derived from modern realistic NN potentials VNN by integrating out their high momentum modes. The Kuo-Lee-Ratcliff folded diagram method together with the Andreozzi-Lee-Suzuki iteration method is employed to carry out the integration. Our Vlow-k is confined within a cut-off momentum Λ, and it preserves the deuteron binding energy, low-energy phase shifts and low-momentum half-on-shell T-matrix of VNN. For Λ within ~ 2fm-1, the Vlow-k derived from various NN potential models are very close to each other, although these models themselves are very different. Vlow-k is a smooth potential for Λ in the vicinity 2fm-1, and appears to be suitable for being used directly as shell model effective interaction without first calculating the Brueckner G matrix. Preliminary shell-model calculations using Vlow-k have led to encouraging results.

  17. Time-distance helioseismology of two realistic sunspot simulations

    International Nuclear Information System (INIS)

    Linear time-distance helioseismic inversions are carried out using several filtering schemes to determine vector flow velocities within two ∼1002 Mm2 × 20 Mm realistic magnetohydrodynamic sunspot simulations of 25 hr. One simulation domain contains a model of a full sunspot (i.e., one with both an umbra and penumbra), while the other contains a pore (i.e., a spot without a penumbra). The goal is to test current helioseismic methods using these state-of-the-art simulations of magnetic structures. We find that horizontal flow correlations between inversion and simulation flow maps are reasonably high (∼0.5-0.8) in the upper 3 Mm at distances exceeding 25-30 Mm from spot center, but are substantially lower at smaller distances and larger depths. Inversions of forward-modeled travel times consistently outperform those of our measured travel times in terms of horizontal flow correlations, suggesting that our inability to recover flow structure near these active regions is largely due to the fact that we are unable to accurately measure travel times near strong magnetic features. In many cases the velocity amplitudes from the inversions underestimate those of the simulations by up to 50%, possibly indicating nonlinearity of the forward problem. In every case, we find that our inversions are unable to recover the vertical flow structure of the simulations at any depth.

  18. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. PMID:24378910

  19. Adaptive self-organization in a realistic neural network model

    Science.gov (United States)

    Meisel, Christian; Gross, Thilo

    2009-12-01

    Information processing in complex systems is often found to be maximally efficient close to critical states associated with phase transitions. It is therefore conceivable that also neural information processing operates close to criticality. This is further supported by the observation of power-law distributions, which are a hallmark of phase transitions. An important open question is how neural networks could remain close to a critical point while undergoing a continual change in the course of development, adaptation, learning, and more. An influential contribution was made by Bornholdt and Rohlf, introducing a generic mechanism of robust self-organized criticality in adaptive networks. Here, we address the question whether this mechanism is relevant for real neural networks. We show in a realistic model that spike-time-dependent synaptic plasticity can self-organize neural networks robustly toward criticality. Our model reproduces several empirical observations and makes testable predictions on the distribution of synaptic strength, relating them to the critical state of the network. These results suggest that the interplay between dynamics and topology may be essential for neural information processing.

  20. Modeling of free surface vortex with realistic downward velocity distribution

    International Nuclear Information System (INIS)

    A free surface vortex is considered as one of significant phenomena which may cause gas entrainment (GE) in sodium-cooled fast reactors. In our past studies, the free surface vortex is assumed to be approximated by the famous Burgers vortex model. However, the Burgers model has a simple and unreal assumption that the downward velocity component is horizontally constant, while in real the free surface vortex has the downward velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new theoretical vortex model with realistic downward velocity distribution is proposed. This model is derived from the axisymmetric Navier-Stokes equation as well as the Burgers model, but the downward velocity distribution in radial direction is considered. This function is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the free surface shape. In addition, it is confirmed that the Burgers vortex model can gives similar results to the new vortex model when the downward velocity gradient in axial direction is calculated appropriately. (author)

  1. Nonstandard Farey sequences in a realistic diode map

    International Nuclear Information System (INIS)

    We study a realistic coupled map system, modelling a p - i - n diode structure. As we vary the parameter corresponding to the (scaled) external potential in the model, the dynamics goes through a flip bifurcation and then a Hopf bifurcation, and as the parameter is increased further, we find evidence of a sequence of mode locked windows embedded in the quasiperiodic motion, with periodic attractors whose winding numbers p = p/q, are given by a Farey series. The interesting thing about this Farey sequence is that it is generated between two parent attractors with p = 2/7 and 2/8, where 2/8 implies two distinct coexisting attractors with p = 1/4, and the correct series is obtained only when we use parent winding number 2/8 and not 1/4. So unlike a regular Farey tree, p and q need not be relatively prime here, p = 2 x p/2 x q is permissible, where such attractors are actually comprised of two coexisting attractors with p = p/q. We also checked that the positions and widths of these windows exhibit well defined power law scaling. When the potential is increased further, the Farey windows still provide a ''skeleton'' for the dynamics, and within each window there is a host of other interesting dynamical features, including multiple forward and reverse Feigenbaum trees. (author). 15 refs, 7 figs

  2. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  3. Realistic PET Monte Carlo Simulation With Pixelated Block Detectors, Light Sharing, Random Coincidences and Dead-Time Modeling

    OpenAIRE

    Guérin, Bastein; Fakhri, Georges El

    2008-01-01

    We have developed and validated a realistic simulation of random coincidences, pixelated block detectors, light sharing among crystal elements and dead-time in 2D and 3D positron emission tomography (PET) imaging based on the SimSET Monte Carlo simulation software. Our simulation was validated by comparison to a Monte Carlo transport code widely used for PET modeling, GATE, and to measurements made on a PET scanner.

  4. A quantitative analysis of the impact of a computerised information system on nurses' clinical practice using a realistic evaluation framework

    OpenAIRE

    Oroviogoicoechea, C.; Watson, R.

    2009-01-01

    Objective: To explore nurses' perceptions of the impact on clinical practice of the use of a computerised hospital information system. Design: A realistic evaluation design based on Pawson and Tilley's work has been used across all the phases of the study. This is a theory-driven approach and focuses evaluation on the study of what works, for whom and in what circumstances. These relationships are constructed as context-mechanisms-outcomes (CMO) configurations. Measurements: A questio...

  5. Disentangling Islamophobia: The Differential Effects of Symbolic, Realistic, and Terroristic Threat Perceptions as Mediators Between Social Dominance Orientation and Islamophobia

    OpenAIRE

    Fatih Uenal

    2016-01-01

    The aim of this paper is threefold. First, based on ongoing theoretical discussions on the dimensionality of Islamophobia, this study analyzes whether Islamophobia empirically constitutes a one-dimensional construct or rather a multidimensional construct consisting of anti-Muslim prejudice and anti-Islam sentiment. Second, the effects of symbolic, realistic, and terroristic (safety) threats on Islamophobia were analyzed concurrently. Finally, within the framework of the revised Integrated Thr...

  6. The relative greenhouse gas impacts of realistic dietary choices

    International Nuclear Information System (INIS)

    The greenhouse gas (GHG) emissions embodied in 61 different categories of food are used, with information on the diet of different groups of the population (omnivorous, vegetarian and vegan), to calculate the embodied GHG emissions in different dietary scenarios. We calculate that the embodied GHG content of the current UK food supply is 7.4 kg CO2e person−1 day−1, or 2.7 t CO2e person−1 y−1. This gives total food-related GHG emissions of 167 Mt CO2e (1 Mt=106 metric tonnes; CO2e being the mass of CO2 that would have the same global warming potential, when measured over 100 years, as a given mixture of greenhouse gases) for the entire UK population in 2009. This is 27% of total direct GHG emissions in the UK, or 19% of total GHG emissions from the UK, including those embodied in goods produced abroad. We calculate that potential GHG savings of 22% and 26% can be made by changing from the current UK-average diet to a vegetarian or vegan diet, respectively. Taking the average GHG saving from six vegetarian or vegan dietary scenarios compared with the current UK-average diet gives a potential national GHG saving of 40 Mt CO2e y−1. This is equivalent to a 50% reduction in current exhaust pipe emissions from the entire UK passenger car fleet. Hence realistic choices about diet can make substantial differences to embodied GHG emissions. - Highlights: ► We calculate the greenhouse gas emissions embodied in different diets. ► The embodied GHG content of the current UK food supply is 7.4 kg CO2e person−1 day−1. ► Changing to a vegetarian or vegan diet reduces GHG emissions by 22–26%. ► Changing to a vegetarian or vegan diet would reduce UK GHG emissions by 40 Mt CO2e y−1.

  7. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  8. Realistic Goals and Processes for Future Space Astronomy Portfolio Planning

    Science.gov (United States)

    Morse, Jon

    2015-08-01

    It is generally recognized that international participation and coordination is highly valuable for maximizing the scientific impact of modern space science facilities, as well as for cost-sharing reasons. Indeed, all large space science missions, and most medium and small missions, are international, even if one country or space agency has a clear leadership role and bears most of the development costs. International coordination is a necessary aspect of future mission planning, but how that coordination is done remains debatable. I propose that the community's scientific vision is generally homogeneous enough to permit international coordination of decadal-scale strategic science goals. However, the timing and budget allocation/funding mechanisms of individual countries and/or space agencies are too disparate for effective long-term strategic portfolio planning via a single international process. Rather, I argue that coordinated space mission portfolio planning is a natural consequence of international collaboration on individual strategic missions. I review the process and outcomes of the U.S. 2010 decadal survey in astronomy & astrophysics from the perspective of a government official who helped craft the survey charter and transmitted guidance to the scientific community on behalf of a sponsoring agency (NASA), while continuing to manage the current portfolio that involved ongoing negotiations with other space agencies. I analyze the difficulties associated with projecting long-term budgets, obtaining realistic mission costs (including the additional cost burdens of international partnerships), and developing new (possibly transformational) technologies. Finally, I remark on the future role that privately funded space science missions can have in accomplishing international science community goals.

  9. Realistic Significance and Practical Exploration of Cultivating New Professional Farmers in China

    Institute of Scientific and Technical Information of China (English)

    Chunming; GONG; Hui; NI

    2013-01-01

    Firstly, the background, ways, countermeasures, problems and realistic significance of cultivating new professional farmers in China were studied, and then the mechanism for cultivating new professional farmers was discussed based on Town S. The results show that cultivating new professional farmers can fundamentally relieve "three rural issues" existing for a long time and is of great significance to rural economic development. For instance, it can integrate rural human capital and release modern productivity, increase farmers’ income and improve rural economy, increase land utilization and output per unit area, and break through the bottlenecks during agricultural development to realize agricultural modernization. According to the case study of Town S, during the process of cultivating new professional farmers, governments at all levels ought to adopt many effective measures and strengthen support to realize cultivation targets planed early.

  10. Effect on Hyalella azteca after pulse exposure to environmentally realistic concentrations of permethrin

    DEFF Research Database (Denmark)

    Pedersen, Signe; Palmqvist, Annemette; Forbes, Valery E.

    Exposure of non-target aquatic organisms to pesticides is likely to occur in short pulses following periods of drain flow, surface run-off or spray drift. However, standard aquatic toxicity tests are primarily based on continuous and maintained exposure periods of 24 to 96 hours for acute effect...... realistic pulse exposure and concentration of a pyrethroid pesticide, permethrin, on the freshwater amphipod Hyalella azteca. Permethrin is a pyrethroid insecticide used in mosquito control and to control a wide range of insect pests on various crops and is known to be highly toxic to aquatic invertebrates....... H. azteca is widely distributed through North America where it is common as a food source for birds, fish and large invertebrates and is therefore considered as an ecologically important organism. In addition H. azteca has been extensively used as a test organism and is generally sensitive...

  11. A Critical Realistic Masterpiece of Mark Twain——The Adventures of Huckleberry Finn

    Institute of Scientific and Technical Information of China (English)

    赵红石

    2009-01-01

    In mid and late 19th century,appeared a new literary trend-critical realism.The critical realists described with much vividness and artistic skill the chief traits(characteristics) of the society and criticized the capitalist system from a democratic viewpoint.Mark Twain is one of the greatest representatives of critical realists.All the critical realistic features can be found in his novel The Adventures of Huckleberry Finn. This essay is devoted to analyze the critical realistic elements of The Adventures of Huckleberry Finn.

  12. Monte Carlo simulated coronary angiograms of realistic anatomy and pathology models

    Science.gov (United States)

    Kyprianou, Iacovos S.; Badal, Andreu; Badano, Aldo; Banh, Diemphuc; Freed, Melanie; Myers, Kyle J.; Thompson, Laura

    2007-03-01

    We have constructed a fourth generation anthropomorphic phantom which, in addition to the realistic description of the human anatomy, includes a coronary artery disease model. A watertight version of the NURBS-based Cardiac-Torso (NCAT) phantom was generated by converting the individual NURBS surfaces of each organ into closed, manifold and non-self-intersecting tessellated surfaces. The resulting 330 surfaces of the phantom organs and tissues are now comprised of ~5×10 6 triangles whose size depends on the individual organ surface normals. A database of the elemental composition of each organ was generated, and material properties such as density and scattering cross-sections were defined using PENELOPE. A 300 μm resolution model of a heart with 55 coronary vessel segments was constructed by fitting smooth triangular meshes to a high resolution cardiac CT scan we have segmented, and was consequently registered inside the torso model. A coronary artery disease model that uses hemodynamic properties such as blood viscosity and resistivity was used to randomly place plaque within the artery tree. To generate x-ray images of the aforementioned phantom, our group has developed an efficient Monte Carlo radiation transport code based on the subroutine package PENELOPE, which employs an octree spatial data-structure that stores and traverses the phantom triangles. X-ray angiography images were generated under realistic imaging conditions (90 kVp, 10° Wanode spectra with 3 mm Al filtration, ~5×10 11 x-ray source photons, and 10% per volume iodine contrast in the coronaries). The images will be used in an optimization algorithm to select the optimal technique parameters for a variety of imaging tasks.

  13. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.

    Science.gov (United States)

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-16

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  14. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results

    International Nuclear Information System (INIS)

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In0.48Ga0.52P buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, k-vector ⋅ p-vector bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband k-vector ⋅ p-vector approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  15. Development of Sensor Based Applications for the Android Platform: an Approach Based on Realistic Simulation

    Directory of Open Access Journals (Sweden)

    Pablo CAMPILLO-SÁNCHEZ

    2013-05-01

    Full Text Available Smart phones are equipped with a wide range of sensors (such as GPS, light, accelerometer, gyroscope, etc. and allow users to be connected everywhere. These characteristics offer a rich information source for creating context-aware applications. However, testing these applications in the lab, before their deployment, could become a hard task or impossible because of sensors correlation, too wide testing area or an excessive number of people involved. This work aims to solve these problems carrying out the testing in a simulator, simulating the world in which the application user is immersed into. Tester controls her avatar and the avatar has a simulated smart phone that is connected with the user’s smart phone. Applications under test are installed on the real smart phone and are compiled with a library that replaces standard services of the sensors by others that offer data sensor from the simulator (depending on the simulated smart phone context instead of real world.

  16. How economic crises affect alcohol consumption and alcohol-related health problems: a realist systematic review.

    Science.gov (United States)

    de Goeij, Moniek C M; Suhrcke, Marc; Toffolutti, Veronica; van de Mheen, Dike; Schoenmakers, Tim M; Kunst, Anton E

    2015-04-01

    Economic crises are complex events that affect behavioral patterns (including alcohol consumption) via opposing mechanisms. With this realist systematic review, we aimed to investigate evidence from studies of previous or ongoing crises on which mechanisms (How?) play a role among which individuals (Whom?). Such evidence would help understand and predict the potential impact of economic crises on alcohol consumption. Medical, psychological, social, and economic databases were used to search for peer-reviewed qualitative or quantitative empirical evidence (published January 1, 1990-May 1, 2014) linking economic crises or stressors with alcohol consumption and alcohol-related health problems. We included 35 papers, based on defined selection criteria. From these papers, we extracted evidence on mechanism(s), determinant, outcome, country-level context, and individual context. We found 16 studies that reported evidence completely covering two behavioral mechanisms by which economic crises can influence alcohol consumption and alcohol-related health problems. The first mechanism suggests that psychological distress triggered by unemployment and income reductions can increase drinking problems. The second mechanism suggests that due to tighter budget constraints, less money is spent on alcoholic beverages. Across many countries, the psychological distress mechanism was observed mainly in men. The tighter budget constraints mechanism seems to play a role in all population subgroups across all countries. For the other three mechanisms (i.e., deterioration in the social situation, fear of losing one's job, and increased non-working time), empirical evidence was scarce or absent, or had small to moderate coverage. This was also the case for important influential contextual factors described in our initial theoretical framework. This realist systematic review suggests that among men (but not among women), the net impact of economic crises will be an increase in harmful

  17. Nonequilibrium processes from generalized Langevin equations: Realistic nanoscale systems connected to two thermal baths

    Science.gov (United States)

    Ness, H.; Genina, A.; Stella, L.; Lorenz, C. D.; Kantorovich, L.

    2016-05-01

    We extend the generalized Langevin equation (GLE) method [L. Stella, C. D. Lorenz, and L. Kantorovich, Phys. Rev. B 89, 134303 (2014), 10.1103/PhysRevB.89.134303] to model a central classical region connected to two realistic thermal baths at two different temperatures. In such nonequilibrium conditions a heat flow is established, via the central system, in between the two baths. The GLE-2B (GLE two baths) scheme permits us to have a realistic description of both the dissipative central system and its surrounding baths. Following the original GLE approach, the extended Langevin dynamics scheme is modified to take into account two sets of auxiliary degrees of freedom corresponding to the mapping of the vibrational properties of each bath. These auxiliary variables are then used to solve the non-Markovian dissipative dynamics of the central region. The resulting algorithm is used to study a model of a short Al nanowire connected to two baths. The results of the simulations using the GLE-2B approach are compared to the results of other simulations that were carried out using standard thermostatting approaches (based on Markovian Langevin and Nosé-Hoover thermostats). We concentrate on the steady-state regime and study the establishment of a local temperature profile within the system. The conditions for obtaining a flat profile or a temperature gradient are examined in detail, in agreement with earlier studies. The results show that the GLE-2B approach is able to treat, within a single scheme, two widely different thermal transport regimes, i.e., ballistic systems, with no temperature gradient, and diffusive systems with a temperature gradient.

  18. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies

    Science.gov (United States)

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T.

    2015-01-01

    Background Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic “face” surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. Aim To compare mask to “face” seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Methods Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the “face.” Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. Results The soft “face” significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft “face” was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard “face.” Conclusions The material and pliability of the model “face” surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies. PMID:26090661

  19. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.

    Directory of Open Access Journals (Sweden)

    Israel Amirav

    Full Text Available Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces.To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces.Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC and SootherMask (SM] were compared using a breath simulator, filter collection and realistic applied forces.The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (p< 0.01. No statistically significant difference between the two masks was observed with the hard "face."The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.

  20. Disentangling Islamophobia: The Differential Effects of Symbolic, Realistic, and Terroristic Threat Perceptions as Mediators Between Social Dominance Orientation and Islamophobia

    Directory of Open Access Journals (Sweden)

    Fatih Uenal

    2016-04-01

    Full Text Available The aim of this paper is threefold. First, based on ongoing theoretical discussions on the dimensionality of Islamophobia, this study analyzes whether Islamophobia empirically constitutes a one-dimensional construct or rather a multidimensional construct consisting of anti-Muslim prejudice and anti-Islam sentiment. Second, the effects of symbolic, realistic, and terroristic (safety threats on Islamophobia were analyzed concurrently. Finally, within the framework of the revised Integrated Threat Theory (Stephan & Renfro, 2002, and in order to test the mediating effect of threats, SDO is tested as an antecedent of perceived threat and Islamophobia. Respondents from Berlin (N = 355 participated in an online survey. The results indicate that Islamophobia empirically constitutes a two-dimensional phenomenon, consisting of anti-Muslim and anti-Islam sentiment. Whereas symbolic threat is related to both types of Islamophobia, realistic threat is associated only with anti-Muslim prejudice, and terroristic threat is associated only with anti-Islam sentiment. Finally, the results indicate that the relationship between SDO and both dimensions of Islamophobia is mediated by threats. Symbolic threats mediate the relationships between SDO and both dimensions of Islamophobia. Realistic threats mediate the relationship between SDO and anti-Muslim prejudice and terroristic threats between SDO and anti-Islam sentiment.

  1. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene%Coniferous Canopy BRF Simulation Based on3-D Realistic Scene

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yun; GUO Zhi-feng; QINWen-hans; SUN Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale.Simplified coniferous model was investigated in the present study.It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerful in remote sensing of heterogeneous coniferous forests over a large-scale region.L-systems is applied to render 3-D coniferous forest scenarios,and RGM model was used to calculate BRF (bidirectional reflectance factor) in visible and near-infrared regions.Results in this study show that in most cases both agreed well Meanwhile at a tree and forest level,the results are also good.

  2. Realistic Approach of Strange Number System from Unary to Decimal

    Directory of Open Access Journals (Sweden)

    Debasis Das

    2012-01-01

    Full Text Available Numbers play an important role in Mathematics, also in Computer Science. A number is a symbol or group of symbols, or a word in a natural language that represents a numeral, which is different from numbers just as words differ from the things they refer to. A set of numbers in a framework that are represented by numerals in a consistent manner is called number system. In computing the study of number systems is useful to all, as a fact that various number systems are used in computer fields. Some are familiar number system (decimal (base 10, binary (base-2, octal (base-8 and hexadecimal (base-16 and others are strange number system (SNS. Strange number system is investigated for efficiently describing and implementing in digital systems. In computing the study of strange number system (SNS will useful to all researchers. Their awareness and detailed explanation is necessary for understanding various digital aspects. In this paper we have elaborate the concepts of strange number system (SNS, needs, number representation, arithmetic operations and inter conversion with different bases, represented in tabulated form. This paper will also helpful for knowledge seekers to easy understanding and practicing of number systems as well as to memories them

  3. English as a Medium of Instruction in East Asia's Higher Education Sector: A Critical Realist Cultural Political Economy Analysis of Underlying Logics

    Science.gov (United States)

    Kedzierski, Matt

    2016-01-01

    As discourses of globalisation and the knowledge-based economy become increasingly influential in both policy-making and in public debates about education, employability and national competitiveness--the choice of language in the classroom takes on a strategic importance. The paper employs a critical realist Cultural Political Economy lens to…

  4. Model of Ni-63 battery with realistic PIN structure

    International Nuclear Information System (INIS)

    GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-n structure under scanning electron microscope illumination

  5. Active Harmonic Load–Pull With Realistic Wideband Communications Signals

    NARCIS (Netherlands)

    Marchetti, M.; Pelk, M.J.; Buisman, K.; Neo, W.C.E.; Spirito, M.; De Vreede, L.C.N.

    2008-01-01

    A new wideband open-loop active harmonic load–pull measurement approach is presented. The proposed method is based on wideband data-acquisition and wideband signal-injection of the incident and device generated power waves at the frequencies of interest. The system provides full, user defined, in-ba

  6. Simulations of magnetocardiographic signals using realistic geometry models of the heart and torso

    Science.gov (United States)

    Motrescu, C. V.; Klinkenbusch, L.

    2012-09-01

    Although the first measurement of the cardiac magnetic field was reported almost half a century ago magnetocardiography (MCG) is not yet widely used as a clinical diagnostic technique. With the development of a new generation of magnetoelectric sensors it is believed that MCG will become widely accepted in the clinical diagnosis. Our goal is to build a computer-based tool for medical diagnosis and to use it for the clarification of open electro-physiological questions. Here we present results from modelling of the cardiac electrical activity and computation of the generated magnetic field. For the simulations we use MRT-based anatomical models of the human atria and ventricles where the shape of the action potential is determined by ionic currents passing through the cardiac cell membranes. The monodomain reaction-diffusion equation is chosen for the description of the heart's electrical activity. This equation is solved for the transmembrane voltage which is in turn used to calculate current densities at discrete time instants. In subsequent simulations these current densities represent primary sources of magnetostatic fields arising from a volume conduction problem. In these simulations the heart is placed in a realistic torso model where the lungs are also considered. Both, the volume conduction problem as well as the reaction-diffusion problem are modelled using Finite-Element techniques.

  7. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    Science.gov (United States)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  8. Assessing the outcomes of participatory research: protocol for identifying, selecting, appraising and synthesizing the literature for realist review

    Directory of Open Access Journals (Sweden)

    Greenhalgh Trish

    2011-03-01

    review methods. Discussion The systematic and stage-based procedure addressed challenges to PR assessment and generated our robust understanding of complex and heterogeneous PR practices. To date, realist reviews have focussed on evaluations of relatively uniform interventions. In contrast our PR search yielded a wide diversity of partnerships and research topics. We therefore developed tools to achieve conceptual clarity on the PR field, as a beneficial precursor to our theoretically-driven synthesis using realist methods. Findings from the ongoing review will be provided in forthcoming publications.

  9. Designing Future Dark Energy Space Mission: I. Building Realistic Galaxy Spectro-Photometric Catalogs and their first applications

    CERN Document Server

    Jouvel, S; Ilbert, O; Bernstein, G; Arnouts, S; Dahlen, T; Ealet, A; Milliard, B; Aussel, H; Capak, P; Le Brun, V; McCracken, H; Capak, P; Salvato, M; Scoville, N

    2009-01-01

    Future dark energy space missions such as JDEM and EUCLID are being designed to survey the galaxy population to trace the geometry of the universe and the growth of structure, which both depend on the cosmological model. To reach the goal of high precision cosmology they need to evaluate the capabilities of different instrument designs based on realistic mock catalog. The aim of this paper is to construct realistic and flexible mock catalogs based on our knowledge of galaxy population from current deep surveys. We explore two categories of mock catalog : (i) based on luminosity functions fit of observations (GOODS, UDF,COSMOS,VVDS) using the Le Phare software (ii) based on the observed COSMOS galaxy distribution which benefits from all the properties of the data-rich COSMOS survey. For these two catalogs, we have produced simulated number counts in several bands, color diagrams and redshift distribution for validation against real observational data. We also derive some basic requirements to help designing fu...

  10. Realistic Approach of the Relations of Uncertainty of Heisenberg

    OpenAIRE

    Paul E. Sterian

    2013-01-01

    Due to the requirements of the principle of causality in the theory of relativity, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in the conjugate Fourier spaces. Instead of admitting that a particle’s position and its conjugate momentum cannot be accurately measured at the same time, we consider the only probabilities which can be determined when working at subatomic level to be valid. On the other hand, based on Schwinger's action principle and ...

  11. Molecular simulation of realistic membrane models of alkylated PEEK membranes

    OpenAIRE

    Tocci, Elena; Pullumbi, Pluton

    2006-01-01

    Abstract Atomistic molecular modelling has proven to be a useful tool for the investigation of transport properties of small gas molecules in polymer membrane matrices. The quality of the predictions of these properties based on molecular simulation depends principally on the quality of the membrane model. The predicted gas transport properties of small gas molecules in the same glassy polymer membrane show often a large scatter in gas diffusion and solubility simulated values. In ...

  12. Large-System Transformation in Health Care: A Realist Review

    OpenAIRE

    Best, Allan; Greenhalgh, Trisha; Lewis, Stephen; Saul, Jessie E.; Carroll, Simon; Bitz, Jennifer

    2012-01-01

    Context: An evidence base that addresses issues of complexity and context is urgently needed for large-system transformation (LST) and health care reform. Fundamental conceptual and methodological challenges also must be addressed. The Saskatchewan Ministry of Health in Canada requested a six-month synthesis project to guide four major policy development and strategy initiatives focused on patient- and family-centered care, primary health care renewal, quality improvement, and surgical wait l...

  13. ROC Analysis and a Realistic Model of Heart Rate Variability

    OpenAIRE

    Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1998-01-01

    We have carried out a pilot study on a standard collection of electrocardiograms from patients who suffer from congestive heart failure, and subjects without cardiac pathology, using receiver-operating-characteristic (ROC) analysis. The scale-dependent wavelet-coefficient standard deviation \\sigma_{wav}(m), a multiresolution-based analysis measure, is found to be superior to two commonly used measures of cardiac dysfunction when the two classes of patients cannot be completely separated. A ji...

  14. Reproduction of Realistic Background Noise for Testing Telecommunications Devices

    DEFF Research Database (Denmark)

    Gil Corrales, Juan David; Song, Wookeun; MacDonald, Ewen

    2015-01-01

    A method for reproduction of sound, based on crosstalk cancellation using inverse filters, was implemented in the context of testing telecommunications devices. The effect of the regularization parameter, number of loudspeakers, type of background noise, and a technique to attenuate audible...... performance was equally good when using eight or four loudspeakers, and the reproduction method was shown to be robust for different program materials. The proposed technique to reduce audible artifacts increased the perceived similarity....

  15. The Realistic and Romantic Factors of Marriage--Pride and PrejudiceThe Realistic and Romantic Factors of Marriage--Pride

    Institute of Scientific and Technical Information of China (English)

    李坤

    2011-01-01

    Jane Austen is one of the most important realistic novelists in the 19th century in British Literature. In her masterpiece "Pride and Prejudice", she discusses the relationship between women and marriage, and her attitudes towards successful marriage. Jan

  16. Towards a unified European electricity market: The contribution of data-mining to support realistic simulation studies

    DEFF Research Database (Denmark)

    Pinto, Tiago; Santos, Gabriel; Pereira, Ivo F.;

    2014-01-01

    to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts...... and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its...

  17. Universal method of strictly calculating self-consistent fields of realistic plasma particles

    OpenAIRE

    H. Lin

    2010-01-01

    A universal method of strictly calculating self-consistent fields of realistic plasma particles could be strictly derived from three basic tools in theoretical plasma physics: particle simulation, Vlasov-Maxwell theory and fluid theory.

  18. Computational investigation of nonlinear microwave tomography on anatomically realistic breast phantoms

    DEFF Research Database (Denmark)

    Jensen, P. D.; Rubæk, Tonny; Mohr, J. J.

    2013-01-01

    The performance of a nonlinear microwave tomography algorithm is tested using simulated data from anatomically realistic breast phantoms. These tests include several different anatomically correct breast models from the University of Wisconsin-Madison repository with and without tumors inserted....

  19. The Realistic Mobility Evaluation of Vehicular Ad-Hoc Network for Indian Automotive Networks

    Directory of Open Access Journals (Sweden)

    V.S.Dhaka

    2014-04-01

    Full Text Available In recent years, continuous progress in wireless communication has opened a new research field in computer networks. Now a day’s wireless ad-hoc networking is an emerging research technology that needs attention of the industry people and the academicians. A vehicular ad-hoc network uses vehicles as mobile nodes to create mobility in a network. It’s a challenge to generate realistic mobility for Indian networks as no TIGER or Shapefile map is available for Indian Automotive Networks. This paper simulates the realistic mobility of the Vehicular Ad-hoc Networks (VANETs. The key feature of this work is the realistic mobility generation for the Indian Automotive Intelligent Transport System (ITS and also to analyze the throughput, packet delivery fraction (PDF and packet loss for realistic scenario. The experimental analysis helps in providing effective communication for safety to the driver and passengers.

  20. More-Realistic Digital Modeling of a Human Body

    Science.gov (United States)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  1. Time and space in special relativity : a critique of the realist interpretation

    OpenAIRE

    Andersen, Fredrik

    2010-01-01

    The concepts of time and space as they are treated in the realist interpretation of Einstein's theory of Special Relativity are investigated and found wanting in coherence. The theoretical basis of what constitutes a valid scientific explanation is considered from the viewpoint of Kant and Kepler, and on this basis there is no proper scientific explanation provided by realist SRT for clock dilation and length contraction.

  2. CASCADE-IMEI: A learning environment of realistic mathematics for student teachers in Indonesia

    OpenAIRE

    Zulkardi; Nieveen, Nienke

    2001-01-01

    This paper reports on the second phase of a four-year study which aims to develop a learning environment that supports prospective mathematics teachers learning realistic mathematics education (RME) in teacher education in Indonesia. The results suggest that by giving student teachers experiences in doing mathematics as learners during a course and providing additional information about RME in a web site can increase their performance in teaching realistic mathematics in the school classroom.

  3. Realistic evaluation of basemat uplift under seismic condition

    International Nuclear Information System (INIS)

    The results show that the uplift criteria which use a static method of computing the basemat uplift ratio based on linear time history analysis is too conservative. Also the criteria of reducing the building weight because of vertical seismic load consideration is too conservative. A nonlinear time history analysis of the basemat would result in a more accurate and smaller uplift ratio. It could be carried out quite cost effectively by state-of-art technique. The results also indicate that for the plant condition studied herein, the horizontal floor response spectra are not sensitive to the magnitude of uplift ratio, at least up to 50% by the nonlinear analysis method. The basemat FEM analysis results for the same plant subjected to the same seismic loadings indicate that the soil pressure and the basemat stress are within the allowable limits, even with substantially high basemat uplift ratio. Based on these considerations, the criteria of limiting the uplift ratio by 30% may be too conservative. However, for a soft foundation and smaller basemat case, the floor response spectra may be more significantly affected by a large basemat uplift ratio. (orig./HP)

  4. A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity - evaluation with auditory habituation.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available In this work we propose a biologically realistic local cortical circuit model (LCCM, based on neural masses, that incorporates important aspects of the functional organization of the brain that have not been covered by previous models: (1 activity dependent plasticity of excitatory synaptic couplings via depleting and recycling of neurotransmitters and (2 realistic inter-laminar dynamics via laminar-specific distribution of and connections between neural populations. The potential of the LCCM was demonstrated by accounting for the process of auditory habituation. The model parameters were specified using Bayesian inference. It was found that: (1 besides the major serial excitatory information pathway (layer 4 to layer 2/3 to layer 5/6, there exists a parallel "short-cut" pathway (layer 4 to layer 5/6, (2 the excitatory signal flow from the pyramidal cells to the inhibitory interneurons seems to be more intra-laminar while, in contrast, the inhibitory signal flow from inhibitory interneurons to the pyramidal cells seems to be both intra- and inter-laminar, and (3 the habituation rates of the connections are unsymmetrical: forward connections (from layer 4 to layer 2/3 are more strongly habituated than backward connections (from Layer 5/6 to layer 4. Our evaluation demonstrates that the novel features of the LCCM are of crucial importance for mechanistic explanations of brain function. The incorporation of these features into a mass model makes them applicable to modeling based on macroscopic data (like EEG or MEG, which are usually available in human experiments. Our LCCM is therefore a valuable building block for future realistic models of human cognitive function.

  5. An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation

    International Nuclear Information System (INIS)

    Highlights: ► Optimization of distributed energy resources scheduling. ► Genetic Algorithm optimization applied to the distributed energy resources scheduling. ► Optimization linked to a network simulation environment. ► Realistic network simulation using PSCAD. ► Distributed energy resources in a smart grid environment. - Abstract: The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD®, is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD®.

  6. Towards more realistic assessment of reactor accident consequences

    International Nuclear Information System (INIS)

    The purpose of the Nordic project described in the report has been to improve the data base used in accident consequence assessments, and also to improve the assessment models in use in the Nordic countries. The following data related questions have been dealt with: Terrestrial transfer factors, the freshwater pathways, comparison of dynamic and static calculation models for fish, and the shielding effect of buildings. The work on terrestrial transfer factors has resulted in the generation of a Nordic fallout data bank. The following experimental investigations have been performed: Natural decontamination of roofs under summer and winter conditions, deposition in urban areas, and the filter effect of buildings. Various aspects of mitigating actions have also been examined

  7. Quarkonium at finite temperature: Towards realistic phenomenology from first principles

    CERN Document Server

    Burnier, Yannis; Rothkopf, Alexander

    2015-01-01

    We present the finite temperature spectra of both bottomonium and charmonium, obtained from a consistent lattice QCD based potential picture. Starting point is the complex in-medium potential extracted on full QCD lattices with dynamical u,d and s quarks, generated by the HotQCD collaboration. Using the generalized Gauss law approach, vetted in a previous study on quenched QCD, we fit ${\\rm Re}[V]$ with a single temperature dependent parameter $m_D$, the Debye screening mass, and confirm the up to now tentative values of ${\\rm Im}[V]$. The obtained analytic expression for the complex potential allows us to compute quarkonium spectral functions by solving an appropriate Schr\\"odinger equation. These spectra exhibit thermal widths, which are free from the resolution artifacts that plague direct reconstructions from Euclidean correlators using Bayesian methods. In the present adiabatic setting, we find clear evidence for sequential melting and derive melting temperatures for the different bound states. Quarkoniu...

  8. Galactic magnetic deflections of UHECRs including realistic random fields

    International Nuclear Information System (INIS)

    We present the results of a study that simulates trajectories of ultra-high energy cosmic rays from Centaurus A to Earth. The arrival directions are characterized to assess whether Cen A can be identified as a source of cosmic rays based on observing departures from isotropy. We analyze separately particles originating from the central engine as well as from the north and south radio lobes of the Cen A complex. Simulations are performed for particle rigidities from E/Z = 2 EV to 100 EV, thus covering the possibility of primary particles as heavy as Fe nuclei with energies exceeding 50 EeV. The Galactic magnetic field is modeled using the recent work of Jansson and Farrar (JF12) which fitted its parameters to match extragalactic Faraday rotation measures and WMAP7 synchrotron emission maps. We also discuss the effects of an additional turbulent magnetic field on the cosmic ray deflections.

  9. Dynamical Decoupling in the Presence of Realistic Pulse Errors

    CERN Document Server

    Tyryshkin, A M; Zhang, Wenxian; Haller, E E; Ager, J; Dobrovitski, V V; Lyon, S A

    2010-01-01

    One of the most significant hurdles to be overcome on the path to practical quantum information processors is dealing with quantum errors. Dynamical decoupling is a particularly promising approach that complements conventional quantum error correction by eliminating some correlated errors without the overhead of additional qubits. In practice, the control pulses used for decoupling are imperfect and thus introduce errors which can accumulate after many pulses. These instrumental errors can destroy the quantum state. Here we examine several dynamical decoupling sequences, and their concatenated variants, using electron spin resonance of donor electron spins in a $^{28}$Si crystal. All of the sequences cancel phase noise arising from slowly fluctuating magnetic fields in our spectrometer, but only those sequences based upon alternating $\\pi$-rotations about the X- and Y-axes in the rotating frame (XYXY sequences) demonstrate the ability to store an arbitrary quantum state. By comparing the experimental results ...

  10. Do drivers have a realistic view of their driving ability?

    DEFF Research Database (Denmark)

    Martinussen, Laila Marianne; Møller, Mette; Prato, Carlo Giacomo

    distinct clusters that differed in the frequency of aberrant driving behavior and driving skills, as well as individual characteristics and driving related factors such as annual mileage, accident frequency and number of tickets and fines. Thus, two sub-groups were identified as more unsafe than the two......The Driver Behavior Questionnaire (DBQ) and the Driver Skill Inventory (DSI) are two of the most frequently used measures of driving style and driving skill. The motivation behind the present study was to test drivers’ insight into their own driving ability based on a combined use of the DBQ and......, annual mileage and accident involvement. 3908 drivers aged 18–84 participated in the survey. The results suggested that the drivers have good insight into their own driving ability, as the driving skill level mirrored the frequency of aberrant driving behaviors. K-means cluster analysis revealed four...

  11. The Influence of Realistic Reynolds Numbers on Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2012-01-01

    The slat noise from the 30P/30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. Varying the Reynolds number from 1.71 to 12.0 million based on the stowed chord resulted in slight changes in the radiated noise. Tonal features in the spectra were robust and evident for all Reynolds numbers and even when a spanwise flow was imposed. The general trends observed in near-field fluctuations were also similar for all the different Reynolds numbers. Experiments on simplified, subscale high-lift systems have exhibited noticeable dependencies on the Reynolds number and tripping, although primarily for tonal features rather than the broadband portion of the spectra. Either the 30P/30N model behaves differently, or the computational model is unable to capture these effects. Hence, the results underscore the need for more detailed measurements of the slat cove flow.

  12. Realistic model for the stimulated Brillouin scattering instability

    International Nuclear Information System (INIS)

    The purpose of this work is to present a new model describing the stimulated Brillouin scattering instability in an inhomogeneous plasma. This model, called the harmonic decomposition method is based on the decomposition of plasma characteristics like density and speed into their short and long wavelengths components. This model describes: the propagation of the incident and reflected laser wave, the evolution of the sound wave and the hydrodynamic evolution of the plasma on a large scale. The first chapter recalls theoretical concepts concerning the stimulated Brillouin scattering, the filamentation and auto-focusing and introduces the harmonic decomposition method. The second chapter deals with the validation of this method through a comparison with an exact hydrodynamics model. The third chapter presents the interpretation of laser-plasma experiments with this new method. The fourth chapter presents different ways of improving the description by taking into account kinetics effects or a better decomposition of the sound wave. (A.C.)

  13. Traffic flow on realistic road networks with adaptive traffic lights

    CERN Document Server

    de Gier, Jan; Rojas, Omar

    2010-01-01

    We present a model of traffic flow on generic urban road networks based on cellular automata. We apply this model to an existing road network in the Australian city of Melbourne, using empirical data as input. For comparison, we also apply this model to a square-grid network using hypothetical input data. On both networks we compare the effects of non-adative vs adaptive traffic lights, in which instantaneous traffic state information feeds back into the traffic signal schedule. We observe that not only do adaptive traffic lights result in better averages of network observables, they also lead to significantly smaller fluctuations in these observables. We furthermore compare two different systems of adaptive traffic signals, one which is informed by the traffic state on both upstream and downstream links, and one which is informed by upstream links only. We find that, in general, the total travel time is smallest when using the joint upstream-downstream control strategy.

  14. Use of a realistic breathing lung phantom to evaluate dose delivery errors

    International Nuclear Information System (INIS)

    Purpose: To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. Methods: A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated arc therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. Results: After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU

  15. Realistic modeling of environmental tracer migration and composite age distributions in a pine beetle impacted watershed

    Science.gov (United States)

    Engdahl, N. B.; Maxwell, R. M.

    2013-12-01

    Descriptions of age in hydrologic systems are often limited to the residence time in the surface water system or the subsurface with little consideration of the interaction between the two, or the different ways geochemical tracers are altered in each domain. Understanding the way tracer concentrations change in each domain is essential to accurate estimation of age, but few models have explicitly modeled the fully coupled system or considered distributions of age. This work presents a numerical laboratory that is specifically designed to investigate composite age distributions (CADs) and their connections to tracer concentrations. The CAD is defined here as the combination of the residence time distributions for surface flows, vadose zone, and groundwater systems, providing an accounting for the total time a discrete fluid parcel has spent within the integrated hydrologic system. CADs are generated by particle tracking through a fully integrated flow model and it is straight forward to realistically simulate the transport of environmental tracers such as 85-Krypton and 39-Argon that can be used for estimating water ages. This framework allows explicit modeling of the different processes in each domain that affect tracer concentrations including the mixing of different source waters, partial equilibrium with the atmosphere through the vadose zone, evaporative enrichment in surface flows, and diffusive fractionation in the subsurface. Transient forcings, such as seasonal or daily variations in precipitation, can also be simulated and the effects of this transience on concentrations and age distributions can easily be investigated. The model domain used to demonstrate these tools is based on a well-defined watershed within Rocky Mountain National Park. The mountain pine beetle has devastated the park's forests and the massive tree-kill has begun to affect the quality and distribution of the water resources. Accurate modeling of the CADs in the park is a crucial step

  16. Improvement of Modeling Scheme of the Safety Injection Tank with Fluidic Device for Realistic LBLOCA Calculation

    International Nuclear Information System (INIS)

    Confirmation of the performance of the SIT with FD should be based on thermal-hydraulic analysis of LBLOCA and an adequate and physical model simulating the SIT/FD should be used in the LBLOCA calculation. To develop such a physical model on SIT/FD, simulation of the major phenomena including flow distribution of by standpipe and FD should be justified by full scale experiment and/or plant preoperational testing. Author's previous study indicated that an approximation of SIT/FD phenomena could be obtained by a typical system transient code, MARS-KS, and using 'accumulator' component model, however, that additional improvement on modeling scheme of the FD and standpipe flow paths was needed for a reasonable prediction. One problem was a depressurizing behavior after switchover to low flow injection phase. Also a potential to release of nitrogen gas from the SIT to the downstream pipe and then reactor core through flow paths of FD and standpipe has been concerned. The intrusion of noncondensible gas may have an effect on LBLOCA thermal response. Therefore, a more reliable model on SIT/FD has been requested to get a more accurate prediction and a confidence of the evaluation of LBLOCA. The present paper is to discuss an improvement of modeling scheme from the previous study. Compared to the existing modeling, effect of the present modeling scheme on LBLOCA cladding thermal response is discussed. The present study discussed the modeling scheme of SIT with FD for a realistic simulation of LBLOCA of APR1400. Currently, the SIT blowdown test can be best simulated by the modeling scheme using 'pipe' component with dynamic area reduction. The LBLOCA analysis adopting the modeling scheme showed the PCT increase of 23K when compared to the case of 'accumulator' component model, which was due to the flow rate decrease at transition phase low flow injection and intrusion of nitrogen gas to the core. Accordingly, the effect of SIT/FD modeling

  17. Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era

    CERN Document Server

    Berry, Christopher P L; Middleton, Hannah; Singer, Leo P; Urban, Alex L; Vecchio, Alberto; Vitale, Salvatore; Cannon, Kipp; Farr, Ben; Farr, Will M; Graff, Philip B; Hanna, Chad; Haster, Carl-Johan; Mohapatra, Satya; Pankow, Chris; Price, Larry R; Sidery, Trevor; Veitch, John

    2014-01-01

    Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky-localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider parameter-estimation accuracy in the presence of realistic, non-Gaussian noise. We find that the character of the noise makes negligible difference to the parameter-estimation performance. The source luminosity distance ...

  18. Toward Establishing a Realistic Benchmark for Airframe Noise Research: Issues and Challenges

    Science.gov (United States)

    Khorrami, Mehdi R.

    2010-01-01

    The availability of realistic benchmark configurations is essential to enable the validation of current Computational Aeroacoustic (CAA) methodologies and to further the development of new ideas and concepts that will foster the technologies of the next generation of CAA tools. The selection of a real-world configuration, the subsequent design and fabrication of an appropriate model for testing, and the acquisition of the necessarily comprehensive aeroacoustic data base are critical steps that demand great care and attention. In this paper, a brief account of the nose landing-gear configuration, being proposed jointly by NASA and the Gulfstream Aerospace Company as an airframe noise benchmark, is provided. The underlying thought processes and the resulting building block steps that were taken during the development of this benchmark case are given. Resolution of critical, yet conflicting issues is discussed - the desire to maintain geometric fidelity versus model modifications required to accommodate instrumentation; balancing model scale size versus Reynolds number effects; and time, cost, and facility availability versus important parameters like surface finish and installation effects. The decisions taken during the experimental phase of a study can significantly affect the ability of a CAA calculation to reproduce the prevalent flow conditions and associated measurements. For the nose landing gear, the most critical of such issues are highlighted and the compromises made to resolve them are discussed. The results of these compromises will be summarized by examining the positive attributes and shortcomings of this particular benchmark case.

  19. Radon decay products in realistic living rooms and their activity distributions in human respiratory system

    International Nuclear Information System (INIS)

    In this study, the individual activity concentrations of attached short-lived radon decay products (218Po, 214Pb and 214Po) in aerosol particles were measured in ten poorly ventilated realistic living rooms. Using standard methodologies, the samples were collected using a filter holder technique connected with alpha-spectrometric. The mean value of air activity concentration of these radionuclides was found to be 5.3±0.8, 4.5±0.5 and 3.9±0.4 Bq m-3, respectively. Based on the physical properties of the attached decay products and physiological parameters of light work activity for an adult human male recommended by ICRP 66 and considering the parameters of activity size distribution (AMD = 0.25 μm and σg = 2.5) given by NRC, the total and regional deposition fractions in each airway generation could be evaluated. Moreover, the total and regional equivalent doses in the human respiratory tract could be estimated. In addition, the surface activity distribution per generation is calculated for the bronchial region (BB) and the bronchiolar region (bb) of the respiratory system. The maximum values of these activities were found in the upper bronchial airway generations. (authors)

  20. Study of the three-nucleon continuum with realistic NN interactions

    International Nuclear Information System (INIS)

    Nucleon-deuteron elastic scattering and nucleon induced deuteron breakup were studied in the energy range of the incoming nucleon Elab=10+70 MeV. Rigorous Faddeev three-nucleon continuum calculations were performed with realistic, meson-exchange based on nucleon-nucleon interactions. Predictions gained with the Paris or Bonn potentials were compared with existing experimental data. For some elastic scattering observables very good quantitative description results are obtained. It was shown that careful study of particular elastic scattering polarization observables will play a role to nail down unsettled nucleon-nucleon force properties, which remain open by present day 2N experimental data. To such properties belong f.e. the charge independence breaking of the NN interaction in 3p waves or the proper strength of the 3S1-3D1 tensor force. Kinematically complete experimental data for various breakup configurations have been analysed. Significant discrepancies between theory and experiment found for some configurations can probably be attributed to the action of the 3-nucleon force. 97 refs., 7 figs. (author)

  1. Realistic operator response measurements: Inputs to the LaSalle PRA

    International Nuclear Information System (INIS)

    The LaSalle comprehensive probabilistic risk assessment (PRA) includes external events and internal events with explicit treatment of human actions during operations, maintenance, and surveillance. It includes common-cause considerations and dependencies covering all support functions. These human sections are included in the same fault trees applicable to both external and internal events. Realism is incorporated into the PRA via measurable values of plant parameters in contrast to license-base values, via real-time behavior of primary containment which provides more realistic operator response intervals, and via actual measurements of operator responses during engineering simulator exercise of plant-specific transient and accident events. Preliminary correlations of operator responses via the HCR measurements method indicate that measured operator unreliabilities are consistently ten to one hundred times lower than best-estimate values used in earlier PRA's. Some operator responses may indicate an unreliability measure of one thousand less than reported estimates of non-performance (omission failures). Measurements of operator response during plant recovery scenarios are currently being correlated for subsequent inclusion via SHARP methods into the LaSalle PRA. These degraded core event scenarios were defined from the PRA dominant transient and accident cut-sets leading to degraded cores with potential fission product release

  2. Realistic absorption coefficient of each individual film in a multilayer architecture

    International Nuclear Information System (INIS)

    A spectrophotometric strategy, termed multilayer-method (ML-method), is presented and discussed to realistically calculate the absorption coefficient of each individual layer embedded in multilayer architectures without reverse engineering, numerical refinements and assumptions about the layer homogeneity and thickness. The strategy extends in a non-straightforward way a consolidated route, already published by the authors and here termed basic-method, able to accurately characterize an absorbing film covering transparent substrates. The ML-method inherently accounts for non-measurable contribution of the interfaces (including multiple reflections), describes the specific film structure as determined by the multilayer architecture and used deposition approach and parameters, exploits simple mathematics, and has wide range of applicability (high-to-weak absorption regions, thick-to-ultrathin films). Reliability tests are performed on films and multilayers based on a well-known material (indium tin oxide) by deliberately changing the film structural quality through doping, thickness-tuning and underlying supporting-film. Results are found consistent with information obtained by standard (optical and structural) analysis, the basic-method and band gap values reported in the literature. The discussed example-applications demonstrate the ability of the ML-method to overcome the drawbacks commonly limiting an accurate description of multilayer architectures. (paper)

  3. Towards Realistic Vehicular Network Modeling Using Planet-scale Public Webcams

    CERN Document Server

    Thakur, Gautam S; Ketabdar, Hamed; Helmy, Ahmed

    2011-01-01

    Realistic modeling of vehicular mobility has been particularly challenging due to a lack of large libraries of measurements in the research community. In this paper we introduce a novel method for large-scale monitoring, analysis, and identification of spatio-temporal models for vehicular mobility using the freely available online webcams in cities across the globe. We collect vehicular mobility traces from 2,700 traffic webcams in 10 different cities for several months and generate a mobility dataset of 7.5 Terabytes consisting of 125 million of images. To the best of our knowl- edge, this is the largest data set ever used in such study. To process and analyze this data, we propose an efficient and scalable algorithm to estimate traffic density based on background image subtraction. Initial results show that at least 82% of individual cameras with less than 5% deviation from four cities follow Loglogistic distribution and also 94% cameras from Toronto follow gamma distribution. The aggregate results from eac...

  4. Performance of Cooperative Eigenvalue Spectrum Sensing with a Realistic Receiver Model under Impulsive Noise

    Directory of Open Access Journals (Sweden)

    Dayan A. Guimarães

    2013-01-01

    Full Text Available In this paper we present a unified comparison of the performance of four detection techniques for centralized data-fusion cooperative spectrum sensing in cognitive radio networks under impulsive noise, namely, the eigenvalue-based generalized likelihood ratio test (GLRT, the maximum-minimum eigenvalue detection (MMED, the maximum eigenvalue detection (MED, and the energy detection (ED. We consider two system models: an implementation-oriented model that includes the most relevant signal processing tasks realized by a real cognitive radio receiver, and the theoretical model conventionally adopted in the literature. We show that under the implementation-oriented model, GLRT and MMED are quite robust under impulsive noise, whereas the performance of MED and ED is drastically degraded. We also show that performance under the conventional model can be too pessimistic if impulsive noise is present, whereas it can be too optimistic in the absence of this impairment. We also discuss the fact that impulsive noise is not such a severe problem when we take into account the more realistic implementation-oriented model.

  5. Realistic opto-mechanical simulation and tolerancing of an automotive optical transmitter coupling system

    Science.gov (United States)

    Vervaeke, Michael; Moens, Els; Meuret, Youri; Ottevaere, Heidi; Van Buggenhout, Carl; De Pauw, Piet; Thienpont, Hugo

    2010-05-01

    The advent of Plastic Optical Fibre (POF) opened perspectives for numerous applications in the field of datacommunications. POF is increasingly popular in the automotive industry as a robust, lightweight, electromagnetic interference free, easy and cheap to install alternative to electrical wiring for high-speed entertainment, navigation and data acquisition systems in cars. The main challenge for the introduction of datacommunication systems based on POF is imposed by the working conditions of automotive applications: systems should remain fully functional in a temperature range from -40 °C to +115 °C . Furthermore, standardisation and mechanical design considerations put a number of other boundary conditions. We designed a misalignment-tolerant optical coupling system according to the Media Oriented Systems Transport standard (MOST) to convey the divergent beam from a Resonant Cavity Light Emitting Diode (RCLED) into a Step-Index (SI) multimode POF mounted in a detachable ferrule. In this contribution we describe the methodology to synthesize the dimensions and tolerances on the optical components in the coupling system. A Monte Carlo optimisation algorithm on the full three-dimensional (3D) description of the complete RCLED package and detachable POF ferrule was used to allow a realistic modelling of all misalignments that could occur in the production chain. We select the best suited system according to manufacturing and assembly capabilities as well as its suitability for automotive applications.

  6. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    International Nuclear Information System (INIS)

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  7. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R., E-mail: riccardo.belvedere@icra.it, E-mail: jorge.rueda@icra.it, E-mail: ruffini@icra.it [Dipartimento di Fisica and ICRA, Sapienza Universita' di Roma P.le Aldo Moro 5, I-00185 Rome (Italy)

    2015-01-20

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  8. Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Rogério M. Branco

    2016-07-01

    Full Text Available This paper discusses the application of heuristic-based evolutionary technique in search for solutions concerning the dynamic job-shop scheduling problems with dependent setup times and alternate routes. With a combinatorial nature, these problems belong to an NP-hard class, with an aggravated condition when in realistic, dynamic and therefore, more complex cases than the traditional static ones. The proposed genetic algorithm executes two important functions: choose the routes using dispatching rules when forming each individual from a defined set of available machines and, also make the scheduling for each of these individuals created. The chromosome codifies a route, or the selected machines, and also an order to process the operations. In essence , each individual needs to be decoded by the scheduler to evaluate its time of completion, so the fitness function of the genetic algorithm, applying the modified Giffler and Thomson’s algorithm, obtains a scheduling of the selected routes in a given planning horizon. The scheduler considers the preparation time between operations on the machines and can manage operations exchange respecting the route and the order given by the chromosome. The best results in the evolutionary process are individuals with routes and processing orders optimized for this type of problema.

  9. Lepton Flavor Violation within a realistic SO(10)/G(224) Framework

    CERN Document Server

    Babu, K S; Rastogi, P K; Pati, Jogesh C.; Rastogi, Parul

    2005-01-01

    Lepton flavor violation (LFV) is studied within a realistic unified framework, based on supersymmetric SO(10) or an effective G(224) = SU(2)_L\\times SU(2)_R\\times SU(4)^c symmetry, that successfully describes (i) fermion masses and mixings, (ii) neutrino oscillations, as well as (iii) CP violation. LFV emerges as an important prediction of this framework, bringing no new parameters, barring the few SUSY parameters, which are assumed to be flavor-universal at M^*>= M_{GUT}. We study LFV (i.e. \\mu -> e\\gamma, \\tau -> \\mu\\gamma, \\tau -> e\\gamma and \\mu N -> e N) within this framework by including contributions both from the presence of the right handed neutrinos as well as those arising from renormalization group running in the post-GUT regime (M^* to M_{GUT}). Typically the latter, though commonly omitted in the literature, is found to dominate. Our predicted rates for \\mu -> e\\gamma show that while some choices of (m_o, m_{1/2}) are clearly excluded by the current empirical limit, this decay should be seen wit...

  10. Generic Simulator Environment for Realistic Simulation - Autonomous Entity Proof and Emotion in Decision Making

    Directory of Open Access Journals (Sweden)

    Mickaël Camus

    2004-10-01

    Full Text Available Simulation is usually used as an evaluation and testing system. Many sectors are concerned such as EUROPEAN SPACE AGENCY or the EUROPEAN DEFENCE. It is important to make sure that the project is error-free in order to continue it. The difficulty is to develop a realistic environment for the simulation and the execution of a scenario. This paper presents PALOMA, a Generic Simulator Environment. This project is based essantially on the Chaos Theory and Complex Systems to create and direct an environment for a simulation. An important point is the generic aspect. PALOMA will be able to create an environment for different sectors (Aero-space, Biology, Mathematic, .... PALOMA includes six components : the Simulation Engine, the Direction Module, the Environment Generator, the Natural Behavior Restriction, the Communication API and the User API. Three languages are used to develop this simulator. SCHEME for the Direction language, C/C++ for the development of modules and OZ/MOZART for the heart of PALOMA.

  11. A finite-element reciprocity solution for EEG forward modeling with realistic individual head models.

    Science.gov (United States)

    Ziegler, Erik; Chellappa, Sarah L; Gaggioni, Giulia; Ly, Julien Q M; Vandewalle, Gilles; André, Elodie; Geuzaine, Christophe; Phillips, Christophe

    2014-12-01

    We present a finite element modeling (FEM) implementation for solving the forward problem in electroencephalography (EEG). The solution is based on Helmholtz's principle of reciprocity which allows for dramatically reduced computational time when constructing the leadfield matrix. The approach was validated using a 4-shell spherical model and shown to perform comparably with two current state-of-the-art alternatives (OpenMEEG for boundary element modeling and SimBio for finite element modeling). We applied the method to real human brain MRI data and created a model with five tissue types: white matter, gray matter, cerebrospinal fluid, skull, and scalp. By calculating conductivity tensors from diffusion-weighted MR images, we also demonstrate one of the main benefits of FEM: the ability to include anisotropic conductivities within the head model. Root-mean square deviation between the standard leadfield and the leadfield including white-matter anisotropy showed that ignoring the directional conductivity of white matter fiber tracts leads to orientation-specific errors in the forward model. Realistic head models are necessary for precise source localization in individuals. Our approach is fast, accurate, open-source and freely available online. PMID:25204867

  12. Feasibility study for a realistic training dedicated to radiological protection improvement

    International Nuclear Information System (INIS)

    An evident purpose of the radiological protection training is to use suitable protective equipment and to behave correctly if unexpected working conditions happen. A major difficulty of this training consist in having the most realistic reading from the monitoring devices for a given exposure situation, but without using real radioactive sources. A new approach is developed at EDF R/D for radiological protection training. This approach combines different technologies, in an environment representative of the workplace but geographically separated from the nuclear power plant: a training area representative of a workplace, a Man Machine Interface used by the trainer to define the source configuration and the training scenario, a geo-localization system, fictive radiation monitoring devices and a particle transport code able to calculate in real time the dose map due to the virtual sources. In a first approach, our real-time particles transport code, called Moderato, used only an attenuation low in straight line. To improve the realism further, we would like to switch a code based on the Monte Carlo transport of particles like Geant 4 or MCNPX instead of Moderato. The aim of our study is the evaluation of the code in our application, in particular, the possibility to keep a real time response of our architecture. (authors)

  13. Forming Realistic Late-Type Spirals in a LCDM Universe: The Eris Simulation

    CERN Document Server

    Guedes, Javiera; Madau, Piero; Mayer, Lucio

    2011-01-01

    Simulations of the formation of late-type spiral galaxies in a cold dark matter LCDM universe have traditionally failed to yield realistic candidates. Here we report a new cosmological N-body/SPH simulation of extreme dynamic range in which a close analog of a Milky Way disk galaxy arises naturally. Termed Eris, the simulation follows the assembly of a galaxy halo of mass Mvir=7.9x10^11 Msun with a total of N=18.6 million particles (gas + dark matter + stars) within the final virial radius, and a force resolution of 120 pc. It includes radiative cooling, heating from a cosmic UV field and supernova explosions, a star formation recipe based on a high gas density threshold (nSF=5 atoms cm^-3 rather than the canonical nSF=0.1 atoms cm^-3), and neglects AGN feedback. At the present epoch, the simulated galaxy has an extended rotationally-supported disk with a radial scale length Rd=2.5 kpc, a gently falling rotation curve with circular velocity at 2.2 disk scale lenghts of V2.2=214 km/s, a bulge-to-disk ratio B/D...

  14. Towards a more realistic modelling of the uncertainty on identified mode shapes due to measurement noise

    International Nuclear Information System (INIS)

    Many damage identification methods use the information from mode shapes. In order to test the robustness of these methods, it is a common practice to introduce uncertainty on the mode shapes in the form of independent noise at each measured location. In doing so, the potential spatial correlation in the mode shapes uncertainty is not taken into account. A better approach consists in adding uncorrelated noise on the time domain responses at each sensor before doing the identification. The spatial correlation resulting from the identification can then be evaluated using the covariance matrices of the identified mode shapes. In this study, we apply this approach to the numerical example of a simply supported beam. Modal identification is performed using stochastic subspace based algorithms developed in the toolbox MACEC. The covariance matrices of the mode shapes shows that there is a strong spatial correlation in the mode shapes uncertainty. This result shows that adding independent noise directly on the mode shapes is not a very realistic approach to assess the impact of noise on damage identification methods. The approach used to characterize noise uncertainty on modeshapes identification is totally general and can be applied to any mode, structure or sensing technology.

  15. Calculation of nucleon-deuteron breakup processes with realistic, charge-dependent potential

    International Nuclear Information System (INIS)

    Neutron-deuteron breakup cross sections obtained within the framework of AGS theory are presented. As input the separable W-matrix representation of the two-body T matrix for the original Paris potential and for a charge dependent modification is used. A criterion to choose an optimal representation based on the Schmidt norm of the kernel of the AGS equations is presented. The results are compared with data from kinematically complete experiments at 10.3 MeV and 13.0 MeV. The neutron-neutron (nn) scattering length is extracted from the cross section of a nn-FSI configuration. It is shown that a reliable analysis of a given experimental situation requires the inclusion of about 400 neighbouring configurations in order to simulate finite energy and angle resolutions. In view of the huge demand on computational resources the simplifying yet very accurate W-matrix method is seen to be an algorithm particularly well suited for such realistic analyses. (orig.)

  16. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    CERN Document Server

    Chen, Feng

    2015-01-01

    Coronal seismology is extensively used to estimate properties of the corona, e.g. the coronal magnetic field strength are derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. From the simulation of the corona above an active region we synthesise extreme ultraviolet (EUV) emission from the model corona. From this we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5s and a damping tim...

  17. Development and implementation of a nutrition intervention programme in North West Pakistan: a realist framework.

    Science.gov (United States)

    Lhussier, Monique; Bangash, Sonia; Dykes, Fiona; Zaman, Mukhtiar; Lowe, Nicola M

    2012-12-01

    Maternal and infant malnutrition is prevalent in rural regions of NW Pakistan. This article reports on the use of a combination of a realist Context-Mechanism-Outcome framework and participatory appraisal methods to facilitate the development of a locally sensitive and responsive nutritional intervention programme. Data were gathered through a series of focus group (FG) discussions with local lady health workers, as well as pregnant and breastfeeding women attending an Emergency Field Hospital in North West Pakistan between May 2008 and March 2009. A nutrition intervention programme was implemented that involved cookery demonstration kitchens and free food supplements, coupled with nutrition and healthcare information and advice for pregnant and breastfeeding women. Subsequent FG discussions revealed that the programme had a positive impact on knowledge gained by women in the community and generated an openness to receiving and spreading knowledge. The framework, which rested on the use of a double feedback loop, involving local women, lady health workers, local researchers and UK-based researchers, has enabled not only the establishment of the programme, but has also given the local team the tools to apply for, and gain, further funding for the development of nutrition support services. The development of such methodological tools, which empower local researchers and service providers (wherever located) to operationalize local knowledge and assess interventions, is particularly relevant in international financially-constrained contexts. PMID:21948952

  18. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  19. Monte Carlo package for simulating radiographic images of realistic anthropomorphic phantoms described by triangle meshes

    Science.gov (United States)

    Badal, Andreu; Kyprianou, Iacovos; Badano, Aldo; Sempau, Josep; Myers, Kyle J.

    2007-03-01

    X-ray imaging system optimization increases the benefit-to-cost ratio by reducing the radiation dose to the patient while maximizing image quality. We present a new simulation tool for the generation of realistic medical x-ray images for assessment and optimization of complete imaging systems. The Monte Carlo code simulates radiation transport physics using the subroutine package PENELOPE, which accurately simulates the transport of electrons and photons within the typical medical imaging energy range. The new code implements a novel object-oriented geometry package that allows simulations with homogeneous objects of arbitrary shapes described by triangle meshes. The flexibility of this code, which uses the industry standard PLY input-file format, allows the use of detailed anatomical models developed using computer-aided design tools applied to segmented CT and MRI data. The use of triangle meshes highly simplifies the ray-tracing algorithm without reducing the generality of the code, since most surface models can be tessellated into triangles while retaining their geometric details. Our algorithm incorporates an octree spatial data structure to sort the triangles and accelerate the simulation, reaching execution speeds comparable to the original quadric geometry model of PENELOPE. Coronary angiograms were simulated using a tessellated version of the NURBS-based Cardiac-Torso (NCAT) phantom. The phantom models 330 objects, comprised in total of 5 million triangles. The dose received by each organ and the contribution of the different scattering processes to the final image were studied in detail.

  20. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    International Nuclear Information System (INIS)

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M ☉, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass

  1. RAId_DbS: Peptide Identification using Database Searches with Realistic Statistics

    Directory of Open Access Journals (Sweden)

    Ogurtsov Aleksey Y

    2007-10-01

    Full Text Available Abstract Background The key to mass-spectrometry-based proteomics is peptide identification. A major challenge in peptide identification is to obtain realistic E-values when assigning statistical significance to candidate peptides. Results Using a simple scoring scheme, we propose a database search method with theoretically characterized statistics. Taking into account possible skewness in the random variable distribution and the effect of finite sampling, we provide a theoretical derivation for the tail of the score distribution. For every experimental spectrum examined, we collect the scores of peptides in the database, and find good agreement between the collected score statistics and our theoretical distribution. Using Student's t-tests, we quantify the degree of agreement between the theoretical distribution and the score statistics collected. The T-tests may be used to measure the reliability of reported statistics. When combined with reported P-value for a peptide hit using a score distribution model, this new measure prevents exaggerated statistics. Another feature of RAId_DbS is its capability of detecting multiple co-eluted peptides. The peptide identification performance and statistical accuracy of RAId_DbS are assessed and compared with several other search tools. The executables and data related to RAId_DbS are freely available upon request.

  2. Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.

    Science.gov (United States)

    Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando

    2016-08-01

    Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection. PMID:26666228

  3. Exact non-additive kinetic potentials in realistic chemical systems.

    Science.gov (United States)

    de Silva, Piotr; Wesolowski, Tomasz A

    2012-09-01

    In methods based on frozen-density embedding theory or subsystem formulation of density functional theory, the non-additive kinetic potential (v(t)(nad)(r)) needs to be approximated. Since v(t)(nad)(r) is defined as a bifunctional, the common strategies rely on approximating v(t)(nad)[ρ(A),ρ(B)](r). In this work, the exact potentials (not bifunctionals) are constructed for chemically relevant pairs of electron densities (ρ(A) and ρ(B)) representing: dissociating molecules, two parts of a molecule linked by a covalent bond, or valence and core electrons. The method used is applicable only for particular case, where ρ(A) is a one-electron or spin-compensated two-electron density, for which the analytic relation between the density and potential exists. The sum ρ(A) + ρ(B) is, however, not limited to such restrictions. Kohn-Sham molecular densities are used for this purpose. The constructed potentials are analyzed to identify the properties which must be taken into account when constructing approximations to the corresponding bifunctional. It is comprehensively shown that the full von Weizsäcker component is indispensable in order to approximate adequately the non-additive kinetic potential for such pairs of densities. PMID:22957558

  4. Realistic Approach of the Relations of Uncertainty of Heisenberg

    Directory of Open Access Journals (Sweden)

    Paul E. Sterian

    2013-01-01

    Full Text Available Due to the requirements of the principle of causality in the theory of relativity, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in the conjugate Fourier spaces. Instead of admitting that a particle’s position and its conjugate momentum cannot be accurately measured at the same time, we consider the only probabilities which can be determined when working at subatomic level to be valid. On the other hand, based on Schwinger's action principle and using the quadridimensional form of the unitary transformation generator function of the quantum operators in the paper, the general form of the evolution equation for these operators is established. In the nonrelativistic case one obtains the Heisenberg's type evolution equations which can be particularized to derive Heisenberg's uncertainty relations. The analysis of the uncertainty relations as implicit evolution equations allows us to put into evidence the intrinsic nature of the correlation expressed by these equations in straight relations with the measuring process. The independence of the quantisation postulate from the causal evolution postulate of quantum mechanics is also put into discussion.

  5. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    Science.gov (United States)

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities. PMID:26772187

  6. Changing the color of textiles with realistic visual rendering

    Science.gov (United States)

    Hébert, Mathieu; Henckens, Lambert; Barbier, Justine; Leboulleux, Lucie; Page, Marine; Roujas, Lucie; Cazier, Anthony

    2015-03-01

    Fast and easy preview of a fabric without having to produce samples would be very profitable for textile designers, but remains a technological challenge. As a first step towards this objective, we study the possibility of making images of a real sample, and changing virtually the colors of its yarns while preserving the shine and shadow texture. We consider two types of fabrics: Jacquard weave fabrics made of polyester warp and weft yarns of different colors, and satin ribbons made of polyester and metallic yarns. For the Jacquard fabric, we make a color picture with a scanner on a sample in which the yarns have contrasted colors, threshold this image in order to distinguish the pixels corresponding to each yarn, and accordingly modify their hue and chroma values. This method is simple to operate but do not enable to simulate the angle-dependent shine. A second method, tested on the satin ribbon made of black polyester and achromatic metallic yarns, is based on polarized imaging. We analyze the polarization state of the reflected light which is different for dielectric and metallic materials illuminated by polarized light. We then add a fixed color value to the pixels representing the polyester yarns and modify the hue and chroma of the pixels representing the metallic yarns. This was performed for many incident angles of light, in order to render the twinkling effect displayed by these ribbons. We could verify through a few samples that the simulated previews reproduce real pictures with visually acceptable accuracy.

  7. Foundations for a realist ontology of mental disease.

    Science.gov (United States)

    Ceusters, Werner; Smith, Barry

    2010-01-01

    While classifications of mental disorders have existed for over one hundred years, it still remains unspecified what terms such as 'mental disorder', 'disease' and 'illness' might actually denote. While ontologies have been called in aid to address this shortfall since the GALEN project of the early 1990s, most attempts thus far have sought to provide a formal description of the structure of some pre-existing terminology or classification, rather than of the corresponding structures and processes on the side of the patient.We here present a view of mental disease that is based on ontological realism and which follows the principles embodied in Basic Formal Ontology (BFO) and in the application of BFO in the Ontology of General Medical Science (OGMS). We analyzed statements about what counts as a mental disease provided (1) in the research agenda for the DSM-V, and (2) in Pies' model. The results were used to assess whether the representational units of BFO and OGMS were adequate as foundations for a formal representation of the entities in reality that these statements attempt to describe. We then analyzed the representational units specific to mental disease and provided corresponding definitions.Our key contributions lie in the identification of confusions and conflations in the existing terminology of mental disease and in providing what we believe is a framework for the sort of clear and unambiguous reference to entities on the side of the patient that is needed in order to avoid these confusions in the future. PMID:21143905

  8. Foundations for a realist ontology of mental disease

    Directory of Open Access Journals (Sweden)

    Ceusters Werner

    2010-12-01

    Full Text Available Abstract While classifications of mental disorders have existed for over one hundred years, it still remains unspecified what terms such as 'mental disorder', 'disease' and 'illness' might actually denote. While ontologies have been called in aid to address this shortfall since the GALEN project of the early 1990s, most attempts thus far have sought to provide a formal description of the structure of some pre-existing terminology or classification, rather than of the corresponding structures and processes on the side of the patient. We here present a view of mental disease that is based on ontological realism and which follows the principles embodied in Basic Formal Ontology (BFO and in the application of BFO in the Ontology of General Medical Science (OGMS. We analyzed statements about what counts as a mental disease provided (1 in the research agenda for the DSM-V, and (2 in Pies' model. The results were used to assess whether the representational units of BFO and OGMS were adequate as foundations for a formal representation of the entities in reality that these statements attempt to describe. We then analyzed the representational units specific to mental disease and provided corresponding definitions. Our key contributions lie in the identification of confusions and conflations in the existing terminology of mental disease and in providing what we believe is a framework for the sort of clear and unambiguous reference to entities on the side of the patient that is needed in order to avoid these confusions in the future.

  9. Evaluation of EEG localization methods using realistic simulations of interictal spikes.

    Science.gov (United States)

    Grova, C; Daunizeau, J; Lina, J-M; Bénar, C G; Benali, H; Gotman, J

    2006-02-01

    Performing an accurate localization of sources of interictal spikes from EEG scalp measurements is of particular interest during the presurgical investigation of epilepsy. The purpose of this paper is to study the ability of six distributed source localization methods to recover extended sources of activated cortex. Due to the frequent lack of a gold standard to evaluate source localization methods, our evaluation was performed in a controlled environment using realistic simulations of EEG interictal spikes, involving several anatomical locations with several spatial extents. Simulated data were corrupted by physiological EEG noise. Simulations involving pairs of sources with the same amplitude were also studied. In addition to standard validation criteria (e.g., geodesic distance or mean square error), we proposed an original criterion dedicated to assess detection accuracy, based on receiver operating characteristic (ROC) analysis. Six source localization methods were evaluated: the minimum norm, the minimum norm weighted by multivariate source prelocalization (MSP), cortical LORETA with or without additional minimum norm regularization, and two derivations of the maximum entropy on the mean (MEM) approach. Results showed that LORETA-based and MEM-based methods were able to accurately recover sources of different spatial extents, with the exception of sources in temporo-mesial and fronto-mesial regions. Several spurious sources were generated by those methods, however, whereas methods using the MSP always located very accurately the maximum of activity but not its spatial extent. These findings suggest that one should always take into account the results from different localization methods when analyzing real interictal spikes. PMID:16271483

  10. Realistic NLTE Radiative Transfer for Modeling Stellar Winds

    Science.gov (United States)

    Bennett, Philip D.

    1999-01-01

    This NASA grant supported the development of codes to solve the non-LTE multi-level spherical radiative transfer problem in the presence of velocity fields. Much of this work was done in collaboration with Graham Harper (CASA, University of Colorado). These codes were developed for application to the cool, low-velocity winds of evolved late-type stars. Particular emphasis was placed on modeling the wind of lambda Velorum (K4 lb), the brightest K supergiant in the sky, based on extensive observations of the ultraviolet spectrum with the HST/GHRS from GO program 5307. Several solution techniques were examined, including the Eddington factor Approach described in detail by Bennett & Harper (1997). An Eddington factor variant of Harper's S-MULTI code (Harper 1994) for stationary atmospheres was developed and implemented, although full convergence was not realized. The ratio of wind terminal velocity to turbulent velocity is large (approx. 0.3-0.5) in these cool star winds so this assumption of stationarity provides reasonable starting models. Final models, incorporating specified wind laws, were converged using the comoving CRD S-MULTI code. Details of the solution procedure were published by Bennett & Harper (1997). Our analysis of the wind of lambda Vel, based on wind absorption superimposed on chromospheric emission lines in the ultraviolet, can be found in Carpenter et al. (1999). In this paper, we compare observed wind absorption features to an exact CRD calculation in the comoving frame, and also to a much quicker, but approximate, method using the SEI (Sobolev with Exact Integration) code of Lamers, Cerruti-Sola, & Perinotto (1987). Carpenter et al. (1999) provide detailed comparisons of the exact CRD and approximate SEI results and discuss when SEI is adequate to use for computing wind line profiles. Unfortunately, the observational material is insufficient to unambiguously determine the wind acceleration law for lambda Vel. Relatively few unblended Fe II lines

  11. TRACE - a time-dependent and realistic accident consequence evaluation module for use in emergency response planning

    International Nuclear Information System (INIS)

    Following the identification of an off-normal condition at nuclear power plant, the plant operators have one over-riding responsibility: protection of the offsite population. In discharging this responsibility, the operators utilize a set of emergency operating procdedures. A. Immediately following the identification of the off-normal condition, the operators primary actions are focused on establishing a safe, stable shutdown condition for the reactor. B. The plant condition is categorized according to the perceived severity of the event based on a broad overview of the plant conditions, and the information is transmitted to appropriate governmental authorities. C. Estimations of potential environmental releases of radioactivity, based on design basis accident results, are performed and transmitted to the governmental authorities. The TRACE package was developed to provide the operators with the tools to make realistic predictions of the range of possible releases of radioactivity to the environment during all phases of an off-normal condition, including severe accident situations. The TRACE package provides a means to project, during the early stages of an accident, the potential range of possible fission product releases on a realistic and time-dependent basis. The TRACE package also provides a means to update previous evaluations of the potential range of radioactivity releases as plant conditions change or a new information (on accident sequence or plant parameters) becomes available. (orig./HSCH)

  12. Dose related risk and effect assessment model (DREAM) -- A more realistic approach to risk assessment of offshore discharges

    International Nuclear Information System (INIS)

    Risk assessment of discharges from offshore oil and gas production to the marine environment features determination of potential environmental concentration (PEC) levels and no observed effect concentration (NOEC) levels. The PEC values are normally based on dilution of chemical components in the actual discharge source in the recipient, while the NOEC values are determined by applying a safety factor to acute toxic effects from laboratory tests. The DREAM concept focuses on realistic exposure doses as function of contact time and dilution, rather than fixed exposure concentrations of chemicals in long time exposure regimes. In its present state, the DREAM model is based on a number of assumptions with respect to the link between real life exposure doses and effects observed in laboratory tests. A research project has recently been initiated to develop the concept further, with special focus on chronic effects of different chemical compounds on the marine ecosystem. One of the questions that will be addressed is the link between exposure time, dose, concentration and effect. Validation of the safety factors applied for transforming acute toxic data into NOEC values will also be included. The DREAM model has been used by Statoil for risk assessment of discharges from new and existing offshore oil and gas production fields, and has been found to give a much more realistic results than conventional risk assessment tools. The presentation outlines the background for the DREAM approach, describes the model in its present state, discusses further developments and applications, and shows a number of examples on the performance of DREAM

  13. Towards realistic representation of hydrological processes in integrated WRF-urban modeling system

    Science.gov (United States)

    Yang, Jiachuan; Wang, Zhi-hua; Chen, Fei; Miao, Shiguang; Tewari, Mukul; Georgescu, Matei

    2014-05-01

    To meet the demand of the ever-increasing urbanized global population, substantial conversion of natural landscapes to urban terrains is expected in the next few decades. The landscape modification will emerge as the source of many adverse effects that challenge the environmental sustainability of cities under changing climatic patterns. To address these adverse effects and to develop corresponding adaptation/mitigation strategies, physically-based single layer urban canopy model (SLUCM) has been developed and implemented into the Weather Research and Forecasting (WRF) platform. However, due to the lack of realistic representation of urban hydrological processes, simulation of urban climatology by current coupled WRF/SLUCM is inevitably inadequate. Aiming at improving the accuracy of simulations, in this study we implement physically-based parameterization of urban hydrological processes into the model, including (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation over water-holding engineered pavements, (4) urban oasis effect, and (5) green roof. In addition, we use an advanced Monte Carlo approach to quantify the sensitivity of urban hydrological modeling to parameter uncertainties. Evaluated against field observations at four major metropolitan areas, results show that the enhanced model is significantly improved in accurately predicting turbulent fluxes arising from built surfaces, especially the latent heat flux. Case studies show that green roof is capable of reducing urban surface temperature and sensible heat flux effectively, and modifying local and regional hydroclimate. Meanwhile, it is efficient in decreasing energy loading of buildings, not only cooling demand in summers but also heating demand in winters, through the combined evaporative cooling and insulation effect. Effectiveness of green roof is found to be limited by availability of water resources and highly sensitive to surface roughness heights. The enhanced WRF/SLUCM model

  14. Accurately decoding visual information from fMRI data obtained in a realistic virtual environment

    Directory of Open Access Journals (Sweden)

    Andrew Floren

    2015-06-01

    Full Text Available Three-dimensional interactive virtual environments are a powerful tool for brain-imaging based cognitive neuroscience that are presently under-utilized. This paper presents machine-learning based methods for identifying brain states induced by realistic virtual environments with improved accuracy as well as the capability for mapping their spatial topography on the neocortex. Virtual environments provide the ability to study the brain under conditions closer to the environment in which humans evolved, and thus to probe deeper into the complexities of human cognition. As a test case, we designed a stimulus to reflect a military combat situation in the Middle East, motivated by the potential of using real-time functional magnetic resonance imaging (fMRI in the treatment of post-traumatic stress disorder. Each subject experienced moving through the virtual town where they encountered 1—6 animated combatants at different locations, while fMRI data was collected. To analyze the data from what is, compared to most studies, more complex and less controlled stimuli, we employed statistical machine learning in the form of Multi-Voxel Pattern Analysis (MVPA with special attention given to artificial Neural Networks (NN. Extensions to NN that exploit the block structure of the stimulus were developed to improve the accuracy of the classification, achieving performances from 58%—93% (chance was 16.7% with 6 subjects. This demonstrates that MVPA can decode a complex cognitive state, viewing a number of characters, in a dynamic virtual environment. To better understand the source of this information in the brain, a novel form of sensitivity analysis was developed to use NN to quantify the degree to which each voxel contributed to classification. Compared with maps produced by general linear models and the searchlight approach, these sensitivity maps revealed a more diverse pattern of information relevant to the classification of cognitive state.

  15. Performance assessment of a micro-cogeneration system under realistic operating conditions

    International Nuclear Information System (INIS)

    Highlights: • Performances of a micro-cogeneration system have been experimentally evaluated. • Cogenerator performances have been compared with those of a traditional system. • Measured data have been analyzed from both energy and exergy points of view. - Abstract: The European Parliament stated that high-efficiency cogeneration is a Community priority given the potential benefits of cogeneration with regard to saving primary energy and reducing emissions. According to this position, the performance of many micro-cogeneration systems have been assessed from an energy and environmental point of view. However, in the most part of cases, the assessments have been performed by using technical data from manufacturers and/or experimental results measured during steady-state operation, without considering the inefficiencies related to the transient periods; in addition, few works have been devoted to analyze the system operation from an exergy-based point of view. In this paper the electric load-following operation of an internal combustion engine based micro-cogeneration unit with 6.0 kW as nominal electric output has been experimentally investigated in electric load-following operation during a 24 h dynamic test with the application of a realistic daily load profile representing the Italian domestic non-HVAC electric demand for a multi-family house of five dwellings. The measured data have been compared with those that would be associated with servicing the building with electricity from the central electric grid and heat from a natural gas fired boiler from an energy, exergy and environmental points of view

  16. Statistical multipath exposure of a human in a realistic electromagnetic environment.

    Science.gov (United States)

    Vermeeren, Günter; Joseph, Wout; Olivier, Christof; Martens, Luc

    2008-04-01

    A new and fast numerical method is presented to assess the whole-body averaged specific absorption rate (SAR) in a human body model in a realistic electromagnetic environment. The method requires a minimum set of initial numerical simulations with a 3D electromagnetic solver. From the initial simulation results, the absorption can be quickly (within 1 s) determined in a realistic electromagnetic environment. The realistic electromagnetic environment has been modeled as a finite sum of incident plane waves. The presented fast method serves as a substitute for brute-force 3D electromagnetic simulations. Therefore, the method must only be validated with brute-force 3D electromagnetic simulations in terms of whole-body averaged SAR, and excellent agreement has been observed. The method has been applied to assess the cumulative distribution function of the whole-body averaged SAR in a spheroid human body model for four types of realistic electromagnetic environments. We observed that for all the four environments the whole-body averaged SAR complies with the International Commission on Non Ionizing Radiation Protection basic restriction for general public. Furthermore, the whole-body averaged SAR for a realistic exposure exceeds the worst-case single plane wave exposure in approximately 10% of the exposure samples. PMID:18332726

  17. A Low-cost System for Generating Near-realistic Virtual Actors

    Science.gov (United States)

    Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.

    2015-06-01

    Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.

  18. Non-Tachyonic Semi-Realistic Non-Supersymmetric Heterotic String Vacua

    CERN Document Server

    Ashfaque, Johar M; Faraggi, Alon E; Sonmez, Hasan

    2015-01-01

    The heterotic--string models in the free fermionic formulation gave rise to some of the most realistic string models to date, which possess N=1 spacetime supersymmetry. Lack of evidence for supersymmetry at the LHC instigated recent interest in non-supersymmetric heterotic-string vacua. We explore what may be learned in this context from the quasi--realistic free fermionic models. We show that constructions with a low number of families give rise to proliferation of a priori tachyon producing sectors, compared to the non--realistic examples, which typically may contain only one such sector. The reason being that in the realistic cases the internal six dimensional space is fragmented into smaller units. We present one example of a quasi--realistic, non--supersymmetric, non--tachyonic, heterotic--string vacuum and compare the structure of its massless spectrum to the corresponding supersymmetric vacuum. While in some sectors supersymmetry is broken explicitly, i.e. the bosonic and fermionic sectors produce mass...

  19. CERN PS Booster space charge simulations with a realistic model for alignement and field errors

    CERN Document Server

    Forte, V; McAteer, M

    2014-01-01

    The CERN PS Booster is one of the machines of the LHC injector chain which will be upgraded within the LIU (LHC Injectors upgrade) project. The injection energy of the PSB will be increased to 160MeV in order to mitigate direct space charge effects, considered to be the main performance limitation, thus allowing to double the brightness for the LHC beams. In order to better predict the gain to be expected, space charge simulations are being carried out. Efforts to establish a realistic modeling of field and alignment errors aim at extending the basic model of the machine towards a more realistic one. Simulations of beam dynamics with strong direct space charge and realistic errors are presented and analysed in this paper.

  20. Shadow obstacle model for realistic corner-turning behavior in crowd simulation

    Institute of Scientific and Technical Information of China (English)

    Gao-qi HE; Yi JIN; Qi CHEN; Zhen LIU; Wen-hui YUE; Xing-jian LU

    2016-01-01

    This paper describes a novel model known as the shadow obstacle model to generate a realistic corner-turning be-havior in crowd simulation. The motivation for this model comes from the observation that people tend to choose a safer route rather than a shorter one when turning a corner. To calculate a safer route, an optimization method is proposed to generate the corner-turning rule that maximizes the viewing range for the agents. By combining psychological and physical forces together, a full crowd simulation framework is established to provide a more realistic crowd simulation. We demonstrate that our model produces a more realistic corner-turning behavior by comparison with real data obtained from the experiments. Finally, we per-form parameter analysis to show the believability of our model through a series of experiments.

  1. A realist evaluation of the management of a well- performing regional hospital in Ghana

    Directory of Open Access Journals (Sweden)

    Kegels Guy

    2010-01-01

    Full Text Available Abstract Background Realist evaluation offers an interesting approach to evaluation of interventions in complex settings, but has been little applied in health care. We report on a realist case study of a well performing hospital in Ghana and show how such a realist evaluation design can help to overcome the limited external validity of a traditional case study. Methods We developed a realist evaluation framework for hypothesis formulation, data collection, data analysis and synthesis of the findings. Focusing on the role of human resource management in hospital performance, we formulated our hypothesis around the high commitment management concept. Mixed methods were used in data collection, including individual and group interviews, observations and document reviews. Results We found that the human resource management approach (the actual intervention included induction of new staff, training and personal development, good communication and information sharing, and decentralised decision-making. We identified 3 additional practices: ensuring optimal physical working conditions, access to top managers and managers' involvement on the work floor. Teamwork, recognition and trust emerged as key elements of the organisational climate. Interviewees reported high levels of organisational commitment. The analysis unearthed perceived organisational support and reciprocity as underlying mechanisms that link the management practices with commitment. Methodologically, we found that realist evaluation can be fruitfully used to develop detailed case studies that analyse how management interventions work and in which conditions. Analysing the links between intervention, mechanism and outcome increases the explaining power, while identification of essential context elements improves the usefulness of the findings for decision-makers in other settings (external validity. We also identified a number of practical difficulties and priorities for further

  2. Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

    Science.gov (United States)

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-03-01

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.

  3. Connection of Kukulin's nucleon-nucleon deep potential with realistic repulsive core interactions

    International Nuclear Information System (INIS)

    The on-shell equivalence of the deep quantum-chromodynamically motivated realistic nucleon-nucleon interaction recently proposed by Kukulin et al. with more conventional repulsive-core forces is investigated by eliminating its unphysical deeply bound states, while preserving its scattering properties and the binding energy of the deuteron. The resulting interaction, which is built both in the singlet and triplet channels, displays a r-2 singular repulsive core followed by a shallow attraction of intermediate range, in good semiquantitative agreement with existing realistic nucleon-nucleon interactions. (orig.)

  4. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  5. Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine

    Energy Technology Data Exchange (ETDEWEB)

    Mule, S.J.; Lomax, P.; Gross, S.J.

    1988-05-01

    Human urine samples obtained before and after active and passive exposure to marijuana were analyzed by immune kits (Roche, Amersham, and Syva) and gas chromatography/mass spectrometry (GC/MS). Seven of eight subjects were positive for the entire five-day test period with one immune kit. The latter correlated with GC/MS in 98% of the samples. Passive inhalation experiments under conditions likely to reflect realistic exposure resulted consistently in less than 10 ng/mL of cannabinoids. The 10-100-ng/mL cannabinoid concentration range essential for detection of occasional and moderate marijuana users is thus unaffected by realistic passive inhalation.

  6. Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine

    International Nuclear Information System (INIS)

    Human urine samples obtained before and after active and passive exposure to marijuana were analyzed by immune kits (Roche, Amersham, and Syva) and gas chromatography/mass spectrometry (GC/MS). Seven of eight subjects were positive for the entire five-day test period with one immune kit. The latter correlated with GC/MS in 98% of the samples. Passive inhalation experiments under conditions likely to reflect realistic exposure resulted consistently in less than 10 ng/mL of cannabinoids. The 10-100-ng/mL cannabinoid concentration range essential for detection of occasional and moderate marijuana users is thus unaffected by realistic passive inhalation

  7. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang-Hua [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Department of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Li, Xiao-Fei, E-mail: xfli@theochem.kth.se [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Xu, Liang; Luo, Kai-Wu [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China)

    2014-03-10

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics.

  8. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    Science.gov (United States)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-03-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics.

  9. RCRN – Realistic Colors And Real Nights : An exploration into independent hobby computer game modification development

    OpenAIRE

    Cederberg, Andreas

    2013-01-01

    The lighting technologies of games are sometimes an overlooked aspect which can play a major role when it comes to providing a realistic look and feel of a game. When the surroundings are for example clear and sunny, you want the surroundings to react expectedly with a more vivid and bright look. Likewise when the weather is cloudy or rainy, you do not want the ground to look too vivid and bright but more low contrast and dull. There is a need of a dynamic behavior. Realistic Lighting an...

  10. Imaging hemorrhagic stroke with magnetic induction tomography: realistic simulation and evaluation

    International Nuclear Information System (INIS)

    Magnetic induction tomography (MIT) is a noncontact method for detecting the internal conductivity distribution of an object. This technology has the potential to be used in the biomedical area to check bio-impedance change inside the human body, for example to detect hemorrhage in the human brain. In this study the hemorrhagic stroke detectability with a 16-channel MIT system operating at 10 MHz was evaluated. Since the conductivity distribution is changed by the hemorrhagic stroke as well as the squeezed brain tissue around the stroke, deformation of the brain tissue is also considered and simulated with the help of a FEM-based linear bio-mechanical model in this paper. To simulate the raw measurement data as realistically as possible, the noise estimated from the experimental MIT system with hypothesis testing methods at 95% confidence level is added to the simulated measurements. Stroke images of 600 noisy samples for each detection assignment are reconstructed by the one-step Tikhonov-regularized inverse eddy current solution. Under the statistical framework, the detection failure is in control of a high false negative rate which represents a large artifact visualized in the reconstruction domain. The qualitative detectability of 18 detecting assignments, with three hemorrhagic positions (shallow, medial and center of the cerebrum) and two volume values (10 ml and 20 ml), overlaid by noise with three levels (standard deviation of phase change at 5 × 10−3°, 2.5 × 10−3°, 10 × 10−3°), are investigated. These detecting assignments are compared with each other to find out which volumes of deformed spherical hemorrhagic stroke can be detected by the modeled MIT system

  11. Cortical Sources of ERP in Prosaccade and Antisaccade Eye Movements using Realistic Source Models

    Directory of Open Access Journals (Sweden)

    John E Richards

    2013-07-01

    Full Text Available The cortical sources of event-related-potentials (ERP using realistic source models were examined in a prosaccade and antisaccade task. College-age participants were presented with a preparatory interval and a target that indicated the direction of the eye movement that was to be made. In some blocks a cue was given in the peripheral location where the target was to be presented and in other blocks no cue was given. In Experiment 1 the prosaccade and antisaccade trials were presented randomly within a block; in Experiment 2 procedures were compared in which either prosaccade and antisaccade trials were mixed in the same block, or trials were presented in separate blocks with only one type of eye movement. There was a central negative slow wave occurring prior to the target, a slow positive wave over the parietal scalp prior to the saccade, and a parietal spike potential immediately prior to saccade onset. Cortical source analysis of these ERP components showed a common set of sources in the ventral anterior cingulate and orbital frontal gyrus for the presaccadic positive slow wave and the spike potential. In Experiment 2 the same cued- and non-cued blocks were used, but prosaccade and antisaccade trials were presented in separate blocks. This resulted in a smaller difference in reaction time between prosaccade and antisaccade trials. Unlike the first experiment, the central negative slow wave was larger on antisaccade than on prosaccade trials, and this effect on the ERP component had its cortical source primarily in the parietal and mid-central cortical areas contralateral to the direction of the eye movement. These results suggest that blocked prosaccade and antisaccade trials results in preparatory or set effects that decreases reaction time, eliminates some cueing effects, and is based on contralateral parietal-central brain areas.

  12. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A., E-mail: michel.nuevo-1@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States)

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  13. Multilayered disease-mimicking bladder phantom with realistic surface topology for optical coherence tomography

    Science.gov (United States)

    Smith, Gennifer T.; Lurie, Kristen L.; Khan, Saara A.; Liao, Joseph C.; Ellerbee, Audrey K.

    2014-03-01

    Optical coherence tomography (OCT) has shown potential as a complementary modality to white light cystoscopy (WLC), the gold standard for imaging bladder cancer. OCT can visualize sub-surface details of the bladder wall, which enables it to stage cancers and detect tumors that are otherwise invisible to WLC. Currently, OCT systems have too slow a speed and too small a field of view for comprehensive bladder imaging, which limits its clinical utility. Validation and feasibility testing of technological refinements aimed to provide faster imaging and wider fields of view necessitates a realistic bladder phantom. We present a novel process to fabricate the first such phantom that mimics both the optical and morphological properties of layers of the healthy and pathologic bladder wall as they characteristically appear with OCT. The healthy regions of the silicone-based phantom comprises three layers: the urothelium, lamina propria and muscularis propria, each containing an appropriate concentration of titanium dioxide to mimic its distinct scattering properties. As well, the layers each possess a unique surface appearance imposed by a textured mold. Within this phantom, pathologic tissue-mimicking regions are created by thickening specific layers or creating inclusions that disrupt the layered appearance of the bladder wall, as is characteristic of bladder carcinomas. This phantom can help to evaluate the efficacy of new OCT systems and software for tumor localization. Moreover, the procedure we have developed is highly generalizable for the creation of OCT-relevant, multi-layer phantoms for tissues that incorporate diseased states characterized by the loss of layered structures.

  14. The Effectivenss of a Group Guidance Program on The Realistic Field Choice Amondst First Year High

    Directory of Open Access Journals (Sweden)

    Davut AYDIN

    2007-06-01

    Full Text Available In this research, the effectiveness of a group guidance program in terms of assisting first year high school students to choose realistically their study field was examined.The research was carried out with 40 pupils who were randomly selected among the first year Özel Ferda Lisesi pupils, in Ankara, during the academic year 2001-2002.The subjects were separated to two groups: the experimental group which attended the group guidance program and the control group which did not. Both groups were tested before the guidance program was implemented and after.The program developed by the researcher, was mainly based on cognitive-behavioural approach with a substantial emphasis on informational and interactional techniques.The independent variable of the research was the group guidance program that was applied to the experimental group. The dependent variable of the study was students’ aptitude points.The program consisted of 12 sessions and it was administered every five days. Each session lasted for about 90 minutes. After the last session of the program, the student evaluation scale, which was developed by Kuzgun, was given to both the experimental and the control group members. In order to test this hypothesis thedependent-samples t-test was used.The results indicated that the experimental group members’ score both in the aptitude test become closer to their teachers rating after the group guidance program while the control group members score did not change from the first to the second application of the test.

  15. Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model

    Science.gov (United States)

    Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel

    2005-12-01

    SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.

  16. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    International Nuclear Information System (INIS)

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with

  17. Generating Realistic Smart Grid Communication Topologies Based on Real-Data

    OpenAIRE

    Hartmann, Thomas; Fouquet, François; Klein, Jacques; Le Traon, Yves; PELOV, Alexander; Toutain, Laurent; ROPITAULT, Tanguy

    2014-01-01

    Today’s electricity grid must undergo substantial changes in order to keep pace with the rising demand for energy. The vision of the smart grid aims to increase the efficiency and reliability of today’s electricity grid, e.g. by integrating renewable energies and distributed micro-generations. The backbone of this effort is the facilitation of information and communication technologies to allow two-way communication and an automated control of devices. The underlying communication topology is...

  18. Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    CERN Document Server

    Kuhn, Nicolas; Lacan, Jerome; Boreli, Roksana; Bes, Caroline; Clarac, Laurence

    2012-01-01

    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of di...

  19. Modeling and Design of Realistic Si3N4-based Integrated Optical Programmable Power Splitter

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, H.J.W.M.; Stoffer, R.

    2010-01-01

    Controllable splitting of optical power with a large splitting ratio range is often required in an integrated optical chip, e.g. for the readout of phase-shift in a slow-light sensor. In this work, we report the modeling and design of an integrated optical programmable power splitter consisting of a

  20. Image-based large-eddy simulation in a realistic left heart

    OpenAIRE

    Chnafa, Christophe; Mendez, Simon; Nicoud, Franck

    2014-01-01

    A numerical framework allowing insight in fluid dynamics inside patient- specific human hearts is presented. The heart cavities and their wall dynam- ics are extracted from medical images, with the help of a non-linear image registration algorithm, in order to obtain a patient-specific moving numer- ical domain. Flow equations are written on a conformal moving computa- tional domain, using an Arbitrary Lagrangian-Eulerian framework. Resulting equations are solved numerically with a fourth-ord...

  1. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model

    Directory of Open Access Journals (Sweden)

    L. Sun

    2007-10-01

    Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.

  2. Realistic Modeling and Animation of Human Body Based on Scanned Data

    Institute of Scientific and Technical Information of China (English)

    Yong-You Ma; Hui Zhang; Shou-Wei Jiang

    2004-01-01

    In this paper we propose a novel method for building animation model of real human body from surface scanned data.The human model is represented by a triangular mesh and described as a layered geometric model.The model consists of two layers: the control skeleton generating body animation from motion capture data,and the simplified surface model providing an efficient representation of the skin surface shape.The skeleton is generated automatically from surface scanned data using the feature extraction,and thena point-to-line mapping is used to map the surface model onto the underlying skeleton.The resulting model enables real-time and smooth animation by manipulation of the skeleton while maintaining the surface detail.Compared with earlier approach,the principal advantages of our approach are the automated generation of body control skeletons from the scanned data for real-time animation,and the automatic mapping and animation of the captured human surface shape.The human model constructed in this work can be used for applications of ergonomic design,garment CAD,real-time simulating humans in virtual reality environment and so on.

  3. The Use of ICT in Kindergarten for Teaching Addition Based on Realistic Mathematics Education

    Science.gov (United States)

    Zaranis, Nicholas

    2016-01-01

    The purpose of this study is to investigate if information and communications technology (ICT) helps improve kindergarten students' basic mathematical achievement regarding addition. Our research compares the level of mathematical competence of the students taught using our ICT oriented learning method which specifically takes advantage of…

  4. Evolutionary food web model based on body masses gives realistic networks with permanent species turnover

    Science.gov (United States)

    Allhoff, K. T.; Ritterskamp, D.; Rall, B. C.; Drossel, B.; Guill, C.

    2015-06-01

    The networks of predator-prey interactions in ecological systems are remarkably complex, but nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In order to understand the mechanism driving the complexity and stability of such food webs, we developed an eco-evolutionary model in which new species emerge as modifications of existing ones and dynamic ecological interactions determine which species are viable. The food-web structure thereby emerges from the dynamical interplay between speciation and trophic interactions. The proposed model is less abstract than earlier evolutionary food web models in the sense that all three evolving traits have a clear biological meaning, namely the average body mass of the individuals, the preferred prey body mass, and the width of their potential prey body mass spectrum. We observed networks with a wide range of sizes and structures and high similarity to natural food webs. The model networks exhibit a continuous species turnover, but massive extinction waves that affect more than 50% of the network are not observed.

  5. Estimating a realistic procedural blank for the determination of Fe in seawater by isotope dilution: a fundamental analytical issue

    International Nuclear Information System (INIS)

    It is well known that direct analysis of seawater by means of inductively coupled plasma mass spectrometry (ICP-MS) is hardly possible because of the salt load in the samples. Determination of the element content at ultra-trace level in open-ocean water requires a separation from the matrix associated to significant concentration factors. For iron, an isotope dilution ICP-MS method was proposed based on a multiple steps protocol, including a co-precipitation with magnesium hydroxide after ammonia loading and consecutive dissolution with hydrochloric acid. To be able to measure the iron content in the low pg g-1 range a correct assessment of the analytical procedural blank is of crucial importance. Not only this blank must be low, but also realistic (i.e. based on the complete analytical sequence applied to real iron free seawater) and reproducible. This is particularly difficult considering the ubiquity of iron and the complexity of the seawater matrix and, despite years of experiments and publications, this remains a fundamental analytical challenge and a great source of complexity for the realisation of reliable profiles of dissolved iron data. The present study considers different approaches we developed to assess, in a realistic way, the procedural blank of the IDMS method proposed by Wu and Boyle. These authors use ∼4%-sample volume for their procedural blank determination, and the results presented are rather convincing. However, down-sizing by a factor of ∼25 the sample volume, which minimizes sample-tube contact and lab ware contribution to the blank, can easily lead to changes in the analytical protocol, and thus to non-realistic procedural blank values. Instead, our investigations aimed at reproducing the full set of experimental steps involved in the determination of iron in seawater by IDMS at the nM level or below. Our results are evaluated in the light of those claimed by Wu and Boyle. The ICP-MS measurements were performed by means of a single

  6. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios.

    Science.gov (United States)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from

  7. Achieving realistic performance and decison-making capabilities in computer-generated air forces

    Science.gov (United States)

    Banks, Sheila B.; Stytz, Martin R.; Santos, Eugene, Jr.; Zurita, Vincent B.; Benslay, James L., Jr.

    1997-07-01

    For a computer-generated force (CGF) system to be useful in training environments, it must be able to operate at multiple skill levels, exhibit competency at assigned missions, and comply with current doctrine. Because of the rapid rate of change in distributed interactive simulation (DIS) and the expanding set of performance objectives for any computer- generated force, the system must also be modifiable at reasonable cost and incorporate mechanisms for learning. Therefore, CGF applications must have adaptable decision mechanisms and behaviors and perform automated incorporation of past reasoning and experience into its decision process. The CGF must also possess multiple skill levels for classes of entities, gracefully degrade its reasoning capability in response to system stress, possess an expandable modular knowledge structure, and perform adaptive mission planning. Furthermore, correctly performing individual entity behaviors is not sufficient. Issues related to complex inter-entity behavioral interactions, such as the need to maintain formation and share information, must also be considered. The CGF must also be able to acceptably respond to unforeseen circumstances and be able to make decisions in spite of uncertain information. Because of the need for increased complexity in the virtual battlespace, the CGF should exhibit complex, realistic behavior patterns within the battlespace. To achieve these necessary capabilities, an extensible software architecture, an expandable knowledge base, and an adaptable decision making mechanism are required. Our lab has addressed these issues in detail. The resulting DIS-compliant system is called the automated wingman (AW). The AW is based on fuzzy logic, the common object database (CODB) software architecture, and a hierarchical knowledge structure. We describe the techniques we used to enable us to make progress toward a CGF entity that satisfies the requirements presented above. We present our design and

  8. Rapidly re-computable EEG (electroencephalography) forward models for realistic head shapes

    International Nuclear Information System (INIS)

    Solution of the EEG source localization (inverse) problem utilizing model-based methods typically requires a significant number of forward model evaluations. For subspace based inverse methods like MUSIC (6), the total number of forward model evaluations can often approach an order of 103 or 104. Techniques based on least-squares minimization may require significantly more evaluations. The observed set of measurements over an M-sensor array is often expressed as a linear forward spatio-temporal model of the form: F = GQ + N (1) where the observed forward field F (M-sensors x N-time samples) can be expressed in terms of the forward model G, a set of dipole moment(s) Q (3xP-dipoles x N-time samples) and additive noise N. Because of their simplicity, ease of computation, and relatively good accuracy, multi-layer spherical models (7) (or fast approximations described in (1), (7)) have traditionally been the 'forward model of choice' for approximating the human head. However, approximation of the human head via a spherical model does have several key drawbacks. By its very shape, the use of a spherical model distorts the true distribution of passive currents in the skull cavity. Spherical models also require that the sensor positions be projected onto the fitted sphere (Fig. 1), resulting in a distortion of the true sensor-dipole spatial geometry (and ultimately the computed surface potential). The use of a single 'best-fitted' sphere has the added drawback of incomplete coverage of the inner skull region, often ignoring areas such as the frontal cortex. In practice, this problem is typically countered by fitting additional sphere(s) to those region(s) not covered by the primary sphere. The use of these additional spheres results in added complication to the forward model. Using high-resolution spatial information obtained via X-ray CT or MR imaging, a realistic head model can be formed by tessellating the head into a set of contiguous regions (typically the scalp

  9. A cost–effective and eco-friendly treatment technology to remove realistic levels of mercury by means of the unmodified rice husk

    OpenAIRE

    Rocha L. S.; Lopes C. B.; Duarte A. C.; Pereira E.

    2013-01-01

    In the present work the removal of mercury from aqueous solutions media and for realistic concentrations of this metal was evaluated, by using an inexpensive and highly available agricultural waste, rice husk. An economical method was developed based on the use of the natural/unmodified form of rice husk and on the amount of material required, which was minimized to produce the lowest amount of biological slurry. In order to study the kinetics of the process, batch stirred experiments were pe...

  10. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model

    Science.gov (United States)

    Gerya, Taras; Burov, Evgueni

    2015-04-01

    Triple junctions are probably the most remarkable features of plate boundaries since their presence constitutes one of the major demonstrations of plate tectonics theory. Divergent (R-R-R) triple junctions (at 120° and T junctions) are particular ones since their stability depends on the exact values of the relative velocities of plate divergence and hence is strongly affected by plate rheology and processes of crustal accretion. The mechanisms of their formation and long-term steadiness are not well understood even though it is commonly accepted, generally based on common sense, that the geometry and stability of triple junctions should be related to the intuitively acceptable geometric considerations that 3-branch configurations should be "stable" over the time on a 3D Earth surface. That said, most plate boundaries are in fact 2D in terms that they involve only two plates, while junctions with 3 and more branches, if even mechanically not excluded, are generally short-lived and hence rarely observed at tectonic scale. Indeed, it has been long-time suggested that triple junctions result from evolution of short-lived quadruple junctions, yet, without providing a consistent mechanical explanation or experimental demonstration of this process, due to the rheological complexity of the lithosphere and that of strain localization and crustal accretion processes. For example, it is supposed that R-R-R junctions form as result of axisymmetric mantle upwellings. However, impingement of buoyant fluid on a non-pre-stressed lithosphere should result in multiple radial cracks, as is well known from previous analog and numerical experiments. In case of uni-directionally pre-stressed lithosphere, it has also shown that linear 2D rift structures should be formed. Therefore, a complete 3D thermos-mechanically consistent approach is needed to understand the processes of formation of multi-branch junctions. With this goal we here reproduce and study the processes of multi

  11. Lessons learned in using realist evaluation to assess maternal and newborn health programming in rural Bangladesh.

    Science.gov (United States)

    Adams, Alayne; Sedalia, Saroj; McNab, Shanon; Sarker, Malabika

    2016-03-01

    Realist evaluation furnishes valuable insight to public health practitioners and policy makers about how and why interventions work or don't work. Moving beyond binary measures of success or failure, it provides a systematic approach to understanding what goes on in the 'Black Box' and how implementation decisions in real life contexts can affect intervention effectiveness. This paper reflects on an experience in applying the tenets of realist evaluation to identify optimal implementation strategies for scale-up of Maternal and Newborn Health (MNH) programmes in rural Bangladesh. Supported by UNICEF, the three MNH programmes under consideration employed different implementation models to deliver similar services and meet similar MNH goals. Programme targets included adoption of recommended antenatal, post-natal and essential newborn care practices; health systems strengthening through improved referral, accountability and administrative systems, and increased community knowledge. Drawing on focused examples from this research, seven steps for operationalizing the realist evaluation approach are offered, while emphasizing the need to iterate and innovate in terms of methods and analysis strategies. The paper concludes by reflecting on lessons learned in applying realist evaluation, and the unique insights it yields regarding implementation strategies for successful MNH programming. PMID:26104820

  12. Combining Campbell Standards and the Realist Evaluation Approach: The Best of Two Worlds?

    Science.gov (United States)

    van der Knaap, Leontien M.; Leeuw, Frans L.; Bogaerts, Stefan; Nijssen, Laura T. J.

    2008-01-01

    This article presents an approach to systematic reviews that combines the Campbell Collaboration Crime and Justice standards and the realist notion of contexts-mechanisms-outcomes (CMO) configurations. Both approaches have their advantages and drawbacks, and the authors will make a case for combining both approaches to profit from their advantages…

  13. Cognitive Holding Power, Fluid Intelligence, and Mathematical Achievement as Predictors of Children's Realistic Problem Solving

    Science.gov (United States)

    Xin, Ziqiang; Zhang, Li

    2009-01-01

    The present study explored whether first and second order cognitive holding power perceived by children in mathematical classrooms, fluid intelligence, and mathematical achievement predicted their performance on standard problems, and especially realistic problems. A sample of 119 Chinese 4-6th graders were administered the word problem test, the…

  14. Using realist synthesis to understand the mechanisms of interprofessional teamwork in health and social care.

    Science.gov (United States)

    Hewitt, Gillian; Sims, Sarah; Harris, Ruth

    2014-11-01

    Realist synthesis offers a novel and innovative way to interrogate the large literature on interprofessional teamwork in health and social care teams. This article introduces realist synthesis and its approach to identifying and testing the underpinning processes (or "mechanisms") that make an intervention work, the contexts that trigger those mechanisms and their subsequent outcomes. A realist synthesis of the evidence on interprofessional teamwork is described. Thirteen mechanisms were identified in the synthesis and findings for one mechanism, called "Support and value" are presented in this paper. The evidence for the other twelve mechanisms ("collaboration and coordination", "pooling of resources", "individual learning", "role blurring", "efficient, open and equitable communication", "tactical communication", "shared responsibility and influence", "team behavioural norms", "shared responsibility and influence", "critically reviewing performance and decisions", "generating and implementing new ideas" and "leadership") are reported in a further three papers in this series. The "support and value" mechanism referred to the ways in which team members supported one another, respected other's skills and abilities and valued each other's contributions. "Support and value" was present in some, but far from all, teams and a number of contexts that explained this variation were identified. The article concludes with a discussion of the challenges and benefits of undertaking this realist synthesis. PMID:25051092

  15. A search engine for retrieval and inspection of events with 48 human actions in realistic videos

    NARCIS (Netherlands)

    Burghouts, G.J.; Penning, H.L.H. de; Hove, R.J.M. ten; Landsmeer, S.; Broek, S.P. van den; Hollander, R.J.M.; Hanckmann, P.; Kruithof, M.C.; Leeuwen, C.J. van; Korzec, S.; Bouma, H.; Schutte, K.

    2013-01-01

    The contribution of this paper is a search engine that recognizes and describes 48 human actions in realistic videos. The core algorithms have been published recently, from the early visual processing (Bouma, 2012), discriminative recognition (Burghouts, 2012) and textual description (Hankmann, 2012

  16. The Barcelona-Catania-Paris-Madrid functional with a realistic effective mass

    CERN Document Server

    Baldo, M; Schuck, P; Viñas, X

    2016-01-01

    The Barcelona-Catania-Paris-Madrid (BCPM) functional recently proposed to describe nuclear structure properties of finite nuclei is generalized as to include a realistic effective mass. The resulting functional is as good as the previous one in describing binding energies, radii, deformation properties, etc and, in addition, the description of Giant Quadrupole Resonance energies is greatly improved.

  17. Realistic Shell-Model Calculations for Nuclei in the Region of Shell Closures off Stability

    OpenAIRE

    Covello, A; Coraggio, L.; Gargano, A.

    1998-01-01

    We have performed realistic shell-model calculations for nuclei around doubly magic 100Sn and 132Sn using an effective interaction derived from the Bonn A nucleon-nucleon potential. The results are in remarkably good agreement with the experimental data showing the ability of our effective interaction to provide an accurate description of nuclear structure properties.

  18. A Patent Analysis on Realistic Media for R&D Projects

    Science.gov (United States)

    Hwang, Sung-Hyun; Yeon, Seung-Jun

    In this paper, we use patent statistics as the recent status of R&D in international patents. The number of patents was used to compare different countries' share in the overall number of technology patents. Using the degree of patent citations, the influence and technological prowess of patents were examined. Also, implications were drawn from an analysis of patent contents for realistic media.

  19. Transport in a realistic magnetic field modulated nanostructure with the δ-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian-Duo, E-mail: l_j316@163.com [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081 (China); Xu, Bin [Department of Mathematics and Information Sciences, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Liu, Hong-Yu; Dai, Hou-Mei [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-01-10

    We theoretically investigate electron transport properties in a nanostructure modulated by the realistic magnetic field and the δ-doping. We find that the electron transport properties are strongly dependent on the weight and the position of the δ-doping. These interesting finds may be very helpful for designing the δ-doping-tunable spintronic devices.

  20. Realistic simulation of laser range finder behavior in a smoky environment

    NARCIS (Netherlands)

    O. Formsma; N. Dijkshoorn; S. van Noort; A. Visser

    2010-01-01

    The Urban Search and Rescue Simulation used for RoboCup lacks realistic response of laser range finders on smoke. In this paper, the behavior of a Hokuyo and Sick laser range finder in a smoky environment is studied. The behavior of the lasers is among others a function of the visibility level, and

  1. Validation of a realistic powder sample using data from DMC at PSI

    DEFF Research Database (Denmark)

    Willendrup, Peter Kjær; Filges, U.; Keller, L.;

    2006-01-01

    We present results of a virtual experiment, carried out by means of a McStas simulation of the powder diffractometer DMC at PSI, using the new powder sample component PowderN. This powder component takes tabulated crystallographic input to define realistic powder lines. The simulated output data...

  2. Helping Students Succeed through Using Reflective Practice to Enhance Metacognition and Create Realistic Predictions

    Science.gov (United States)

    Mair, Carolyn

    2012-01-01

    Understanding how students can better manage their expectations has been a topic of interest in pedagogy for some time, yet solutions remain elusive. This paper describes a recent study which aimed to help students make more realistic predictions by increasing their metacognition. At the outset, participants completed a metacognitive awareness…

  3. Heterogeneous Deployment to Meet Traffic Demand in a Realistic LTE Urban Scenario

    DEFF Research Database (Denmark)

    Coletti, Claudio; Hu, Liang; Nguyen, Huan Cong;

    2012-01-01

    growth of mo-bile broadband traffic. Emphasis is put on how to optimally as-sign the spectrum for the different networks layers in an evolved HetNet including outdoor and indoor small cells. The study is conducted for a “Hot-Zone” scenario, i.e. a high-traffic area within a realistic dense urban...

  4. Realistic Mathematics Learning Using Cooperative Strategy Model in Junior High School

    Science.gov (United States)

    Dwiyana

    2015-01-01

    This study aims to develop a realistic mathematics learning model using cooperative strategy. This study applies research and development approach conducted at Junior High School "Laboratorium," State University of Malang. The implementation of this model is conducted through five stages: 1) previous study phase; 2) model planning phase;…

  5. Assessing Outcomes of a Realistic Major Preview in an Introductory Sport Management Course

    Science.gov (United States)

    Pierce, David; Wanless, Elizabeth; Johnson, James

    2014-01-01

    This paper assessed the outcomes of a field experience assignment (FEA) in an introductory sport management course designed as a realistic major preview. Student learning outcomes assessed were commitment to the major, intent to pursue the major, expectation of a career in sports, and perceived preparation for a career in sports. A…

  6. Investigations of a Complex, Realistic Task: Intentional, Unsystematic, and Exhaustive Experimenters

    Science.gov (United States)

    McElhaney, Kevin W.; Linn, Marcia C.

    2011-01-01

    This study examines how students' experimentation with a virtual environment contributes to their understanding of a complex, realistic inquiry problem. We designed a week-long, technology-enhanced inquiry unit on car collisions. The unit uses new technologies to log students' experimentation choices. Physics students (n = 148) in six diverse high…

  7. Design Research in the Netherlands: Introducing Logarithms Using Realistic Mathematics Education

    Science.gov (United States)

    Webb, David C.; van der Kooij, Henk; Geist, Monica R.

    2011-01-01

    This article describes Realistic Mathematics Education (RME), a design theory for mathematics education proposed by Hans Freudenthal and developed over 40 years of developmental research at the Freudenthal Institute for Science and Mathematics Education in the Netherlands. Activities from a unit to develop student understanding of logarithms are…

  8. Dealing with Complex Causality in Realist Synthesis: The Promise of Qualitative Comparative Analysis

    Science.gov (United States)

    Sager, Fritz; Andereggen, Celine

    2012-01-01

    In this article, the authors state two arguments: first, that the four categories of context, politics, polity, and policy make an adequate framework for systematic review being both exhaustive and parsimonious; second, that the method of qualitative comparative analysis (QCA) is an appropriate methodical approach for gaining realistic results…

  9. Studies of (p,t) reaction mechanism employing the realistic deuteron and triton wave functions

    International Nuclear Information System (INIS)

    The roles of the simultaneous (one-step) and the sequential (two-step) transfer processes in the (p,t) reactions were investigated. For this purpose, the exact evaluations of both processes were carried out employing the realistic light-ion wave functions and the interaction which causes the transfer. (author)

  10. Modelling Population Dynamics in Realistic Landscapes with Linear Elements: A Mechanistic-Statistical Reaction-Diffusion Approach

    Science.gov (United States)

    2016-01-01

    We propose and develop a general approach based on reaction-diffusion equations for modelling a species dynamics in a realistic two-dimensional (2D) landscape crossed by linear one-dimensional (1D) corridors, such as roads, hedgerows or rivers. Our approach is based on a hybrid “2D/1D model”, i.e, a system of 2D and 1D reaction-diffusion equations with homogeneous coefficients, in which each equation describes the population dynamics in a given 2D or 1D element of the landscape. Using the example of the range expansion of the tiger mosquito Aedes albopictus in France and its main highways as 1D corridors, we show that the model can be fitted to realistic observation data. We develop a mechanistic-statistical approach, based on the coupling between a model of population dynamics and a probabilistic model of the observation process. This allows us to bridge the gap between the data (3 levels of infestation, at the scale of a French department) and the output of the model (population densities at each point of the landscape), and to estimate the model parameter values using a maximum-likelihood approach. Using classical model comparison criteria, we obtain a better fit and a better predictive power with the 2D/1D model than with a standard homogeneous reaction-diffusion model. This shows the potential importance of taking into account the effect of the corridors (highways in the present case) on species dynamics. With regard to the particular case of A. albopictus, the conclusion that highways played an important role in species range expansion in mainland France is consistent with recent findings from the literature. PMID:26986201

  11. Modelling Population Dynamics in Realistic Landscapes with Linear Elements: A Mechanistic-Statistical Reaction-Diffusion Approach.

    Science.gov (United States)

    Roques, Lionel; Bonnefon, Olivier

    2016-01-01

    We propose and develop a general approach based on reaction-diffusion equations for modelling a species dynamics in a realistic two-dimensional (2D) landscape crossed by linear one-dimensional (1D) corridors, such as roads, hedgerows or rivers. Our approach is based on a hybrid "2D/1D model", i.e, a system of 2D and 1D reaction-diffusion equations with homogeneous coefficients, in which each equation describes the population dynamics in a given 2D or 1D element of the landscape. Using the example of the range expansion of the tiger mosquito Aedes albopictus in France and its main highways as 1D corridors, we show that the model can be fitted to realistic observation data. We develop a mechanistic-statistical approach, based on the coupling between a model of population dynamics and a probabilistic model of the observation process. This allows us to bridge the gap between the data (3 levels of infestation, at the scale of a French department) and the output of the model (population densities at each point of the landscape), and to estimate the model parameter values using a maximum-likelihood approach. Using classical model comparison criteria, we obtain a better fit and a better predictive power with the 2D/1D model than with a standard homogeneous reaction-diffusion model. This shows the potential importance of taking into account the effect of the corridors (highways in the present case) on species dynamics. With regard to the particular case of A. albopictus, the conclusion that highways played an important role in species range expansion in mainland France is consistent with recent findings from the literature. PMID:26986201

  12. Non-tachyonic semi-realistic non-supersymmetric heterotic-string vacua

    Science.gov (United States)

    Ashfaque, Johar M.; Athanasopoulos, Panos; Faraggi, Alon E.; Sonmez, Hasan

    2016-04-01

    The heterotic-string models in the free fermionic formulation gave rise to some of the most realistic-string models to date, which possess N=1 spacetime supersymmetry. Lack of evidence for supersymmetry at the LHC instigated recent interest in non-supersymmetric heterotic-string vacua. We explore what may be learned in this context from the quasi-realistic free fermionic models. We show that constructions with a low number of families give rise to proliferation of a priori tachyon producing sectors, compared to the non-realistic examples, which typically may contain only one such sector. The reason being that in the realistic cases the internal six dimensional space is fragmented into smaller units. We present one example of a quasi-realistic, non-supersymmetric, non-tachyonic, heterotic-string vacuum and compare the structure of its massless spectrum to the corresponding supersymmetric vacuum. While in some sectors supersymmetry is broken explicitly, i.e. the bosonic and fermionic sectors produce massless and massive states, other sectors, and in particular those leading to the chiral families, continue to exhibit Fermi-Bose degeneracy. In these sectors the massless spectrum, as compared to the supersymmetric cases, will only differ in some local or global U(1) charges. We discuss the conditions for obtaining n_b=n_f at the massless level in these models. Our example model contains an anomalous U(1) symmetry, which generates a tadpole diagram at one-loop order in string perturbation theory. We speculate that this tadpole diagram may cancel the corresponding diagram generated by the one-loop non-vanishing vacuum energy and that in this respect the supersymmetric and non-supersymmetric vacua should be regarded on an equal footing. Finally we discuss vacua that contain two supersymmetry generating sectors.

  13. Does therapeutic writing help people with long-term conditions? Systematic review, realist synthesis and economic considerations.

    Science.gov (United States)

    Nyssen, Olga P; Taylor, Stephanie Jc; Wong, Geoff; Steed, Elizabeth; Bourke, Liam; Lord, Joanne; Ross, Carol A; Hayman, Sheila; Field, Victoria; Higgins, Ailish; Greenhalgh, Trisha; Meads, Catherine

    2016-01-01

    expressive writing was examined in 59 studies of variable or unreported quality. Overall, there was very little or no evidence of any benefit reported in the following conditions (number of studies): human immunodeficiency virus (six); breast cancer (eight); gynaecological and genitourinary cancers (five); mental health (five); asthma (four); psoriasis (three); and chronic pain (four). In inflammatory arthropathies (six) there was a reduction in disease severity [n = 191, standardised mean difference (SMD) -0.61, 95% confidence interval (CI) -0.96 to -0.26] in the short term on meta-analysis of four studies. For all other LTCs there were either no data, or sparse data with no or inconsistent, evidence of benefit. Meta-analyses conducted across all of the LTCs provided no evidence that unfacilitated emotional writing had any effect on depression at short- (n = 1563, SMD -0.06, 95% CI -0.29 to 0.17, substantial heterogeneity) or long-term (n = 778, SMD -0.04 95% CI -0.18 to 0.10, little heterogeneity) follow-up, or on anxiety, physiological or biomarker-based outcomes. One study reported costs, no studies reported cost-effectiveness and 12 studies reported resource use; and meta-analysis suggested reduced medication use but no impact on health centre visits. Estimated costs of intervention were low, but there was insufficient evidence to judge cost-effectiveness. Realist synthesis findings suggested that facilitated TW is a complex intervention and group interaction contributes to the perception of benefit. It was unclear from the available data who might benefit most from facilitated TW. LIMITATION Difficulties with developing realist synthesis programme theory meant that mechanisms operating during TW remain obscure. CONCLUSIONS Overall, there is little evidence to support the therapeutic effectiveness or cost-effectiveness of unfacilitated expressive writing interventions in people with LTCs. Further research focused on facilitated TW in people with LTCs could

  14. Realistic modeling of seismic input for megacities and large urban areas

    Science.gov (United States)

    Panza, G. F.; Unesco/Iugs/Igcp Project 414 Team

    2003-04-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  15. Policy guidance on threats to legislative interventions in public health: a realist synthesis

    Directory of Open Access Journals (Sweden)

    Owen Lesley

    2011-04-01

    Full Text Available Abstract Background Legislation is one of the most powerful weapons for improving population health and is often used by policy and decision makers. Little research exists to guide them as to whether legislation is feasible and/or will succeed. We aimed to produce a coherent and transferable evidence based framework of threats to legislative interventions to assist the decision making process and to test this through the 'case study' of legislation to ban smoking in cars carrying children. Methods We conceptualised legislative interventions as a complex social interventions and so used the realist synthesis method to systematically review the literature for evidence. 99 articles were found through searches on five electronic databases (MEDLINE, HMIC, EMBASE, PsychINFO, Social Policy and Practice and iterative purposive searching. Our initial searches sought any studies that contained information on smoking in vehicles carrying children. Throughout the review we continued where needed to search for additional studies of any type that would conceptually contribute to helping build and/or test our framework. Results Our framework identified a series of transferable threats to public health legislation. When applied to smoking bans in vehicles; problem misidentification; public support; opposition; and enforcement issues were particularly prominent threats. Our framework enabled us to understand and explain the nature of each threat and to infer the most likely outcome if such legislation were to be proposed in a jurisdiction where no such ban existed. Specifically, the micro-environment of a vehicle can contain highly hazardous levels of second hand smoke. Public support for such legislation is high amongst smokers and non-smokers and their underlying motivations were very similar - wanting to practice the Millian principle of protecting children from harm. Evidence indicated that the tobacco industry was not likely to oppose legislation and

  16. Parallel implementation of the particle simulation method with dynamic load balancing: Toward realistic geodynamical simulation

    Science.gov (United States)

    Furuichi, M.; Nishiura, D.

    2015-12-01

    Fully Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) have been widely used to solve the continuum and particles motions in the computational geodynamics field. These mesh-free methods are suitable for the problems with the complex geometry and boundary. In addition, their Lagrangian nature allows non-diffusive advection useful for tracking history dependent properties (e.g. rheology) of the material. These potential advantages over the mesh-based methods offer effective numerical applications to the geophysical flow and tectonic processes, which are for example, tsunami with free surface and floating body, magma intrusion with fracture of rock, and shear zone pattern generation of granular deformation. In order to investigate such geodynamical problems with the particle based methods, over millions to billion particles are required for the realistic simulation. Parallel computing is therefore important for handling such huge computational cost. An efficient parallel implementation of SPH and DEM methods is however known to be difficult especially for the distributed-memory architecture. Lagrangian methods inherently show workload imbalance problem for parallelization with the fixed domain in space, because particles move around and workloads change during the simulation. Therefore dynamic load balance is key technique to perform the large scale SPH and DEM simulation. In this work, we present the parallel implementation technique of SPH and DEM method utilizing dynamic load balancing algorithms toward the high resolution simulation over large domain using the massively parallel super computer system. Our method utilizes the imbalances of the executed time of each MPI process as the nonlinear term of parallel domain decomposition and minimizes them with the Newton like iteration method. In order to perform flexible domain decomposition in space, the slice-grid algorithm is used. Numerical tests show that our

  17. A Conjugate Fluid-Porous Approach for Simulating Airflow in Realistic Geometric Representations of the Human Respiratory System.

    Science.gov (United States)

    DeGroot, Christopher T; Straatman, Anthony G

    2016-03-01

    Simulation of flow in the human lung is of great practical interest as a means to study the detailed flow patterns within the airways for many physiological applications. While computational simulation techniques are quite mature, lung simulations are particularly complicated due to the vast separation of length scales between upper airways and alveoli. Many past studies have presented numerical results for truncated airway trees, however, there are significant difficulties in connecting such results with respiratory airway models. This article presents a new modeling paradigm for flow in the full lung, based on a conjugate fluid-porous formulation where the upper airway is considered as a fluid region with the remainder of the lung being considered as a coupled porous region. Results are presented for a realistic lung geometry obtained from computed tomography (CT) images, which show the method's potential as being more efficient and practical than attempting to directly simulate flow in the full lung. PMID:26630498

  18. β+/EC decay rates of deformed neutron-deficient nuclei in the deformed QRPA with realistic interactions

    Directory of Open Access Journals (Sweden)

    Dongdong Ni

    2015-05-01

    Full Text Available The weak-decay (β+ and EC rates of neutron-deficient Kr, Sr, Zr, and Mo isotopes are investigated within the deformed quasiparticle random-phase approximation with realistic nucleon–nucleon interactions. The particle–particle and particle–hole channels of residual interactions are handled in large single-particle model spaces, based on the Brückner G-matrix with charge-dependent Bonn nucleon–nucleon forces. Contributions from allowed Gamow–Teller and Fermi transitions as well as first-forbidden transitions are calculated. The calculated half-lives show good agreement with the experimental data over a wide range of magnitude, from 10−2 to 107 s. Moreover, predictions of β-decay half-lives are made for some extremely proton-rich isotopes, which could be useful for future experiments.

  19. The effect of realistic nuclear charge distributions on isotope shifts and towards the extraction of higher order nuclear radial moments

    CERN Document Server

    Papoulia, A; Ekman, J

    2016-01-01

    Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field shifts. Methods: Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts. Results: Phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the field shifts. Using a novel approach, we demonstrate the possibility to extract new information concerning the n...

  20. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    Science.gov (United States)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR