An Agent Interaction Based Method for Nonlinear Process Plan Scheduling
Institute of Scientific and Technical Information of China (English)
GAO Qinglu; WU Bo; GUO Guang
2006-01-01
This article puts forward a scheduling method for nonlinear process plan shop floor. Task allocation and load balance are realized by bidding mechanism. Though the agent interaction process, the execution of tasks is determined and the coherence of manufacturing decision is verified. The employment of heuristic index can help to optimize the system performance.
Visible and ultraviolet light sources based nonlinear interaction of lasers
DEFF Research Database (Denmark)
Andersen, Martin Thalbitzer; Tidemand-Lichtenberg, Peter; Jain, Mayank;
Different light sources can be used for optically stimulated luminescence measurements and usually a halogen lamp in combination with filters or light emitting diodes (LED’s) are used to provide the desired stimulation wavelength. However lasers can provide a much more well-defined beam, very...... for synthesizing any wavelength in the visible and ultraviolet light based sum frequency generation between two lasers is presented....
Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
Zhang, Cheng; Liu, Hao; Tan, Renjia; Li, Hongyi
2014-03-01
Active capsule endoscope could also be called capsule robot, has been developed from laboratory research to clinical application. However, the system still has defects, such as poor controllability and failing to realize automatic checks. The imperfection of the interaction model between capsule robot and intestine is one of the dominating reasons causing the above problems. A model is hoped to be established for the control method of the capsule robot in this article. It is established based on nonlinear viscoelasticity. The interaction force of the model consists of environmental resistance, viscous resistance and Coulomb friction. The parameters of the model are identified by experimental investigation. Different methods are used in the experiment to obtain different values of the same parameter at different velocities. The model is proved to be valid by experimental verification. The achievement in this article is the attempted perfection of an interaction model. It is hoped that the model can optimize the control method of the capsule robot in the future.
A Numerical Study of Nonlinear Wave Interactions
de Bakker, A.; Tissier, M.; Ruessink, G.
2014-12-01
Nonlinear triad interactions redistribute energy among a wave field, which transforms the shape of the incident short waves (f = 0.05 - 2 Hz) and generates energy at infragravity frequencies (f = 0.005-0.05 Hz). Recently, it has been suggested that infragravity energy may dissipate by energy transfers from infragravity frequencies to either the (former) short-wave spectral peak, or through infragravity-infragravity self-interactions that cause the infragravity waves to steepen and to eventually break. To investigate these infragravity dissipation mechanisms, we use the non-hydrostatic SWASH model. In this study, we first validate the model with the high-resolution GLOBEX laboratory data set and then explore the dependence of the energy transfers, with a focus on infragravity frequencies, on beach slope. Consistent with previous studies we find that SWASH is able to reproduce the transformation and corresponding nonlinear energy transfers of shoreward propagating waves to great detail. Bispectral analysis is used to study the coupling between wave frequencies; nonlinear energy transfers are then quantified using the Boussinesq coupling coefficient. To obtain more detailed insight we divide the nonlinear interactions in four categories based on triads including 1) infragravity frequencies only, 2) two infragravity frequencies and one short-wave frequency, 3) one infragravity frequency and two short-wave frequencies and 4) short-wave frequencies only. Preliminary results suggest that interactions are rather weak on gently beach slopes (1:80) and, in the innermost part of the surf zone, are dominated by infragravity-infragravity interactions. On steeper slopes (1:20), interactions are stronger, but entirely dominated by those involving short-wave frequencies only. The dependence of the transfers on offshore wave conditions and beach shape will be explored too. Funded by NWO.
Nonlinear Interaction of Convective Cells in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens; Thomsen, Kenneth
1984-01-01
The nonlinear interaction of externally excited convective cells was investigated experimentally. Two cells of the same polarity were observed to coalesce into one large cell provided their relative distance was sufficiently short. The nonlinear nature of the interaction was explicitly demonstrated....... Two cells of opposite polarity interact through a mutual perturbation of orbits. © 1984 The American Physical Society...
Nonlinear Interaction of Waves in Geomaterials
Ostrovsky, L. A.
2009-05-01
Progress of 1990s - 2000s in studying vibroacoustic nonlinearities in geomaterials is largely related to experiments in resonance samples of rock and soils. It is now a common knowledge that many such materials are very strongly nonlinear, and they are characterized by hysteresis in the dependence between the stress and strain tensors, as well as by nonlinear relaxation ("slow time"). Elastic wave propagation in such media has many peculiarities; for example, third harmonic amplitude is a quadratic (not cubic as in classical solids) function of the main harmonic amplitude, and average wave velocity is linearly (not quadratically as usual) dependent on amplitude. The mechanisms of these peculiarities are related to complex structure of a material typically consisting of two phases: a hard matrix and relatively soft inclusions such as microcracks and grain contacts. Although most informative experimental results have been obtained in rock in the form of resonant bars, few theoretical models are yet available to describe and calculate waves interacting in such samples. In this presentation, a brief overview of structural vibroacoustic nonlinearities in rock is given first. Then, a simple but rather general approach to the description of wave interaction in solid resonators is developed based on accounting for resonance nonlinear perturbations which are cumulating from period to period. In particular, the similarity and the differences between traveling waves and counter-propagating waves are analyzed for materials with different stress-strain dependences. These data can be used for solving an inverse problem, i.e. characterizing nonlinear properties of a geomaterial by its measured vibroacoustic parameters. References: 1. L. Ostrovsky and P. Johnson, Riv. Nuovo Chimento, v. 24, 1-46, 2007 (a review); 2. L. Ostrovsky, J. Acoust. Soc. Amer., v. 116, 3348-3353, 2004.
INFLUENCES OF NONLINEAR INTERACTIONS ON POLARITIONS
Institute of Scientific and Technical Information of China (English)
牛家胜; 罗莹; 马本堃
2001-01-01
In this paper, we have analysed theoretically the polarization and dielectric constant generated by the nonlinear interactions between ions in ionic crystals. The spectrum of polaritons (coupling modes of photons and optical phonons)under nonlinear interactions has been developed. A new branch of dispersion relations has emerged in the original frequency gap between CTO and ωLO.
Nonlinear interaction of the concentrated waves
International Nuclear Information System (INIS)
The nonlinear problem of the wave propagation is considered. In addition to Kerr nonlinearity the question of the existence of concentrated solutions is analyzed for the threshold and saturable nonlinearity. It is shown that both in the case of threshold nonlinearity, and in the case of saturable nonlinearity solitary waves – concentrated solutions of the corresponding wave equations exist. For the nonlocal nonlinearity, it is taken into account that the diffusion process transforms the interaction of the electromagnetic field with the environment. This phenomenon is described by the system of differential equations including the equation for the perturbation of the dielectric permittivity. The mathematical problem is reduced to the eigenvalue problem for nonlinear integro-differential equation of Hartree type. The computational procedure is constructed
Nonlinear Interaction of Convective Cells in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens; Thomsen, Kenneth
1985-01-01
The nonlinear interaction of externally excited convective cells was investigated experimentally. Two cells of the same polarity coalesced into one large cell provided their relative distance was sufficiently short, while cells of opposite polarity interacted through a mutual perturbation of orbits...... only. The nonlinear nature of the coalescence was explicitly demonstrated. The implications of the observations for interpreting the cascade in a turbulent spectrum in two-dimensional systems are pointed out....
Directory of Open Access Journals (Sweden)
Fan Yuxin
2014-12-01
Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Institute of Scientific and Technical Information of China (English)
Fan Yuxin; Xia Jian
2014-01-01
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute tran-sient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute infla-tion is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hil-ber–Hughes–Taylor (HHT) time integration method is employed. For the fluid dynamic simula-tions, the Roe and HLLC (Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Soil-structure interaction including nonlinear soil
Gicev, Vlado
2008-01-01
There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.
Pulse interaction in nonlinear vacuum electrodynamics
Ignatov, A. M.; Poponin, V. P.
2000-01-01
The energy-momentum conservation law is used to investigate the interaction of pulses in the framework of nonlinear electrodynamics with Lorentz-invariant constitutive relations. It is shown that for the pulses of the arbitrary shape the interaction results in phase shift only.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P K; Marklund, M; Stenflo, L
2006-01-01
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Tunable Resonators for Nonlinear Modal Interactions
Ramini, Abdallah
2016-10-04
Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.
Nonlinear dynamics of interacting populations
Bazykin, Alexander D
1998-01-01
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the
Nonlinear interactions for massive spin-2 fields
Schmidt-May, Angnis
2016-01-01
We give a basic introduction to ghost-free nonlinear theories involving massive spin-2 fields, focussing on bimetric theory. After motivating the construction of such models from field theoretical considerations, we review the linear theories for massive and massless spin-2 fluctuations propagating on maximally symmetric backgrounds. The structure of general nonlinear spin-2 interactions is explained before we specialise to the ghost-free case. We review the maximally symmetric solutions of bimetric theory, its mass spectrum and the parameter limit which brings the theory close to general relativity. Finally we discuss applications of bimetric theory to cosmology with particular emphasis on the role of the general relativity limit.
Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification
Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.
2016-04-01
The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities.
Nonlinear quantum optics mediated by Rydberg interactions
Firstenberg, O.; Adams, C. S.; Hofferberth, S.
2016-08-01
By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons. We review the theoretical concepts and the experimental state-of-the-art of this exciting new field, and discuss first applications in the field of all-optical quantum information processing.
Polaritons and retarded interactions in nonlinear optical susceptibilities
Knoester, Jasper; Mukamel, Shaul
1989-01-01
The role of retarded intermolecular interactions (polariton effects) in the nonlinear optical susceptibilities of condensed phases is studied. A systematic method for calculating these susceptibilities is developed, based on the derivation of reduced equations of motion which couple the electronic v
Non-Linear Interactive Stories in Computer Games
DEFF Research Database (Denmark)
Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas
2003-01-01
The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...
Nonlinear elastic waves in a monatomic chain with nonlinear interaction
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Nonlinear wave equation for a one-dimensional anharmonic crystal lattice in terms of its microscopic parameters is obtained by means of a continuum approximation. Using a small time scale transformation, the nonlinear wave equation is reduced to a combined KdV equation and its single soliton solution yields the supersonic kink form of nonlinear elastic waves for the system.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
LIU Xiao; XU JiYao; MA RuiPing
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75-85 km, z =90-110 km and z= 115-130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the horizontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90-110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75―85 km, z = 90―110 km and z = 115―130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the hori-zontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90—110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Nonlinear Electromagnetic Interactions in Energetic Materials
Wood, M A; Moore, D S
2016-01-01
We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.
Nonlinear lepton-photon interactions in external background fields
Energy Technology Data Exchange (ETDEWEB)
Akal, Ibrahim [DESY, Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [DESY, Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2016-02-09
Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.
Nonlinear lepton-photon interactions in external background fields
Akal, Ibrahim
2016-01-01
Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.
Esteban Moyano, Fernando; Vasilyeva, Nadezda; Menichetti, Lorenzo
2016-04-01
Soil carbon models developed over the last couple of decades are limited in their capacity to accurately predict the magnitudes and temporal variations in observed carbon fluxes and stocks. New process-based models are now emerging that attempt to address the shortcomings of their more simple, empirical counterparts. While a spectrum of ideas and hypothetical mechanisms are finding their way into new models, the addition of only a few processes known to significantly affect soil carbon (e.g. enzymatic decomposition, adsorption, Michaelis-Menten kinetics) has shown the potential to resolve a number of previous model-data discrepancies (e.g. priming, Birch effects). Through model-data validation, such models are a means of testing hypothetical mechanisms. In addition, they can lead to new insights into what soil carbon pools are and how they respond to external drivers. In this study we develop a model of soil carbon dynamics based on enzymatic decomposition and other key features of process based models, i.e. simulation of carbon in particulate, soluble and adsorbed states, as well as enzyme and microbial components. Here we focus on understanding how moisture affects C decomposition at different levels, both directly (e.g. by limiting diffusion) or through interactions with other components. As the medium where most reactions and transport take place, water is central en every aspect of soil C dynamics. We compare results from a number of alternative models with experimental data in order to test different processes and parameterizations. Among other observations, we try to understand: 1. typical moisture response curves and associated temporal changes, 2. moisture-temperature interactions, and 3. diffusion effects under changing C concentrations. While the model aims at being a process based approach and at simulating fluxes at short time scales, it remains a simplified representation using the same inputs as classical soil C models, and is thus potentially
Nonlinear wave-wave interactions and wedge waves
Institute of Scientific and Technical Information of China (English)
Ray Q.Lin; Will Perrie
2005-01-01
A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.
Polaritons and retarded interactions in nonlinear optical susceptibilities
Knoester, Jasper; Mukamel, Shaul
1989-01-01
The role of retarded intermolecular interactions (polariton effects) in the nonlinear optical susceptibilities of condensed phases is studied. A systematic method for calculating these susceptibilities is developed, based on the derivation of reduced equations of motion which couple the electronic variables to the Maxwell (internal) electric field E. The susceptibilities are obtained by iteratively solving these equations in powers of E. Thus, the common introduction of intermediate susceptib...
Dynamical soil-structure interactions: influence of soil behaviour nonlinearities
International Nuclear Information System (INIS)
The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...... the experimental knowledge of cascading nonlinear soliton pulse compression....
Fluid transport due to nonlinear fluid-structure interaction
Energy Technology Data Exchange (ETDEWEB)
Soendergaard Jensen, J.
1996-08-01
This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.
Nonlinear Growth of Singular Vector Based Perturbations
Reynolds, C. A.
2002-12-01
The nonlinearity of singular vector-based perturbation growth is examined within the context of a global atmospheric forecast model. The characteristics of these nonlinearities and their impact on the utility of SV-based diagnostics are assessed both qualitatively and quantitatively. Nonlinearities are quantified by examining the symmetry of evolving positive and negative "twin" perturbations. Perturbations initially scaled to be consistent with estimates of analysis uncertainty become significantly nonlinear by 12 hours. However, the relative magnitude of the nonlinearities is a strong function of scale and metric. Small scales become nonlinear very quickly while synoptic scales can remain significantly linear out to three day. Small shifts between positive and negative perturbations can result in significant nonlinearities even when the basic anomaly patterns are quite similar. Thus, singular vectors may be qualitatively useful even when nonlinearities are large. Post-time pseudo-inverse experiments show that despite significant nonlinear perturbation growth, the nonlinear forecast corrections are similar to the expected linear corrections, even at 72 hours. When the nonlinear correction does differ significantly from the expected linear correction, the nonlinear correction is usually better, indicating that in some cases the pseudo-inverse correction effectively suppresses error growth outside the subspace defined by the leading (dry) singular vectors. Because a significant portion of the nonlinear growth occurs outside of the dry singular vector subspace, an a priori nonlinearity index based on the full perturbations is not a good predictor of when pseudo-inverse based corrections will be ineffective. However, one can construct a reasonable predictor of pseudo-inverse ineffectiveness by focusing on nonlinearities in the synoptic scales or in the singular vector subspace only.
Nonlinear Localized Coherent Spectrum of Beam-Beam Interactions
Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.
2002-01-01
We consider modeling for strong-strong beam-beam interactions beyond preceding linearized/perturbative methods such as soft gaussian approximation or FMM (HFMM) etc. In our approach discrete coherent modes, discovered before, and possible incoherent oscillations appear as a result of multiresolution/multiscale fast convergent decomposition in the bases of high-localized exact nonlinear modes represented by wavelets or wavelet packets functions. The constructed solutions represent the full multiscale spectrum in all internal hidden scales from slow to fast oscillating eigenmodes. Underlying variational method provides algebraical control of the spectrum.
Soil Structure Interaction in Nonlinear Soil
Gicev, Vlado
2008-01-01
A two-dimensional (2-D) model of a building supported by a semi-circular flexible foundation embedded in nonlinear soil is analyzed. The building, the foundation, and the soil have different physical properties. The model is excited by a half-sine SH wave pulse, which travels toward the foundation. The results show that the spatial distribution of permanent, nonlinear strain in the soil depends upon the incident angle, the amplitude, and the duration of the pulse. If the wave h...
Non-linear electromagnetic interactions in thermal QED
Brandt, Fernando T.; Frenkel, Josif
1994-01-01
We examine the behavior of the non-linear interactions between electromagnetic fields at high temperature. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. We argue that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T tends to infinity. This thermal action approaches, in the long wavelength limit, the negative of the corresponding ...
Dynamical and spectral properties of interacting quantum nonlinear resonances
International Nuclear Information System (INIS)
While considering nonlinear quantum systems in the quasiclassical occupation region interacting with an external periodical field, the renormalization method is used. In case of interactions of two nonlinear resonances renormalization is associated with occurence of higher order nonlinear resonances. There is a limit in the renormalization pattern related to existence of higher resonances, for which the number of quasienergy levels in the potential pit is small. Analysis of distributions of delocalized quasi-energy functions, corresponding to destroyed resonances, and those of distances between the adjastment quasienergy levels has shown the presence of considerable correlations. The correlations are due to phase space restricted in action and quantum effects leading to classical chaos restriction
Nonlinear interaction of meta-atoms through optical coupling
Energy Technology Data Exchange (ETDEWEB)
Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Powell, D. A. [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Shadrivov, I. V.; Kivshar, Yu. S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Lapine, M., E-mail: mlapine@physics.usyd.edu.au [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia); McPhedran, R. C. [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)
2014-01-06
We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.
Axial Non-linear Dynamic Soil-Pile Interaction - Keynote
Holeyman A.; Whenham V.
2014-01-01
This keynote lecture describes recent analytical and numerical advances in the modeling of the axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus degradation is evaluated over a range of parameters and compared with those obtained...
Inverse problem for multi-body interaction of nonlinear waves
Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2016-01-01
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.
Nonlinear dynamic soil-structure interaction in earthquake engineering
International Nuclear Information System (INIS)
The present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter sub-domain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions. (author)
The Nonlinear Interaction Process in the Wave Assimilation Model and Its Experiments
Institute of Scientific and Technical Information of China (English)
杨永增; 纪永刚; 袁业立
2003-01-01
This paper presents a composite interaction formula based on the discrete-interactionoperator of wave-wave nonlinear interaction for deriving its adjoint source function in the wave assimilation model. Assimilation experiments were performed using the significant wave heights observed by the TOPES/POSEIDON satellite, and the gradient distribution in the physical space wasalso analyzed preliminarily.
Nanoradar based on nonlinear dimer nanoantenna
Lapshina, Nadezhda; Kivshar, Yuri
2012-01-01
We introduce the concept of a nanoradar based on the operation of a nonlinear plasmonic nanoantenna. The nanoradar action originates from modulational instability occurred in a dimer nanoantenna consisting of two subwavelength nonlinear nanoparticles. Modulation instability causes a dynamical energy exchange between the nanoantenna eigenmodes resulting in periodic scanning of the nanoantenna scattering pattern. Such nanoradar demonstrates a wide scanning sector, low operation threshold, and ultrafast time response being potentially useful for many applications in nanophotonics circuitry.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Directory of Open Access Journals (Sweden)
S. I. Samsudin
2014-01-01
Full Text Available The wastewater treatment plant (WWTP is highly known with the nonlinearity of the control parameters, thus it is difficult to be controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI to compensate the nonlinearity of the activated sludge WWTP is proposed. The ENon-PI controller is designed by cascading a sector-bounded nonlinear gain to linear PI controller. The rate variation of the nonlinear gain kn is automatically updated based on adaptive interaction algorithm. Initiative to simplify the ENon-PI control structure by adapting kn has been proved by significant improvement under various dynamic influents. More than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy consumption resulted.
Ulku, Huseyin Arda
2015-02-01
An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.
Nonlinear interactions isolated through scale synthesis in experimental wall turbulence
Duvvuri, Subrahmanyam; McKeon, Beverley
2016-07-01
An experimental investigation of nonlinear scale interactions in a forced turbulent boundary layer is presented here. A dynamic wall perturbation mechanism was used to externally force two distinct large-scale synthetic modes with well-defined spatial and temporal wave numbers in a fully turbulent flow. The focus is on characterizing the nonlinear flow response at triadically consistent wave numbers that arises from the direct interactions of the two synthetic modes. These experimental results isolate triadic scale interactions in wall turbulence in a unique fashion, and provide the ability to explore the dynamics of scale coupling in a systematic and detailed manner. The ideas advanced here are intended to contribute towards modeling efforts of high-Reynolds-number wall turbulence.
Nonlinear modal interactions in parity-time (PT) symmetric lasers.
Ge, Li; El-Ganainy, Ramy
2016-01-01
Parity-time symmetric lasers have attracted considerable attention lately due to their promising applications and intriguing properties, such as free spectral range doubling and single-mode lasing. In this work we discuss nonlinear modal interactions in these laser systems under steady state conditions, and we demonstrate that several gain clamping scenarios can occur for lasing operation in the -symmetric and -broken phases. In particular, we show that, depending on the system's design and the external pump profile, its operation in the nonlinear regime falls into two different categories: in one the system is frozen in the phase space as the applied gain increases, while in the other the system is pulled towards its exceptional point. These features are first illustrated by a coupled mode formalism and later verified by employing the Steady-state Ab-initio Laser Theory (SALT). Our findings shine light on the robustness of single-mode operation against saturation nonlinearity in -symmetric lasers. PMID:27143324
Nonlinear interactions between gravity waves and background winds
Institute of Scientific and Technical Information of China (English)
Liu Xiao; Xu Jiyao
2007-01-01
Using the nonlinear propagating gravity waves (GW) model in the two-dimensional compressible atmosphere and the linear GW theory, the process of GW propagation in different background winds, e.g. the direction of the background wind is opposite to (dead wind) or the same as (tail wind) the direction of the horizontal phase velocity of GW, is studied. The results show that the dead wind prolongs the vertical wavelength and accelerates GW propagation. Therefore, GW propagates up to a higher height becomes instable in a short time and eventually induces an inverse jet flow. Then, the vertical wavelength is becoming short due to the nonlinear interactions between GW and the inverse jet flow. The vertical wavelength and group velocity decrease after GW propagates into the tail wind. The initial instable time is delayed. Although most of GW is trapped in the instable region, some of GW propagates above the instable region.Compared with GW propagation in the tail wind, the nonlinear interactions between GW and the dead wind are also strong. In contrast,the linear GW theory predicts that GW can propagate freely in the dead wind. The vertical wavelength simulated by the nonlinear numerical model is different from that predicted by the linear theory greatly after GW propagates into the dead wind.
Impact of nonlinear effective interactions on GFT quantum gravity condensates
Pithis, Andreas G A; Tomov, Petar
2016-01-01
We present the numerical analysis of effectively interacting Group Field Theory (GFT) models in the context of the GFT quantum gravity condensate analogue of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behaviour suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthe...
Nonlinear oscillations in coriolis based gyroscopes
Directory of Open Access Journals (Sweden)
Dag Kristiansen
1999-01-01
Full Text Available In this paper we model and analyze nonlinear oscillations which are known to exist in some Coriolis based gyroscopes due to large amplitude excitation in the drive loop. A detailed derivation of a dynamic model for a cylinder gyroscope which includes geometric nonlinearities is given, and energy transfer between the system's modes are analyzed using perturbation theory and by proposing a simplified model. The model is also simulated, and the results are shown to give an accurate description of the experimental results. This work is done in order to gain a better understanding of the gyroscope's dynamics, and is intended to be a starting point for designing nonlinear observers and vibration controllers for the gyroscope in order to increase the performance.
Interaction-induced effects in the nonlinear coherent response of quantum-well excitons
DEFF Research Database (Denmark)
Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner;
1999-01-01
Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...
Nonlinear Interactions between Slender Structures and Axial Flow
Du, Li
2015-03-01
For decades, dynamic behaviors of a slender structure with axial flow have been extensively studied. However, the governing equation based on expansions of small quantities is complicatedly-expressed and can be inappropriate as amplitude becomes considerably large. In this research, we are dedicated to finding an approach to study the nonlinear dynamics of a fluid-conveying slender strcture with arbitrary amplitude. By introducing the Intrinsic Coordinate, we find a concise way to describe the configuration of the system. Differential relations of such coordinate are studied and the rigorous nonlinear equation of motion is derived. Then rather than small-deflection approximation, linear dynamics are studied using Argand Diagram under a weaker condition named low-varying approximation. Nonlinear properties including Hopf bifurcation, limit-cycle motion and vibration frequencies are studied theoretically and experimentally.
Immersion and Invariance Based Nonlinear Adaptive Flight Control
Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.
2010-01-01
In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is co
Effect of nonlinear soil-structure interaction on seismic response of low-rise SMRF buildings
Raychowdhury, Prishati; Singh, Poonam
2012-12-01
The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional fl exibility to the system and dissipating hysteretic energy at the soil-foundation interface. However, the current design practice is still reluctant to consider the nonlinearity of the soil-foundation system, primarily due to lack of reliable modeling techniques. This study is motivated towards evaluating the effect of nonlinear soil-structure interaction (SSI) on the seismic responses of low-rise steel moment resisting frame (SMRF) structures. In order to achieve this, a Winklerbased approach is adopted, where the soil beneath the foundation is assumed to be a system of closely-spaced, independent, nonlinear spring elements. Static pushover analysis and nonlinear dynamic analyses are performed on a 3-story SMRF building and the performance of the structure is evaluated through a variety of force and displacement demand parameters. It is observed that incorporation of nonlinear SSI leads to an increase in story displacement demand and a significant reduction in base moment, base shear and inter-story drift demands, indicating the importance of its consideration towards achieving an economic, yet safe seismic design.
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Betti [School of Engineering and Science, International University Bremen (IUB), 28725 Bremen (Germany)]. E-mail: b.hartmann@iu-bremen.de; Zakrzewski, Wojtek J. [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)]. E-mail: w.j.zakrzewski@durham.ac.uk
2007-07-09
We study the nonlinear Schrodinger equation in (1+1) dimensions in which the nonlinear term is taken in the form of a nonlocal interaction of the Coulomb or Yukawa-type. We solve the equation numerically and find that, for all values of the nonlocal coupling constant, and in all cases, the equation possesses solitonic solutions. We show that our results, for the dependence of the height of the soliton on the coupling constant, are in good agreement with the predictions based on an analytic treatment in which the soliton is approximated by a Gaussian.
Hartmann, Betti; Zakrzewski, Wojtek J.
2006-01-01
We study the non-linear Schroedinger equation in (1+1) dimensions in which the nonlinear term is taken in the form of a nonlocal interaction of the Coulomb or Yukawa-type. We solve the equation numerically and find that, for all values of the nonlocal coupling constant, and in all cases, the equation possesses solitonic solutions. We show that our results, for the dependence of the height of the soliton on the coupling constant, are in good agreement with the predictions based on an analytic ...
International Nuclear Information System (INIS)
We study the nonlinear Schrodinger equation in (1+1) dimensions in which the nonlinear term is taken in the form of a nonlocal interaction of the Coulomb or Yukawa-type. We solve the equation numerically and find that, for all values of the nonlocal coupling constant, and in all cases, the equation possesses solitonic solutions. We show that our results, for the dependence of the height of the soliton on the coupling constant, are in good agreement with the predictions based on an analytic treatment in which the soliton is approximated by a Gaussian
Hartmann, B; Hartmann, Betti; Zakrzewski, Wojtek J.
2006-01-01
We study the non-linear Schroedinger equation in (1+1) dimensions in which the nonlinear term is taken in the form of a nonlocal interaction of the Coulomb or Yukawa-type. We solve the equation numerically and find that, for all values of the nonlocal coupling constant, and in all cases, the equation possesses solitonic solutions. We show that our results, for the dependence of the height of the soliton on the coupling constant, are in good agreement with the predictions based on an analytic treatment in which the soliton is approximated by a gaussian.
Cluster-based control of nonlinear dynamics
Kaiser, Eurika; Spohn, Andreas; Cattafesta, Louis N; Morzynski, Marek
2016-01-01
The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is de...
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-04-01
This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.
International Nuclear Information System (INIS)
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, Sa(T1)is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure
Energy Technology Data Exchange (ETDEWEB)
Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)
2013-12-15
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.
LINEAR AND NONLINEAR AERODYNAMIC THEORY OF INTERACTION BETWEEN FLEXIBLE LONG STRUCTURE AND WIND
Institute of Scientific and Technical Information of China (English)
徐旭; 曹志远
2001-01-01
In light of the characteristics of the interactions between flexible structure and wind in three directions, and based on the rational mechanical section-model of structure, a new aerodynamic force model is accepted, i. e. the coefficients of three component forces are the functions of the instantaneous attack angle and rotational speed Ci = Ci(β(t),θ),(i = D, L, M). So, a new method to formulate the linear and nonlinear aerodynamic items of wind and structure interacting has been put forward in accordance with "strip theory"and modified "quasi-static theory ", and then the linear and nonlinear coupled theory of super-slender structure for civil engineering analyzing are converged in one model. For the linear aerodynamic-force parts, the semi-analytical expressions of the items so-called "flutter derivatives" corresponding to the one in the classic equations have been given here,and so have the nonlinear parts. The study of the stability of nonlinear aerodynamic-coupled torsional vibration of the old Tacoma bridge shows that the form and results of the nonlinear control equation in rotational direction are in agreement with that of V. F. Bohm's.
Molecular dynamics simulation of complex plasmas: interaction of nonlinear waves
Durniak, Celine; Samsonov, Dmitry
2008-11-01
Complex plasmas consist of micron sized microspheres immersed into ordinary ion-electron plasmas. They exist in solid, liquid, gaseous states and exhibit a range of dynamic phenomena such as waves, solitons, phase transitions, heat transfer. These phenomena can be modelled in complex plasmas at the microscopic or ``molecular'' scale, which is almost impossible in ordinary solids and liquids. We simulate a monolayer complex plasma consisting of 3000 negatively-charged particles (or grains) with the help of molecular dynamics computer simulations. The equations of grain motion are solved using a 5^th order Runge Kutta method taking into account interaction of every grain with each other via a Yukawa potential. The grains are confined more strongly in the vertical direction than in the horizontal. After seeding the grains randomly the code is run until the equilibrium is reached as the grain kinetics energy reduces due to damping force equal to the neutral friction in the experiments and a monolayer crystal lattice is formed. Then we investigate interactions between nonlinear waves in a monolayer strongly coupled complex plasma moving in three dimensions. Different excitations are applied during a short time symmetrically on both sides of the lattice. Structural properties and nonlinear waves characteristics are examined as the pulses propagate across the complex plasma in opposite directions.
Nonlinear behaviour of electrostatically actuated carbon nanotube-based devices
International Nuclear Information System (INIS)
In this paper nonlinear behaviour of electrostatically actuated carbon nanotubes (CNTs) is investigated. The model comprises a clamped-clamped CNT suspended over a graphite ground electrode plate from which a potential difference is imposed. The actuation is based on ac and dc applied voltages and it is assumed that the neutral axis of bending is stretched when the beam is deflected, and also, the interatomic interaction forces between CNT and ground plate are considered. The versatile Galerkin's method is employed to reduce the nonlinear integral-partial-differential equation of motion to a nonlinear ordinary differential equation in time, and then, the reduced equation is solved by direct numerical integration. In the dc voltage actuation case, the pull-in/pull-out phenomena, hysteresis characteristic, pull-in time duration and the response of the system are studied. The obtained results are compared with the molecular dynamics method. Eventually, a nano-switch immune to input noise is proposed, which relies on the hysteresis characteristic of the system. In combined ac and dc voltage actuations, the vibrational behaviour and nonlinear frequency response of nano-resonator are studied.
Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.
2016-09-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.
Chaitanya, N Apurv; Banerji, J; Samanta, G K
2016-01-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.
Chaitanya, N Apurv; Jabir, M V; Banerji, J; Samanta, G K
2016-01-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625
Turk, Matthew
2013-01-01
In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such
A look to nonlinear interacting Ghost dark energy cosmology
Khurshudyan, Martiros
2016-07-01
In this paper, we organize a look to nonlinear interacting Ghost dark energy cosmology involving a discussion on the thermodynamics of the Ghost dark energy, when the universe is bounded via the Hubble horizon. One of the ways to study a dark energy model, is to reconstruct thermodynamics of it. Ghost dark energy is one of the models of the dark energy which has an explicitly given energy density as a function of the Hubble parameter. There is an active discussion towards various cosmological scenarios, where the Ghost dark energy interacts with the pressureless cold dark matter (CDM). Recently, various models of the varying Ghost dark energy has been suggested, too. To have a comprehensive understanding of suggested models, we will discuss behavior of the cosmological parameters on parameter-redshift z plane. Some discussion on Om and statefinder hierarchy analysis of these models is presented. Moreover, up to our knowledge, suggested forms of interaction between the Ghost dark energy and cold dark matter (CDM) are new, therefore, within obtained results, we provide new contribution to previously discussed models available in the literature. Our study demonstrates that the forms of the interactions considered in the Ghost dark energy cosmology are not exotic and the justification of this is due to the recent observational data.
Institute of Scientific and Technical Information of China (English)
李永波; 张鸿儒
2015-01-01
Permafrost is distributed widely in our country.Although pile foundation is the main foundation form for large bridges in frozen zones,few studies have been conducted regarding the dynamic characteristics of pile foundation construction in permafrost.An improved nonlinear ana-lytical model for frozen soil-pile dynamic interaction was developed on the basis of model test results of the dynamic characteristics of pile foundations in various subzero temperature soils under lateral dynamic loads and an analytical model of pile-soil-structure interaction with the dynamic beam on nonlinear Winkler foundation model.This improved analytical model simulates the nonlinear lateral pressure effect of the frozen soil around the pile with an improved bidirec-tional compression-only multi-yield spring.Vertical friction effects between the frozen soil and pile,extrusion and separation effects of frozen soil under pile tips,and damping effects of the far-field soil on the dynamic characteristics of pile foundations are also considered in this analytical model.The parameters of the bidirectional tensionless multi-section yield spring are determined by the nonlinear p-y relationship of frozen soil.The p-y relationship whose parameters were based on the results of the indoor frozen soil compression test was simulated by the combination of a cubic function and a constant function.Displacement-force response of the pile head and pile shaft responses to bending moments at different depths under dynamic forces were very similar to the model test results.Results indicate that the improved analytical model is potentially helpful during the analysis of frozen soil-pile dynamic interactions.%基于水平循环荷载作用下不同负温冻土环境中单桩动力特性模型试验结果，在已有分析桩-土-结构相互作用的动力 BNWF 模型的基础上，提出改进的冻土-桩基动力相互作用非线性反应分析模型。在该模型中，利用改进的双向无拉力多
Structure-based control of complex networks with nonlinear dynamics
Zañudo, Jorge G T; Albert, Réka
2016-01-01
Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...
Axial Non-linear Dynamic Soil-Pile Interaction - Keynote
Directory of Open Access Journals (Sweden)
Holeyman A.
2014-01-01
Full Text Available This keynote lecture describes recent analytical and numerical advances in the modeling of the axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus degradation is evaluated over a range of parameters and compared with those obtained by other authors and by a numerical radial discrete model simulating the pile and soil movements from integration of the laws of motion. New approximate non linear solutions for axial pile shaft behaviour developed from general elastodynamic equations are presented and compared to existing linear solutions. The soil non linear behaviour and its ability to dissipate mechanical energy upon cyclic loading are shown to have a significant influence on the mechanical impedance provided by the surrounding soil against pile shaft movement. The limitations of over-simplified modelling of pile response are highlighted.
NONLINEAR DATA RECONCILIATION METHOD BASED ON KERNEL PRINCIPAL COMPONENT ANALYSIS
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In the industrial process situation, principal component analysis (PCA) is a general method in data reconciliation.However, PCA sometime is unfeasible to nonlinear feature analysis and limited in application to nonlinear industrial process.Kernel PCA (KPCA) is extension of PCA and can be used for nonlinear feature analysis.A nonlinear data reconciliation method based on KPCA is proposed.The basic idea of this method is that firstly original data are mapped to high dimensional feature space by nonlinear function, and PCA is implemented in the feature space.Then nonlinear feature analysis is implemented and data are reconstructed by using the kernel.The data reconciliation method based on KPCA is applied to ternary distillation column.Simulation results show that this method can filter the noise in measurements of nonlinear process and reconciliated data can represent the true information of nonlinear process.
Nonlinear laser-plasma interaction in magnetized liner inertial fusion
Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.
2016-03-01
Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.
New holographic dark energy model with non-linear interaction
Oliveros, A
2014-01-01
In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.
On a class of nonlinear dispersive-dissipative interactions
Energy Technology Data Exchange (ETDEWEB)
Rosenau, P. [Tel Aviv Univ. (Israel). School of Mathematical Sciences
1997-07-29
The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are found and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.
Nonlinear Projection-Based Approach for Generating Compact Models of Nonlinear Thermal Networks
Codecasa, L.; D'Amore, Dario; Maffezzoni, P.
2006-01-01
Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920) International audience A nonlinear projection-base approach for generating compact models of nonlinear thermal networks is proposed. This approach is an extension of Galerkin's method, based on the theory of kernels. High accuracy for large temperature variations and high compactness of the generated models can be obtained.
Nonlinear Optical Properties of Triphenylalanine-based Peptide Nanostructures
Kudryavtsev, A. V.; Mishina, E. D.; Sigov, A. S.
2016-05-01
Nonlinear optical properties of peptide nanobelts and peptide nanospheres, the two types of self-assembled triphenylalanine-based peptide nanostructures, are studied. Nanobelts nonlinear susceptibility tensor components are evaluated, and nanobelts crystal structure and crystallographic orientation are defined on the basis of nonlinear optical mapping and polarization dependences of the second harmonic signal. The results obtained suggest that it is possible to use these materials as biologically compatible nonlinear optical converters.
Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight...
Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project
National Aeronautics and Space Administration — ZONA Technology, Inc. proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight dynamics...
Pitch glide effect induced by a nonlinear string-barrier interaction
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
Harmonic Propagation and Interaction Evaluation between Small-Scale Wind Farms and Nonlinear Loads
Directory of Open Access Journals (Sweden)
Cheng-Xiong Mao
2013-07-01
Full Text Available Distributed generation is a flexible and effective way to utilize renewable energy. The dispersed generators are quite close to the load, and pose some power quality problems such as harmonic current emissions. This paper focuses on the harmonic propagation and interaction between a small-scale wind farm and nonlinear loads in the distribution grid. Firstly, by setting the wind turbines as P – Q(V nodes, the paper discusses the expanding Newton-Raphson power flow method for the wind farm. Then the generalized gamma mixture models are proposed to study the non-characteristic harmonic propagation of the wind farm, which are based on Gaussian mixture models, improved phasor clustering and generalized Gamma models. After the integration of the small-scale wind farm, harmonic emissions of nonlinear loads will become random and fluctuating due to the non-stationary wind power. Furthermore, in this paper the harmonic coupled admittance matrix model of nonlinear loads combined with a wind farm is deduced by rigorous formulas. Then the harmonic propagation and interaction between a real wind farm and nonlinear loads are analyzed by the harmonic coupled admittance matrix and generalized gamma mixture models. Finally, the proposed models and methods are verified through the corresponding simulation models in MATLAB/SIMULINK and PSCAD/EMTDC.
The interaction of nonlinear waves in two-dimensional lattice
Institute of Scientific and Technical Information of China (English)
Yang Xiao-Xia; Duan Wen-Shan; Li Sheng-Chang; Han Jiu-Ning
2008-01-01
This paper investigates the collision between two nonlinear waves with arbitrary angle in two-dimensional nonlinear lattice. By using the extended Poincaré-Lighthill-Kuo perturbation method, it obtains two Korteweg-de Vries equations for nonlinear waves in both the ε and η directions,respectively, and derives the analytical phase shifts after the collision of two nonlinear waves. Finally, the solution of u(v) up to O(ε3) order is given.
Nonlinear neutrino-photon interactions inside strong laser pulses
Meuren, Sebastian; Di Piazza, Antonino
2015-01-01
Even though neutrinos are neutral particles and interact only via the exchange of weak gauge bosons, charged leptons and quarks can mediate a coupling to the photon field beyond tree level. Inside a relativistically strong laser field nonlinear effects in the laser amplitude can play an important role, as electrons and positrons interact nonperturbatively with the coherent part of the photon field. Here, we calculate for the first time the leading-order contribution to the axial-vector--vector current-coupling tensor inside an arbitrary plane-wave laser field (which is taken into account exactly by employing the Furry picture). The current-coupling tensor appears in the calculation of various electroweak processes inside strong laser fields like photon emission or trident electron-positron pair production by a neutrino. Moreover, as we will see below, the axial-vector--vector current-coupling tensor contains the Adler-Bell-Jackiw (ABJ) anomaly. This occurrence renders the current-coupling tensor also interest...
Nonlinear neutrino-photon interactions inside strong laser pulses
Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino
2015-06-01
Even though neutrinos are neutral particles and interact only via the exchange of weak gauge bosons, charged leptons and quarks can mediate a coupling to the photon field beyond tree level. Inside a relativistically strong laser field nonlinear effects in the laser amplitude can play an important role, as electrons and positrons interact nonperturbatively with the coherent part of the photon field. Here, we calculate for the first time the leading-order contribution to the axial-vector-vector current-coupling tensor inside an arbitrary plane-wave laser field (which is taken into account exactly by employing the Furry picture). The current-coupling tensor appears in the calculation of various electroweak processes inside strong laser fields like photon emission or trident electron-positron pair production by a neutrino. Moreover, as we will see below, the axial-vector-vector current-coupling tensor contains the Adler-Bell-Jackiw (ABJ) anomaly. This occurrence renders the current-coupling tensor also interesting from a fundamental point of view, as it is the simplest Feynman diagram in an external field featuring this kind of anomaly.
Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects
Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young
2016-08-01
The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
International Nuclear Information System (INIS)
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating
A test to evaluation non-linear soil structure interaction
International Nuclear Information System (INIS)
JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2. Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen taking into account the surrounding soil on the earthquake response evaluation to the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. With this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coalmine company in the U.S.A. indicates that the works performed in the surface coalmine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test are to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper of ICONE-13, we will introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. (authors)
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Druzhko, Anna B.; Dyukova, Tatyana V.
1996-06-01
The effect of protein and matrix modifications on the photoanisotropic properties is studied for developing the concept of impact upon the main optical properties of the dynamic optical material based on bacteriorhodopsin (BR) both interaction of transmembrane protein--chromophore complex BR with matrix and interaction of protein opsin with chromophore retinal. Also possibility of the application of BR-films for the light polarization modulator is proposed.
Gradient-based optimization in nonlinear structural dynamics
DEFF Research Database (Denmark)
Dou, Suguang
, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization...... coefficients are calculated directly from a nonlinear finite element model. Based on the analysis and the characterization, a new class of optimization problems is studied. In the optimization, design sensitivity analysis is performed by using the adjoint method which is suitable for large-scale structural...
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Hesthaven, Jan; Bingham, Harry B.;
2008-01-01
waters within the breaking limit. To demonstrate the current applicability of the model both linear and mildly nonlinear test cases are considered in two horizontal dimensions where the water waves interact with bottom-mounted fully reflecting structures. It is established that, by simple symmetry......We present a high-order nodal Discontinuous Galerkin Finite Element Method (DG-FEM) solution based on a set of highly accurate Boussinesq-type equations for solving general water-wave problems in complex geometries. A nodal DG-FEM is used for the spatial discretization to solve the Boussinesq...... equations in complex and curvilinear geometries which amends the application range of previous numerical models that have been based on structured Cartesian grids. The Boussinesq method provides the basis for the accurate description of fully nonlinear and dispersive water waves in both shallow and deep...
Simulations of Energetic Particles Interacting with Nonlinear Anisotropic Dynamical Turbulence
Heusen, Martin
2016-01-01
We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bend...
Nonlinear Wave-Currents interactions in shallow water
Lannes, David
2015-01-01
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...
Fast and Chaotic Fiber-Based Nonlinear Polarization Scrambler
Guasoni, M; Gilles, M; Picozzi, A; Fatome, J
2015-01-01
We report a simple and efficient all-optical polarization scrambler based on the nonlinear interaction in an optical fiber between a signal beam and its backward replica which is generated and amplified by a reflective loop. When the amplification factor exceeds a certain threshold, the system exhibits a chaotic regime in which the evolution of the output polarization state of the signal becomes temporally chaotic and scrambled all over the surface of the Poincar\\'e sphere. We derive some analytical estimations for the scrambling performances of our device which are well confirmed by the experimental results. The polarization scrambler has been successfully tested on a single channel 10-Gbit/s On/Off Keying Telecom signal, reaching scrambling speeds up to 250-krad/s, as well as in a wavelength division multiplexing configuration. A different configuration based on a sequent cascade of polarization scramblers is also discussed numerically, which leads to an increase of the scrambling performances.
Wang, Lei; Zhang, Jian-Hui; Wang, Zi-Qi; Liu, Chong; Li, Min; Qi, Feng-Hua; Guo, Rui
2016-01-01
We study the nonlinear waves on constant backgrounds of the higher-order generalized nonlinear Schrödinger (HGNLS) equation describing the propagation of ultrashort optical pulse in optical fibers. We derive the breather, rogue wave, and semirational solutions of the HGNLS equation. Our results show that these three types of solutions can be converted into the nonpulsating soliton solutions. In particular, we present the explicit conditions for the transitions between breathers and solitons with different structures. Further, we investigate the characteristics of the collisions between the soliton and breathers. Especially, based on the semirational solutions of the HGNLS equation, we display the novel interactions between the rogue waves and other nonlinear waves. In addition, we reveal the explicit relation between the transition and the distribution characteristics of the modulation instability growth rate. PMID:26871080
Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach
Barletti, Luigi
2015-01-01
We present a new perturbative approach to the study of signal-noise interactions in amplified optical fibers. The approach is based on the hydrodynamic formulation of the nonlinear Schr\\"odinger equation that governs the propagation of light in the fiber. Our method is discussed in general and is developed in more details for some special cases, namely the small-dispersion regime, the continuous-wave (CW) signal and the solitonic pulse. The accuracy of the approach is numerically tested in the CW case.
Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence
Heusen, M.; Shalchi, A.
2016-09-01
We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bendover scales and a magnetic field ratio of δ B / B0 = 0.75.
Optical limiter based on two-dimensional nonlinear photonic crystals
Belabbas, Amirouche; Lazoul, Mohamed
2016-04-01
The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
XingJ.T; PriceW.G; ChenY.G
2005-01-01
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study
de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.
2016-01-01
The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to deter
Nonlinear infragravity-wave interactions on a gently sloping laboratory beach
de Bakker, A. T M; Herbers, T. H C; Smit, P. B.; Tissier, M. F S; Ruessink, B. G.
2015-01-01
A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy tra
Nonlinear infragravity–wave interactions on a gently sloping laboratory beach
De Bakker, A.T.M.; Herbers, T.H.C.; Smit, P.B.; Tissier, M.F.S.; Ruessink, B.G.
2015-01-01
A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy tra
A Coupling Model of Nonlinear Wave and Sandy Seabed Dynamic Interaction
Institute of Scientific and Technical Information of China (English)
CHENG Yong-zhou; WANG Yong-xue; JIANG Chang-bo
2007-01-01
In the paper,a weak coupling numerical model is developed for the study of the nonlinear dynamic interaction between water waves and permeable sandy seabed.The wave field solver is based on the VOF (Volume of Fluid) method for continuity equation and the two-dimensional Reynolds Averaged Navier Stokes (RANS) equations with a k-ε closure.The free surface of cnoidal wave is traced through the PLIC-VOF (Piecewise Linear Interface Construction).Biot's equations have been applied to solve the sandy seabed,and the u-p finite element formulations are derived by the application of the Galerkin weighted-residual procedure.The continuity of the pressure on the interface between fluid and porous medium domains is considered.Laboratory tests were performed to verify the proposed numerical model,and it is shown that the pore-water pressures and the wave heights computed by the VOF-FEM models are in good agreement with the experimental results.It is found that the proposed model is effective in predicting the seabed-nonlinear wave interaction and is able to handle the wave-breakwater-seabed interaction problem.
DEFF Research Database (Denmark)
Zhou, B. B.; Chong, A.; Wise, F. W.;
2012-01-01
Cascaded nonlinearities have attracted much interest, but ultrafast applications have been seriously hampered by the simultaneous requirements of being near phase matching and having ultrafast femtosecond response times. Here we show that in strongly phase-mismatched nonlinear frequency conversion...... crystals the pump pulse can experience a large and extremely broadband self-defocusing cascaded Kerrlike nonlinearity. The large cascaded nonlinearity is ensured through interaction with the largest quadratic tensor element in the crystal, and the strong phase mismatch ensures an ultrafast nonlinear......% efficiency, and upon further propagation an octave-spanning supercontinuum is observed. Such ultrafast cascading is expected to occur for a broad range of pump wavelengths spanning the near- and mid-IR using standard nonlinear crystals....
Wavelet neural network based fault diagnosis in nonlinear analog circuits
Institute of Scientific and Technical Information of China (English)
Yin Shirong; Chen Guangju; Xie Yongle
2006-01-01
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studied. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Nonlinear fault diagnosis method based on kernel principal component analysis
Institute of Scientific and Technical Information of China (English)
Yan Weiwu; Zhang Chunkai; Shao Huihe
2005-01-01
To ensure the system run under working order, detection and diagnosis of faults play an important role in industrial process. This paper proposed a nonlinear fault diagnosis method based on kernel principal component analysis (KPCA). In proposed method, using essential information of nonlinear system extracted by KPCA, we constructed KPCA model of nonlinear system under normal working condition. Then new data were projected onto the KPCA model. When new data are incompatible with the KPCA model, it can be concluded that the nonlinear system isout of normal working condition. Proposed method was applied to fault diagnosison rolling bearings. Simulation results show proposed method provides an effective method for fault detection and diagnosis of nonlinear system.
International Nuclear Information System (INIS)
The real-space dynamics and the nonlinear interactions among Fourier modes in elastic wave turbulence are investigated by simulating the Foppl-von Karman equation. We find that the bundle structures of ridges appear intermittently in the time evolution of the stretching energy field. The time-evolution of the nonlinearity indicates the existence of active and moderate phases in turbulent state. Conditional sampling analysis reveals that the bundle structure, which is the embodiment of the strong nonlinear interactions among modes, induces the energy supply from an external force to the system
Accelerated graph-based nonlinear denoising filters
Knyazev, Andrew; Malyshev, Alexander,
2015-01-01
Denoising filters, such as bilateral, guided, and total variation filters, applied to images on general graphs may require repeated application if noise is not small enough. We formulate two acceleration techniques of the resulted iterations: conjugate gradient method and Nesterov's acceleration. We numerically show efficiency of the accelerated nonlinear filters for image denoising and demonstrate 2-12 times speed-up, i.e., the acceleration techniques reduce the number of iterations required...
On triad nonlinear resonant interactions of deep water waves trapped by jet currents
Shrira, Victor; Slunyaev, Alexey
2014-05-01
We derive an asymptotic description of weakly nonlinear wave interactions between waves trapped by opposing jet currents by extending the asymptotic modal approach developed in Shrira & Slunyaev (2014). It is widely believed that to the leading order the nonlinear interactions between water waves in deep water are always quartic and potential. We show that for waves trapped on the jet currents it is not true: triad resonant interactions between trapped modes are always allowed. Moreover, the nonlinear evolution of the wave field is to the leading order determined by these triad interactions if the current is sufficiently strong or wave field nonlinearity is appropriately weak. To the leading order the corresponding interaction coefficients are controlled by the background vorticity due to the jet. More specifically, we consider waves upon a longitudinally uniform jet current; the current is assumed to be stationary and without vertical shear. The approximate separation of variables allows us to find the two-dimensional mode structure by means of one-dimensional boundary value problem (BVP) for wave Fourier harmonics along the current. The asymptotic weakly nonlinear theory taking into account quadratic nonlinearity for broad but not necessary weak currents is developed. The evolution equations for three interacting modes are written explicitly, the nonlinear interaction coefficients are computed. The three-wave interactions weaken when the current is weak. When the ratio of the current magnitude to wave celerity is of order of wave steepness the effects of 3-wave and 4-wave resonances appear at the same asymptotic order. These regimes, as well as the identified regimes where triad resonant interactions between trapped waves are dominant, lead to a qualitatively new wave dynamics which remains to be explored yet. V.I. Shrira, A.V. Slunyaev, Trapped waves on jet currents: asymptotic modal approach. J. Fluid Mech. 738, 65-104 (2014).
Nonlinear Zeno dynamics due to atomic interactions in Bose–Einstein condensate
International Nuclear Information System (INIS)
We show that nonlinear interactions induce both the Zeno and anti-Zeno effects in the generalized Bose–Josephson model (with the on-site interactions and the second-order tunneling) describing Bose–Einstein condensate in double-well trap subject to particle removal from one of the wells. We find that the on-site interactions induce only the Zeno effect, which appears at long evolution times, whereas the second-order tunneling leads to a strong decay of the atomic population at short evolution times, reminiscent of the anti-Zeno effect, and destroys the nonlinear Zeno effect due to the on-site interactions at long times
Nonlinear Zeno dynamics due to atomic interactions in Bose–Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Navarro, V.G.; Shchesnovich, V.S., E-mail: valery@ufabc.edu.br
2014-12-01
We show that nonlinear interactions induce both the Zeno and anti-Zeno effects in the generalized Bose–Josephson model (with the on-site interactions and the second-order tunneling) describing Bose–Einstein condensate in double-well trap subject to particle removal from one of the wells. We find that the on-site interactions induce only the Zeno effect, which appears at long evolution times, whereas the second-order tunneling leads to a strong decay of the atomic population at short evolution times, reminiscent of the anti-Zeno effect, and destroys the nonlinear Zeno effect due to the on-site interactions at long times.
Non-Linearly Interacting Ghost Dark Energy in Brans-Dicke Cosmology
Ebrahimi, E
2016-01-01
In this paper we extend the form of interaction term into the non-linear regime in the ghost dark energy model. A general form of non-linear interaction term is presented and cosmic dynamic equations are obtained. Next, the model is detailed for two special choice of the non-linear interaction term. According to this the universe transits at suitable time ($z\\sim 0.8$) from deceleration to acceleration phase which alleviate the coincidence problem. Squared sound speed analysis revealed that for one class of non-linear interaction term $v_s^2$ can gets positive. This point is an impact of the non-linear interaction term and we never find such behavior in non interacting and linearly interacting ghost dark energy models. Also statefinder parameters are introduced for this model and we found that for one class the model meets the $\\Lambda CDM$ while in the second choice although the model approaches the $\\Lambda CDM$ but never touch that.
Institute of Scientific and Technical Information of China (English)
兰朝凤; 李凤臣; 陈欢; 卢迪; 杨德森; 张梦
2015-01-01
Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves’ amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.
Nonlinear dynamic analysis of framed structures including soil-structure interaction effects
International Nuclear Information System (INIS)
The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)
Energy Technology Data Exchange (ETDEWEB)
Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)
2012-07-01
Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)
Time-varying interaction leads to amplitude death in coupled nonlinear oscillators
Indian Academy of Sciences (India)
Awadhesh Prasad
2013-09-01
A new form of time-varying interaction in coupled oscillators is introduced. In this interaction, each individual oscillator has always time-independent self-feedback while its interaction with other oscillators are modulated with time-varying function. This interaction gives rise to a phenomenon called amplitude death even in diffusively coupled identical oscillators. The nonlinear variation of the locus of bifurcation point is shown. Results are illustrated with Landau–Stuart (LS) and Rössler oscillators.
International Nuclear Information System (INIS)
Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures
Nonlinear image processing based on optimization of generalized information methods
Bajkova, Anisa T.
2002-01-01
A range of nonlinear image reconstruction procedures based on extremizing the generalized Shannon entropy, Kullback-Leibler cross-entropy and Renyi information measures and proposed by the author in early papers is presented. The ``generalization'' assumes search for the solution over the space of real bipolar or complex functions. Such an approach allows, first, to reconstruct signals of any type and physical nature and, secondly, to decrease nonlinear intensity image distortions caused by m...
Kernel-Based Nonlinear Discriminant Analysis for Face Recognition
Institute of Scientific and Technical Information of China (English)
LIU QingShan (刘青山); HUANG Rui (黄锐); LU HanQing (卢汉清); MA SongDe (马颂德)
2003-01-01
Linear subspace analysis methods have been successfully applied to extract features for face recognition. But they are inadequate to represent the complex and nonlinear variations of real face images, such as illumination, facial expression and pose variations, because of their linear properties. In this paper, a nonlinear subspace analysis method, Kernel-based Nonlinear Discriminant Analysis (KNDA), is presented for face recognition, which combines the nonlinear kernel trick with the linear subspace analysis method - Fisher Linear Discriminant Analysis (FLDA).First, the kernel trick is used to project the input data into an implicit feature space, then FLDA is performed in this feature space. Thus nonlinear discriminant features of the input data are yielded. In addition, in order to reduce the computational complexity, a geometry-based feature vectors selection scheme is adopted. Another similar nonlinear subspace analysis is Kernel-based Principal Component Analysis (KPCA), which combines the kernel trick with linear Principal Component Analysis (PCA). Experiments are performed with the polynomial kernel, and KNDA is compared with KPCA and FLDA. Extensive experimental results show that KNDA can give a higher recognition rate than KPCA and FLDA.
Mode interaction in horses, tea, and other nonlinear oscillators: the universal role of symmetry
Weele, van der Jacobus P.; Banning, Erik J.
2001-01-01
This paper is about mode interaction in systems of coupled nonlinear oscillators. The main ideas are demonstrated by means of a model consisting of two coupled, parametrically driven pendulums. On the basis of this we also discuss mode interaction in the Faraday experiment (as observed by Ciliberto
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.;
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
Long-term wave growth and its linear and nonlinear interactions with wind fluctuations
Directory of Open Access Journals (Sweden)
Z. Ge
2008-05-01
Full Text Available Following Ge and Liu (2007, the simultaneously recorded time series of wave elevation and wind velocity are examined for long-term (on Lavrenov's τ_{4}-scale or 3 to 6 h linear and nonlinear interactions between the wind fluctuations and the wave field. Over such long times the detected interaction patterns should reveal general characteristics for the wave growth process. The time series are divided into three episodes, each approximately 1.33 h long, to represent three sequential stages of wave growth. The classic Fourier-domain spectral and bispectral analyses are used to identify the linear and quadratic interactions between the waves and the wind fluctuations as well as between different components of the wave field.
The results show clearly that as the wave field grows the linear interaction becomes enhanced and covers wider range of frequencies. Two different wave-induced components of the wind fluctuations are identified. These components, one at around 0.4 Hz and the other at around 0.15 to 0.2 Hz, are generated and supported by both linear and quadratic wind-wave interactions probably through the distortions of the waves to the wind field. The fact that the higher-frequency wave-induced component always stays with the equilibrium range of the wave spectrum around 0.4 Hz and the lower-frequency one tends to move with the downshifting of the primary peak of the wave spectrum defines the partition of the primary peak and the equilibrium range of the wave spectrum, a characteristic that could not be revealed by short-time wavelet-based analyses in Ge and Liu (2007. Furthermore, these two wave-induced peaks of the wind spectrum appear to have different patterns of feedback to the wave field. The quadratic wave-wave interactions also are assessed using the auto-bispectrum and are found to be especially active during the first and the third episodes. Such directly detected wind-wave interactions, both linear and
Nonlinear interaction between wave and convective disturbances in the solar corona
Veselovsky, I. S.; Mikhalyaev, B. B.; Bembitov, D. B.
2015-12-01
During more than two decades, many non-stationary events have been observed in the solar corona by different ground and space instruments, namely: oscillations and flows. These events play a crucial role in a solving two important problems of the solar physics: coronal heating and solar wind acceleration. Numerous observational data and theoretical works demonstrate the nonlinear interaction between waves and flows in the solar atmosphere. On other hand, nonlinear effects can also be used in coronal seismology, where a significant success leaded to many original works on linear disturbances in the coronal plasma. The nonlinear approach should make it possible to achieve more precise results.
Lapert, M.; Tehini, R.; Turinici, G.; Sugny, D
2009-01-01
We consider the optimal control of quantum systems interacting non-linearly with an electromagnetic field. We propose new monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a non-standard choice of the cost which is not quadratic in the field. These algorithms can be constructed for pure and mixed-state quantum systems. The efficiency of the method is shown numerically on molecular orientation with a non-linearity of order...
Implementation of neural network based non-linear predictive
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;
1998-01-01
The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non-linear...... systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....
Interactions between impurities and breather-pairs in a nonlinear lattice
Energy Technology Data Exchange (ETDEWEB)
Lin Han; Chen Weizhong; Lu Lei; Wei Rongjue
2003-09-15
Based on the Frenkel-Kontorova (FK) model with a {delta}-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.
Directory of Open Access Journals (Sweden)
Etienne Thoret
2016-06-01
Full Text Available In this paper, a flexible control strategy for a synthesis model dedicated to nonlinear friction phenomena is proposed. This model enables to synthesize different types of sound sources, such as creaky doors, singing glasses, squeaking wet plates or bowed strings. Based on the perceptual stance that a sound is perceived as the result of an action on an object we propose a genuine source/filter synthesis approach that enables to elude physical constraints induced by the coupling between the interacting objects. This approach makes it possible to independently control and freely combine the action and the object. Different implementations and applications related to computer animation, gesture learning for rehabilitation and expert gestures are presented at the end of this paper.
Nonlinear Optical Interactions in Bacteriorhodopsin Using Z-Scan
Aranda, Francisco J.; Rao, Devulapalli V. G. L. N.; Wong, Chi L.; Zhou, Ping; Chen, Zhong; Akkara, Joseph A.; Kaplan, David L.; Roach, Joseph F.
1995-06-01
Nonlinear refractive index coefficient n2 of bacteriorhodopsin suspensions in water is measured by the Z-scan technique with a low power continuous wave laser at 647.1 manometer wavelength. Our results indicate that both the magnitude and the sign of n2 depend strongly on the light intensity. Negative values for n2 are obtained for on axis laser irradiance at the focus above 3 W/cm2. The observed self-defocusing phenomena can be attributed to the index change due to the light induced transition between the photochromic states. The results elucidate the origin of n2 and offer a plausible explanation for the differences in the reported n2 measurements.
Chaotic saddles in nonlinear modulational interactions in a plasma
Energy Technology Data Exchange (ETDEWEB)
Miranda, Rodrigo A. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); University of Brasilia (UnB), Gama Campus, and Plasma Physics Laboratory, Institute of Physics, Brasilia, DF 70910-900 (Brazil); Rempel, Erico L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); Chian, Abraham C.-L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); Observatoire de Paris, LESIA, CNRS, 92195 Meudon (France)
2012-11-15
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.
Chaotic saddles in nonlinear modulational interactions in a plasma
Miranda, Rodrigo A; Chian, Abraham C -L
2012-01-01
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole;
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions in Atomic Force Microscopy
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The various dynamical implementations of the atomic force microscope have become important nanoscale characterization tools for the development of novel materials and devices. One of the most significant factors affecting all dynamical AFM modalities is the cantilever tip-sample surface interaction force. We have developed a detailed mathematical model of this interaction that includes a quantitative consideration of the nonlinearity of the interaction force as a function of the cantilever ti...
Near-field soil-structure interaction analysis using nonlinear hybrid modeling
International Nuclear Information System (INIS)
The hybrid modeling method (Gupta and Penzien 1980) and associated analysis procedure for solving a three-dimensional soil-structure interaction problem was developed by Gupta and Penzien (1981) and Gupta et al.(1982). Subsequently, successive modifications have been made to the original modeling method and analysis procedure allowing more general treatment of the SSI problem (Penzien, 1988). Through many correlation studies of field test data obtained under forced-vibration and earthquake-excitation conditions, it has been shown that the HASSI programs can effectively predict the dynamic response of a soil-structure system, if realistic soil parameters are adopted. In the above, the entire structure-foundation system is considered to respond in a linear fashion. Since the reflected three-dimensional waves at the soil-structure interface decays very rapidly with distance away from the structure (Katayama, 1987 (a)), the response of the soil close to the base of the structure may greatly affect its response; therefore, proper modeling of the non-linear soil behavior characteristic is essential. The nonlinear behavior of near-field soil has been taken into consideration in HASSI-7 by the standard equivalent linearization procedures used in programs SHAKE and FLUSH
Energy Technology Data Exchange (ETDEWEB)
Gandomzadeh, Ali
2011-02-08
The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in
Zhao, Wen-Lei; Ding, Cai-Ying; Liu, Jie; Fu, Li-Bin
2016-06-01
We investigate the quantum transport dynamics of periodically delta-kicked Bose–Einstein condensate under the effect of spatially modulated nonlinear interactions. The spatial modulation frequency can dramatically affect the transport behaviors of the ultra-cold atoms. For odd frequency, the linear growth of the directed current is close to that of the noninteracting case for not very strong nonlinear interaction. Both the acceleration and the quantum state evolution gradually approach that of the noninteracting case with increasing frequency. For other values of frequency, a very weak nonlinear interaction can dramatically reduce the linear growth of the directed current. The quantum state evolution differs rapidly from that of the noninteracting case. The underlying dynamic mechanism is uncovered and some important implications are addressed.
Pulse shape effects on photon-photon interactions in non-linear optical quantum gates
Hofmann, Holger F.; Nishitani, Hitoshi
2009-01-01
Ideally, strong non-linearities could be used to implement quantum gates for photonic qubits by well controlled two photon interactions. However, the dependence of the non-linear interaction on frequency and time makes it difficult to preserve a coherent pulse shape that could justify a single mode model for the time-frequency degree of freedom of the photons. In this paper, we analyze the problem of temporal multi-mode effects by considering the pulse shape of the average output field obtain...
Topological charge algebra of optical vortices in nonlinear interactions.
Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V
2015-12-28
We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.
Topological charge algebra of optical vortices in nonlinear interactions.
Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V
2015-12-28
We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams. PMID:26832066
All-optical controlling based on nonlinear graphene plasmonic waveguides.
Li, Jian; Tao, Jin; Chen, Zan Hui; Huang, Xu Guang
2016-09-19
We give the effective refractive index of graphene plasmonic waveguides with both linear and nonlinear effects based on the nonlinear cross-phase modulation, and address the effects of photo-induced refractive index change and absorption change. A non-resonant all-optical nonlinear graphene plasmonic switch with an ultra-compact size of 0.25 μm2 is proposed and numerically analyzed based on the dynamics of the photo-induced absorption change. The results show that the all-optical graphene plasmonic switch can realize a broad bandwidth over 5 THz, a potentially very high switching speed and an extinction ratio of 18.14 dB with the electric amplitude of the pump light of 1.5 × 107 V/m at the signal frequency of 28 THz. Our study could provide a possibility for future all-optical highly integrated optical components. PMID:27661951
Demonstration of a Chip-based Nonlinear Optical Isolator
Hua, Shiyue; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min
2016-01-01
Despite fundamentally challenging in integrated (nano)photonics, achieving chip-based light nonreciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on Faraday effects, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, revealed dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To overcome this dynamic reciprocity, we here report the first demonstration of a nonlinear optical isolator on a silicon chip enforced by phase-matched parametric amplification. Using a high-Q microtoroid resonator, we realize highly nonreciprocal transport at the 1,550 nm wavelength when waves are simultaneously launched in both forward and backward directions. Our design, compatible with current CMOS technique, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input ...
Nonlinear geosphere-biosphere interactions and the Cambrian explosion
von Bloh, W.; Bounama, C.; Franck, S.
2003-04-01
A conceptual model for the global carbon cycle of the Earth containing the reservoirs mantle, ocean floor, continental crust, continental biosphere, the kerogen , as well as the aggregated reservoir ocean and atmosphere is presented. In this study the evolution of the mean global surface temperature, the biomass, and reservoir sizes over the whole history and future of the Earth under a maturing Sun is investigated. Reasonable values for the present distribution of carbon in the surface reservoirs of the Earth are obtained and a pronounced global minimum of mean surface temperature at the present state of the Earth is found. Furthermore, three different biosphere types are introduced: procaryotes, eucaryotes, and higher metazoa. They all differ in their temperature tolerance interval and their biogenic enhancement of silicate rock weathering. Around 500 Myr in the past we find a rise of higher metazoa caused by the nonlinear feedback between biosphere and climate. Biotic amplifying of weathering provides and maintains the environment of higher life forms. Such a mechanism may explain the so-called Cambrian explosion.
Soliton pair generation in the interactions of Airy and nonlinear accelerating beams
Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Lu, Keqing; Li, Yuanyuan; Zhang, Yanpeng
2013-01-01
We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.
Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations
Luk, Jonathan
2013-01-01
In this paper, we study the problem of the nonlinear interaction of impulsive gravitational waves for the Einstein vacuum equations. The problem is studied in the context of a characteristic initial value problem with data given on two null hypersurfaces and containing curvature delta singularities. We establish an existence and uniqueness result for the spacetime arising from such data and show that the resulting spacetime represents the interaction of two impulsive gravitational waves germinating from the initial singularities. In the spacetime, the curvature delta singularities propagate along 3-dimensional null hypersurfaces intersecting to the future of the data. To the past of the intersection, the spacetime can be thought of as containing two independent, non-interacting impulsive gravitational waves and the intersection represents the first instance of their nonlinear interaction. Our analysis extends to the region past their first interaction and shows that the spacetime still remains smooth away fro...
Numerical method of studying nonlinear interactions between long waves and multiple short waves
Institute of Scientific and Technical Information of China (English)
Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei
2009-01-01
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.
Elenchezhiyan, M; Prakash, J
2015-09-01
In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme.
A nonlinear interface formulation for soil–structure interaction systems
Haikal, Ghardir
2014-01-01
Finite element simulations of soil–structure interaction systems require the use of nonconfirming meshes (NCM) to increase accuracy in capturing the behavior in each material and along the interface. The use of NCM meshes, however, presents a number of challenges in modeling the soil–structure contact interface. The main issue in modeling contact with NCMs is how to ensure geometric compatibility and a complete transfer of surface tractions through the interface in the presence of large mater...
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Phased-array sources based on nonlinear metamaterial nanocavities.
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P; Liu, Sheng; Luk, Ting S; Kadlec, Emil A; Shaner, Eric A; Klem, John F; Sinclair, Michael B; Brener, Igal
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
Change-Of-Bases Abstractions for Non-Linear Systems
Sankaranarayanan, Sriram
2012-01-01
We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...
Dissipative-based adaptive neural control for nonlinear systems
Institute of Scientific and Technical Information of China (English)
Yugang NIU; Xingyu WANG; Junwei LU
2004-01-01
A dissipative-based adaptive neural control scheme was developed for a class of nonlinear uncertain systems with unknown nonlinearities that might not be linearly parameterized. The major advantage of the present work was to relax the requirement of matching condition, I.e., the unknown nonlinearities appear on the same equation as the control input in a state-space representation, which was required in most of the available neural network controllers. By synthesizing a state-feedback neural controller to nake the closed-loop system dissipative with respect to a quadratic supply rate, the developed control scheme guarantees that the L2-gain of controlled system was less than or equal to a prescribed level. And then, it is shown that the output tracking error is uniformly ultimate bounded. The design scheme is illustrated using a numerical simulation.
Controlling chaos based on an adaptive nonlinear compensator mechanism
Institute of Scientific and Technical Information of China (English)
Tian Ling-Ling; Li Dong-Hai; Sun Xian-Fang
2008-01-01
The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory.By using a designed nonlinear compensator mechanism,the system deterministic nonlinearity,parametric uncertainty and disturbance effect can be compensated effectively.The renowned chaotic Lorenz system subjected to parametric variations and external disturbances is studied as an illustrative example.From the Lyapunov stability theory,sufficient conditions for choosing control parameters to guarantee chaos control are derived.Several experiments are carried out,including parameter change experiments,set-point change experiments and disturbance experiments.Simulation results indicate that the chaotic motion can be regulated not only to steady states but also to any desired periodic orbits with great immunity to parametric variations and external disturbances.
Adaptive Observer-Based Fault Estimate for Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
ZONG Qun; LIU Wenjing; LIU Li
2006-01-01
An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer,from which both system state and fault can be estimated.It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms,which confirms the effectiveness of the method.
Nonlinear theory of laser-induced dipolar interactions in arbitrary geometry
Shahmoon, Ephraim
2013-01-01
Polarizable dipoles, such as atoms, molecules or nanoparticles, subject to laser radiation, may attract or repel each other. We derive a general formalism in which such laser-induced dipole-dipole interactions (LIDDI) in any geometry and for any laser strength are described in terms of the resonant dipole-dipole interaction (RDDI) between dipoles dressed by the laser. Our expressions provide a physically clear and technically simple route towards the analysis of LIDDI in a general geometry. This approach can treat both mechanical and internal-state interactions between the dipoles. Our general results reveal LIDDI effects due to nonlinear dipole-laser interactions, unaccounted for by previous treatments of LIDDI. We discuss, via several simple approaches, the origin of these nonlinear effects and their absence in previous works.
International Nuclear Information System (INIS)
This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)
Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics
Energy Technology Data Exchange (ETDEWEB)
Geiger, Franz [Northwestern Univ., Evanston, IL (United States)
2015-03-27
This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.
Towards Ultrafast Communications: Nonlinear Coupling Dynamics and Light-Semiconductor Interaction
Wang, W.
2007-01-01
This thesis deals with some specific problems concerning the processing of ultrashort optical pulses and their interaction with semiconductors. It includes the investigation of the ultrashort optical pulse propagation and coupling dynamics in the nonlinear coupled waveguide, and the coherent and in
Soliton-potential interaction in the Nonlinear Klein-Gordon Model
Saadatmand, Danial
2011-01-01
Interaction of solitons with external potentials in nonlinear Klein-Gordon field theory is investigated using an improved model. Presented model is constructed with a better approximation for adding the potential to the lagrangian through the metric of background space-time. The results of the model are compared with the another model and the differences are discussed.
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.
2011-01-01
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Nonlinear Dynamics Based Digital Logic and Circuits
Behnam eKia; John Florian Lindner; William eDitto
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks, and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled...
A Cumulant-based Analysis of Nonlinear Magnetospheric Dynamics
Energy Technology Data Exchange (ETDEWEB)
Jay R. Johnson; Simon Wing
2004-01-28
Understanding magnetospheric dynamics and predicting future behavior of the magnetosphere is of great practical interest because it could potentially help to avert catastrophic loss of power and communications. In order to build good predictive models it is necessary to understand the most critical nonlinear dependencies among observed plasma and electromagnetic field variables in the coupled solar wind/magnetosphere system. In this work, we apply a cumulant-based information dynamical measure to characterize the nonlinear dynamics underlying the time evolution of the Dst and Kp geomagnetic indices, given solar wind magnetic field and plasma input. We examine the underlying dynamics of the system, the temporal statistical dependencies, the degree of nonlinearity, and the rate of information loss. We find a significant solar cycle dependence in the underlying dynamics of the system with greater nonlinearity for solar minimum. The cumulant-based approach also has the advantage that it is reliable even in the case of small data sets and therefore it is possible to avoid the assumption of stationarity, which allows for a measure of predictability even when the underlying system dynamics may change character. Evaluations of several leading Kp prediction models indicate that their performances are sub-optimal during active times. We discuss possible improvements of these models based on this nonparametric approach.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich;
2011-01-01
the Hamiltonian structure, in contrast to the Kuznetsov equation, a model often used in nonlinear acoustics. An exact traveling wave front solution is derived from a generalized traveling wave assumption for the velocity potential. Numerical studies of the evolution of a number of arbitrary initial conditions...... as well as head-on colliding and confluent wave fronts exhibit several nonlinear interaction phenomena. These include wave fronts of changed velocity and amplitude along with the emergence of rarefaction waves. An analysis using the continuity of the solutions as well as the boundary conditions......A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...
Padoin, C; Tod, M; Perret, G; Petitjean, O
1998-01-01
Oligopeptidic drugs such as β-lactams and angiotensin-converting enzyme inhibitors share the same carriers in humans and animals, which results in possible pharmacokinetic interactions. To model such interactions, the effects of quinapril on cephalexin pharmacokinetics were investigated in rats. Blood cephalexin concentrations were measured by liquid chromatography, and the data were analyzed by a noncompartmental method and by fitting a bicompartmental model by a nonlinear mixed-effect model...
Nonlinear Interactions within the D-Region Ionosphere
Moore, Robert
2016-07-01
This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we saw a tremendous improvement in ELF/VLF wave generation efficiency. We identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.
Measurement of heart rate variability by methods based on nonlinear dynamics.
Huikuri, Heikki V; Mäkikallio, Timo H; Perkiömäki, Juha
2003-01-01
Heart rate (HR) variability has been conventionally analyzed with time and frequency domain methods, which measure the overall magnitude of R-R interval fluctuations around its mean value or the magnitude of fluctuations in some predetermined frequencies. Analysis of HR dynamics by methods based on chaos theory and nonlinear system theory has gained recent interest. This interest is based on observations suggesting that the mechanisms involved in cardiovascular regulation likely interact with each other in a nonlinear way. Furthermore, recent observational studies suggest that some indexes describing nonlinear HR dynamics, such as fractal scaling exponents, may provide more powerful prognostic information than the traditional HR variability indexes. In particular, short-term fractal scaling exponent measured by detrended fluctuation analysis method has been shown to predict fatal cardiovascular events in various populations. Approximate entropy, a nonlinear index of HR dynamics, which describes the complexity of R-R interval behavior, has provided information on the vulnerability to atrial fibrillation. There are many other nonlinear indexes, eg, Lyapunov exponent and correlation dimensions, which also give information on the characteristics of HR dynamics, but their clinical utility is not well established. Although concepts of chaos theory, fractal mathematics, and complexity measures of HR behavior in relation to cardiovascular physiology or various cardiovascular events are still far away from clinical medicine, they are a fruitful area for future research to expand our knowledge concerning the behavior of cardiovascular oscillations in normal healthy conditions as well as in disease states.
International Nuclear Information System (INIS)
A generalized time-domain method for Soil-Structure Interaction Analysis is developed, based upon an extension of the Bielak Method. The methodology is combined with the use of a simple hysteretic soil model based upon the Ramberg-Osgood formulation and applied to a notional Small Modular Reactor. These benchmark results compare well with those obtained by using the industry-standard frequency domain code SASSI. The methodology provides a path forward for investigation of other sources of nonlinearity, including those associated with the use of more physically-realistic material models incorporating pore-pressure effects, gap opening/closing, the effect of nonlinear structural elements, and 3D seismic inputs.
Ion beam analysis based on cellular nonlinear networks
Senger, V.; R. Tetzlaff; H. Reichau; Ratzinger, U.
2011-01-01
The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low re...
GA-Based Fuzzy Sliding Mode Controller for Nonlinear Systems
Directory of Open Access Journals (Sweden)
W. L. Chiang
2008-11-01
Full Text Available Generally, the greatest difficulty encountered when designing a fuzzy sliding mode controller (FSMC or an adaptive fuzzy sliding mode controller (AFSMC capable of rapidly and efficiently controlling complex and nonlinear systems is how to select the most appropriate initial values for the parameter vector. In this paper, we describe a method of stability analysis for a GA-based reference adaptive fuzzy sliding model controller capable of handling these types of problems for a nonlinear system. First, we approximate and describe an uncertain and nonlinear plant for the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control rules. Next, the initial values of the consequent parameter vector are decided via a genetic algorithm. After this, an adaptive fuzzy sliding model controller, designed to simultaneously stabilize and control the system, is derived. The stability of the nonlinear system is ensured by the derivation of the stability criterion based upon Lyapunov's direct method. Finally, an example, a numerical simulation, is provided to demonstrate the control methodology.
Interharmonic modulation products as a means to quantify nonlinear D-region interactions
Moore, Robert
Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.
Nonlinear interaction of two trapped-mode resonances in a bilayer "fish-scale" metamaterial
Tuz, Vladimir R; Mladyonov, Pavel L; Prosvirnin, Sergey L; Novitsky, Andrey V
2014-01-01
We report on a bistable light transmission through a bilayer "fish-scale" (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light which leads to destination of a multistable transmission.
Avetissian, Hamlet
2006-01-01
This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.
Giant Kerr nonlinearity induced by interacting quantum coherences from decays and incoherent pumping
Institute of Scientific and Technical Information of China (English)
Bai Yan-Feng; Yang Wen-Xing; Han Ding-An; Yu Xiao-Qiang
2012-01-01
A scheme for generating the giant enhancement of the Kerr nonlinearity in a four-level system with the quantum coherences from the decays and the incoherent pumping is proposed.Compared with that generated in a general fourlevel system,the Kerr nonlinearity can be enhanced by several orders of magnitude with vanishing linear absorption.By using the numerical results,we show that the remarkable enhancement should be attributed to the interaction of the quantum coherences from the decays and the incoherent pumping.
Lapert, M.; Tehini, R.; Turinici, G.; Sugny, D.
2008-08-01
We consider the optimal control of quantum systems interacting nonlinearly with an electromagnetic field. We propose monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a nonstandard choice of the cost, which is not quadratic in the field. These algorithms can be constructed for pure- and mixed-state quantum systems. The efficiency of the method is shown numerically for molecular orientation with a nonlinearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well approximated by pulses that could be implemented experimentally.
Global Spiral Arms Formation by Non-linear Interaction of Wakelets
Kumamoto, Jun
2016-01-01
The formation and evolution of galactic spiral arms is not yet clearly understood despite many analytic and numerical work. Recently, a new idea has been proposed that local density enhancements (waklets) arising in the galactic disk connect with each other and make global spiral arms. However, the understanding of this mechanism is not yet sufficient. We analyze the interaction of wakelets by using N-body simulations including perturbing point masses, which are heavier than individual N-body particles and act as the seeds for wakelets. Our simulation facilitates more straightforward interpretation of numerical results than previous work by putting a certain number of perturbers in a well-motivated configuration. We detected a clear sign of non-linear interaction between wakelets, which make global spiral arms by connecting two adjacent wakelets. We found that the wave number of the strongest non-linear interaction depends on galactic disk mass and shear rate. This dependence is consistent with the prediction...
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Three-wave interaction in two-component quadratic nonlinear lattices
DEFF Research Database (Denmark)
Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth;
1999-01-01
We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation known...... from three-wave interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained in non-phase-matched lattices by tilting the interacting plane waves with respect to each other. [S1063-651X(99)15110-9]....
Nonlinear Landau-Zener Tunnelling with Two and Three-Body Interactions
Institute of Scientific and Technical Information of China (English)
WEI Xiu-Fang; TANG Rong-An; YONG Wen-Mei; XUE Ju-Kui
2008-01-01
We investigate the nonlinear Landau-Zener tunnelling of Bose-Einstein condensate (BEC) in an accelerating optical lattice with two- and three-body interactions between the particles. The influence of the three-body interaction on the eigenstates and the transition probability are discussed both analytically and numerically.The analytical eigenstates and the tunnelling probability are obtained,which are verified by numerical methods.It is shown that the eigenstates and the tunnelling probability are modified dramatically by three-body interaction.
International Nuclear Information System (INIS)
A practical method for elasto-plastic seismic response analysis is described under considerations of nonlinear material law of a structure and dynamic soil-structure interaction. The method is essentially based on the substructure approach of time domain analysis. Verification of the present method is carried out for typical BWR-MARK II type reactor building which is embedded in a soil, and the results are compared with those of the frequency response analysis which gives good accuracy for linear system. As a result, the present method exhibits sufficient accuracy. Furthermore, elasto-plastic analyses considering the soil-structure interaction are made as an application of the present method, and nonlinear behaviors of the structure and embedment effects are discussed. (orig.)
Commutator-based linearization of $N = 1$ nonlinear supersymmetry
Tsuda, Motomu
2016-01-01
We consider the linearization of $N = 1$ nonlinear supersymmetry (NLSUSY) based on a commutator algebra in Volkov-Akulov NLSUSY theory. We show explicitly that $U(1)$ gauge and scalar supermultiplets in addition to a vector supermultiplet with general auxiliary fields in linear SUSY theories are obtained from a same set of bosonic and fermionic functionals (composites) which are expressed as simple products of the powers of a Nambu-Goldstone fermion and a fundamental determinant in the NLSUSY theory.
Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A
2003-06-01
Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.
On the efficacy of friction damping in the presence of nonlinear modal interactions
Krack, Malte; Bergman, Lawrence A.; Vakakis, Alexander F.
2016-05-01
This work addresses friction-induced modal interactions in jointed structures, and their effects on the passive mitigation of vibrations by means of friction damping. Under the condition of (nearly) commensurable natural frequencies, the nonlinear character of friction can cause so-called nonlinear modal interactions. If harmonic forcing near the natural frequency of a specific mode is applied, for instance, another mode may be excited due to nonlinear energy transfer and thus contribute considerably to the vibration response. We investigate how this phenomenon affects the performance of friction damping. To this end, we study the steady-state, periodic forced vibrations of a system of two beams connected via a local mechanical friction joint. The system can be tuned to continuously adjust the ratio between the first two natural frequencies in the range around the 1:3 internal resonance, in order to trigger or suppress the emergence of modal interactions. Due to the re-distribution of the vibration energy, the vibration level can in fact be reduced in certain situations. However, in other situations, the multi-harmonic character of the vibration has detrimental effects on the effective damping provided by the friction joint. The resulting response level can be significantly larger than in the absence of modal interactions. Moreover, it is shown that the vibration behavior is highly sensitive in the neighborhood of internal resonances. It is thus concluded that the condition of internal resonance should be avoided in the design of friction-damped systems.
Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide
Hafezi, Mohammad; Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail
2009-01-01
We present a theoretical technique for solving the quantum transport problem of a few photons through a one-dimensional, strongly nonlinear waveguide. We specifically consider the situation where the evolution of the optical field is governed by the quantum nonlinear Schr\\"odinger equation (NLSE). Although this kind of nonlinearity is quite general, we focus on a realistic implementation involving cold atoms loaded in a hollow-core optical fiber, where the atomic system provides a tunable nonlinearity that can be large even at a single-photon level. In particular, we show that when the interaction between photons is effectively repulsive, the transmission of multi-photon components of the field is suppressed. This leads to anti-bunching of the transmitted light and indicates that the system acts as a single-photon switch. On the other hand, in the case of attractive interaction, the system can exhibit either anti-bunching or bunching, which is in stark contrast to semiclassical calculations. We show that the ...
Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide
Hafezi, Mohammad; Chang, Darrick E.; Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail D.
2012-01-01
We present a theoretical technique for solving the quantum transport problem of a few photons through a one-dimensional, strongly nonlinear waveguide. We specifically consider the situation where the evolution of the optical field is governed by the quantum nonlinear Schrödinger equation. Although this kind of nonlinearity is quite general, we focus on a realistic implementation involving cold atoms loaded in a hollow-core optical fiber, where the atomic system provides a tunable nonlinearity that can be large even at a single-photon level. In particular, we show that when the interaction between photons is effectively repulsive, the transmission of multiphoton components of the field is suppressed. This leads to antibunching of the transmitted light and indicates that the system acts as a single-photon switch. On the other hand, in the case of attractive interaction, the system can exhibit either antibunching or bunching, which is in stark contrast to semiclassical calculations. We show that the bunching behavior is related to the resonant excitation of bound states of photons inside the system.
International Nuclear Information System (INIS)
Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves
Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.
Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng
2015-01-12
A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced. PMID:25835706
All-optical devices based on carrier nonlinearities for optical filtering and spectral equalization
Burger, Johan Petrus
InGaAsP-based quantum wells can display nonlinear refractive index changes of ~0.1 near the band-edge for intrawell carrier density changes of 1 × 1018cm-3, due to effects like bandfilling and the plasma effect, which make these materials promising for the realization of all-optical signal processing devices, as demonstrated here. A novel single passband filter with sub-gigahertz bandwidth and greater than 40nm of tunability was experimentally demonstrated. The filter uses the detuning characteristics of nearly degenerate four-wave mixing in a broad area semiconductor optical amplifier to obtain frequency selectivity. The key to this demonstration was the spatial separation of the filtered signal from the input signal, based on their different propagation directions. An analysis of an analogous integrated optic dual-order mode nonlinear mode-converter, with integrated mode sorters which separate the signal from the interacting modes, was also undertaken. This device is promising as a filter, a wavelength converter, notch filter, and a wavelength recognizing switch. Novel ways to prevent carrier diffusion, which washes out the nonlinear grating, were suggested. It is important to have a large mutual overlap to modal overlap ratio of the two interacting modes on the nonlinear medium, because the mixing efficiency scales as the fourth power of this number. Three types of integrated optic limiters (based on Kerr- like nonlinearities) namely an all-optical cutoff modulator, a nonlinear Y-branch and an interferometer with an internal Kerr element, were theoretically investigated. A beam propagation program, which can solve the propagation of an optical field in a semiconductor in the presence of carrier diffusion, was developed for the numerical analysis of these structures. A negative feedback mechanism was identified in the Y-branch devices and a new limiting configuration was discovered in a Y- branch with a selectively placed defocusing nonlinearity. Dichroic
Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves
Luk, Onnie
The convective cells are observed in the auroral ionosphere and they could play an important role in the nonlinear interaction of Alfven waves and disrupt the kinetic Alfven wave (KAW) turbulence. Zonal fields, which are analogous to convective cells, are generated by microturbulence and regulate microturbulence inside toroidally confined plasmas. It is important to understand the role of convective cells in the nonlinear interaction of KAW leading to perpendicular cascade of spectral energy. A nonlinear gyrokinetic particle simulation has been developed to study the perpendicular spectral cascade of kinetic Alfven wave. However, convective cells were excluded in the study. In this thesis project, we have modified the formulation to implement the convective cells to study their role in the nonlinear interactions of KAW. This thesis contains detail description of the code formulation and convergence tests performed, and the simulation results on the role of convective cells in the nonlinear interactions of KAW. In the single KAW pump wave simulations, we observed the pump wave energy cascades to waves with shorter wavelengths, with three of them as dominant daughter waves. Convective cells are among those dominant daughter waves and they enhance the rate of energy transfer from pump to daughter waves. When zonal fields are present, the growth rates of the dominant daughter waves are doubled. The convective cell (zonal flow) of the zonal fields is shown to play a major role in the nonlinear wave interaction, while the linear zonal vector potential has little effects. The growth rates of the daughter waves linearly depends on the pump wave amplitude and the square of perpendicular wavenumber. On the other hand, the growth rates do not depend on the parallel wavenumber in the limit where the parallel wavenumber is much smaller than the perpendicular wavenumber. The nonlinear wave interactions with various perpendicular wavenumbers are also studied in this work. When
Numerical simulation of nonlinear long waves interacting with arrays of emergent cylinders
Zainali, Amir; Weiss, Robert; Irish, Jennifer L; Yang, Yongqian
2016-01-01
We presented numerical simulation of long waves, interacting with arrays of emergent cylinders inside regularly spaced patches, representing discontinues patchy coastal vegetation. We employed the fully nonlinear and weakly dispersive Serre-Green-Naghdi equations (SGN) until the breaking process starts, while we changed the governing equations to nonlinear shallow water equations (NSW) at the vicinity of the breaking-wave peak and during the runup stage. We modeled the cylinders as physical boundaries rather than approximating them as macro-roughness friction. We showed that the cylinders provide protection for the areas behind them. However they might also cause amplification in local water depth in those areas. The presented results are extensively validated against the existing numerical and experimental data. Our results demonstrate the capability and reliability of our model in simulating wave interaction with emergent cylinders.
An Interactive Multimedia Based Instruction in Experimental Modelling
DEFF Research Database (Denmark)
Knudsen, Morten; Nielsen, J.N.; Østergaard, J.;
1997-01-01
A CD-ROM based interactive multimedia instruction in experimental modelling for Danish Engineering School teachers is described. The content is based on a new sensitivity approach for direct estimation of physical parameters in linear and nonlinear dynamic systems. The presentation is inspired...... of Solomans=s inventory of learning styles. To enhance active learning and motivation by real life problems, the simulation tool Matlab is integrated in the authoring program Medi8or....
Transient stability improvement by nonlinear controllers based on tracking
Energy Technology Data Exchange (ETDEWEB)
Ramirez, Juan M. [Centro de Investigacion y Estudios Avanzados, Guadalajara, Mexico. Av. Cientifica 1145. Col. El Bajio. Zapopan, Jal. 45015 (Mexico); Arroyave, Felipe Valencia; Correa Gutierrez, Rosa Elvira [Universidad Nacional de Colombia, Sede Medellin. Facultad de Minas, Escuela de Mecatronica (Colombia)
2011-02-15
This paper deals with the control problem in multi-machine electric power systems, which represent complex great scale nonlinear systems. Thus, the controller design is a challenging problem. These systems are subjected to different perturbations, such as short circuits, connection and/or disconnection of loads, lines, or generators. Then, the utilization of controllers which guarantee good performance under those perturbations is required in order to provide electrical energy to the loads with admissible stability margins. The proposed controllers are based on a systematic strategy, which calculate nonlinear controllers for generating units in a power plant, both for voltage and velocity regulation. The formulation allows designing controllers in a multi-machine power system without intricate calculations. Results on a power system of the open research indicate the proposition's suitability. The problem is formulated as a tracking problem. The designed controllers may be implemented in any electric power system. (author)
Seismic induced nonlinear rotor-bearing-casing interaction of rotating nuclear components
International Nuclear Information System (INIS)
The study of the dynamics of turbomachinery during seismic events has been of continuous interest to both researchers and designers of large rotating equipment. Failure in such equipment, especially those associated with nuclear power generation, can lead to catastrophic consequences. Hence, there is a general trend for corporations to overdesign the equipment without any indepth understanding of the dynamical performance of the machine under extreme operating conditions. The overall objective of this paper are fourfold, namely: (1) To study the nonlinear dynamics of rotor-bearing casing system during rub interactions; (2) To examine the effects of suddenly induced imbalance and base motion in the global dynamical behavior of the system; (3) To develop engineering insights through the modal parameters in both time and frequency domain; (4) To generate signature analysis on rub forces for pattern recognition. These goals are achieved through the development of a modal impact model. Accuracy and efficiency of this transient model are maintained using a self-adaptive integration scheme
The effect of crack orientation on the nonlinear interaction of a P wave with an S wave
TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.
2016-06-01
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.
Interactive example-based hatching
Gerl, Moritz; Isenberg, Tobias
2013-01-01
We present an approach for interactively generating pen-and-ink hatching renderings based on hand-drawn examples. We aim to overcome the regular and synthetic appearance of the results of existing methods by incorporating human virtuosity and illustration skills in the computer generation of such im
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Engsig-Karup, Allan Peter; Bingham, Harry B.;
2014-01-01
This paper deals with the development of an enhanced model for solving wave–wave and wave–structure interaction problems. We describe the application of a non-linear splitting method originally suggested by Di Mascio et al. [1], to the high-order finite difference model developed by Bingham et al....... [2] and extended by Engsig-Karup et al. [3] and [4]. The enhanced strategy is based on splitting all solution variables into incident and scattered fields, where the incident field is assumed to be known and only the scattered field needs to be computed by the numerical model. Although this splitting...
International Nuclear Information System (INIS)
Here we have investigated the influence of external electric field and magnetic field on the nonlinear optical rectification of a parabolic confinement wire in the presence of Rashba spin–orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin–orbit interaction strength and photon energy. Our results indicate an increase of electric field gives the red-shift of the peak positions of nonlinear optical rectification. The role of confinement strength and spin–orbit interaction strength as control parameters on this nonlinear property have been demonstrated.
Beta-functions of non-linear $\\sigma$-models for disordered and interacting electron systems
Dell'Anna, Luca
2016-01-01
We provide and study complete sets of one-loop renormalization group equations, calculated at all orders in the interaction parameters, of several Finkel'stein non-linear $\\sigma$-models, the effective field theories describing the diffusive quantum fluctuations in correlated disordered systems. We consider different cases according to the presence of certain symmetries induced by the original random Hamiltonians, and we show that, for interacting systems, the Cartan's classification of symmetry classes is not enough to uniquely determine their scaling behaviors.
Nonlinear time-series-based adaptive control applications
Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.
1991-01-01
A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.
Li, Zhaoying; Zhou, Wenjie; Liu, Hao
2016-09-01
This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach.
Characterizing the nonlinear interaction of S- and P-waves in a rock sample
Gallot, Thomas; Szabo, Thomas L; Brown, Stephen; Burns, Daniel; Fehler, Michael
2014-01-01
The nonlinear elastic response of rocks is known to be caused by the rocks' microstructure, particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of rocks in a laboratory scale experiment with a unique configuration. This configuration has been designed to open up the possibility the nonlinear characterization of rocks as an imaging tool in a field scenario. The nonlinear interaction of two traveling waves: a low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump has been studied on a room-dry 15 x 15x 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns, corresponding to a change in elastic properties of 0.2%. In order to estimate the ...
Characterizing the nonlinear interaction of S- and P-waves in a rock sample
Gallot, Thomas; Malcolm, Alison; Szabo, Thomas L.; Brown, Stephen; Burns, Daniel; Fehler, Michael
2015-01-01
The nonlinear elastic response of rocks is known to be caused by the rocks' microstructure, particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of rocks in a laboratory scale experiment with a unique configuration. This configuration has been designed to open up the possibility of using the nonlinear characterization of rocks as an imaging tool in the field. In our experiment, we study the nonlinear interaction of two traveling waves: a low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump in a room-dry 15 × 15 × 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns, corresponding to a change in elastic properties of 0.2%. In order to estimate the strain in our sample, we also measured the particle velocity at the sample surface to scale a finite difference linear elastic simulation to estimate the complex strain field in the sample, on the order of 10-6, induced by the S-wave pump. We derived a fourth order elastic model to relate the changes in elasticity to the pump strain components. We recover quadratic and cubic nonlinear parameters: β ˜ = - 872 and δ ˜ = - 1.1 × 10 10 , respectively, at room-temperature and when particle motions of the pump and probe waves are aligned. Temperature fluctuations are correlated to changes in the recovered values of β ˜ and δ ˜ , and we find that the nonlinear parameter changes when the particle motions are orthogonal. No evidence of slow dynamics was seen in our measurements. The same experimental configuration, when applied to Lucite and aluminum, produced no measurable nonlinear effects. In summary, a method of selectively determining the
Nonlinear interaction of photons and phonons in electron-positron plasmas
International Nuclear Information System (INIS)
Nonlinear interaction of electromagnetic waves and acoustic modes in an electron-positron plasma is investigated. The plasma of electrons and positrons is quite plastic so that the imposition of electromagnetic (EM) waves causes depression of the plasma and other structural imprints on it through either the nonresonant or resonant interaction. Our theory shows that the nonresonant interaction can lead to the coalescence of photons and collapse of plasma cavity in higher (≥ 2) dimensions. The resonant interaction, in which the group velocity of EM waves is equal to the phase velocity of acoustic waves, is analyzed and a set of basic equations of the system is derived via the reductive perturbation theory. We find new solutions of solitary types: bright solitons, kink solitons, and dark solitons as the solutions to these equations. Our computation hints their stability. An impact of the present theory on astrophysical plasma settings is expected, including the cosmological relativistically hot electron-positron plasma. 20 refs., 9 figs
Directory of Open Access Journals (Sweden)
James Sae Siew
2015-01-01
Full Text Available Rail turnouts are built to enable flexibility in the rail network as they allow for vehicles to switch between various tracks, therefore maximizing the utilisation of existing rail infrastructure. In general, railway turnouts are a safety-critical and expensive feature to a rail system as they suffer aggressive operational loads, in comparison to a plain rail track, and thus require frequent monitoring and maintenance. In practice, great consideration is given to the dynamic interaction between the turnouts components as a failed component may have adverse effects on the performance of neighbouring components. This paper presents a nonlinear 3D finite element (FE model, taking into account the nonlinearities of materials, in order to evaluate the interaction and behaviour of turnout components. Using ABAQUS, the finite element model was developed to simulate standard concrete bearers with 60 kg/m rail and with a tangential turnout radius of 250 m. The turnout structure is supported by a ballast layer, which is represented by a nonlinearly deformable tensionless solid. The numerical studies firstly demonstrate the importance of load transfer mechanisms in the failure modes of the turnout components. The outcome will lead to a better design and maintenance of railway turnouts, improving public safety and operational reliability.
Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode
International Nuclear Information System (INIS)
We have observed that the disparate scale nonlinear interactions between the high-frequency (∼0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (∼kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇Te/Te strength exceeded 0.54 cm−1. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes
A New Nonlinear Compound Forecasting Method Based on ANN
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper the compound-forecasting method is discussed. The compound-forecasting method is one of the hotspots in the current predication. Firstly, the compound-forecasting method is introduced and various existing compound-forecasting methods arediscussed. Secondly, the Artificial Neural Network (ANN) is brought in compound-prediction research and a nonlinear compound-prediction model based on ANN is presented. Finally, inorder to avoid irregular weight, a new method is presented which uses principal component analyses to increase the availability of compound-forecasting information. Higherforecasting precision is achieved in practice.
Electromechanically reconfigurable CdS nanoplate based nonlinear optical device.
Yi, Fei; Ren, Mingliang; Zhu, Hai; Liu, Wenjin; Agarwal, Ritesh; Cubukcu, Ertugrul
2016-06-13
Here, we report experimental demonstration of dynamic control and enhancement of second harmonic generation and two photon excited photoluminescence in CdS nanoplates via an electromechanically reconfigurable Fabry-Perot (FP) microcavity. Microcavity coupled CdS nanoplates can be configured as a single or dual wavelength nonlinear light source by tuning the pump wavelength while the output intensities can be tuned by the on-chip control voltage. Our work realizes a reconfigurable device platform with insight toward advanced optical devices based on semiconductor nanoplates for next generation on-chip tunable light sources, sensors and optomechanical systems. PMID:27410362
Stabilization of nonlinear systems based on robust control Lyapunov function
Institute of Scientific and Technical Information of China (English)
CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun
2007-01-01
This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.
Attenuation, dispersion and nonlinearity effects in graphene-based waveguides.
Lima, Almir Wirth; Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra
2015-01-01
We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The nonlinear dynamic behavior of a rubbing rotor system was studied with a mathematical model established with the eccentricity and interaction between bending and torsional vibrations taken into consideration.The nonlinear vibrational response of a rubbing rotor was analyzed using numerical integral,spectroscopic analysis and Poince mapping method,which made it possible to have better understanding of the vibrational characteristics of partial rubbing and complete circular rubbing rotors.The numerical results reveal the response of torsional vibration mainly takes a form of suporchronous motion,and its frequency decreases as the rotational speed increases when partial rubbing occurs,and the response of torsional vibration is synchronous when complete circular rubbing occurs.The comparison of the dynamics of rubbing rotors with and without the interaction between bending and torsional vibrations shows the interaction between bending and torsional vibrations advances the rotational speed,at which the response of bending vibration changes from a synchronous motion into a quasi-periodic motion,and the interaction between bending and torsional vibrations reduces stability of the rubbing rotor.
On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven By Energetic Particles
International Nuclear Information System (INIS)
It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.
On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven by Energetic Particles
International Nuclear Information System (INIS)
It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-02-01
We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.
Neural network-based H∞ filtering for nonlinear systems with time-delays
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed.Firstly,neural networks are employed to approximate the nonlinearities.Next,the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI).Finally,based on the LDI model,a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints.Compared with the existing nonlinear filters,NNBNF is time-invariant and numerically tractable.The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.
Institute of Scientific and Technical Information of China (English)
李自珍; 徐彩琳; 王万雄
2003-01-01
The mechanism and the course of two-dimensional nonlinear dynamic system ofinterspecific interaction were dealt with systematically. By extending the Lotka-Volterramodel from the viewpoint of biomechanics, it developed new models of two-dimensionalnonlinear autonomous and nonautonomous dynamic systems, with its equilibrium point' sstability and the existence and stability of its periodical solutions analyzed, and didnumerical simulation experiments on its dynamics course. The results show that efficiency of interaction between two populations, time-varying effort, and change direction of actioncoefficient and reaction coefficient have important influences on the stability of dynamicsystem, that too large or too small interspecific interaction efficiency and contrary changedirection of action coefficient and reaction coefficient may result in the nonstability of thesystem, and thus it is difficult for two populations to coexist, and that time-varying activeforce contributes to system stability.
Directory of Open Access Journals (Sweden)
Matías A Goldin
Full Text Available The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.
Li, Wangnan; Cai, Hongneng; Li, Chao
2014-11-01
This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.
Energy Technology Data Exchange (ETDEWEB)
Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
Generation and Nonlinear Dynamical Analyses of Fractional-Order Memristor-Based Lorenz Systems
Huiling Xi; Yuxia Li; Xia Huang
2014-01-01
In this paper, four fractional-order memristor-based Lorenz systems with the flux-controlled memristor characterized by a monotone-increasing piecewise linear function, a quadratic nonlinearity, a smooth continuous cubic nonlinearity and a quartic nonlinearity are presented, respectively. The nonlinear dynamics are analyzed by using numerical simulation methods, including phase portraits, bifurcation diagrams, the largest Lyapunov exponent and power spectrum diagrams. Some interesting phenome...
Nonlinear Modeling of Dynamic Interactions within Neuronal Ensembles using Principal Dynamic Modes
Marmarelis, V. Z.; Shin, D. C.; Song, D.; Hampson, R. E.; Deadwyler, S; Berger, T. W.
2012-01-01
A methodology for nonlinear modeling of multi-input multi-output (MIMO) neuronal systems is presented that utilizes the concept of Principal Dynamic Modes (PDM). The efficacy of this new methodology is demonstrated in the study of the dynamic interactions between neuronal ensembles in the Pre-Frontal Cortex (PFC) of a behaving non-human primate (NHP) performing a Delayed Match-to-Sample task. Recorded spike trains from Layer-2 and Layer-5 neurons were viewed as the “inputs” and “outputs”, res...
ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.; Wang, Benlong
2006-01-01
class II Bragg scattering from an undular sea bottom. The computations are verified against measurements, theoretical solutions and numerical models from the literature. Finally, we make a detailed investigation of nonlinear class III Bragg scattering and results are given for the sub-harmonic and super......-harmonic interactions with the sea bed. We provide a new explanation and a prediction of the resulting downshift/upshift of the peak reflection/transmission as a function of wave steepness. (C) 2005 Elsevier B.V. All rights reserved....
Quantum optical non-linearities induced by Rydberg-Rydberg interactions: a perturbative approach
Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P
2015-01-01
In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical non-linearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic resu...
Harmonic Propagation and Interaction Evaluation between Small-Scale Wind Farms and Nonlinear Loads
Cheng-Xiong Mao; Yan Li; Bu-Han Zhang; Guang-Long Xie
2013-01-01
Distributed generation is a flexible and effective way to utilize renewable energy. The dispersed generators are quite close to the load, and pose some power quality problems such as harmonic current emissions. This paper focuses on the harmonic propagation and interaction between a small-scale wind farm and nonlinear loads in the distribution grid. Firstly, by setting the wind turbines as P â€“ Q ( V ) nodes, the paper discusses the expanding Newton-Raphson power flow method for the wind far...
Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.
1980-01-01
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.
Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics
Institute of Scientific and Technical Information of China (English)
Zhaoxia PU; Joshua HACKER
2009-01-01
This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.
Nonlinear interaction mechanisms of disturbances in supersonic flat-plate boundary layers
Institute of Scientific and Technical Information of China (English)
YU Min; LUO JiSheng
2014-01-01
Due to the complexity of compressible flows,nonlinear hydrodynamic stability theories in supersonic boundary layers are not sufficient.In order to reveal the nonlinear interaction mechanisms of the rapidly amplified 3-D disturbances in supersonic boundary layers at high Mach numbers,the nonlinear evolutions of different disturbances in flat-plate boundary layers at Mach number 4.5,6 and 8 are analyzed by numerical simulations.It can be concluded that the 3-D disturbances are amplified rapidly when the amplitude of the 2-D disturbance reaches a certain level.The most rapidly amplified 3-D disturbances are Klebanoff type (K-type) disturbances which have the same frequency as the 2-D disturbance.Among these K-type 3-D disturbances,the disturbances located at the junction of upper branch and lower branch of the neutral curve are amplified higher.Through analyzing the relationship between the amplification rate and the spanwise wavenumber of the 3-D disturbances at different evolution stages,the mechanism of the spanwise wavenumber selectivity of K-type 3-D disturbances in the presence of a finite amplitude 2-D disturbance is explained.
Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera
2008-04-01
Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.
A nonlinear PCA algorithm based on RBF neural networks
Institute of Scientific and Technical Information of China (English)
YANG Bin; ZHU Zhong-ying
2005-01-01
Traditional PCA is a linear method, but most engineering problems are nonlinear. Using the linear PCA in nonlinear problems may bring distorted and misleading results. Therefore, an approach of nonlinear principal component analysis (NLPCA) using radial basis function (RBF) neural network is developed in this paper. The orthogonal least squares (OLS) algorithm is used to train the RBF neural network. This method improves the training speed and prevents it from being trapped in local optimization. Results of two experiments show that this NLPCA method can effectively capture nonlinear correlation of nonlinear complex data, and improve the precision of the classification and the prediction.
Directory of Open Access Journals (Sweden)
Y. Katoh
2013-03-01
Full Text Available In the upcoming JAXA/ERG satellite mission, Wave Particle Interaction Analyzer (WPIA will be installed as an onboard software function. We study the statistical significance of the WPIA for measurement of the energy transfer process between energetic electrons and whistler-mode chorus emissions in the Earth's inner magnetosphere. The WPIA measures a relative phase angle between the wave vector E and velocity vector v of each electron and computes their inner product W, where W is the time variation of the kinetic energy of energetic electrons interacting with plasma waves. We evaluate the feasibility by applying the WPIA analysis to the simulation results of whistler-mode chorus generation. We compute W using both a wave electric field vector observed at a fixed point in the simulation system and a velocity vector of each energetic electron passing through this point. By summing up Wi of an individual particle i to give Wint, we obtain significant values of Wint as expected from the evolution of chorus emissions in the simulation result. We can discuss the efficiency of the energy exchange through wave-particle interactions by selecting the range of the kinetic energy and pitch angle of the electrons used in the computation of Wint. The statistical significance of the obtained Wint is evaluated by calculating the standard deviation σW of Wint. In the results of the analysis, positive or negative Wint is obtained at the different regions of velocity phase space, while at the specific regions the obtained Wint values are significantly greater than σW, indicating efficient wave-particle interactions. The present study demonstrates the feasibility of using the WPIA, which will be on board the upcoming ERG satellite, for direct measurement of wave-particle interactions.
Simulation-based optimal Bayesian experimental design for nonlinear systems
Huan, Xun
2013-01-01
The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters.Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics. © 2012 Elsevier Inc.
Nonlinear Filter Based Image Denoising Using AMF Approach
Thivakaran, T K
2010-01-01
This paper proposes a new technique based on nonlinear Adaptive Median filter (AMF) for image restoration. Image denoising is a common procedure in digital image processing aiming at the removal of noise, which may corrupt an image during its acquisition or transmission, while retaining its quality. This procedure is traditionally performed in the spatial or frequency domain by filtering. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly e...
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Data based identification and prediction of nonlinear and complex dynamical systems
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-07-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical
Data based identification and prediction of nonlinear and complex dynamical systems
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-07-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical
Interaction of oblique dark solitons in two-dimensional supersonic nonlinear Schrödinger flow
International Nuclear Information System (INIS)
We investigate the collision of two oblique dark solitons in the two-dimensional supersonic nonlinear Schrödinger flow past two impenetrable obstacles. We numerically show that this collision is very similar to the dark solitons collision in the one-dimensional case. We observe that it is practically elastic and we measure the shifts of the solitons positions after their interaction. -- Highlights: ► We investigate the collision of oblique dark solitons in the 2D supersonic NLS flow past impenetrable obstacles. ► It is very similar to the dark solitons collision in the 1D case. ► It is practically elastic. ► We measure the shifts of the solitons positions after their interaction.
Three-state interactions determine the second-order nonlinear optical response
Perez-Moreno, Javier
2016-01-01
Using the sum-rules, the sum-over-states expression for the diagonal term of first hyperpolarizability can be expressed as the sum of three-state interaction terms. We study the behavior of a generic three-state term to show that is possible to tune the contribution of resonant terms by tuning the spectrum of the molecule. When extrapolated to the off-resonance regime, the three-state interaction terms are shown to behave in a similar manner as the three-level model used to derive the fundamental limits. We finally show that most results derived using the three-level ansatz are general, and apply to molecules where more than three levels contribute to the second-order nonlinear response or/and far from optimization.
The nonlinear interaction of two-crossed focussed ultrasonic beams in the presence of turbulence
Rife, Stephen C.
1988-06-01
This paper examines the scattering of a nonlinearly generated sum frequency acoustic wave component from a region of turbulence defined by the overlap volume of two mutually perpendicular crossed focussed ultrasonic beams. The scattered sum frequency pressure amplitude is measured at different radial scan positions across the jet flow stream providing conclusions that explain some qualitative results governing the sum frequency scattering mechanism. Information about the instantaneous velocity components of the turbulent field in the sound-sound interaction volume is measured with an electronic spectrum analyzer. Average spectral shapes of the spectrum near the sum frequency represent information about the probability distribution function of the turbulent velocities. Acoustic measurements are correlated with velocity measurements of circular jets. These correlations demonstrate that the focussed crossed beam apparatus is an effective diagnostic tool for the experimental study of turbulent fluid fields in water. The results of the nonlinear crossed beam experiments indicate the apparatus can be utilized as a diagnostic tool to measure some parameters of turbulent velocity. The measured pressure of the radiated sum frequency correlates with turbulent velocities in the interaction region. Measurements of the Doppler shift and sum-frequency broadening are used to determine mean velocity and turbulent rms velocities respectively.
A non-linear analytic stress model for the analysis on the stress interaction between TSVs
Directory of Open Access Journals (Sweden)
Ming-Han Liao
2015-06-01
Full Text Available Thermo-elastic strain is induced by through silicon vias (TSV due to the difference of thermal expansion coefficients between the copper (∼18 ppm/◦C and silicon (∼2.8 ppm/◦C when the structure is exposed to a thermal budget in the three dimensional integrated circuit (3DIC process. These thermal expansion stresses are high enough to induce the delamination on the interfaces between the copper, silicon, and isolated dielectric. A compact analytic model for the strain field induced by different layouts of thermal copper filled TSVs with the linear superposition principle is found to result in large errors due to the strong stress interaction between TSVs. In this work, a nonlinear stress analytic model with different TSV layouts is demonstrated by the finite element method and Mohr’s circle analysis. The stress characteristics are also measured by the atomic force microscope-raman technique at a nanometer level resolution. This nonlinear stress model for the strong interactions between TSVs results in an electron mobility change ~2-6% smaller than that resulting from a model that only considers the linear stress superposition principle.
OBLIQUE PROJECTION REALIZATION OF A KERNEL-BASED NONLINEAR DISCRIMINATOR
Institute of Scientific and Technical Information of China (English)
Liu Benyong; Zhang Jing
2006-01-01
Previously, a novel classifier called Kernel-based Nonlinear Discriminator (KND) was proposed to discriminate a pattern class from other classes by minimizing mean effect of the latter. To consider the effect of the target class, this paper introduces an oblique projection algorithm to determine the coefficients of a KND so that it is extended to a new version called extended KND (eKND). In eKND construction, the desired output vector of the target class is obliquely projected onto the relevant subspace along the subspace related to other classes. In addition, a simple technique is proposed to calculate the associated oblique projection operator. Experimental results on handwritten digit recognition show that the algorithm performes better than a KND classifier and some other commonly used classifiers.
A nonlinear Stein based estimator for multichannel image denoising
Chaux, Caroline; Benazza-Benyahia, Amel; Pesquet, Jean-Christophe
2007-01-01
The use of multicomponent images has become widespread with the improvement of multisensor systems having increased spatial and spectral resolutions. However, the observed images are often corrupted by an additive Gaussian noise. In this paper, we are interested in multichannel image denoising based on a multiscale representation of the images. A multivariate statistical approach is adopted to take into account both the spatial and the inter-component correlations existing between the different wavelet subbands. More precisely, we propose a new parametric nonlinear estimator which generalizes many reported denoising methods. The derivation of the optimal parameters is achieved by applying Stein's principle in the multivariate case. Experiments performed on multispectral remote sensing images clearly indicate that our method outperforms conventional wavelet denoising techniques
Envelope based nonlinear blind deconvolution approach for ultrasound imaging
Directory of Open Access Journals (Sweden)
L.T. Chira
2012-06-01
Full Text Available The resolution of ultrasound medical images is yet an important problem despite of the researchers efforts. In this paper we presents a nonlinear blind deconvolution to eliminate the blurring effect based on the measured radio-frequency signal envelope. This algorithm is executed in two steps. Firslty we make an estimation for Point Spread Function (PSF and, secondly we use the estimated PSF to remove, iteratively their effect. The proposed algorithm is a greedy algorithm, called also matching pursuit or CLEAN. The use of this algorithm is motivated beacause theorically it avoid the so called inverse problem, which usually needs regularization to obtain an optimal solution. The results are presented using 1D simulated signals in term of visual evaluation and nMSE in comparison with the two most kwown regularisation solution methods for least square problem, Thikonov regularization or l2-norm and Total Variation or l1 norm.
Color image encryption based on Coupled Nonlinear Chaotic Map
Energy Technology Data Exchange (ETDEWEB)
Mazloom, Sahar [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: sahar.mazloom@gmail.com; Eftekhari-Moghadam, Amir Masud [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: eftekhari@qazviniau.ac.ir
2009-11-15
Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
Energy and Transmissibility in Nonlinear Viscous Base Isolators
Markou, Athanasios A.; Manolis, George D.
2016-09-01
High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.
Prosser, Andrew
2014-01-01
Digital storytelling is already used extensively in language education. Web documentaries, particularly in terms of design and narrative structure, provide an extension of the digital storytelling concept, specifically in terms of increased interactivity. Using a model of interactive, non-linear storytelling, originally derived from computer game…
Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2015-01-14
We consider the hybrid system-bath dynamics, based on the Yan's dissipaton formalism [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)]. This theory provides a unified quasi-particle treatment on three distinct classes of quantum bath, coupled nonperturbatively to arbitrary quantum systems. In this work, to study the entangled system and bath polarization and nonlinear Fano interference, we incorporate further the time-dependent light field, which interacts with both the molecular system and the collective bath dipoles directly. Numerical demonstrations are carried out on a two-level system, with comparison between phonon and exciton baths, in both linear and nonlinear Fano interference regimes. PMID:25591343
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hou-Dao [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Xu, Rui-Xue, E-mail: rxxu@ustc.edu.cn; Zheng, Xiao [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yan, YiJing, E-mail: yyan@ust.hk [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2015-01-14
We consider the hybrid system–bath dynamics, based on the Yan’s dissipaton formalism [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)]. This theory provides a unified quasi-particle treatment on three distinct classes of quantum bath, coupled nonperturbatively to arbitrary quantum systems. In this work, to study the entangled system and bath polarization and nonlinear Fano interference, we incorporate further the time-dependent light field, which interacts with both the molecular system and the collective bath dipoles directly. Numerical demonstrations are carried out on a two-level system, with comparison between phonon and exciton baths, in both linear and nonlinear Fano interference regimes.
International Nuclear Information System (INIS)
We consider the hybrid system–bath dynamics, based on the Yan’s dissipaton formalism [Y. J. Yan, J. Chem. Phys. 140, 054105 (2014)]. This theory provides a unified quasi-particle treatment on three distinct classes of quantum bath, coupled nonperturbatively to arbitrary quantum systems. In this work, to study the entangled system and bath polarization and nonlinear Fano interference, we incorporate further the time-dependent light field, which interacts with both the molecular system and the collective bath dipoles directly. Numerical demonstrations are carried out on a two-level system, with comparison between phonon and exciton baths, in both linear and nonlinear Fano interference regimes
Transistor-based metamaterials with dynamically tunable nonlinear susceptibility
Barrett, John P.; Katko, Alexander R.; Cummer, Steven A.
2016-08-01
We present the design, analysis, and experimental demonstration of an electromagnetic metamaterial with a dynamically tunable effective nonlinear susceptibility. Split-ring resonators loaded with transistors are shown theoretically and experimentally to act as metamaterials with a second-order nonlinear susceptibility that can be adjusted through the use of a bias voltage. Measurements confirm that this allows for the design of a nonlinear metamaterial with adjustable mixing efficiency.
The study on the non-linear soil structure interaction for nuclear power plants
International Nuclear Information System (INIS)
1. Introduction: JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2(The extreme design earthquake). Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen together with the surrounding soil on the earthquake response evaluation of the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. Under this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coal mine company in the U.S.A. indicates that the works performed in the surface coal mine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test will be to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper, we introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. 2. Conclusion: It was confirmed that the artificial ground motions generated by blasting works have enough acceleration level
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.
Gradiometer Based on Nonlinear Magneto-Optic Rotation Project
National Aeronautics and Space Administration — This Phase I SBIR project will demonstrate sensitive measurements of magnetic field gradients by nonlinear atomic spectroscopy. The gradients are determined by...
Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters
Abdelkefi, Abdessattar
2014-01-01
We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered wing has a low-aspect ratio and hence three dimensional aerodynamic effects cannot be neglected. To this end, the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. A strong coupling scheme that is based on Hamming\\'s fourth-order predictor-corrector method and accounts for the interaction between the aerodynamic loads and the motion of the wing is employed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power, pitch and plunge amplitudes are investigated for a range of operating wind speeds. The results show that there is a specific wind speed beyond which the pitch motion does not pick any further energy from the incident flow. As such, the displacement in the plunge direction grows significantly and causes enhanced energy harvesting. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by an order of magnitude by properly choosing the eccentricity and the load resistance. This analysis is helpful in designing piezoaeroelastic energy harvesters that can operate optimally at specific wind speeds. © 2013 Elsevier Ltd.
Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters
Abdelkefi, A.; Ghommem, M.; Nuhait, A. O.; Hajj, M. R.
2014-01-01
We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered wing has a low-aspect ratio and hence three dimensional aerodynamic effects cannot be neglected. To this end, the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. A strong coupling scheme that is based on Hamming's fourth-order predictor-corrector method and accounts for the interaction between the aerodynamic loads and the motion of the wing is employed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power, pitch and plunge amplitudes are investigated for a range of operating wind speeds. The results show that there is a specific wind speed beyond which the pitch motion does not pick any further energy from the incident flow. As such, the displacement in the plunge direction grows significantly and causes enhanced energy harvesting. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by an order of magnitude by properly choosing the eccentricity and the load resistance. This analysis is helpful in designing piezoaeroelastic energy harvesters that can operate optimally at specific wind speeds.
Chen, Ji-sheng
2008-01-01
A nonlinear transformation approach is formulated for the correlated fermions' thermodynamics through a medium-scaling effective action. An auxiliary implicit variable-effective chemical potential is introduced to characterize the non-Gaussian fluctuations physics. By incorporating the nonlocal correlation effects, the achieved grand partition function is made of coupled highly nonlinear parametric equations. Analytically, the low temperature expansions for the strongly interacting unitary Fe...
Yang, Jun; Li, Shihua; Chen, Wen-Hua
2012-08-01
For a multi-input multi-output (MIMO) nonlinear system, the existing disturbance observer-based control (DOBC) only provides solutions to those whose disturbance relative degree (DRD) is higher than or equal to its input relative degree. By designing a novel disturbance compensation gain matrix, a generalised nonlinear DOBC method is proposed in this article to solve the disturbance attenuation problem of the MIMO nonlinear system with arbitrary DRD. It is shown that the disturbances are able to be removed from the output channels by the proposed method with appropriately chosen control parameters. The property of nominal performance recovery, which is the major merit of the DOBCs, is retained with the proposed method. The feasibility and effectiveness of the proposed method are demonstrated by simulation studies of both the numerical and application examples.
Gusev, Vitalyi
2002-01-01
A particular form of the energy potential (cubic in strains) is proposed, which leads to the bow-tie behavior of the nonlinear modulus in an isotropic material with hysteresis of quadratic nonlinearity. The nonlinear scattering of a weak probe wave in the field of a strong pump wave is analyzed. It is demonstrated that collinear interactions of the shear waves are allowed in materials with nonlinearity hysteresis. Both in collinear and non-collinear frequency-mixing processes the combination frequency is composed of the probe wave frequency and one of the even harmonics of the pump wave. In general, the developed theory predicts that in the presence of the hysteretic nonlinearity the number of possible resonant scattering processes increases. In particular, if frequency-mixing processes are forbidden in the material with the elastic quadratic nonlinearity (for a fixed ratio of primary frequencies), they may be allowed in the materials with hysteretic quadratic nonlinearity. Moreover, in materials with hysteresis of the nonlinearity the resonant frequency mixing for a fixed ratio of primary frequencies may be allowed for multiple mutual orientations of the primary wave vectors. PMID:11831826
Large eddy simulations and experiments of nonlinear flow interactions in hybrid rocket combustion
Na, Y.; Lee, C.
2013-03-01
Nonlinear combustion phenomenon was investigated through an experiment in a hybrid rocket motor. A poly(methyl methacrylate) (PMMA) / gaseous oxygen (GOx) combination was used with several types of disks equipped in a prechamber with the aim of modifying the local turbulent flow. By allowing this disturbance generated in a prechamber to interact with the shedding vortex inherently produced in the main chamber, a possibility of commonly observed nonlinear combustion feature such as DC-shift was analyzed. In a baseline test, a vortex shedding occurs due to the interaction of a main oxidizer flow with the evaporated fuel stream coming out of the surface during the regression process. Among the several types of disks, it turned out that only the disk4 produced the excitation which subsequently suppressed the vortex shedding phenomenon in the main chamber. This descent interaction was reflected in a sudden pressure drop (which may be described as direct current (DC) shift) of about 10 psi in the time history of the pressure during the nominal combustion. The present result with the disk4 suggests the possibility of phase cancellation between the excitation induced by the disk4 and the shedding vortex but much more work should be conducted to extract more accurate correlation of the phase information. In order to understand the baseline flow physics, a compressible large eddy simulation (LES) was conducted with the prescribed wall blowing boundary condition. The result clearly exhibited the existence of vortex shedding phenomenon with a specified frequency. The fact that important flow features of the present computation are quite similar to those obtained with an incompressible assumption in a flat channel suggests that both compressibility and curvature effects do not dominate in the present flow configuration.
Directory of Open Access Journals (Sweden)
C. M. Huang
2006-12-01
Full Text Available To quantitatively study the effects of nonlinear interactions on tide structure, a nonlinear numerical tidal model is developed, and the reliability and convergence of the adopted algorithm and coding are checked by numerical experiments. Under the same conditions as those employed by the GSWM-00 (Global Scale Wave Model 2000, our model provides the nonlinear quasi-steady solution of the migrating semidiurnal tide, which differs from the GSWM-00 result (the linear steady solution in the MLT region, especially above 100 km. Additionally, their amplitude difference displays a remarkable month-to-month variation, and its significant magnitudes occur during the month with strong semidiurnal tide. A quantitative analysis suggests that the main cause for the amplitude difference is that the initial migrating 12-h tide will interact with the mean flow as well as the nonlinearity-excited 6-h tide, and subsequently yield a new 12-h tidal part. Furthermore, our simulations also show that the mean flow/tidal interaction will significantly alter the background wind and temperature fields. The large magnitudes of the tidal amplitude difference and the background alteration indicate that the nonlinear processes involved in tidal propagations should be comprehensively considered in the description of global atmospheric dynamics in the MLT region. The comparisons among our simulations, the GSWMs and some observations of tides suggest that the nonlinearity-induced tidal structure variation could be a possible mechanism to account for some discrepancies between the GSWMs and the observations.
Rate of non-linearity in DMS aerosol-cloud-climate interactions
Directory of Open Access Journals (Sweden)
M. A. Thomas
2011-11-01
Full Text Available The degree of non-linearity in DMS-cloud-climate interactions is assessed using the ECHAM5-HAMMOZ model by taking into account end-to-end aerosol chemistry-cloud microphysics link. The evaluation is made over the Southern oceans in austral summer, a region of minimal anthropogenic influence. In this study, we compare the DMS-derived changes in the aerosol and cloud microphysical properties between a baseline simulation with the ocean DMS emissions from a prescribed climatology, and a scenario where the DMS emissions are doubled. Our results show that doubling the DMS emissions in the current climate results in a non-linear response in atmospheric DMS burden and subsequently, in SO_{2} and H_{2}SO_{4} burdens due to inadequate OH oxidation. The aerosol optical depth increases by only ~20 % in the 30° S–75° S belt in the SH summer months. This increases the vertically integrated cloud droplet number concentrations (CDNC by 25 %. Since the vertically integrated liquid water vapor is constant in our model simulations, an increase in CDNC leads to a reduction in cloud droplet radius of 3.4 % over the Southern oceans in summer. The equivalent increase in cloud liquid water path is 10.7 %. The above changes in cloud microphysical properties result in a change in global annual mean radiative forcing at the TOA of −1.4 W m^{−2}. The results suggest that the DMS-cloud microphysics link is highly non-linear. This has implications for future studies investigating the DMS-cloud climate feedbacks in a warming world and for studies evaluating geoengineering options to counteract warming by modulating low level marine clouds.
Nonlinear inverse modeling of sensor based on back-propagation fuzzy logical system
Institute of Scientific and Technical Information of China (English)
Li Jun; Liu Junhua
2007-01-01
Objective To correct the nonlinear error of sensor output, a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System (BP FS) is presented. Methods The BP FS is a computationally efficient nonlinear universal approximator, which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed. Results The neuro-fuzzy hybrid system, i.e. BP FS, is then applied to construct nonlinear inverse model of pressure sensor. The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation, and thus the performance of pressure sensor is significantly improved. Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.
Nonlinear model-based control algorithm for a distillation column using software sensor.
Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal
2005-04-01
This paper presents the design of model-based globally linearizing control (GLC) structure for a distillation process within the differential geometric framework. The model of a nonideal binary distillation column, whose characteristics were highly nonlinear and strongly interactive, is used as a real process. The classical GLC law is comprised of a transformer (input-output linearizing state feedback), a nonlinear state observer, and an external PI controller. The tray temperature based short-cut observer (TTBSCO) has been used as a state estimator within the control structure, in which all tray temperatures were considered to be measured. Accordingly, the liquid phase composition of each tray was calculated online using the derived temperature-composition correlation. In the simulation experiment, the proposed GLC coupled with TTBSCO (GLC-TTBSCO) outperformed a conventional PI controller based on servo performances with and without measurement noise as well as on regulatory behaviors. In the subsequent part, the GLC law has been synthesized in conjunction with tray temperature based reduced-order observer (GLC-TTBROO) where the distillate and bottom compositions of the distillation process have been inferred from top and bottom product temperatures respectively, which were measured online. Finally, the comparative performance of the GLC-TTBSCO and the GLC-TTBROO has been addressed under parametric uncertainty and the GLC-TTBSCO algorithm provided slightly better performance than the GLC-TTBROO. The resulting control laws are rather general and can be easily adopted for other binary distillation columns.
Modified time reversal imaging of a closed crack based on nonlinear scattering
Blanloeuil, Philippe; Rose, L. R. Francis; Guinto, Jed A.; Veidt, Martin; Wang, Chun H.
2016-04-01
A recent variant of time reversal imaging is used to detect and characterize a closed crack based on both the fundamental and the second harmonic components of the scattered waves in the presence of Contact Acoustic Nonlinearity at the crack interface. A Finite Element model, which includes unilateral contact with Coulomb friction to account for contact between the crack faces, is used to compute the scattered field resulting from the interaction between incident longitudinal plane waves and the crack. The knowledge of the scattering for multiple incident angles constitutes the input for the imaging algorithm. Good reconstruction of the crack is obtained from both harmonic sources, and second harmonic based images also enables one to identify the location of the second harmonic sources along the crack. This first imaging based on the second harmonic also offers potential baseline free detection of closed cracks.
Nonlinear gauge interactions: a possible solution to the "measurement problem" in quantum mechanics
Hansson, Johan
2010-01-01
Two fundamental, and unsolved problems in physics are: i) the resolution of the "measurement problem" in quantum mechanics ii) the quantization of strongly nonlinear (nonabelian) gauge theories. The aim of this paper is to suggest that these two problems might be linked, and that a mutual, simultaneous solution to both might exist. We propose that the mechanism responsible for the "collapse of the wave function" in quantum mechanics is the nonlinearities already present in the theory via nonabelian gauge interactions. Unlike all other models of spontaneous collapse, our proposal is, to the best of our knowledge, the only one which does not introduce any new elements into the theory. A possible experimental test of the model would be to compare the coherence lengths - here defined as the distance over which quantum mechanical superposition is still valid - for, \\textit{e.g}, electrons and photons in a double-slit experiment. The electrons should have a finite coherence length, while photons should have a much ...
Numerical simulation of nonlinear mode interactions in ridge-waveguide semiconductor lasers
Kalagara, Hemashilpa; Eliseev, Petr G.; Osinski, Marek
2012-02-01
Nonlinear perturbation of effective group index is calculated numerically in semiconductor ridge waveguide laser structures under an influence of a strong driving wave (mode). Model of nonlinear interaction of waves is used to obtain conditions for appearance of anomalous dispersion of modal index and also for inversion of the group index of guided waves (modes of the ridge-waveguide laser structures). Ranges around critically anomalous dispersion (CAD) points, where the effective group index passes zero value, are calculated numerically. CAD points form closed loops in graphs of detuning vs. driving wave intensity. These loops define ranges where superluminal propagation, as well as slowed reflection of probe wave can be obtained. Numerical simulations are performed for an InGaAs/AlGaAs/GaAs double quantum well (DQW) laser structure and also for a GaAs/AlGaAs separate confinement heterostructure. The threshold intensities for the appearance of CAD points, as well as the influence of relaxation rate and optical confinement on the appearance of superluminal regime are compared for the DQW and SCH structures.
Nonlinear modal interactions in parity-time (${\\cal PT}$) symmetric lasers
Ge, Li
2016-01-01
Parity-time ($\\cal PT$) symmetric lasers have attracted considerable attention lately due to their promising applications and intriguing properties, such as free spectral range doubling and single-mode lasing. In this work we discuss nonlinear modal interactions in these laser systems under steady state conditions, and we demonstrate that several gain clamping scenarios can occur for lasing operation in the $\\cal PT$-symmetric and $\\cal PT$-broken phases. In particular, we show that, depending on the system's design and the external pump profile, its operation in the nonlinear regime falls into two different categories: in one the system is frozen in the $\\cal PT$ phase space as the applied gain increases, while in the other the system is pulled towards its exceptional point. These features are first illustrated by a coupled mode formalism and later verified by employing the Steady-state Ab-initio Laser Theory (SALT). Our findings shine light on the robustness of single-mode operation in these lasers against ...
STATISTICAL BASED NON-LINEAR MODEL UPDATING USING FEATURE EXTRACTION
Energy Technology Data Exchange (ETDEWEB)
Schultz, J.F.; Hemez, F.M. [and others
2000-10-01
This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.
Nonlinear wave-structure interactions with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Bingham, Harry; Madsen, Per A.
2005-01-01
This paper describes the extension of a finite difference model based on a recently derived highly accurate Boussinesq formulation to include domains having arbitrary piecewise-rectangular bottom-mounted (surface-piercing) structures. The resulting linearized system is analyzed for stability on a...... system is receptive to dissipation, and these problems can be overcome in practice using high-order filtering techniques. The resulting model is verified through numerical simulations involving classical linear wave diffraction around a semi-infinite breakwater, linear and nonlinear gap diffraction, and...
Absence of Right-Handed Neutrino in Weak Interactions: Explanation via Nonlinear Electroweak Model
Dalton, Bill
2010-01-01
The nonlinear SU(2) electroweak model is used to explain the absence of the right-handed neutrino in weak interactions. Two covariant eigenvalue constraints which affect the transformation lead to two classes of right-handed leptons, and make possible invariant mass terms without the Higgs doublet. A covariant picture of neutrinos with mass is presented. A new invariant form for the boson potentials is described in which the boson mass terms arises via the adjoint field. This model also indicates a different region of matter involving coupled leptons that are "blind" to the massless electromagnetic field but "see" four massive potentials that are themselves blind to the electromagnetic field. We argue that these more difficult to detect "dark" fields provide a possible contribution to the missing mass.
Tholerus, Emmi; Hellsten, Torbjörn
2016-01-01
FOXTAIL is a new hybrid magnetohydrodynamic-kinetic code used to describe interactions between energetic particles and Alfv\\'en eigenmodes in tokamaks with realistic geometries. The code simulates the nonlinear dynamics of the amplitudes of individual eigenmodes and of a set of discrete markers in five-dimensional phase space representing the energetic particle distribution. Action-angle coordinates of the equilibrium system are used for efficient tracing of energetic particles, and the particle acceleration by the wave fields of the eigenmodes is Fourier decomposed in the same angles. The eigenmodes are described using temporally constant eigenfunctions with dynamic complex amplitudes. Possible applications of the code are presented, e.g., making a quantitative validity evaluation of the one-dimensional bump-on-tail approximation of the system. Expected effects of the fulfillment of the Chirikov criterion in two-mode scenarios have also been verified.
A simple method for wind tunnel balance calibration including non-linear interaction terms
Ramaswamy, M. A.; Srinivas, T.; Holla, V. S.
The conventional method for calibrating wind tunnel balances to obtain the coupled linear and nonlinear interaction terms requires the application of combinations of pure components of the loads on the calibration body compensating the deflection of the balance. For a six-component balance, this calls for a complex loading system and an arrangement to translate and tilt the balance support about all three axes. A simple method called the least-square method is illustrated for a three-component balance. The simplicity arises from the fact that application of the pure components of the loads or reorientation of the balance is not required. A single load is applied that has various components whose magnitudes can be easily found knowing the orientation of the calibration body under load and the point of application of the load. The coefficients are obtained by using the least-square-fit approach to match the outputs obtained for various combinations of load.
Non-linear dynamic interactions of a Jeffcott rotor with preloaded snubber ring
Pavlovskaia, E. E.; Karpenko, E. V.; Wiercigroch, M.
2004-09-01
A two-degrees-of-freedom model of a Jeffcott rotor with a preloaded snubber ring subjected to out-of-balance excitation has been developed. The purely impact interactions have been investigated. The rotor makes intermittent contacts with the preloaded snubber ring and as a consequence it can be in one of five different contact regimes, which boundaries have been found analytically. The current location of the snubber ring has been determined using the principle of the minimum elastic energy in the snubber ring. Consequently a non-linear piecewise smooth dynamical system has been obtained and studied numerically. The results in form of bifurcation diagrams, phase portraits and Poincaré maps show significant differences for the cases with and without preloading.
International Nuclear Information System (INIS)
Nonlinear interaction of a Gaussian EM beam with a weak electrostatic (ES) upper hybrid wave in a collisionless magneto plasma is investigated. The EM beam is assumed to be propagating perpendicular to external magnetic field in an ordinary mode. For Gaussian intensity distribution of the incident EM wave in a plane perpendicular to the direction of propagation, a dc component of ponderomotive force becomes finite and leads to modification of background density. This leads to strong coupling between EM beam and upper hybrid ES mode in the plasma and can lead to focusing of the excited upper hybrid mode under appropriate conditions. Thus EM power gets converted into ES power. Pump wave equation is solved within WKB and paraxial ray approximations. Then within perturbation approximation, and equation describing the space-time evolution of density perturbation associated with ES upper hybrid wave is derived and solved using the approach of taking self-focusing effects of pump and upper hybrid mode
Giant resonances in the relativistic RPA with non-linear interactions
International Nuclear Information System (INIS)
Nuclear isoscalar and isovector giant resonances are studied in the framework of the relativistic random phase approximation starting from effective Lagrangians containing meson self-interaction terms. The meson propagators are worked out in momentum space from the second variation of the action of the system. The N anti N excitations are not included to be consistent with the relativistic mean field approximation used for these effective Lagrangians. It turns out that the non-linear models such as TM1, NL-SH, etc., which are of great success in describing nuclear ground state properties in mean field approximation can also well reproduce the isoscalar monopole, quadrupole as well as isovector monopole, dipole resonances of spherical nuclei. (orig.)
Indian Academy of Sciences (India)
S Lakshmi; Swapan K Pati
2003-10-01
We consider an interacting one-dimensional molecular wire attached to two metal electrodes on either side of it. The electrostatic potential profile across the wire-electrode interface has been deduced solving the Schrodinger and Poisson equations self-consistently. Since the Poisson distribution crucially depends on charge densities, we have considered different Hamiltonian parameters to model the nanoscale wire. We find that for very weak electron correlations, the potential gradient is almost zero in the middle of the wire but are large near the chain ends. However, for strong correlations, the potential is essentially a ramp function. The nonlinear current, obtained from the scattering formalism, is found to be less with the ramp potential than for weak correlations. Some of the interesting features in current-voltage characteristics have been explained using one-electron formalism and instabilities in the system.
Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering
DEFF Research Database (Denmark)
Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.;
2005-01-01
We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....
Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability
Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.
2016-08-01
Specific DNA-protein interactions are fundamental processes of living cells. We propose a new model of DNA-protein interactions to explain the site specificity of the interactions. The hydrogen bonds between DNA base pairs and between DNA-protein peptide groups play a significant role in determination of the specific binding site. We adopt the Morse potential with coupling terms to construct the Hamiltonian of coupled oscillators representing the hydrogen bonds in which the depth of the potentials vary in the DNA chain. In this paper we investigate the stability of the model to determine the conditions satisfying the biological circumstances of the DNA-protein interactions.
DEFF Research Database (Denmark)
Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus;
1998-01-01
, s(cr), there is an interval of bistability where two stable stationary states exist at each excitation number. The bistability of on-site solitons may occur for dipole-dipole dispersive interaction (s = 3), while s(cr) for inter-sire solitons is close to 2.1. In the framework of the DNLS equation......A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech......-like are exploited and the results of both approaches are compared. Both on-site and inter-site stationary states sue investigated. It is shown that for s sufficiently large air features of the model me qualitatively the same as in the DNLS model with nearest-neighbor interaction. For s less than some critical value...
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
Resonant nonlinear interactions between atmospheric waves in the polar summer mesopause region
Institute of Scientific and Technical Information of China (English)
刘仁强; 易帆
2003-01-01
Data obtained from the mobile SOUSY VHF radar at And(ya/Norway in summer 1987 have been used to study the nonlinear interactions between planetary waves, tides and gravity waves in the polar mesosphere, and the instability of background atmosphere above the mesopause. It is observed that 35-h planetary wave, diurnal, semidiurnal and terdiurnal tides are the prominent perturbations in the Lomb-Scargle spectra of the zonal wind component. By inspecting the frequency combinations, several triads are identified. By bispectral analysis it is shown that most bispectral peaks stand for quadratic coupling between tidal harmonics or between tide and planetary or gravity wave, and the height dependence of bispectral peaks reflects the variation of wave-wave interactions. Above the mesopause, the occurrence heights of the maximum L-S power spectral peaks corresponding to the prominent wave components tend to increase with their frequencies. This may result from the process in which two low frequency waves interact to generate a high frequency wave. Intensities of the planetary wave and tides increase gradually, arrive at their maxima, and then decay quickly in turn with increasing height. This kind of scene correlates with a "chain" of wave-wave resonant interactions that shifts with height from lower frequency segment to higher frequency segment. By instability analysis, it is observed that above the mesopause, the Richardson number becomes smaller and smaller with height, implying that the turbulent motion grows stronger and stronger and accordingly the background atmosphere more and more instable. It is suggested that the wave-wave sum resonant interaction and the wave dissipation due to instability are two dominant dynamical processes that occur in the mesopause region. The former invokes the energy transfer from lower frequency waves to higher frequency waves. The latter results in the heating of the atmosphere and accelerating of the background flow.
Sodha, Mahendra Singh; Mishra, Rashmi; Srivastava, Sweta
2016-03-01
In this paper, we consider the nonlinearity in the propagation of electromagnetic (e.m.) waves in a plasma caused by the electron temperature dependence of the coefficient of recombination of electrons with ions; specifically, the ionospheric E layer has been investigated. The enhancement in electron temperature by an intense electromagnetic wave causes reduction of the electron-ion recombination coefficient and thereby enhancement of electron density, the electron collision frequency also gets enhanced. The equations for number and energy balance of electrons and the wave equation have been used to predict the dependence of electron density/collision frequency and the nonlinear refractive index and absorption coefficient on αE02 (proportional to wave irradiance). The dependence of the propagation parameters on αE02 has been used to investigate the nonlinear electromagnetic wave propagation in the ionosphere. The study concludes that the electron temperature dependence of the recombination coefficient should be considered in all analyses of nonlinear plasma-e.m. wave interaction.
Results-Based Interaction Design
Weiss, Meredith
2008-01-01
Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…
Linear and nonlinear optical properties of nucleic acid bases
Alparone, Andrea
2013-01-01
Electronic and vibrational (hyper)polarizabilities of neutral nucleic acid bases (uracil, thymine, cytosine, adenine, hypoxanthine and guanine) were determined using Hartree-Fock, correlated MPn (n = 2, 4), CCSD and DFT (B3LYP, B97-1, CAM-B3LYP) methods. The computations were performed in gaseous and aqueous phases for the most stable tautomeric forms. Frequency-dependent second-order hyperpolarizabilities were calculated for the OKE, IDRI, EFISHG and THG nonlinear optical processes at the wavelength of 1064 nm. The results show that the average electronic polarizabilities increase in the order uracil guanine. This order is also maintained for the electronic hyperpolarizabilities, with the inversion between cytosine and thymine. The response electric properties for the tautomers are almost similar to each other, whereas group substitution and solvation effects are much more significant. Among the DFT methods, the long-range corrected CAM-B3LYP functional gives the better performances, reproducing satisfactorily the correlated ab initio (hyper)polarizability data.
Observer-based Fault Detection and Isolation for Nonlinear Systems
DEFF Research Database (Denmark)
Lootsma, T.F.
With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults......-tolerance can be applied to ordinary industrial processes that are not categorized as high risk applications, but where high availability is desirable. The quality of fault-tolerant control is totally dependent on the quality of the underlying algorithms. They detect possible faults, and later reconfigure...... control software to handle the effects of the particular fault event. In the past mainly linear FDI methods were developed, but as most industrial plants show nonlinear behavior, nonlinear methods for fault diagnosis could probably perform better. This thesis considers the design of FDI for nonlinear...
Nonlinear Progressive Failure Analysis of Surrounding Rock System Based on Similarity Theory
Directory of Open Access Journals (Sweden)
Zhao Y.
2016-01-01
Full Text Available Nonlinear progressive failure study of surrounding rock is important for the stability analysis of underground engineering projects. Taking a deep-buried tunnel in Chongqing as an example, a three dimensional(3-D physical model was established based on similarity theory. To satisfy similarity requirement of physical–mechanical properties, such as elastic modulus, compressive strength and Poisson ratio, physical model materials were developed. Using full inner-spy photograph technology, the deformation and failure process of rock were studied under the situation of independent and combined action of anchor, shotcrete and reinforcing mesh. Based on experimental results, the interaction mechanism between rock and support structure under high stress was investigated.
Vector rectangular-shape laser based on reduced graphene oxide interacting with long fiber taper
Gao, Lei; Zhu, Tao; Zeng, Jing; Huang, Wei; LIU Min
2014-01-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where the nonlinearity is enhanced due to large evanescent-field-interacting length and strong field confinement of a 8 mm fiber taper with a waist diameter of 4 micronmeters. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with...
Antolín, Pablo; Zhang, Nan; Goicolea, José M.; Xia, He; Astiz, Miguel Á.; Oliva, Javier
2013-03-01
In this work models with nonlinear wheel-rail contact forces are considered for analysing the dynamic interaction between high speed trains and bridges, in order to study dynamic effects both in the bridge and in the vehicles resulting from the coupling. Nonlinear contact models may be necessary for evaluating the stability and the safety of running traffic in situations such as vehicle overturn when the train is crossing a bridge under strong lateral winds or when an earthquake occurs. For studying the coupled dynamic response of trains and bridges, models of multibody dynamics are used for vehicles and the finite element method for structures. Special relevance is given here to the consideration of contact interaction forces between railway vehicles and the track. Four different interaction models are compared in this work: (1) a model where the vehicle wheelset is considered to be rigidly coupled to the track; (2) a staggered uncoupled method in which vehicle and structure are analysed separately; (3) a linear contact model in which lateral relative displacements between rails and train wheels are allowed, assuming biconic wheel and rail profiles and linear Kalker theory for tangential contact; (4) a nonlinear model in which realistic wheel and rail profiles, Hertz's nonlinear theory for normal contact and Kalker's nonlinear theory for tangential contact are used. The different models are applied and compared to experimental measurements for a test case of a high-speed train in China.
Identification of nonlinear multi-degree-of freedom structures based on Hilbert transformation
Wu, ZhiGang; Yang, Ning; Yang, Chao
2014-09-01
The modeling method and identified method adapted to multi-degree-of-freedom structures with strucrural nonlinearities are established. The component mode synthesis method is used to establish the nonlinear governing equations by extending the connected relationships. Based on the modeling method, the Hilbert transform method is applied to identify the nonlinear stiffness of multi-degree-of-freedom structures. Nonlinear analysis and identification of a typical folding wing configuration with three freeplay hinges are investigated. The nonlinear governing equation is established based on present methods and the computing results of different stiffness are checked by finite element programming. In order to illustrate the influence of the nonlinearities, the frequency response characteristics of the structure are analyzed and Hilbert transform is performed. The Hilbert transform identification method is utilized to identify the nonlinear stiffness of nonlinear hinges in the time domain and several parametric studies are performed. In addition, the comparison of response is made to illustrate the feasibility of the methods. The results show that the extending component mode synthesis method in the present work can be used to establish the governing equation with structural nonlinearities. Based on the modeling method, the Hilbert transform identified method can be extended to multi-degree-of-freedom structures accurately.
The interaction of nonlinear waves in two-dimensional dust crystals
Institute of Scientific and Technical Information of China (English)
Jiang Hong; Yang Xiao-Xia; Lin Mai-Mai; Shi Yu-Ren; Duan Wen-Shan
2011-01-01
This paper investigates the collision between two nonlinear waves with different propagation directions in twoequations for nonlinear waves in both the ζ and η directions are obtained, respectively, and the analytical phase shifts and trajectories after the collision of two nonlinear waves are derived. Finally, the effects of parameters of the lattice constant a, the arbitrary constant uoη, the forces f(r), and the colliding angle θ on the phase shifts of both colliding nonlinear waves are examined.
MATHEMATIC MODEЕLING OF NONLINEAR-INELASTIC BASE-FOUNDATION CONTACT PROBLEM
Directory of Open Access Journals (Sweden)
TIMCHENKO R. O.
2015-12-01
Full Text Available Raising of problem.Calculation of buildings, that isn’t carrying non-uniform deformation, is going to definition of foundation displacement and calculation of their elements hardness and sustainability. In that case we don’t pay attention on building and base cooperative deformations. Another view we can see in case of building calculation with hard geological conditions. Base of such buildings is uneven compressible soils or displacement carrying soil. Calculation of these constructions is impossible without building and base mutual influence consideration. One of the most important calculation parameters in cooperative deformation equations is base stiffness factor. Purpose. Purpose is to define peculiar properties of self-regulation foundation calculation in case of non-uniform base deformation by the variable base stiffness factor. Conclusion. Analysis of modern construction calculation methods with deformation soil properties demonstrated that variable base stiffness factor method employment is the most reasonable for solution of undermined base and foundation interaction problem. Besides, we need to take into account variable base stiffness factor decrease depended on relative horizontal extension deformation value. Nonlinear-inelastic soil diagram application for calculation of construction with hard geological conditions lead to main deformation 50% decrease compared with elastic calculation depended on “base – foundation – building” structure stiffness.
Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry
Indian Academy of Sciences (India)
Man Mohan Gupta; S Medhekar
2014-06-01
Nonlinear Mach–Zehnder interferometer (NMZI) created with photonic crystal waveguides (PCW) and with Kerr-type nonlinearity has been investigated in this paper. The NMZI has been simulated using two-dimensional finite difference time domain (2D-FDTD) method. Input verses output (I/O) characteristics have been obtained for different lengths of the nonlinear arm, nonlinear coefficients of the nonlinear arm, wavelengths of the input beam, sizes of defect rods and NMZI offset. The results obtained are compared with earlier published results of NMZI created with conventional step index waveguides (SIW). It is shown that all useful features of light switching offered by SIW-based NMZIs are also possible with PCW-based NMZIs of extremely small dimensions. Moreover, PCW-based NMZIs offer additional useful feature not available with SIW-based NMZIs.
Observer-Based Nonlinear Control of A Torque Motor with Perturbation Estimation
Institute of Scientific and Technical Information of China (English)
J Chen; E Prempain; Q H Wu
2006-01-01
This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is based on a robust nonlinear observer, which is used to estimate system states and perturbations and then employ input-output feedback linearization to compensate for the system nonlinearities and uncertainties. The estimation of system states and perturbations allows input-output linearization of the nonlinear system without an accurate mathematical model of nominal plant. The simulation results show that the observer-based nonlinear control method is superior in comparison with the conventional model-based state feedback linearizing controller.
Nguyen, Vu A.; Palo, Scott E.; Lieberman, Ruth S.; Forbes, Jeffrey M.; Ortland, David A.; Siskind, David E.
2016-07-01
Theory and past observations have provided evidence that atmospheric tides and other global-scale waves interact nonlinearly to produce additional secondary waves throughout the space-atmosphere interaction region. However, few studies have investigated the generation region of nonlinearly generated secondary waves, and as a result, the manifestation and impacts of these waves are still poorly understood. This study focuses on the nonlinear interaction between the quasi 2 day wave (2dayW3) and the migrating diurnal tide (DW1), two of the largest global-scale waves in the atmosphere. The fundamental goals of this effort are to characterize the forcing region of the secondary waves and to understand how it relates to their manifestation on a global scale. First, the Fast Fourier Synoptic Mapping method is applied to Thermosphere Ionosphere Mesosphere Energetics and Dynamics-Sounding of the Atmosphere using Broadband Emission Radiometry satellite observations to provide new evidence of secondary waves. These results show that secondary waves are only significant above 80 km. The nonlinear forcing for each secondary wave is then computed by extracting short-term primary wave information from a reanalysis model. The estimated nonlinear forcing quantities are used to force a linearized tidal model in order to calculate numerical secondary wave responses. Model results show that the secondary waves are significant from the upper mesosphere to the middle thermosphere, highlighting the implications for the atmosphere-space weather coupling. The study also concludes that the secondary wave response is most sensitive to the nonlinear forcing occurring in the lower and middle mesosphere and not coincident with the regions of strongest nonlinear forcing.
Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin
2016-08-01
This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.
Optimisation of nonlinear motion cueing algorithm based on genetic algorithm
Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid
2015-04-01
Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching
Crack identification for rotating machines based on a nonlinear approach
Cavalini, A. A., Jr.; Sanches, L.; Bachschmid, N.; Steffen, V., Jr.
2016-10-01
In a previous contribution, a crack identification methodology based on a nonlinear approach was proposed. The technique uses external applied diagnostic forces at certain frequencies attaining combinational resonances, together with a pseudo-random optimization code, known as Differential Evolution, in order to characterize the signatures of the crack in the spectral responses of the flexible rotor. The conditions under which combinational resonances appear were determined by using the method of multiple scales. In real conditions, the breathing phenomenon arises from the stress and strain distribution on the cross-sectional area of the crack. This mechanism behavior follows the static and dynamic loads acting on the rotor. Therefore, the breathing crack can be simulated according to the Mayes' model, in which the crack transition from fully opened to fully closed is described by a cosine function. However, many contributions try to represent the crack behavior by machining a small notch on the shaft instead of the fatigue process. In this paper, the open and breathing crack models are compared regarding their dynamic behavior and the efficiency of the proposed identification technique. The additional flexibility introduced by the crack is calculated by using the linear fracture mechanics theory (LFM). The open crack model is based on LFM and the breathing crack model corresponds to the Mayes' model, which combines LFM with a given breathing mechanism. For illustration purposes, a rotor composed by a horizontal flexible shaft, two rigid discs, and two self-aligning ball bearings is used to compose a finite element model of the system. Then, numerical simulation is performed to determine the dynamic behavior of the rotor. Finally, the results of the inverse problem conveyed show that the methodology is a reliable tool that is able to estimate satisfactorily the location and depth of the crack.
DEFF Research Database (Denmark)
Castaldi, P J; Demeo, D L; Hersh, C P;
2010-01-01
with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...... range of COPD severity, a non-linear relationship between pack-years of smoking and FEV(1) is likely. In this setting, approaches that account for this non-linearity can be more powerful and less biased than the more common approach of using total pack-years to model the smoking effect.......Background The identification of gene-by-environment interactions is important for understanding the genetic basis of chronic obstructive pulmonary disease (COPD). Many COPD genetic association analyses assume a linear relationship between pack-years of smoking exposure and forced expiratory volume...
Proposal of all-optical sensor based on nonlinear MMI coupler for multi-purpose usage
Tajaldini, M.; MatJafri, M. Z.
2015-10-01
In this study, we propose an all-optical sensor based on consideration the nonlinear effects on modal propagation and output intensity based on ultra-compact nonlinear multimode interference (NLMMI) coupler. The sensor can be tuned to highest sensitivity in the wavelength and refractive index ranges sufficient to detect water- soluble chemical, air pollutions, and heart operation. The results indicate high output sensitivity to input wavelength. This sensitivity guides us to propose a wave sensor both transverse and longitudinal waves such as acoustic and light wave, when an external wave interacts with input waveguide. For instance, this sensor can be implemented by long input that inserted in the land, then any wave could detected from earth. The visible changes of intensity at output facet in various surrounding layer refractive index show the high sensitivity to the refractive index of surrounding layer that is foundation of introducing a sensor. Also, the results show the high distinguished changes on modal expansion and output throat distribution in various refractive indices of surrounding layer.
Dey, Prasenjit
understanding the basic unexplored science as well as creating technological developments. The dephasing dynamics in semiconductors typically occur in the picosecond to femtosecond timescale, thus the use of ultrafast laser spectroscopy is a potential route to probe such excitonic responses. The focus of this dissertation is two-fold: firstly, to develop the necessary instrumentation to accurately probe the aforementioned parameters and secondly, to explore the quantum dynamics and the underlying many-body interactions in different layered semiconducting materials. A custom-built multidimensional optical non-linear spectrometer was developed in order to perform two-dimensional spectroscopic (2DFT) measurements. The advantages of this technique are multifaceted compared to regular one-dimensional and non-linear incoherent techniques. 2DFT technique is based on an enhanced version of Four wave mixing experiments. This powerful tool is capable of identifying the resonant coupling, probing the coherent pathways, unambiguously extracting the homogeneous linewidth in the presence of inhomogeneity and decomposing a complex spectra into real and imaginary parts. It is not possible to uncover such crucial features by employing one dimensional non-linear technique. Monolayers as well as bulk TMDs and group III-VI bulk layered materials are explored in this dissertation. The exciton quantum dynamics is explored with three pulse four-wave mixing whereas the phase sensitive measurements are obtained by employing two-dimensional Fourier transform spectroscopy. Temperature and excitation density dependent 2DFT experiments unfold the information associated with the many-body interactions in the layered semiconducting samples.
Generation and Nonlinear Dynamical Analyses of Fractional-Order Memristor-Based Lorenz Systems
Directory of Open Access Journals (Sweden)
Huiling Xi
2014-11-01
Full Text Available In this paper, four fractional-order memristor-based Lorenz systems with the flux-controlled memristor characterized by a monotone-increasing piecewise linear function, a quadratic nonlinearity, a smooth continuous cubic nonlinearity and a quartic nonlinearity are presented, respectively. The nonlinear dynamics are analyzed by using numerical simulation methods, including phase portraits, bifurcation diagrams, the largest Lyapunov exponent and power spectrum diagrams. Some interesting phenomena, such as inverse period-doubling bifurcation and intermittent chaos, are found to exist in the proposed systems.
Neurosurgery simulation using non-linear finite element modeling and haptic interaction
Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet
2012-02-01
Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
The late Universe with non-linear interaction in the dark sector: the coincidence problem
Bouhmadi-López, Mariam; Zhuk, Alexander
2016-01-01
We study the Universe at the late stage of its evolution and deep inside the cell of uniformity. At such a scale the Universe is highly inhomogeneous and filled with discretely distributed inhomogeneities in the form of galaxies and groups of galaxies. As a matter source, we consider dark matter (DM) and dark energy (DE) with a non-linear interaction $Q = 3\\mathcal{H}\\gamma \\overline\\varepsilon_{\\mathrm{DE}} \\overline\\varepsilon_{\\mathrm{DM}} / (\\overline\\varepsilon_{\\mathrm{DE}} + \\overline\\varepsilon_{\\mathrm{DM}})$, where $\\gamma$ is a constant. We assume that DM is pressureless and DE has a constant equation of state parameter $w$. In the considered model, the energy densities of the dark sector components present a scaling behaviour with $\\overline\\varepsilon_{\\mathrm{DM}} / \\overline\\varepsilon_{\\mathrm{DE}} \\sim \\left({a_0} / {a} \\right)^{-3(w+\\gamma)}$. We investigate the possibility that the perturbations of DM and DE, which are interacting among themselves, could be coupled to the galaxies with the ...
Non-linear interaction of intense CO2 radiation with dense plasma
International Nuclear Information System (INIS)
Experimental results of the interaction of short (1.5ns) CO2 laser pulses with solid targets at a flux reaching 1013W/cm2 are presented. An attempt is made to carry out a global series of measurements and interpret them in the light of currently available theory. The absorption, reflection, ion and X-ray emission (line and continuum) and in considerable detail the infra-red emission spectra of the plasma in the vicinity of the incident 10.6μm radiation as well as its harmonics were measured. From the emission spectra the existence of the parametric decay and the stimulated Brillouin backscatter instabilities was indentified. Furthermore, the energy and angular dependence of the reflected-light calorimetry in addition to the X-ray and ion emission results are found to be consistent with the hypothesis that the interaction of high power CO2 lasers with plasmas is dominated by non-linear effects such as the parametric decay instability. (author)
Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.
Lee, Huai-Ping; Audette, Michel; Joldes, Grand Roman; Enquobahrie, Andinet
2012-02-23
Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
The neurochemical mobile with non-linear interaction matrix: an exploratory computational model.
Qi, Z; Fieni, D; Tretter, F; Voit, E O
2013-05-01
Several years ago, the "neurochemical mobile" was introduced as a visual tool for explaining the different balances between neurotransmitters in the brain and their role in mental disorders. Here we complement this concept with a non-linear computational systems model representing the direct and indirect interactions between neurotransmitters, as they have been described in the "neurochemical interaction matrix." The model is constructed within the framework of biochemical systems theory, which facilitates the mapping of numerically ill-characterized systems into a mathematical and computational construct that permits a variety of analyses. Simulations show how short- and long-term perturbations in any of the neurotransmitters migrate through the entire system, thereby affecting the balances within the mobile. In cases of short-term alterations, transients are of particular interest, whereas long-term changes shed light on persistently altered, allostatic states, which in mental diseases and sleep disorders could be due to a combination of unfavorable factors, resulting from a specific genetic predisposition, epigenetic effects, disease, or the repeated use of drugs, such as opioids and amphetamines.
Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming
Hubicki, Christian; Goldman, Daniel; Ames, Aaron
In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.
DEFF Research Database (Denmark)
Kong, Qian; Wang, Q.; Bang, Ole;
2010-01-01
We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise...
Steffen, T; Tanimura, Y
2000-01-01
The quantum Fokker-Planck equation is derived for a system nonlinearly coupled to a harmonic oscillator bath. The system-bath interaction is assumed to be linear in the bath coordinates but quadratic in the system coordinate. The relaxation induced dynamics of a harmonic system are investigated by s
Energy Technology Data Exchange (ETDEWEB)
Carter, T A
2006-11-16
Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.
Some Comments on the Nonlinear Dynamics of a Portal Frame under Base Excitation
Directory of Open Access Journals (Sweden)
Aline Souza de Paula
2013-01-01
Full Text Available This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a nonlinear electrical support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaré sections and bifurcation diagrams.
Variance-based interaction index measuring heteroscedasticity
Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom
2016-06-01
This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.
Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines
Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.
2015-08-01
The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.
Nonlinear Optical Properties in Bismuth-based Glasses
Institute of Scientific and Technical Information of China (English)
ZHANG Jianliang; NIE Qiuhua; DAI Shixun; XU Tiefeng; CHEN Feifei; SHEN Xiang; WANG Xunsi
2011-01-01
A series of glasses with high Bi2O3 content of Bi2O3-B2O3-WO3 ternary system were chosen and prepared .Their densities and linear refractive indices increase with increasing WO3 content.The optical band gaps Eopt of glasses obtained from ultraviolet absorption edges decreases with increase of WO3 content. Z-scan technique was carried out to investigate the third-order nonlinear optical properties of the glasses. It is found that the nonlinear refraction γ increases with decreasing the optical band gap Eopt, since an increase of WO3 content can promote the non-bridging oxygen ion content, and the highest γ value of samples is 1.173 × 10-14 cm2/W. The results show that these glasses are potential materials in the application of third-order nonlinear optics field.
Luo, Dehai; Cha, Jing; Zhong, Linhao; Dai, Aiguo
2014-05-01
In this paper, a nonlinear multi-scale interaction (NMI) model is used to propose an eddy-blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low-frequency oscillation on timescales of 2-3 weeks. During the EVF phase with a negative-over- positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north-south straining is a response of the eddies to a dipole- or Ω-type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, whose role as a PV source for the blocking flow becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region.
Adaptive Predistortion Using Cubic Spline Nonlinearity Based Hammerstein Modeling
Wu, Xiaofang; Shi, Jianghong
In this paper, a new Hammerstein predistorter modeling for power amplifier (PA) linearization is proposed. The key feature of the model is that the cubic splines, instead of conventional high-order polynomials, are utilized as the static nonlinearities due to the fact that the splines are able to represent hard nonlinearities accurately and circumvent the numerical instability problem simultaneously. Furthermore, according to the amplifier's AM/AM and AM/PM characteristics, real-valued cubic spline functions are utilized to compensate the nonlinear distortion of the amplifier and the following finite impulse response (FIR) filters are utilized to eliminate the memory effects of the amplifier. In addition, the identification algorithm of the Hammerstein predistorter is discussed. The predistorter is implemented on the indirect learning architecture, and the separable nonlinear least squares (SNLS) Levenberg-Marquardt algorithm is adopted for the sake that the separation method reduces the dimension of the nonlinear search space and thus greatly simplifies the identification procedure. However, the convergence performance of the iterative SNLS algorithm is sensitive to the initial estimation. Therefore an effective normalization strategy is presented to solve this problem. Simulation experiments were carried out on a single-carrier WCDMA signal. Results show that compared to the conventional polynomial predistorters, the proposed Hammerstein predistorter has a higher linearization performance when the PA is near saturation and has a comparable linearization performance when the PA is mildly nonlinear. Furthermore, the proposed predistorter is numerically more stable in all input back-off cases. The results also demonstrate the validity of the convergence scheme.
Broadband magnetic levitation-based nonlinear energy harvester
Nammari, Abdullah; Doughty, Seth; Savage, Dustin; Weiss, Leland; Jaganathan, Arun; Bardaweel, Hamzeh
2016-05-01
In this work, development of a broadband nonlinear electromagnetic energy harvester is described. The energy harvester consists of a casing housing stationary magnets, a levitated magnet, oblique mechanical springs, and a coil. Magnetic and oblique springs introduce nonlinear behavior into the energy harvester. A mathematical model of the proposed device is developed and validated. The results show good agreement between model and experiment. The significance of adding oblique mechanical springs to the energy harvester design is investigated using the model simulation. The results from the model suggest that adding oblique springs to the energy harvester will improve the performance and increase the frequency bandwidth and amplitude response of the energy harvester.
Nonlinear Adaptive Filters based on Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Faten BEN ARFIA
2009-07-01
Full Text Available This paper presents a particle swarm optimization (PSO algorithm to adjust the parameters of the nonlinear filter and to make this type of the filters more powerful for the elimination of the Gaussian noise and also the impulse noise. In this paper we apply the particle swarm optimization to the rational filters and we completed this work with the comparison between our results and other adaptive nonlinear filters like the LMS adaptive median filters and the no-adaptive rational filter.
Directory of Open Access Journals (Sweden)
Roseane Cavalcanti dos Santos
2012-08-01
Full Text Available The objective of this work was to estimate the stability and adaptability of pod and seed yield in runner peanut genotypes based on the nonlinear regression and AMMI analysis. Yield data from 11 trials, distributed in six environments and three harvests, carried out in the Northeast region of Brazil during the rainy season were used. Significant effects of genotypes (G, environments (E, and GE interactions were detected in the analysis, indicating different behaviors among genotypes in favorable and unfavorable environmental conditions. The genotypes BRS Pérola Branca and LViPE‑06 are more stable and adapted to the semiarid environment, whereas LGoPE‑06 is a promising material for pod production, despite being highly dependent on favorable environments.
Furtmaier, Oliver
2016-01-01
Inspired by the idea of mimicking the measurement on a quantum system through a decoherence process to target specific eigenstates based on Born's law instead of the hierarchy of eigenvalues, we transform a Lindblad equation for the reduced density operator into a nonlinear Schr\\"odinger equation to obtain a computationally feasible simulation of the decoherent dynamics in the open quantum system. The method shows an exponential convergence and its computational costs scale linear for sparse matrix representations of the involved Hermitian operators. Symmetries of the problem can be incorporated either in the initial state of the dynamics or explicitly using the symmetry operators in the evolution equation. As an application of the method we discuss \\textit{eigenstate towing}, which relies on the perturbation theory to follow the progression of an arbitrary subset of eigenstates along a sum of perturbation operators with the intention to explore for instance the effect of interactions on these eigenstates.
McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.
2006-02-01
We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.
A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators
Smith, Ralph C.
1998-01-01
This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.
Atom laser based on four-wave mixing with Bose-Einstein condensates in nonlinear lattices
Wasak, T.; Konotop, V. V.; Trippenbach, M.
2013-12-01
Optical lattices are typically used to modify the dispersion relation of the matter wave, in particular, to ensure resonant conditions for multiwave interactions. Here we propose an alternative mechanism of wave interactions. It can be implemented using a nonlinear lattice and modifies the momentum conservation law of the interacting atoms, leaving the energy conservation unchanged. We propose to apply this phenomenon to construct an atom laser via a resonant four-wave mixing process.
UAV Formation Flight Based on Nonlinear Model Predictive Control
Directory of Open Access Journals (Sweden)
Zhou Chao
2012-01-01
Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.
Energy dissipation by nonlinear soil strains during soil-structure interaction excited by SH pulse
Gicev, Vlado; Trifunac, Mihailo
2012-01-01
Three variants of a two-dimensional (2-D) model of a building supported by a rectangular, flexible foundation embedded in nonlinear soil are analyzed. The building, the foundation, and soil have different physical properties. The building is assumed to be linear, but the foundation and the soil can experience nonlinear deformations. It is shown that the work spent for the development of nonlinear strains in the soil can consume a significant part of the input wave energy, and thus less energy...
Coulomb interaction effects on nonlinear optical response in C60, C70, and higher fullerenes
Harigaya, Kikuo
1998-01-01
Nonlinear optical properties in the fullerene C$_{60}$ and the extracted higher fullerenes -- C$_{70}$, C$_{76}$, C$_{78}$, and C$_{84}$ -- are theoretically investigated by using the exciton formalism and the sum-over-states method. We find that off-resonant third order susceptibilities of higher fullerenes are a few times larger than those of C$_{60}$. The magnitude of nonlinearity increases as the optical gap decreases in higher fullerenes. The nonlinearity is nearly proportional to the fo...
Directory of Open Access Journals (Sweden)
R. Rabenstein
2004-06-01
Full Text Available The functional transformation method (FTM is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
Energy Technology Data Exchange (ETDEWEB)
Lewis, M.W.; Kashiwa, B.A.; Meier, R.W. [Los Alamos National Lab., NM (United States); Bishop, S. [US Army Night Vision and Electronic Sensors Directorate, Fort Belvoir, VA (United States)
1994-08-01
Two- and three-dimensional fluid-structure interaction computer programs for the simulation of nonlinear dynamics were developed and applied to a number of problems. The programs were created by coupling Arbitrary Lagrangian-Eulerian finite volume fluid dynamics programs with strictly Lagrangian finite element structural dynamics programs. The resulting coupled programs can use either fully explicit or implicit time integration. The implicit time integration is accomplished by iterations of the fluid dynamics pressure solver and the structural dynamics system solver. The coupled programs have been used to solve problems involving incompressible fluids, membrane and shell elements, compressible multiphase flows, explosions in both air and water, and large displacements. In this paper, we present the approach used for the coupling and describe test problems that verify the two-dimensional programs against an experiment and an analytical linear problem. The experiment involves an explosion underwater near an instrumented thin steel plate. The analytical linear problem is the vibration of an infinite cylinder surrounded by an incompressible fluid to a given radius.
Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi
The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.
Vortex-based spatiotemporal characterization of nonlinear flows
Byrne, Gregory A.
Although the ubiquity of vortices in nature has been recognized by artists for over seven centuries, it was the work of artist and scientist Leonardo da Vinci that provided the monumental transition from an aesthetic form to a scientific tool. DaVinci used vortices to describe the motions he observed in air currents, flowing water and blood flow in the human heart. Five centuries later, the Navier-Stokes equations allow us to recreate the swirling motions of fluid observed in nature. Computational fluid dynamic (CFD) simulations have provided a lens through which to study the role of vortices in a wide variety of modern day applications. The research summarized below represents an effort to look through this lens and bring into focus the practical use of vortices in describing nonlinear flows. Vortex-based spatiotemporal characterizations are obtained using two specific mathematical tools: vortex core lines (VCL) and proper orthogonal decomposition (POD). By applying these tools, we find that vortices continue to provide new insights in the realm of biofluids, urban flows and the phase space of dynamical systems. The insights we have gained are described in this thesis. Our primary focus is on biofluids. Specifically, we seek to gain new insights into the connection between vortices and vascular diseases in order to provide more effective methods for clinical diagnosis and treatment. We highlight several applications in which VCL and POD are used to characterize the flow conditions in a heart pump, identify stenosis in carotid arteries and validate numerical models against PIV-based experimental data. Next, we quantify the spatial complexity and temporal stability of hemodynamics generated by a database of 210 patient-specific aneurysm geometries. Visual classifications of the hemodynamics are compared to the automated, quantitative classifications. The quantities characterizing the hemodynamics are then compared to clinical data to determine conditions that are
Wang, Qing; Yao, Jing-Zheng
2010-12-01
Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.
Energy Technology Data Exchange (ETDEWEB)
Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)
2015-04-20
In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.
A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2016-09-01
The present study develops a new size-dependent nonlinear model for the analysis of the behaviour of carbon nanotube-based resonators. In particular, based on modified couple stress theory, the fully nonlinear equations of motion of the carbon nanotube-based resonator are derived using Hamilton's principle, taking into account both the longitudinal and transverse displacements. Molecular dynamics simulation is then performed in order to verify the validity of the developed size-dependent continuum model at the nano scale. The nonlinear partial differential equations of motion of the system are discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. The pseudo-arclength continuation technique is employed to examine the nonlinear resonant behaviour of the carbon nanotube-based resonator. A new universal pull-in formula is also developed for predicting the occurrence of the static pull-in and validated using numerical simulations.
Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.
Optical computation based on nonlinear total reflectional optical switch at the interface
Indian Academy of Sciences (India)
Jianqi Zhang; Huan Xu
2009-03-01
A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.
Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy
2015-12-01
In this brief, we numerically demonstrate a photonic delay-based reservoir computing system, which processes, in parallel, two independent computational tasks even when the two tasks have unrelated input streams. Our approach is based on a single-longitudinal mode semiconductor ring laser (SRL) with optical feedback. The SRL emits in two directional optical modes. Each directional mode processes one individual task to mitigate possible crosstalk. We illustrate the feasibility of our scheme by analyzing the performance on two benchmark tasks: 1) chaotic time series prediction and 2) nonlinear channel equalization. We identify some feedback configurations for which the results for simultaneous prediction/classification indicate a good performance, but with slight degradation (as compared with the performance obtained for single task processing) due to nonlinear and linear interactions between the two directional modes of the laser. In these configurations, the system performs well on both tasks for a broad range of the parameters. PMID:25751880
Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy
2015-12-01
In this brief, we numerically demonstrate a photonic delay-based reservoir computing system, which processes, in parallel, two independent computational tasks even when the two tasks have unrelated input streams. Our approach is based on a single-longitudinal mode semiconductor ring laser (SRL) with optical feedback. The SRL emits in two directional optical modes. Each directional mode processes one individual task to mitigate possible crosstalk. We illustrate the feasibility of our scheme by analyzing the performance on two benchmark tasks: 1) chaotic time series prediction and 2) nonlinear channel equalization. We identify some feedback configurations for which the results for simultaneous prediction/classification indicate a good performance, but with slight degradation (as compared with the performance obtained for single task processing) due to nonlinear and linear interactions between the two directional modes of the laser. In these configurations, the system performs well on both tasks for a broad range of the parameters.
Nam, Kyung-Tae; Lee, Seung-Joon; Kuc, Tae-Yong; Kim, Hyungjong
2015-01-01
In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Kyung-Tae Nam
2015-12-01
Full Text Available In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method.
Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter
Institute of Scientific and Technical Information of China (English)
Ashfaq Ahmad Mian; Wang Daobo
2008-01-01
In this article,a nonlinear model of an underactuated six degrees of freedom (6 DOF) quadrotor helicopter is derived on the basis of the Newton-Euler formalism.The derivation comprises determining equations of the motion of the quadrotor in three dimensions andapproximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics.The derived modelcomposed of translatioual and rotational subsystems is dynamically unstable,so a sequential nonlinear control strategy is used.The con-trol strategy includes feedback linearization coupled with a PD controller for the translational subsystem and a backstepping-based PID nonlinear controller for the rotational subsystem of the quadrotor.The performances of the nonlinear control method are evaluated by nonlinear simulation and the results demonstrate the effectiveness of the proposed control strategy for the quadrotor helicopter inquasi-stationary flights.
Fan, Cairong; Shi, Fenghua; Wu, Hongxing; Chen, Yihang
2015-06-01
Tunable all-optical plasmonic diode is proposed based on the Fano resonance in an asymmetric and nonlinear system, comprising metal-insulator-metal waveguides coupled with nanocavities. The spatial asymmetry of the system gives rise to the nonreciprocity of the field localizations at the nonlinear gap between the coupled cavities and to the nonreciprocal nonlinear response. Nonlinear Fano resonance, originating from the interference between the discrete cavity mode and the continuum traveling mode, is observed and effectively tuned by changing the input power. By combining the unidirectional nonlinear response with the steep dispersion of the Fano asymmetric line shape, a transmission contrast ratio up to 41.46 dB can be achieved between forward and backward transmission. Our all-optical plasmonic diode with compact structure can find important applications in integrated optical nanocircuits. PMID:26030529
DEFF Research Database (Denmark)
Bureau, Emil; Schilder, Frank; Santos, Ilmar;
2014-01-01
We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator.......We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator....
Nonlinear observer based fault detection and isolation for a momentum wheel
DEFF Research Database (Denmark)
Jensen, Hans-Christian Becker; Wisniewski, Rafal
2001-01-01
This article realizes nonlinear Fault Detection and Isolation for a momentum wheel. The Fault Detection and Isolation is based on a Failure Mode and Effect Analysis, which states which faults might occur and can be detected. The algorithms presented in this paper are based on a geometric approach...... toachieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithm are discussed....
A Non-smooth Nonlinear Conjugate Gradient Method for Interactive Contact Force Problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...
Directory of Open Access Journals (Sweden)
Zhongsheng Chen
2016-01-01
Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
Nonlinear wave-particle interaction upstream from the Earth's bow shock
Directory of Open Access Journals (Sweden)
C. Mazelle
2000-01-01
Full Text Available Well-defined ring-like backstreaming ion distributions have been recently reported from observations made by the 3DP/PESA-High analyzer onboard the WIND spacecraft in the Earth's foreshock at large distances from the bow shock, which suggests a local production mechanism. The maximum phase space density for these distributions remains localized at a nearly constant pitch-angle value for a large number of gyroperiods while the shape of the distribution remains very steady. These distributions are also observed in association with quasi-monochromatic low frequency (~ 50 mHz waves with substantial amplitude (δB/B>0.2. The analysis of the magnetic field data has shown that the waves are propagating parallel to the background field in the right-hand mode. Parallel ion beams are also often observed in the same region before the observation of both the ring-like distributions and the waves. The waves appear in cyclotron resonance with the ion parallel beams. We investigate first the possibility that the ion beams could provide the free energy source for driving an ion/ion instability responsible for the ULF wave occurrence. For that, we solve the wave dispersion relation with the observed parameters. Second, we show that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered on a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions are in good quantitative agreement with the observations
Asymmetry of nonlinear soil strains during soil-structure interaction excited by SH pulse
Gicev, Vlado; Trifunac, Mihailo
2012-01-01
A two-dimensional (2D) model of a building supported by a rectangular, flexible foundation embedded in nonlinear soil is analyzed. The model is excited by a half-sine SH wave pulse, which travels towards the foundation. The results show that the spatial distribution of permanent, nonlinear strain in the soil depends upon the incident angle, the amplitude, and the duration of the pulse. If the wave has large amplitude and short duration, the nonlinear zone in the soil appears immediately or af...
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Dynamic Simulations of Nonlinear Multi-Domain Systems Based on Genetic Programming and Bond Graphs
Institute of Scientific and Technical Information of China (English)
DI Wenhui; SUN Bo; XU Lixin
2009-01-01
A dynamic simulation method for non-linear systems based on genetic programming (GP) and bond graphs (BG) was developed to improve the design of nonlinear multi-domain energy conversion sys-tems. The genetic operators enable the embryo bond graph to evolve towards the target graph according to the fitness function. Better simulation requires analysis of the optimization of the eigenvalue and the filter circuit evolution. The open topological design and space search ability of this method not only gives a more optimized convergence for the operation, but also reduces the generation time for the new circuit graph for the design of nonlinear multi-domain systems.
Qin, Yi-Qiang; Zhang, Chao; Zhu, Yong-yuan
2007-01-01
The wave-front engineering for nonlinear optical interactions was discussed. Using Huygens-Fresnel principle we developed a general theory and technique for domain engineering with conventional quasi-phase-matching structures being the special cases. By Fourier analysis we put forward the concept of local quasi-phase matching, which suggests that the quasi-phase matching is fulfilled only locally not globally. Experiments on focal effect of second-harmonic wave agreed well with the theoretica...
Beam-Based Nonlinear Optics Corrections in Colliders
Pilat, Fulvia Caterina; Malitsky, Nikolay; Ptitsyn, Vadim
2005-01-01
A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, which gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 3 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non linear correction techniques.
Quantum-dot-based integrated non-linear sources
DEFF Research Database (Denmark)
Bernard, Alice; Mariani, Silvia; Andronico, Alessio;
2015-01-01
The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is...... granted by parametric generation in a waveguide via modal phase matching. Both devices rely on embedded quantum-dot lasers, which allow for low-threshold currents and unconventional geometries. They also include specific degrees of freedom that open a practical route towards phase matching, either during...
Spatial interactions in agent-based modeling
Ausloos, Marcel; Merlone, Ugo
2014-01-01
Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution o...
Nonlinear Spline Kernel-based Partial Least Squares Regression Method and Its Application
Institute of Scientific and Technical Information of China (English)
JIA Jin-ming; WEN Xiang-jun
2008-01-01
Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the iuner-product kernel spanned by the spline basis functions with infinite numher of nodes,this method firstly maps the input data into a high dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS"kernel"algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input (primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Nonlinear modeling of PEMFC based on neural networks identification
Institute of Scientific and Technical Information of China (English)
SUN Tao; CAO Guang-yi; ZHU Xin-jian
2005-01-01
The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Levenberg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.
Nonlinear stability and ergodicity of ensemble based Kalman filters
Tong, Xin T.; Majda, Andrew J.; Kelly, David
2016-02-01
The ensemble Kalman filter (EnKF) and ensemble square root filter (ESRF) are data assimilation methods used to combine high dimensional, nonlinear dynamical models with observed data. Despite their widespread usage in climate science and oil reservoir simulation, very little is known about the long-time behavior of these methods and why they are effective when applied with modest ensemble sizes in large dimensional turbulent dynamical systems. By following the basic principles of energy dissipation and controllability of filters, this paper establishes a simple, systematic and rigorous framework for the nonlinear analysis of EnKF and ESRF with arbitrary ensemble size, focusing on the dynamical properties of boundedness and geometric ergodicity. The time uniform boundedness guarantees that the filter estimate will not diverge to machine infinity in finite time, which is a potential threat for EnKF and ESQF known as the catastrophic filter divergence. Geometric ergodicity ensures in addition that the filter has a unique invariant measure and that initialization errors will dissipate exponentially in time. We establish these results by introducing a natural notion of observable energy dissipation. The time uniform bound is achieved through a simple Lyapunov function argument, this result applies to systems with complete observations and strong kinetic energy dissipation, but also to concrete examples with incomplete observations. With the Lyapunov function argument established, the geometric ergodicity is obtained by verifying the controllability of the filter processes; in particular, such analysis for ESQF relies on a careful multivariate perturbation analysis of the covariance eigen-structure.
Classification of Asthma Based on Nonlinear Analysis of Breathing Pattern.
Directory of Open Access Journals (Sweden)
Mohammad Reza Raoufy
Full Text Available Normal human breathing exhibits complex variability in both respiratory rhythm and volume. Analyzing such nonlinear fluctuations may provide clinically relevant information in patients with complex illnesses such as asthma. We compared the cycle-by-cycle fluctuations of inter-breath interval (IBI and lung volume (LV among healthy volunteers and patients with various types of asthma. Continuous respiratory datasets were collected from forty age-matched men including 10 healthy volunteers, 10 patients with controlled atopic asthma, 10 patients with uncontrolled atopic asthma, and 10 patients with uncontrolled non-atopic asthma during 60 min spontaneous breathing. Complexity of breathing pattern was quantified by calculating detrended fluctuation analysis, largest Lyapunov exponents, sample entropy, and cross-sample entropy. The IBI as well as LV fluctuations showed decreased long-range correlation, increased regularity and reduced sensitivity to initial conditions in patients with asthma, particularly in uncontrolled state. Our results also showed a strong synchronization between the IBI and LV in patients with uncontrolled asthma. Receiver operating characteristic (ROC curve analysis showed that nonlinear analysis of breathing pattern has a diagnostic value in asthma and can be used in differentiating uncontrolled from controlled and non-atopic from atopic asthma. We suggest that complexity analysis of breathing dynamics may represent a novel physiologic marker to facilitate diagnosis and management of patients with asthma. However, future studies are needed to increase the validity of the study and to improve these novel methods for better patient management.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised. PMID:26873262
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution
Vasudevan, R. K.; M. Baris Okatan; Rajapaksa, I.; Kim, Y.; Marincel, D.; Trolier-McKinstry, S.; Jesse, S.; Valanoor, N.; Kalinin, S. V.
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The technique is demonstrated by probing the first three harmonics of...
Xie, Zhong-Xiang; Li, Ke-Min; Tang, Li-Ming; Pan, Chang-Ning; Chen, Ke-Qiu
2012-04-01
By using the nonequilibrium Green's function and the Landauer transport theory, nonlinear phonon properties in asymmetric graphene-based three terminal junctions (AGTTJs) are investigated. Results show that AGTTJs exhibit pronounced nonlinear thermal rectifying behaviors, and the efficiency is efficiently tuned by increasing the asymmetric degree between the left and right terminals or modulating the central probe. The thermal rectifying mechanism is analytically explained by the schematic diagram. It is suggested that AGTTJs may be served as a good ballistic thermal rectifier.
Dual objective active suspension system based on a novel nonlinear disturbance compensator
Deshpande, Vaijayanti S.; Shendge, P. D.; Phadke, S. B.
2016-09-01
This paper proposes an active suspension system to fulfil the dual objective of improving ride comfort while trying to keep the suspension deflection within the limits of the rattle space. The scheme is based on a novel nonlinear disturbance compensator which employs a nonlinear function of the suspension deflection. The scheme is analysed and validated by simulation and experimentation on a laboratory setup. The performance is compared with a passive suspension system for a variety of road profiles.
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
AN ADAPTIVELY TRAINED KERNEL-BASED NONLINEAR REPRESENTOR FOR HANDWRITTEN DIGIT CLASSIFICATION
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In practice, retraining a trained classifier is necessary when novel data become available. This paper adopts an incremental learning procedure to adaptively train a Kernel-based Nonlinear Representor(KNR), a recently presented nonlinear classifier for optimal pattern representation, so that its generalization ability may be evaluated in time-variant situation and a sparser representation is obtained for computationally intensive tasks. The addressed techniques are applied to handwritten digit classification to illustrate the feasibility for pattern recognition.
Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition
Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.
1984-04-01
Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.
Immersion in Movement-Based Interaction
Pasch, Marco; Bianchi-Berthouze, Nadia; van Dijk, Betsy; Nijholt, Anton
The phenomenon of immersing oneself into virtual environments has been established widely. Yet to date (to our best knowledge) the physical dimension has been neglected in studies investigating immersion in Human-Computer Interaction (HCI). In movement-based interaction the user controls the interface via body movements, e.g. direct manipulation of screen objects via gestures or using a handheld controller as a virtual tennis racket. It has been shown that physical activity affects arousal and that movement-based controllers can facilitate engagement in the context of video games. This paper aims at identifying movement features that influence immersion. We first give a brief survey on immersion and movement-based interfaces. Then, we report results from an interview study that investigates how users experience their body movements when interacting with movement-based interfaces. Based on the interviews, we identify four movement-specific features. We recommend them as candidates for further investigation.
Movement-based Interaction in Camera Spaces
DEFF Research Database (Denmark)
Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas
2006-01-01
In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....
Institute of Scientific and Technical Information of China (English)
Ouyang Qiu-Yun; Zhang Xue-Ru; Jiang Li; Chang Qing; Wang Yu-Xiao; Song Ying-Lin
2006-01-01
We present a theoretical model to analyse the propagation of a Gaussian laser beam through double-sided nonlinear media. This model is based on the Huygens-Fresnel diffraction integral method. This theoretical model is not only consistent with the cascade structure model for a small nonlinear phase-shift but also can be used for a large nonlinear phase-shift. It has been verified that it is suitable to characterize the double-sided nonlinear media compared with the cascade structure model. A good agreement between the experimental data and the results from the theoretical model is obtained. It will be useful for the design of multi-sided nonlinear materials.
Assessment of non-linear combination effect terms for drug-drug interactions.
Koch, Gilbert; Schropp, Johannes; Jusko, William J
2016-10-01
Drugs interact with their targets in different ways. A diversity of modeling approaches exists to describe the combination effects of two drugs. We investigate several combination effect terms (CET) regarding their underlying mechanism based on drug-receptor binding kinetics, empirical and statistical summation principles and indirect response models. A list with properties is provided and the interrelationship of the CETs is analyzed. A method is presented to calculate the optimal drug concentration pair to produce the half-maximal combination effect. This work provides a comprehensive overview of typically applied CETs and should shed light into the question as to which CET is appropriate for application in pharmacokinetic/pharmacodynamic models to describe a specific drug-drug interaction mechanism. PMID:27638639
Blackman, Karin; Perret, Laurent
2016-09-01
In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density, λp = 25%, is studied within a wind tunnel using combined particle image velocimetry and hot-wire anemometry to investigate the non-linear interactions between large-scale momentum regions and small-scale structures induced by the presence of the roughness. Due to the highly turbulent nature of the roughness sub-layer and measurement equipment limitations, temporally resolved flow measurements are not feasible, making the conventional filtering methods used for triple decomposition unsuitable for the present work. Thus, multi-time delay linear stochastic estimation is used to decompose the flow into large-scales and small-scales. Analysis of the scale-decomposed skewness of the turbulent velocity (u') shows a significant contribution of the non-linear term uL ' uS ' 2 ¯ , which represents the influence of the large-scales ( uL ' ) onto the small-scales ( uS ' ). It is shown that this non-linear influence of the large-scale momentum regions occurs with all three components of velocity in a similar manner. Finally, through two-point spatio-temporal correlation analysis, it is shown quantitatively that large-scale momentum regions influence small-scale structures throughout the boundary layer through a non-linear top-down mechanism.
Nonlinear model predictive control based on collective neurodynamic optimization.
Yan, Zheng; Wang, Jun
2015-04-01
In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach. PMID:25608315
Robust Homography Estimation Based on Nonlinear Least Squares Optimization
Directory of Open Access Journals (Sweden)
Wei Mou
2014-01-01
Full Text Available The homography between image pairs is normally estimated by minimizing a suitable cost function given 2D keypoint correspondences. The correspondences are typically established using descriptor distance of keypoints. However, the correspondences are often incorrect due to ambiguous descriptors which can introduce errors into following homography computing step. There have been numerous attempts to filter out these erroneous correspondences, but it is unlikely to always achieve perfect matching. To deal with this problem, we propose a nonlinear least squares optimization approach to compute homography such that false matches have no or little effect on computed homography. Unlike normal homography computation algorithms, our method formulates not only the keypoints’ geometric relationship but also their descriptor similarity into cost function. Moreover, the cost function is parametrized in such a way that incorrect correspondences can be simultaneously identified while the homography is computed. Experiments show that the proposed approach can perform well even with the presence of a large number of outliers.
Quantitative analysis for nonlinear fluorescent spectra based on edges matching
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A novel spectra-edge-matching approach is proposed for the quantitative analysis of the nonlinear fluorescence spectra of the air impurities excited by a femtosecond laser.The fluorescence spectra are first denoised and compressed,both by wavelet transform,and several peak groups are then picked from each spectrum according to a threshold of intensity and are used to extract the spectral features through principal component analysis.It is indicated that the first two principle components actually cover up to 98% of the total information and are sufficient for the final concentration analysis.The analysis reveals a monotone relationship between the spectra intensity and the concentration of the air impurities,suggesting that the femtosecond laser induced fluorescence spectroscopy along with the proposed spectra analysis method can become a powerful tool for monitoring environmental pollutants.
Energy Technology Data Exchange (ETDEWEB)
Han, Jiu-Ning, E-mail: hanjiuning@126.com; Luo, Jun-Hua; Li, Jun-Xiu [Institute of Theoretical Physics and College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Li, Sheng-Chang [School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Shi-Wei; Yang, Yang; Duan, Wen-Shan; Han, Juan-Fang [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMPCAS and College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-06-15
We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation. Moreover, it is found that they are obviously different for the last two colliding cases.
Evidence-Based Interactive Management of Change
Directory of Open Access Journals (Sweden)
Albert Fleischmann
2011-06-01
Full Text Available Evidence-based interactive management of change means hands-on experience of modified work processes, given evidence of change. For this kind of pro-active organizational development support we use an organisational process memory and a communication-based representation technique for role-specific and task-oriented process execution. Both are effective means for organizations becoming agile through interactively modelling the business at the process level and re-constructing or re-arranging process representations according to various needs. The tool allows experiencing role-specific workflows, as the communication-based refinement of work models allows for executable process specifications. When presenting the interactive processes to individuals involved in the business processes, changes can be explored interactively in a context-sensitive way before re-implementing business processes and information systems. The tool is based on a service-oriented architecture and a flexible representation scheme comprising the exchange of message between actors, business objects and actors (roles. The interactive execution of workflows does not only enable the individual reorganization of work but also changes at the level of the entire organization due to the represented interactions.
Nonlinear photocurrents in two-dimensional systems based on graphene and boron nitride
Hipolito, F.; Pedersen, Thomas G.; Pereira, Vitor M.
2016-07-01
The dc photoelectrical currents can be generated purely as a nonlinear effect in uniform media lacking inversion symmetry without the need for a material junction or bias voltages to drive it, in what is termed photogalvanic effect. These currents are strongly dependent on the polarization state of the radiation, as well as on topological properties of the underlying Fermi surface such as its Berry curvature. In order to study the intrinsic photogalvanic response of gapped graphene, biased bilayer graphene (BBG), and hexagonal boron nitride (hBN), we compute the nonlinear current using a perturbative expansion of the density matrix. This allows a microscopic description of the quadratic response to an electromagnetic field in these materials, which we analyze as a function of temperature and electron density. We find that the intrinsic response is robust across these systems and allows for currents in the range of pA cm/W to nA cm/W. At the independent-particle level, the response of hBN-based structures is significant only in the ultraviolet due to their sizable band gap. However, when Coulomb interactions are accounted for by explicit solution of the Bethe-Salpeter equation, we find that the photoconductivity is strongly modified by transitions involving exciton levels in the gap region, whose spectral weight dominates in the overall frequency range. Biased bilayers and gapped monolayers of graphene have a strong photoconductivity in the visible and infrared window, allowing for photocurrent densities of several nA cm/W. We further show that the richer electronic dispersion of BBG at low energies and the ability to change its band gap on demand allows a higher tunability of the photocurrent, including not only its magnitude but also, and significantly, its polarity.
Nonlinear theory of the free-electron laser based upon a coaxial hybrid wiggler
Freund, H. P.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.
1994-04-01
A three-dimensional nonlinear formulation of a free-electron laser based upon a coaxial hybrid iron (CHI) wiggler is described. The CHI wiggler is created by insertion of a central rod and an outer ring [composed of alternating ferrite and dielectric spacers in which the ferrite (dielectric) spacer on the central rod is opposite to the dielectric (ferrite) spacer on the outer ring] along the axis of a solenoidal. An analytic model of the CHI wiggler is developed which is in good agreement with the Poisson/Superfish group of codes. The free-electron laser (FEL) formulation is a slow-time-scale analysis of the interaction of an annular electron beam with the CHI wiggler in a coaxial waveguide. The electromagnetic field is represented as the superposition of the vacuum transverse electric (TE), transverse magnetic (TM), and transverse electromagnetic (TEM) modes of the waveguide, and a set of nonlinear second-order differential equations is derived for the amplitudes and phases of these modes. These equations are solved simultaneously with the three-dimensional Lorentz force equations for the combined magnetostatic and electromagnetic fields. An adiabatic taper is used to model the injection of the beam, and an amplitude taper is included for efficiency enhancement. Simulations are presented for Ka-, Ku- and W-band operation. Multimode operation is also studied. The results indicate that operation over a wide bandwidth is practical with the CHI wiggler, and that the bandwidth in the tapered-wiggler cases is comparable to that for a uniform wiggler. Therefore, relatively high field strengths can be achieved with the CHI wiggler at shorter wiggler periods than is possible in many other conventional wiggler designs.
An interactive segmentation method based on superpixel
DEFF Research Database (Denmark)
Yang, Shu; Zhu, Yaping; Wu, Xiaoyu
2015-01-01
This paper proposes an interactive image-segmentation method which is based on superpixel. To achieve fast segmentation, the method is used to establish a Graphcut model using superpixels as nodes, and a new energy function is proposed. Experimental results demonstrate that the authors' method has...... excellent performance in terms of segmentation accuracy and computation efficiency compared with other segmentation algorithm based on pixels....
de Aguiar, Hilton B; Brasselet, Sophie
2016-01-01
Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing ...
Study of Super-Twisting sliding mode control for U model based nonlinear system
Directory of Open Access Journals (Sweden)
Jianhua ZHANG
2016-08-01
Full Text Available The Super-Twisting control algorithm is adopted to analyze the U model based nonlinear control system in order to solve the controller design problems of non-affine nonlinear systems. The non-affine nonlinear systems are studied, the neural network approximation of the nonlinear function is performed, and the Super-Twisting control algorithm is used to control. The convergence of the Super-Twisting algorithm is proved by selecting an appropriate Lyapunov function. The Matlab simulation is carried out to verify the feasibility and effectiveness of the described method. The result shows that the output of the controlled system can be tracked in a very short time by using the designed Super-Twisting controller, and the robustness of the controlled system is significantly improved as well.
Marini, Andrea; Della Valle, Giuseppe; Lee, Ho Wai; Tran, Truong X; Chang, Wonkeun; Schmidt, Markus A; Longhi, Stefano; Russell, Philip St J; Biancalana, Fabio
2012-01-01
Starting from first principles, we theoretically model the nonlinear temporal dynamics of gold-based plasmonic devices resulting from the heating of their metallic components. At optical frequencies, the gold susceptibility is determined by the interband transitions around the X,L points in the first Brillouin zone and thermo-modulational effects ensue from Fermi smearing of the electronic energy distribution in the conduction band. As a consequence of light-induced heating of the conduction electrons, the optical susceptibility becomes nonlinear. In this paper we describe, for the first time to our knowledge, the effects of the thermo-modulational nonlinearity of gold on the propagation of surface plasmon polaritons guided on gold nanowires. We introduce a novel nonlinear Schroedinger-like equation to describe pulse propagation in such nanowires, and we predict the appearance an intense spectral red-shift caused by the delayed thermal response.
Energy Technology Data Exchange (ETDEWEB)
Jin Chen
2009-12-07
Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.
Nonlinear Dynamic Response of Concrete Structure with Soil-Structure Interaction
Talberg, Marte Sørbrøden
2015-01-01
A common assumption for a structure that is subjected to an earthquake is that the structure is considered fixed at the base. In this thesis, analyses where the soil is deformed and the foundation may be moved and rotate have been done, and it has been investigated if this can reduce forces or displacements in the structure. This have been done through the use of soil-structure interaction (SSI). In this thesis well known beam-column element formulations will be presented, and the benefi...
Institute of Scientific and Technical Information of China (English)
钟伟民; 何国龙; 皮道映; 孙优贤
2005-01-01
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.
Directory of Open Access Journals (Sweden)
Ćosić Mladen
2014-01-01
Full Text Available This paper presents the original method of controlled building damage mechanisms based on Nonlinear Static Pushover Analysis (NSPA-DMBD. The optimal building damage mechanism is determined based on the solution of the Capacity Design Method (CDM, and the response of the building is considered in incremental situations. The development of damage mechanism of a system in such incremental situations is being controlled on the strain level, examining the relationship of current and limit strains in concrete and reinforcement steel. Since the procedure of the system damage mechanism analysis according to the NSPA-DMBD method is being iteratively implemented and designing checked after the strain reaches the limit, for this analysis a term Iterative-Interactive Design (IID has been introduced. By selecting, monitoring and controlling the optimal damage mechanism of the system and by developed NSPA-DMBD method, damage mechanism of the building is being controlled and the level of resistance to an early collapse is being increased. [Projekat Ministarstva nauke Republike Srbije, br. TR 36043
Non-Linear Time-Domain Simulations of the RF Station-Beam Dynamics Interaction for the LHC
International Nuclear Information System (INIS)
Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.
Nonlinear genetic-based simulation of soil shear strength parameters
Mousavi, Seyyed Mohammad; Alavi, Amir Hossein; Gandomi, Amir Hossein; Mollahasani, Ali
2011-12-01
New nonlinear solutions were developed to estimate the soil shear strength parameters utilizing linear genetic programming (LGP). The soil cohesion intercept ( c) and angle of shearing resistance ( ϕ) were formulated in terms of the basic soil physical properties. The best models were selected after developing and controlling several models with different combinations of influencing parameters. Comprehensive experimental database used for developing the models was established upon a series of unconsolidated, undrained, and unsaturated triaxial tests conducted in this study. Further, sensitivity and parametric analyses were carried out. c and ϕ were found to be mostly influenced by the soil unit weight and liquid limit. In order to benchmark the proposed models, a multiple least squares regression (MLSR) analysis was performed. The validity of the models was proved on portions of laboratory results that were not included in the modelling process. The developed models are able to effectively learn the complex relationship between the soil strength parameters and their contributing factors. The LGP models provide a significantly better prediction performance than the regression models.
Nonlinear genetic-based simulation of soil shear strength parameters
Indian Academy of Sciences (India)
Seyyed Mohammad Mousavi; Amir Hossein Alavi; Amir Hossein Gandomi; Ali Mollahasani
2011-12-01
New nonlinear solutions were developed to estimate the soil shear strength parameters utilizing linear genetic programming (LGP). The soil cohesion intercept () and angle of shearing resistance () were formulated in terms of the basic soil physical properties. The best models were selected after developing and controlling several models with different combinations of influencing parameters. Comprehensive experimental database used for developing the models was established upon a series of unconsolidated, undrained, and unsaturated triaxial tests conducted in this study. Further, sensitivity and parametric analyses were carried out. and were found to be mostly influenced by the soil unit weight and liquid limit. In order to benchmark the proposed models, a multiple least squares regression (MLSR) analysis was performed. The validity of the models was proved on portions of laboratory results that were not included in the modelling process. The developed models are able to effectively learn the complex relationship between the soil strength parameters and their contributing factors. The LGP models provide a significantly better prediction performance than the regression models.
Nonlinear observer based fault detection and isolation for a momentum wheel
DEFF Research Database (Denmark)
Jensen, Hans-Christian Becker; Wisniewski, Rafal
2001-01-01
This article realizes nonlinear Fault Detection and Isolation for a momentum wheel. The Fault Detection and Isolation is based on a Failure Mode and Effect Analysis, which states which faults might occur and can be detected. The algorithms presented in this paper are based on a geometric approach...
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.
Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I
2016-01-01
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.
Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I
2016-01-01
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.
CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Dr.A.TRIVEDI
2011-04-01
Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection
Directory of Open Access Journals (Sweden)
Adam Bouchaala
2016-05-01
Full Text Available The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF, namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.
Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection
Bouchaala, Adam
2016-05-25
The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.
Modelling of nonlinear shoaling based on stochastic evolution equations
DEFF Research Database (Denmark)
Kofoed-Hansen, Henrik; Rasmussen, Jørgen Hvenekær
1998-01-01
A one-dimensional stochastic model is derived to simulate the transformation of wave spectra in shallow water including generation of bound sub- and super-harmonics, near-resonant triad wave interaction and wave breaking. Boussinesq type equations with improved linear dispersion characteristics a...
Evolutionary algorithm based configuration interaction approach
Chakraborty, Rahul
2016-01-01
A stochastic configuration interaction method based on evolutionary algorithm is designed as an affordable approximation to full configuration interaction (FCI). The algorithm comprises of initiation, propagation and termination steps, where the propagation step is performed with cloning, mutation and cross-over, taking inspiration from genetic algorithm. We have tested its accuracy in 1D Hubbard problem and a molecular system (symmetric bond breaking of water molecule). We have tested two different fitness functions based on energy of the determinants and the CI coefficients of determinants. We find that the absolute value of CI coefficients is a more suitable fitness function when combined with a fixed selection scheme.
Kannan, Rohit; Tangirala, Arun K.
2014-06-01
Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.
Institute of Scientific and Technical Information of China (English)
Si YUAN; Yan DU; Qin-yan XING; Kang-sheng YE
2014-01-01
The element energy projection (EEP) method for computation of super-convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton’s method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re-sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple-mentation strategy, and the computational algorithm. Representative numerical exam-ples are given to show the eﬃciency, stability, versatility, and reliability of the proposed approach.
Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects
Directory of Open Access Journals (Sweden)
Jie-Yu Chen
2009-05-01
Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.
Nonlinear Dynamics of Ultra-Cold Gas: Collapse of Bose Gas With Attractive Interaction
Flambaum, V. V.; Kuznetsov, E.
2012-01-01
Solutions for the Nonlinear Schrodinger equation for collapsing Bose gas with attraction. This is a copy of the paper published in 1992 in Proceedings of NATO Advanced Research workshop on Singularities in Fluids, Plasmas and Optics (Heraklion, Greece) edited by R.E. Caflisch and G.C. Papanicolaou (Kluwer Academic).
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing. PMID:18040322
Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis
DEFF Research Database (Denmark)
Chon, K H; Chen, Y M; Marmarelis, V Z;
1994-01-01
for computation of the kernels have made this technique more attractive for the study of the dynamics of nonlinear physiological systems, such as the system mediating renal autoregulation. In this study, the general theory and requirements for using this technique are discussed. The feasibility of using...
Directory of Open Access Journals (Sweden)
Yong Li
2014-01-01
Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.
Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks
Institute of Scientific and Technical Information of China (English)
WANG Yongji; WANG Hong
2004-01-01
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
A robust nonlinear semi-active control for base seismically-isolated structures
Teodorescu, Catalin-Stefan; Diop, Sette; Politopoulos, Ioannis; Benidir, Messaoud
2013-01-01
This paper proposes a robust nonlinear semi-active control for base seismically-isolated structures. The control is based upon an extension of works of Leitmann et al. on the stabilization of nonlinear systems with uncertain models. For usual models of structure dynamics it is shown that applying a specific control law drives the state variables into a ball of specified radius in finite time. The radius of the ball may be arbitrarily chosen as long as it is not lower than a limiting value. In...
Directory of Open Access Journals (Sweden)
E. Çelebi
2012-11-01
Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.
Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.
Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing
2014-10-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated. PMID:25322232
Vector rectangular-shape laser based on reduced graphene oxide interacting with long fiber taper
Gao, Lei; Zeng, Jing; Huang, Wei; Liu, Min
2014-01-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where the nonlinearity is enhanced due to large evanescent-field-interacting length and strong field confinement of a 8 mm fiber taper with a waist diameter of 4 micronmeters. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz exhibits fast polarization switching in two orthogonal polarization directions, and the temporal and spectral characteristics are investigated. The results suggest that the long taper-based graphene structure is an efficient choice for nonlinear devices.
Nonlinear, interacting responses to climate limit grassland production under global change.
Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B
2016-09-20
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.
Nonlinear, interacting responses to climate limit grassland production under global change
Zhu, Kai; Chiariello, Nona R.; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B.
2016-01-01
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale—a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability. PMID:27601643
Nonlinear, interacting responses to climate limit grassland production under global change.
Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B
2016-09-20
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability. PMID:27601643
Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian
2016-09-01
Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.
On the stability and compressive nonlinearity of a physiologically based model of the cochlea
Energy Technology Data Exchange (ETDEWEB)
Nankali, Amir [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan (United States); Grosh, Karl [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)
2015-12-31
Hearing relies on a series of coupled electrical, acoustical (fluidic) and mechanical interactions inside the cochlea that enable sound processing. A positive feedback mechanism within the cochlea, called the cochlear amplifier, provides amplitude and frequency selectivity in the mammalian auditory system. The cochlear amplifier and stability are studied using a nonlinear, micromechanical model of the Organ of Corti (OoC) coupled to the electrical potentials in the cochlear ducts. It is observed that the mechano-electrical transduction (MET) sensitivity and somatic motility of the outer hair cell (OHC), control the cochlear stability. Increasing MET sensitivity beyond a critical value, while electromechanical coupling coefficient is within a specific range, causes instability. We show that instability in this model is generated through a supercritical Hopf bifurcation. A reduced order model of the system is approximated and it is shown that the tectorial membrane (TM) transverse mode effect on the dynamics is significant while the radial mode can be simplified from the equations. The cochlear amplifier in this model exhibits good agreement with the experimental data. A comprehensive 3-dimensional model based on the cross sectional model is simulated and the results are compared. It is indicated that the global model qualitatively inherits some characteristics of the local model, but the longitudinal coupling along the cochlea shifts the stability boundary (i.e., Hopf bifurcation point) and enhances stability.
NONLINEAR DYNAMICS OF AXIALLY ACCELERATING VISCOELASTIC BEAMS BASED ON DIFFERENTIAL QUADRATURE
Institute of Scientific and Technical Information of China (English)
Hu Ding; Liqun Chen
2009-01-01
This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equa-tion, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numeri-cally the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numer-ical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.
Saturations-based nonlinear controllers with integral term: validation in real-time
Alatorre, A. G.; Castillo, P.; Mondié, S.
2016-05-01
Popular saturations-based nonlinear controller usually include proportional and derivative components of the state or output. The fact that in many applications, these components do not suffice to insure the convergence to the desired output values, motivate the addition of an integral term. In this paper, three configurations of nonlinear controllers based on saturation functions are improved with an integral component. The stability of the three algorithms is analysed using the Lyapunov theory. Simulation results validate the proposed control laws when they are applied to nonlinear systems with constant and unknown perturbations. Real-time experiments realised with a quad-rotor aerial vehicle and a hovercraft vehicle show that the proposed scheme can follow autonomously some trajectories, and that it could be robust with respect to delays.
Blind separation of sources in nonlinear convolved mixture based on a novel network
Institute of Scientific and Technical Information of China (English)
胡英; 杨杰; 沈利
2004-01-01
Blind separation of independent sources from their nonlinear convoluted mixtures is a more realistic problem than from linear ones. A solution to this problem based on the Entropy Maximization principle is presented. First we propose a novel two-layer network as the de-mixing system to separate sources in nonlinear convolved mixture. In output layer of our network we use feedback network architecture to cope with convoluted mixtures. Then we derive learning algorithms for the two-layer network by maximizing the information entropy. Based on the comparison of the computer simulation results, it can be concluded that the proposed algorithm has a better nonlinear convolved blind signal separation effect than the H.H. Y' s algorithm.
Implementation of a strain energy-based nonlinear finite element in the object-oriented environment
Wegner, Tadeusz; Pęczak, Andrzej
2010-03-01
The objective of the paper is to describe a novel finite element computational method based on a strain energy density function and to implement it in the object-oriented environment. The original energy-based finite element was put into the known standard framework of classes and handled in a different manner. The nonlinear properties of material are defined with a modified strain energy density function. The local relaxation procedure proposed as a method used to resolve a nonlinear problem is implemented in C++ language. The hexahedral element with eight nodes as well as the adaptation of the nonlinear finite element is introduced. The chosen numerical model is made of nearly incompressible hyperelastic material. The application of the proposed element is shown on the example of a rectangular parallelepiped with a hollow port.
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control
Institute of Scientific and Technical Information of China (English)
ZHONG Wei-min; PI Dao-ying; SUN You-xian
2005-01-01
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
Signatures of nonlinear mode interactions in the pulsating hot B subdwarf star KIC 10139564
Zong, W.; Charpinet, S.; Vauclair, G.
2016-10-01
Context. The unprecedented photometric quality and time coverage offered by the Kepler spacecraft has opened up new opportunities to search for signatures of nonlinear effects that affect oscillation modes in pulsating stars. Aims: The data accumulated on the pulsating hot B subdwarf KIC 10139564 are used to explore in detail the stability of its oscillation modes, focusing in particular on evidences of nonlinear behaviors. Methods: We analyzed 38 months of contiguous short-cadence data, concentrating on mode multiplets induced by the star rotation and on frequencies forming linear combinations that show intriguing behaviors during the course of the observations. Results: We find clear signatures that point toward nonlinear effects predicted by resonant mode coupling mechanisms. These couplings can induce various mode behaviors for the components of multiplets and for frequencies related by linear relationships. We find that a triplet at 5760 μHz, a quintuplet at 5287 μHz and a (ℓ > 2) multiplet at 5412 μHz, all induced by rotation, show clear frequency and amplitude modulations which are typical of the so-called intermediate regime of a resonance between the components. One triplet at 316 μHz and a doublet at 394 μHz show modulated amplitude and constant frequency which can be associated with a narrow transitory regime of the resonance. Another triplet at 519 μHz appears to be in a frequency-locked regime where both frequency and amplitude are constant. Additionally, three linear combinations of frequencies near 6076 μHz also show amplitude and frequency modulations, which are likely related to a three-mode direct resonance of the type ν0 ~ ν1 + ν2. Conclusions: The identified frequency and amplitude modulations are the first clear-cut signatures of nonlinear resonant couplings occurring in pulsating hot B subdwarf stars. However, the observed behaviors suggest that the resonances occurring in these stars usually follow more complicated patterns than
Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.
2002-05-01
The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.
Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.
1984-04-01
The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.
Buron, J. D.; Houde, S.; Lestriez, R.; Deschênes, C.
2015-01-01
Steady state and non-linear harmonic (NLH) flow simulations were performed within the framework of the Francis-99 project in order to assess the capacity of the NLH method to capture the main pressure fluctuations associated with the rotor-stator interactions between the distributor and the runner of the turbine. This paper focusses on the methodology developed to obtain harmonic solutions and presents preliminary results from the simulations using the flow solver NUMECA FineTURBO on intermediate grid level meshes. Comparisons of the first simulations to experimental data reveal good agreement concerning the predicted pressure amplitudes notably at high load operating condition.
Mukamel, Shaul
2016-07-01
Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.
International Nuclear Information System (INIS)
The nuclear isoscalar and isovector giant resonances in stable and unstable nuclei are studied in the framework of the relativistic random phase approximation. The classical meson propagators with non-linear self-interactions are constructed in momentum space from the second variation of the action. The relativistic models with the parameter sets, TM1 and NL-SH, which provide good account of static ground state properties, can also well describe the collective states of nuclei, such as giant resonances. The isovector giant dipole resonances in the unstable Ar-isotope chain are investigated. (author)
Advanced nonlinear signal processing in silicon-based waveguides
Petropoulos, P.; Ettabib, M.A.; Bottrill, K.R.H.; Lacava, C.; Parmigiani, F.; Hammani, K.; BRUN, M.; Labeye, P.; Nicoletti, S.; Bogris, A.; Kapsalis, A.; Syvridis, D.
2015-01-01
This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration.
Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system
Harne, R. L.; Sun, A.; Wang, K. W.
2016-02-01
Trees exploit intriguing mechanisms such as multimodal frequency distributions and nonlinearities to distribute and dampen the aerodynamically-induced vibration energies to which they are subjected. In dynamical systems, these mechanisms are comparable to internal resonance phenomena. In recent years, researchers have harnessed strong nonlinearities, including internal resonance, to induce energetic dynamics that enhance performance of vibration energy harvesting systems. For trees, the internal resonance-like dynamics are evidently useful to dampen swaying motions in spite of the high variation associated with excitation and structural parameters. Yet for dynamic systems, studies show narrow operating regimes which exhibit internal resonance-based behaviors; this additionally suggests that the energetic dynamics may be susceptible to deactivation if stochastic inputs corrupt ideal excitation properties. To address these issues and to investigate whether the underlying motivation of exploiting internal resonance-induced saturation dynamics is truly justified, this research evaluates the opportunities enabled by exploiting nonlinear, multimodal motions in an L-shaped energy harvester platform. The system dynamics are probed analytically, numerically, and experimentally for comprehensive insights on the versatility of internal resonance-based behaviors for energy harvesting. It is found that although activating the high amplitude nonlinear dynamics to enhance power generation is robust to significant additive noise in the harmonic excitations, parameter sensitivities may pose practical challenges in application. Discussion is provided on means to address such concerns and on future strategies that may favorably exploit nonlinearity and multimodal dynamics for robust energy harvesting performance.
Directory of Open Access Journals (Sweden)
Wei Zhang
2016-06-01
Full Text Available In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.
Support Vector Machine-Based Nonlinear System Modeling and Control
Institute of Scientific and Technical Information of China (English)
张浩然; 韩正之; 冯瑞; 于志强
2003-01-01
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM.At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.
Interactions and State Constraints via Induced Nonlinear Realizations of Lie Groups
Dalton, Bill
2010-01-01
This is a study of induced nonlinear realizations of a Lie group G in which the presence of one field induces nonlinear transformations on another field. The covariant derivative structure is similar in form to that for local gauge theory. For an arbitrary Lie group, basic equations and non standard invariant Lagrangian forms are described. Covariant constraint equations that place restrictions on field components are presented. With G = SU(2), a detail application to the electroweak model is discussed. We first show that the standard Lagrangian for the gauge electroweak model is invariant under these transformations. We then show that an alternate invariant Lagrangian is also possible. In it, the intermediate boson masses arise from the adjoint field rather than from the Higgs doublet. An alternate invariant lepton Lagrangian is presented. A covariant constraint on the right-handed lepton field requires the right-handed neutrino field to vanish at the point where we obtain a massless (photon) field. Within t...
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich;
2008-01-01
of the fundamental fluid dynamical equations in the non-dissipative limit. An exact traveling front solution is obtained from a generalized traveling wave assumption. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation......, the model equation considered here is capable to describe waves propagating in opposite directions. Owing to the Hamiltonian structure of the proposed model equation, the front solution is in agreement with the classical Rankine Hugoniot relations. The exact front solution propagates at supersonic speed......A wave equation, that governs nite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. In contrast to the model known as the Kuznetsov equation, the proposed nonlinear wave equation preserves the Hamiltonian structure...
Directory of Open Access Journals (Sweden)
Rakesh Kumar
2016-01-01
Full Text Available The steady two-dimensional boundary layer stagnation point flow due to a shrinking sheet is analyzed. The combined effects of magnetic field and nonlinear convection are taken into account. The governing equations for the flow are modeled and then simplified using the similarity transformation and boundary layer approach. The numerical solution of the reduced equations is obtained by the second-order finite difference scheme also known as Keller box method. The influence of the pertinent parameters of the problem on velocity and temperature profiles, skin friction, and sheet temperature gradient are presented through the graphs and tables and discussed. The magnetic field and nonlinear convection parameters significantly enhance the solution range.
Nonlinear grating interaction in photorefractive Bi12SiO20
DEFF Research Database (Denmark)
Buchhave, Preben; Andersen, Peter E.; Petersen, Paul Michael;
1995-01-01
Recently significant crosstalk has been observed in a multibeam experiment in which gratings were previously thought to be independent. In this letter, it is shown that the crosstalk is due to a coherent nonlinear combination of the primary gratings, which causes additional peaks to occur...... for a configuration consisting of a reference beam and two object beams and show experimental results that confirm the model. ©1995 American Institute of Physics....
Improved Quark Mass Density-Dependent Model with Non-Linear Scalar Interaction
Institute of Scientific and Technical Information of China (English)
WU Chen; QIAN Wei-Liang; SU Ru-Keng
2005-01-01
@@ We present an improved quark mass density-dependent model which includes the quark and non-linear scalar field coupling. The wavefunction of quark is given. The rms charge radius, the magnetic moment, and the ratio between the axial-vector and the vectorβ-decay coupling constants of the nucleon are calculated. We find that the results given the present model are in agreement with experiments.
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network
Interactive Reliability-Based Optimal Design
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.;
1994-01-01
tasks, namely finite element analyses, sensitivity analyses, reliability analyses and application of an optimization algorithm. In the paper it is shown how these four tasks can be linked effectively and how existing information on design variables, Lagrange multipliers and the Hessian matrix can......Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... be used in interactive optimization....
Rahman, T.; Jansen, E.L.; Tiso, P.
2011-01-01
In this paper, a finite element-based approach for nonlinear vibration analysis of shell structures is presented. The approach makes use of a perturbation method that gives an approximation for the amplitude-frequency relation of the structure. The method is formulated using a functional notation an
Directory of Open Access Journals (Sweden)
Hailong Xu
2016-01-01
Full Text Available Rotated blades are key mechanical components in turbomachinery and high cycle fatigues often induce blade cracks. Accurate detection of small cracks in rotated blades is very significant for safety, reliability, and availability. In nature, a breathing crack model is fit for a small crack in a rotated blade rather than other models. However, traditional vibration displacements-based methods are less sensitive to nonlinear characteristics due to small breathing cracks. In order to solve this problem, vibration power flow analysis (VPFA is proposed to analyze nonlinear dynamic behaviors of rotated blades with small breathing cracks in this paper. Firstly, local flexibility due to a crack is derived and then time-varying dynamic model of the rotated blade with a small breathing crack is built. Based on it, the corresponding vibration power flow model is presented. Finally, VPFA-based numerical simulations are done to validate nonlinear behaviors of the cracked blade. The results demonstrate that nonlinear behaviors of a crack can be enhanced by power flow analysis and VPFA is more sensitive to a small breathing crack than displacements-based vibration analysis. Bifurcations will occur due to breathing cracks and subharmonic resonance factors can be defined to identify breathing cracks. Thus the proposed method can provide a promising way for detecting and predicting small breathing cracks in rotated blades.
A new approach of binary addition and subtraction by non-linear material based switching technique
Indian Academy of Sciences (India)
Archan Kumar Das; Partha Partima Das; Sourangshu Mukhopadhyay
2005-02-01
Here, we refer a new proposal of binary addition as well as subtraction in all-optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.
Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers
Institute of Scientific and Technical Information of China (English)
CHENG Mu; WU Chong-Qing; LIU Hua
2008-01-01
A cascaded buffer based on nonlinear polarization rotation in semiconductor optical amplifiers is proposed, which is suitable for fast reconfiguration of buffering time at picoseconds. With the proposed buffer, sixty different buffer times are demonstrated at 2.5 Gb/s.
Scene matching based on non-linear pre-processing on reference image and sensed image
Institute of Scientific and Technical Information of China (English)
Zhong Sheng; Zhang Tianxu; Sang Nong
2005-01-01
To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Ming; CHEN Tian-Lun
2004-01-01
Based on the standard self-organizing map neural network model and an integrate-and-tire mechanism, we investigate the effect of the nonlinear interactive function on the self-organized criticality in our model. Based on these we also investigate the effect of the refractoryperiod on the self-organized criticality of the system.
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
An iterative regularization method for nonlinear problems based on Bregman projections
Maaß, Peter; Strehlow, Robin
2016-11-01
In this paper, we present an iterative method for the regularization of ill-posed, nonlinear problems. The approach is based on the Bregman projection onto stripes the width of which is controlled by both the noise level and the structure of the operator. In our investigations, we follow (Lorenz et al 2014 SIAM J. Imaging Sci. 7 1237–62) and extend the respective method to the setting of nonlinear operators. Furthermore, we present a proof for the regularizing properties of the method.
UNDERSTANDING THE APPLICABILITY OF LINEAR & NON-LINEAR MODELS USING A CASE-BASED STUDY
Gaurav Singh Thakur; Anubhav Gupta; Ankur Bhardwaj; Biju R Mohan
2014-01-01
This paper uses a case based study – “product sales estimation” on real-time data to help us understand the applicability of linear and non-linear models in machine learning and data mining. A systematic approach has been used here to address the given problem statement of sales estimation for a particular set of products in multiple categories by applying both linear and non-linear machine learning techniques on a data set of selected features from the original data set. Feature ...
Gain Scheduling Control of Nonlinear Shock Motion Based on Equilibrium Manifold Linearization Model
Institute of Scientific and Technical Information of China (English)
Cui Tao; Yu Daren; Bao Wen; Yang Yongbin
2007-01-01
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
DEFF Research Database (Denmark)
Du, Yigang; Fan, Rui; Li, Yong;
2016-01-01
An ultrasound imaging framework modeled with the first order nonlinear pressure–velocity relations (NPVR) based simulation and implemented by a half-time staggered solution and pseudospectral method is presented in this paper. The framework is capable of simulating linear and nonlinear ultrasound...... ultrasound image can be obtained by beamforming the simulated channel data. Various results simulated by different algorithms are illustrated for comparisons. The root mean square (RMS) errors for each compared pulses are calculated. The linear propagation is validated by an angular spectrum approach (ASA...
[Non-linear rectification of sensor based on immune genetic Algorithm].
Lu, Lirong; Zhou, Jinyang; Niu, Xiaodong
2014-08-01
A non-linear rectification based on immune genetic algorithm (IGA) is proposed in this paper, for the shortcoming of the non-linearity rectification. This algorithm introducing the biologic immune mechanism into the genetic algorithm can restrain the disadvantages that the poor precision, slow convergence speed and early maturity of the genetic algorithm. Computer simulations indicated that the algorithm not only keeps population diversity, but also increases the convergent speed, precision and the stability greatly. The results have shown the correctness and effectiveness of the method.
Nonlinear Control of Wind Turbines with Hydrostatic Transmission Based on Takagi-Sugeno Model
Schulte, Horst; Georg, Soren
2014-06-01
A nonlinear model-based control concept for wind turbines with hydrostatic transmission is proposed. The complete mathematical model of a wind turbine drive train with variable displacement pump and variable displacement motor is presented. The controller design takes into consideration the nonlinearity of the aerodynamic maps and hydrostatic drive train by an convex combination of state space controller with measurable generator speed and hydraulic motor displacement as scheduling parameters. The objectives are the set point control of generator speed and tracking control of the rotor speed to reach the maximum power according to the power curve in the partial-load region.
Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy
Institute of Scientific and Technical Information of China (English)
Chung-Seok KIM; Cliff J.LISSENDEN
2009-01-01
The influence of γ' precipitate on the acoustic nonlinearity is investigated for a nickel-based superalloy,which is subjected to creep deformation.During creep deformation,the cuboidal γ' precipitate is preferentially coarsened in a direction perpendicular to the applied stress axis.The length and shape factor of the γ' precipitate increase with creep time.The increase of relative acoustic nonlinearity with increasing fraction of creep life is discussed in relation to the rafting of γ' precipitate,which is closely related to the scattering and distortion of the acoustic wave.
Robustness of Prediction Based Delay Compensation for Nonlinear Systems
Findeisen, Rolf; Pannek, Jürgen; Varutti, Paolo
2011-01-01
Control of systems where the information between the controller, actuator, and sensor can be lost or delayed can be challenging with respect to stability and performance. One way to overcome the resulting problems is the use of prediction based compensation schemes. Instead of a single input, a sequence of (predicted) future controls is submitted and implemented at the actuator. If suitable, so-called prediction consistent compensation and control schemes, such as certain predictive control approaches, are used, stability of the closed loop in the presence of delays and packet losses can be guaranteed. In this paper, we show that control schemes employing prediction based delay compensation approaches do posses inherent robustness properties. Specifically, if the nominal closed loop system without delay compensation is ISS with respect to perturbation and measurement errors, then the closed loop system employing prediction based delay compensation techniques is robustly stable. We analyze the influence of the...
Characteristics of the Main Journal Bearings of an Engine Based on Non-linear Dynamics
Institute of Scientific and Technical Information of China (English)
NI Guangjian; ZHANG Junhong; CHENG Xiaoming
2009-01-01
Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters
Directory of Open Access Journals (Sweden)
Luciana L. Silva
2015-01-01
Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.
NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM
Institute of Scientific and Technical Information of China (English)
ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi
2005-01-01
Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.
Institute of Scientific and Technical Information of China (English)
ZHAO Lian-heng; LI Liang; YANG Feng; LUO Qiang; LIU Xiang
2010-01-01
Based on the upper bound limit analysis theorem and the shear strength reduction technique,the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory.The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes.The iterative optimization method was adopted to obtain the safety factors.Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion,and the validity of present method could be illuminated.From the numerical results,it can also be seen that nonlinear parameter m,slope foot gradient β,height of slope H,slope top gradient a and soil bulk density Y have significant effects on the safety factor of the slope.
Institute of Scientific and Technical Information of China (English)
Wang Jun-Song; Yuan Jing; Li Qiang; Yuan Rui-Xi
2011-01-01
This paper uses a correlation dimension based nonlinear analysis approach to analyse the dynamics of network traffics with three different application protocols-HTTP, FTP and SMTP. First, the phase space is reconstructed and the embedding parameters are obtained by the mutual information method. Secondly, the correlation dimensions of three different traffics are calculated and the results of analysis have demonstrated that the dynamics of the three different application protocol traffics is different from each other in nature, i.e. HTTP and FTP traffics are chaotic,furthermore, the former is more complex than the later; on the other hand, SMTP traffic is stochastic. It is shown that correlation dimension approach is an efficient method to understand and to characterize the nonlinear dynamics of HTTP, FTP and SMTP protocol network traffics. This analysis provided insight into and a more accurate understanding of nonlinear dynamics of internet traffics which have a complex mixture of chaotic and stochastic components.
Rigatos, Gerasimos
2016-07-01
The Derivative-free nonlinear Kalman Filter is used for developing a communication system that is based on a chaotic modulator such as the Duffing system. In the transmitter's side, the source of information undergoes modulation (encryption) in which a chaotic signal generated by the Duffing system is the carrier. The modulated signal is transmitted through a communication channel and at the receiver's side demodulation takes place, after exploiting the estimation provided about the state vector of the chaotic oscillator by the Derivative-free nonlinear Kalman Filter. Evaluation tests confirm that the proposed filtering method has improved performance over the Extended Kalman Filter and reduces significantly the rate of transmission errors. Moreover, it is shown that the proposed Derivative-free nonlinear Kalman Filter can work within a dual Kalman Filtering scheme, for performing simultaneously transmitter-receiver synchronisation and estimation of unknown coefficients of the communication channel.
Nonlinear adaptive control systems design of BTT missile based on fully tuned RBF neural networks
Hu, Yunan; Jin, Yuqiang; Li, Jing
2003-09-01
Based on fully tuned RBF neural networks and backstepping control techniques, a novel nonlinear adaptive control scheme is proposed for missile control systems with a general set of uncertainties. The effect of the uncertainties is synthesized one term in the design procedure. Then RBF neural networks are used to eliminate its effect. The nonlinear adaptive controller is designed using backstepping control techniques. The control problem is resolved while the control coefficient matrix is unknown. The adaptive tuning rules for updating all of the parameters of the fully tuned RBF neural networks are firstly derived by the Lyapunov stability theorem. Finally, nonlinear 6-DOF numerical simulation results for a BTT missile model are presented to demonstrate the effectiveness of the proposed method.
Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays
Institute of Scientific and Technical Information of China (English)
Wei-Sheng Chen; Rui-Hong Li; Jing Li
2010-01-01
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
Directory of Open Access Journals (Sweden)
Yun Li
2013-01-01
Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.
Nonlinear consensus protocols for multi-agent systems based on centre manifold reduction
Institute of Scientific and Technical Information of China (English)
Li Yu-Mei; Guan Xin-Ping
2009-01-01
Nonlinear consensus protocols for dynamic directed networks of multi-agent systems with fixed and switching topologies are investigated separately in this paper. Based on the centre manifold reduction technique,nonlinear consensus protocols are presented.We prove that a group of agents can reach a β-consensus,the value of which is the group decision value varying from the minimum and the maximum values of the initial states of the agents.Moreover,we derive the conditions to guarantee that all the agents reach a β-consensus on a desired group decision value.Finally,a simulation study concerning the vertical alignment manoeuvere of a team of unmanned air vehicles is performed.Simulation results show that the nonlinear consensus protocols proposed are more effective than the linear protocols for the formation control of the agents and they are an improvement over existing protocols.
International Nuclear Information System (INIS)
This paper studies the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction. There exists a steady atomic current in the system due to the space-dependent phase of condensate. For the system with a positive chemical potential and repulsive interatomic interaction, we construct the general solution of the 1st-order equation, whose boundedness conditions contain the famous Mel'nikov chaotic criterion. When the system doesn't satisfy the perturbation conditions, numerical simulations reveal that increasing the atomic current can destroy the spatial symmetry of the distributional structure of condensed atoms, whether the condensed atoms in a chaotic or regular distribution. (authors)
Moon, Chanho; Kaneko, Toshiro; Itoh, Kimitaka; Ida, Katsumi; Kobayashi, Tatsuya; Inagaki, Shigeru; Itoh, Sanae-I.; Hatakeyama, Rikizo
2016-11-01
Turbulence in fluids and plasmas is ubiquitous in Nature and in the laboratory. Contrary to the importance of the ‘scale-free’ nature of cascade in neutral fluid turbulence, the turbulence in plasma is characterised by dynamics of distinct length scales. The cross-scale interactions can be highly non-symmetric so as to generate the plasma turbulence structures. Here we report that the system of hyper-fine electron-temperature-gradient (ETG) fluctuations and microscopic drift-wave (DW) fluctuations is strongly influenced by the sign of the gradient of the radial electric field through multiscale nonlinear interactions. The selective suppression effects by radial electric field inhomogeneity on DW mode induce a new route to modify ETG mode. This suppression mechanism shows disparity with respect to the sign of the radial electric field inhomogeneity, which can be driven by turbulence, so that it could be a new source for symmetry breaking in the turbulence structure formation in plasmas.
Nonlinear Model-Based Fault Detection for a Hydraulic Actuator
Van Eykeren, L.; Chu, Q.P.
2011-01-01
This paper presents a model-based fault detection algorithm for a specific fault scenario of the ADDSAFE project. The fault considered is the disconnection of a control surface from its hydraulic actuator. Detecting this type of fault as fast as possible helps to operate an aircraft more cost effect
Intrusion detection method based on nonlinear correlation measure
Ambusaidi, Mohammed A.; Tan, Zhiyuan; He, Xiangjian; Nanda, Priyadarsi; Lu, Liang Fu; Jamdagni, Aruna
2014-01-01
Cyber crimes and malicious network activities have posed serious threats to the entire internet and its users. This issue is becoming more critical, as network-based services, are more widespread and closely related to our daily life. Thus, it has raised a serious concern in individual internet user
Energy Technology Data Exchange (ETDEWEB)
Kojima, Kotaro [Department of Architecture and Architectural Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kamagata, Shuichi [Nuclear Power Department, Kajima Corporation, Tokyo 107-8348 (Japan); Takewaki, Izuru, E-mail: takewaki@archi.kyoto-u.ac.jp [Department of Architecture and Architectural Engineering, Kyoto University, Kyoto 615-8540 (Japan)
2014-07-01
Highlights: • A new interpretation of large earthquake accelerations is provided. • Non-linear interaction between an embedded building and its surrounding soil is a key. • A bi-linear restoring-force characteristic with a gap-slip process is used for analysis. • Ricker wavelet and a continuous sweep sinusoidal wave are adopted as input. • The amplification is induced by a higher mode due to the change of a support condition. - Abstract: A new interpretation of large amplitude earthquake accelerations recorded at the Kashiwazaki-Kariwa nuclear power station during the Niigata-ken Chuetsu-oki earthquake in 2007 is provided from the viewpoint of non-linear local interaction between an embedded building and its surrounding soil. An occurrence mechanism is investigated by the dynamic response analysis in which a bi-linear restoring-force characteristic with a gap-slip process is used. The Ricker wavelet and the continuous sweep sinusoidal wave are adopted as an input. The amplification is explained to be induced by an additional higher mode due to the change of a support condition, such as a gap between an embedded building and its surrounding soil.
International Nuclear Information System (INIS)
Highlights: • A new interpretation of large earthquake accelerations is provided. • Non-linear interaction between an embedded building and its surrounding soil is a key. • A bi-linear restoring-force characteristic with a gap-slip process is used for analysis. • Ricker wavelet and a continuous sweep sinusoidal wave are adopted as input. • The amplification is induced by a higher mode due to the change of a support condition. - Abstract: A new interpretation of large amplitude earthquake accelerations recorded at the Kashiwazaki-Kariwa nuclear power station during the Niigata-ken Chuetsu-oki earthquake in 2007 is provided from the viewpoint of non-linear local interaction between an embedded building and its surrounding soil. An occurrence mechanism is investigated by the dynamic response analysis in which a bi-linear restoring-force characteristic with a gap-slip process is used. The Ricker wavelet and the continuous sweep sinusoidal wave are adopted as an input. The amplification is explained to be induced by an additional higher mode due to the change of a support condition, such as a gap between an embedded building and its surrounding soil
Interactive analysis of geodata based intelligence
Wagner, Boris; Eck, Ralf; Unmüessig, Gabriel; Peinsipp-Byma, Elisabeth
2016-05-01
When a spatiotemporal events happens, multi-source intelligence data is gathered to understand the problem, and strategies for solving the problem are investigated. The difficulties arising from handling spatial and temporal intelligence data represent the main problem. The map might be the bridge to visualize the data and to get the most understand model for all stakeholders. For the analysis of geodata based intelligence data, a software was developed as a working environment that combines geodata with optimized ergonomics. The interaction with the common operational picture (COP) is so essentially facilitated. The composition of the COP is based on geodata services, which are normalized by international standards of the Open Geospatial Consortium (OGC). The basic geodata are combined with intelligence data from images (IMINT) and humans (HUMINT), stored in a NATO Coalition Shared Data Server (CSD). These intelligence data can be combined with further information sources, i.e., live sensors. As a result a COP is generated and an interaction suitable for the specific workspace is added. This allows the users to work interactively with the COP, i.e., searching with an on board CSD client for suitable intelligence data and integrate them into the COP. Furthermore, users can enrich the scenario with findings out of the data of interactive live sensors and add data from other sources. This allows intelligence services to contribute effectively to the process by what military and disaster management are organized.
Nonlinear dynamic analysis of a structure with a friction-based seismic base isolation system
Suy, H.M.R.; Fey, R.H.B.; Galanti, F.M.B.; Nijmeijer, H.
2007-01-01
Many dynamical systems are subject to some form of non-smooth or discontinuous nonlinearity. One eminent example of such a nonlinearity is friction. This is caused by the fact that friction always opposes the direction of movement, thus changing sign when the sliding velocity changes sign. In this p
On Observer-Based Control of Nonlinear Systems
Robertsson, Anders
1999-01-01
Filtering and reconstruction of signals play a fundamental role in modern signal processing, telecommunications, and control theory and are used in numerous applications. The feedback principle is an important concept in control theory. Many different control strategies are based on the assumption that all internal states of the control object are available for feedback. In most cases, however, only a few of the states or some functions of the states can be measured. This circumstance ...
Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks
Lo, Chun; Lynch, Jerome P.; Liu, Mingyan
2016-01-01
Wireless sensors operating in harsh environments have the potential to be error-prone. This paper presents a distributive model-based diagnosis algorithm that identifies nonlinear sensor faults. The diagnosis algorithm has advantages over existing fault diagnosis methods such as centralized model-based and distributive model-free methods. An algorithm is presented for detecting common non-linearity faults without using reference sensors. The study introduces a model-based fault diagnosis framework that is implemented within a pair of wireless sensors. The detection of sensor nonlinearities is shown to be equivalent to solving the largest empty rectangle (LER) problem, given a set of features extracted from an analysis of sensor outputs. A low-complexity algorithm that gives an approximate solution to the LER problem is proposed for embedment in resource constrained wireless sensors. By solving the LER problem, sensors corrupted by non-linearity faults can be isolated and identified. Extensive analysis evaluates the performance of the proposed algorithm through simulation.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A novel nonlinear combination process monitoring method was proposed based on techniques with memory effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently developed statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of measurements and it is a two-phase algorithm: whitened kernel principal component analysis (KPCA) plus independent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process indicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear relationship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for long-term performance deterioration.
Nonlinear vortex-phonon interactions in a Bose-Einstein condensate
Mendonça, J. T.; Haas, F.; Gammal, A.
2016-07-01
We consider the nonlinear coupling between an exact vortex solution in a Bose-Einstein condensate and a spectrum of elementary excitations in the medium. These excitations, or Bogoliubov-de Gennes modes, are indeed a special kind of phonons. We treat the spectrum of elementary excitations in the medium as a gas of quantum particles, sometimes also called bogolons. An exact kinetic equation for the bogolon gas is derived, and an approximate form of this equation, valid in the quasi-classical limit, is also obtained. We study the energy transfer between the vortex and the bogolon gas, and establish conditions for vortex instability and damping.
Effects of Interaction Between Gravitation and Nonlinear Electrodynamics On Scalar Field Evolution
Institute of Scientific and Technical Information of China (English)
CHEN Ju-Hua; WANG Yong-Jiu
2011-01-01
In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation.We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly.On the other words, this coupling term takes effect on the scalar field evolution as a damping factor.At the same time these effects become more obvious for the scalar field with higher angle quantum number.
A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics
DEFF Research Database (Denmark)
Engell-Nørregård, Morten; Erleben, Kenny
2009-01-01
Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...
Interactive Knowledge Acquisition in Case Based Reasoning
Cordier, Amélie; Fuchs, Béatrice; Lieber, Jean; Mille, Alain
2007-01-01
International audience In Case Based Reasoning (CBR), knowledge acquisition plays an important role as it allows to progressively improve the system's competencies. One of the approaches of knowledge acquisition consists in performing it while the system is used to solve a problem. An advantage of this strategy is that it is not to constraining for the expert: the system exploits its interactions to acquire pieces of knowledge it needs to solve the current problem and takes the opportunity...
Jing, Xingjian
2015-01-01
This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...
DEFF Research Database (Denmark)
Yang, Z.; Izadi-Zamanabadi, Roozbeh; Blanke, M.
2000-01-01
Based on the model-matching strategy, an adaptive control reconfiguration method for a class of nonlinear control systems is proposed by using the multiple-model scheme. Instead of requiring the nominal and faulty nonlinear systems to match each other directly in some proper sense, three sets...... of LTI models are employed to approximate the faulty, reconfigured and nominal nonlinear systems respectively with respect to the on-line information of the operating system, and a set of compensating modules are proposed and designed so as to make the local LTI model approximating to the reconfigured...... nonlinear system match the corresponding LTI model approximating to the nominal nonlinear system in some optimal sense. The compensating modules are designed by the Pseudo-Inverse Method based on the local LTI models for the nominal and faulty nonlinear systems. Moreover, these modules should update...
Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
Brylinski, Michal
2013-11-25
A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely
Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
Brylinski, Michal
2013-11-25
A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely
Said-Houari, Belkacem
2012-09-01
The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.
Nonlinear interaction of intense hypergeometric Gaussian subfamily laser beams in plasma
Sobhani, H.; Vaziri (Khamedi), M.; Rooholamininejad, H.; Bahrampour, A. R.
2016-07-01
Propagation of Hypergeometric-Gaussian laser beam in a nonlinear plasma medium is investigated by considering the Source Dependent Expansion method. A subfamily of Hypergeometric-Gaussian beams with a non-negative, even and integer radial index, can be expressed as the linear superposition of finite number of Laguerre-Gaussian functions. Propagation of Hypergeometric-Gaussian beams in a nonlinear plasma medium depends on the value of radial index. The bright rings' number of these beams is changed during the propagation in plasma medium. The effect of beam vortex charge number l and initial (input) beam intensity on the self-focusing of Hypergeometric-Gaussian beams is explored. Also, by choosing the suitable initial conditions, Hypergeometric-Gaussian subfamily beams can be converted to one or more mode components that a typical of mode conversion may be occurred. The self-focusing of these winding beams can be used to control the focusing force and improve the electron bunch quality in laser plasma accelerators.
Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
Ling-Lai Li; Dong-Hua Zhou; Ling Wang
2007-01-01
Fault diagnosis of nonlinear systems is of great importance in theory and practice, and the parameter estimation method is an effective strategy. Based on the framework of moving horizon estimation, fault parameters are identified by a proposed intelligent optimization algorithm called PSOSA, which could avoid premature convergence of standard particle swarm optimization (PSO) by introducing the probabilistic jumping property of simulated annealing (SA). Simulations on a three-tank system show the effectiveness of this optimization based fault diagnosis strategy.
Energy analysis of stability of twin shallow tunnels based on nonlinear failure criterion
Institute of Scientific and Technical Information of China (English)
张佳华; 许敬叔; 张标
2014-01-01
Based on nonlinear Mohr−Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr−Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr−Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5 to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels, appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.
International Nuclear Information System (INIS)
Supercontinuum generation with considerable flatness and low fluctuation is investigated in nonlinear fibers by amplification of pulsed seed signal of a stable mode locked bismuth oxide based erbium doped fiber laser. Spectral expansion from 980 to 1750 nm is obtained by 340 fs pulses at 1560 nm amplified up to 177 kW in a dispersion flattened highly non-linear fiber. A comparison is made for different types of nonlinear fibers and evaluation of spectral bandwidth at high powers is probed
Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John
2016-01-01
Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667
A general U-block model-based design procedure for nonlinear polynomial control systems
Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua
2016-10-01
The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.
Nonlinear Phase Control and Anomalous Phase Matching in Plasmonic Metasurfaces
Almeida, Euclides; Prior, Yehiam
2015-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute a particularly attractive set of materials. By means of modern nanolithographic fabrication techniques, flat, ultrathin optical elements may be constructed. However, in spite of their strong optical nonlinearities, plasmonic metasurfaces have so far been investigated mostly in the linear regime. Here we introduce full nonlinear phase control over plasmonic elements in metasurfaces. We show that for nonlinear interactions in a phase-gradient nonlinear metasurface a new anomalous nonlinear phase matching condition prevails, which is the nonlinear analog of the generalized Snell law demonstrated for linear metasurfaces. This phase matching condition is very different from the other known phase matching schemes. The subwavelength phase control of optical nonlinearities provides a foundation for the design of flat nonlinear optical elements based on metasurfaces. Our demonstrated flat nonlinear elements (i.e. lenses) act...
Zimbovskaya, Natalya A.
2016-07-01
In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.
International Nuclear Information System (INIS)
Interaction of incident nuclear particle beam with J = 1/2 (neutrons) spin and (J = 1/2) protons with the target substance is considered. It is shown that neutron polarization at the target exit and neutron transparency (G) of the target depend significantly on incident wave amplitude level and physical parameter values which characterize the target, such as target temperature, resonator mirror reflection factor, number of spins interacting with the field, etc. Under interaction of neutrons with a target resonator which features a high mirror reflection factor and low losses for absorption which is not related to magnetic dipole absorption, a bistable response of neutron polarization and G manifests itself. 1 ref
Numerical simulation of nonlinear beam-plasma interaction for the application to solar radio burst
Takakura, T.
The Takakura (1977, 1979) semi-analytical method is used in numerical simulations of nonlinear scattering of axially-symmetric plasma waves into both plasma and radio waves, where the initial electron beam has a finite length and one-dimensional velocity distribution power law. The ratio between plasma wave and thermal electron energy densities is of the order of 10 to the -6th, which may be several orders of magnitude lower than the threshold value required for a caviton collapse of the plasma waves to occur. In addition, the second harmonic radio emission attributed to the coalescence of two plasma waves is several orders of magnitude higher than the fundamental radio emission caused by the scattering of plasma waves by thermal ions.
Nonlinear interaction and parametric instability of kinetic Alfvén waves in multicomponent plasmas
International Nuclear Information System (INIS)
Nonlinear couplings among kinetic Alfvén waves are investigated for a three-component plasma consisting of electrons, protons, and heavy ions. The parametric instability is investigated, and the growth rate is obtained. In the kinetic regime, the growth rate for the parallel decay instability increases with the heavy ion content, but the growth rate for the reverse decay is independent of the latter since the perpendicular wavelength is much larger than the ion gyroradius. It decreases with the heavy ion content when the perpendicular wavelength is of the order of the ion gyroradius. It is also found that in the short perpendicular wavelength limit, the growth rate is only weakly affected by the heavy ions. On the other hand, in the inertial regime, for both parallel and reverse decay cases, the growth rate decreases as the number of heavy ions becomes large.