WorldWideScience

Sample records for based olefinic copolymer

  1. Hot embossing of cyclic olefin copolymers

    International Nuclear Information System (INIS)

    The hot embossing properties of cyclic olefin copolymer (COC) have been examined as a function of comonomer content. Six standard grades of COC with varying norbornene content (61–82 wt%) were used in these experiments in order to provide a range of glass transition temperatures, Tg. All grades of COC exhibited sharp increases in embossed depth over a critical range of temperature. The transition temperature in embossed depth increased linearly with norbornene content for both 35 and 70 µm deep structures. At temperatures above this transition, the dimensions of the embossed patterns were essentially independent of the COC grade, the applied pressure and duration of loading. Channels formed above the transition in a regime of viscous liquid flow were extremely smooth in morphology for all grades. The average surface roughness, Ra, measured at the base of the channels decreased sharply at the transition temperature, with a levelling off at higher temperatures. Grades of COC with a higher norbornene content exhibited extensive micro-cracking during embossing at temperatures close to the transition temperature

  2. Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, Ian P; Webb, David J; Kalli, Kyriacos;

    2011-01-01

    Fibre Bragg grating (FBG) sensors have been fabricated in polymer photonic crystal fibre (PCF). Results are presented using two different types of polymer optical fibre (POF); first multimode PCF with a core diameter of 50μm based on poly(methyl methacrylate) (PMMA) and second, endlessly single m...

  3. Olefin-maleic-anhydride copolymer based additives: a novel approach for compatibilizing blends of waste polyethylene and crumb rubber.

    Science.gov (United States)

    Tóth, Balázs; Varga, Csilla; Bartha, László

    2015-04-01

    In our work processing conditions and mechanical properties of waste polyethylene (PE)/crumb rubber (CR) blends have been improved by new types of compatibilizing additives synthesized from experimental olefin-maleic-anhydride copolymers at our laboratory. Compatibilizing additives have been introduced into the PE/CR blends in 0.2 wt% while CR concentration has been varied between 10 and 50 wt%. For comparison of the effects commercially available MA-g-PO type compatibilizing additives have also been applied. Tensile and Charpy impact tests of the compression moulded samples have been carried out. Several experimental additives have enhanced properties of the PE/CR blends either from the point of view of tensile or Charpy impact strength while commercial additives have had improving effects only on one of the abovementioned mechanical properties but not for both of them simultaneously. Since good mechanical properties could be achieved by our experimental compatibilizers good adhesion in the waste PE/CR samples have been considered and was proven by SEM graphs either.

  4. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio;

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  5. PRECISE SYNTHESIS OF OLEFIN BLOCK COPOLYMERS USING A SYNDIOSPECIFIC LIVING POLYMERIZATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zheng-guo Cai; Hai-hui Su; Takeshi Shiono

    2013-01-01

    This feature article summarizes the synthesis of novel olefin block copolymers using fast syndiospecific living homo-and copolymerization of propylene,higher 1-alkene,and norbomene with ansa-fluorenylamidodimethyltitaniumbased catalyst according to the authors' recent results.The catalytic synthesis of monodisperse polyolefin and olefin block copolymer was also described using this living system.

  6. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer; Estudo da sintese de copolimero olefinico a base de politetrafluoroetileno (PTFE) por meio da enxertia induzida por radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, Helio Fernando Rodrigues

    2006-07-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  7. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips.

    Science.gov (United States)

    Wang, Qin; Zhang, Yuan; Ding, Hui; Wu, Jing; Wang, Lili; Zhou, Lei; Pu, Qiaosheng

    2011-12-30

    An ethylene glycol solution was used as the electrophoretic running buffer in unmodified cyclic olefin copolymer (COC) microchips to minimize the interactions between the analytes and the hydrophobic walls of the plastic microchannels, enhance the resolution of the analytes and eliminate the uncontrollable dispersion caused by uneven liquid levels and non-uniform surfaces of the separation channels. Five amino acids that were labeled with fluorescein isothiocyanate (FITC) were used as model analytes to examine the separation efficiency. The effects of ethylene glycol concentration, pH and sodium tetraborate concentration were systematically investigated. The five FITC-labeled amino acids were effectively resolved using a COC microchip with an effective length of 2.5 cm under optimum conditions, which included using a running buffer of 20 mmol/L sodium tetraborate in ethylene glycol:water (80:20, v/v), pH 6.7. A theoretical plate number of 4.8 × 10(5)/m was obtained for aspartic acid. The system exhibited good repeatability, and the relative standard deviations (n=5) of the peak areas and migration times were no more than 3.4% and 0.7%, respectively. Furthermore, the system was successfully applied to elucidate these five amino acids in human saliva.

  8. Resonant infrared pulsed laser deposition of cyclic olefin copolymer films

    Science.gov (United States)

    Singaravelu, S.; Klopf, J. M.; Schriver, K. E.; Park, H. K.; Kelley, M. J.; Haglund, R. F.

    2014-03-01

    Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 μm C-H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C-H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.

  9. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    Topas (R), the cyclic olefin copolymer, from Topas Advanced Polymers GmbH has a number of advantages over polymers such as poly(methylmethacrylate), polydimethylsiloxane, and polycarbonate traditionally used in fluid microsystem manufacturing, such as low water absorption, high chemical resistance...

  10. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    Science.gov (United States)

    Sen, Ayusman; Jiang, Zhaozhong

    1996-01-01

    The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

  11. Effect of norbornene content on laser ablation of cyclic olefin copolymers

    International Nuclear Information System (INIS)

    The ablation of cyclic olefin copolymers (COC) by 5 ns/248 nm laser has been examined as a function of norbornene content (61-82 wt.%). The dependence of ablation rate on laser fluence, repetition rate and pulse number has been determined over the range of composition of the copolymers. The ablation rate has increased logarithmically with laser fluence in accordance with the Beer-Lambert relationship. An increase in norbornene content has resulted in an increase in ablation rate and a decrease in threshold fluence. These trends have been attributed to a higher intramolecular rigidity of the chain structure in COC with increasing norbornene content. The morphology of the ablated surfaces was characterised by the formation of voids at high norbornene contents.

  12. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  13. Effect of electron beam radio sterilization on cyclic olefin copolymers used as pharmaceutical storage materials

    Science.gov (United States)

    Barakat, Hala; Aymes-Chodur, Caroline; Saunier, Johanna; Yagoubi, Najet

    2013-03-01

    The aim of this work was to study the effect of radio-sterilization on cyclo olefin copolymers (COC), that can be used as pharmaceutical storage materials, both on the surface and in the volume of the material, and to investigate the impact of the presence of a lubricant. A cyclo olefin copolymer (TOPAS® 8007) was treated with an electron beam radio-sterilization at different doses ranging from 25 to 150 kGy. Polymer structure and bulk properties were evaluated by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC). A good correlation between those analytical techniques was observed: oxidation products were formed and crosslinking of chains occured. Although these modifications were important, the effect on the thermal properties was weak. The analysis by Reversed Phase High Performance Liquid Chromatography (RP-HPLC) of extraction's solutions of COC after irradiation showed both a remarkable decrease of the extractable amount of polyphenolic antioxidant (Irganox 1010®) initially present in the matrix, and a generation of an important number of degradation products that represent potential migrants for pharmaceutical formulations. Surface modifications were evidenced by both (FTIR/ATR) and contact angle measurements of COC films. An increase in surface polarity of COC after radio-sterilization was observed.

  14. Design and Synthesis of Ruthenium based Olefin Metathesis Catalysts

    OpenAIRE

    Singstad, Åsmund

    2010-01-01

    The present Master thesis seeks to develop new unsymmetrical ruthenium-based olefin metathesis catalysts and therein a better understanding of olefin metathesis catalysis with unsymmetrical active complexes. Such catalysts have a potential for chemoselectivity and in best case, stereoselectivity. Two different classes of catalysts, coordinated by a hemilabile amine ligand and by a novel N-heterocyclic carbene (NHC) ligand respectively, have been investigated. Two new amine-based olefin metath...

  15. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO2 thin film

    Science.gov (United States)

    El Fissi, Lamia; Vandormael, Denis; Houssiau, Laurent; Francis, Laurent A.

    2016-02-01

    Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO2/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO2 film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO2/COC hybrid material in the visible domain reached 80%. The TiO2/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO2/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  16. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.

    Science.gov (United States)

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh

    2012-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  17. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.

    Science.gov (United States)

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh

    2012-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated.

  18. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    Science.gov (United States)

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity. PMID:26840878

  19. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    Science.gov (United States)

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity.

  20. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    Science.gov (United States)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  1. Phosphine-Based Z‑Selective Ruthenium Olefin Metathesis Catalysts

    OpenAIRE

    Smit, Wietse; Koudriavtsev, Vitali; Occhipinti, Giovanni; Törnroos, Karl Wilhelm; Jensen, Vidar Remi

    2016-01-01

    Whereas a number of highly Z-selective ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands have been reported in recent years, Zselectivity has so far been difficult to achieve for phosphinebased catalysts. Guided by predictive density functional theory (DFT) calculations, we have developed phosphine-based ruthenium olefin metathesis catalysts giving 70−95% of the Zisomer product in homocoupling of terminal alkenes such as allylbenzene, 1...

  2. Synthesis of Ethylene or Propylene/1,3-Butadiene Copolymers Possessing Pendant Vinyl Groups with Virtually No Internal Olefins

    Directory of Open Access Journals (Sweden)

    Kenji Michiue

    2015-11-01

    Full Text Available In general, ethylene/1,3-butadiene copolymerizations provides copolymers possessing both pendant vinyls and vinylenes as olefinic moieties. We, at MCI, studied the substituent effects of C2-symmetric zirconocene complexes, rac-[Me2Si(Indenyl’2]ZrCl2 (Indenyl’ = generic substituted indenyl, after activation on the ratio of the pendant vinyls and vinylenes of the resultant copolymers. Complexes examined in this study were rac-dimethylsilylbis (1-indenylzirconium dichloride (1, rac-dimethylsilyl-bis[1-(2-methyl-4,5-benzoindenyl] zirconium dichloride (2, rac-dimethylsilyl-bis[l-(2-methyl -4-phenylindenyl]zirconium dichloride (3, rac-dimethy1si1y1- bis(2-ethyl-4-phenylindenyl zirconium dichloride (4, rac-dimethylsilyl-bis[l-(2-n-propyl -4-(1-naphthylindenyl]zirconium dichloride (5, rac-dimethylsilyl-[1-(2-ethyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta [a]naphthalenylindenyl][1-(2-n-propyl-4-(5-(2,2-dimethyl-2,3-dihydro-1H-cyclopenta[a] naphthalenylindenyl]zirconium dichloride (6, rac-dimethylsilyl-bis[1-(2-ethyl-4-(9-phenanthrylindenyl]zirconium dichloride (7, and rac-dimethylsilyl-bis[l-(2-n-propyl-4-(9-phenanthrylindenyl]zirconium dichloride (8. We found that the ratio of the pendant vinyls and vinylenes is strongly affected by the bulkiness of the substituent on the complexes examined. The vinyl content increased linearly in the following order, 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1. Notably, complex 8/DMAO formed ethylene/1,3-butadiene copolymers possessing predominant vinyl groups, which can be crucial precursors for functionalized polyolefins. Likewise, complex 8/DMAO afforded propylene/1,3-butadiene copolymers with predominant vinyl groups.

  3. Atmospheric Solid Analysis Probe-Ion Mobility Mass Spectrometry: An Original Approach to Characterize Grafting on Cyclic Olefin Copolymer Surfaces.

    Science.gov (United States)

    Vieillard, Julien; Hubert-Roux, Marie; Brisset, Florian; Soulignac, Cecile; Fioresi, Flavia; Mofaddel, Nadine; Morin-Grognet, Sandrine; Afonso, Carlos; Le Derf, Franck

    2015-12-01

    A cyclic olefin copolymer (COC) was grafted with aryl layers from aryldiazonium salts, and then we combined infrared spectrometry, atomic force microscopy (AFM), and ion mobility mass spectrometry with atmospheric solid analysis probe ionization (ASAP-IM-MS) to characterize the aryl layers. ASAP is a recent atmospheric ionization method dedicated to the direct analysis of solid samples. We demonstrated that ASAP-IM-MS is complementary to other techniques for characterizing bromine and sulfur derivatives of COC on surfaces. ASAP-IM-MS was useful for optimizing experimental grafting conditions and to elucidate hypotheses around aryl layer formation during the grafting process. Thus, ASAP-IM-MS is a good candidate tool to characterize covalent grafting on COC surfaces.

  4. Crosslinking of metallocenic α-olefin propylene copolymers by vacuum gamma irradiation

    International Nuclear Information System (INIS)

    Metallocenic polypropylene and copolymers with 3.7, and 9.2 mol% of hexene and 3.0 mol% of octadecene comonomer content were synthesized without the presence of additives and irradiated with 60Co gamma radiation under vacuum at room temperature. Size Exclusion Cromatography and gel extraction data showed that scission reactions predominate over crosslinking in the homopolymer and that there is a dose from where crosslinking started to increase considerably, in the irradiated copolymers. Rheology also showed evidence of chain-enlargements on the copolymers by means of an increase in the viscoelastic properties of the irradiated material. - Highlight: ► Vacuum gamma irradiation of metallocenic isotactic propylene copolymers. ► We examine the radioinduced changes in rheological properties and molecular weights. ► Radioinduced crosslinking in the copolymers, without the presence of additives. ► Dependence of crosslinking with copolymer′s length and amount of short branches.

  5. The activation mechanism of Fe-based olefin metathesis catalysts

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts.

  6. Crosslinking of metallocenic α-olefin propylene copolymers by vacuum gamma irradiation

    Science.gov (United States)

    Satti, A. J.; Andreucetti, N. A.; Quijada, R.; Vallés, E. M.

    2012-12-01

    Metallocenic polypropylene and copolymers with 3.7, and 9.2 mol% of hexene and 3.0 mol% of octadecene comonomer content were synthesized without the presence of additives and irradiated with 60Co gamma radiation under vacuum at room temperature. Size Exclusion Cromatography and gel extraction data showed that scission reactions predominate over crosslinking in the homopolymer and that there is a dose from where crosslinking started to increase considerably, in the irradiated copolymers. Rheology also showed evidence of chain-enlargements on the copolymers by means of an increase in the viscoelastic properties of the irradiated material.

  7. IMPACT PROPERTIES OF METALLOCENE-CATALYZED ETHYLENE-α-OLEFIN COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Xu-rong Xu; Jun-ting Xua; Lin-xian Feng

    2002-01-01

    The impact properties of two selected metallocene-catalyzed ethylene-butene copolymers and one conventional copolymer were evaluated using Izod impact test. It is found that the metallocene-catalyzed copolymer shows superior impact properties. This result was explained on the basis of the more homogeneous inter-molecular composition distribution and narrower molecular weight distribution, which leads to more homogeneous morphology with fewer defects. Stepwise crystallization improves the impact properties, especially in the crack propagation process, to a large extent. This is due to the decrease of entanglements by stepwise crystallization, which is advantageous for the chain slip and shear. The polymer with heterogeneous intra-molecular composition distribution exhibits a more evident improvement of impact properties under stepwise crystallization.

  8. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  9. Mechanical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    A. Biani

    2016-12-01

    Full Text Available A cycloolefin copolymer matrix was melt mixed with exfoliated graphite nanoplatelets (xGnP and the resulting nanocomposites were foamed by supercritical carbon dioxide. The density of the obtained foams decreased with the foaming pressure. Moreover, xGnP limited the cell growth during the expansion process thus reducing the cell diameter (from 1.08 to 0.22 mm with an XGnP amount of 10 wt% at 150 bar and increasing the cell density (from 12 to 45 cells/mm2 with a nanofiller content of 10 wt% at 150 bar. Electron microscopy observations of foams evidenced exfoliation and orientation of the nanoplatelets along the cell walls. Quasi-static compressive tests and tensile creep tests on foams clearly indicated that xGnP improved the modulus (up to a factor of 10 for a xGnP content of 10 wt% and the creep stability.

  10. Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices

    International Nuclear Information System (INIS)

    Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its Tg could be comparable to the strength for pure thermal compression at 5 °C higher than its Tg. It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under Tg; therefore the deformation is minor under ultrasonic

  11. Biosensor for Pesticides Based on Valerolacton Copolymer

    Directory of Open Access Journals (Sweden)

    Yotova L.

    2007-12-01

    Full Text Available A construction of amperometric biosensor based on immobilized acetycholinesterase and cholin oxidase is described and its application in the detection of organophosphate pesticides through enzyme inhibition measurements is discussed. The bioactive component of the sensor consists of acetycholinesterase or cholin oxidase covalently immobilized on two types new polymeric synthetic membranes. Two types of the copolymers were used for the synthesis of membranes - the copolymer of polyacrylamide and acrylonitrile and the new copolymer of poly- (hexanlactam-co-block-poly-(delta-valerolactone with aliphatic polyester. It is investigated the technical characteristics of biosensor like, response time, linear range and operating stability. The factors affecting the inhibition and reactivation processes were investigated too.

  12. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    Veld, in 't Peter J.A.; Shen, Zheng-Rong; Takens, Gijsbert A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min u

  13. Utilization of α-olefins obtained by pyrolysis of waste high density polyethylene to synthesize α-olefin-succinic-anhydride based cold flow improvers

    Institute of Scientific and Technical Information of China (English)

    Norbert MISKOLCZI; Richard SAGI; László BARTHA; Lívia FORCEK

    2009-01-01

    A new route of utilization of α-olefin rich hydrocarbon fractions obtained by waste polymer pyrolysis was investigated. α-olefin-succinic-anhydride intermediate-based pour point depressant additives for diesel fuel were synthesized, in which reactions needed α-olefins were obtained by pyrolysis of waste high-density polyethylene (HDPE). Fraction of α-olefins was produced by the de-polymerization of plastic waste in a tube reactor at 500℃ in the absence of catalysts and air. C17~22 range of mixtures of olefins and paraffins were separated for synthesis and then, these hydrocarbons were reacted with maleic-anhydride (MA) for formation of α-olefin-succinic-anhydride intermediates. The olefin-rich hydrocarbon fraction contained approximately 60% of olefins, including 90%~95% α-olefins. Other intermediates were produced in the same way by using commercial C20 α-olefin instead of C17~22 olefin mixture. The two different experimental intermediates with number average molecular weights of 1850g/mol and 1760g/mol were reacted with different alcohols: 1-butanol, 1-hexanol, 1-octanol, i-butanol, and c-hexanol to produce their ester derivatives. The synthesized ten experimental pour point depressants were added in different concentrations to conventional diesel fuel, which had no other additive content before. The structure and efficiency of experimental additives were followed by different standardized and non-standardized methods. Results showed that the experimental additives on the basis of the product of waste pyrolysis were able to decrease not only the pour but also the cloud point and cold filter plugging point (CFPP) of diesel fuel, whose effects could be observed even if the concentration of additives was low. Furthermore, all additives had anti-wear and anti-friction effects in diesel fuel.

  14. The Influence of Comonomer on Ethylene/α-Olefin Copolymers Prepared Using [Bis(N-(3-tert butylsalicylideneanilinato] Titanium (IV Dichloride Complex

    Directory of Open Access Journals (Sweden)

    Patcharaporn Kaivalchatchawal

    2011-02-01

    Full Text Available We describe the synthesis of [bis(N-(3-tert-butylsalicylideneanilinato] titanium (IV dichloride (Ti-FI complex and examine the effects of comonomer (feed concentration and type on its catalytic performance and properties of the resulting polymers. Ethylene/1-hexene and ethylene/1-octene copolymers were prepared through copolymerization using Ti-FI catalyst, activated by MAO cocatalyst at 323 K and 50 psi ethylene pressure at various initial comonomer concentrations. The obtained copolymers were characterized by DSC, GPC and 13C-NMR. The results indicate that Ti-FI complex performs as a high potential catalyst, as evidenced by high activity and high molecular weight and uniform molecular weight distribution of its products. Nevertheless, the bulky structure of FI catalyst seems to hinder the insertion of α-olefin comonomer, contributing to the pretty low comonomer incorporation into the polymer chain. The catalytic activity was enhanced with the comonomer feed concentration, but the molecular weight and melting temperature decreased. By comparison both sets of catalytic systems, namely ethylene/1-hexene and ethylene/1-octene copolymerization, the first one afforded better activity by reason of easier insertion of short chain comonomer. Although 1-hexene copolymers also exhibited higher molecular weight than 1-octene, no significant difference in both melting temperature and crystallinity can be noticed between these comonomers.

  15. NONBRIDGED HALF-TITANOCENES CONTAINING ANIONIC ANCILLARY DONOR LIGANDS: PROMISING NEW CATALYSTS FOR PRECISE SYNTHESIS OF CYCLIC OLEFIN COPOLYMERS(COCs)

    Institute of Scientific and Technical Information of China (English)

    Kotohiro Nomura

    2008-01-01

    Precise,efficient copolymerizations of ethylene with cyclic olefins[norbomene(NBE),cyclopentene (CPE) using nonbridged half-titanocenes of type,Cp'TiCI2(L)(Cp'=cyclopentadienyl group,L=aryloxo,ketimide)-MAO catalyst systems have been summarized.CpTiCI2(N=C'Bu2) exhibited both remarkable camlytic activity and efficient NBE incorporation for ethylene/NBE copolymerization:the NBE incorporation by Cp'TiCI2(X)(X=N=C'Bu2,O-2,6-'Pr2C6H3;Cp'=Cp,C5Me5,indenyl) was related to the calculated coordination energy after ethylene insertion.('BuC5H4)TiCI2(N=C'Bu) exhibited significant catalytic activities with efficient CPE incorporations in ethylene/CPE copolymerization in the presence of MAO.The polymerization proceeded with exclusive 1,2-CPE incorporation.affording high molecular weight (altemating)copolymers with uniform distributions.Therefore,the cyclopentadienyl fragment(Cp')plays an essential role in terms of both the activity and the efficient cyclic olefin incorporation.

  16. Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly ultraviolet-transparent and chemically resistant thermoplast

    DEFF Research Database (Denmark)

    Nielsen, T.; Nilsson, D.; Bundgaard, F.;

    2004-01-01

    Thermal nanoimprint lithography (NIL) of the cyclic olefin copolymeric thermoplast Topas® isdemonstrated. Topas® is highly UV-transparent, has low water absorption, and is chemically resistant to hydrolysis, acids and organic polar solvents which makes it suitable for lab-on-a-chipapplications. I......Thermal nanoimprint lithography (NIL) of the cyclic olefin copolymeric thermoplast Topas® isdemonstrated. Topas® is highly UV-transparent, has low water absorption, and is chemically resistant to hydrolysis, acids and organic polar solvents which makes it suitable for lab...

  17. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  18. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... percent by weight unless it is blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in...

  19. Living olefin polymerization processes

    Science.gov (United States)

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  20. Cardanol-Based Materials as Natural Precursors for Olefin Metathesis

    OpenAIRE

    Giuseppe Vasapollo; Roberta Del Sole; Giuseppe Mele

    2011-01-01

    Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enyl)phenol, 3-(pentadeca-8,11-dienyl)phenol and 3-(pentadeca-8,11,14-trienyl)phenol. Olefin metathesis (OM) reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both ...

  1. Cardanol-based materials as natural precursors for olefin metathesis.

    Science.gov (United States)

    Vasapollo, Giuseppe; Mele, Giuseppe; Del Sole, Roberta

    2011-01-01

    Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enyl)phenol, 3-(pentadeca-8,11-dienyl)phenol and 3-(pentadeca-8,11,14-trienyl)phenol. Olefin metathesis (OM) reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both academic and industrial research will be discussed. PMID:25134775

  2. Cardanol-Based Materials as Natural Precursors for Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-08-01

    Full Text Available Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enylphenol, 3-(pentadeca-8,11-dienylphenol and 3-(pentadeca-8,11,14-trienylphenol. Olefin metathesis (OM reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both academic and industrial research will be discussed.

  3. Reactivation of a Ruthenium-Based Olefin Metathesis Catalyst

    Science.gov (United States)

    Tabari, Daniel S.; Tolentino, Daniel R.; Schrodi, Yann

    2013-01-01

    1st Generation Hoveyda-Grubbs olefin metathesis catalyst was purposely decomposed in the presence of ethylene yielding inorganic species that are inactive in the ring-closing metathesis (RCM) of benchmark substrate diethyldiallyl malonate (DEDAM). The decomposed catalyst was treated with 1-(3,5-diisopropoxyphenyl)-1-phenylprop-2-yn-1-ol (3) to generate an olefin metathesis active ruthenium indenylidene-ether complex in 43 % yield. This complex was also prepared independently by reacting RuCl2(p-cymene)(PCy3) with organic precursor 3. The activity of the isolated reactivated catalyst in the RCM of DEDAM is similar to that of the independently prepared complex. PMID:23355756

  4. Reactivation of a Ruthenium-Based Olefin Metathesis Catalyst.

    Science.gov (United States)

    Tabari, Daniel S; Tolentino, Daniel R; Schrodi, Yann

    2013-01-14

    1(st) Generation Hoveyda-Grubbs olefin metathesis catalyst was purposely decomposed in the presence of ethylene yielding inorganic species that are inactive in the ring-closing metathesis (RCM) of benchmark substrate diethyldiallyl malonate (DEDAM). The decomposed catalyst was treated with 1-(3,5-diisopropoxyphenyl)-1-phenylprop-2-yn-1-ol (3) to generate an olefin metathesis active ruthenium indenylidene-ether complex in 43 % yield. This complex was also prepared independently by reacting RuCl(2)(p-cymene)(PCy(3)) with organic precursor 3. The activity of the isolated reactivated catalyst in the RCM of DEDAM is similar to that of the independently prepared complex.

  5. Ruthenium-based four-coordinate olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, M.S.; Henling, L.M.; Day, M.W.; Grubbs, R.H. [California Inst. of Tech., Pasadena (United States). Div. of Chemistry and Chemical Engineering

    2000-10-02

    A series of four-coordinate Ru{sup II} alkylidenes has been prepared as analogues of the proposed olefin metathesis intermediate [(PCy{sub 3})Cl{sub 2}Ru=CHPh]. These complexes exhibit unusual trigonal-pyramidal solid-state geometries, and are rendered highly active for ring-closing metathesis by the addition of HCl. (orig.)

  6. Influência da estrutura de diferentes copolímeros de etileno e a-olefinas na funcionalização com anidrido maleico Influence of structure of ethylene a-olefins copolymers in functionalization with maleic anhydride

    Directory of Open Access Journals (Sweden)

    Carlota H. F. Maurano

    1998-01-01

    Full Text Available A funcionalização de copolímeros de etileno e a-olefinas com anidrido maleico (AM foi realizada em solução de xileno com peróxido de dibenzoíla (DBP como iniciador. Foi estudado o efeito das diferentes estruturas dos copolímeros, como número e comprimento de ramificação, na incorporação do AM. A funcionalização também foi realizada em estado fundido utilizando-se um misturador Rheomix 600 e uma extrusora Rheocord 9000 da Haake. A funcionalidade foi determinada por titulometria de neutralização e os produtos foram caracterizados por espectroscopia na região do infravermelho (FT-IR e por cromatografia de permeação em gel (GPC. A funcionalidade dos copolímeros de etileno com 1-hexeno aumentou com o aumento do teor de comonômero e dos copolímeros com 1-octeno e 1-deceno aumentou com o aumento do teor de a-olefina até um máximo, decrescendo e mantendo-se constante.Chemical modification of ethylene a-olefins copolymers with maleic anhydride was studied by radical reaction in solution, melt mixing and extrusion. The effect of copolymer structure, as the amount and length of the branches, was evaluated on the MA incorporation. The reactions were also achieved in Rheomix 600 (Haake mixer and Rheocord 9000 (Haake extruder. Functionalization was determinated by titration and modified ethylene a-olefins copolymers were characterized by Infrared Spectroscopy and Gel Permeation Chromatography. The maleic anhydride incorporation in the ethylene-hexene copolymers increases with the amount of a-olefin. Functionalization of ethylene-octene and ethylene-decene comonomers increases with increasing peroxide concentration until a maximum and then decreases up to a constant value.

  7. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Science.gov (United States)

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  8. Synthesis of CO2 Copolymer Based Polyurethane Foams

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    CO2-copolymer based polyurethane foams were synthesized and characterized in this paper. The foams were found to have higher strength and lower heat of combustion than the conventional polyether polyurethane foams. They may find wide applications in many fields.

  9. Effect of electron beam radio-sterilization on cyclo olefin copolymers and its impact on the interactions with other active molecules

    International Nuclear Information System (INIS)

    The aim of this work was to study the effect of electron beam radio-sterilization on cyclo olefins copolymers (COC) used as pharmaceutical storage materials, as well as to investigate its impact on the interaction with pharmaceuticals formulations. Due to the analytical methodology used which has dealt with different techniques of characterization such as size exclusion chromatography, reversed phase high performance liquid chromatography, Fourier transformed infrared spectroscopy, atomic force microscopy and contact angle measurements, we have been able to put into evidence different kinds of modifications both in the bulk and on the surface of the sterilized material and also after ageing. The principal modification of material's bulk, observed at the recommended dose for sterilization (25 kGy), was polymer chains scissions, accompanied with creation of low molecular weight compounds, that are potentials migrants that are likely to affect the safe use of COC. Indeed, some of these compounds have been found with a relatively important concentration in the solutions where sterilized COC has been stored, especially in aqueous solutions. However, the preliminary study of toxicity has shown the absence of cytotoxicity of the extractable by-products obtained at the sterilization dose. Surface modifications of radio-sterilized COC are of two types: a physical one, with an increase of the surface's roughness and a chemical one with the formation of polar oxidation products; these two modifications result in an increase of surface's wettability that may be important. However, in some cases such as for aged samples, these modifications are relatively weak even at doses higher than the one recommended for sterilization, which can explain the absence of the effect of radiation on the behavior of COC concerning drug solutions. Indeed, no variation of drug sorption has been observed between irradiated aged COC and no-irradiated aged COC. (author)

  10. Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands

    Science.gov (United States)

    Monsaert, Stijn; Voort, Pascal Van Der; Ledoux, Nele; Allaert, Bart; Drozdzak, Renata; Verpoort, Francis

    The classic Grubbs second-generation complex 2 was modified through 1. The introduction of a bidentate Schiff base ligand 2. Changes in the amino side groups of the NHC ligand Representative olefin metathesis test reactions show the effects induced by the ligand modifications and demonstrate some interesting new properties of the described catalysts. catalysts.

  11. LEDs based on conjugated PPV block copolymers

    NARCIS (Netherlands)

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.

    1997-01-01

    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  12. Key product development based on cyclo olefin polymer for LCD-TV

    Science.gov (United States)

    Konishi, Yuichiro; Kobayashi, Masahi; Arakawa, Kouhei

    2006-09-01

    Cyclo Olefin Polymer (COP), which was developed by Zeon Corporation, is well known and used as an optical plastic in optical markets, having unique properties such as high light transmission, low water absorption, low birefringence etc. Optes Inc, who is ZEON CORPORATION's affiliate optical parts manufacturer, has succeeded in the development of high performance optical base films. These are used for retardation and polarizing films in LCD's (Liquid Crystal Displays), made from Cyclo Olefin Polymer with own film extrusion technologies. The Optical base film developed by Optes Inc has superior properties compared with those of existing products such as polycarbonate (PC), polyethylene terephthalate (PET) and Triacetate Cellulose (TAC) base in terms of low birefringence, high optical isotropy and high dimensional stability under high humidity and temperature conditions.

  13. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Bassie B. Marvey

    2008-08-01

    Full Text Available Sunflower (Helianthus annuus L. oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported.

  14. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.

    Science.gov (United States)

    Bordeaux, Melanie; Tyagi, Vikas; Fasan, Rudi

    2015-02-01

    Using rational design, an engineered myoglobin-based catalyst capable of catalyzing the cyclopropanation of aryl-substituted olefins with catalytic proficiency (up to 46,800 turnovers) and excellent diastereo- and enantioselectivity (98-99.9%) was developed. This transformation could be carried out in the presence of up to 20 g L(-1) olefin substrate with no loss in diastereo- and/or enantioselectivity. Mutagenesis and mechanistic studies support a cyclopropanation mechanism mediated by an electrophilic, heme-bound carbene species and a model is provided to rationalize the stereopreference of the protein catalyst. This work shows that myoglobin constitutes a promising and robust scaffold for the development of biocatalysts with carbene-transfer reactivity.

  15. Immobilization of Antibody on a Cyclic Olefin Copolymer Surface with Functionalizable, Non-Biofouling Poly[Oligo(Ethylene Glycol) Methacrylate].

    Science.gov (United States)

    Jeong, Seung Pyo; Kang, Sung Min; Hong, Daewha; Lee, Hee-Yoon; Choi, Insung S; Ko, Sangwon; Lee, Jungkyu K

    2015-02-01

    We report a perfluoroaryl azide-based photoreaction for synthesizing functionalizable and nonbiofouling poly[oligo(ethylene glycol) methacrylate] (pOEGMA) films on a chemically inert COC substrate, and an estimation of a surface coverage of the antibody immobilized onto the surface with the immuno-gold nanoparticles. The processes were confirmed by water contact angle measurement, FT-IR spectroscopy, and FE-SEM. The strategy demonstrated in this work could be applied to functionalizations of other polymeric materials and determination of the binding capacity of analytes in biosensors and microfluidic devices.

  16. Styrene-Based Copolymer for Polymer Membrane Modifications

    Directory of Open Access Journals (Sweden)

    Harsha Srivastava

    2016-05-01

    Full Text Available Poly(vinylidene fluoride (PVDF was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffraction (XRD experiments that the modified PVDF membranes show a drastic reduction in their crystallinity. The neat PVDF membrane has the highest degradation rate, which decreased with the addition of the styrene-based copolymer.

  17. Synthesis of Electronically Modified Ru-Based Neutral 16 VE Allenylidene Olefin Metathesis Precatalysts

    Directory of Open Access Journals (Sweden)

    Siegfried Blechert

    2012-05-01

    Full Text Available Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy3. The catalytic performance was investigated in RCM reaction (ring closing metathesis of benchmark substrates such as diallyltosylamide (6 and diethyl diallylmalonate (7.

  18. Ruthenium Olefin Metathesis Catalysts Bearing Carbohydrate-Based N-Heterocyclic Carbenes

    Science.gov (United States)

    Keitz, Benjamin K.; Grubbs, Robert H.

    2010-01-01

    Ru-based olefin metathesis catalysts containing carbohydrate-derived NHCs from glucose and galactose were synthesized and characterized by NMR spectroscopy. 2D-NMR spectroscopy revealed the presence of Ru-C (benzylidene) rotamers at RT and the rate of rotation was measured using magnetization transfer and VT-NMR spectroscopy. The catalysts were found to be effective at ring-opening metathesis polymerization (ROMP), ring closing metathesis (RCM), cross metathesis (CM), and asymmetric ring opening cross metathesis (AROCM) and showed surprising selectivity in both CM and AROCM. PMID:21603126

  19. Charge injection and transport in fluorene-based copolymers.

    Science.gov (United States)

    Fong, Hon Hang; Malliaras, George G.; Lu, Tianjian; Dunlap, David

    2007-03-01

    Fluorene-based copolymer is considered to be one of the most promising hole transporting and blue light-emitting conjugated polymers used in polymeric light-emitting diodes (PLEDs). Time-of-flight (TOF) technique has been employed to evaluate the charge drift mobility under a temperature range between 200 - 400 K at the thick film regime (1-10 micron). Meanwhile, contact ohmicity is studied by Dark Current Space Charge Limited Conduction (DISCLC) technique. Charge injection efficiencies from different electrical contacts are also studied and the corresponding injection barriers are independently investigated by photoemission and electroabsorption spectroscopies. Results show that the copolymers exhibit non-dispersive charge transport behavior and possess superior mobilities of up to 0.01cm^2V-1s-1 while single-carrier devices from various electrical contacts such as PEDOT:PSS are varied, depending on the chemical structure of amine component in the fluorene-triarylamine copolymers. Results will shed light on the enhancement of device efficiency and stability in the future polymer electronic devices.

  20. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    Science.gov (United States)

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  1. Aerobic Epoxidation of Olefins Catalyzed by the Cobalt‐Based Metal–Organic Framework STA‐12(Co)

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Kleist, Wolfgang; Wharmby, Michael T.;

    2012-01-01

    A Co‐based metal–organic framework (MOF) was investigated as a catalytic material in the aerobic epoxidation of olefins in DMF and exhibited, based on catalyst mass, a remarkably high catalytic activity compared with the Co‐doped zeolite catalysts that are typically used in this reaction...

  2. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    KAUST Repository

    Leitgeb, Anita

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  3. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions.

    Science.gov (United States)

    Klosin, Jerzy; Fontaine, Philip P; Figueroa, Ruth

    2015-07-21

    This Account describes our research related to the development of molecular catalysts for solution phase olefin polymerization. Specifically, a series of constrained geometry and nonmetallocene (imino-amido-type) complexes were developed for high temperature olefin polymerization reactions. We have discovered many highly active catalysts that are capable of operating at temperatures above 120 °C and producing copolymers with a useful range of molecular weights (from medium to ultrahigh depending on precatalyst identity and polymerization conditions) and α-olefin incorporation capability. Constrained geometry catalysts (CGCs) exhibit very high activities and are capable of producing a variety of copolymers including ethylene-propylene and ethylene-1-octene copolymers at high reactor temperatures. Importantly, CGCs have much higher reactivity toward α-olefins than classical Ziegler-Natta catalysts, thus allowing for the production of copolymers with any desired level of comonomer. In search of catalysts with improved performance, we discovered 3-amino-substituted indenyl-based CGCs that exhibit the highest activity and produce copolymers with the highest molecular weight within this family of catalysts. Phenanthrenyl-based CGCs were found to be outstanding catalysts for the effective production of high styrene content ethylene-styrene copolymers under industrially relevant conditions. In contrast to CGC ligands, imino-amido-type ligands are bidentate and monoionic, leading to the use of trialkyl group IV precatalysts. The thermal instability of imino-amido complexes was addressed by the development of imino-enamido and amidoquinoline complexes, which are not only thermally very robust, but also produce copolymers with higher molecular weights, and exhibit improved α-olefin incorporation. Imido-amido and imino-enamido catalysts undergo facile chain transfer reactions with metal alkyls, as evidenced by a sharp decrease in polymer molecular weight when the

  4. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    Science.gov (United States)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  5. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    Science.gov (United States)

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  6. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    KAUST Repository

    Żukowska, Karolina

    2015-08-20

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  7. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    Directory of Open Access Journals (Sweden)

    Karolina Żukowska

    2015-08-01

    Full Text Available Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  8. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    Science.gov (United States)

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  9. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    Science.gov (United States)

    Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi

    2015-01-01

    Summary Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  10. Microstructural organization of polydimethylsiloxane based polyurethane block copolymers

    Science.gov (United States)

    Hernandez, Rebeca; Weksler, Jadwiga; Padsalgikar, Ajay; Runt, James

    2007-03-01

    Microphase separation was investigated for polyurethane block copolymers synthesized from MDI and 1,4 butanediol as the hard segments, and poly(hexamethyleneoxide) (MW ˜ 700) and bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane) as soft segments (MW ˜ 1000). The neat PDMS-based diol presents two segmental relaxations corresponding to the principle siloxane repeat unit and to the hydroxyethoxypropyl end group segments, respectively. When incorporated in the polyurethane, the siloxane units form a phase without intermixing with hard segments and the polyether end group segments are mixed with the second macrodiol and some short hard segment sequences. The microdomain morphology was characterized by atomic force microscopy and small-angle X-ray scattering, and the scattering data were analyzed using an approach based on a modified core-shell model. The model includes core hard segment particles (MDI-BDO), surrounded by a mixed polyether shell (PHMO and hydroxyethoxypropyl end group segments), and a matrix composed of the siloxane units.

  11. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    Science.gov (United States)

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-01

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  12. Photolithographic olefin metathesis polymerization.

    Science.gov (United States)

    Weitekamp, Raymond A; Atwater, Harry A; Grubbs, Robert H

    2013-11-13

    Patterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography. We report a negative tone photoresist using a photoactivated olefin metathesis catalyst, which can be quickly prepared in a one-pot synthesis from commercially available starting materials. The resist is based on a ruthenium vinyl ether complex, widely regarded as inactive toward olefin metathesis. The combination of this photoactivated catalyst with the fidelity and functional group tolerance of ruthenium-mediated olefin metathesis enables a host of new possibilities for photopatterned materials.

  13. Photolithographic olefin metathesis polymerization.

    Science.gov (United States)

    Weitekamp, Raymond A; Atwater, Harry A; Grubbs, Robert H

    2013-11-13

    Patterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography. We report a negative tone photoresist using a photoactivated olefin metathesis catalyst, which can be quickly prepared in a one-pot synthesis from commercially available starting materials. The resist is based on a ruthenium vinyl ether complex, widely regarded as inactive toward olefin metathesis. The combination of this photoactivated catalyst with the fidelity and functional group tolerance of ruthenium-mediated olefin metathesis enables a host of new possibilities for photopatterned materials. PMID:24171659

  14. Synthesis and characterization of butadiene-1,3 and octene-1 copolymer prepared by a Ziegler-Natta catalyst based on neodymium

    Directory of Open Access Journals (Sweden)

    Gustavo M. Silva

    2011-01-01

    Full Text Available The aim of this work is to evaluate the influence of octene-1 incorporation in the polybutadiene chain on the polymerization reaction and polymer characteristics. Thus, copolymerization of butadiene-1,3 with octene-1 using a Ziegler-Natta ternary catalyst based on neodymium was performed. The weight ratios of butadiene-1,3/α-olefin 100/0, 99/1, 97/3, 95/5, 90/10, 80/20 and 70/30 were evaluated. The copolymers were characterized by size exclusion chromatography (SEC, infrared spectroscopy (FTIR and thermogravimetric analysis (TG. The results showed that the degradation temperature (Tmax was not affected by the addition of alpha-olefin, while the thermal behavior has undergone significant changes. The polymer microstructure was not influenced by the increasing of octene-1 content. However, a tendency to molecular mass increase was observed with the increasing of octene-1 content. It was also observed a trend in reduction of the polymerization conversion as the octene-1 content increased.

  15. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    Science.gov (United States)

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. PMID:27059290

  16. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60Fullerenes

    KAUST Repository

    Martínez, Juan Pablo

    2016-04-10

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    Science.gov (United States)

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts.

  18. Self-assembly of block copolymer-based ionic supramolecules based upon multi-tail amphiphiles

    DEFF Research Database (Denmark)

    Asad Ayoubi, M.; Almdal, Kristoffer; Zhu, K.;

    2015-01-01

    Utilising simple acid-base titration chemistry, a new family of Linear-b-Amphiphilic Comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] featuring multi-tail side-chains have been synthesized and examined by synchrotron SAXS. To three different parent diblock copolymers of poly(st...

  19. Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile

    Science.gov (United States)

    Grishin, D. F.; Grishin, I. D.

    2015-07-01

    Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.

  20. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    Science.gov (United States)

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate. PMID:26664596

  1. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    Directory of Open Access Journals (Sweden)

    Albert Poater

    2015-09-01

    Full Text Available During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC, depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  2. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    Science.gov (United States)

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  3. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    Science.gov (United States)

    2015-01-01

    Summary During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate. PMID:26664596

  4. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert

    2015-09-29

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  5. New adhesive systems based on functionalized block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  6. SYNTHESIS AND PROPERTIES OF COPOLYMERS CONTAINING CUCURBIT[6]URIL-BASED PSEUDOROTAXANE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Qiang Ma; Hui Yang; Kimoon Kim; Ye-bang Tan

    2012-01-01

    Novel copolymers based on acrylamide (AM) and complex pseudorotaxane monomer N'-(3-vinylbenzyl)-l,4-diaminobutane dihydrochloride with cucurbit[6]uril (CB[6]) (3VBCB) were prepared via free-radical polymerization in aqueous solution,and characterized by 1H-NMR,FT-IR,elemental analysis and static light scattering.The compositions of the copolymers (PAM3VBCB) with pseudorotaxane units were determined by 1H-NMR and elemental analysis.Thermal properties of the copolymers were studied by TGA,and the effects of the copolymer concentration and pH on the average hydrodynamic radius (Rh) of the copolymer molecules were studied by dynamic light scattering (DLS).The experiment data show that CB[6] beads are localized on 1,4-diaminobutane units in side chains of the copolymers.TGA results show that thermal stability of the copolymer increases with increasing the content of pseudorotaxane unit because of the enhanced rigidity and the bulky steric hindrance of 3VBCB in side chains of PAM3VBCB.DLS data show that the average hydrodynamic radius of copolymer molecules increases with the increase in the copolymer concentration,and both the pH and electrical conductivity of PAM3VBCB solutions demonstrate an acute change with addition of NaOH because of CB[6]dethreading from the side chains of PAM3VBCB.CB[6] threading and dethreading of PAM3VBCB could be controlled by addition of BaCl2 and Na2SO4.

  7. Directed Nanorod Assembly Using Block Copolymer-Based Supramolecules

    Science.gov (United States)

    Thorkelsson, Kari; Mastroianni, Alexander; Ercius, Peter; Xu, Ting

    2013-03-01

    Nanorods display many unique electrical, mechanical, and optical properties unavailable in traditional bulk materials, and are attractive building blocks toward functional materials. The collective properties of anisotropic building blocks often depend strongly on their spatial arrangements, interparticle ordering, and macroscopic alignment. We have systematically investigated the phase behavior of nanocomposites composed of nanorods and block copolymer (BCP)-based supramolecules forming spherical, cylindrical and lamellar morphologies. Initial exploration showed that the nanorods can be readily dispersed in polymeric matrix and the overall morphology of nanorod-containing supramolecular nanocomposite depends on the nanorod-polymer interactions, inter-rod interactions and entropy associated with polymer chain deformation. The energetic contributions from the components of the system can be tailored to disperse nanorods with control over inter-rod ordering and the alignment of nanorods within BCP microdomains. By varying the supramolecular morphology and composition, arrays, sheets, and interconnected networks of nanorods are demonstrated that may prove useful for fabrication of optically and electrically active nanodevices.

  8. Direct Nanorod Assembly Using Block Copolymer-Based Supramolecules

    Science.gov (United States)

    Thorkelsson, Kari; Mastroianni, Alexander; Ercius, Peter; Xu, Ting

    2012-02-01

    One-dimensional nanomaterials with high aspect ratios, such as nanorods, exhibit unique and useful anisotropic optical, magnetic, and electrical properties. The collective properties of 1-D nanomaterials depend on their spatial arrangements, interparticle ordering, and macroscopic alignment. Developing routes to control their organization with high precision is critical to generate functional materials. We have investigated the co-assemblies of nanorods and block copolymer (BCP)-based supramolecules that self-assemble into spherical, lamellar and cylindrical morphologies. By varying energetic contributions from the rod-rod interactions and the deformation of the supramolecule, a wide library of nanorod assemblies including highly aligned arrays, continuous networks, and clusters can be readily accessed. Since macroscopic alignment of BCP microdomains can be obtained by application of external fields, present studies open up a new route to manipulate macroscopic alignments of nanorods. Fundamentally, these studies have demonstrated that in these blends, the energetic contributions from the polymer chain deformation and rod-rod interactions are comparable and can be tailored to disperse nanorods with control over inter-rod ordering and their relative alignment.

  9. Shell Higher Olefins Process.

    Science.gov (United States)

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  10. Syntheses and Surface Properties of Polyacrylonitrile-based Copolymer Membranes Containing Sugar Moieties

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun; WAN Ling-shu; DAI Zheng-wei; KOU Rui-qiang; XU Zhi-kang

    2005-01-01

    To improve the hydrophilicity of polyacrylonitrile-based membranes, sugar moieties were incorporated into acrylonitrile-based copolymers via the radical copolymerization of α-allyl glucoside(AG) with acrylonitrile(AN) with 2,2'-azobis-iso-butyronitrile(AIBN) as the initiator in dimethyl sulphoxide(DMSO). It was found that the yield increased with the increase of the initiator concentration and reaction time, while it decreased with the increase of the monomer molar ratio of AG to AN. Raising the AG proportion in the monomer mixture resulted in the increase of the AG content in the copolymer. Mv of the copolymers decreased with increasing the AG monomer fraction in feed. The copolymers were fabricated into dense membranes and their surface properties were studied by means of the water contact angle measurement and platelet adhesion tests. It was found that the static water contact angle on the membrane decreased significantly from 70° to 33° with the increase of the AG content. The adhesive number of platelets on the membrane surface also decreased significantly with increasing AG content in the copolymers. These results demonstrate that the hydrophilicity and biocompatibility of the acrylonitrile-based copolymer membranes could be improved efficiently by the copolymerization of acrylonitrile with vinyl carbohydrates.

  11. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors

    KAUST Repository

    Kanimozhi, Catherine K.

    2012-10-10

    In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to ∼1100 nm) and field-effect electron mobility values of >1 cm 2 V -1 s -1. The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics. © 2012 American Chemical Society.

  12. A multielectrochromic copolymer based on anthracene and thiophene via electrochemical copolymerization in boron trifluoride diethyl etherate

    International Nuclear Information System (INIS)

    Highlights: ► A copolymer film based on anthracene and thiophene has been successfully deposited on ITO electrode in boron trifluoride diethyl etherate. ► The formation of the copolymer has been confirmed by CVs, FT-IR and XPS. ► The copolymer film presents multicolor electrochromism (yellowish red, yellow, yellow green, blue green, light blue and dark blue). ► The film has good electrochromic properties such as fast switching rate, reasonable coloration efficiency and stability. - Abstract: A copolymer based on thiophene and anthracene was prepared on indium tin oxide (ITO) glass electrode via electrochemical copolymerization in boron trifluoride diethyl etherate (BFEE). The resultant copolymer is characterized by cyclic voltammetry, FT-IR, XPS, SEM and spectroelectrochemical analysis. The copolymer film presents multicolor electrochromism and can exhibit six colors (yellowish red, yellow, yellow green, blue green, light blue and dark blue) under various applied potentials. The optical contrasts of the copolymer film at 491, 767 and 1100 nm are 21%, 38% and 37%, respectively, and the corresponding switching rates are 1.9, 1.3 and 2.3 s. The film has superior coloration efficiency which is calculated to be 327 cm2 C−1 (491 nm), 240 cm2 C−1 (767 nm) and 296 cm2 C−1 (1100 nm). Furthermore, the film presents reasonable electrochemical and optical stability which retains 73% of its original electroactivity after 500 cycles and 73.6% of its optical contrast after 800 steps. All of these indicate the satisfactory electrochromic properties of the copolymer film.

  13. The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm). PMID:26588141

  14. The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  15. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  16. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  17. Cycloalkyl-based unsymmetrical unsaturated (U₂)-NHC ligands: flexibility and dissymmetry in ruthenium-catalysed olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Borré, Etienne; Falivene, Laura; Toupet, Loic; Berthod, Mikaël; Cavallo, Luigi; Olivier-Bourbigou, Hélène; Mauduit, Marc

    2014-05-21

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands.

  18. Cycloalkyl-based unsymmetrical unsaturated (U₂)-NHC ligands: flexibility and dissymmetry in ruthenium-catalysed olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Borré, Etienne; Falivene, Laura; Toupet, Loic; Berthod, Mikaël; Cavallo, Luigi; Olivier-Bourbigou, Hélène; Mauduit, Marc

    2014-05-21

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. PMID:24647372

  19. Modular construction of a porous organometallic network based on rhodium olefin complexation.

    Science.gov (United States)

    Stoeck, Ulrich; Nickerl, Georg; Burkhardt, Ulrich; Senkovska, Irena; Kaskel, Stefan

    2012-10-24

    We describe the rational design and synthesis of the first member of a new class of microporous materials. It is built from rhodium and a polyolefinic ligand featuring a rigid tetraphenylsilane backbone via metal olefin complexation, creating a truly organometallic network. The resulting framework, denoted as DUT-37 (Dresden University of Technology no. 37) exhibits considerable porosity and unprecedented stability under ambient conditions. Furthermore, it is catalytically active in transfer hydrogenation.

  20. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    Science.gov (United States)

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer.

  1. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    Science.gov (United States)

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer. PMID:26185967

  2. Multilayer light emitting diodes using a PPV based copolymer

    Science.gov (United States)

    Nguyen, T. P.; Chen, L. C.; Wang, X.; Huang, Z.

    1998-01-01

    We have investigated the electrical and optical properties of poly((2,5-(dimethoxy) p-phenylene vinylene)- p-phenylene vinylene) (PDMeOPV/PPV) copolymer used as an emitting layer in light emitting diodes. With p-phenylene vinylene (PPV) used as a hole transport layer and polyphenylquinoxaline (PPQ) as an electron transport layer, the emission intensity of the devices has substantially increased without alteration of the transport property. The different conduction mechanisms in the diodes were examined and discussed in terms of the energy band diagrams of the polymer layers. A balance of the injected charge carriers confined in the copolymer could explain the enhancement of the performance of the multilayer diodes.

  3. Poly(ether amide) segmented block copolymers with adipic acid based tetraamide segments

    NARCIS (Netherlands)

    Biemond, G.J.E.; Feijen, J.; Gaymans, R.J.

    2007-01-01

    Poly(tetramethylene oxide)-based poly(ether ester amide)s with monodisperse tetraamide segments were synthesized. The tetraamide segment was based on adipic acid, terephthalic acid, and hexamethylenediamine. The synthesis method of the copolymers and the influence of the tetraamide concentration, wh

  4. Surface properties of poly(ethylene oxide)-based segmented block copolymers with monodisperse hard segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, J.; Gaymans, R.J.

    2009-01-01

    The surface properties of segmented block copolymers based on poly(ethylene oxide) (PEO) segments and monodisperse crystallizable tetra-amide segments were studied. The monodisperse crystallizable segments (T6T6T) were based on terephthalate (T) and hexamethylenediamine (6). Due to the crystallinity

  5. Self-assembling behavior in decane solution of potential wax crystal nucleators based on poly(co-olefins)

    OpenAIRE

    Schwahn, D.; Richter, D; Wright, P J; Symon, C.; Fetters, L.J.; Lin, M.

    2002-01-01

    The control of the precipitation and gelation of long chain paraffins from oil remains an enduring technological challenge regarding the processing and recovery of refined fuels and waxy crudes. Wax crystal modifiers based on polyethylene -poly(ethylene-propylene) (PE-PEP) diblock copolymers function as efficient nucleators for wax crystals in middle distillate fuels. These diblock polymers self-assemble in oil to form expansive platelike aggregates consisting of a PE core cloaked behind the ...

  6. Tensile actuators of carbon nanotube coiled yarn based on polydiacetylene–pluronic copolymers as temperature indicators

    Science.gov (United States)

    Lee, Hee Uk; Kim, Hyunsoo; Chun, Kyoung-Yong; Kwon, Cheong Hoon; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2016-07-01

    Most polydiacetylenes (PDAs) have been studied as chromatic sensors or temperature indicators because of their phase transition that is accompanied by a color change from blue to red. Here, we focus on the structural change based on the polydiacetylene phase transition for a temperature-responsive tensile actuator at low temperature using a copolymer composed of PDA and pluronic in a multi-walled carbon nanotube (MWCNT) coiled yarn. In this paper, we do not focus on the general color change phenomenon of PDA. We demonstrate that the volume change of PDA in the MWCNT coiled yarn provides ∼180% tensile strain at low temperature (∼53 °C). Insertion of the pluronic copolymer into the coiled yarn composed of PDA and MWCNT caused the tensile actuation temperature to decrease by ∼6 °C (with tensile actuation of ∼230%) compared to an actuator without pluronic copolymer. Furthermore, we could verify that the large tensile actuation was also predominantly affected by the melting of the nonpolymerized diacetylene (DA) monomer and the pluronic copolymer. MWCNT coiled yarn actuators with PDA-pluronic copolymer can be easily prepared, have a large tensile actuation, and are actuated at low temperature. It could be used as temperature indicators in the food, drugs, and medical fields.

  7. Conductivity and characterization of plasticized polymer electrolyte based on (polyacrylonitrile-b-polyethylene glycol) copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yu-Hao; Chen, Chuh-Yung [Department of Chemical Engineering, National Cheng-Kung University, Tainan 70148 (China); Wang, Cheng-Chien [Department of Chemical and Material Engineering, Southern Taiwan University, Tainan 710 (China)

    2007-10-25

    A block copolymer polyacrylonitrile-b-polyethylene glycol was synthesized by the macroinitiator method. The copolymer mixed with a plasticizer - propylene carbonate (PC) and LiClO{sub 4} to form plasticized polymer electrolytes. FT-IR spectra show that the lithium ion interacts with the groups that contain the un-bonded electrons. The results of FT-IR also indicate that the EO segment can improve the dissociation of lithium salt. The differential scanning calorimeter (DSC) used to study the thermal behaviors of different compositions. In this study, the conductivity increases with the content of PEG. Additionally, the plasticized polymer electrolyte based on the block copolymer has a good conductivity and can retain good mechanical strength. (author)

  8. Synthesis of Novel Low-band-Gap Thiophene-based Oligomers and Copolymers

    Institute of Scientific and Technical Information of China (English)

    I.Kmínek; V.Cimrová; D.Vyprachicky; P.Pavlaková

    2007-01-01

    1 Results In this contribution,the synthesis and characterization of low-band-gap oligothiophenes and copolymers based on fluorene and thiophene units are reported.First,5,5′-dibromo derivative of 1 was synthesised and used as a building block for synthesis of quinquethiophene and septithiophene analogues of 1 and the synthesis of a novel low band-gap polymer - soluble alternating copolymer 3,which was prepared by the Suzuki coupling of 5,5′-dibromo derivative of 1 with bis(propane-1,3-diyl) 9,9-bis(2-...

  9. Blue Light Emitting Diodes based on a partially conjugated Si-containing PPV-copolymer in a multilayer configuration

    NARCIS (Netherlands)

    Garten, F; Hilberer, A; Cacialli, F.; Esselink, F.J; van Dam, Y.; Schlatmann, A.R.; Friend, R.H.; Klapwijk, T.M; Hadziioannou, G

    1997-01-01

    Efficient blue Light Emitting Diodes (LEDs) based on a novel partially conjugated co-polymer (SiPPV) have been realized by a combination of techniques known to enhance the quantum efficiency of organic devices. The copolymer is homogeneously blended in a PVK-matrix to reduce the number of non-radiat

  10. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng;

    2014-01-01

    Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl ...

  11. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.

    2013-08-07

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts with the "bridge" molecule to afford a 3-arm star (trimacromolecular borane) which serves as an initiator for the polyhomologation. 2013 The Royal Society of Chemistry.

  12. Synthesis of Polystyrene-Based Random Copolymers with Balanced Number of Basic or Acidic Functional Groups

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Pairs of polystyrene-based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4-hydroxystyrene)-ran-styrene] was used as a template backbone for modification. Two different synthetic approaches...

  13. Triblock Copolymers Based on 1,3-Trimethylene Carbonate and Lactide as Biodegradable Thermoplastic Elastomers

    NARCIS (Netherlands)

    Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Biodegradable triblock copolymers based on 1,3-trimethylene carbonate (TMC) and different lactides (i.e. D,L-lactide(DLLA), L-lactide (LLA), D-lactide (DLA)) designated as poly(DLLA-TMC-DLLA), poly(LLA-TMC-LLA) and poly(DLA-TMC-DLA) were prepared and their mechanical and thermal properties were comp

  14. Water vapor transmission of poly(ethylene oxide)-based segmented block copolymers

    NARCIS (Netherlands)

    Husken, D.; Gaymans, R.J.

    2009-01-01

    This article discusses the rate of water vapor transmission (WVT) through monolithic films of segmented block copolymers based on poly(ethylene oxide) (PEO) and monodisperse crystallisable tetra-amide segments. The polyether phase consisted of hydrophilic PEO or mixtures of PEO and hydrophobic poly(

  15. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, Debby; Feijen, Jan; Gaymans, Reinoud J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  16. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    Science.gov (United States)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  17. Light-induced olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuval Vidavsky

    2010-11-01

    Full Text Available Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions.

  18. Light-induced olefin metathesis

    Science.gov (United States)

    Vidavsky, Yuval

    2010-01-01

    Summary Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions. PMID:21160912

  19. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert

    2016-01-01

    Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT) calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system. PMID:26840290

  20. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Albert Poater

    2016-01-01

    Full Text Available Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system.

  1. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert

    2016-01-30

    Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT) calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system.

  2. Mesoporous Molecular Sieves Based Catalysts for Olefin Metathesis and Metathesis Polymerization

    Science.gov (United States)

    Balcar, Hynek; Čejka, Jiří

    Heterogeneous catalysts for olefin metathesis using different types of (i) siliceous mesoporous molecular sieves, and (ii) organized mesoporous alumina as supports are reported. The catalysts were prepared either by spreading of transition metal oxidic phase on the support surface or by immobilizing transition metal compounds (mostly organometallic) on the support. The activity of these catalysts in various types of metathesis reactions (i.e. alkene and diene metathesis, metathesis of unsaturated esters and ethers, RCM, ROMP and metathesis polymerization of alkynes) was described. The main advantages of these catalysts consist generally in their high activity and selectivity, easy separation of catalysts from reaction products and the preparation of products free of catalyst residue. The examples of pore size influence on the selectivity in metathesis reactions are also given.

  3. The Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-based Olefin Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Bourg, Jean-Baptiste; Chung, Cheol K.; Virgil, Scott C.; Grubbs, Robert H.

    2009-01-01

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C–H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  4. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process

    International Nuclear Information System (INIS)

    Highlights: • Present the opportunities and challenges of coal-to-olefins (CTO) development. • Conduct a techno-economic analysis on CTO compared with oil-to-olefins (OTO). • Suggest approaches for improving energy efficiency and economic performance of CTO. • Analyze effects of plant scale, feedstock price, CO2 tax on CTO and OTO. - Abstract: Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive

  5. Microwave assisted synthesis of fluorene-based copolymers with different conjugate degreed quinoxaline segments from reactive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jixin; Song, Xiaohui; Feng, Ying [School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang 111003 (China); Wang, Zhiming, E-mail: wangzm2011@yahoo.com.cn [School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang 111003 (China); State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012 (China); Zhang, Xiaojuan [School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang 111003 (China); Shen, Fangzhong; Lu, Ping [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012 (China)

    2013-10-31

    In this work, we prepared three fluorene-based copolymers with different conjugate degreed quinoxaline segments from one reactive polymer by microwave assisted method. The obtained quinoxaline-based copolymers exhibited different bright color emissions, high photoluminescence quantum, low electron affinity and electron injection barrier. This approach not only simplified the steps of similar-structure polymers, but also avoided the monomer solubility problem. - Highlights: • Quinoxaline-based copolymers were prepared in microwave-assisted synthesis. • Polymer-synthesis containing different acceptors was simplified from reactive polymer. • Multi-functions were tuned by controlling reactive monomer structures.

  6. BODIPY-Based Donor-Acceptor Pi-Conjugated Alternating Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Popere, Bhooshan C.; Della Pelle, Andrea M.; Thayumanavan, S.

    2011-06-28

    Four novel π-conjugated copolymers incorporating 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) core as the “donor” and quinoxaline (Qx), 2,1,3-benzothiadiazole (BzT), N,N'-di(2'-ethyl)hexyl-3,4,7,8-naphthalenetetracarboxylic diimide (NDI), and N,N'-di(2'-ethyl)hexyl-3,4,9,10-perylene tetracarboxylic diimide (PDI) as acceptors were designed and synthesized via Sonogashira polymerization. The polymers were characterized by ¹H NMR spectroscopy, gel permeation chromatography (GPC), UV–vis absorption spectroscopy, and cyclic voltammetry. Density functional theory (DFT) calculations were performed on polymer repeat units, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were estimated from the optimized geometry using B3LYP functional and 6-311g(d,p) basis set. Copolymers with Qx and BzT possessed HOMO and LUMO energy levels comparable to those of BODIPY homopolymer, while PDI stabilized both HOMO and LUMO levels. Semiconductor behavior of these polymers was estimated in organic thin-film transistors (OTFT). While the homopolymer, Qx, and BzT-based copolymers showed only p-type semiconductor behavior, copolymers with PDI and NDI showed only n-type behavior.

  7. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  8. Production of olefins from bioethanol. Catalysts, mechanism

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2012-12-01

    Full Text Available This review describes methods of catalytic obtaining from bioethanol of valuable industrial products – olefins, particularly ethylene. Аmong olefins, ethylene is the most popular key raw material of petrochemical synthesis. The scope of appllication of ethylene is almost unlimited in petrochemical products: polyethylene, ethylbenzene, styrene, ethylene dichloride, vinyl chloride etc. It also examines catalysts for the production of olefins and their properties. The most promising and commercially advantageous process of ethylene production by catalytic dehydration of ethanol on catalysts based on modified alumina. And this review discusses the mechanisms of catalytic conversion of ethanol to ethylene.

  9. First principles molecular dynamics simulation of a task-specific ionic liquid based on silver-olefin complex: atomistic insight into separation process

    CERN Document Server

    Jiang, De-en

    2008-01-01

    First principles molecular dynamics based on density functional theory is applied to a hypothetical ionic liquid whose cations and anions are silver-ethylene complex [Ag(C2H4)2+] and tetrafluoroborate [BF4-], respectively. This ionic liquid represents a group of task-specific silver complex-based ionic liquids synthesized recently. Molecular dynamics simulations at two temperatures are performed for five picoseconds. Events of association, dissociation, exchange, and recombination of ethylene with silver cation are observed. A mechanism of ethylene transfer similar to the Grotthus type of proton transfer in water is identified, where a silver cation accepts one ethylene molecule and donates another to a neighboring silver cation. This mechanism may contribute to fast transport of olefins through ionic liquid membranes based on silver complexes for olefin/paraffin separation.

  10. First principles molecular dynamics simulation of a task-specific ionic liquid based on silver-olefin complex: atomistic insights into a separation process.

    Science.gov (United States)

    Jiang, De-en; Dai, Sheng

    2008-08-21

    First principles molecular dynamics based on density functional theory is applied to a hypothetical ionic liquid whose cations and anions are silver-ethylene complex [Ag(C2H4)2+] and tetrafluoroborate [BF4-], respectively. This ionic liquid represents a group of task-specific silver complex-based ionic liquids synthesized recently. Molecular dynamics simulations at two temperatures are performed for five picoseconds. Events of association, dissociation, exchange, and recombination of ethylene with silver cation are found. A mechanism of ethylene transfer similar to the Grotthus type of proton transfer in water is identified, where a silver cation accepts one ethylene molecule and donates another to a neighboring silver cation. This mechanism may contribute to fast transport of olefins through ionic liquid membranes based on silver complexes for olefin/paraffin separation.

  11. Production of Natural Rubber Grafted Styrene Copolymer Latex as Water Base Coatings

    Directory of Open Access Journals (Sweden)

    M Utama

    2006-07-01

    Full Text Available Twelve kinds formulation of natural rubber grafted copolymer styrene (NR-g-S prepared by gamma radiation co-polymerization technique has been carried out. The characteristic of NR-g-S and its water base coating such as molecular structure, particle size, and the properties of latex and its film were evaluated. The results showed that the NR-g-S latex as a water base coating has low viscosity, height strength, good grease resistance, good flexibility, good aging and corrosion resistance on concrete cement and metal. The average particle size is between 270-300 nm, and the bonding between poly-isoprene of NRL and styrene molecules were grafted copolymer

  12. Assessment of Physical Stability and Antioxidant Activity of Polysiloxane Polyalkyl Polyether Copolymer-Based Creams

    OpenAIRE

    Atif Ali; Naveed Akhtar; Haji Muhammad Shoaib Khan

    2013-01-01

    The purpose of the present work was to investigate the changes on physical stability (color, creaming, liquefaction, pH, conductivity, centrifugation, viscosity and rheological parameters) by non-ionic surfactant polysiloxane polyalkyl polyether copolymer based creams following inclusion of plant extract containing phenolic compounds. The antioxidant activity of the plant extract alone and after addition in the cream was assessed using the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DP...

  13. A new method to analyze copolymer based superplasticizer traces in cement leachates.

    Science.gov (United States)

    Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François

    2011-03-15

    Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste

  14. Crystallinity-based product design: Utilizing the polymorphism of isotactic PP homo- and copolymers

    Science.gov (United States)

    Gahleitner, Markus; Mileva, Daniela; Androsch, René; Gloger, Dietrich; Tranchida, Davide; Sandholzer, Martina; Doshev, Petar

    2015-12-01

    The polymorphism of isotactic polypropylene (iPP) in combination with the strong response of this polymer to nucleation can be utilized for expanding the application range of this versatile polymer. Based on three "case studies" related to β-iPP pressure pipes, ethylene-propylene (EP) random copolymers for thin-wall injection molding and sterilization resistance of cast films we demonstrate ways of combining polymer composition, nucleation and process settings to achieve the desired application performance.

  15. Olefin metathesis in nano-sized systems

    OpenAIRE

    Denise Méry; Victor Martinez; Cátia Ornelas; Liyuan Liang; Sylvain Gatard; Diallo, Abdou K; Didier Astruc; Jaime Ruiz

    2011-01-01

    The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) – for reactions in w...

  16. Light olefins - challenges from new production routes?

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, H. [Linde Engineering, Pullach (Germany)

    2007-07-01

    Light Olefins are the building blocks for many modern plastic products and are produced in large quantities. Driven by high crude oil prices, production is shifted to regions with low cost raw materials. Alternatives to the traditional production from Naphta, AGO and other crude products are becoming attractive. This paper evaluates several methods Ethylene and Pro-pylene production economically and also the regional advantageous routes. The analysis includes Steamcracking, dehydrogenation, dehydration of Ethanol, Methanol based routes and olefin conversion by Metathesis. (orig.)

  17. Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications

    Directory of Open Access Journals (Sweden)

    E. De Giglio

    2016-06-01

    Full Text Available This data article is related to our recently published research paper “Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment", De Giglio et al. (Colloids and Surfaces B: Biointerfaces 136 (2015 600–611 [1]. The latter described a new copolymer derived from glycerol and tartaric acid (PGT. Herein, an investigation about the PGT-ciprofloxacin (CIP interactions by means of Fourier Transform Infrared Spectroscopy (FT-IR acquired in Attenuated Total Reflectance (ATR mode and Differential Scanning Calorimetry (DSC was reported. Moreover, CIP release experiments on CIP-PGT patches were performed by High Performance Liquid Chromatography (HPLC at different pH values.

  18. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    Science.gov (United States)

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials.

  19. Influence of Soft Segment Composition on Phase Separated Microstructure of PDMS-Based Multiblock Polyurethane Copolymers.

    Science.gov (United States)

    Choi, Taeyi; Weksler, Jadwiga; Padsalgikar, Ajay; Runt, James

    2008-03-01

    Multiblock polyurethane (PU) copolymers with polydimethylsiloxane (PDMS) based soft segments possess intriguing microphase separation behavior and excellent biocompatibility. In this study we investigate the microphase-separated structure of PDMS-PUs with various well-defined soft segment compositions, which is closely connected to the structural and surface properties of these copolymers. The PDMS-PUs are shown to exhibit a three phase, core-shell like morphology. Intra- and intercomponent hydrogen bonding was explored using FTIR spectroscopy and quantitative analysis of hard/soft segment mixing was determined by small-angle X-ray scattering. The presentation will focus on the latest findings, particularly the role of PDMS in controlling the details of the microphase-separated texture.

  20. Synthesis and Characterization of Plant based Polythiophene Copolymers for Light Harvesting Applications

    Science.gov (United States)

    Kodithuwakku, Udari; Malavi Arachchi, Prashantha; Ratnaweera, Dilru

    Polythiophenes became more attractive in diverse applications due to some of their inherent properties including thermal and environmental stability as well as optical and electronic conductive properties. Commonly thiophene monomers are obtained from byproducts of crude oils. The current study discuss for the first time the synthesis and characterization of light harvesting polythiophenes copolymers from thiophene derivatives extracted from Tagetes species. There were mainly two thiophenes derivatives, 5-(3-buten-1-ynyl)-2, 2-bithienyl and 2, 2', 5, 2''-terthienyl (terthiophene), in the roots of the plant. Chemical oxidative radical polymerization was followed during the synthesis of copolymers with various block compositions of plant based terthiophenes and 3-hexyl terthiophenes. Structural characterization of the synthetic products was done using FTIR, NMR, Uv-vis, XRD and DSC techniques. Polythiophene homopolymers obtained from plant based terthiophenes have limited processability of solar cells due to poor solubility in common organic solvents. A significant solubility improvement was observed with copolymers having minor contributions of 3-hexylthiophenes. Research Grants, University of Sri Jayewardenepura, Sri Lanka.

  1. Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors

    International Nuclear Information System (INIS)

    The photovoltaic characteristics of solar cells based on alternating polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothia diazole)) (APFO-3), and poly(2,7-(9,9-didodecyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothiadiazole)) (APFO-4), blended with an electron acceptor fullerene molecule [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), have been investigated and compared. The two copolymers have the same aromatic backbone structure but differ by the length of their alkyl side chain. The overall photovoltaic performance of the solar cells is comparable irrespective of the copolymer used in the active layer. However, the fill factor (FF) values of the devices are strongly affected by the copolymer type. Higher FF values were realized in solar cells with APFO-4 (with longer alkyl side chain)/PCBM bulk heterojunction active layer. On the other hand, devices with blends of APFO-3/APFO-4/PCBM were found to render fill factor values that are intermediate between the values obtained in solar cells with APFO-3/PCBM and APFO-4/PCBM active film. Upon using APFO-3/APFO-4 blends as electron donors, the cell efficiency can be enhanced by about 16% as compared to cells with either APFO-3 or APFO-4. The transport of holes in each polymer obeys the model of hopping transport in disordered media. However, the degree of energetic barrier against hopping was found to be larger in APFO-3. The tuning of the photovoltaic parameters will be discussed based on studies of hole transport in the pure polymer films, and morphology of blend layers. The effect of bipolar transport in PCBM will also be discussed

  2. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-05-14

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory oxide support containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one methylating agent under conditions suitable for the methylating agent compounds to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.

  3. Synthesis and characterization of a novel main chain oxadiazole-based copolymer for n-type solar cell material

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel oxadiazole-based copolymer has been successfully synthesized through the palladium-catalyzed cross-coupling polycondensation method. The copolymer P is soluble in common organic solvents. Its structure has characterized by 1H NMR, 13C NMR, gel permeation chromatagraphy (GPC), UV-vis absorbance (Abs) and photoluniminescence (PL) spectroscopy, and cyclic voltammetry (CV). Investigation of its optical properties revealed that it is yellow emitting material, and the electrochemical analysis showed that P was well suited poly (2,5-dioctyloxy-p-phenylenevinylene) (PDOCPV) for photovoltaic devices, so the copolymer P is able to act as an electron acceptor in combination with PDOCPVas the electron donor to quench photoluminescence of the copolymer in the blend, indicative of the efficient photoinduced electron transfer from the PDOCPV to the P.

  4. SYNTHESIS AND CHARACTERIZATION OF NOVEL BIPOLAR PPV-BASED COPOLYMER CONTAINING TRIAZOLE AND CARBAZOLE UNITS

    Institute of Scientific and Technical Information of China (English)

    Ze Liu; Li-xiang Wang; Xia-bin Jing; Fo-song Wang

    2001-01-01

    Two new blue light-emitting PPV-based conjugated copolymers containing both an electron-withdrawing unit (triazole-TAZ) and electron-rich moieties (carbazole-CAR and bicarbazole-BCAR) were prepared by Wittig condensation polymerization between the triazole diphosphonium salt and the corresponding dialdehyde monomers. Their structures and properties were characterized by FT-IR, TGA, DSC, UV-Vis, PL spectroscopy and electrochemical measurements. The resulting copolymers are soluble in common organic solvents and thermally stable with a Ts of 147C for TAZ-CAR-PPV and of 157C for TAZ-BCAR-PPV. The maximum photoluminescence wavelengths of TAZ-CAR-PPV and TAZ-BCAR-PPV film appear at 460 nm and 480 nm, respectively. Cyclic voltammetry measurement demonstrates that TAZ-BCAR-PPV has good electrochemical reversibility, while TAZ-CAR-PPV exhibits the irreversible redox process. The triazole unit was found to be an effective π-conjugation interrupter and can play the rigid spacer role in determining the emission colour of the resulting copolymer.

  5. Requirements for Forming Efficient 3-D Charge Transport Pathway in Diketopyrrolopyrrole-Based Copolymers: Film Morphology vs Molecular Packing.

    Science.gov (United States)

    Lee, Gang-Young; Han, A-Reum; Kim, Taewan; Lee, Hae Rang; Oh, Joon Hak; Park, Taiho

    2016-05-18

    To achieve extremely high planarity and processability simultaneously, we have newly designed and synthesized copolymers composed of donor units of 2,2'-(2,5-dialkoxy-1,4-phenylene)dithieno[3,2-b]thiophene (TT-P-TT) and acceptor units of diketopyrrolopyrrole (DPP). These copolymers consist of a highly planar backbone due to intramolecular interactions. We have systematically investigated the effects of intermolecular interactions by controlling the side chain bulkiness on the polymer thin-film morphologies, packing structures, and charge transport. The thin-film microstructures of the copolymers are found to be critically dependent upon subtle changes in the intermolecular interactions, and charge transport dynamics of the copolymer based field-effect transistors (FETs) has been investigated by in-depth structure-property relationship study. Although the size of the fibrillar structures increases as the bulkiness of the side chains in the copolymer increases, the copolymer with the smallest side chain shows remarkably high charge carrier mobility. Our findings reveal the requirement for forming efficient 3-D charge transport pathway and highlight the importance of the molecular packing and interdomain connectivity, rather than the crystalline domain size. The results obtained herein demonstrate the importance of tailoring the side chain bulkiness and provide new insights into the molecular design for high-performance polymer semiconductors. PMID:27117671

  6. Trimethylene Carbonate and epsilon-Caprolactone Based (co)Polymer Networks : Mechanical Properties and Enzymatic Degradation

    NARCIS (Netherlands)

    Bat, Erhan; Plantinga, Josee A.; Harmsen, Martin C.; van Luyn, Marja J. A.; Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2008-01-01

    High molecular weight trimethylene carbonate (TMC) and epsilon-caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiatio

  7. Trimethylene Carbonate and -Caprolactone Based (co)Polymer Networks: Mechanical Properties and Enzymatic Degradation

    NARCIS (Netherlands)

    Bat, Erhan; Plantinga, Josée A.; Harmsen, Martin C.; Luyn, van Marja J.A.; Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2008-01-01

    High molecular weight trimethylene carbonate (TMC) and -caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose

  8. Novel Fluorene-based Conjugated Copolymer Containing Cyclobutenedione Unit for Light Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    Qiang PENG; Yan HUANG; Zhi Yun LU; Ping ZOU; Ming Gui XIE

    2004-01-01

    A novel fluorene-based conjugated copolymer containing cyclobutenedione unit was synthesized by Suzuki reaction. Its structure and properties were characterized by FTIR,1HNMR,elemental analysis,PL spectroscopy,DSC,TGA and cyclic voltammetry. The resulting polymer shows strong yellow PL emission (561 nm) and good solubility in polar aprotic solvents,I.e.THF, DMF, DMAC, DMSO, etc. DSC and TGA studies reveal that the novel polymer possesses excellent thermal stability with high glass transition temperature of 127℃ and onset decomposition temperature of 411℃.Cyclic voltammetry measurement demonstrated that the polymer has both hole and electron-transporting property.

  9. Comparison of proton conducting polymer electrolyte membranes prepared from multi-block and random copolymers based on poly(arylene ether ketone)

    Science.gov (United States)

    Kang, Kyuhyun; Kim, Dukjoon

    2015-05-01

    Multi-block and random copolymers based on poly(arylene ether ketone) with the similar IEC values are synthesized. The chemical structure of the hydrophobic and hydrophilic oligomers and the copolymers synthesized from them is identified using 1H - and 19F- nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy, and gel permeation chromatography (GPC). The development of distinguished hydrophobic-hydrophilic phase separation is confirmed by small-angle X-ray scattering (SAXS) spectroscopy. The proton conductivity and water uptake along with the thermal, mechanical, oxidative stabilities are measured to investigate the effect of the copolymer structure on the membrane properties. While water uptake is similar with respect to each other, the proton conductivity of the multi-block copolymer membrane is higher than that of random one at the same levels of IEC. It results from much more distinct hydrophobic-hydrophilic phase separation formed in the multi-block copolymer membrane than the random one. The ion cluster dimension of the multi-block copolymer membranes is larger than that of the random copolymer membranes from the SAXS analysis. Also, the ion cluster dimension distribution of the block copolymer membranes is much narrower than that of random ones. The multi-block copolymer membranes illustrate superior oxidation stability to the random copolymer membrane due to the same phase separation difference.

  10. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-03-12

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory material containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one treating agent selected from chlorinated silicon compounds, thionyl chloride, and sulfuryl chloride under conditions suitable for the treating agent to promote the activity of tungsten and molybdenum oxides for the disporoportionation reaction.

  11. Bio-based thermosetting copolymers of eugenol and tung oil

    Science.gov (United States)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  12. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I.; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-08-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases.

  13. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  14. Controllable Heparin-Based Comb Copolymers and Their Self-assembled Nanoparticles for Gene Delivery.

    Science.gov (United States)

    Nie, Jing-Jun; Zhao, Weiyi; Hu, Hao; Yu, Bingran; Xu, Fu-Jian

    2016-04-01

    Polysaccharide-based copolymers have attracted much attention due to their effective performances. Heparin, as a kind of polysaccharide with high negative charge densities, has attracted much attention in biomedical fields. In this work, we report a flexible way to adjust the solubility of heparin from water to oil via the introduction of tetrabutylammonium groups for further functionalization. A range of heparin-based comb copolymers with poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA), poly(dimethylaminoethyl methacrylate) (PDMAEMA), or PPEGMEMA-b-PDMAEMA side chains were readily synthesized in a MeOH/dimethylsulfoxide mixture via atom-transfer radical polymerization. The heparin-based polymer nanoparticles involving cationic PDMAEMA were produced due to the electrostatic interaction between the negatively charged heparin backbone and PDMAEMA grafts. Then the pDNA condensation ability, cytotoxicity, and gene transfection efficiency of the nanoparticles were characterized in comparison with the reported gene vectors. The nanoparticles were proved to be effective gene vectors with low cytotoxicity and high transfection efficiency. This study demonstrates that by adjusting the solubility of heparin, polymer graft functionalization of heparin can be readily realized for wider applications. PMID:26947134

  15. Assessment of Physical Stability and Antioxidant Activity of Polysiloxane Polyalkyl Polyether Copolymer-Based Creams

    Directory of Open Access Journals (Sweden)

    Atif Ali

    2013-01-01

    Full Text Available The purpose of the present work was to investigate the changes on physical stability (color, creaming, liquefaction, pH, conductivity, centrifugation, viscosity and rheological parameters by non-ionic surfactant polysiloxane polyalkyl polyether copolymer based creams following inclusion of plant extract containing phenolic compounds. The antioxidant activity of the plant extract alone and after addition in the cream was assessed using the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH assay. Physical stability was assessed by submitting the creams to storage at 8°C, 25°C, 40°C, and at 40°C with 70% RH (relative humidity for a period of two months. Physical characteristics of polysiloxane polyalkyl polyether copolymer based creams, that is, color, creaming, liquefaction, centrifugation and pH were noted at various intervals for 2 months. The viscosities and rheological behavior of creams were determined using a rotational rheometer. Data were analyzed by using Brookfield Software Rheocalc version (2.6 with IPC Paste and Power Law (PL math models. Cream with plant extract showed pseudo plastic behaviour with decreasing on viscosity. The Acacia nilotica (AN extract alone and the cream containing this extract showed great antioxidant and free radical scavenging activities. Power Law and IPC analysis were found to fit all the rheograms.

  16. Facile and economical synthesis of high-contrast multielectrochromic copolymers based on anthracene and 3,4-ethylenedioxythiophene via electrocopolymerization in boron trifluoride diethyl etherate

    International Nuclear Information System (INIS)

    Highlights: ► We prepared copolymers based on anthracene and EDOT in BFEE solution. ► The copolymer film exhibits multicolor electrochromism and tunable color change with the feed ratio. ► The copolymer prepared with the feed ratio of anthracene/EDOT at 1/4 has a maximum optical contrast of 82% at 503 nm. ► The copolymer film presents reasonable switching response, good color retaining ability and electrochemical stability. - Abstract: Copolymers based on anthracene and 3,4-ethylenedioxythiophene (EDOT) are successfully electrodeposited on ITO electrodes in boron trifluoride diethyl etherate (BFEE). The resultant copolymers are characterized by cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and spectroelectrochemical analysis. The copolymer films can present multicolor electrochromism under various applied potentials and the color change can be tuned through controlling the feed ratio of anthracene/EDOT. With the feed ratio of anthracene/EDOT at 1/4, the prepared copolymer shows a maximum optical contrast of 82% at 503 nm which is much near to the highest optical contrast of electrochromic materials. The switching time and coloration efficiency at 507 nm are 2.3 s and 278 cm C−1, respectively. Furthermore, the copolymer exhibits excellent electrochemical stability which retains 89.8% of its original electroactivity after 2000 cycles.

  17. High Performance Electroactive Polymer Actuators Based on Sulfonated Block Copolymers Comprising Ionic Liquids

    Science.gov (United States)

    Kim, Onnuri; Park, Moon Jeong

    2015-03-01

    Electroactive polymer (EAP) actuators that show reversible deformation under external electric stimulus have attracted great attention toward a range of biomimetic applications such as microsensors and artificial muscles. Key challenges to advance the technologies can be placed on the achievement of fast response time, low driving voltage, and durable operation in air. In present study, we are motivated to solve these issues by employing self-assembled block copolymers containing ionic liquids (ILs) as polymer layers in the actuator based on knowledge of factors affecting electromechanical properties of actuators. By controlling the block architecture and molecular weight of block copolymers, bending strain and durability were controlled in a straightforward manner. It has also been revealed that the type of IL makes impact on the EAP actuator performance by determining ion migration dynamics. Our actuators demonstrated large bending strains (up to 4%) under low voltages of 1-3V, which far exceeds the best performance of other EAP actuators reported in the literature. To underpin the molecular-level understanding of actuation mechanisms underlying the improved performance, we carried out in situ spectroscopy and in situ scattering experiments under actuation.

  18. Polyelectrolyte complex micelles by self-assembly of polypeptide-based triblock copolymer for doxorubicin delivery

    Directory of Open Access Journals (Sweden)

    Jeong Hwan Kim

    2014-08-01

    Full Text Available Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy. The triblock copolymer, poly(l-aspartic acid-b-poly(ethylene glycol-b-poly(l-aspartic acid (PLD-b-PEG-b-PLD, spontaneously self-assembled with doxorubicin (DOX via electrostatic interactions to form spherical micelles with a particle size of 60–80 nm (triblock ionomer complexes micelles, TBIC micelles. These micelles exhibited a high loading capacity of 70% (w/w at a drug/polymer ratio of 0.5 at pH 7.0. They showed pH-responsive release patterns, with higher release at acidic pH than at physiological pH. Furthermore, DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line. Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis. These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats. Overall, these findings indicate that PLD-b-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery.

  19. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  20. Binary and Ternary Catalytic Systems for Olefin Metathesis Based on MoCl5/SiO2

    Science.gov (United States)

    Bykov, Victor I.; Belyaev, Boris A.; Butenko, Tamara A.; Finkelshtein, Eugene Sh.

    Kinetics of α-olefin metathesis in the presence of binary (MoCl5/ SiO2-Me4Sn) and ternary catalytic systems (MoCl5/SiO2-Me4Sn-ECl4, E = Si or Ge) was studied. Specifically, kinetics and reactivity of 1-decene, 1-octene, and 1-hexene in the metathesis reaction at 27°C and 50°C in the presence of MoCl5/ SiO2-SnMe4 were examined and evaluated in detail. It was shown that experimental data comply well with the simple kinetic equation for the rate of formation of symmetrical olefins with allowance for the reverse reaction and catalyst deactivation: r = left( {k_1 \\cdot c_α - k_{ - 1} \\cdot c_s } right) \\cdot e^{ - k_d \\cdot tilde n_{tot} } . The coefficients for this equation were determined, and it was shown that these α-olefins had practically the same reactivity. It was found that reactivation in the course of metathesis took place due to the addition of a third component (silicon tetrachloride or germanium tetrachloride in combination with tetramethyltin) to a partially deactivated catalyst. The number of active centers was determined (5-6% of the amount of Mo) and the mechanisms of formation, deactivation, and reactivation were proposed for the binary and ternary catalytic systems. The role of individual components of the catalytic systems was revealed.

  1. Synthesis and properties of two novel copolymers based on squaraine and fluorene units for solar cell materials

    Institute of Scientific and Technical Information of China (English)

    Zheng Wang; Wei Zhang; Feng Tao; Kai Ge Meng; Long Yi Xi; Ying Li; Qing Jiang

    2011-01-01

    Two novel copolymers based on squaraine and fluorine units have been synthesized through palladium catalyzed Suzuki coupling reaction and Sonogashira coupling reaction, respectively. The structures and properties of the two copolymers were characterized by FT-IR, NMR, UV-vis absorbance (Abs), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and cyclic voltammetry (CV). The solution absorption spectrums of P1 and P2 show two distinct absorption bands, one locates at 300-500 nm and the other at 600-800 nm. The absorption spectrums of P1 and P2 in films are broadened obviously and the spectral responses are extended up to 900 nm. Thermal gravimetric analysis demonstrates that the polymers are stable. Cyclic voltammetry experiment shows that the band gaps of the copolymers are 1.65 eV and 1.67 eV, respectively, suggesting their potential for applications as solar cells materials.

  2. A comparison between nickel and palladium precatalysts of 1,2,4-triazole based N-heterocyclic carbenes in hydroamination of activated olefins.

    Science.gov (United States)

    Dash, Chandrakanta; Shaikh, Mobin M; Butcher, Ray J; Ghosh, Prasenjit

    2010-03-14

    A comparison is drawn between the nickel and palladium precatalysts of 1,2,4-triazole based N-heterocyclic carbenes in the hydroamination of activated olefins. Though all of the newly designed nickel and palladium precatalysts, trans-[1-i-propyl-4-R-1,2,4-triazol-5-ylidene](2)MBr(2) [R = Et, M = Ni (1b); R = Et, M = Pd (1c); R = CH(2)CH=CH(2), M = Ni (2b) and R = CH(2)CH=CH(2), M = Pd (2c)], are moderately active for hydroamination reaction of a variety of secondary amines viz. morpholine, piperidine, pyrrolidine and diethylamine with activated olefins like, acrylonitrile, methyl acrylate, ethyl acrylate and t-butyl acrylate at room temperature in 1 hour, the nickel complexes (1b and 2b) exhibited superior activity compared to its palladium counterparts (1c and 2c). The better performance of the nickel complexes has been correlated to the more electron deficient metal center in the nickel 1b and 2b complexes than in the palladium 1c and 2c analogs based on the density functional theory studies. The 1b-c and 2b-c complexes were synthesized by the reaction of 1-i-propyl-4-R-1,2,4-triazolium bromide [R = Et (1a) and R = CH(2)CH=CH(2) (2a)] with MCl(2) [M = Ni, Pd] in presence of NEt(3) as a base. PMID:20179844

  3. Synthesis of indolo[3,2-b]carbazole-based random copolymers for polymer solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Li-Hsin, E-mail: lhchan@ncnu.edu.tw [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou, Taiwan 54561, ROC (China); Lin, Lu-Chi; Yao, Chi-Han [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou, Taiwan 54561, ROC (China); Liu, You-Ren; Jiang, Zong-Jhih [Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan 54561, ROC (China); Cho, Ting-Yu [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou, Taiwan 54561, ROC (China)

    2013-10-01

    In addition to preparing two indolocarbazole-based random copolymers (named as r-PICTBT1 and r-PICTBT2), this work investigated their feasibility for bulk heterojunction polymer solar cells (PSCs). These copolymers consisted of commercially available 3,9-dibromo-5,11-dioctyl-5,11-dihydroindole[3,2-b]carbazole, 2,5-bis(trimethylstannyl) thiophene and dibromobenzo[c][1,2,5]thiadiazole by varying the feed in ratios via Stille cross-coupling reactions. The photophysical and electrochemical properties of the resulting copolymers could be fine-modulated easily by adjusting the feed ratios of monomers. Both copolymers in the thin film state exhibited two obvious peaks and a vibronic shoulder in the absorption spectra. Electrochemical experiments indicated that the highest occupied molecular orbital energy levels were − 4.95, − 5.00 eV; meanwhile, the lowest unoccupied molecular orbital energy levels were − 3.38, − 3.54 eV for r-PICTBT1 and r-PICTBT2, respectively. Bulk heterojunction PSCs composed of an electron-donor copolymer blended with an electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PC{sub 61}BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC{sub 71}BM) at a weight ratio of 1:1 or 1:3 were investigated. Moreover, the r-PICTBT2/PC{sub 71}BM-based (w/w = 1:1) PSC performed the best with an open-circuit voltage of 0.54 V, short-circuit current of 6.83 mA/cm{sup 2}, fill factor of 0.44, and power conversion efficiency of 1.63%. - Highlights: • We report two indolocarbazole-based copolymers for photovoltaic applications. • Two copolymers exhibited excellent thermal stability. • Energy levels of copolymers can be modulated by varying the monomers ratios. • Increasing of planar monomer content leads to a relatively smooth morphology. • The optimal device performance reached a power conversion efficiency of 1.63%.

  4. Fouling release nanostructured coatings based on PDMS-polyurea segmented copolymers

    KAUST Repository

    Fang, Jason

    2010-05-01

    The bulk and surface characteristics of a series of coatings based on PDMS-polyurea segmented copolymers were correlated to their fouling release performance. Incorporation of polyurea segments to PDMS backbone gives rise to phase separation with the extensively hydrogen bonded hard domains creating an interconnected network that imparts mechanical rigidity. Increasing the compositional complexity of the system by including fluorinated or POSS-functionalized chain extenders or through nanoclay intercalation, confers further thermomechanical improvements. In analogy to the bulk morphology, the surface topography also reflects the compositional complexity of the materials, displaying a wide range of motifs. Investigations on settlement and subsequent removal of Ulva sporelings on those nanostructured surfaces indicate that the work required to remove the microorganisms is significantly lower compared to coatings based on standard PDMS homopolymer. All in all, the series of materials considered in this study demonstrate advanced fouling release properties, while exhibiting superior mechanical properties and, thus, long term durability. © 2010 Elsevier Ltd.

  5. Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Vesterager Madsen, Morten; Andreasen, Birgitta;

    2011-01-01

    New thermally reactive copolymers based on dithienylthiazolo[5,4-d]thiazole (DTZ) and silolodithiophene (SDT) have been synthesized and explored in bulk heterojunction solar cells as mixtures with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). In thin films the polymers had optical band gaps in...

  6. Recovery of olefin monomers

    Science.gov (United States)

    Golden, Timothy Christoph; Weist, Jr., Edward Landis; Johnson, Charles Henry

    2004-03-16

    In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.

  7. Olefin metathesis in nano-sized systems

    Directory of Open Access Journals (Sweden)

    Denise Méry

    2011-01-01

    Full Text Available The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM, cross metathesis (CM, enyne metathesis reactions (EYM – for reactions in water without a co-solvent and (ii construction and functionalization of dendrimers by CM reactions.

  8. Olefin metathesis in nano-sized systems

    Science.gov (United States)

    Diallo, Abdou K; Gatard, Sylvain; Liang, Liyuan; Ornelas, Cátia; Martinez, Victor; Méry, Denise; Ruiz, Jaime

    2011-01-01

    Summary The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) – for reactions in water without a co-solvent and (ii) construction and functionalization of dendrimers by CM reactions. PMID:21286399

  9. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    Science.gov (United States)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  10. Thermo-Responsive Hydrogels Based on Branched Poly(L-lactide)-poly(ethylene glycol) Copolymers

    NARCIS (Netherlands)

    Velthoen, Ingrid W.; Tijsma, Edze J.; Dijkstra, Pieter J.; Feijen, Jan

    2008-01-01

    Branched poly(L-lactide)-poly(ethylene glycol) (PLLA-PEG) block copolymers were synthesized from trifunctional PLLA and amine functionalized methoxy poly(ethylene glycol)s. The copolymers in water formed hydrogels that showed thermo-responsive behavior. The hydrogels underwent a gel to sol transitio

  11. Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: Fabrication and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bolbasov, E.N., E-mail: ebolbasov@gmail.com [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Anissimov, Y.G., E-mail: Y.Anissimov@Griffith.edu.au [Griffith University, School of Biomolecular and Physical Sciences, Brisbane, QLD (Australia); Pustovoytov, A.V., E-mail: andrius_222@mail.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Khlusov, I.A., E-mail: khlusov63@mail.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Zaitsev, A.A., E-mail: prim@niikf.tomsk.ru [Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Zaitsev, K.V., E-mail: zaitsev-kv@mail.ru [Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Lapin, I.N., E-mail: 201kiop@mail.ru [Tomsk State University, 634050, 36, Lenin Avenue, Tomsk (Russian Federation); Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation)

    2014-07-01

    A solution blow spinning technique is a method developed recently for making nonwoven webs of micro- and nanofibres. The principal advantage of this method compared to a more traditional electrospinning process is its significantly higher production rate. In this work, the solution blow spinning method was further developed to produce nonwoven polymeric scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride solution in acetone. A crucial feature of the proposed method is that high-voltage equipment is not required, which further improves the method's economics. Scanning electron microscopy analysis of the samples demonstrated that the surface morphology of the nonwoven materials is dependent on the polymer concentration in the spinning solution. It was concluded that an optimum morphology of the nonwoven scaffolds for medical applications is achieved by using a 5% solution of the copolymer. It was established that the scaffolds produced from the 5% solution have a fractal structure and anisotropic mechanical properties. X-ray diffraction, infrared spectroscopy, Raman spectroscopy and differential scanning calorimetry demonstrated that the fabricated nonwoven materials have crystal structures that exhibit ferroelectric properties. Gas chromatography has shown that the amount of acetone in the nonwoven material does not exceed the maximum allowable concentration of 0.5%. In vitro analysis, using the culture of motile cells, confirmed that the nonwoven material is non-toxic and does not alter the morpho-functional status of stem cells for short-term cultivation, and therefore can potentially be used in medical applications. - Highlights: • Solution blow spinning was used to fabricate nonwoven material based on VDF-TeFE. • The nonwoven material has complex spatial organization and high porosity. • It was established that the nonwoven material exhibits ferroelectric properties. • In vitro testing demonstrated that the material is non

  12. Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone-b-poly(dimethylsiloxane-b-poly(ε- caprolactone triblock copolymer

    Directory of Open Access Journals (Sweden)

    Antić Vesna V.

    2011-01-01

    Full Text Available A series of novel thermoplastic urethane-siloxane copolymers (TPUSs based on a α,ω-dihydroxy-[poly(ε-caprolactone-bpoly( dimethylsiloxane-b-poly(ε-caprolactone] (α,ω-dihydroxy-PCLPDMS- PCL triblock copolymer, 4,4?-methylenediphenyl diisocyanate (MDI and 1,4-butanediol (BD was synthesized. The effects of the content (9-63 wt. % of hard urethane segments and their degree of polymerization on the properties of the segmented TPUSs were investigated. The structure, composition and hard segment degree of polymerization of the hard segments were examined using 1H- and quantitative 13C-NMR spectroscopy. The degree of crystallinity of the synthesized copolymers was determined using wide-angle X-ray scattering (WAXS. The surface properties were evaluated by measuring the water contact angle and water absorption. In the series of the TPUSs, the average degree of polymerization of the hard segments was varied from 1.2 to 14.4 MDI-BD units. It was found that average values from 3.8 to 14.4 MDI-BD units were effective segment lengths for crystallization of hard segments, which resulted in an increase in the degree of microphase separation of the copolymers. Spherulite-like superstructures were observed in copolymer films by scanning electron microscopy (SEM, which are believed to arise from the crystallization of the hard segments and/or PCL segments, depending on the content of the hard segments. The surface of the copolymers became more hydrophobic with increasing weight fraction of PDMS. The synthesized copolymers based on a PCL-PDMS-PCL segment showed good thermal stability, which increased with increasing content of soft PDMS segments, as was confirmed by the value of the starting temperature of thermal degradation.

  13. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible blo

  14. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  15. Exploitation of in situ generated sugar-based olefin keto-nitrones: synthesis of carbocycles, heterocycles, and nucleoside derivatives.

    Science.gov (United States)

    Das, Soumendra Nath; Chowdhury, Arpan; Tripathi, Neha; Jana, Prithwish K; Mandal, Sukhendu B

    2015-01-16

    Application of intramolecular 1,3-dipolar nitrone cycloaddition reaction on carbohydrate-derived precursors containing an olefin functionality at C-1 or C-3 or C-5 and a nitrone moiety at C-2 or C-3 as appropriate has resulted in the formation of structurally new cycloaddition products containing furanose-fused oxepane, thiepane, azepane, cyclopentane, cycloheptane, tetrahydrofuran, and pyranose-fused tetrahydrofuran rings. The structure and stereochemistry of these products have been characterized by spectral as well as single-crystal X-ray analyses. Two of the compounds have been transformed to the bicyclic nucleoside derivatives applying Vorbrüggen reaction conditions.

  16. Solvent-Free Selective Condensations Based on the Formation of the Olefinic (C=C Bond Catalyzed by Organocatalyst

    Directory of Open Access Journals (Sweden)

    Heyuan Song

    2016-07-01

    Full Text Available Pyrrolidine and its derivatives were used to catalyze aldol and Knoevenagel condensations for the formation of the olefinic (C=C bond under solvent-free conditions. The 3-pyrrolidinamine showed high activity and afforded excellent yields of α,β-unsaturated compounds. The aldol condensation of aromatic/heterocyclic aldehydes with ketones affords enones in high conversion (99.5% and selectivity (92.7%. Good to excellent yields of α,β-unsaturated compounds were obtained in the Knoevenagel condensation of aldehydes with methylene-activated substrates.

  17. Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures

    OpenAIRE

    Simon, Karen Alambra; Warren, Nicholas J.; Mosadegh, Bobak; Mohammady, Marym R.; Whitesides, George McClelland; Armes, Steven P.

    2015-01-01

    It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20–37 °C,...

  18. Synthesis and photovoltaic properties of two-dimensional low-bandgap copolymers based on new benzothiadiazole derivatives with different conjugated arylvinylene side chains.

    Science.gov (United States)

    Peng, Qiang; Lim, Siew-Lay; Wong, Ivy Hoi-Ka; Xu, Jun; Chen, Zhi-Kuan

    2012-09-17

    A new series of 2,1,3-benzothiadiazole (BT) acceptors with different conjugated aryl-vinylene side chains have been designed and used to build efficient low-bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2-b:3,4-b']dithiophene and the resulting new BT derivatives, three two-dimensional (2D)-like donor (D)-acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel-permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl-vinylene side chains. The copolymer with phenyl-vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D-A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6-31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]-phenyl-C(61) (C(71))-butyric acid-methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100 mW cm(-2). The results showed that the device based on the copolymer with phenyl-vinylene side chains had the highest efficiency of 2.17 % with PC(71)BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll-to-roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT-based copolymers can also be achieved by fine-tuning the structures of the aryl-vinylene side chains for photovoltaic application.

  19. Iso-olefin production

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.O.; Harandi, M.N.; Owen, H.

    1993-08-10

    A process is described for producing an iso-olefin with high selectivity, comprising catalytically producing a first composition comprising at least one normal-olefin of at least 4 carbon atoms in a first product stream, by passing a feed in the vapor phase, over a first catalyst composition, at a temperature of 850 to 1,150 F, a WHSV of 0.5 to 20 and a pressure of 0 to 150 psig, wherein the first catalyst composition comprises ZSM-5 or ZSM-12, wherein the feed comprises an aliphatic and in which the aliphatic contains 5 to 20 carbon atoms; and increasing the iso-olefin content of the first composition, with substantially no oligomerization to heavier molecules, by producing a second composition, wherein said second composition is produced by contacting the normal-olefin with a second catalyst composition comprising ZSM-23, under a second set of conditions which include a temperature within the range of from about 700 F to about 1,150 F.

  20. Antimicrobial Graft Copolymer Gels.

    Science.gov (United States)

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  1. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    Science.gov (United States)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  2. 长链烯烃的应用%The Application of Long Chain Olefins

    Institute of Scientific and Technical Information of China (English)

    姜秋实; 赵萌; 刘姝

    2013-01-01

    概述了长链烯烃的生产工艺,石蜡裂解和低碳烯烃齐聚.详述了长链烯烃的应用,可生产烯烃共聚体、润滑油、表面活性剂、油田化学品等.通过对它们需求量和生产能力数据进行分析,得出国内外对长链烯烃需求量日益增大,开发生产长链烯烃具有重要意义.%An overview of the production process of long chain olefins, paraffin cracking and low-carbon olefin oligomerization was given. The applications of long chain olefins were detailed, such as producing olefin copolymer, lubricants, surfactants and oil field chemicals, etc. Through the data analysis of demand for long chain olefins and production capacity, it was concluded that the demand for long chain olefins at home and abroad was increasing; the development and production of long chain olefins had a great significance.

  3. Rheological and Mechanical behaviour of Block copolymers, Multigraft copolymers and Block copolymer Nanocomposites

    OpenAIRE

    Thunga, Mahendra

    2009-01-01

    Block copolymers are commercially significant and fundamentally interesting class of polymeric materials. The ability to undergo interfacial thermodynamics-controlled microphase separation from a completely disordered state in the melt to a specifically defined ordered structure through self-organization makes the block copolymers based materials unique. Block copolymer are strongly replacing many of the commercially available polymers due to their unique microstructure and properties. The mo...

  4. Synthesis and Characterization of Quinoxaline-Based Low-Bandgap Copolymers for Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Lee, Yoonkyoo; Jo, Won Ho

    2011-03-01

    A series of low-bandgap alternating copolymers consisting of quinoxaline derivatives and electron-donating carbazole or fluorene were synthesized via the Suzuki coupling reaction. For the purpose to improve the molecular packing of polymer chains and to enhance the charge carrier mobility in the packing direction, a new quinoxaline derivative, 5,8-dithien-2-yl-dibenzophenazine which has perfectly planar polycyclic structure, was synthesized and introduced as a new building block for alternating copolymers instead of frequently-used 5,8-dithien-2-yl-2,3-diphenylquinoxaline. The use of planar quinoxaline derivative exhibited better optical, electrochemical, and structural properties of the resulting copolymers as compared to those of polymers with less planar quinoxaline derivatives. Charge transport and photovoltaic properties of these two classes of copolymers are compared and discussed.

  5. Novel Blue Light—emitting PPV—based Copolymer Containing Trazole and Carbazole Units

    Institute of Scientific and Technical Information of China (English)

    ZeLIU; LiXiangWANG; 等

    2002-01-01

    A novel alternating conjugated copolymer containing triazole and carbazole units was synthesized by the Witting reaction. The resulting bipolar conjugated polymer emits a pure light with good thermal stability, which is a promising candidate for polymer light emitting display.

  6. Novel Blue Light-emitting PPV-based Copolymer Containing Triazole and Carbazole Units

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel alternating conjugated copolymer containing triazole and carbazole units was synthesized by the Wittig reaction. The resulting bipolar conjugated polymer emits a pure light with good thermal stability, which is a promising candidate for polymer light emitting display.

  7. Flocculation of chromite ore fines suspension using polysaccharide based graft copolymers

    Indian Academy of Sciences (India)

    N C Karmakar; B S Sastry; R P Singh

    2002-11-01

    Graft copolymers are being experimented at the laboratory scale as flocculants. All the four graft copolymers, viz. starch--polyacrylamide, amylopectin--polyacrylamide, sodium alginate--polyacylamide and carboxymethyl cellulose--polyacrylamide performed well as flocculants on chromite ore fines suspension. Amylopectin--polyacrylamide, in particular, performed superior to the rest of the series from the point of view of settling velocity of flocs which is the most important aspect in solid–liquid separation.

  8. Novel Pentablock Copolymer-Based Nanoparticulate Systems for Sustained Protein Delivery

    OpenAIRE

    Patel, Sulabh P.; Vaishya, Ravi; Pal, Dhananjay; Mitra, Ashim K.

    2014-01-01

    The design, synthesis, and application of novel biodegradable and biocompatible pentablock (PB) copolymers, i.e., polyglycolic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polyglycolic acid (PGA-PCL-PEG-PCL-PGA) and polylactic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polylactic acid (PLA-PCL-PEG-PCL-PLA) for sustained protein delivery, are reported. The PB copolymers can be engineered to generate sustained delivery of protein therapeutics to the posterior segme...

  9. Tailor-Made Pentablock Copolymer Based Formulation for Sustained Ocular Delivery of Protein Therapeutics

    OpenAIRE

    Patel, Sulabh P.; Ravi Vaishya; Gyan Prakash Mishra; Viral Tamboli; Dhananjay Pal; Mitra, Ashim K.

    2014-01-01

    The objective of this research article is to report the synthesis and evaluation of novel pentablock copolymers for controlled delivery of macromolecules in the treatment of posterior segment diseases. Novel biodegradable PB copolymers were synthesized by sequential ring-opening polymerization. Various ratios and molecular weights of each block (polyglycolic acid, polyethylene glycol, polylactic acid, and polycaprolactone) were selected for synthesis and to optimize release profile of FITC-BS...

  10. Comparing Ru and Fe-catalyzed olefin metathesis.

    Science.gov (United States)

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts.

  11. New Enantiomerically Pure Alkylimido Mo-Based Complexes. Synthesis, Characterization, and Activity as Chiral Olefin Metathesis Catalysts

    Science.gov (United States)

    Pilyugina, Tatiana S.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    Molybdenum olefin metathesis catalysts that contain aliphatic 1-phenylcyclohexylimido (NPhCy) and 2-phenyl-2-adamantylimido (NPhAd) groups and (S)-Biphen or (R)-Trip)(THF) ligands (Biphen = 3,3′-di-tert-butyl-5,5′,6,6′-tetramethyl-1,1′-biphenyl-2,2′-diolate; Trip = 3,3′-bis(2,4,6-triisopropylphenyl)-2,2′-binaphtholate) have been prepared. Their catalytic activity and enantioselectivity in desymmetrization reactions such as ring-closing metathesis of amines and lactams and ring-opening/cross-metathesis of substituted norborneols with styrene were compared to the results obtained with the only known alkylimido catalyst Mo(NAd)(CHCMe2Ph)[(S)-Biphen]. The activities and enantioselectivities provided by these new chiral complexes vary significantly, but in virtually all instances explored were not superior to the adamantylimido analogs. PMID:19079732

  12. Production and use of light olefins. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Buzzoni, R.; Leitner, W.; Lercher, J.A.; Lichtscheidl, J.; Nees, F.; Santacesaria, E. (eds.)

    2009-07-01

    Within the conference of the German Society for Petroleum and Coal Science and Technology e.V. (Hamburg, Federal Republic of Germany) in Berlin (Federal Republic of Germany) at 28th to 30th September, 2009, the following lectures were held: (1) Steamcracking - State of the Art (H. Zimmermann); (2) Diversify Feedstock Options to Olefin Production (Q. Ling et al.); (3) Syngas to lower olefins (E. Schwab et al.); (4) STAR process registered for the on-purpose production of propylene (K. Bueker); (5) The catalytic activity of zinc oxide supported on aerosil for C-H activation of light alkanes (S. Arndt et al.); (6) Novel catalytic approaches for the oxidative dehydrogenation of ethane (D. Hartmann); (7) A comparison of the active sites structures of homogeneous and heterogeneous olefin polymerisation catalysts (A. Zecchina); (8) Catalytic strategies in metathesis (C. Coperet); (9) Multi-technology integrated production and consumption of olefins (J. Popp et al.); (10) Olefin oligomerization for the production of fuels and petrochemicals (H. Olivier-Bourbigou et al.); (11) Dieselization of the world - How to increase diesel yield in a refinery (A. Dueker); (12) Isomerization of butenes: LyondellBasell's Isomplus technology development (T. Zak et al.); (13) Valuable products from butadiene, carbon dioxide and further base chemicals (A. Behr); (14) The partial oxidation of propene to propylene oxide using N{sub 2}O as an oxidant (T. Thoemmes); (15) Alternative feedstocks for olefin production: What role will ethanol play? (B.R. Maughon); (16) Production of light olefins from renewable resources - The effect of deoxygenation degree on yields of light olefins (D. Kubicka et al.); (17) Recovery of low olefins from refinery offgases (M. Bender).

  13. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  14. Effect of Acetate Group Content in Ethylene-Vinyl Acetate Copolymer on Properties of Composite Based on Low Density Polyethylene and Polyamide-6

    OpenAIRE

    Nhi Dinh Bui; Ngo Dinh Vu; Thao Thi Minh; Huong Thi Thanh Dam; Regina Romanovna Spiridonova; Semenovich Alexandr Sirotkin

    2016-01-01

    The effect of the content of vinyl acetate groups in ethylene-vinyl acetate copolymer on the properties of polymer composite based on low density polyethylene and polyamide-6 was studied. Ethylene-vinyl acetate copolymer containing less vinyl acetate groups (10–14 wt.%) has a positive compatibility effect on polymer composite than ethylene-vinyl acetate copolymer containing 21–30 wt.% vinyl acetate groups. The polymer composites of LDPE, PA-6, and EVA containing 10–14 wt.% vinyl acetate group...

  15. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  16. Synthesis of Well-Defined Polyethylene-Based 3-Miktoarm Star Copolymers and Terpolymers

    KAUST Repository

    Zhang, Zhen

    2016-03-25

    Novel polyethylene (PE)-based 3-miktoarm star copolymers A2B, (AB)2B and terpolymers (AC)2(BC) [A: PE; B, C: polystyrene (PS) or poly(methyl methacrylate) (PMMA)] were synthesized by combining boron chemistry, polyhomologation, and atom transfer radical polymerization (ATRP). 1,4-Pentadiene-3-yl 2-bromo-2-methylpropanoate was first synthesized followed by hydroboration with thexylborane to afford B-thexylboracyclanes, a multi-heterofunctional initiator with two initiating sites for polyhomologation and one for ATRP. After polyhomologation of dimethylsulfoxonium methylide the α,ω-dihydroxyl polyethylene (PE-OH)2-Br produced served as macroinitiator for the ATRP of styrene to afford (PE-OH)2-(PS-Br). Both (PE-OH)2-Br and (PE-OH)2-(PS-Br) were transformed to two new trifunctional macroinitiators (PE-Br)2-Br and (PE-Br)2-(PS-Br) through esterification reactions and used for the synthesis of (AB)2B and (AC)2(BC) 3-miktoarm star co/terpolymers. All intermediates and final products were characterized by 1H NMR, high temperature gel permeation chromatography (HT-GPC), and differential scanning calorimetry (DSC). The synthetic method is a general one and can be used for the synthesis of complex PE-based architectures by combination with other living/living-controlled polymerization techniques. © 2016 American Chemical Society.

  17. Facile Synthesis of Magnetic Copolymer Microspheres Based on Poly(glycidyl methacrylate-co-N-isopropylacrylamide/Fe3O4 by Suspension Photopolymerization

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2014-01-01

    Full Text Available Magnetic copolymer based on poly(glycidyl methacrylate-co-N-isopropylacrylamide microspheres was prepared by 2,2-dimethoxy-2-phenylacetophenone- (DMPP- photo initiated and poly(vinyl alcohol- (PVA- stabilized single step suspension photopolymerization. The effect of chemical interaction, morphology, and thermal properties by adding 0.1% w/v Fe3O4 in the copolymer was investigated. Infrared analysis (FTIR showed that (C=C band disappeared after copolymerization, indicating that the magnetic copolymer microspheres were successfully synthesized and two important bands at 908 cm−1 and 1550 cm−1 appear. These are associated with the epoxy group stretching of GMA and secondary amide (N–H/C–H deformation vibration of NIPAAm in magnetic microspheres. The X-ray diffraction (XRD result proved the incorporation of Fe3O4 nanoparticles with copolymer microspheres as peak of Fe3O4 was observed. Morphology study revealed that magnetic copolymer exhibited uniform spheres and smoother appearance when entrapped with Fe3O4 nanoparticles. The lowest percentage of Fe3O4 nanoparticles leached from the copolymer microspheres was obtained at pH 7. Finally, thermal property of the copolymer microspheres was improved by adding a small amount of Fe3O4 nanoparticles that has been shown from the thermogram.

  18. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  19. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone.

    Science.gov (United States)

    Khodaverdi, Elham; Gharechahi, Marzieh; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khashyarmanesh, Bibi Zahra; Hadizadeh, Farzin

    2016-01-01

    In this study, thermosensitive, water-soluble, and biodegradable triblock copolymer PCL600-PEG6000-PCL600 was used to form supramolecular hydrogel (SMGel) by inclusion complexation with γ-cyclodextrin (γ-CD). The prepared SMGel was investigated as a carrier for sustained release of dexamethasone. The triblock copolymer PCL-PEG-PCL [where PCL = polycaprolactone, PEG = poly(ethylene glycol)] was synthesized by the ring-opening polymerization method using microwave irradiation. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). SMGel was prepared in aqueous solution by blending an aqueous γ-CD solution with aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. The sol-to-gel transition time was measured at various concentrations of copolymer and γ-CD. As-prepared SMGel was used to prepare a sustained, controllable drug delivery system of dexamethasone sodium phosphate. The SMGel was also characterized in terms of rheological, morphological, and structural properties. Results obtained from proton nuclear magnetic resonance ( (1)H-NMR) and GPC demonstrated that microwave irradiation is a simple and reliable method for synthesis of PEG-PCL copolymer. The SMGel with excellent syringability was prepared by mixing of 20% wt γ-CD and 10% wt of copolymer within 4 s. The SMGel containing 10% wt copolymer, 20% wt γ-CD, and 0.5% or 0.1% wt dexamethasone released approximately 100% and 45% of drug over up to 23 days, respectively. It could be concluded that SMGel based on self-assembly of inclusion complexes between PCL-PEG-PCL copolymer and γ-CD could be used as a basis for injectable drug delivery systems that provide sustained and controlled release of macromolecular drugs such as dexamethasone. PMID:27051627

  20. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  1. Consideration of applications of olefin metathesis in synthetic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Heveling, J.

    1984-07-01

    One of the characteristics of Fischer-Tropsch synthesis and many oligomerization processes, is insufficient selectivity. Efforts have to be made to bring the products obtained in line with the market requirements. The olefin metathesis reaction has the potential to convert less desirable olefins to more useful ones and provides new ways of producing petrochemicals. Based on existing and suggested process technologies, applications of this reaction for the production of synthetic liquid fuels are discussed.

  2. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  3. Novel ruthenium-catalyst for hydroesterification of olefins with formates

    OpenAIRE

    Profir, Irina; Beller, Matthias; Fleischer, Ivana

    2014-01-01

    An alternative ruthenium-based catalyst for the hydroesterification of olefins with formates is reported. The good activity of our system is ensured by the use of a bidentate P,N-ligand and ruthenium dodecacarbonyl. A range of formates can be used for selective alkoxycarbonylation of aromatic olefins. In addition, the synthesis of selected aliphatic esters is realized. The proposed active ruthenium complex has been isolated and characterized.

  4. Efficient photovoltaic cells from low band-gap fluorene-based copolymer

    Institute of Scientific and Technical Information of China (English)

    Tian Ren-Yu; Yang Ren-Qiang; Peng Jun-Biao; Cao Yong

    2005-01-01

    Polymer photovoltaic cells based on low band-gap copolymer, poly [2,7-(9,9-dioctyl) fluorene-co-5,5'-(4,7-diselenophenyl)-2,2'-yl-2,1,3-benzothiadiazole] (PFSeBT) are investigated, focusing on the effects of cathode and blend concentration on device performance. The best device, with active layer from PFSeBT:PCBM=1:2 blend and with LiF/Al as cathode, achieves an open-circuit voltage of 1.00V, a short-circuit current density of 4.42mA/cm2, and energy conversion efficiency of 1.67% under AM1.5 illumination (100mW/cm2).The short-circuit current density indicates the dependence of power law on the incident light intensity with a power index of 0.887. All devices have a spectral response up to 680nm. The results indicate that PFSeBT is a potential polymer functioning as an electron donor in polymer photovoltaic cells.

  5. Novel pentablock copolymer-based nanoparticulate systems for sustained protein delivery.

    Science.gov (United States)

    Patel, Sulabh P; Vaishya, Ravi; Pal, Dhananjay; Mitra, Ashim K

    2015-04-01

    The design, synthesis, and application of novel biodegradable and biocompatible pentablock (PB) copolymers, i.e., polyglycolic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polyglycolic acid (PGA-PCL-PEG-PCL-PGA) and polylactic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polylactic acid (PLA-PCL-PEG-PCL-PLA) for sustained protein delivery, are reported. The PB copolymers can be engineered to generate sustained delivery of protein therapeutics to the posterior segment of the eye. PB copolymers with different block arrangements and molecular weights were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance ((1)H-NMR), gel permeation chromatography (GPC), and X-ray diffraction (XRD) spectroscopy. Immunoglobulin G (IgG) was selected as a model protein due to its structural similarity to bevacizumab. The influence of polymer molecular weight, composition, and isomerism on formulation parameters such as entrapment efficiency, drug loading, and in vitro release profile was delineated. Crystallinity and molecular weight of copolymers exhibited a substantial effect on formulation parameters. A secondary structure of released IgG was confirmed by circular dichroism (CD) spectroscopy. In vitro cytotoxicity, cell viability, and biocompatibility studies performed on human retinal pigment epithelial cells (ARPE-19) and/or macrophage cell line (RAW 264.7) demonstrated PB copolymers to be excellent biomaterials. Novel PB polymers may be the answer to the unmet need of a sustained release protein formulation. PMID:25319053

  6. Electrochromic properties of a novel low band gap conjugated copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Highlights: → A novel electrochromic copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene was electrochemically synthesized and characterized. → The resultant copolymer film displayed distinct color changes between six different colors with good switching times and optical contrast. → The dual type electrochromic device based on the copolymer and poly(3,4-ethylenedioxythiophene) displayed multichromism, quick switching time and good stability. - Abstract: 1,4-Bis(2-thienyl)-naphthalene (BTN) monomer is successfully synthesized via coupling reaction. A novel copolymer based on 1,4-bis(2-thienyl)-naphthalene (BTN) and 3,4-ethylenedioxythiophene (EDOT) is electrochemically synthesized and characterized. Characterizations of the resulting copolymer P(BTN-co-EDOT) are performed by cyclic voltammetry (CV), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG). At the neutral state of the copolymer, the π-π* transition absorption peak is located at 515 nm and the optical band gap (Eg) is calculated as 1.73 eV. Spectroelectrochemical analysis reveals that the copolymer film has distinct electrochromic properties from that of the BTN homopolymer film and shows six different colors under various potentials. The copolymer film shows a maximum optical contrast (ΔT%) of 48.4% at 504 nm with a response time of 0.88 s and of 45.2% at 770 nm with a response time of 0.84 s. An electrochromic device (ECD) based on P(BTN-co-EDOT) and poly(3,4-ethylenedioxythiophene) (PEDOT) is constructed and characterized. The optical contrast (ΔT%) at 645 nm is found to be 21.1% and response time is measured as 0.41 s. The coloration efficiency (CE) of the device is calculated to be 154 cm2 C-1 at 645 nm.

  7. Electrochromic properties of a novel low band gap conjugated copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bin [Department of Chemistry, Liaocheng University, No. 1, Hunan Road, 252059 Liaocheng (China); Zhao Jinsheng, E-mail: j.s.zhao@163.com [Department of Chemistry, Liaocheng University, No. 1, Hunan Road, 252059 Liaocheng (China); Cui Chuansheng; Liu Renmin; Liu Jifeng; Wang Huaisheng; Liu Houting [Department of Chemistry, Liaocheng University, No. 1, Hunan Road, 252059 Liaocheng (China)

    2011-05-01

    Highlights: > A novel electrochromic copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene was electrochemically synthesized and characterized. > The resultant copolymer film displayed distinct color changes between six different colors with good switching times and optical contrast. > The dual type electrochromic device based on the copolymer and poly(3,4-ethylenedioxythiophene) displayed multichromism, quick switching time and good stability. - Abstract: 1,4-Bis(2-thienyl)-naphthalene (BTN) monomer is successfully synthesized via coupling reaction. A novel copolymer based on 1,4-bis(2-thienyl)-naphthalene (BTN) and 3,4-ethylenedioxythiophene (EDOT) is electrochemically synthesized and characterized. Characterizations of the resulting copolymer P(BTN-co-EDOT) are performed by cyclic voltammetry (CV), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG). At the neutral state of the copolymer, the {pi}-{pi}* transition absorption peak is located at 515 nm and the optical band gap (E{sub g}) is calculated as 1.73 eV. Spectroelectrochemical analysis reveals that the copolymer film has distinct electrochromic properties from that of the BTN homopolymer film and shows six different colors under various potentials. The copolymer film shows a maximum optical contrast ({Delta}T%) of 48.4% at 504 nm with a response time of 0.88 s and of 45.2% at 770 nm with a response time of 0.84 s. An electrochromic device (ECD) based on P(BTN-co-EDOT) and poly(3,4-ethylenedioxythiophene) (PEDOT) is constructed and characterized. The optical contrast ({Delta}T%) at 645 nm is found to be 21.1% and response time is measured as 0.41 s. The coloration efficiency (CE) of the device is calculated to be 154 cm{sup 2} C{sup -1} at 645 nm.

  8. Industrial processes of olefin metathesis. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1987-05-01

    Olefin metathesis opens new synthetic routes to typical petrochemicals (ethylene, propylene, n-butenes), special olefins (neohexene, higher molecular linear olefins, , -dienes) and unsaturated polymers (polynorbornene, -cyclooctene, -dicyclopentadiene) in an industrial scale. The 8 metathesis processes used in industry and further possible applications of olefin metathesis are reviewed.

  9. Effects of Molecular Structure on Intramolecular Charge Carrier Transport in Dithieno [3,2-b: 2,3-d] Pyrrole-Based Conjugated Copolymers

    Directory of Open Access Journals (Sweden)

    Yoshihito Honsho

    2012-01-01

    Full Text Available Intramolecular mobility of positive charge carriers in conjugated polymer films based on dithieno [2,3-b: 2,3-d] pyrrole (DTP is studied by time-resolved microwave conductivity (TRMC. A series of DTP homopolymer and copolymers combined with phenyl, 2,2-biphenyl, thiophene, 2,2-bithiophene, and 9,9-dioctylfluorene were synthesized by Suzuki-Miyaura and Yamamoto coupling reactions. Polymers containing DTP unit are reported to show high value of hole mobility measured by FET method, and this type of polymers is expected to have stable HOMO orbitals which are important for hole transportation. Among these copolymers, DTP coupled with 9,9-dioctylfluorene copolymer showed the highest charge carrier mobility as high as 1.7 cm2/Vs, demonstrating an excellent electrical property on rigid copolymer backbones.

  10. Novel pH-sensitive polyacetal-based block copolymers for controlled drug delivery

    OpenAIRE

    Kim, Jin-Ki; Garripelli, Vivek Kumar; Jeong, Ui-Hyeon; Park, Jeong-Sook; Repka, Michael A.; Jo, Seongbong

    2010-01-01

    The principal aim of this study was to synthesize and characterize pH-sensitive biodegradable triblock copolymers containing a hydrophobic polyacetal segment for controlled drug delivery. Poly(ethylene glycol)-poly(ethyl glyoxylate)-poly(ethylene glycol) (PEG-PEtG-PEG) triblock copolymers with PEG molecular weights 500 (PEtG-PEG500) and 750 (PEtG-PEG750) were synthesized by PEtG end-capping with methoxy PEG via a carbamate linkage. Synthesized amphiphilic PEG-PEtG-PEG was characterized by 1H-...

  11. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy.

  12. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy. PMID:23869876

  13. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  14. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  15. Olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S.G.; Banks, R.L.

    1986-05-20

    A process is described for preparing a disproportionation catalyst comprising admixing a catalytically effective amount of a calcined and activated catalyst consisting essentially of at least one metal oxide selected from molybdenum oxide and tungsten oxide and a support containing a major proportion of silica or alumina with a promoting amount of a methylating agent selected from the group consisting of dimethyl sulfate, dimethylsulfoxide, trimethyloxonium tetrafluorborate, methyl iodide, and methyl bromide, and subjecting same to inert atmospheric conditions for the methylating agent to promote the activity of the calcined molybdenum and tungsten oxides for the disproportionation of olefins.

  16. Olefin metathesis in air

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  17. Physical gels based on charge-driven bridging of nanoparticles by triblock copolymers

    NARCIS (Netherlands)

    Lemmers, M.; Spruijt, E.; Akerboom, S.; Voets, I.K.; Aelst, van A.C.; Cohen Stuart, M.A.; Gucht, van der J.

    2012-01-01

    We have prepared an aqueous physical gel consisting of negatively charged silica nanoparticles bridged by ABA triblock copolymers, in which the A blocks are positively charged and the B block is neutral and water-soluble. Irreversible aggregation of the silica nanoparticles was prevented by precoati

  18. SYNTHESIS AND CHARACTERIZATION OF POLY(p-ARYLENE SULFIDE KETONE/SCHIFF BASE) COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Yan-lun Wang; Gang Zhang; Mei-lin Zhang; Yu Fan; Bao-ying Liu; Jie Yang

    2012-01-01

    Poly(p-arylene sulfide ketone/Schiffbase) copolymers (PASK/SB) were prepared by solution polycondensation of 4,4'-diflurobenzophenone (DFBP) and N-phenyl(4,4'-diflurodiphenyl) ketimine (DFBI) with sodium sulfide in the presence of sodium hydroxide under normal pressure.Elemental analyses,FT-IR,NMR,DSC,TGA and XRD were used to characterize the resultant copolymers.It was found that the copolymers had good thermal properties with glass transition temperature (Tg) of 155.0-172.0°C,melting temperature (Tm) of 298-344°C,5% weight loss temperatures (Td) of 471.0-501.5℃.These copolymers were almost amorphous with the content of DFBI beyond 30%.The polymer with 100%DFBI had excellent solubility,and it could dissolve in some solvents such as tetrahydrofuran (THF) and N-methy1-2-pyrrolidone (NMP).The processability of polymers was improved.Meantime the viscosity of PASK made from hydrolysis of PASK/SB (H-PASK/SB) was greatly improved from 0.135 dL/g to 0.605 dL/g.

  19. Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn H40 core,poly(L-lactide) (PLA) inner-shell,and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction.The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR),Fourier transform infrared (FTIR),gel permeation chromatography (GPC),differential scanning calorimeter (DSC),and thermal gravimetric analysis (TGA).Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm.Interestingly,these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT),most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds.As a hydrophobic anticancer model drug,doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles.In vitro release studies revealed that under the reduction-stimulus,the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release.Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells.Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX.All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.

  20. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.;

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  1. Controlling Miscibility in Polyethylene-Polynorbornene Block Copolymers via Side-Group Chemistry

    Science.gov (United States)

    Mulhearn, William; Register, Richard

    Block copolymers containing a crystallizable block, such as polyethylene (PE), and an amorphous block with high glass transition temperature (Tg) are an interesting class of materials since the rigid glassy block can improve the mechanical response of the article under strain by reinforcing the crystal fold surface. However, to prepare an easily processable PE-containing block copolymer it is necessary to avoid microphase separation in the melt by selection of amorphous blocks with weak repulsive interactions against PE (low Flory interaction parameter χ or interaction energy density X) . Most such low- χ polymers are chemically similar to PE, such as copolymers of ethylene and a small amount of an α-olefin, and therefore exhibit similarly low glass transition temperatures. This work investigates a series of low- and high-Tg polymers based on substituted norbornene monomers, polymerized via ring-opening metathesis polymerization (ROMP). Hydrogenated polynorbornene derivatives possess a wide range of glass transition temperatures, and miscibility with PE can be readily tuned by the choice of substituents on the monomers (e.g. aromatic vs. aliphatic groups). Two species investigated, hydrogenated poly(cyclohexyl norbornene) and hydrogenated poly(norbornyl norbornene), have high Tg and also remain miscible with polyethylene to high molecular weight. Furthermore, we develop a set of mixing rules to qualitatively predict the solubility behavior of substituted ROMP polynorbornenes as a function of their side-groups.

  2. Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures.

    Science.gov (United States)

    Simon, Karen A; Warren, Nicholas J; Mosadegh, Bobak; Mohammady, Marym R; Whitesides, George M; Armes, Steven P

    2015-12-14

    It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20-37 °C, which can be rapidly converted into a free-flowing dispersion of spheres on cooling to 5 °C. Functionalization of the worms with disulfide groups was found to be essential for ensuring sufficient mechanical stability of these hydrogels to enable long-term cell culture. These disulfide groups are conveniently introduced via statistical copolymerization of a disulfide-based dimethacrylate under conditions that favor intramolecular cyclization and subsequent thiol/disulfide exchange leads to the formation of reversible covalent bonds between adjacent worms within the gel. This new approach enables cells to be embedded within micrometer-thick slabs of gel with good viability, permits cell culture for at least 12 days, and facilitates recovery of viable cells from the gel simply by incubating the culture in buffer at 4 °C (thus, avoiding the enzymatic degradation required for cell harvesting when using commercial protein-based gels, such as Matrigel). PMID:26509930

  3. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Toušek, J., E-mail: jiri.tousek@mff.cuni.cz; Toušková, J.; Chomutová, R. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 182 00 Prague 8 (Czech Republic); Remeš, Z.; Čermák, J. [Institute of Physics of the Academy of Sciences, Cukrovarnická 10, 162 53 Prague 6 (Czech Republic); Helgesen, M.; Carlé, J. E.; Krebs, F. C. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2015-12-15

    Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDT{sub THD} − DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.

  4. Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle

    Science.gov (United States)

    Bao, Lixia; Bian, Longchun; Zhao, Mimi; Lei, Jingxin; Wang, Jiliang

    2014-08-01

    Herein, we report a novel amphiphilic biodegradable and sustainable soybean oil-based copolymer (SBC) prepared by grafting hydrophilic and biocompatible hydroxyethyl acrylate (HEA) polymeric segments onto the natural hydrophobic soybean oil chains. FTIR, H1-NMR, and GPC measurements have been used to investigate the molecular structure of the obtained SBC macromolecules. Self-assembly behaviors of the prepared SBC in aqueous solution have also been extensively evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared SBC nanocarrier with the size range of 40 to 80 nm has a potential application in the biomedical field.

  5. Mechanistic studies of olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H.

    1979-03-01

    A review covers studies of the olefin metathesis mechanism which indicated that the reaction proceeds by a non-pairwise mechanism; detailed mechanistic studies on the homogeneously and heterogeneously catalyzed metathesis; and stereochemical investigations.

  6. Melittin-grafted HPMA-Oligolysine Based Copolymers for Improved Gene Delivery

    OpenAIRE

    Schellinger, Joan G.; Pahang, Joshuel A.; Johnson, Russell N.; CHU, DAVID S.H.; Sellers, Drew L.; Maris, Don O.; Convertine, Anthony J; Stayton, Patrick S; Horner, Philip J.; Pun, Suzie H.

    2012-01-01

    Non-viral gene delivery systems capable of transfecting cells in the brain are critical in realizing the potential impact of nucleic acid therapeutics for diseases of the central nervous system. In this study, the membrane-lytic peptide melittin was incorporated into block copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The first block, designed for melittin conjugation, was composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and pyridyl disu...

  7. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    OpenAIRE

    Guldin, S.; Kolle, M.; Stefik, M.; Langford, R; Eder, D.; Wiesner, U.; Steiner, U.

    2011-01-01

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements.

  8. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer

    OpenAIRE

    Park, Daewon; Wu, Wei; Wang, Yadong

    2011-01-01

    Injectable reverse thermal gels have great potentials as biomaterials for tissue engineering and drug delivery. However, most existing gels lack functional groups that can be modified with biomolecules that can guide cell/material interactions. We created an amine-functionalized ABA block copolymer, poly(ethylene glycol)-poly(serinol hexamethylene urethane), or ESHU. This reverse thermal gel consists of a hydrophobic block (B): poly(serinol hexamethylene urethane) and a hydrophilic block (A):...

  9. Copolymers based on N-acryloyl-L-leucine and urea methacrylate with pyridine moieties

    Directory of Open Access Journals (Sweden)

    Buruiana Emil C.

    2016-01-01

    Full Text Available By using free radical polymerization of (N-methacryloyloxyethyl-N′-4-picolyl-urea (MAcPU and N-acryloyl-L-leucine (AcLeu, an optically active copolymer, poly[(N-methacryloyloxyethyl-N′-4-picolyl-urea-co-N-acryloyl-L-leucine], MAcPU-co-AcLeu (1.86:1 molar ratio was prepared and subsequently functionalized at the pyridine-N with (1R/S-(−/+-10-camphorsulfonic acid (R/S-CSA and at carboxyl group with (R-(+-α-ethylbenzylamine (R-EBA or trans-4-stilbene methanol (t-StM. The structures, chemical composition and chiroptical activity of the monomers and the copolymers were characterized by spectral analysis (FTIR, 1H (13C-NMR, 1H,1H-COSY, UV/vis, thermal methods (TGA, DSC, fluorescence spectroscopy, gel permeation chromatography and specific rotation measurements. Influence of the optical activity of monomer and modifier on modified copolymers suggested a good correlation between the experimental data obtained (23[α]589=+12.5° for AcLeu and MAcPU-co-AcLeu, 23[α]589=0°+27.5° for (MAcPU-co-AcLeu-R/S-CSA, 23[α]589=+25° for (MAcPU-co-AcLeu-R-EBA, and 23[α]589 = 0° for (MAcPU-co-AcLeu-St. In addition, the photobehavior of the stilbene copolymer (MAcPU-co-AcLeu-St in film was investigated by UV-vis spectroscopy. The fluorescence quenching of the stilbene species in the presence of aliphatic/aromatic amine in DMF solution was evaluated, more efficiently being 4,4′−dipyridyl (detection limit: 7.2 x 10-6 mol/L.

  10. Optical and electroluminescence studies of orange light-emitting copolymers based on polyfluorene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang, E-mail: sun031126@hotmail.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, West Yingze Street, No. 79, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Hua, E-mail: gudu_31415926@hotmail.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, West Yingze Street, No. 79, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, West Yingze Street, No. 79, Taiyuan 030024 (China); Wu, Yuling; Gao, Zhixiang; Wang, Shuhao; Miao, Yanqin [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, West Yingze Street, No. 79, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Mingwei [WPI Advanced Institute Materials Research, Tohoku University, Sendai, Miyagi 9808577 (Japan); Xu, Bingshe, E-mail: xubs@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, West Yingze Street, No. 79, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2013-02-15

    A series of novel soluble conjugated copolymers derived from 9,9-dioctylfuorene and 2,7-di-(2-thienyl)-9-fluorenone (DTFO) were synthesized by Suzuki cross coupling reaction with different feed ratios. All polymers showed good thermal stability with 5% weight loss up to 410 Degree-Sign C and good solubility in common organic solvents. With the increase of the DTFO unit's content in the copolymers, the emission peaks red-shifted from 550 to 608 nm owing to more complete energy transfer and charge trapping. But turn-on voltage increased and current efficiency decreased with increasing DTFO content. When the content of DTFO was 5%, the maximum luminance of the devices was 2164 cd/m{sup 2}. - Highlights: Black-Right-Pointing-Pointer A series of novel soluble copolymers were synthesized by Suzuki crossing reaction. Black-Right-Pointing-Pointer With the increase of the DTFO unit's content, the emission peaks red-shifted. Black-Right-Pointing-Pointer Intermolecular energy transfer played major role in film states.

  11. Tailor-made pentablock copolymer based formulation for sustained ocular delivery of protein therapeutics.

    Science.gov (United States)

    Patel, Sulabh P; Vaishya, Ravi; Mishra, Gyan Prakash; Tamboli, Viral; Pal, Dhananjay; Mitra, Ashim K

    2014-01-01

    The objective of this research article is to report the synthesis and evaluation of novel pentablock copolymers for controlled delivery of macromolecules in the treatment of posterior segment diseases. Novel biodegradable PB copolymers were synthesized by sequential ring-opening polymerization. Various ratios and molecular weights of each block (polyglycolic acid, polyethylene glycol, polylactic acid, and polycaprolactone) were selected for synthesis and to optimize release profile of FITC-BSA, IgG, and bevacizumab from nanoparticles (NPs) and thermosensitive gel. NPs were characterized for particle size, polydispersity, entrapment efficiency, and drug loading. In vitro release study of proteins from NPs alone and composite formulation (NPs suspended in thermosensitive gel) was performed. Composite formulations demonstrated no or negligible burst release with continuous near zero-order release in contrast to NPs alone. Hydrodynamic diameter of protein therapeutics and hydrophobicity of PB copolymer exhibited significant effect on entrapment efficiency and in vitro release profile. CD spectroscopy confirmed retention of structural conformation of released protein. Biological activity of released bevacizumab was confirmed by in vitro cell proliferation and cell migration assays. It can be concluded that novel PB polymers can serve a platform for sustained delivery of therapeutic proteins. PMID:25045540

  12. Tailor-Made Pentablock Copolymer Based Formulation for Sustained Ocular Delivery of Protein Therapeutics

    Directory of Open Access Journals (Sweden)

    Sulabh P. Patel

    2014-01-01

    Full Text Available The objective of this research article is to report the synthesis and evaluation of novel pentablock copolymers for controlled delivery of macromolecules in the treatment of posterior segment diseases. Novel biodegradable PB copolymers were synthesized by sequential ring-opening polymerization. Various ratios and molecular weights of each block (polyglycolic acid, polyethylene glycol, polylactic acid, and polycaprolactone were selected for synthesis and to optimize release profile of FITC-BSA, IgG, and bevacizumab from nanoparticles (NPs and thermosensitive gel. NPs were characterized for particle size, polydispersity, entrapment efficiency, and drug loading. In vitro release study of proteins from NPs alone and composite formulation (NPs suspended in thermosensitive gel was performed. Composite formulations demonstrated no or negligible burst release with continuous near zero-order release in contrast to NPs alone. Hydrodynamic diameter of protein therapeutics and hydrophobicity of PB copolymer exhibited significant effect on entrapment efficiency and in vitro release profile. CD spectroscopy confirmed retention of structural conformation of released protein. Biological activity of released bevacizumab was confirmed by in vitro cell proliferation and cell migration assays. It can be concluded that novel PB polymers can serve a platform for sustained delivery of therapeutic proteins.

  13. Alternative routes to olefins. Chances and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Delhomme, C.; Ponceau, M. [Linde AG, Pullach (Germany)

    2013-11-01

    In the future, conventional raw materials which are used for the production of olefins will get shorter and more expensive and alternative raw materials and production routes will gain importance. Natural gas, coal, shale oil or bio-mass are potential sources for the production of olefins, especially ethylene and propylene, as major base chemicals. Several potential production routes were already developed in the past, but cost, energy and environmental considerations might make these unattractive or unfeasible in comparison to traditional processes (e.g. steam cracking). Other processes such as methanol to olefins processes were successfully developed and first commercial units are running. In addition, combination of traditional processes (e.g. coal/biomass gasification, Fischer-Tropsch and steam cracking) might enable new pathways. Besides, dehydration of ethanol is opening direct routes from biomass to 'green' ethylene. However, for these 'bio-routes', feedstock availability and potential land use conflict with food production (sugar cane, wheat,..) still need to be evaluated. finally, new oxidative routes, including processes such as oxidative coupling of methane or oxidative dehydrogenation, are still at an early development stage but present potential for future industrial applications. (orig.) (Published in summary form only)

  14. Separation of parent homopolymers from polystyrene and poly(ethylene oxide) based block copolymers by liquid chromatography under limiting conditions of desorption-3. Study of barrier efficiency according to block copolymers' chemical composition.

    Science.gov (United States)

    Rollet, Marion; Pelletier, Bérengère; Berek, Dušan; Maria, Sébastien; Phan, Trang N T; Gigmes, Didier

    2016-09-01

    Liquid Chromatography under Limiting Conditions of Desorption (LC LCD) is a powerful separation tool for multicomponent polymer systems. This technique is based on a barrier effect of an appropriate solvent, which is injected in front of the sample, and which decelerates the elution of selected macromolecules. In this study, the barrier effects have been evaluated for triblock copolymers polystyrene-b-poly(ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) according to the content of polystyrene (wt% PS) and PEO-block molar mass. PS-b-PEO-b-PS samples were prepared by Atom Transfer Radical Polymerization (ATRP). The presence of respective parent homopolymers was investigated by applying optimized LC LCD conditions. It was found that the barrier composition largely affects the efficiency of separation and it ought to be adjusted for particular composition range of block copolymers.

  15. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month. PMID:27388921

  16. Olefin cross-metathesis for the synthesis of alkenyl acyclonucleoside phosphonates.

    Science.gov (United States)

    Bessières, Maxime; De Schutter, Coralie; Roy, Vincent; Agofoglio, Luigi A

    2014-12-12

    The detailed synthetic protocol for the straightforward, efficient synthesis of various alkenyl acyclonucleosides, including challenging trisubstituted alkenyl acyclonucleoside phosphonates, is described. The key step of those syntheses is an olefin cross-metathesis reaction between two olefins selected based on their reactivity using well-defined ruthenium alkylidene catalysts.

  17. Olefin cross-metathesis for the synthesis of alkenyl acyclonucleoside phosphonates.

    Science.gov (United States)

    Bessières, Maxime; De Schutter, Coralie; Roy, Vincent; Agofoglio, Luigi A

    2014-01-01

    The detailed synthetic protocol for the straightforward, efficient synthesis of various alkenyl acyclonucleosides, including challenging trisubstituted alkenyl acyclonucleoside phosphonates, is described. The key step of those syntheses is an olefin cross-metathesis reaction between two olefins selected based on their reactivity using well-defined ruthenium alkylidene catalysts. PMID:25501590

  18. Design and comparative in-vitro and in-vivo evaluation of starch-acrylate graft copolymer based salbutamol sulphate sustained release tablets

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2015-06-01

    Full Text Available The present work deals with the development of controlled release tablets of salbutamol sulphate (SS using graft copolymers of methyl methacrylate (St-g-PMMA and Ast-g-PMMA on starch and acetylated starch. Formulations were evaluated for physical characteristics like hardness, friability, drug release, drug content and weight variations, which fulfilled all the official requirements of tablet dosage form. The release rates from formulated matrix tablets were studied at SGF (pH 1.2 followed by SIF (pH 6.8. Drug release from the graft copolymer based tablets was found to be sustained upto the 14 h with >75% drug release. The in-vitro release study showed that the graft copolymer based matrix formulations (F3 & F4 exhibited highest correlation value (r2 for higuchi kinetic model and Korsmeyer's model with n values between 0.61 and 0.67 proved that release mechanisms were governed by both diffusion and erosion mechanism. There was no significant difference in the pharmacokinetic parameters (tmax, Cmax, AUC, Ke, and t1/2 of the graft copolymers matrices and HPMC K100M matrix tablets, indicating their comparable sustained release effect. The potential of graft copolymers to sustain the drug release is well supported by in-vivo pharmacokinetic studies and their adequate physicochemical properties make them promising excipients for controlled drug delivery system.

  19. Observation of Different Catalytic Activity of Various 1-Olefins during Ethylene/1-Olefin Copolymerization with Homogeneous Metallocene Catalysts

    Directory of Open Access Journals (Sweden)

    Mingkwan Wannaborworn

    2011-01-01

    Full Text Available This research aimed to investigate the copolymerization of ethylene and various 1-olefins. The comonomer lengths were varied from 1-hexene (1-C6 up to 1-octadecene (1-C18 in order to study the effect of comonomer chain length on the activity and properties of the polymer in the metallocene/MAO catalyst system. The results indicated that two distinct cases can be described for the effect of 1-olefin chain length on the activity. Considering the short chain length comonomers, such as 1-hexene, 1-octene and 1-decene, it is obvious that the polymerization activity decreased when the length of comonomer was higher, which is probably due to increased steric hindrance at the catalytic center hindering the insertion of ethylene monomer to the active sites, hence, the polymerization rate decreased. On the contrary, for the longer chain 1-olefins, namely 1-dodecene, 1-tetradecene and 1-octadecene, an increase in the comonomer chain length resulted in better activity due to the opening of the gap aperture between Cp(centroid-M-Cp-(centroid, which forced the coordination site to open more. This effect facilitated the polymerization of the ethylene monomer at the catalytic sites, and thus, the activity increased. The copolymers obtained were further characterized using thermal analysis, X-ray diffraction spectroscopy and 13C-NMR techniques. It could be seen that the melting temperature and comonomer distribution were not affected by the 1-olefin chain length. The polymer crystallinity decreased slightly with increasing comonomer chain length. Moreover, all the synthesized polymers were typical LLDPE having random comonomer distribution.

  20. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  1. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    International Nuclear Information System (INIS)

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH2), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle

  2. Synthesis of β-cyclodextrin-Based Star Block Copolymers with Thermo-Responsive Behavior

    Directory of Open Access Journals (Sweden)

    Agnes Wycisk

    2015-05-01

    Full Text Available Star polymers are one example of three-dimensional macromolecules containing several arms with similar molecular weight connected to a central core. Due to their compact structure and their enhanced segment density in comparison to linear polymers of the same molecular weight, they have attracted significant attention during recent years. The preparation of block-arm star copolymers with a permanently hydrophilic block and an “environmentally” sensitive block, which can change its nature from hydrophilic to hydrophobic, leads to nanometer-sized responsive materials with unique properties. These polymers are able to undergo a conformational change or phase transition as a reply to an external stimulus resulting in the formation of core–shell nanoparticles, which further tend to aggregate. Star-shaped copolymers with different cores were synthesized via atom transfer radical polymerization (ATRP. The core-first method chosen as synthetic strategy allows good control over the polymer architecture. First of all the multifunctional initiators were prepared by esterification reaction of the hydroxyl groups with 2-chloropropionyl chloride. Using β-cyclodextrin as core molecules, which possess a well-defined number of functional groups up to 21, allows defining the number of arms per star polymer. In order to prepare stimuli-responsive multi-arm copolymers, containing a stimuli-responsive (poly(N-isopropylacrylamide (PNIPAAm and a non-responsive block (poly(N,N-dimethylacrylamide (PDMAAm, consecutive ATRP was carried out. The polymers were characterized intensively using NMR spectroscopy and size exclusion chromatography (SEC, whereas the temperature-depending aggregation behavior in aqueous solution was determined via turbidimetry and differential scanning calorimetry (DSC.

  3. A multiscale modeling study of loss processes in block-copolymer-based solar cell nanodevices

    Science.gov (United States)

    Donets, Sergii; Pershin, Anton; Christlmaier, Martin J. A.; Baeurle, Stephan A.

    2013-03-01

    Flexible photovoltaic devices possess promising perspectives in opto-electronic technologies, where high mobility and/or large-scale applicability are important. However, their usefulness in such applications is currently still limited due to the low level of optimization of their performance and durability. For the improvement of these properties, a better understanding and control of small-scale annihilation phenomena involved in the photovoltaic process, such as exciton loss and charge carrier loss, is necessary, which typically implicates multiple length- and time-scales. Here, we study the causes for their occurrence on the example of nanostructured diblock- and triblock-copolymer systems by making use of a novel solar-cell simulation algorithm and explore new routes to optimize their photovoltaic properties. A particular focus is set on the investigation of exciton and charge carrier loss phenomena and their dependence on the inter-monomeric interaction strength, chain architecture, and external mechanical loading. Our simulation results reveal that in the regime from low up to intermediate χ-parameters an increasing number of continuous percolation paths is created. In this parameter range, the internal quantum efficiency (IQE) increases up to a maximum, characterized by a minimum in the number of charge losses due to charge recombination. In the regime of high χ-parameters both block-copolymer systems form nanostructures with a large number of bottlenecks and dead ends. These lead to a large number of charge losses due to charge recombination, charge trapping, and a deteriorated exciton dissociation, resulting in a significant drop in the IQE. Moreover, we find that the photovoltaic performance of the triblock-copolymer material decreases with increasing mechanical loading, caused by a growing number of charge losses due to charge recombination and charge accumulation. Finally, we demonstrate that the process of charge trapping in defects can be reversed

  4. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  5. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    KAUST Repository

    Guldin, Stefan

    2011-07-06

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Dorati, R., E-mail: rossella.dorati@unipv.it [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Colonna, C. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Tomasi, C. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Genta, I. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Bruni, G. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Conti, B. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability > 85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400 μm, high porosity (77–78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. - Highlights: • Tough PLA graft copolymer was proposed

  7. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    International Nuclear Information System (INIS)

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface

  8. Conjugated copolymers based on poly(fluorenylene vinylene) derivatives containing push-pull units: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Jilian N. de [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, CP 6154, CEP 130843-970 (Brazil); Li, Rosamaria W.C. [Instituto de Quimica, Universidade de Sao Paulo (USP), Sao Paulo, SP, CP 26077, CEP 05513-970 (Brazil); Nogueira, Ana Flavia [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, CP 6154, CEP 130843-970 (Brazil); Gruber, Jonas, E-mail: jogruber@iq.usp.br [Instituto de Quimica, Universidade de Sao Paulo (USP), Sao Paulo, SP, CP 26077, CEP 05513-970 (Brazil)

    2011-10-17

    Highlights: {center_dot} Synthesis of conjugated homopolymers and copolymers via Gilch route. {center_dot} Polymers containing 2,7-fluorenylene and 2-bromo-5-hexyloxy-1,4-phenylene units. {center_dot} Thermal, electrochemical and photophysical characterization. {center_dot} Polymers used as electron transport materials in organic solar cells. - Abstract: In this work we present the synthesis, via the Gilch route, of two polymers: poly(9,9-dioctyl-2,7-fluorenylene vinylene) and poly(2-bromo-5-hexyloxy-1,4-phenylene vinylene), which contain fluorene and push-pull (2-bromo-5-hexyloxy-1,4-phenylene) units, respectively. We also present the synthesis of novel copolymers based on the combination of these materials in different proportions. Using the Gilch route, the synthesis yields varied between 42% and 71%, and the average molar masses varied between 4 x 10{sup 3} g mol{sup -1} and 70 x 10{sup 3} g mol{sup -1}. The thermal, electrochemical and photophysical properties of these polymers were investigated, and their application as hole transporting materials in organic solar cells, in combination with a fullerene derivative (electron transport material), is also presented.

  9. Vegetable-Oil-Based Hyperbranched Polyester-Styrene Copolymer Containing Silver Nanoparticle as Antimicrobial and Corrosion-Resistant Coating Materials

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Pongamia oil (PO was converted to Pongamia oil hydroxyl (POH via epoxidation process. The esterification of POH with linolenic acid was carried out to form hyperbranched polyester (HBPE, and further styrenation was performed at the conjugated double bond in the chain of linolenic acid. After styrenation, silver nanoparticle was added in different weight percentages (0.1–0.4 wt%. The structural elucidation of POH, HBPE, and HBPE-St was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Physicochemical and physicomechanical analyses were performed by standard method. Thermal behavior of the HBPE-St was analyzed by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The coatings of HBPE-St were prepared on mild steel strips. The anticorrosive behavior of HBPE-St resin-based coatings in acid, saline, and tap water was evaluated, and the molecular weight of HBPE-St was determined by gel permeation chromatography (GPC. The antibacterial activities of the HBPE-St copolymers were tested in vitro against bacteria and fungi by disc diffusion method. The HBPE-St copolymers exhibited good antibacterial activities and can be used as antimicrobial and corrosion-resistant coating materials.

  10. Stereospecific olefin polymerization catalysts

    Science.gov (United States)

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  11. Synthesis and Characterization of Novel Polymethylene-Based 3-Miktoarm Star Copolymers by Combining Polyhomologation with Other Living Polymerizations

    KAUST Repository

    Altaher, Maryam

    2015-05-01

    Polyethylene (PE) is produced in a huge scale globally and has plenty of desirable properties. It is used in coating, packaging, and artificial joint replacements. The growing need for high performance polyethylene led to the development of new catalysts, monomers and polymerizations. The synthesis of polymethylene (equivalent to polyethylene) by living polyhomologation opened the way to well-defined polymethylenes-based polymeric materials with controlled structure, molecular weight and narrow polydispersity. Such model polymers are substantial to study the structure-properties relationships. This research presents a new strategy based on the in situ formation of B-thexyl-silaboracyclic serving as initiating sites for the polyhomologation of dimethylsulfoxonium methylide. Combination with metal-free ring-opening polymerization (ROP) of ɛ-caprolactone (CL) and atom transfer radical polymerization (ATRP) of styrene led to three polymethylene-based 3-miktoarm stars copolymers PCL(PM-OH)2, Br-PCL(PM-OH)2 and PS(PM-OH)2.

  12. Effect of Acetate Group Content in Ethylene-Vinyl Acetate Copolymer on Properties of Composite Based on Low Density Polyethylene and Polyamide-6

    Directory of Open Access Journals (Sweden)

    Nhi Dinh Bui

    2016-01-01

    Full Text Available The effect of the content of vinyl acetate groups in ethylene-vinyl acetate copolymer on the properties of polymer composite based on low density polyethylene and polyamide-6 was studied. Ethylene-vinyl acetate copolymer containing less vinyl acetate groups (10–14 wt.% has a positive compatibility effect on polymer composite than ethylene-vinyl acetate copolymer containing 21–30 wt.% vinyl acetate groups. The polymer composites of LDPE, PA-6, and EVA containing 10–14 wt.% vinyl acetate groups possess the ability of biodegradation. The physical-mechanical properties of sample and molecular mass reduce after 28 days of incubation.

  13. GRAFTED STYRENE-DIVINYLBENZENE COPOLYMERS CONTAINING BENZALDEHYDES AND THEIR WITTIG REACTIONS WITH VARIOUS PHOSPHONIUM SALTS

    Institute of Scientific and Technical Information of China (English)

    Adriana Popa; Gheorghe Ilia; Aurelia Pascariu; Smaranda Iliescu; Nicoleta Plesu

    2005-01-01

    A chloromethylated styrene-divinylbenzene copolymer support system functionalized with 4-benzaldehyde and 2-benzaldehyde was prepared. The degree of functionalization with aldehyde groups is well suited for the subsequent use of the products as Wittig reagents. The polymer bound aldehyde was reacted with Wittig reagents to give olefin groups grafted on styrene-divinylbenzene copolymers. The reactions were carried out in phase transfer catalysis conditions. A simple procedure for the calculation of the degree of functionalization and the statistical modeling of the structural repetitive unit of the copolymer are reported.

  14. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  15. Comparing Ru and Fe-catalyzed olefin metathesis.

    Science.gov (United States)

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. PMID:24821502

  16. Hydroquinone based sulfonated poly (arylene ether sulfone copolymer as proton exchange membrane for fuel cell applications

    Directory of Open Access Journals (Sweden)

    V. Kiran

    2015-12-01

    Full Text Available Synthesis of sulfonated poly (arylene ether sulfone copolymer by direct copolymerization of 4,4'-bis(4-hydroxyphenyl valeric acid, benzene 1,4-diol and synthesized sulfonated 4,4'-difluorodiphenylsulfone and its characterization by using FTIR (Fourier Transform Infrared and NMR (Nuclear Magnetic Resonance spectroscopic techniques have been performed. The copolymer was subsequently cross-linked with 4, 4!(hexafluoroisopropylidenediphenol epoxy resin by thermal curing reaction to synthesize crosslinked membranes. The evaluation of properties showed reduction in water and methanol uptake, ion exchange capacity, proton conductivity with simultaneous enhancement in oxidative stability of the crosslinked membranes as compared to pristine membrane. The performance of the membranes has also been evaluated in terms of thermal stability, morphology, mechanical strength and methanol permeability by using Thermo gravimetric analyzer, Differential scanning calorimetery, Atomic force microscopy, XPERT-PRO diffractometer, universal testing machine and diffusion cell, respectively. The results demonstrated that the crosslinked membranes exhibited high thermal stability with phase separation, restrained crystallinity, acceptable mechanical properties and methanol permeability. Therefore, these can serve as promising proton exchange membranes for fuel cell applications.

  17. THE AMPHIPHILIC MULTIARM COPOLYMERS BASED ON HYPERBRANCHED POLYESTER AND LYSINE: SYNTHESIS AND SELF-ASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yuan Yao; Bing Ji; Wei Huang; Yong-feng Zhou; De-yue Yan

    2011-01-01

    The amphiphilic multiarm copolymers were synthesized through the modification of commercially available hyperbranched polyesters (Boltom H40) with N-ε-carbobenzoxy-L-Lysine N-carboxyanhydride (ZLys-NCA). After being condensed with N-Boc-phenylalanine (Boc-NPhe) and deprotected the Boc-groups in trifluoroacetic acid (TFA), the original terminal hydroxyl groups were transformed into the amino groups and then initiated the ring-opening polymerization of ZLys-NCA. The hydrophilic poly(L-lysine) was grafted to the surface of Boltorn H40 successfully after the protecting benzyl groups were removed by the HBr solution in glacial acetic acid (33 wt%). The resulting multiarm copolymers were characterized by the 1H-NMR, GPC and FTIR. The arm length calculated by NMR and GPC analysis was about 3 and 13 lysine-units for H40-Phe-PLysl and H40-Phe-PLys2 respectively. Due to the amphiphilic molecular structure, they displayed ability to self-assemble into spherical micelles in aqueous solution with the average diameter in the range from 70 nm to 250 nm. The CMC of H40-Phe-PLysl and H40-Phe-PLys2 was 0.013 mg/mL and 0.028 mg/mL, respectively,indicating that H40-Phe-PLysl with shorter arm length is easier to self-assemble than H40-Phe-PLys2 with longer arm length.

  18. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides

    NARCIS (Netherlands)

    Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Stereo-complexes (poly(ST–TMC–ST)) of enantiomeric triblock copolymers based on 1,3-trimethylene carbonate (TMC) and L- or D-lactide (poly(LLA–TMC–LLA) and poly(DLA–TMC–DLA)) were prepared. Films of poly(ST–TMC–ST) could be prepared by solvent casting mixtures of equal amounts of poly(LLA–TMC–LLA) a

  19. Application of olefin metathesis in petrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1979-01-01

    A survey covers the catalysts used in olefin metathesis; olefin types which undergo metathesis, e.g., ring-opening metathetic polymerization of cycloolefins; equilibria and side reactions; the Phillips Triolefin process for 2-butene production; the Shell Higher Olefin Process (SHOP) for the production of C/sub 11/-C/sub 14/ ..cap alpha..-olefins; the Phillips Petroleum 225 ton/yr process for the conversion of trimethylpentane to neohexene, which is used in gasoline and pharmaceutical manufacture; the production of isoprene precursors; and various other metathesis reactions used in synthesizing specific olefins.

  20. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    Science.gov (United States)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  1. Modular synthesis of a block copolymer with a cleavable linkage via “click” chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A diblock copolymer poly(ethylene glycol)-block-polystyrene or PEG-b-PS with an olefinic double bond at the PEG and PS junction has been prepared by modular synthesis via"click"chemistry.This involved the synthesis of PS by atom transfer radical polymerization and the nucleophilic substitution of the terminal bromide group with azide to yield azide-terminated PS. PEG with an alkynyl terminal group was prepared from reacting carboxyl-end-functionalized PEG with 4-hydroxybut-2-enyl prop-2-ynyl succinate,which contained an alkynyl group as well as an olefin group.The PS and PEG polymers were linked via the 1,3-dipolar cycloaddition of the end azide and alkyne groups.The obtained copolymer was characterized by 1H NMR spectroscopy and size exclusion chromatography(SEC).SEC analysis indicated that the diblock copolymer produced could be readily cleaved by ozonolysis to regenerate the constituent homopolymers.

  2. NEW MATERIALS BY POLYMERIZATION OF OLEFINS AND STYRENE BY METALLOCENE/MAO CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Metallocenes and other transition metal compounds comprise a newgeneration of single site catalysts for the production of precisely designed polyolefins and engineering plastics. The discovery of metallocene methylalumoxane (MAO) catalysts has opened a frontier in the area of polymer synthesis and processing. A great number of symmetric and chiral zirconocenes have been synthesized to give isotactic,syndiotactic,isoblock,or stereoblock polymers with increased impact strength and toughness,better melt characteristics or elasticity,and improved clarity in films. Cycloolefin copolymers (COC) and syndiotactic polystyrene can be produced by metallocene catalysts. These are new types of polymers with special properties and a high potential as engineering plastics. Norbornene-ethene copolymers are most interesting for technical uses because of the easily available monomers. Due to different incorporation values of the cyclic olefin in the copolymer,the glass transition temperature can vary over a wide range and reaches 180 ℃.

  3. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    International Nuclear Information System (INIS)

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (Dh) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C19 to 19.2 nm for C57). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the Dh-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445–1458, 2013)].Graphical AbstractAmphiphilic copolymers based on

  4. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Travelet, Christophe, E-mail: Christophe.Travelet@cermav.cnrs.fr [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Stemmelen, Mylene; Lapinte, Vincent [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); Dubreuil, Frederic [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Robin, Jean-Jacques [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); and others

    2013-06-15

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D{sub h}) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C{sub 19} to 19.2 nm for C{sub 57}). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D{sub h}-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].Graphical Abstract

  5. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    Science.gov (United States)

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  6. Review of Directly Producing Light Olefins via CO Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Chong Wang; Longya Xu; Qingxia Wang

    2003-01-01

    Directly making light olefins via CO hydrogenation is a promising process to obtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function of Fischer-Tropsch synthesis,the yield of light olefins (C2-C4) can not reach the desired levels, which is a great challenge to overcome.Beginning with a brief introduction of F-T synthesis, this paper provides a review of current research,including thermodynamic analysis, the ASF distribution function, the reaction performance of CO hydro-genation and slurry reactor studies. The problems currently faced by this research area are presented atthe end of the article.

  7. Application of olefin metathesis in the synthesis of steroids.

    Science.gov (United States)

    Morzycki, Jacek W

    2011-01-01

    Over the past decade, ruthenium-mediated metathesis transformations, including cross-metathesis, ring-closing metathesis, enyne metathesis, ring-opening metathesis polymerization, and also tandem processes, belong to the most intensively studied reactions. Many applications of olefin metathesis in the synthesis of natural products have been recently described. Also in the field of steroid chemistry new methods of total synthesis and hemisynthesis based on metathesis reactions have been elaborated. Various biologically active compounds, e.g. vitamin D and hormone analogues, steroid dimers and macrocycles, etc. have been prepared using a variety of olefin-metathesis protocols.

  8. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation

    Science.gov (United States)

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng

    2015-01-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation. PMID:25432986

  9. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    Science.gov (United States)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  10. Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Zhu, Kaizheng; Nyström, Bo;

    2013-01-01

    block), a class of ionic supramolecules are successfully synthesized whose molecular architecture consists of a poly(styrene) PS block (Linear block) covalently connected to a strongly amphiphilic comb-like block (AmphComb block), i.e. Linear-b-AmphComb. In the melt state, these ionic supramolecules can......By a selective complexation between different alkyltrimethylammonium amphiphiles (C8, C12 and C16) and three different diblock copolymer systems of poly(styrene)-b-poly(methacrylic acid) at various grafting densities X (X = number of alkyl chains per acidic group of the poly(methacrylic acid) PMAA...... supramolecules, based on complexation between a homopolymer of PMAA and the various alkyltrimethylammonium amphiphiles, were prepared, which nanophase separated into S (C8) or C (C12 and C16) domains....

  11. Single-chain crosslinked star polymers via intramolecular crosslinking of self-folding amphiphilic copolymers in water

    OpenAIRE

    Terashima, Takaya; Sugita, Takanori; Sawamoto, Mitsuo

    2015-01-01

    Single-chain crosslinked star polymers with multiple hydrophilic short arms and a hydrophobic core were created as novel microgel star polymers of single polymer chains. The synthetic process involves the intramolecular crosslinking of self-folding amphiphilic random copolymers in water. For this process, amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic olefin pendants were synthesized by ruthenium-catalyzed living radical copolymerization of PEG m...

  12. Applications of Tris(4-(thiophen-2-ylphenylamine- and Dithienylpyrrole-based Conjugated Copolymers in High-Contrast Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2016-05-01

    Full Text Available Tris(4-(thiophen-2-ylphenylamine- and dithienylpyrrole-based copolymers (P(TTPA-co-DIT and P(TTPA-co-BDTA were electropolymerized on ITO electrode by applying constant potentials of 1.0, 1.1, and 1.2 V. Spectroelectrochemical investigations revealed that P(TTPA-co-DIT film displayed more color changes than P(TTPA-co-BDTA film. The P(TTPA-co-DIT film is yellow in the neutral state, yellowish-green and green in the intermediate state, and blue (1.2 V in highly oxidized state. The ∆Tmax of the P(TTPA-co-DIT and P(TTPA-co-BDTA films were measured as 60.3% at 1042 nm and 47.1% at 1096 nm, respectively, and the maximum coloration efficiency (η of P(TTPA-co-DIT and P(TTPA-co-BDTA films were calculated to be 181.9 cm2·C−1 at 1042 nm and 217.8 cm2·C−1 at 1096 nm, respectively, in an ionic liquid solution. Dual type electrochromic devices (ECDs consisting of P(TTPA-co-DIT (or P(TTPA-co-BDTA anodic copolymer, ionic liquid-based electrolyte, and poly(3,4-(2,2-diethylpropylenedioxythiophene (PProDOT-Et2 cathodic polymer were constructed. P(TTPA-co-BDTA/PProDOT-Et2 ECD showed high ΔTmax (48.1% and high coloration efficiency (649.4 cm2·C−1 at 588 nm. Moreover, P(TTPA-co-DIT/PProDOT-Et2 and P(TTPA-co-BDTA/PProDOT-Et2 ECDs displayed satisfactory optical memory and long term switching stability.

  13. Fluorene-based narrow-band-gap copolymers for red light- emitting diodes and bulk heterojunction photovoltaic cells

    Institute of Scientific and Technical Information of China (English)

    Mingliang SUN; Li WANG; Yangjun XIA; Bin DU; Ransheng LIU; Yong CAO

    2008-01-01

    A series of narrow band-gap conjugated copo-lymers (PFO-DDQ) derived from 9,9-dioctylfluorene (DOF) and 2,3-dimethyl-5,8-dithien-2-yl-quinoxalines (DDQ) is prepaid by the palladium-catalyzed Suzuki coupling reaction with the molar feed ratio of DDQ at around 1%,5%,15%,30% and 50%,respectively.The obtained polymers are readily soluble in common organic solvents.The solutions and the thin solid films of the copolymers absorb light from 300-590 nm with two absorbance.peaks at around 380 and 490 nm.The intens-ity of 490 nm peak increases with the increasing DDQ content in the polymers.Efficient energy transfer due to exciton trapping on narrow-band-gap DDQ sites has been observed.The PL emission consists exclusively of DDQ unit emission at around 591 643 nm depending on the DDQ content in solid film.The EL emission peaks are red-shifted from 580 nm for PFO-DDQ1 to 635 nm for PFO-DDQ50.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/ PVK/PFO-DDQt5/Ba/A1 is 1.33% with a luminous effi-ciency 1.54 cd/A.Bulk heterojunction photovoltaic cells fabricated from composite films of PFO-DDQ30 copoly-mer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as electron donor and electron acceptor,respect-ively in device configuration:ITO/PEDOT:PSS/PFO-DDQ30:PCBM/PFPNBr/Al shows power conversion effi-ciencies of 1.18% with open-circuit voltage (Voc) of 0.90 V and short-circuit current density (Jsc) of 2.66 mA/cm2 under an AM1.5 solar simulator (100 mW/cm2).The photocurrent response wavelengths of the PVCs based on PFO-DDQ30/PCBM blends covers 300-700 nm.This indicates that these kinds of low band-gap polymers are promising candidates for polymeric solar cells and red light-emitting diodes.

  14. Modification of ethylene-norbornene copolymer by Gamma irradiation

    Directory of Open Access Journals (Sweden)

    Kačarević-Popović Zorica M.

    2006-01-01

    Full Text Available The possibility of modifying polyethylene and many other polymers with high energy radiation has led to many useful applications. Due to their new combination of properties and the shortage of experimental data, the radiolysis of a new class of materials, cyclo-olefin copolymers (COC, polymerised from norbornene and ethylene using metallocene catalysts, is of great interest to the study of radiation chemistry and the physics of polymeric systems. Ethylenenorbornene copolymer, pristine and containing an antioxidant were subjected to gamma irradiation in the presence of air and in water. The irradiated copolymer was studied using IR and UV-vis spectrophotometric analysis. The radiation-induced changes in the molecular structure were correlated to changes in the glass transition temperature measured by the DSC method.

  15. Supramolecular micellar nanoaggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery

    Directory of Open Access Journals (Sweden)

    Lian H

    2011-12-01

    experiments, conducted by confocal laser scanning microscopy, showed an enhanced cellular uptake efficiency of the CS-VES micelles in MCF-7 cells compared with Taxol. The PTX-micelles exhibited a comparable but delayed cytotoxic effect compared with Taxol against MCF-7 cells, due to the sustained-release characteristics of the nanomicelles. More interestingly, blank nanomicelles based on CS-VES copolymer demonstrated significant cytotoxicity against MCF-7 cells.Conclusion: The supramolecular micellar aggregates based on CS-VES copolymer is a promising nanocarrier and efficacy enhancer when used as an anticancer drug-delivery system.Keywords: nanomicelles, cellular uptake, cytotoxicity

  16. Quinone diazides for olefin functionalization.

    Science.gov (United States)

    Dao, Hai T; Baran, Phil S

    2014-12-22

    The utility of quinone diazides in materials science is vast and well-documented, yet this potentially useful motif has languished in the annals of organic synthesis. Herein we show that modern tools of catalysis can be employed with free or suitably masked quinone diazides to unleash the power of these classic diazo compounds in the context of both inter- and intramolecular olefin cyclopropanation.

  17. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid copolymer for protein delivery

    Directory of Open Access Journals (Sweden)

    Chen X

    2014-05-01

    Full Text Available Xingtao Chen,1 Guoyue Lv,1 Jue Zhang,2 Songchao Tang,2 Yonggang Yan,1 Zhaoying Wu,2 Jiacan Su,2 Jie Wei2 1College of Physical Science and Technology, Sichuan University, Chengdu, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: A multi-(amino acid copolymer (MAC based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 µm to 79.7 µm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. Keywords: poly (amino acid copolymer, release, degradation

  18. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems...

  19. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M.(Lummus)

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort

  20. Flexible supercapacitor based on electrochemically synthesized pyrrole formyl pyrrole copolymer coated on carbon microfibers

    Science.gov (United States)

    Gholami, Mehrdad; Moozarm Nia, Pooria; Narimani, Leila; Sokhakian, Mehran; Alias, Yatimah

    2016-08-01

    The main objective of this work is to prepare a flexible supercapacitor using electrochemically synthesized pyrrole formyl pyrrole copolymer P(Py-co-FPy) coated on the carbon microfibers. Due to difficulties of working with carbon microfibers, glassy carbon was used to find out optimized conditions by varying mole ratio of pyrrole and formyl pyrrole monomers on the capacitance value. The prepared electrodes were characterized using Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FESEM), Brunauer-Emmett-Teller (BET) analysis, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Then the X-ray photoelectron spectroscopy (XPS) was used to characterize the optimized electrode. The specific capacitance is calculated using cyclic voltammetry, charge/discharge method, and impedance spectroscopy. The charge/discharge study reveals that the best specific capacitance is estimated to be 220.3 mF cm-2 for equal mole fraction of pyrrole and formyl pyrrole Py (0.1)-FP (0.1) at discharge current of 3 × 10-4 A. This optimized electrode keeps about 92% of its capacitance value in high current of discharging. The specific capacitances calculated by all the mentioned methods are in agreement with each other. Finally, the found optimized conditions were successfully applied to produce a flexible supercapacitor on the surface of carbon microfibers.

  1. Evaluation of zwitterionic polymersomes spontaneously formed by pH-sensitive and biocompatible PEG based random copolymers as drug delivery systems.

    Science.gov (United States)

    Laskar, Partha; Dey, Joykrishna; Ghosh, Sudip kumar

    2016-03-01

    The development of stimuli-responsive biocompatible polymersomes is important for the improvement of drug delivery systems. Herein, we report the spontaneous formation of polymersomes by three random copolymers, l-cys-graft-poly[GMA-co-mPEG300], containing different ratios of l-cysteine (Cys) and methoxy poly(ethylene glycol) (mPEG) covalently linked to the polymer backbone. Cysteine was conjugated to the polymeric backbone through metal free thiol-epoxy 'click' chemistry at final step. The copolymers, without having any typical hydrophobe in the backbone, are sufficiently surface active. The self-assembly formation of the copolymers was studied in aqueous solution by steady-state fluorescence probe technique. Spontaneous polymersomes formation, without any help of stimuli and organic solvent, above a relatively low critical aggregation concentration was confirmed by dynamic light scattering and microscopic techniques. Polymersomes were shown to be able to encapsulate not only hydrophilic dye in their aqueous core but also hydrophobic guest molecules in the bilayer membrane constituted by the mPEG chains. The polymersomes are sufficiently stable under physiological condition. These nano-sized polymersomes exhibit pH-triggered release of encapsulated guest under acidic pH. All three copolymers were found to be completely cell viable and hemocompatible up to very high concentration. Their ability to cross cell membrane was demonstrated by use of a fluorescent dye-tagged polymer. Further, these copolymers did not show any denaturising effect on the secondary structure of the human serum albumin, a transport protein in the blood. Based on the results of this study it is concluded that these spontaneously formed stable and biocompatible polymersomes can have potential use as drug delivery systems. PMID:26704991

  2. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  3. Effect of Olefins on Formation of Sulfur Compounds in FCC Gasoline

    Institute of Scientific and Technical Information of China (English)

    Tang Jinlian; Xu Youhao; Gong Jianhong; Wang Xieqing

    2008-01-01

    The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV) of 10 h-1, and a catalyst/oil ratio of 6. The results showed that C4-C6 olefins contained in the FCC gasoline could react with H2S to form predominantly thiophenes, alkyl-thiophenes as well as a fractional amount of thiols, while large molecular olefins such as heptene could react with hydrogen sulfide to form benzothiophenes. The amount of sulfur compounds formed at different tem-peratures over different catalysts were in proportion to the mass fractions of olefins in the feedstock,with the amount of sulfur compounds formed over REUSY catalyst exceeding those formed over the shape selective zeolite catalyst owing to the effect of catalyst performance and the impact of catalyst on the degree of olefin conversion. The amount of sulfur compounds generated and their increase reached a maximum at 450℃ and a minimum at 400℃ because of the influence of temperature on the thermody-namic and kinetic constants for formation of sulfur compound as well as on the olefin conversion degree.Based on the above-mentioned study, a reaction network and a model for prediction of sulfur com-pounds generated upon reaction of olefins in FCC gasoline with H2S were established.

  4. Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiao-Ming, E-mail: xiaomingzhou@tust.edu.cn

    2012-12-01

    A series of polyester copolymers was synthesized from 1,4-succinic acid with 1,4-butanediol and poly(ethylene glycol) through a two-step process of esterification and polycondensation in this article. The composition and physical properties of copolyesters were investigated via GPC, {sup 1}HNMR, DSC and PLM. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (T{sub m}), crystallization temperature (T{sub c}), and crystallinity (X{sub c}) of these copolyesters decreased gradually as the content of PEG unit increased. Otherwise, experimental results also showed that the contents of PEG in copolymers had an effect on the molecular weight, distribution, thermal properties, hydrolysis degradation properties, and crystalline morphology of polyester copolymers. - Graphical abstract: The composition of polyester copolymer was determined from the {sup 1}H NMR spectra using the relative intensities of the proton peaks. As a sample, the {sup 1}H NMR spectrum of polyester copolymer with 10 mol% of PEG is shown in Fig. 2: CO-(CH{sub 2}){sub 2}-CO; O-CH{sub 2}- and C-(CH{sub 2}){sub 2}-C from the SA and BD unit at {delta}2.59; {delta} 4.08 and {delta}1.67; O-(CH{sub 2}CH{sub 2}){sub n}-O from the PEG unit at {delta} 3.61. The molar composition of polyester copolymer was measured as the area ratio of {delta}3.61/({delta}4.08 + {delta}1.67) peak. The PEG unit is incorporated into the copolymers in an amount of about 9.12mol% less than that of the feed proportion. These results showed that the composition of the copolymers is in good agreement with that expected from the feed proportion. Highlights: Black-Right-Pointing-Pointer The introduction of PEG unit changed the flexibility of PBS main chain. Black-Right-Pointing-Pointer PEG unit did not alter the crystal form of PBS in copolymers. Black-Right-Pointing-Pointer PEG unit hindered the formation of ring-banded spherulite morphology in copolymers

  5. Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol)

    International Nuclear Information System (INIS)

    A series of polyester copolymers was synthesized from 1,4-succinic acid with 1,4-butanediol and poly(ethylene glycol) through a two-step process of esterification and polycondensation in this article. The composition and physical properties of copolyesters were investigated via GPC, 1HNMR, DSC and PLM. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (Tm), crystallization temperature (Tc), and crystallinity (Xc) of these copolyesters decreased gradually as the content of PEG unit increased. Otherwise, experimental results also showed that the contents of PEG in copolymers had an effect on the molecular weight, distribution, thermal properties, hydrolysis degradation properties, and crystalline morphology of polyester copolymers. - Graphical abstract: The composition of polyester copolymer was determined from the 1H NMR spectra using the relative intensities of the proton peaks. As a sample, the 1H NMR spectrum of polyester copolymer with 10 mol% of PEG is shown in Fig. 2: CO-(CH2)2-CO; O-CH2- and C-(CH2)2-C from the SA and BD unit at δ2.59; δ 4.08 and δ1.67; O-(CH2CH2)n-O from the PEG unit at δ 3.61. The molar composition of polyester copolymer was measured as the area ratio of δ3.61/(δ4.08 + δ1.67) peak. The PEG unit is incorporated into the copolymers in an amount of about 9.12mol% less than that of the feed proportion. These results showed that the composition of the copolymers is in good agreement with that expected from the feed proportion. Highlights: ► The introduction of PEG unit changed the flexibility of PBS main chain. ► PEG unit did not alter the crystal form of PBS in copolymers. ► PEG unit hindered the formation of ring-banded spherulite morphology in copolymers. ► The copolyesters had good in vitro degradation performance. ► The composition ratio of PEG unit can adjust the in vitro degradation performance.

  6. Structures and photoelectric properties of five benzotrithiophene isomers-based donor-acceptor copolymers

    Science.gov (United States)

    Cheng, Na; Ma, Yuchen; Liu, Yongjun; Zhang, Changqiao; Liu, Chengbu

    2016-04-01

    In this paper, we have investigated the structures, electronic and optical properties of five conjugated copolymers (BTT1-BTz, BTT2-BTz, BTT3-BTz, BTT4-BTz and BTT5-BTz) featuring benzotrithiophene (BTT) isomers as donor units and benzothiadiazole (BTz) as acceptor units, linked through thiophene spacers, employing many-body perturbation theory (MBPT). We have explored the isomer effects by configuration of the sulfur atoms in BTT units, aimed to get insight into how the structural modifications to the conjugated backbone can influence the molecular structures and electronic properties of conjugated polymers. Using the trimer as the computational model, the calculated low and high energy absorption bands (660 and 413 nm) for BTT1-BTz agree well with the experimental ones (645 and 430 nm) with a small offset of ~ 15 nm. On the basis of our calculations, it is found that the backbones of these polymers display different coplanarities, with the dihedral angles between the two neighboring rings varying from 12.3° to 79.0°. Importantly, both BTT1-BTz and BTT2-BTz exhibit intense adsorption around 660 and 623 nm, indicating their promising application in solar cells, whereas BTT3-BTz and BTT4-BTz display the intense adsorption at 569 and 551 nm, which are also usable in the tandem solar cells. BTT5-BTz has narrow and weak adsorption in the visible and infrared region, implying it is not conducive to the sunlight absorption. The blue shift of about 150 nm from BTT1-BTz to BTT5-BTz is suggested to be originated from the shorter effective conjugation lengths.

  7. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  8. Functionalization of olefins by alkoximidoylnitrenes

    Energy Technology Data Exchange (ETDEWEB)

    Subbaraj, A.; Rao, O.S.; Lwowski, W. (New Mexico State Univ., Las Cruces (USA))

    1989-08-04

    (N-Cyano- and N-(methylsulfonyl)alkoxycarbimidoyl)nitrenes, generated in situ from the corresponding azides by 300-nm UV light, convert a variety of olefins cleanly and stereospecifically to the corresponding aziridines. These can readily be hydrolyzed to N-unsubstituted aziridines or ring-opened to allylic isoureas. The nitrenes can also be generated by thermolysis at 80{degree}C. The azides add to norbornene to give triazolines, which lose nitrogen to give the exo-aziridines.

  9. EFFICIENT WHITE EMITTING COPOLYMERS BASED ON BIPOLAR FLUORENE-co-DIBENZOTHIOPHENE-S,S-DIOXIDE-co-CARBAZOLE BACKBONE

    Institute of Scientific and Technical Information of China (English)

    Lei Ying; Yan-hu Li; Cai-hong Wei; Min-quan Wang; Wei Yang; Hong-bin Wu; Yong Cao

    2013-01-01

    Efficient white light emitting polymers were synthesized based on poly(9,9-dioctylfluorene-co-dibenzothiopheneS,S-dioxide) as blue emitter and a bisphenylamine functionalized 2,1,3-benzothiadiazole (DPABT) as red emitter.It was found that the incorporation of hole-transporting carbazole moiety into polymer main chain could effectively reduce the hole injection barriers,which can lead to distinctly improved charge balance in the emissive layer.Additionally,the holetransporting carbazole units may form efficient bipolar host with electron-transporting dibenzothiophene-S,S-dioxide units.The white light emitting diodes based on single polymer PFSOCzDPABT showed the maximum luminous efficiency of 3.3 cd/A with the maximum luminance of 10282 cd/m2,and the luminous efficiency showed only 24% roll off at current density of 400 mA/cm2.These Commission Intemationale d'Enclairage (CIE) coordinates of the devices changed slightly with the driving voltages increasing from 8 V to 12 V,and were very close to National Television System Committee (NTSC) standard white light emission of (0.33,0.33).The results indicated that the incorporating bipolar host and low band gap DPABT unit was a promising way to achieve efficient single white light emitting copolymers.

  10. Rapid Identification and Quantification of Linear Olefin Isomers by Online Ozonolysis-Single Photon Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Xie, Yuanyuan; Chen, Ping; Hua, Lei; Hou, Keyong; Wang, Yongchao; Wang, Haiyan; Li, Haiyang

    2016-01-01

    The specific locations of the double bonds in linear olefins can facilitate olefin catalytic synthetic reactions to improve the quality of target olefin products. We developed a simple and efficient approach based on single photon ionization time-of-flight mass spectrometry (SPI-TOFMS) combined with online ozonolysis to identify and quantify the linear olefin double bond positional isomers. The online ozonolysis cleaved the olefins at the double bond positions that led to formation of corresponding characteristic aldehydes. The aldehydes were then detected by SPI-TOFMS to achieve unique spectrometric "fingerprints" for each linear olefin to successfully identify the isomeric ones. To accurately quantify the isomeric components in olefin mixtures, an algorithm was proposed to quantify three isomeric olefin mixtures based on characteristic ion intensities and their equivalent ionization coefficients. The relative concentration errors for the olefin components were lower than 2.5% while the total analysis time was less than 2 min. These results demonstrate that the online ozonolysis SPI-TOFMS has the potential for real-time monitoring of catalytic olefin synthetic reactions.

  11. Single-layer electroluminescent devices based on fluorene-1H-pyrazolo[3,4-b]quinoxaline co-polymers

    Science.gov (United States)

    Pokladko-Kowar, Monika; Danel, Andrzej; Chacaga, Łukasz

    2013-11-01

    A fluorene based copolymer was synthesized for electroluminescent application. To the main chain of polymer the nitrogen heterocyclic, 1H-pyrazolo[3,4-b]quinoxaline, unit was introduced. The incorporation of this derivative tuned the emission from the blue to yellow-green one. A simple, single layered device was fabricated with the configuration ITO/PEDOT/co-poly-FLU-PQX/Ca/Mg.

  12. Kit formulated asialoglycoprotein receptor targeting tracer based on copolymer for liver SPECT imaging

    International Nuclear Information System (INIS)

    Introduction: Specific targeting of galactose-carrying molecule to ASGP-R in normal hepatocytes has been demonstrated before. In this study, galactosyl polystyrene was synthesized from controllable ratio of functional monomers and radio-labelled with 99mTc by formulated kit for SPECT imaging of hepatic function. Methods: p(VLA-co-VNI)(46:54) was synthesized by free-radical copolymerization initiated by AIBN, purified by dialysis, lyophilized to kit with Tricine and TPPTS as co-ligands for 99mTc labeling. Radiotracer 99mTc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was prepared and evaluated by in vitro stability, in vivo metabolism, ex vivo biodistribution and microSPECT/CT imaging in normal KM mice. MicroSPECT/CT and microMRI imaging were also performed in C57BL/b6 mice with xenograft hepatic carcinoma for hepatic function evaluation. Results: 99mTc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was obtained in high radio chemical purity (RCP) (> 99%) by using instant kit without further purification and excellent in vitro and in vivo stability. The result of biodistribution showed that liver had high uptake (90.49 ± 10.68 ID%/g) at 30 min after injection and was blocked significantly by cold copolymer. MicroSPECT imaging in normal KM mice at 1 h and 4 h after injection showed good liver retention and targeting properties. Significant defect of activity was observed in the tumor site which was confirmed by MRI imaging. Conclusion: 99mTc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) with lower ratio of targeting moiety has no observable effect on the specific binding affinity and liver uptake. This makes it possible to introduce more imaging units for multi-modality imaging. Furthermore, the instant kit preparation of 99mTc-labeling provides great potential for the evaluation of hepatocyte function in clinical application

  13. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  14. SIMULTANEOUS SAXS/WAXS/DSC STUDIES ON MICROSTRUCTURE OF CONVENTIONAL AND METALLOCENE-BASED ETHYLENE-BUTENE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Jun-ting Xu; Bo-tao Li; Zhi-qiang Fan; Anthony J. Ryan

    2004-01-01

    The fractions of one metallocene-based (mPE) and one conventional (znPE) ethylene-butene copolymer eluted at 80-82℃ from temperature rising elution fractionation were selected for DSC and time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization. The DSC and WAXS results show that two crystal structures exist in both mPE and znPE: structure A with higher melting temperature and structure B with lower melting temperature. It was found that original znPE (s-znPE) contains more highly ordered structure A than original mPE (s-mPE)in spite of the higher comonomer content of znPE. Another structure C is also identified because of higher crystallinity measured by WAXS than by DSC and is attributed to the interfacial region. The SAXS data were analyzed with correlation function and two maxima were observed in s-mPE and s-znPE, in agreement with the conclusion of two crystal populations drawn from DSC and WAXS results. These two crystal populations have close long periods in s-mPE, but very different long periods in s-znPE. In contrast, freshly crystallized mPE and znPE (f-mPE and f-znPE) contain only a single crystal population with a broader distribution of long period.

  15. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery.

    Science.gov (United States)

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery.

  16. Synthesis and Photophysical Studies of Thiadiazole[3,4-c]pyridine Copolymer Based Organic Field-Effect Transistors.

    Science.gov (United States)

    Bathula, Chinna; Lee, Sang Kyu; Kalode, Pranav; Badgujar, Sachin; Belavagi, Ningaraddi S; Khazi, Imtiyaz Ahmed M; Kang, Youngjong

    2016-05-01

    A novel thiadiazolo[3,4-c]pyridine] based donor-acceptor (D-A) copolymer, poly[4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-[4,7-bis(4-(2-ethylhexyl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine] (PTBDTPT), containing triisopropylsilylethynyl(TIPS)benzo[1,2-b:4,5-b']dithiophene as a donor is synthesized by Stille polymerization reaction. All the important photo physical prerequisites for organic field-effect transistor (OFET) application such as strong and broad optical absorption, thermal stability, and compatible HOMO-LUMO levels can be accomplished and combined on one macromolecule. Optical band gap of the polymer was found to be 1.61 eV as calculated from its film onset absorption edge. The hole mobility of bottom gate OFET using the synthesized polymer as an active channel is found to be 1.92 X 10(-2) cm V(-1) s(-1) with the On/Off ratio of 25. The photophysical study suggests that PTBDTPT is promising candidate for future large area organic electronic applications.

  17. Facile Synthesis of Effcient and Selective Ruthenium Olefin Metathesis Catalysts with Sulfonate and Phosphate Ligands

    OpenAIRE

    Teo, Peili; Grubbs, Robert H.

    2010-01-01

    A series of novel, air-stable ruthenium NHC catalysts with sulfonate and phosphate anions have been prepared easily in one pot at high yields using commercially available precursors. The catalysts were found to be effective for ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis. The catalysts showed higher cis-selectivity in olefin cross-metathesis reactions as compared to earlier known ruthenium-based olefin metathesis catalysts, with allylbenzene and cis-1...

  18. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  19. Synthesis of Bio-Based Poly(lactic acid-co-10-hydroxy decanoate Copolymers with High Thermal Stability and Ductility

    Directory of Open Access Journals (Sweden)

    Dongjian Shi

    2015-03-01

    Full Text Available Novel bio-based aliphatic copolyesters, poly(lactic acid-co-10-hydroxy decanoate (P(LA-co-HDA, PLH, were successfully synthesized from lactic acid (LA and 10-hydroxycapric acid (HDA by a thermal polycondensation process, in the presence of p-toluenesulfonic acid (p-TSA and SnCl2·2H2O as co-catalyst. The copolymer structure was characterized by Fourier transform infrared (FTIR and proton nuclear magnetic resonance (1H NMR. The weight average molecular weights (Mw of PLH, from gel permeation chromatography (GPC measurements, were controlled from 18,500 to 37,900 by changing the molar ratios of LA and HDA. Thermogravimetric analysis (TGA results showed that PLH had excellent thermal stability, and the decomposition temperature at the maximum rate was above 280 °C. The glass transition temperature (Tg and melting temperature (Tm of PLH decreased continuously with increasing the HDA composition by differential scanning calorimetry (DSC measurements. PLH showed high ductility, and the breaking elongation increased significantly by the increment of the HDA composition. Moreover, the PLH copolymer could degrade in buffer solution. The cell adhesion results showed that PLH had good biocompatibility with NIH/3T3 cells. The bio-based PLH copolymers have potential applications as thermoplastics, elastomers or impact modifiers in the biomedical, industrial and agricultural fields.

  20. Mechanochemical ruthenium-catalyzed olefin metathesis.

    Science.gov (United States)

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  1. Synthesis of Dialkyl-substituted Terminal Olefin

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Dialkyl-substituted terminal olefins were synthesized from the coupling reaction of αt-olefins which were catalyzed by zirconocene dichloride/methylalumoxane (MAO) catalyst system under mild condition. High yield was gained and no other oligmer was detected. It was found that the ratio of Al/Zr is responsible for the selectivity of product.

  2. Mechanochemical ruthenium-catalyzed olefin metathesis.

    Science.gov (United States)

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid. PMID:25668586

  3. Team for Research on Methanol-to-Olefins Technology

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Olefins, traditionally derived from oil, are important basic materials for the modern chemical industry. To make olefins from coal rather than oil has been a dream and also a big challenge for scientists all over the world. The step from methanol to olefins is vital in the transformation from coal or natural gas to olefins,

  4. Improving the Performances of Random Copolymer Based Organic Solar Cells by Adjusting the Film Features of Active Layers Using Mixed Solvents

    Directory of Open Access Journals (Sweden)

    Xiangwei Zhu

    2015-12-01

    Full Text Available A novel random copolymer based on donor–acceptor type polymers containing benzodithiophene and dithienosilole as donors and benzothiazole and diketopyrrolopyrrole as acceptors was designed and synthesized by Stille copolymerization, and their optical, electrochemical, charge transport, and photovoltaic properties were investigated. This copolymer with high molecular weight exhibited broad and strong absorption covering the spectra range from 500 to 800 nm with absorption maxima at around 750 nm, which would be very conducive to obtaining large short-circuits current densities. Unlike the general approach using single solvent to prepare the active layer film, mixed solvents were introduced to change the film feature and improve the morphology of the active layer, which lead to a significant improvement of the power conversion efficiency. These results indicate that constructing random copolymer with multiple donor and acceptor monomers and choosing proper mixed solvents to change the characteristics of the film is a very promising way for manufacturing organic solar cells with large current density and high power conversion efficiency.

  5. Theoretical Investigation of Donor-Acceptor Copolymers Based on C-, Si-, and Ge-Bridged Thieno[3,2- b]dithiophene for Organic Solar Cell Applications

    Science.gov (United States)

    Liu, Xiaorui; Huang, Chengzhi; Shen, Wei; He, Rongxing; Li, Ming

    2016-10-01

    The aim of this work is to modify the electron-donating block in donor-acceptor (D-A) copolymers to improve their electronic and photophysical properties for organic solar cell (OSC) applications. Based on the reported polymer PCPDTTTTz (Pa1), which includes electron-rich cyclopenta[2,1- b:3,4- b']dithiophene (CPDT), electron-withdrawing tetrazine, and bridge thiophene, we substituted CPDT with electron-rich dithienocyclopentadithiophene, dithienosiloledithiophene, and dithienogermolodithiophene to design three D-A copolymers (Pa2 to Pa4). The calculation results indicate that Pa3 and Pa4 show lower highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and larger open-circuit voltage ( V oc) than Pa1. Polymers Pa2 to Pa4 exhibit better performance with stronger and wider optical absorption and good hole transport properties in comparison with Pa1. The predicted power conversion efficiencies for the designed polymers Pa2 to Pa4 in OSC applications are ˜5.7%, ˜5.9%, and 6.0%, respectively. These results clearly indicate that modifying the electron-donating block in D-A copolymers can effectively improve their electronic and photophysical properties and OSC performance. The designed polymers Pa2 to Pa4 may be promising donor candidates for OSC applications.

  6. Spectroelectrochemistry of aniline-o-aminophenol copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anwar-ul-Haq Ali [Institute fuer Chemie, AG Elektrochemie, Technische Universitaet Chemnitz, 09107 Chemnitz (Germany); Holze, Rudolf [Institute fuer Chemie, AG Elektrochemie, Technische Universitaet Chemnitz, 09107 Chemnitz (Germany)]. E-mail: rudolf.holze@chemie.tu-chemnitz.de

    2006-11-12

    Electroactive copolymers of aniline and o-aminophenol (OAP) with varying concentration ratios prepared by potential cycling in acidic aqueous solutions of the monomers on indium-doped tin oxide (ITO) coated glass and gold electrodes were studied with in situ UV-vis and Raman spectroscopy. Characteristic UV-vis and Raman features have been identified and their dependencies on the electrode potential are discussed. Spectroelectrochemical results reveal the formation of polyaniline-based copolymers at low concentration of OAP in the feed but incorporation of more OAP units into the copolymer with higher concentration of OAP in the comonomer feed. Spectroelectrochemical features are significantly different from those of both homopolymers.

  7. Medium area, flexible single and tandem junction solar cells based on roll coated semi-random copolymers

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Burkhart, Beate;

    2014-01-01

    We report on medium area (1 cm2) slot-die coated organic photovoltaic devices (OPVs) of a recently developed semi-random copolymer of poly-3-hexylthiophene and diketopyrrolopyrrole (P3HTT–DPP- 10%) mixed with phenyl-C61-butyric acid methyl ester ([60]PCBM). The devices were prepared using a compact...

  8. Simulation and optimization of the performance of organic photovoltaic cells based on capped copolymers for bulk heterojunctions

    Science.gov (United States)

    Mhamdi, A.; Boukhili, W.; Raissi, M.; Mahdouani, M.; Vignau, L.; Bourguiga, R.

    2016-08-01

    Recently many investigations have been done to improve the performance of solar cells photovoltaic. One of this devices developed is the Bulk Heterojunction (BHJ) solar cells based on poly (3-hexylthiophene) (P3HT)/[6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blend which have been fabricated by spin-coating. It is known that the nanostructure of the active layer of this device has an important impact on the photovoltaic performances. In this work, we analyze the results obtained on solar cells using a copolymer P3HT-b-PS based on poly (3-hexylthiophene) (P3HT) as a donor block and polystyrene (PS) as a soft block, their compatibility with the blend of P3HT/PCBM at various weight percentages (0%-5%). The addition of this weight percentage is in order to improve the performance of polymer solar cells. It has been demonstrated that the addition of a small amount of P3HT-b-PS (from 0.5%-1.5%) led to an increase in photovoltaic efficiency compared to devices made from P3HT/PCBM only. To study the impact of the added amount of the P3HT-b-PS on the performances of the fabricated organic cells, we used an equivalent circuit model based on single diode model with five photovoltaic parameters. Then, we extracted these physical parameters of the organic photovoltaic cells such as the saturation current density, the series and shunt resistances, the ideality factor and the photogenerated current density from the experimental characteristics (J-V) in the dark and under illumination. We proposed and developed the used procedure based on this model and we resolved the analytic equations of the density-current using the Lambert W-function. A good agreement between the theoretical model and the experimental data of electrical characteristics is obtained illustrating the enhancement of the addition of a small amount of P3HT-b-PS (≤1.5%) in the P3HT/PCBM blend on the characteristics of BHJ organic photovoltaic cells.

  9. Decarbonisation of olefin processes using biomass pyrolysis oil

    International Nuclear Information System (INIS)

    Highlights: • Decarbonization of olefin processes using biomass pyrolysis oil was proposed. • The decarbonization is based on integrated catalytic processing of bio-oil. • The retrofitted process features significant economic and environmental advantages. - Abstract: An imperative step toward decarbonisation of current industrial processes is to substitute their petroleum-derived feedstocks with biomass and biomass-derived feedstocks. For decarbonisation of the petrochemical industry, integrated catalytic processing of biomass pyrolysis oil (also known as bio-oil) is an enabling technology. This is because, under certain conditions, the reaction products form a mixture consisting of olefins and aromatics, which are very similar to the products of naphtha hydro-cracking in the conventional olefin processes. These synergies suggest that the catalytic bio-oil upgrading reactors can be seamlessly integrated to the subsequent separation network with minimal retrofitting costs. In addition, the integrated catalytic processing provides a high degree of flexibility for optimization of different products in response to market fluctuations. With the aim of assessing the techno-economic viability of this pathway, five scenarios in which different fractions of bio-oil (water soluble/water insoluble) were processed with different degrees of hydrogenation were studied in the present research. The results showed that such a retrofit is not only economically viable, but also provides a high degree of flexibility to the process, and contributes to decarbonisation of olefin infrastructures. Up to 44% reductions in greenhouse gas emissions were observed in several scenarios. In addition, it was shown that hydrogen prices lower than 6 $/kg will result in bio-based chemicals which are cheaper than equivalent petrochemicals. Alternatively, for higher hydrogen prices, it is possible to reform the water insoluble phase of bio-oil and produce bio-based chemicals, cheaper than

  10. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    Science.gov (United States)

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  11. A new method for preparation of α-olefin olefin metathesis%烯烃歧化制备α-烯烃新方法研究

    Institute of Scientific and Technical Information of China (English)

    王如文; 郑来昌; 杨小辉; 杨克

    2012-01-01

    制备了一种负载型Re基催化剂Re2O7/γ-Al2O3,用于直链内烯烃与乙烯歧化制备α-烯烃.结果表明,以C11~C12直链内烯烃为原料,反应温度60 ℃,反应体积空速1 h-1,反应压力3 MPa的条件下,C11~C12烯烃的单程转化率达到90.0%,歧化选择性达到85.98%.%Preparation of supported Re based catalysts modified Re2O7/λ-Al2O3 ,used in the preparation of a-olefin metathesis of olefins with ethylene in the straight chain internal olefins process. The results showed that to C11,to C12,a straight chain internal olefin as raw material, the reaction temperature of 60 ℃ ,the reaction volume airspeed 1 h-1, C11~C12 ,olefin-way conversion rate of 90.0% under the conditions of the reaction pressure 3 MPa,metathesis selectivity 85.98%.

  12. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    Science.gov (United States)

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh

    2011-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  13. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    Science.gov (United States)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  14. Silicone/Acrylate Copolymers

    Science.gov (United States)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  15. Analysis of degradation mechanisms in donor-acceptor copolymer based organic photovoltaic devices using impedance spectroscopy

    Science.gov (United States)

    Srivastava, S. B.; Sonar, P.; Singh, S. P.

    2016-09-01

    The stability of organic photovoltaic (OPV) devices in ambient conditions has been a serious issue which needs to be addressed and resolved timely. In order to probe the degradation mechanism in a donor-acceptor polymer PDPP-TNT: PC71BM bulk heterojunction based OPV devices, we have studied current density-voltage (J-V) behavior and impedance spectroscopy of fresh and aged devices. The current-voltage characteristic of optimized fresh devices exhibit a short circuit current density (J sc) of 8.9 mA cm-2, open circuit voltage (V oc) of 0.79 V, fill factor (FF) of 54.6%, and power conversion efficiency (PCE) of 3.8%. For aged devices, J sc, V oc, FF, and PCE were reduced to 57.3%, 89.8%, 44.3% and 23.7% of its initial value, respectively. The impedance spectra measured under illumination for these devices were successfully fitted using a CPE-based circuit model. For aged devices, the low-frequency response in impedance spectra suggests an accumulation of the photo-generated charge carriers at the interfaces which leads to a significant lowering in fill factor. Such degradation in device performance is attributed to the incorporation of oxygen and water molecules in devices. An increase in the recombination resistance indicates a deterioration of free charge carrier generation and conduction in devices.

  16. Synthesis and Properties of 1,8-Carbazole-Based Conjugated Copolymers

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Michinobu

    2010-07-01

    Full Text Available A new series of conjugated carbazole polymers based on the 1,8-carbazolylene unit was synthesized by the Pd-catalyzed polycondensation between the 1,8-diiodocarbazole derivative and various bifunctional counter comonomers. An alkyne spacer was found to be a key to increasing the molecular weight of the resulting polymers. All the obtained polymers showed good solubilities in the common organic solvents, and they were fully characterized by Gel permeation chromatography (GPC, and 1H NMR and infrared (IR spectroscopies. The UV-vis absorption and fluorescence spectra revealed the relationship between the chemical structure and effective conjugation length. The efficiency order of the carbazole connectivity was 2,7-carbazolylene > 1,8-carbazolylene > 3,6-carbazolylene. The electrochemical properties of these polymers suggested the relatively facile oxidation at ca. +0.5–0.7 V vs. Fc/Fc+ or a high potential as p-type semiconductors. The combination of the electrochemical oxidation potentials and the optical band gaps allowed us to estimate the HOMO and LUMO levels of the polymers. It was shown that the energy levels of the 1,8-carbazole-based conjugated polymers can be tunable by selecting the appropriate comonomer structures.

  17. The allylic chalcogen effect in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuya A. Lin

    2010-12-01

    Full Text Available Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  18. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value.

  19. The allylic chalcogen effect in olefin metathesis

    Science.gov (United States)

    Lin, Yuya A

    2010-01-01

    Summary Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications. PMID:21283554

  20. Deformation Behaviour During Cold Drawing of Nanocomposites Based on Single Wall Carbon Nanotubes and Poly(ether ester) Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez,J.; Garcia-Gutierrez, M.; Nogales, A.; Rueda, D.; Sanz, A.; Sics, I.; Hsiao, B.; Roslaniec, Z.; Broza, G.; Ezquerra, T.

    2007-01-01

    Relationships between the macroscopic deformation behaviour and microstructure of a pure (PBT-b-PTMO) block copolymer and a polymer nanocomposite (PBT-b-PTMO + 0.2 wt% SWCNT) were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS and WAXS) during tensile deformation using synchrotron radiation. The Young's modulus was found to be 15% higher for the nanocomposite than for the pure block copolymer as well as the yield strength, while the elongation-to-break was less than a half. This different behaviour can be explained by taking into account the different structural features revealed by SAXS and WAXS and thus considering that SWCNT act as anchors in the nanocomposite, sharing the applied stress with the PBT crystals and partially preventing the flexible, non-crystallisable PTMO chains to elongate.

  1. Synthesis and swelling peculiarities of new hydrogels based on the macromolecular reaction of anhydride copolymers with γ-aminopropyltriethoxysilane.

    Science.gov (United States)

    Timur, Mahir; Can, Hatice Kaplan

    2016-05-01

    This work describes the synthesis and macromolecular reactions of maleic anhydride (MA)-acrylamide (AAm) binary and MA-vinyl acetate (VA)- AAm ternary reactive copolymers with γ-aminopropyltriethoxysilane (APTS) as a polyfunctional crosslinker. Swelling parameters such as the start-time of the hydrogel-formation, initial rate of swelling, swelling rate constant, equilibrium swelling, and equilibrium water content (EWC) are determined for polymers/APTS/water systems with certain copolymer/crosslinker ratios (1.4/1 and 9/1). The formation of a hyperbranched network structure by the fragmentation of the side-chain reactive groups in the systems studied has also been confirmed by the Fourier Transform Infrared (FTIR) method. PMID:25761627

  2. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  3. Linear-g-hyperbranched and cyclodextrin-based amphiphilic block copolymer as a multifunctional nanocarrier.

    Science.gov (United States)

    Zhao, Yamei; Tian, Wei; Yang, Guang; Fan, Xiaodong

    2014-01-01

    In this paper, a novel, multifunctional polymer nanocarrier was designed to provide adequate volume for high drug loading, to afford a multiregion encapsulation ability, and to achieve controlled drug release. An amphiphilic, triblock polymer (ABC) with hyperbranched polycarbonsilane (HBPCSi) and β-cyclodextrin (β-CD) moieties were first synthesized by the combination of a two-step reversible addition-fragmentation transfer polymerization into a pseudo-one-step hydrosilylation and quaternization reaction. The ABC then self-assembled into stable micelles with a core-shell structure in aqueous solution. These resulting micelles are multifunctional nanocarriers which possess higher drug loading capability due to the introduction of HBPCSi segments and β-CD moieties, and exhibit controlled drug release based on the diffusion release mechanism. The novel multifunctional nanocarrier may be applicable to produce highly efficient and specialized delivery systems for drugs, genes, and diagnostic agents. PMID:25550733

  4. Linear-g-hyperbranched and cyclodextrin-based amphiphilic block copolymer as a multifunctional nanocarrier

    Directory of Open Access Journals (Sweden)

    Yamei Zhao

    2014-11-01

    Full Text Available In this paper, a novel, multifunctional polymer nanocarrier was designed to provide adequate volume for high drug loading, to afford a multiregion encapsulation ability, and to achieve controlled drug release. An amphiphilic, triblock polymer (ABC with hyperbranched polycarbonsilane (HBPCSi and β-cyclodextrin (β-CD moieties were first synthesized by the combination of a two-step reversible addition-fragmentation transfer polymerization into a pseudo-one-step hydrosilylation and quaternization reaction. The ABC then self-assembled into stable micelles with a core–shell structure in aqueous solution. These resulting micelles are multifunctional nanocarriers which possess higher drug loading capability due to the introduction of HBPCSi segments and β-CD moieties, and exhibit controlled drug release based on the diffusion release mechanism. The novel multifunctional nanocarrier may be applicable to produce highly efficient and specialized delivery systems for drugs, genes, and diagnostic agents.

  5. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery

    OpenAIRE

    Duan XP; Xiao JS; Yin Q; Zhang ZW; Mao SR; Li YP

    2012-01-01

    Xiaopin Duan,1,2 Jisheng Xiao,2 Qi Yin,2 Zhiwen Zhang,2 Shirui Mao,1 Yaping Li21School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, ChinaBackground and methods: A new amphiphilic comb-shaped copolymer (SP) was synthesized by conjugating poly(styrene-co-maleic anhydride) with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclea...

  6. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    DEFF Research Database (Denmark)

    Toušek, J.; Toušková, J.; Remeš, Z.;

    2015-01-01

    Measurements of electrical conductivity, electron work function, carrier mobility ofholes and the diffusion length of excitons were performed on samples of conjugatedpolymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazolebased conjugated copolymer (PBDTTHD − DTBTff......) was studied and benchmarkedagainst the reference polymer poly-3-hexylthiophene (P3HT).We employed,respectively, four electrode conductivity measurements, Kelvin probe work functionmeasurements, carrier mobility using charge extraction by linearly increasing voltage(CELIV) measurements and diffusion length...

  7. CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns

    International Nuclear Information System (INIS)

    A generic, CMOS compatible strategy for transferring a block copolymer template to a semiconductor substrate is demonstrated. An aluminum oxide (Al2O3) hard mask is selectively deposited by atomic layer deposition in an organized array of holes obtained in a PS matrix via PS-b-PMMA self-assembly. The Al2O3 nanodots act as a highly resistant mask to plasma etching, and are used to pattern high aspect ratio (>10) silicon nanowires and nanopillars.

  8. Apatite-forming ability of vinylphosphonic acid-based copolymer in simulated body fluid: effects of phosphate group content.

    Science.gov (United States)

    Hamai, Ryo; Shirosaki, Yuki; Miyazaki, Toshiki

    2016-10-01

    Phosphate groups on materials surfaces are known to contribute to apatite formation upon exposure of the materials in simulated body fluid and improved affinity of the materials for osteoblast-like cells. Typically, polymers containing phosphate groups are organic matrices consisting of apatite-polymer composites prepared by biomimetic process using simulated body fluid. Ca(2+) incorporation into the polymer accelerates apatite formation in simulated body fluid owing because of increase in the supersaturation degree, with respect to apatite in simulated body fluid, owing to Ca(2+) release from the polymer. However, the effects of phosphate content on the Ca(2+) release and apatite-forming abilities of copolymers in simulated body fluid are rather elusive. In this study, a phosphate-containing copolymer prepared from vinylphosphonic acid, 2-hydroxyethyl methacrylate, and triethylene glycol dimethacrylate was examined. The release of Ca(2+) in Tris-NaCl buffer and simulated body fluid increased as the additive amount of vinylphosphonic acid increased. However, apatite formation was suppressed as the phosphate groups content increased despite the enhanced release of Ca(2+) from the polymer. This phenomenon was reflected by changes in the surface zeta potential. Thus, it was concluded that the apatite-forming ability of vinylphosphonic acid-2-hydroxyethyl methacrylate-triethylene glycol dimethacrylate copolymer treated with CaCl2 solution was governed by surface state rather than Ca(2+) release in simulated body fluid. PMID:27585911

  9. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride with low molecular weight polyethylenimine for efficient gene delivery

    Directory of Open Access Journals (Sweden)

    Duan XP

    2012-09-01

    Full Text Available Xiaopin Duan,1,2 Jisheng Xiao,2 Qi Yin,2 Zhiwen Zhang,2 Shirui Mao,1 Yaping Li21School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, ChinaBackground and methods: A new amphiphilic comb-shaped copolymer (SP was synthesized by conjugating poly(styrene-co-maleic anhydride with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer.Results: The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV and a small particle size (130–200 nm at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines.Conclusion: This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery.Keywords: poly(styrene-co-maleic anhydride, polyethylenimine, DNA, gene delivery

  10. Impact of structural changes on dielectric and thermal properties of vinylidene fluoride–trifluoroethylene-based terpolymer/copolymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Casar, G. [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Li, X. [Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Malič, B. [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Zhang, Q.M. [Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Bobnar, V., E-mail: vid.bobnar@ijs.si [Jožef Stefan Institute and Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-03-15

    We report dielectric and thermal properties of the poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer [P(VDF–TrFE–CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] blended with the ferroelectric poly(vinylidene fluoride–trifluoroethylene) copolymer, P(VDF–TrFE). Although the differential scanning calorimetry (DSC) clearly reveals that both components form separate crystalline phases, at low copolymer content blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, dielectric experiments evidence that in blends with 20–50 wt% of P(VDF–TrFE) the ferroelectric and relaxor states coexist. This coexistence is confirmed by DSC results, which further reveal the influence of blending on the terpolymer crystallinity and melting point. At last, the crystallinity data appropriately explain the variation of the dielectric constant in P(VDF–TrFE–CFE)/P(VDF–TrFE) blends.

  11. Impact of structural changes on dielectric and thermal properties of vinylidene fluoride-trifluoroethylene-based terpolymer/copolymer blends

    Science.gov (United States)

    Casar, G.; Li, X.; Malič, B.; Zhang, Q. M.; Bobnar, V.

    2015-03-01

    We report dielectric and thermal properties of the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer [P(VDF-TrFE-CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] blended with the ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer, P(VDF-TrFE). Although the differential scanning calorimetry (DSC) clearly reveals that both components form separate crystalline phases, at low copolymer content blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, dielectric experiments evidence that in blends with 20-50 wt% of P(VDF-TrFE) the ferroelectric and relaxor states coexist. This coexistence is confirmed by DSC results, which further reveal the influence of blending on the terpolymer crystallinity and melting point. At last, the crystallinity data appropriately explain the variation of the dielectric constant in P(VDF-TrFE-CFE)/P(VDF-TrFE) blends.

  12. Biomineralization behavior of a vinylphosphonic acid-based copolymer added with polymerization accelerator in simulated body fluid

    Directory of Open Access Journals (Sweden)

    Ryo Hamai

    2015-12-01

    Full Text Available Apatite-polymer composites have been evaluated in terms of its potential application as bone substitutes. Biomimetic processes using simulated body fluid (SBF are well-known methods for preparation of such composites. They are reliant on specific functional groups to induce the heterogeneous apatite nucleation and phosphate groups possess good apatite-forming ability in SBF. Improving the degree of polymerization is important for obtaining phosphate-containing polymers, because the release of significant quantities of monomer or low molecular weight polymers can lead to suppression of the apatite formation. To date, there have been very few studies pertaining to the effect of adding a polymerization accelerator to the polymerization reaction involved in the formation of these composite materials under physiological conditions. In this study, we have prepared a copolymer from triethylene glycol dimethacrylate and vinylphosphonic acid (VPA in the presence of different amounts of sodium p-toluenesulfinate (p-TSS as a polymerization accelerator. The effects of p-TSS on the chemical durability and apatite formation of the copolymers were investigated in SBF. The addition of 0.1–1.0 wt% of p-TSS was effective for suppressing the dissolution of the copolymers in SBF, whereas larger amount had a detrimental effect. A calcium polyvinylphosphate instead of the apatite was precipitated in SBF.

  13. Olefin Metathesis for Chemical Biology

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2009-01-01

    Summary Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  14. Olefin metathesis for chemical biology.

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  15. Retrofit with membrane the Paraffin/Olefin separation

    Energy Technology Data Exchange (ETDEWEB)

    Motelica, A.; Bruinsma, O.S.L.; Kreiter, R.; Den Exter, M.J.; Vente, J.F. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-10-15

    Olefins, such as ethylene, propylene, and butadiene, are among the most produced intermediates in petrochemical industry. They are produced from a wide range of hydrocarbon feedstocks (ethane, propane, butane, naphtha, gas oil) via a cracking process. The last step in this process is the separation of olefins from other hydrocarbons, which is traditionally performed with distillation. As the physicochemical properties, such as volatility and boiling point, of the compounds are very similar, the purification becomes capital and energy intensive. For example, the top of an ethylene/ethane distillation column needs to be chilled to -30C and this requires large amount of electric energy consumption. The separation of butadiene from the C4-fraction is performed with the aid of an additional solvent. This solvent has to be regenerated at the cost of additional high temperature steam. To overcome these separation disadvantages of olefin/paraffin separation, different separation methods have been investigated and proposed in recent years. Suggested options are based on better heat integration of the overall process, or on novel separation systems such as Heat Integrated Distillation Columns, membrane separation, adsorption-desorption systems or on hybrid separation methods, for example, distillation combined with membrane separation.

  16. Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability

    OpenAIRE

    Guan, Jianjun; Hong, Yi; Ma, Zuwei; Wagner, William R.

    2008-01-01

    A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide–hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 °C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited ...

  17. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  18. Unconventional Routes for the Enhancement of the Efficiency of Dye-Sensitized Solar Cells (DSSCs) Based on Self-Assembled Block Copolymer Nanotemplates

    Science.gov (United States)

    Jang, Yoonhee; Kim, Dongha

    2013-03-01

    We introduce distinctly different and creative two strategies for improving the efficiency of TiO2-based DSSCs by incorporation of tailored hybrid nanostrcutures prepared from self-assembled block copolymer nanotemplates. Firstly, carbonized TiO2 thin layer was incorporated into at the interface either between the transparent electrode and TiO2 NP layers or between the electrolyte and TiO2 NP layers. Massively-ordered arrays of TiO2 dots embedded in carbon matrix were fabricated via direct carbonization of UV-stabilized PS- b-P4VP block copolymer films containing TiO2 sol-gel precursors. DSSCs containing carbon/TiO2 thin layers exhibited remarkably enhanced overall power conversion efficiency compared with DSSCs based on neat TiO2 NPs. Secondly, we introduce a new class of organic/inorganic 1D photonic crystals exhibiting stop bands in the specific wavelength range, which was created by stepwise layer-by-layer deposition of UV-crosslinked BCP reverse micelle layers. The simple yet novel 1D layered BCP films have been introduced into the back-side of the counter electrodes as light reflector in DSSCs system to increase the light harvesting of dye.

  19. Mechanism Analysis on Viscosity Degradation of Poly α-Olefin Aviation Lubricating Base Oil%聚α-烯烃航空润滑油基础油黏度衰变机理分析

    Institute of Scientific and Technical Information of China (English)

    费逸伟; 郭峰; 姚婷; 杨宏伟; 郭青鹏

    2015-01-01

    以聚α-烯烃(PAO)基础油、2,6-二叔丁基对甲酚(T501)和 p,p’-二异辛基二苯胺(Tz516)混合油样为研究对象,运用高温高压反应釜装置,模拟航空发动机工作环境,测定不同温度反应后的运动黏度,借助 GC/MS 现代检测手段,根据检测到的产物分布,从分子水平推测 PAO 基础油的黏度衰变机理。结果表明,高温环境中,基础油主要发生了热裂解和热氧化等反应,其中分子链的断裂是最主要的反应,产生链长较短的正构烷烃、异构烷烃和烯烃,使分子间作用力减弱,进而降低油样的运动黏度。抗氧剂 T501和 Tz516的加入能够极大地延缓了基础油的黏度降解。%Under stimulated aeroengine working condition in high temperature and high pressure reaction kettle, the kinematic viscosity of poly-α-olefin (PAO) aviation lubricating base oil with 2,6 ditbutyl-p-cresol (T501) and p,p'-diisooctyl diphenylamine (Tz516) after the reaction at different temperature was determined. Meanwhile, the composition and structure of reacted samples were detected by gas chromatography/mass spectrometry (GC/MS) to investigate the mechanism of viscosity degradation. The results show that, under high temperature, pyrolysis and thermal oxidation of the aviation lubricating base oil can happen, the breakage of molecular chain can produce n-alkanes, iso-paraffins and olefins, which will cause intermolecular force reduce to decrease the kinematic viscosity. In addition, adding T501 and Tz516 can prevent the thermal oxidation of PAO significantly.

  20. Synthesis of interlocked molecules by olefin metathesis

    Science.gov (United States)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  1. Efficient White Light Emission Using a Single Copolymer with Red and Green Chromophores on a Conjugated Polyfluorene Backbone Hybridized with InGaN-Based Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; HOU Qiong; NIU Qiao-Li; ZHENG Shu-Wen; LI Shu-Ti; HE Miao; FAN Guang-Han

    2009-01-01

    We report an efficient white-light emission based on a single copolymer/InGaN hybrid light-emitting diode.The single copolymer consists of a conjugated polyfluorene backbone by incorporating 2,1,3-benzothiadiazole (BT) and 4, 7-bis(2-thienyl)-2,1,3-benzothiadiazole (DBT) as green and red light-emitting units, respectively. For the single eopolymer/lnGaN hybrid device, the Commission Internationale de l'Eclairage (CIE) coordinates,color temperature Tc and color rendering index Ra at 20mA are (0.323,0.329), 5960K and 86, respectively.In comparison with the performance of red copolymer PFO-DBT15 (DOF:DBT=85:15 with DOF being 9'9-dioctylfluorene) and green copolymer PFO-BT35 (DOF:BT=65:35) blend/InGaN hybrid white devices, it is concluded that the chemically doped copolymer hybridized device shows a higher emission intensity and spectral stability at a high driving current than the polymer blend.

  2. Copper(II complex of (±trans-1,2-cyclohexanediamine azo-linked Schiff base ligand encapsulated in nanocavity of zeolite-Y for the catalytic oxidation of olefins

    Directory of Open Access Journals (Sweden)

    Lashanizadegan Maryam

    2016-01-01

    Full Text Available A Schiff base ligand derived from 4-(benzeneazo salicylaldehyde and (±trans-1,2-cyclohexanediamine (H2L and its corresponding Cu(II complex (CuL has been synthesized and characterized by FT-IR, UV-VIS and 1H NMR. The copper Schiff base complex encapsulated in the nanopores of zeolite-Y (CuL-Y by flexible ligand method and its encapsulation have been ensured by different studies. The homogeneous and its corresponding heterogeneous catalysts have been used for oxidation of different alkenes with tert-butyl hydroperoxide. Under the optimized reaction conditions, the oxidation of cyclooctene, cyclohexene, styrene and norbornene catalyzed by CuL gave 89, 63, 46 and 13% conversion, respectively. These olefins were oxidized efficiently with 50, 96, 96 and 92% conversion in the presence of CuL-Y, respectively. Comparison of the catalytic behavior of CuL and CuL-Y showed the higher catalytic activity and selectivity of the heterogeneous catalyst with respect to the homogenous one.

  3. CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G; Grampeix, H; Martin, F; Jalaguier, E; De Salvo, B [CEA LETI MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Baron, T; Agraffeil, C; Salhi, B; Chevolleau, T; Cunge, G; Tortai, J-H, E-mail: guillaume.gay@cea.fr, E-mail: thierry.baron@cea.fr [CNRS-LTM, 17 rue des Martyrs, 38054 Grenoble (France)

    2010-10-29

    A generic, CMOS compatible strategy for transferring a block copolymer template to a semiconductor substrate is demonstrated. An aluminum oxide (Al{sub 2}O{sub 3}) hard mask is selectively deposited by atomic layer deposition in an organized array of holes obtained in a PS matrix via PS-b-PMMA self-assembly. The Al{sub 2}O{sub 3} nanodots act as a highly resistant mask to plasma etching, and are used to pattern high aspect ratio (>10) silicon nanowires and nanopillars.

  4. 温度及pH双敏感性的新型接枝共聚物%Synthesis and Characterization of Novel Temperature and pH Responsive Hydroxylpropyl Cellulose-based Graft Copolymers

    Institute of Scientific and Technical Information of China (English)

    李小军; 尹明辉; 张国亮; 张风宝

    2009-01-01

    In this study, double-hydrophilic hydroxylpropyl cellulose (HPC) based copolymers with poly(Nisopropylaerylamide) (PNIPAM) and poly(acrylic acid) (PAA) as graft chains were synthesized and characterized. The release behavior of drug-loaded micelles was studied. The results show that the hydrophilicity of copolymers improves as the pH increases, whereas the hydrophobicity of copolymers enhances as the temperature increases, and all the phase behaviors are reversible. The diameter of micelles decreases and then increases with pH increase. It shows different micellizing behavior under acidic and basic conditions according to the temperature increase. In vitro release experiments, which used theophylline as a model drug, show that the micelles enhance pH sensitivity in the release process.

  5. Synthesis and characterization of an electrochromic copolymer based on 2,2':5',2″-terthiophene and 3,4-ethylenedioxythiophene

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Jeong, Haesang; You, Jung-Min; Jeon, Seungwon

    2012-06-01

    A new electrochromic copolymer of 2,2':5',2″-terthiophene (TT) with 3,4-ethylenedioxythiophene (EDOT) was synthesized in 0.1 M tetrabutylammonium perchlorate as supporting electrolyte and characterizations of the resulting copolymer P(TT-co-EDOT) performed by cyclic voltammetry, UV-vis spectroscopy, scanning electron microscopy, fourier transform infrared spectroscopy, nuclear magnetic resonance and thermal analysis. Spectroelectrochemical investigations showed that the copolymer film has electrochromic properties. It showed five different colors at various potentials (sky blue, gray, light purple, blues violet and dark blues violet). Double potential step chronoamperometry experiment illustrated that copolymer film had good stability, fast switching time and high optical contrast. At the neutral state of the copolymer λmax was found at 500 nm and E g was calculated as 1.63 eV. The copolymer film showed a maximum optical contrast of 54% at 1,100 nm with a short response time.

  6. Synthesis of Z-alkenes from Rh(I)-catalyzed olefin isomerization of β,γ-unsaturated ketones.

    Science.gov (United States)

    Zhuo, Lian-Gang; Yao, Zhong-Ke; Yu, Zhi-Xiang

    2013-09-20

    Developing olefin isomerization reactions to reach kinetically controlled Z-alkenes is challenging because formation of trans-alkenes is thermodynamically favored under the traditional catalytic conditions using acids, bases, or transition metals as the catalysts. A new synthesis of Z-alkenes from Rh(I)-catalyzed olefin isomerization of β,γ-unsaturated ketones to α,β-unsaturated ketones was developed, providing an easy and efficient way to access various Z-enones.

  7. Olefin metathesis : tapping into breakthrough chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2010-06-15

    Olefin metathesis is a catalyst technology where 2 double bond-containing molecules or olefins are split in order to exchange atoms and result in the formation of 2 new molecules or substances. Earlier researchers used a variety of materials to convert propylene into a mixture of butenes and ethylenes. A method developed by Shell researchers produces linear olefins used as detergent feedstocks. In 1971, scientists used a metal-carbene catalyst to react with the olefins to produce both a new olefin and a new metal carbene in order to perpetuate the process. In 2002, a new metathesis technology was developed using renewable natural oils as a feedstock. The catalyst is introduced as a solid into the oil, and then agitated by stirring. The modified oil is then reacted with hydrogen to remove the double bonds and filter off the catalyst. The method is offered on a contract basis by Elevance Renewable Sciences in a variety of application. The process was designed to take place at lower temperatures with the release of fewer greenhouse gases (GHGs). New metathesis technologies are also being developed to reduce the molecular weight of polymers in order to reduce viscosity and increase flow. 3 figs.

  8. Tunable Nanocarrier Morphologies from Glycopolypeptide-based Amphiphilic Biocompatible Star Copolymers and Their Carbohydrate Specific Intracellular Delivery

    KAUST Repository

    Pati, Debasis

    2015-12-21

    Nano-carriers with carbohydrates on the surface represent a very interesting class of drug delivery vehicles since carbohydrates are involved in bio-molecular recognition events in vivo. We have synthesized biocompatible miktoarm star copolymers comprising glycopolypeptide and poly(ε-caprolactone) chains, using ring opening polymerization and ‘click chemistry’. The amphiphilic copolymers were self-assembled in water into morphologies such as nanorods, polymersomes and micelles with carbohydrates displayed on the surface. We demonstrate that, the formation of nanostructure could be tuned by chain length of the blocks and was not affected by the type of sugar residue. These nanostructures were characterized in detail using a variety of techniques such as TEM, AFM, cryogenic electron microscopy, spectrally resolved fluorescence imaging and dye encapsulation techniques. We show that it is possible to sequester both hydrophobic as well as hydrophilic dyes within the nanostructures. Finally, we show that these non-cytotoxic manno-sylated rods and polymersomes were selectively and efficiently taken up by MDA-MB-231 breast cancer cells demonstrating their potential as nanocarriers for drug delivery.

  9. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhefan; Huang Jingyi; Liu Jing; Cheng Sixue; Zhuo Renxi; Li Feng, E-mail: lfsj2004@hotmail.com [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072 (China)

    2011-08-19

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-({omega}-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l{sup -1}.

  10. Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl cellulose via ionic assembly.

    Science.gov (United States)

    Chen, Nusheng; Tong, Zhaohui; Yang, Weihua; Brennan, Anthony B

    2015-09-01

    Biocomposites with tunable properties were successfully prepared through ionic assembly between anionic carboxymethyl cellulose (CMC) and cationic copolymers (quaternized poly(l-lactide)-block-poly N,N-dimethylamino-2-ethyl methacrylate) (PLA-b-PDMAEMA). The quaternized PDMAEMA segment not only works as a compatibilizer between hydrophilic CMC and hydrophobic PLA, but also acts as a lubricant between these two rigid biopolymers. The (1)H NMR (nuclear magnetic resonance) spectra demonstrated successful synthesis of PLA-b-PDMAEMA with controlled molecular weight of PDMAEMA segment. The results from scanning electronic microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) verified the interaction between quaternized copolymer micelles and anionic CMC networks. The resultant biocomposite could form a transparent and uniform film after casting. Both storage moduli and maximum degradation temperature of PLA/CMC composites were increased with the reduction of molecular weight of PDMAEMA segments. It suggests that the properties of biocomposite materials can be tailored by adjusting the chain length of inclusive PDMAEMA segment. PMID:26005147

  11. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    Science.gov (United States)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  12. A Comparison of the Performance of the Semiempirical PM6 Method Versus DFT Methods in Ru-Catalyzed Olefin Metathesis

    Science.gov (United States)

    Correa, Andrea; Poater, Albert; Ragone, Francesco; Cavallo, Luigi

    In this work we compare the performance of the semiempirical PM6 method with a more accurate DFT method when applied to Ru-catalyzed olefin metathesis. We demonstrate that the PM6 method reproduces with interesting accuracy the geometries located with a DFT approach. As for the energetics, the relative DFT stability of the metallacycle with respect to the coordination intermediate is reproduced with reasonable accuracy by the PM6 method, whereas the olefin coordination energy and the energy barrier of the metathesis step are overestimated. Further, for the same system we performed a PM6-based meta-dynamics study of the olefin metathesis reaction, which indicated a reasonable good behavior of the system also under dynamic conditions. In conclusion, the obtained results validate the use of the semiempirical PM6 method for preliminary and computationally fast screening on new ligands/substrates in Ru catalyzed olefin metathesis.

  13. Thermally Stable, Latent Olefin Metathesis Catalysts

    Science.gov (United States)

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  14. Thermally Stable, Latent Olefin Metathesis Catalysts.

    Science.gov (United States)

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  15. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars;

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s...

  16. Siloxane modified polyurea and polyurethane urea segmented copolymers

    OpenAIRE

    Kim, Regina H.

    1989-01-01

    High molecular weight polyether urea copolymers were synthesized using perfectly difunctional aromatic amine terminated polypropylene oxide (PPO) (2800 ) prepared via aluminum porphorin initiated coordination polymerization. The resulting segmented copolymer showed much higher tensile strength and better thermal stability than polyureas based on commercial PPO which contains some terminal unsaturation. This was attributed to the achievement of both higher molecular weight and t...

  17. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.

    Science.gov (United States)

    Dornan, Peter K; Lee, Daniel; Grubbs, Robert H

    2016-05-25

    A tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted. This olefin stereochemistry then controls the THF diol stereochemistry through a highly stereospecific oxidative cyclization. PMID:27133576

  18. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.

    Science.gov (United States)

    Dornan, Peter K; Lee, Daniel; Grubbs, Robert H

    2016-05-25

    A tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted. This olefin stereochemistry then controls the THF diol stereochemistry through a highly stereospecific oxidative cyclization.

  19. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    Science.gov (United States)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  20. The Olefin Metathesis Reactions in Dendrimers

    Science.gov (United States)

    Astruc, Didier

    Dendrimers containing terminal olefins or ruthenium-benzylidene terminal groups undergo olefin metathesis reactions (RCM and ROMP types), and essentially results from our group are reviewed here. Dendrimers have been loaded at their periphery with ruthenium-chelating bis-phosphines, which leads to the formation of dendrimer-cored stars by ring-opening-metathesis polymerization (ROMP). CpFe+-induced perallylation of polymethylaromatics (Cp = η5-C5H5) followed by ring-closing metathesis (RCM) and/or cross metathesis (CM) leads to poly-ring, cage, oligomeric and polymeric architectures. In the presence of acrylic acid or metha-crylate, stereospecific CM inhibits oligomerization, and dendritic olefins yield polyacid dendrimers. Finally, cros-metahesis reactions with dendronic acrylate allow dendritic construction and growth.

  1. Thermochemical study of 1-acetyl vinyl p-nitrobenzoate: vinyl bond enthalpy in captodative olefins.

    Science.gov (United States)

    Rojas, Aarón; Valdés-Ordoñez, Alejandro; Martínez-Herrera, Melchor; Torres, Luis Alfonso; Campos, Myriam; Hernández-Obregón, Javier; Herrera, Rafael; Tamariz, Joaquín

    2015-05-21

    Captodative olefins are highly reactive and selective substrates in Diels-Alder and 1,3-dipolar cycloadditions. Seeking an explanation of this fact based on molecular energetics, the thermochemical analysis of 1-acetyl vinyl p-nitrobenzoate, a captodative olefin, has been performed using semi-micro-combustion calorimetry, effusion measurements through a quartz crystal microbalance, and differential scanning calorimetry. The molar standard combustion energy and enthalpy as well as the molar standard formation enthalpy are reported along with sublimation and melting enthalpies. From these data, experimental formation enthalpy of the gas-phase is derived and compared with the theoretical value calculated through the density functional theory procedure. The olefinic bond enthalpy is also computed from experimental data, and the relevance of the results is discussed.

  2. Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene transfection.

    Science.gov (United States)

    Zhu, Caihong; Zheng, Meng; Meng, Fenghua; Mickler, Frauke Martina; Ruthardt, Nadia; Zhu, Xiulin; Zhong, Zhiyuan

    2012-03-12

    Reversibly shielded DNA polyplexes based on bioreducible poly(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA) triblock copolymers were designed, prepared and investigated for in vitro gene transfection. Two PDMAEMA-SS-PEG-SS-PDMAEMA copolymers with controlled compositions, 6.6-6-6.6 and 13-6-13 kDa, were obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN-SS-PEG-SS-CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate; PEG: 6 kDa) as a macro-RAFT agent. Like their nonreducible PDMAEMA-PEG-PDMAEMA analogues, PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers could effectively condense DNA into small particles with average diameters less than 120 nm and close to neutral zeta potentials (0 ∼ +6 mV) at and above an N/P ratio of 3/1. The resulting polyplexes showed excellent colloidal stability against 150 mM NaCl, which contrasts with polyplexes of 20 kDa PDMAEMA homopolymer. In the presence of 10 mM dithiothreitol (DTT), however, polyplexes of PDMAEMA-SS-PEG-SS-PDMAEMA were rapidly deshielded and unpacked, as revealed by significant increase of positive surface charges as well as increase of particle sizes to over 1000 nm. Release of DNA in response to 10 mM DTT was further confirmed by gel retardation assays. These polyplexes, either stably or reversibly shielded, revealed a low cytotoxicity (over 80% cell viability) at and below an N/P ratio of 12/1. Notably, in vitro transfection studies showed that reversibly shielded polyplexes afforded up to 28 times higher transfection efficacy as compared to stably shielded control under otherwise the same conditions. Confocal laser scanning microscope (CLSM) studies revealed that reversibly shielded polyplexes efficiently delivered and released pDNA into the perinuclei region as well as nuclei of COS-7 cells. Hence, reduction-sensitive reversibly shielded DNA

  3. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid-grafted-chitosan copolymer for ocular delivery of amphotericin B

    Directory of Open Access Journals (Sweden)

    Zhou WJ

    2013-09-01

    Full Text Available Wenjun Zhou,1 Yuanyuan Wang,2 Jiuying Jian,2 Shengfang Song1 1Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, People’s Republic of China; 2College of Life Science, Chongqing Medical University, Chongqing, People’s Republic of China Background: The purpose of this study was to develop a self-aggregated nanoparticulate vehicle using an amphiphilic poly(lactic acid-grafted-chitosan (PLA-g-CS copolymer and to evaluate its potential for ocular delivery of amphotericin B. Methods: A PLA-g-CS copolymer was synthesized via a “protection-graft-deprotection” procedure and its structure was confirmed by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra. Amphotericin B-loaded nanoparticles based on PLA-g-CS (AmB/PLA-g-CS were prepared by the dialysis method and characterized for particle size, zeta potential, and encapsulation efficiency. Studies of these AmB/PLA-g-CS nanoparticles, including their mucoadhesive strength, drug release properties, antifungal activity, ocular irritation, ocular pharmacokinetics, and corneal penetration were performed in vitro and in vivo. Results: Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra showed that the PLA chains were successfully grafted onto chitosan molecules and that crystallization of chitosan was suppressed. The self-aggregated PLA-g-CS nanoparticles had a core-shell structure with an average particle size of approximately 200 nm and zeta potentials higher than 30 mV. Amphotericin B was incorporated into the hydrophobic core of the nanoparticles with high encapsulation efficiency. Sustained drug release from the nanoparticles was observed in vitro. The ocular irritation study showed no sign of irritation after instillation of the PLA-g-CS nanoparticles into rabbit eyes. The minimal inhibitory concentration of the AmB/PLA-g-CS nanoparticles showed antifungal

  4. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Directory of Open Access Journals (Sweden)

    Deppermann Nina

    2007-12-01

    Full Text Available Abstract Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles.

  5. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Science.gov (United States)

    Maison, Wolfgang; Büchert, Marina; Deppermann, Nina

    2007-01-01

    Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles. PMID:18088413

  6. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  7. LITHIUM ION CONDUCTING POLYMER ELECTROLYTES BASED ON ALTERNATING MALEIC ANHYDRIDE COPOLYMER WITH OLIGO-OXYETHYLENE SIDE CHAINS

    Institute of Scientific and Technical Information of China (English)

    DING Liming

    1996-01-01

    A comb polymer with oligo-oxyethylene side chains of the type -(CH2CH2O)12CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly (ethylene glycol) methyl ether. The polymer can dissolve LiClO4 salt to form homogeneous amorphous polymer electrolyte. The ac ion conduction was measured using the complex impedance method, and conductivities were investigated as functions of temperatures and salt concentration. The complexes were first found to have two classes of glass transition which increase with increasing salt content. The optimum conductivity attained at 25℃ is in the order of 5.50 × 10-6Scm-1. IR spectroscopy was used to study the cation-polymer interaction.

  8. Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications

    KAUST Repository

    Mondal, Rajib

    2009-08-11

    Dithiophene and fluorene co-polymers containing fused aromatic thieno[3,4-b]pyrazine moieties were synthesized for organic thin film transistor (OTFT) and organic photovoltaic (OPV) applications. Suzuki and Stille polycondensation reactions were used for the polymerization. The band gap (Eg) of the polymers was tuned in the range of 1.15-1.6 eV to match the solar spectrum. Density functional theory calculations were carried out to rationalize the low band gaps. These polymers showed field effect mobility (μ) as high as 0.2 cm2/(V.s) with an on/off ratio as high as 106 in OTFT devices. Interestingly, one polymer in this class also showed ambipolar charge transport. Power conversion efficiency (PCE) up to 1.3% was achieved in bulk heterojunction solar cells, indicating that these materials are promising for OPV applications. © 2009 American Chemical Society.

  9. Metathesis process for preparing an alpha, omega-functionalized olefin

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, Kenneth A. (Midland, MI); Mokhtarzadeh, Morteza (Charleston, WV); Timmers, Francis J. (Midland, MI)

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  10. Poly(ethylene oxide)-b-poly(L-lactide) diblock copolymer/carbon nanotube-based nanocomposites: LiCl as supramolecular structure-directing agent.

    Science.gov (United States)

    Meyer, Franck; Raquez, Jean-Marie; Verge, Pierre; Martínez de Arenaza, Inger; Coto, Borja; Van Der Voort, Pascal; Meaurio, Emilio; Dervaux, Bart; Sarasua, Jose-Ramon; Du Prez, Filip; Dubois, Philippe

    2011-11-14

    This work relies on the CNT dispersion in either solution or a polymer matrix through the formation of a three-component supramolecular system composed of PEO-b-PLLA diblock copolymer, carbon nanotubes (CNTs), and lithium chloride. According to a one-pot procedure in solution, the "self-assembly" concept has demonstrated its efficiency using suspension tests of CNTs. Characterizations of the supramolecular system by photon correlation spectroscopy, Raman spectroscopy, and molecular dynamics simulations highlight the charge transfer interaction from the CNTs toward the PEO-b-PLLA/LiCl complex. Finally, this concept was successfully extended in bulk (absence of solvent) via melt-processing techniques by dispersing these complexes in a commercial polylactide (PLA) matrix. Electrical conductivity measurements and transmission electron microscopy attested for the remarkable dispersion of CNTs, confirming the design of high-performance PLA-based materials. PMID:21936499

  11. 基于聚-α烯烃油的锂基润滑脂流变性%Rheological of Lithium Lubricating Grease Based on Poly-αOlefins Oil

    Institute of Scientific and Technical Information of China (English)

    周维贵; 郭小川; 蒋明俊; 郭婉晴

    2014-01-01

    为系统研究锂基润滑脂的流变性能,以12-羟基硬脂酸锂皂为稠化剂和聚-α烯烃(PAO)油为基础油制备了锂基润滑脂。考察了稠化剂含量、基础油黏度和温度对锂基润滑脂的触变性、储存模量、损耗模量、表观黏度和应变幅度等流变参数的影响,并对其影响机理进行了探讨。实验表明:锂基润滑脂是屈服性假塑性流体,在很小应变范围内以可恢复的弹性变形为主导,达到其屈服应力后,具有明显的剪切变稀现象;达到其流动点后,表现出黏性流体性质。%In order to study the rheological properties of lithium base grease in a systematic way, lithium lubricating grease is prepared with 12-hydroxy stearic acid lithium soap as the thickener and poly-αolefins(PAO)synthetic oil as base oil. The influ-ence factors such as the content of the thickener, base oil viscosity and temperature on the rheological parameters concerning thixot-ropy, storage modulus, loss modulus, apparent viscosity and strain amplitude are studied and the mechanism is also discussed. Ex-perimental results show that the lithium lubricating grease is yield pseudoplastic fluid, which is highly elastic and can restore elastic deformation at very small strain range, has obvious shear thinning phenomenon after reaching the yield stress, and is highly viscous when it reached its yield point.

  12. Stereocomplexation in Copolymer Networks Incorporating Enantiomeric Glycerol-Based 3-Armed Lactide Oligomers and a 2-Armed ɛ-Caprolactone Oligomer

    Directory of Open Access Journals (Sweden)

    Ayaka Shibita

    2016-07-01

    Full Text Available The reactions of enantiomeric glycerol-based 3-armed lactide oligomers (H3DLAO and H3LLAO and a diethylene glycol-based 2-armed ɛ-caprolactone oligomer (H2CLO with hexamethylene diisocyanate (HDI produced polyesterurethane copolymer networks (PEU-3scLAO/2CLOs 100/0, 75/25, 50/50, 25/75 and 0/100 with different feed ratios of stereocomplex (sc lactide oligomer (H3scLAO = H3DLAO + H3LLAO, H3DLAO/H3LLAO = 1/1 and H2CLO. Thermal and mechanical properties of the copolymer networks were compared with those of a simple homochiral (hc network (PEU-3DLAO produced by the reaction of H3DLAO and HDI. X-ray diffraction and differential scanning calorimetric analyses revealed that sc crystallites are formed without any hc crystallization for PEU-3scLAO/2CLOs, and that PEU-3DLAO is amorphous. The melting temperatures of sc crystallites for PEU-3scLAO/2CLOs were much higher than that of hc crystallites of H3DLAO. The polarized optical microscopic analysis revealed that the nucleation efficiency is enhanced with increasing feed of H3scLAO fraction, whereas the spherulite growth rate is accelerated with increasing feed H2CLO fraction over 100/0-50/50 networks. PEU-3scLAO/2CLO 100/0 (i.e., PEU-3scLAO exhibited a higher tensile strength and modulus than PEU-3DLAO. The elongation at break and tensile toughness for PEU-3scLAO/2CLOs increased with an increasing feed amount of H2CLO.

  13. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  14. Dynamic Processes in Diblock Copolymer Micelles

    Science.gov (United States)

    Robertson, Megan; Singh, Avantika

    2013-03-01

    Diblock copolymers, which form micelle structures in selective solvents, offer advantages of robustness and tunability of micelle characteristics as compared to small molecule surfactants. Diblock copolymer micelles in water have been a subject of great interest in drug delivery applications based on their high loading capacity and targeted drug delivery. The aim of this work is to understand the dynamic processes which underlie the self-assembly of diblock copolymer micelle systems which have a semi-crystalline core. Due to the large size of the molecules, the self-assembly of block copolymer micelles occurs on significantly longer time scales than small molecule analogues. The present work focuses on amphiphilic diblock copolymers containing blocks of poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic, semi-crystalline polymer), which spontaneously self-assemble into spherical micelles in water. A variety of experimental techniques are used to probe the kinetic processes relevant to micelle self-assembly, including time-resolved neutron scattering, dynamic light scattering, pulsed field gradient nuclear magnetic resonance, and fluorescence resonance energy transfer experiments.

  15. The progress of SINOPEC methanol-to-olefins (S-MTO) technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxing; Xie, Zaiku; Zhao, Guoliang [SINOPEC Shanghai Research Institute of Petrochemical Technology (China)

    2013-11-01

    It is widely recognized that naphtha steam crackers and FCC units are the main current sources of ethylene and propylene. On the condition of high oil price, olefin producers are striving to develop new economical routes to produce ethylene and propylene with low-cost feedstocks. Methanol to olefins (MTO) has aroused great attention in recent years, and SINOPEC has developed a new kind of MTO process named S-MTO which features high olefins selectivity, high methanol conversion and low catalyst consumption. Puyang Zhongyuan 200 KTA S-MTO has been in steady operation for more than 17 months. The catalyst used in the process is based on a silicoaluminophosphate, SAPO-34, which has very high carbon selectivity to low carbon olefins. Results from the commercial plant show that S-MTO process converts methanol to ethylene and propylene at about 81% carbon selectivity. The carbon selectivity approaches 92% if butenes are also accounted for as part of the product. Typically, the ratio of propylene to ethylene can range from 0.6 to 1.3. When combined with OCC (Olefin Catalytic Cracking) process to convert the heavier olefins, the overall yield of ethylene and propylene can increase to 85% {proportional_to} 87% and propylene-ethylene ratios of more than 1.5 are achievable. Other co-products include very small amounts of C1-C4 paraffins, hydrogen, CO and CO{sub 2}, as well as heavier oxygenates only with ppm level. Because of the quick deactivation of MTO catalyst, a kind of high efficiency fast fluidized bed reactor is adopted. The activity of deactivated catalyst is recovered by burning the coke in the regenerator. This paper gives an updated introduction of S-MTO technology developed by SINOPEC SRIPT. (orig.)

  16. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  17. Rhodium olefin complexes of diiminate type ligands

    NARCIS (Netherlands)

    Willems, Sander Theodorus Hermanus

    2003-01-01

    The mono-anionic beta-diiminate ligand (ArNC(CH3)CHC(CH3)NAr) on several previous occasions proved useful in stabilising low coordination numbers for both early and late transition metals. In this thesis the reactivity of the rhodium olefin complexes of one of these beta-diiminate ligands (Ar = 2,6-

  18. Synthesis of pterostilbene by Julie Olefination

    Science.gov (United States)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  19. Bactericidal block copolymer micelles.

    Science.gov (United States)

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  20. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  1. Radiation Detection: Resistivity Responses in Functional Poly(Olefin Sulfone)/Carbon Nanotube Composites

    OpenAIRE

    Swager, Timothy Manning; Lobez, Jose M.

    2009-01-01

    Detection of gamma rays is shown using a non-scintillating organic-based sensor composed of poly(olefin sulfone)/carbon nanotube blends. Functionalization of the polymers can be performed after polymerization to tailor their structure with different pyrene and bismuth-containing moieties not accessible by copolymerization, and a systematic improvement in sensitivity is achieved in this way.

  2. Renewable linear alpha olefins by selective ethenolysis of decarboxylated fatty acids

    NARCIS (Netherlands)

    Klis, van der F.; Notre, le J.E.L.; Blaauw, R.; Haveren, van J.; Es, van D.S.

    2012-01-01

    A two-step concept for the production of linear alpha olefins from biomass is reported. As a starting material an internally unsaturated C17 alkene was used, which was obtained by the decarboxylation of oleic acid. Here, we report on the ethenolysis of this bio-based product, using commercially avai

  3. Catalytic Conversion of Alcohols into Olefins: Spectroscopy, Kinetics and Catalyst Deactivation

    NARCIS (Netherlands)

    Qian, Q.

    2014-01-01

    The alcohols-to-olefins (ATO) catalytic process, a technology based on oil-alternative feedstocks, has gained increasing attention due to the current high price of crude oil as well as the growing environmental concerns. Intensive academic and industrial research, mainly performed under ex-situ cond

  4. Monodentate phosphoramidites : A breakthrough in rhodium-catalysed asymmetric hydrogenation of olefins

    NARCIS (Netherlands)

    Berg, Michel van den; Minnaard, Adriaan J.; Haak, Robert M.; Leeman, Michel; Schudde, Ebe P.; Meetsma, Auke; de Vries, Andre H.M.; Maljaars, C. Elizabeth P.; Willans, Charlotte E.; Hyett, David; Boogers, Jeroen A.F.; Henderickx, Hubertus; Feringa, Ben L.

    2003-01-01

    Monodentate phosphoramidites based on BINOL or substituted BINOL are excellent ligands for the rhodium-catalysed asymmetric hydrogenation of olefins. Very high enantioselectivities were obtained with MonoPhos (7a) the simplest member of this class, a ligand that is prepared in a single step from BIN

  5. PREPARATION AND CATALYTIC BEHAVIOUR OF POLYMER-BOUND METALLOPORPHYRIN IN HYDROGENATION OF OLEFIN

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The meso-tetraarylporphyrin has been anchored to styrene-divinylbenzene copolymers by reaction of meso-tetra(4-hydroxylphenyl) porphyrin with chloromethylated resin under mild condition. A number of polymer transition metal complexes have been prepared with the polymer ligand and metal salts. The polymeric ligand and its complexes have been characterized by electronic spectra, and vibrational spectra. Cyclohexene can be hydrogenated with the polymeric porphyrin palladium complex(P-THPPPd) as catalyst, and its catalytic activity was influenced by the polarity of solvents, the contents of water in ethanol or reaction temperature. However, its catalytic activity was lower for nitro groups, carbonyl groups and olefins with steric hindrance substituents, and showed no activity for aromatic rings under these conditions.

  6. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and

  7. [Hydrodynamic properties of exopolysaccharide-acrylamide copolymer].

    Science.gov (United States)

    Votselko, S K

    2000-01-01

    The method for producing copolymer EPAA of exopolysaccharide (EPS)--polyacrylamide (PAA) has been presented which was based on microbial exopolysaccharides (enposane, xampane), their mixture and model EPS (xanthane sigma, rodopol P-23). The copolymer was produced by acrylamide polymerization in 1-2% water solutions of polysaccharides, the concentration of acrylamide in the reaction mixture being 4.7-2% and that of polysaccharides 0.1-1% of the weight. Hydrodynamic parameters of the studied polymers have been determined, their heterogenity as to molecular-weight characteristics has been demonstrated. Molecular-weight distribution of copolymers showed that the content of low-molecular fractions decreased, thus the Mw values were (0.08-0.2) x 10(6) Da in contrast to that of exopolysaccharides possessing Mw (1.2-0.4) x 10(6) Da and of polyacrylamide possessing Mw within (2-30) x 10(6) Da. The value of efficient viscosity of copolymers ranged from 120 to 131 mPa.s that was lower than that of polyacrylamide (500 mPa.s), and higher than that of exopolysaccharides (42 mPa.s), and it depended on the sample, raw material, production conditions. A possibility has been shown to produce a new copolymer based on microbial polysaccharides enposane and xampane in the process of acrylamide polymerization. It has been found out that the studied copolymers EPAA differ from initial ones as to their hydrodynamical properties, which determines their preference: better solubility, good glueing properties, prolonged term of preservation, resistance to bacterial pollution. PMID:11300081

  8. Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains

    Science.gov (United States)

    2016-01-01

    Polymerization-induced self-assembly (PISA) offers a highly versatile and efficient route to a wide range of organic nanoparticles. In this article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) [PSEM–PBzMA] diblock copolymer nanoparticles can be prepared with either a high or low PSEM stabilizer surface density using either RAFT dispersion polymerization in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization, respectively. We then use these model nanoparticles to gain new insight into a key topic in materials chemistry: the occlusion of organic additives into inorganic crystals. Substantial differences are observed for the extent of occlusion of these two types of anionic nanoparticles into calcite (CaCO3), which serves as a suitable model host crystal. A low PSEM stabilizer surface density leads to uniform nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v), while minimal occlusion occurs when using nanoparticles with a high PSEM stabilizer surface density. This counter-intuitive observation suggests that an optimum anionic surface density is required for efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of nanoparticles within crystals. PMID:27509298

  9. Excited-state dynamics in diketopyrrolopyrrole-based copolymer for organic photovoltaics investigated by transient optical spectroscopy

    Science.gov (United States)

    Matsuzaki, Hiroyuki; Furube, Akihiro; Katoh, Ryuzi; Pratap Singh, Samarendra; Sonar, Prashant; Williams, Evan Laurence; Vijila, Chellappan; Sandhya Subramanian, Gomathy; Gorelik, Sergey; Hobley, Jonathan

    2014-01-01

    We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Time-resolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 10-9 cm3 s-1 and the singlet diffusion length is ~7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.

  10. Thermoplastic elastomers blends based on linear low density polyethylene, ethylene-1-octene copolymers and ground rubber tire

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2014-01-01

    Full Text Available Blends of linear low density polyethylene (LLDPE ethylene-1-octene copolymers (EOC, with different 1-octene (OC content, and ground rubber tire (GRT were prepared by melt mixing in a twin screw extruder. Five different compositions of LLDPE/EOC/GRT blends were processed in the extruder to evaluate the effect of EOC addition to the LLDPE/GRT blends. The addition of EOC to LLDPE/GRT blends improves the mechanical properties. Besides, the replacement of 5% of GRT by EOC grades (OC = 20 or 30 wt % in the 50/50 LLDPE/GRT blend, leads to a significant increase of ultimate tensile properties. The EOC comonomer content affects the properties of LLDPE/EOC and LLDPE/EOC/GRT blends. Dynamical-mechanical analyses showed that, with the addition of EOC to LLDPE/GRT blends, the Tg of GRT and the Tg of EOC are closer. This effect is more pronounced when the EOC with the highest content of comonomer (30 wt % is added to LLDPE/GRT blend. In this case, only one peak related to the Tg of the rubber phase can be visualized in the amorphous region. These findings indicate that EOC may act as compatibilizer agent for LLDPE/GRT blends.

  11. Block coordination copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  12. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  13. Characterization of thermal destruction behavior of hybrid composites based on polyoxymethylene, ethylene-octene copolymer impact modifier and ZnO nanofiller

    Science.gov (United States)

    Meri, Remo Merijs; Zicans, Janis; Abele, Agnese; Ivanova, Tatjana; Kalnins, Martins

    2016-05-01

    Hybrid polymer nanocomposites, composed of polyoxymethylene (POM), ethylene octene copolymer (EOC) and plasma synthesized tetrapod shaped zinc oxide (ZnO), were prepared by using melt compounding. The content of EOC in the POM based composites was varied between 10 and 50 mass %, while the content of ZnO was constant (2 mass %). Thermal behaviour of POM based systems was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The influence of the elastomer content and/or ZnO addition on the thermal stability of POM based systems was evaluated. The influence of the α-octene content in the elastomer on the thermal decomposition behaviour of POM and its nanocomposites with ZnO was also evaluated. Results of thermogravimetric analysis showed that, by rising either the elastomer or ZnO content, thermal stability of the investigated POM composites was increased. The modifying effect of EOC17 in respect of thermal resistance was somewhat larger than that of EOC38 because of the smaller amount of tertiary carbon atoms in the macromolecular structure of the former elastomer. Improved thermal resistance of ZnO containing POM based composites was because of impermeable structure the inorganic nanofiller allowing decrease gas exchange rate and facilitating non-combustible gases, such as CO2, stay in the zone of burning. Addition of ZnO have a potential to influence structure of the polymer blend matrix itself by improving its barrier characteristics.

  14. Alkene Chemoselectivity in Ruthenium-Catalyzed Z-Selective Olefin Metathesis

    Science.gov (United States)

    Cannon, Jeffrey S.

    2013-01-01

    Chelated ruthenium catalysts have achieved highly chemoselective olefin metathesis reactions. Terminal and internal Z olefins were selectively reacted in the presence of internal E olefins. Products were produced in good yield and high stereoselectivity for formation of a new Z olefin. No products of metathesis with the internal E olefin were observed. Chemoselectivity for terminal olefins was also observed over both sterically hindered and electronically deactivated alkenes. PMID:23832646

  15. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril.

    Science.gov (United States)

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2014-10-01

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA-PEG-PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs. PMID:23944838

  16. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril.

    Science.gov (United States)

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2014-10-01

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA-PEG-PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs.

  17. Olefin hydroformylation catalysis with RuCl2(DMSO4.

    Directory of Open Access Journals (Sweden)

    Marisela Reyes*

    2008-05-01

    Full Text Available The RuCl2(DMSO4 complex was used as catalytic precursor in olefin hydroformylation reactions, giving good percent yield and better selectivity for linear aldehydes. The reactions were tested in homogeneous medium and biphasic organic solvent/ water systems. The substrates tried were 1-hexene, cyclohexene, 2-methyl-2-pentene, 2,3-dimethyl-2-butene; binary mixtures and synthetic naphtha and real naphtha. The activity is better for linear olefins compared with substituted olefins.

  18. Integrated process and dual-function catalyst for olefin epoxidation

    Science.gov (United States)

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of olefin oxides such as propylene oxide without formation of undesired co-products.

  19. A chameleon catalyst for nonheme iron-promoted olefin oxidation.

    Science.gov (United States)

    Iyer, Shyam R; Javadi, Maedeh Moshref; Feng, Yan; Hyun, Min Young; Oloo, Williamson N; Kim, Cheal; Que, Lawrence

    2014-11-18

    We report the chameleonic reactivity of two nonheme iron catalysts for olefin oxidation with H2O2 that switch from nearly exclusive cis-dihydroxylation of electron-poor olefins to the exclusive epoxidation of electron-rich olefins upon addition of acetic acid. This switching suggests a common precursor to the nucleophilic oxidant proposed to Fe(III)-η(2)-OOH and electrophilic oxidant proposed to Fe(V)(O)(OAc), and reversible coordination of acetic acid as a switching pathway.

  20. Organic chemistry. Practical olefin hydroamination with nitroarenes.

    Science.gov (United States)

    Gui, Jinghan; Pan, Chung-Mao; Jin, Ying; Qin, Tian; Lo, Julian C; Lee, Bryan J; Spergel, Steven H; Mertzman, Michael E; Pitts, William J; La Cruz, Thomas E; Schmidt, Michael A; Darvatkar, Nitin; Natarajan, Swaminathan R; Baran, Phil S

    2015-05-22

    The synthesis and functionalization of amines are fundamentally important in a vast range of chemical contexts. We present an amine synthesis that repurposes two simple feedstock building blocks: olefins and nitro(hetero)arenes. Using readily available reactants in an operationally simple procedure, the protocol smoothly yields secondary amines in a formal olefin hydroamination. Because of the presumed radical nature of the process, hindered amines can easily be accessed in a highly chemoselective transformation. A screen of more than 100 substrate combinations showcases tolerance of numerous unprotected functional groups such as alcohols, amines, and even boronic acids. This process is orthogonal to other aryl amine syntheses, such as the Buchwald-Hartwig, Ullmann, and classical amine-carbonyl reductive aminations, as it tolerates aryl halides and carbonyl compounds.

  1. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  2. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  3. Continuous reaction performances of benzene alkylation with long chain olefins catalyzed by ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Congzhen QIAO; Chengyue LI

    2008-01-01

    Based on a compulsive mixing-reacting-sepa-rating-recycling small experimental setup,the continuous reaction performances of benzene alkylation with long chain olefins catalyzed by [BMIM]Cl-AlCl3 ionic liquid were investigated. Three different situations including normal continuous operation mode (reagent materials), sidetrack feeding from different axial positions along the static mixing reactor (reagent materials) and normal con-tinuous alkylation using industrial paraffin and olefins materials were examined. Even under the relatively hype-critical reaction conditions, the single pass conversion of pure 1-dodecene could reach to nearly 100.0%, and the selectivity of 2-phenyl isomer was higher than 37.7%. Although the positions along the reactor for sidetrack feeding were different, the 100.0% single pass conversion of 1-dodecene was also attained before the outlet of the reactor. The refined industrial olefins as raw material could meet with the requirements of continuous alkyla-tion. The influences of impurities such as di-olefins and non-benzene aromatics on the catalytic activity and stability should be studied further.

  4. Ruthenium olefin metathesis catalysts containing fluoride

    OpenAIRE

    Guidone, Stefano; Songis, Olivier; Falivene, Laura; Nahra, Fady; Slawin, Alexandra Martha Zoya; Jacobsen, Heiko; Cavallo, Luigi; Cazin, Catherine S. J.

    2015-01-01

    The authors gratefully acknowledge the EC through the 7th framework program (grant CP-FP 211468-2 EUMET), the Royal Society (University Research Fellowship to CSJC) for financial support. The reaction of the ruthenium complex cis-Caz-1 with silver fluoride affords the first example of an active olefin metathesis pre-catalyst containing fluoride ligands. The cis geometry of the precursor complex is key to the successful fluoride exchange reaction. Computational studies highlight the stabili...

  5. Catalytic conversion of methanol to light olefins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.S.; Stead, G.E.

    1987-05-12

    A process is described for converting a methanol-containing feed to an olefin-containing hydrocarbon product having a propylene-methylene weight ratio of at least 35.1:6.4. The process comprises contacting the methanol-containing feed in a reaction zone under methanol conversion conditions with a ZSM-12 zeolite catalyst modified by incorporation of a minor amount of a modifier selected from magnesium oxide, manganese oxide and a combination of both magnesium oxide and manganese oxide.

  6. Thermally Stable, Latent Olefin Metathesis Catalysts

    OpenAIRE

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  7. Homogeneous catalysts for stereoregular olefin polymerization

    Science.gov (United States)

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  8. Block copolymer battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  9. STUDY ON PET-PA66 COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    WU Rongrui; SHI Weitong

    1992-01-01

    In this work the PET-PA66 copolymers are obtained. The characterization of chemical structure of copolymer chain by NMR method is also given . It is shown that when the 66 Nylon salt is added in the copolycondensation, the adipic acid and hexamethylenediamine reacted mainly by itself and the obtained copolymer is a random copolymer, and when the Nylon 66 oligomer is added, the obtained copolymer is a block copolymer. The result of NMR analysis is demonstrated by properties investigation.

  10. Ring-Opening Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalyst Coordinated with 1,3-Bis(2,6-Diisopropylphenyl)-4,5-Dihydroimidazoline

    Science.gov (United States)

    Karabulut, Solmaz; Verpoort, Francis

    A 1,3-bis-(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene substituted ruthenium (Ru)-based complex (4) has been prepared starting from (PCy3)2(Cl)2Ru=CHPh (2). The catalytic performance of catalyst (4) is checked on ring-opening metathesis polymerization (ROMP) of the low strain monomer, cycloocta-1,5-diene (COD), and also compared with catalyst (2) and (3).

  11. Probing the Mechanism of the Double C—H (De)Activation Route of a Ru-Based Olefin Metathesis Catalyst

    Science.gov (United States)

    Poater, Albert; Cavallo, Luigi

    A theoretical study of a double C—H activation mechanism that deactivates a family of second generation Ru-based catalysts is presented. DFT calculations are used to rationalize the complex mechanistic pathway from the starting precatalyst to the experimentally characterized decomposition products. In particular, we show that all the intermediates proposed by Grubbs and coworkers are indeed possible intermediates in the deactivation pathway, although the sequence of steps is somewhat different

  12. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    International Nuclear Information System (INIS)

    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1

  13. Thermo-Responsive Polyurethane Hydrogels Based on Poly(ε-caprolactone Diol and Amphiphilic Polylactide-Poly(Ethylene Glycol Block Copolymers

    Directory of Open Access Journals (Sweden)

    Shan-hui Hsu

    2016-07-01

    Full Text Available Waterborne polyurethane (PU based on poly(ε-caprolactone (PCL diol and an amphiphilic polylactide-poly(ethylene glycol (PLA-PEG diblock copolymer was synthesized. The molar ratio of PCL/PLA-PEG was 9:1 with different PLA chain lengths. The PU nanoparticles were characterized by dynamic light scattering (DLS, small angle X-ray scattering (SAXS and rheological analysis. The water contact angle measurement, infrared spectroscopy, wide angle X-ray scattering (WAXS, thermal and mechanical analyses were conducted on PU films. Significant changes in physio-chemical properties were observed for PUs containing 10 mol % of amphiphilic blocks. The water contact angle was reduced to 12°–13°, and the degree of crystallinity was 5%–10%. The PU dispersions underwent sol-gel transition upon the temperature rise to 37 °C. The gelation time increased as the PLA chain length increased. In addition, the fractal dimension of each gel was close to that of a percolation cluster. Moreover, PU4 with a solid content of 26% could support the proliferation of human mesenchymal stem cells (hMSCs. Therefore, thermo-responsive hydrogels with tunable properties are promising injectable materials for cell or drug delivery.

  14. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    Science.gov (United States)

    Srivastava, Shashi B.; Sonar, Prashant; Singh, Samarendra P.

    2015-07-01

    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ˜3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron's mobility ˜2 × 10-3 cm2V-1s-1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10-5 cm2V-1s-1, and electron mobility of 8.7 × 10-4 cm2V-1s-1.

  15. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Shashi B.; Singh, Samarendra P., E-mail: samarendra.singh@snu.edu.in [Department of Physics, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India-201307 (India); Sonar, Prashant [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia-4001 (Australia)

    2015-07-15

    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C{sub 71} butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO{sub 3}/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10{sup −3} cm{sup 2}V{sup −1}s{sup −1}, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10{sup −5} cm{sup 2}V{sup −1}s{sup −1}, and electron mobility of 8.7 × 10{sup −4} cm{sup 2}V{sup −1}s{sup −1}.

  16. A novel intrinsically microporous ladder polymer and copolymers derived from 1,1′,2,2′-tetrahydroxy-tetraphenylethylene for membrane-based gas separation

    KAUST Repository

    Ma, Xiaohua

    2015-12-09

    A novel intrinsically microporous polymer was synthesized by polycondensation reaction of 1,1′,2,2′,-tetrahydroxy-tetraphenylethylene (TPE) and 2,3,5,6-tetrafluoroterephthalonitrile (TFTPN). In addition, a series of copolymers was prepared from TPE, 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane (TTSBI) and TFTPN. All TPE-derived polymers exhibited high molecular weight, good solubility in common organic solvents, high thermal stability and high surface area (550 to 660 m2 g−1). The CO2 permeability of a methanol-treated and 120 °C vacuum-dried TPE-TFTPN film was 862 Barrer with a moderate CO2/N2 selectivity of 26. The selectivity of the TPE-TTSBI-PIMs decreased with increasing TTSBI content coupled with a sharp increase in permeability. Molecular simulations indicated that the introduction of the tetraphenylethylene unit resulted in an increased rotational freedom of dihedral angles in the polymer main chain relative to those of the spirobisindane-based PIM-1.

  17. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes

    Directory of Open Access Journals (Sweden)

    N. F. A. Fattah

    2016-06-01

    Full Text Available Solid polymer electrolyte (SPE composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene [P(VdF-HFP] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl imide [EMI-BTI] and graphene oxide (GO was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC. The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD and thermogravimetric analysis (TGA studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  18. Research Progresses of Hyperdispersant Based on Styrene-maleic Anhydride Copolymer%苯乙烯-马来酸系超分散剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    廖银洪; 廖正福

    2015-01-01

    Styrene-maleic acid( SMA) hyperdispersant are widely applied in practically every profession for its excellent performance. The structure characteristics,dispersant stability mechanism and influence factors of disper-sion stability of styrene-maleic acid hyperdispersant were introduced in this paper. The latest research progresses of the hyperdispersant based on styrene-maleic anhydride copolymer and its derivatives were reviewed in this article. Finally,the advances of styrene-maleic acid hyperdispersant was prospected.%苯乙烯-马来酸系超分散剂因其分子结构特殊,性能优良,应用十分广泛。本文介绍了苯乙烯-马来酸系超分散剂的结构特征、分散稳定机理以及影响分散稳定性能的因素等,综述了苯乙烯-马来酸共聚物( SMA)以及其超支化、官能化的SMA衍生物超分散剂的最新研究进展,并对苯乙烯-马来酸系超分散剂的发展前景进行了展望。

  19. Cobalt carbide nanoprisms for direct production of lower olefins from syngas

    Science.gov (United States)

    Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui

    2016-10-01

    Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer–Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson–Schulz–Flory distribution, which is characterized by a maximum C2–C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2–C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

  20. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer.

    Science.gov (United States)

    Miller, David C; Choi, Gilbert J; Orbe, Hudson S; Knowles, Robert R

    2015-10-28

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups.

  1. Maximizing light olefins production in fluid catalytic cracking (FCC) units; Maximizacao de olefinas leves em unidades de craqueamento catalitico fluido

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Ricardo D.M.; Pinho, Andrea de Rezende [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The Fluid Catalytic Cracking (FCC) process is widely spread over the ten PETROBRAS refineries in its thirteen industrial units. The importance of the FCC process resides on its high gasoline output, being the main supplier of this important product to the system. Additionally, FCC process is the main source of light hydrocarbons in the LPG range, including light olefins. The increasing demand for ethylene, propylene and butylenes was encouraging to concentrate the research efforts on studies about alternatives for the traditional FCC process. In the present work, the proposals from main licensors (UOP, KBR, Stone and Webster) for a light-olefins-driven FCC process (Petrochemical FCC) will be compared. Furthermore, the catalytic route for light olefins production in FCC units is also described. An additive based on ZSM- 5 zeolite, which is produced following a PETROBRAS proprietary technology, is being largely applied into the catalyst inventories of all FCC units. An analysis of different scenarios was performed to estimate the maximum potential of light olefins production from the highest possible ZSM-5 additive usage. More specifically for the case of ethylene, which production is also boosted by the same type of additive, studies are being conducted with the objective of recovering it from a C2 stream using specific units to do the splitting (UPGR). The search for increasing light olefins production in the refining processes is in line with PETROBRAS strategic plan which targeted for the company a more intense activity in the Brazilian petrochemical market (author)

  2. Total Synthesis of Mycalolides A and B through Olefin Metathesis.

    Science.gov (United States)

    Kita, Masaki; Oka, Hirotaka; Usui, Akihiro; Ishitsuka, Tomoya; Mogi, Yuzo; Watanabe, Hidekazu; Tsunoda, Masaki; Kigoshi, Hideo

    2015-11-16

    An asymmetric total synthesis of the trisoxazole marine macrolides mycalolides A and B is described. This synthesis involves the convergent assembly of highly functionalized C1-C19 trisoxazole and C20-C35 side-chain segments through the use of olefin metathesis and esterification as well as Julia-Kocienski olefination and enamide formation as key steps. PMID:26450520

  3. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    Science.gov (United States)

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-01

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided. PMID:26805793

  4. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-01-01

    Full Text Available The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C2-symmetric and C1-symmetric NHCs is provided.

  5. Total Synthesis of Mycalolides A and B through Olefin Metathesis.

    Science.gov (United States)

    Kita, Masaki; Oka, Hirotaka; Usui, Akihiro; Ishitsuka, Tomoya; Mogi, Yuzo; Watanabe, Hidekazu; Tsunoda, Masaki; Kigoshi, Hideo

    2015-11-16

    An asymmetric total synthesis of the trisoxazole marine macrolides mycalolides A and B is described. This synthesis involves the convergent assembly of highly functionalized C1-C19 trisoxazole and C20-C35 side-chain segments through the use of olefin metathesis and esterification as well as Julia-Kocienski olefination and enamide formation as key steps.

  6. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    Science.gov (United States)

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  7. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    Science.gov (United States)

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  8. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    Science.gov (United States)

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  9. Analysis of Factors Affecting Olefin Content in FCC Gasoline

    Institute of Scientific and Technical Information of China (English)

    Wang Tao

    2005-01-01

    In order to meet the urgent need for reducing olefin content in cracked naphtha, the influence of feedstock characteristics on the olefin content was discussed. The different types and performance of catalysts developed by RIPP were introduced. Moreover, some effective operation approaches in commercial units were presented to serve as a reference to the refiners for catalyst selection.

  10. Preparation of dual-sensitive graft copolymer hydrogel based on N-maleoyl-chitosan and poly(N-isopropylacrylamide) by electron beam radiation

    Indian Academy of Sciences (India)

    Jinchen Fan; Jie Chen; Liming Yang; Han Lin; Fangqi Cao

    2009-10-01

    Organic solvent-soluble N-maleoyl-chitosan (NMCS) was synthesized by reaction of chitosan with maleic anhydride (MAH) in N,N-dimethylformamide (DMF). N-maleoyl-chitosan-graft-poly(N-isopropylacrylamide) (NMCS-g-PNIPAAm) copolymer hydrogel was prepared via free radical polymerization by electron beam (EB) irradiation. The copolymer obtained was analysed by FT–IR, XRD and thermal gravimetric analysis (TGA). It was found that the grafting yield and grafting efficiency increased with increasing radiation absorbed dose and monomer amount, and then decreased. The swelling ratio of the copolymer hydrogel was low at pH 4–5, and LCST of the hydrogel was around 32°C.

  11. Synthesis of High Performance Cyclic Olefin Polymers (COPs with Ester Group via Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jing Cui

    2015-08-01

    Full Text Available Novel ester group functionalized cyclic olefin polymers (COPs with high glass transition temperature, high transparency, good mechanical performance and excellent film forming ability have been achieved in this work via efficient ring-opening metathesis copolymerization of exo-1,4,4a,9,9a,10-hexahydro-9,10(1′,2′-benzeno-l,4-methanoanthracene (HBM and comonomers (5-norbornene-2-yl methylacetate (NMA, 5-norbornene-2-yl methyl 2-ethylhexanoate (NME or 5-norbornene-2-yl methyldodecanoate (NMD utilizing the Grubbs first generation catalyst, Ru(CHPh(Cl2(PCy32 (Cy = cyclohexyl, G1, followed by hydrogenation of double bonds in the main chain. The fully hydrogenated copolymers were characterized by nuclear magnetic resonance, FT-IR spectroscopy analysis, gel permeation chromatography, and thermo gravimetric analysis. Differential scanning calorimetry curves showed that the glass transition temperatures (Tg linearly decreased with the increasing of comonomers content, which was easily controlled by changing feed ratios of HBM and comonomers. Static water contact angles tests indicate that hydrophilicity of copolymers can also be modulated by changing the comonomers incorporation. Additionally, the mechanical performances of copolymers were also investigated.

  12. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  13. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  14. Indium-based and iodine-based labeling of HPMA copolymer-epirubicin conjugates: Impact of structure on the in vivo fate.

    Science.gov (United States)

    Zhang, Libin; Zhang, Rui; Yang, Jiyuan; Wang, Jiawei; Kopeček, Jindřich

    2016-08-10

    Recently, we developed 2nd generation backbone degradable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-drug conjugates which contain enzymatically cleavable sequences (GFLG) in both polymeric backbone and side-chains. This design allows using polymeric carriers with molecular weights above renal threshold without impairing their biocompatibility, thereby leading to significant improvement in therapeutic efficacy. For example, 2nd generation HPMA copolymer-epirubicin (EPI) conjugates (2P-EPI) demonstrated complete tumor regression in the treatment of mice bearing ovarian carcinoma. To obtain a better understanding of the in vivo fate of this system, we developed a dual-labeling strategy to simultaneously investigate the pharmacokinetics and biodistribution of the polymer carrier and drug EPI. First, we synthesized two different types of dual-radiolabeled conjugates, including 1) (111)In-2P-EPI-(125)I (polymeric carrier 2P was radiolabeled with (111)In and drug EPI with (125)I), and 2) (125)I-2P-EPI-(111)In (polymeric carrier 2P was radiolabeled with (125)I and drug EPI with (111)In). Then, we compared the pharmacokinetics and biodistribution of these two dual-labeled conjugates in female nude mice bearing A2780 human ovarian carcinoma. There was no significant difference in the blood circulation between polymeric carrier and payload; the carriers ((111)In-2P and (125)I-2P) showed similar retention of radioactivity in both tumor and major organs except kidney. However, compared to (111)In-labeled payload EPI, (125)I-labeled EPI showed lower radioactivity in normal organs and tumor at 48h and 144h after intravenous administration of conjugates. This may be due to different drug release rates resulting from steric hindrance to the formation of enzyme-substrate complex as indicated by cleavage experiments with lysosomal enzymes (Tritosomes). A slower release rate of EPI(DTPA)(111)In than EPI(Tyr)(125)I was observed. It may be also due to in vivo catabolism and

  15. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  16. Kinetically controlled E-selective catalytic olefin metathesis.

    Science.gov (United States)

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. PMID:27126041

  17. Kinetically controlled E-selective catalytic olefin metathesis.

    Science.gov (United States)

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules.

  18. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    Science.gov (United States)

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled.

  19. Thermal Stability of Poly (acrylonitrile-methyl acrylate) Copolymers

    Institute of Scientific and Technical Information of China (English)

    HAN Na; ZHANG Xing-xiang; WANG Xue-chen

    2008-01-01

    Poly (acrylonitrile-methyl acrylate) copolymer was synthesized by water depositing polymerization and has a typical feed ratio of 85/15. And then 1 - 3 wt% lauryl alcohol maleic anhydride (LAM) was adopted as stabilizer to mix with the acrylonitrile based copolymer. The mixtures were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (1H NMR ), Gel Permeation Chromatography ( GPC ), Differential Scanning Calorimetry (DSC), optic microscope and Ubbelohde viscosimetryr etc. The melting point (Tm) and glass transition temperature (Tg) of the 85/15 AN/MA copolymer mixed with LAM all decrease with the increase of stabilizer content. The lowest Tg and Tm were 116.1 ℃ and 209. 1℃ respectively at the heating rate of 100℃/min when the content of LAM is 2 wt%. The 85°/15 AN/MA copolymer mixed with 1 - 3 w t% LAM possess good thermal stability up to 30 min at 220 ℃.

  20. Lysine-tagged peptide coupling onto polylactide nanoparticles coated with activated ester-based amphiphilic copolymer: a route to highly peptide-functionalized biodegradable carriers.

    Science.gov (United States)

    Handké, Nadège; Ficheux, Damien; Rollet, Marion; Delair, Thierry; Mabrouk, Kamel; Bertin, Denis; Gigmes, Didier; Verrier, Bernard; Trimaille, Thomas

    2013-03-01

    Efficient biomolecule conjugation to the surface of biodegradable colloidal carriers is crucial for their targeting efficiency in drug/vaccine delivery applications. We here propose a potent strategy to drastically improve peptide immobilization on biodegradable polylactide (PLA) nanoparticles (NPs). Our approach particularly relies on the use of an amphiphilic block copolymer PLA-b-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) as NP surface modifier, whose the N-succinimidyl (NS) ester functions of the NAS units along the polymer chain ensure N-terminal amine peptide coupling. The well-known immunostimulatory peptide sequence derived from the human interleukin 1β (IL-1β), VQGEESNDK, was coupled on the NPs of 169 nm mean diameter in phosphate buffer (pH 8, 10 mM). A maximum amount of 2 mg immobilized per gram of NPs (i.e. 0.042 peptidenm(-2)) was obtained. Introduction of a three lysine tag at the peptide N-terminus (KKKVQGEESNDK) resulted in a dramatic improvement of the immobilized peptide amounts (27.5 mg/g NP, i.e. 0.417 peptidenm(-2)). As a comparison, the density of tagged peptide achievable on surfactant free PLA NPs of similar size (140 nm), through classical EDC or EDC/NHS activation of the surface PLA carboxylic end-groups, was found to be 6 mg/g NP (i.e. 0.075 peptidenm(-2)), showing the decisive impact of the P(NAS-co-NVP)-based hairy corona for high peptide coupling. These results demonstrate that combined use of lysine tag and PLA-b-P(NAS-co-NVP) surfactant represents a valuable platform to tune and optimize surface bio-functionalization of PLA-based biodegradable carriers. PMID:23277324

  1. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.

    Science.gov (United States)

    Yu, Xue; Lian, Wenjing; Zhang, Jiannan; Liu, Hongyun

    2016-06-15

    Herein, poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethylmethacrylate) copolymer films were polymerized on electrode surface with a simple one-step method, and the enzyme horseradish peroxidase (HRP) was embedded in the films simultaneously, which were designated as P(NiPAAm-co-DMEM)-HRP. The films exhibited a reversible structure change with the external stimuli, such as pH, CO2, temperature and SO4(2-), causing the cyclic voltammetric (CV) response of electroactive K3Fe(CN)6 at the film electrodes to display the corresponding multi-stimuli sensitive ON-OFF behavior. Based on the switchable CV property of the system and the electrochemical reduction of H2O2 catalyzed by HRP in the films and mediated by Fe(CN)6(3-) in solution, a 5-input/3-output logic gate was established. To further increase the complexity of the logic system, another enzyme glucose oxidase (GOD) was added into the films, designated as P(NiPAAm-co-DMEM)-HRP-GOD. In the presence of oxygen, the oxidation of glucose in the solution was catalyzed by GOD in the films, and the produced H2O2 in situ was recognized and electrocatalytically reduced by HRP and mediated by Fe(CN)6(3-). Based on the bienzyme films, a cascaded or concatenated 4-input/3-output logic gate system was proposed. The present work combined the multi-responsive interface with bioelectrocatalysis to construct cascaded logic circuits, which might open a new avenue to develop biocomputing elements with more sophisticated functions and design novel glucose biosensors.

  2. Olefin metathesis over UV-irradiated silica

    Science.gov (United States)

    Tanaka, Tsunehiro; Matsuo, Shigehiro; Maeda, Takashi; Yoshida, Hisao; Funabiki, Takuzo; Yoshida, Satohiro

    1997-11-01

    Photoirradiated silica evacuated at temperatures higher than 800 K was found to be active for olefin metathesis reactions. The analysis of products shows that the metalacyclobutane intermediate is likely. The instantaneous response of the reaction to the irradiation and the activity change with various UV filter showed that the reaction is induced by UV-excitation of silica. The correlation between the evacuation temperature and the activity showed that the surface free from water molecules plays a role in the reaction and the removal of isolated OH groups strongly relates to the generation of active sites.

  3. Ruthenium-Aryloxide Catalysts for Olefin Metathesis

    Science.gov (United States)

    Monfette, Sebastien; Blacquiere, Johanna M.; Conrad, Jay C.; Beach, Nicholas J.; Fogg, Deryn E.

    : Advances in design of ruthenium aryloxide catalysts for olefin metathesis are described. The target complexes are accessible on reaction of RuCl2(NHC)(py)2 (CHPh) (NHC - N-heterocyclic carbene) with electron-deficient, monodentate aryl- oxides, or aryloxides that yield small, rigid chelate rings. The best of these catalysts offer activity comparable to or greater than that of the parent chloride (Grubbs) systems in ring-closing metathesis (RCM). Preliminary studies of the electronic nature of the Ru-X bond suggest that the metal center is more electropositive in the aryloxide complexes than in the Grubbs systems.

  4. Methyltrioxorhenium as catalyst for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wagner, W. (Consortium fuer Elektrochemische Industrie GmbH, Muenchen (Germany)); Flessner, U.N.; Volkhardt, U.; Komber, H. (Institut fuer Technologie der Polymere, Dresden (Germany))

    1991-12-01

    No cocatalysts are needed as additives when methyltrioxorhenium (MTO) supported on acidic carriers is employed to catalyze the metathesis of functionalized olefins. A typical system is MTO/Al{sub 2}O{sub 3}-SiO{sub 2}, which is active, for instance, in the metathesis of allyl halides, allylsilanes, unsaturated carboxylates, and nitriles. MTO in combination with R{sub n}AlCl{sub 3-n} is a homogeneous catalyst in ring-opening polymerizations (R = CH{sub 3}, C{sub 2}H{sub 5}; n = 1,2). (orig.).

  5. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  6. Synthesis and Characterization of a Novel Acrylonitrile Copolymer Containing Glucose Pendants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this work, a novel sugar-containing copolymer was synthesized by the copolymerization of α-allyl glucoside (AG) with acrylonitrile (AN). The copolymers were characterized by NMR spectroscopy. It was found that acrylonitrile-based copolymers containing as high as 22wt.% of α-allyl glucoside can be synthesized by the free radical solution copolymerization of the two monomers in DMSO with AIBN as initiator.

  7. Amphiphilic star block copolymers as gene carrier Part I: Synthesis via ATRP using calix[4]resorcinarene-based initiators and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Anna; Xue, Yan; Wei, Dafu [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Guan, Yong, E-mail: yguan@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining [Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (Canada)

    2013-01-01

    In this work, a cationic star polymer [poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)] was prepared via atom transfer radical polymerization (ATRP), using brominated calix[4]resorcinarene as an initiator. Hydrophobic moieties, methyl methacrylate (MMA) and butyl acrylate (BA), were further incorporated via 'one-pot' method. Well-defined eight-armed star block copolymers bearing hydrophilic blocks inside and hydrophobic blocks outside were synthesized. The molecular weight, particle size, electrophoretic mobility and apparent charge density were determined by gel permeation chromatography (GPC), dynamic light scattering (DLS), phase analysis light scattering (PALS) and colloidal titration, respectively. The zeta potentials and apparent charge densities of the products exhibited the characteristics of polyelectrolyte. The incorporation of hydrophobic moieties generated electrostatic screening effect. The as-synthesized amphiphilic star copolymer is promising as a thermo-sensitive gene carrier for gene therapy. Highlights: Black-Right-Pointing-Pointer Amphiphilic cationic star block copolymers with well-controlled structures were prepared via ATRP. Black-Right-Pointing-Pointer The molecular structures and properties of the initiator and copolymers were systematically characterized. Black-Right-Pointing-Pointer The products exhibited the positive charged character, and hydrophobic moieties generated electrostatic screening effect.

  8. Nanoparticle carriers based on copolymers of poly(l-aspartic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Han Siyuan; Wang Huan; Liang Xingjie [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China); Hu Liming, E-mail: huliming@bjut.edu.cn [Beijing University of Technology, College of Life Science and Bioengineering (China); Li Min; Wu Yan, E-mail: wuy@nanoctr.cn [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China)

    2011-09-15

    A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR ({sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  9. Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release.

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Wang, Wenyi; Lee, Ka I; Gao, Chang; He, Liang; Wang, Yuanfeng; Lai, Chuilin; Fei, Bin; Xin, John H

    2016-07-01

    Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers.

  10. Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release.

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Wang, Wenyi; Lee, Ka I; Gao, Chang; He, Liang; Wang, Yuanfeng; Lai, Chuilin; Fei, Bin; Xin, John H

    2016-07-01

    Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers. PMID:27022875

  11. Impact of chain microstructure on solution and thin film self-assembly of PCHD-based semi-flexible/flexible diblock copolymers.

    Science.gov (United States)

    Bornani, Kamlesh; Wang, Xu; Davis, Jesse L; Wang, Xiaojun; Wang, Weiyu; Hinestrosa, Juan Pablo; Mays, Jimmy W; Kilbey, S Michael

    2015-08-28

    Self-assembly of semi-flexible/flexible block copolymers in a selective solvent is examined using a set of diblock copolymers where the chain microstructure of the semi-flexible block is manipulated in order to tune chain stiffness. Conceptually, the reduced conformational space of the semi-flexible block is anticipated to alter the way the chains pack, potentially changing the structure of self-assembled aggregates in comparison to flexible diblock copolymer analogs. Semi-flexible/flexible diblock copolymers comprised of poly(styrene)-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) having systematic changes in chain microstructure, as captured by the ratio of 1,4/1,2-linkages between cyclohexenyl repeat units, and molecular weight of the PCHD blocks were synthesized using anionic polymerization. These diblocks were dissolved in tetrahydrofuran (THF), which is a preferential solvent for PS, and the structures formed were examined using laser light scattering and complementary imaging techniques. Results show that PS-b-PCHD copolymers with a chain microstructure of 90% 1,4/10% 1,2 linkages between cyclohexenyl repeat units (referred to simply as 90/10) are able to micellize, forming spherical structures, while diblocks of 70/30 and 50/50 1,4-to-1,2 ratios remain as single chains and ill-defined aggregates, respectively, when dissolved in THF. With inferences drawn from simple structural models, we speculate that this self-assembly behavior arises due to the change in the chain configuration with increasing content of 1,2-links in the backbone. This renders the chain with higher 1,2 content incapable of swelling in response to solvent and unable to pack into well-defined self-assembled structures. PMID:26186404

  12. Simple, chemoselective, catalytic olefin isomerization.

    Science.gov (United States)

    Crossley, Steven W M; Barabé, Francis; Shenvi, Ryan A

    2014-12-01

    Catalytic amounts of Co(Sal(tBu,tBu))Cl and organosilane irreversibly isomerize terminal alkenes by one position. The same catalysts effect cycloisomerization of dienes and retrocycloisomerization of strained rings. Strong Lewis bases like amines and imidazoles, and labile functionalities like epoxides, are tolerated.

  13. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    Science.gov (United States)

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  14. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    Directory of Open Access Journals (Sweden)

    Stefano Guidone

    2015-09-01

    Full Text Available The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  15. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    Science.gov (United States)

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  16. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    Science.gov (United States)

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  17. Catalytic Conversion of Alcohols into Olefins: Spectroscopy, Kinetics and Catalyst Deactivation

    OpenAIRE

    Qian, Q

    2014-01-01

    The alcohols-to-olefins (ATO) catalytic process, a technology based on oil-alternative feedstocks, has gained increasing attention due to the current high price of crude oil as well as the growing environmental concerns. Intensive academic and industrial research, mainly performed under ex-situ conditions with bulk characterization techniques as well as advanced theoretical calculations, have yielded important insights into the ATO reaction mechanism, which follows the so-called “hydrocarbon ...

  18. Prototyping of Microfluidic Systems with Integrated Waveguides in Cyclin Olefin Copolymer

    DEFF Research Database (Denmark)

    Bundgaard, Frederik

    2007-01-01

    In recent years, the use of polymer materials in the field of microfluidic systems and so-called ’lab-on-a-chip’ systems has increased. Silicon, the material traditionally used for the fabrication of such systems, is not compatible with for instance blood or harsh chemicals, while many polymers...... have the desired properties. A number of standard polymers like poly(methyl methacrylate) and polydimethylsiloxane have been investigated, but also new polymer types with e.g. superior optical or chemical properties have emerged in microfluidic research. The lab-on-a-chip systems integrate fluidic...... handling and measurement on a single chip, and both optical and electronical components can be embedded. For polymer microsystems, integration of optical waveguides can be achieved by structuring polymers with different refractive indices. This thesis treats aspects of prototyping and fabrication...

  19. Synthesis of interlocked molecules by olefin metathesis

    Science.gov (United States)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  20. Block copolymer patterns and templates

    Directory of Open Access Journals (Sweden)

    Mingqi Li

    2006-09-01

    Full Text Available This review describes the chemical and physical aspects of patternable block copolymers and their use for nanostructure fabrication. The patternability of block copolymers results from their ability to self-assemble into microdomains and the manipulation of these patterns by a variety of physical and chemical means. Procedures for achieving long-range lateral order, as well as orientation order of microdomain patterns, are discussed. The level of control that these strategies afford has enabled block copolymers to be used as templates for fabricating a variety of nanostructures.

  1. CHARACTERISTICS OF STRUCTURE OF IMPACT COPOLYMERS OF POLYPROPYLENE WITH LOW ETHYLENE CONTENTS

    Institute of Scientific and Technical Information of China (English)

    MA Dezhu; LI Xiqiang; ZHANG Ruiyun; HONG Kunlun; LUO Xiaolie

    1994-01-01

    In the present work, the structure and impact properties of copolymers of polypropylene with low ethylene contents have been investigated. Based on the results of 13C-NMR, FTIR,WAXD, DSC, PLM and SEM, the relationship between impact properties and morphology of the copolymers has been discussed. The high impact properties of copolymer ICP2 may attribute to the relatively higher ethylene content and homogeneous ethylene unit distribution. The size and its distribution of spherulite in the copolymers and cycloid cavities dispersed in polypropylene continue phase may also be two important factors which affect the impact properties of these materials.

  2. Effect of poly (isopropylacrylamide)-based copolymer structure on protein adsorption resistance%聚(N-异丙基丙烯酰胺)基共聚物结构对抗蛋白吸附性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘娜; 鹿浩; 吴丙照; 裴爱达; 魏小飞; 陈晓农

    2009-01-01

    BACKGROUND: Non-specific protein adsorption resistance is the most important factor for biocompatibility; pre-adsorption of hydrophilic polymer on artificial material surface is one of the effective methods to inhibit protein adsorption. OBJECTIVE: To study pre-adsorption and protein adsorption resistance of poly (isopropylacrylamide) (PNIPAM)-based amphiphilic comb-block copolymers on polystyrene (PS) surface, and to understand the effect of the copolymer structure, i.e. the chain length and the number of hydrophilic polyvinylpyrrolidone (PVP) or polyethylene oxide (PEO) comb-branches, on protein adsorption resistance. DESIGN, TIME AND SETTING: An observational study was performed at College of Materials Science and Engineering, Beijing University of Chemical Technology from November 2007 to November 2008. MATERIALS: Monodisperse PS microsphere was employed to simulate surface of hydrophobic materials, and lysozyme was used as protein model. METHODS:① Qualitative analysis: Aqueous suspension of PS microspheres (0.1 g/L) was treated with PNIPAM-based copolymer (0.1 g/L) at room temperature for 24 hours to allow pre-adsorption of the copolymer on PS surface to build up a hydrophilic layer. Lysozyme (0.1 g/L) was mixed with the PS suspension at 37 ℃ and the mixture was kept for 24 hours. Apparent particle size and turbidity of the suspension were measured at 37 C to observe coagulation or flocculation of PS microspheres, which related to the extent of protein adsorption on PS surface. ②Quantitative analysis of protein adsorption: The PS suspension containing lysozyme was subjected to ultracentrifuge (15 000 r/min) to collect clear aqueous solution. The lysozyme concentration in the clear solution was measured by spectrophotometry at 280 nm. The amount of protein adsorbed on PS surface was calculated based on the decrease in the protein concentration in the supernatant solution. MAIN OUTCOME MEASURES: Apparent particle diameter, turbidity, mass concentration of

  3. Photoorganocatalysed and visible light photoredox catalysed trifluoromethylation of olefins and (hetero)aromatics in batch and continuous flow.

    Science.gov (United States)

    Lefebvre, Quentin; Hoffmann, Norbert; Rueping, Magnus

    2016-02-11

    Trifluoromethylation of olefins and (hetero)aromatics with sodium triflinate as CF3 source and readily accessible benzophenone derivatives as photosensitisers has been developed in batch and flow. The use of an iridium-based photocatalyst enables the trifluoromethylation to proceed under visible light irradiation.

  4. The activation mechanism of Ru-indenylidene complexes in olefin metathesis.

    Science.gov (United States)

    Urbina-Blanco, César A; Poater, Albert; Lebl, Tomas; Manzini, Simone; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P

    2013-05-01

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations.

  5. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  6. Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole)

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    Large-area solar cells (active area = 3 and 10cm(2)) were prepared with low band gap polymers based on thiophene and benzothiadiazole (1) or thiophene and benzo-bis(thiadiazole) (2). The band gaps of the polymers were 1.65 and 0.67 eV, respectively. The best photovoltaic performance was obtained...... for the device ITO/PEDOT/1:PCBM (1:2)/Al with an active area of 3 cm(2). The efficiency of the device was 0.62%. This is a high efficiency for a low band gap polymer in a large-area organic solar cell and thus polymer I is a very promising material for organic solar cells. The devices based on 2 were found...

  7. Rheological properties of olefinic thermoplastic elastomer blends

    OpenAIRE

    Sengers, W.G.F.

    2005-01-01

    Thermoplastic Elastomers (TPE) are a class of materials that have rubber-like properties and can be processed like thermoplastic polymers. In this thesis, the rheological properties of two TPE blends are correlated to their morphology. The thermoplastic vulcanisates (TPV) consist of micron-sized, cured elastomer particles while the blends of PP and the triblock copolymer SEBS show co-continuous structures. Both blends also contain considerable amount of paraffinic oil. The difference between ...

  8. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    Science.gov (United States)

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  9. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    Science.gov (United States)

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  10. Polymethylene-based copolymers by polyhomologation or by its combination with controlled/living and living polymerizations

    KAUST Repository

    Zhang, Hefeng

    2014-01-20

    Polyhomologation, recently developed by Shea, is a borane-initiated living polymerization of ylides leading to linear polymethylenes (C1 polymerization) with controlled molecular weight, low polydispersity, and well-defined structures. In this Review, the copolyhomologation of different ylides as well as the combination of polyhomologation with controlled/living (nitroxide-mediated, atom transfer radical, reversible addition-fragmentation chain-transfer) and living (ring opening, anionic) polymerizations is discussed. Polyhomologation of ylides, in combination with living and controlled/living polymerizations, leads to a plethora novel well-defined polymethylene (polyethylene)-based polymeric materials, which are very important for understanding/improving the behavior of industrial polyethylenes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    Science.gov (United States)

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  12. Production of molybdenum dioxo dialkyleneglycolate compositions for epoxidation of olefins

    International Nuclear Information System (INIS)

    This patent describes a method of producing an organic soluble molybdenum-containing compound, useful as a catalyst for the epoxidation of an olefinic compound with an organic hydroperoxide, which comprises reacting molybdenum trioxide with a dialkylene glycol

  13. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  14. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  15. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery.

    Science.gov (United States)

    Zhang, Can Yang; Xiong, Di; Sun, Yao; Zhao, Bin; Lin, Wen Jing; Zhang, Li Juan

    2014-01-01

    A novel amphiphilic triblock pH-sensitive poly(β-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-g-MPEG-Chol) was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation-deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX) was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. PMID:25364250

  16. Curvature-coupled hydration of Semicrystalline Polymer Amphiphiles yields flexible Worm Micelles but favors rigid Vesicles: polycaprolactone-based block copolymers

    OpenAIRE

    Rajagopal, Karthikan; Mahmud, Abdullah; Christian, David A.; Pajerowski, J. David; Brown, Andre E. X.; Sharon M Loverde; Discher, Dennis E.

    2010-01-01

    Crystallization processes are in general sensitive to detailed conditions, but our present understanding of underlying mechanisms is insufficient. A crystallizable chain within a diblock copolymer assembly is expected to couple curvature to crystallization and thereby impact rigidity as well as preferred morphology, but the effects on dispersed phases have remained unclear. The hydrophobic polymer polycaprolactone (PCL) is semi-crystalline in bulk (Tm = 60°C) and is shown here to generate fle...

  17. Thermal Degradation Studies on Polyaniline-Polypyrrole Copolymers Prepared by Microemulsion Methods

    Science.gov (United States)

    Prasannan, A.; Somanathan, N.; Hong, Po-Da

    2010-05-01

    Solvent- and water-based microemulsions of aniline and pyrrole copolymers were synthesized, and the thermal degradation properties of the copolymers were studied. The morphology of the copolymers prepared using solvent-based microemulsions containing 80 % aniline in the feed showed highly oriented, crystalline, ordered long nano-fibers which were even more structured than that of pure aniline prepared by the same method. The influence of the degree of crystallinity calculated from X-ray diffraction and morphology had an overlap with thermal degradation and activation energies of different transitions. Copolymers prepared with water-based microemulsions were thermally less stable than the ones prepared using solvent-based microemulsions. The concentration of pyrrole and aniline mutually influenced the thermal properties of the copolymers.

  18. Synthesis and properties of a novel biodegradable poly(ester amine copolymer based on poly(L-lactide and low molecular weight polyethylenimine for gene delivery

    Directory of Open Access Journals (Sweden)

    Guo QF

    2011-08-01

    Full Text Available Qing Fa Guo, Ting Ting Liu, Xi Yan, Xiu Hong Wang, Shuai Shi, Feng Luo, Zhi Yong QianState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of ChinaBackground: Gene therapy is a promising approach to the treatment of a wide range of diseases. The development of efficient and adequate gene delivery systems could be one of the most important factors. Polyethyleneimine, a cationic polymer, is one of the most successful and widely used vectors for nonviral transfection in vitro and in vivo.Methods: A novel biodegradable poly(ester amine copolymer (PEA was successfully prepared from low molecular weight polyethylenimine (PEI, 2000 Da and poly(L-lactide copolymers.Results: According to the results of agarose gel electrophoresis, particle size and zeta potential measurement, and transfection efficiency, the PEA copolymers showed a good ability to condense plasmid DNA effectively into nanocomplexes with a small particle size (≤150 nm and moderate zeta potential (≥10 mV at an appropriate polymeric carrier/DNA weight ratio. Compared with high molecular weight PEI (25kDa, the PEA obtained showed relatively high gene transfection efficiency as well as low cytotoxicity in vitro.Conclusion: These results indicate that such PEA might have potential application as a gene delivery system.Keywords: polyethylenimine, poly(L-lactide, gene delivery, cytotoxicity, transfection efficiency

  19. 1,2,3-Triazolium-Based Poly(2,6-Dimethyl Phenylene Oxide) Copolymers as Anion Exchange Membranes.

    Science.gov (United States)

    Liu, Lei; He, Shuqing; Zhang, Shufang; Zhang, Min; Guiver, Michael D; Li, Nanwen

    2016-02-01

    Anion exchange membranes (AEMs) based on 1,2,3-triazolium (TAM) were prepared from commercial poly(2,6-dimethyl phenylene oxide) (PPO) via "click chemistry" and subsequent N-alkylation. Flexible and tough membranes with various ion exchange capacities (IECs) were obtained by casting the polymers from NMP solutions. Although the resulting TAM-functionalized PPOs (PPO-TAM) membranes exhibited incomplete ion exchange in 1 M NaOH or NaHCO3 for 24 h even at elevated temperature, the highest hydroxide conductivities of the membranes were above 20 mS/cm at room temperature, which is comparable to many reported AEMs. Alkaline stability tests indicate that the PPO-TAM membranes showed a better alkaline stability than that of membranes containing imidazolium groups in 1 M NaOH at 80 °C, but still require further improvements in long-term stability for alkaline fuel cell application. An investigation of alkaline stability of model compounds demonstrated the instability of TAM cations under alkaline conditions could contribute to the deprotonation of benzylic methylene, C4 and C5 position on the triazolium ring. These results suggests that the alkaline stability of 1,2,3-triazolium cation could be improved by the introduction of substituents at the C4, C5 positions and benzylic methylene, and also provide insight and directions for organic cation designs for AEM application by the facile synthetic strategy of "click chemistry". PMID:26820176

  20. IMPROVING THE PROPERTIES OF HDPE BASED SEPARATORS FOR LITHIUM ION BATTERIES BY BLENDING BLOCK WITH COPOLYMER PE-b-PEG

    Institute of Scientific and Technical Information of China (English)

    Jun-li Shi; Hao Li; Li-feng Fang; Zhi-ying Liang; Bao-ku Zhu

    2013-01-01

    To improve the performances of HDPE-based separators,polyether chains were incorporated into HDPE membranes by blending with poly(ethylene-block-ethylene glycol) (PE-b-PEG) via thermally induced phase separation (TIPS) process.By measuring the composition,morphology,crystallinity,ion conductivity,etc,the influence of PE-b-PEG on structures and properties of the blend separator were investigated.It was found that the incorporated PEG chains yielded higher surface energy for HDPE separator and improved affinity to liquid electrolyte.Thus,the stability of liquid electrolyte trapped in separator was increased while the interfacial resistance between separator and electrode was reduced effectively.The ionic conductivity of liquid electrolyte soaked separator could reach 1.28 × 10-3 S.cm-1 at 25℃,and the electrochemical stability window was up to 4.5 V (versus Li+/Li).These results revealed that blending PE-b-PEG into porous HDPE membranes could efficiently improve the performances of PE separators for lithium batteries.

  1. Carbonyl-Olefin Exchange Reaction and Related Chemistry

    Science.gov (United States)

    Jossifov, Christo; Kalinova, Radostina

    A new carbon—carbon double bond forming reaction (carbonyl olefin exchange reaction) mediated by transition metal catalytic systems has been discovered. The catalytic systems used (transition metal halides or oxohalides alone or in combination with Lewis acids) are active only in the case when the two reacting groups are in one molecules and are conjugated. In addition these systems accelerate other reactions which run simultaneously with the carbonyl olefin metathesis rendering a detailed investigation of the process very complicated.

  2. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  3. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  4. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    Science.gov (United States)

    Bazan, Guillermo C.; Chen, Yaofeng

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  5. Catalytic transformation of seed oil derivatives via olefin metathesis

    OpenAIRE

    Scott S.L.

    2007-01-01

    Unsaturated fatty acid esters derived from seed oils undergo metathesis at the C=C bond to give new internal and terminal olefins of interest in chemical manufacturing. The key to realizing this industrial opportunity is the ability to deploy catalysts that tolerate functional groups and remain reactive towards internal olefins even at high conversions. Recent developments in catalyst and reactor design are bringing these targets closer to commercial reality. .

  6. Selective conversion of syngas to light olefins.

    Science.gov (United States)

    Jiao, Feng; Li, Jinjing; Pan, Xiulian; Xiao, Jianping; Li, Haobo; Ma, Hao; Wei, Mingming; Pan, Yang; Zhou, Zhongyue; Li, Mingrun; Miao, Shu; Li, Jian; Zhu, Yifeng; Xiao, Dong; He, Ting; Yang, Junhao; Qi, Fei; Fu, Qiang; Bao, Xinhe

    2016-03-01

    Although considerable progress has been made in direct synthesis gas (syngas) conversion to light olefins (C2(=)-C4(=)) via Fischer-Tropsch synthesis (FTS), the wide product distribution remains a challenge, with a theoretical limit of only 58% for C2-C4 hydrocarbons. We present a process that reaches C2(=)-C4(=) selectivity as high as 80% and C2-C4 94% at carbon monoxide (CO) conversion of 17%. This is enabled by a bifunctional catalyst affording two types of active sites with complementary properties. The partially reduced oxide surface (ZnCrO(x)) activates CO and H2, and C-C coupling is subsequently manipulated within the confined acidic pores of zeolites. No obvious deactivation is observed within 110 hours. Furthermore, this composite catalyst and the process may allow use of coal- and biomass-derived syngas with a low H2/CO ratio. PMID:26941314

  7. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  8. Theoretical investigations of olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T.R.; Gordon, M.S. [North Dakota State Univ., Fargo, ND (United States)

    1992-01-01

    An ab initio analysis of the electronic structure of high-valent, transition-metal alkylidenes as models for olefin metathesis catalysts is presented. The catalyst models studied fall into three categories: {open_quotes}new{close_quotes} metathesis catalyst models-tetrahedral M(OH){sup 2}(XH)(CH{sub 2}) complexes; {open_quotes}old{close_quotes} metathesis catalyst models-tetrahedral MCl{sub 2}(Y)(CH{sub 2}) complexes and alkylidene-substituted Mo metathesis catalysts, Mo(OH){sub 2}(NH)(=C(H)Z). The effect on the bonding caused by modification of either the metal, ligands, or alkylidene substitutents is considered. 21 refs., 2 figs., 5 tabs.

  9. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    Science.gov (United States)

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  10. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  11. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Torren R. [Univ. of Massachusetts, Amherst, MA (United States); Cheng, Yu-Ting [Univ. of Massachusetts, Amherst, MA (United States); Jae, Jungho [Univ. of Massachusetts, Amherst, MA (United States); Huber, George W. [Univ. of Massachusetts, Amherst, MA (United States)

    2011-10-26

    Catalytic fast pyrolysis of pine wood sawdust and furan (a model biomass compound) with ZSM-5 based catalysts was studied with three different reactors: a bench scale bubbling fluidized bed reactor, a fixed bed reactor and a semi-batch pyroprobe reactor. The highest aromatic yield from sawdust of 14% carbon in the fluidized bed reactor was obtained at low biomass weight hourly space velocities (less than 0.5 h-1) and high temperature (600 °C). Olefins (primarily ethylene and propylene) were also produced with a carbon yield of 5.4% carbon. The biomass weight hourly space velocity and the reactor temperature can be used to control both aromatic yield and selectivity. At low biomass WHSV the more valuable monocyclic aromatics are produced and the formation of less valuable polycyclic aromatics is inhibited. Lowering the reaction temperature also results in more valuable monocyclic aromatics. The olefins produced during the reaction can be recycled to the reactor to produce additional aromatics. Propylene is more reactive than ethylene. Co-feeding propylene to the reactor results in a higher aromatic yield in both continuous reactors and higher conversion of the intermediate furan in the fixed bed reactor. When olefins are recycled aromatic yields from wood of 20% carbon can be obtained. After ten reaction–regeneration cycles there were metal impurities deposited on the catalyst, however, the acid sites on the zeolite are not affected. Of the three reactors tested the batch pyroprobe reactor yielded the most aromatics, however, the aromatic product is largely naphthalene. The continuous reactors produce less naphthalene and the sum of aromatics plus olefin products is higher than the pyroprobe reactor.

  12. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.

    Science.gov (United States)

    Ou, Wenfeng; Qiu, Handi; Chen, Zhifei; Xu, Kaitian

    2011-04-01

    A series of block poly(ester-urethane)s (abbreviated as PU3/4HB) based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent and stannous octanoate (Sn(Oct)(2)) as catalyst, with different 4HB contents and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of deionized water and CH(2)I(2). DSC curves revealed that the PU3/4HB polyurethanes have their T(g) from -25.6 °C to -4.3 °C, and crystallinity from 2.5% to 25.3%, being almost amorphous to semi-crystalline. The obtained PU3/4HBs are hydrophobic (water contact angle 77.4°-95.9°), and their surface free energy (SFE) were studied. The morphology of platelets adhered on the polyurethane film observed by scanning electron microscope (SEM) showed that platelets were activated on the PU3/4HB films which would lead to blood coagulation. The lactate dehydrogenase (LDH) assay revealed that the PU3/4HBs displayed higher platelet adhesion property than raw materials and biodegradable polymer polylactic acid (PLA) and would be potential hemostatic materials. Crystallinity degree, hydrophobicity, surface free energy and urethane linkage content play important roles in affecting the LDH activity and hence the platelet adhesion. CCK-8 assay showed that the PU3/4HB is non-toxic and well for cell growth and proliferation of mouse fibroblast L929. It showed that the hydrophobicity is an important factor for cell growth while 3HB content of the PU3/4HB is important for the cell proliferation. Through changing the

  13. Iron(III)-catalysed carbonyl-olefin metathesis.

    Science.gov (United States)

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-05-19

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis. PMID:27120158

  14. Iron(III)-catalysed carbonyl-olefin metathesis.

    Science.gov (United States)

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-04-27

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  15. Iron(III)-catalysed carbonyl–olefin metathesis

    Science.gov (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon–carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl–olefin metathesis reaction can also be used to construct carbon–carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl–olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl–olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  16. Iron(III)-catalysed carbonyl-olefin metathesis

    Science.gov (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  17. "Click" and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles.

    Science.gov (United States)

    Lipshutz, Bruce H; Bošković, Zarko; Crowe, Christopher S; Davis, Victoria K; Whittemore, Hannah C; Vosburg, David A; Wenzel, Anna G

    2013-11-12

    The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide-alkyne "click" reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide-alkyne [3+2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis).

  18. “Click” and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles

    Science.gov (United States)

    Lipshutz, Bruce H.; Bošković, Zarko; Crowe, Christopher S.; Davis, Victoria K.; Whittemore, Hannah C.; Vosburg, David A.; Wenzel, Anna G.

    2013-01-01

    The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide–alkyne “click” reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide–alkyne [3+2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis). PMID:24324282

  19. "Click" and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles.

    Science.gov (United States)

    Lipshutz, Bruce H; Bošković, Zarko; Crowe, Christopher S; Davis, Victoria K; Whittemore, Hannah C; Vosburg, David A; Wenzel, Anna G

    2013-11-12

    The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide-alkyne "click" reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide-alkyne [3+2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis). PMID:24324282

  20. Block copolymer self-assembly : homopolymer additives and multiple length scales

    NARCIS (Netherlands)

    Klymko, Tetyana Romanivna

    2008-01-01

    This thesis is devoted to a theoretical study of self-assembly in specific block-copolymer systems. The ability of block copolymer-based systems to organize at the nanoscale level depends on several parameters, such as volume fraction of the different components, their molar masses and the strength